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ABSTRACT

SYNTHESIS AND CHARACTERIZATION OF METAL OXIDE
SEMICONDUCTORS FOR PHOTOELECTROCHEMICAL HYDROGEN

PRODUCTION

by
Sudhakar S het

The goal of this thesis is to investigate the properties of metal-oxide thin films on

fluorine-doped tin oxide (FTO)-coated glass substrates, prepared by using radio-

frequency (RF) reactive magnetron sputtering for photoelectrochemical (PEC)

applications. Metal-oxide thin films as a photoelectrode are of special interest for PEC

systems to produce hydrogen in an aqueous solution by solar energy due to their low cost

and potential stability.

The following list represents some of the accomplishments and results of this

work:

• Narrowing of N-incorporated ZnO (ZnO:N) was achieved by reactive sputtering
in a 02/N2 mixture ambient, and ZnO:N films with various bandgaps were
realized by varying N concentration, which was controlled successfully by
varying the RF powers.

• Nitrogen incorporation narrows the bandgap of ZnO and shifts the optical
absorption into the visible-light region. As a result, the ZnO:N films exhibit
higher photocurrents than ZnO films.

• p-type ZnO thin films with significantly reduced bandgaps were synthesized by
heavy Cu incorporation.

• ZnO thin films deposited in pure argon ambient lead to polycrystalline films.
However, the presence of N2 in the deposition chamber ambient promotes the
formation of aligned nanorods at temperatures above 300°C and these films
exhibit enhanced photocurrents.



• Proper Ar/N2 ratio in the chamber ambient plays a significant role in the
formation of aligned nanorods in ZnO thin films.

• Bandgap-reduced p-type ZnO thin films with various carrier concentrations are
realized by Cu and Ga co-doping.

• ZnO thin films co-doped with Ga and N showed significantly enhanced
crystallinity and improved N incorporation compared to ZnO doped solely with N
and exhibited dramatically improved PEC response.

• Ga and N co-doped ZnO films exhibited enhanced N incorporation and
photocurrents as the substrate temperature was increased.

• Controlling 02/N2 gas flow rate in the chamber ambient is critical for Ga and N
co-doped ZnO thin films; otherwise, it will result in phase separation.

• Synthesized porous ZnO nanocoral structures demonstrated a 10-fold increase in
PEC response as compared to compact ZnO films.

• ZnO:N, ZnO:(Ga,N), and ZnO:(Al,N) films deposited under a N2/02 plasma
showed n-type behavior due to substitutional N2 molecules that act as shallow
double donors.

• Significantly reduced bandgaps enhanced crystallinity, and PEC responses were
observed for Al and N co-doped ZnO thin films.

• N incorporation in the Al and N co-doped ZnO films were successfully controlled
by varying the N2/02 gas flow rate and RF powers.

• Bandgap-reduced solid solution of ZnO and GaN (ZnO:GaN) that exhibited
improved PEC responses were synthesized.

• It was found that the Al and N co-doped ZnO and ZnO and GaN solid solution
deposited under N2/Ar gas flow failed to incorporate the N in the films; N2/0 2 gas
flow succeeded in incorporating N in the films.

• CoAl2O4—Fe2 O3 p-n nanocomposite electrodes exhibited much improved
photoresponses as compared to p-type CoAl

2
O4 only.

• Ternary cobalt-based spinal oxides as PEC catalysts are limited by the poor
transport properties induced by small polaron mobility.

• p-type Cu-Ti-oxide, Cu-W-oxide, and Cu-Sn-oxide films were synthesized.
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CHAPTER 1

INTRODUCTION

1.1 Objective and Scope of Work

The three main goals of this research, presented in the following dissertation, are the

following:

1) Control the process of radio-frequency (RF) reactive magnetron sputtering for the
growth of high-quality metal-oxide thin films on fluorine-doped tin oxide (FTO)-coated
glass substrates and understand the effect of various parameters of RF reactive magnetron
sputtering on the resultant properties of metal-oxide thin films.

2) Understand the metal-oxide thin films as a photoelectrode for photoelectrochemical
(PEC) systems for producing hydrogen in an aqueous solution by solar energy.

3) Engineer the bandgap of metal-oxide films to effectively use visible light for solar
energy-driven hydrogen production.

Hydrogen is widely considered to be the fuel of the future. It has potential

applications for nonpolluting vehicles, domestic heating, and aviation. The use of fuel

cells powered by hydrogen generated by solar energy will reduce harmful emissions to

nearly zero. Thus, in recent years, hydrogen production through direct water splitting has

become a very important research area.

This research was driven by a very specific application to develop photoelectrodes

for efficient photoelectrochemical water splitting to produce hydrogen in an aqueous

solution by solar energy. Efficient PEC splitting of water to produce hydrogen requires

photoelectrodes that (1) are highly stable, (2) have band-edge positions that match the

1
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H

2

/H

2

O and H

2O/O 2

 levels and (3) can absorb most of the photons from the solar

spectrum. A concern for direct high-efficient PEC water splitting is the lack of materials

that can satisfy all these requirements. Oxides are the most photoelectrochemically stable

semiconductors in aqueous solutions.

Transition metal oxides, such as ZnO, TiO

2

, WO3 , and Fe

2

O3 , also meet the

second criterion. PEC systems based on transition metal oxides have received extensive

attention due to their potential applications for H2 production in an aqueous solution by

solar energy. However, until now, the demonstrated efficiencies of these oxides have not

been satisfactory. The main reason is that these oxides are poor absorbers of photons in

the visible region of the solar spectrum because their bandgap is too large. In order to

improve the efficiency, the bandgap of these oxides must be narrowed. To date, only

TiO

2

 has received extensive attention. ZnO has a similar bandgap and band-edge position

compared to TiO

2

. However, ZnO has a direct bandgap and higher electron mobility

compared to TiO

2

. Thus, ZnO is expected to be an even better candidate for PEC

applications. Like TiO

2

, the bandgap of ZnO (-3.3 eV) is too large to use visible light

effectively because the solar spectrum has a maximum intensity at —2.7 eV. Therefore, it

is critical to reduce the bandgap of ZnO.

So far, impurity incorporation has been the main method to reduce the bandgap of

TiO

2

 and WO3 . It has been reported that N, C, and S doping can successfully narrow the

bandgap of TiO

2

 and WO3 and improve the photoresponse in the long-wavelength region.

Significant amounts of N can only be incorporated into TiO

2

 and WO3 at low

temperatures. However, films grown at low temperatures usually exhibited very poor

crystallinity, which is extremely detrimental to the PEC performance. Although TiO

2

 and
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bandgap-reduced TiO

2

 have been studied extensively, very limited research exists on

using a ZnO photoelectrode for PEC water splitting to produce hydrogen. Thus, there is

an immediate need to study extensively ZnO and other metal oxides such as ternary

cobalt-based spinal oxides, Cu-Ti-oxide, Cu-W-oxide, Cu-Sn-oxide, doped Cu-Ti-oxide

and doped Cu-W-oxide thin films for PEC water-splitting applications.

The research work presented in this dissertation relates to deposition of ZnO,

doped and co-doped ZnO thin films, and cobalt-based and copper-based metal-oxide thin

films using RF reactive magnetron sputtering system. A series of depositions have been

carried out in this system with various sputtering process parameters. The influence of

these process parameters on film properties has been investigated. High-purity

(99.9999%) argon, oxygen, and nitrogen have been used as sputtering gas ambient for

deposition of metal-oxide thin films in some experiments.

ZnO thin films in the form of compact structures and nanostructures were

successfully synthesized. Bandgap reduction in ZnO thin films was realized by doping

with N and Cu. p-type doping in ZnO was achieved by heavy Cu incorporation. Charge-

compensated acceptor-donor co-doping in ZnO with enhanced crystallinity and PEC

responses were demonstrated. Nanorod and porous ZnO nanocoral structures were

synthesized and demonstrated a 10-fold increase in PEC response compared to compact

ZnO films. Bandgap-reduced solid solution of ZnO and GaN (ZnO:GaN) thin films that

exhibited improved PEC responses were synthesized. Ternary cobalt-based spinal oxides,

Cu-Ti-oxide, Cu-W-oxide, Cu-Sn-oxide, doped Cu-Ti-oxide, and doped Cu-W-oxide thin

films were successfully deposited and extensively studied for PEC water-splitting

applications.
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The results obtained in this research were based on the analysis of many

experiments for deposition of metal-oxide thin films and their characterization.

Characterization techniques included stylus profilometry, X-ray diffraction (XRD),

atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission

electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), secondary-ion

mass spectroscopy (SIMS), n & k analysis, spectrophotometry and photoelectrochemical

measurements.

An effort was made to better understand the deposition process of metal-oxide thin

films and the potential applications of PEC water splitting to produce hydrogen in an

aqueous solution using solar energy. ZnO thin films with reduced bandgap with enhanced

crystallinity and PEC responses were successfully demonstrated. The cobalt- and copper-

based metal-oxide thin films were studied extensively. These findings will also have

potential applications in other fields of technology and industry.

1.2 Synopsis

This dissertation presents the results of the work on metal-oxide thin-film deposition by

RF reactive magnetron sputtering system undertaken at the National Renewable Energy

Laboratory (NREL). The presentation of this thesis begins with a background of

photoelectrochemical water splitting to produce hydrogen using solar energy, as well as a

literature review. A general description of the properties of zinc oxide and cobalt-based

ternary oxide is discussed later in Chapter 2. Deposition techniques for thin films with

special emphasis on sputtering are discussed in detail in Chapter 3. The details of the

system including sample preparation method, substrate mounting, and experimental
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parameters are discussed in Chapter 4. The working principles of various characterization

techniques used in this work are addressed in Chapter 5. Chapter 6 is dedicated to results

and discussion of the research work carried out in this dissertation. Conclusions and

recommendations based on this work is presented in the last chapter.



CHAPTER 2

BACKGROUND

2.1 Hydrogen: Future Fuel

Hydrogen is widely considered as a potential alternative to fossil fuels for producing and

storing energy. Our current global economy depends heavily on fossil fuels, which are

integral to agriculture, industry, transportation, and day-to-day life. Consequently, there

have been intense efforts to develop various technologies based on the applications of

hydrogen as a fuel, instead of fossil fuels, for the following reasons:

• Deposits of fossil fuels are limited.

• There is a need for a fuel generated from raw materials that are abundantly
available.

• The price of fossil fuels is increasing.

• The use of fossil fuels is responsible for climate change [1, 2-6].

• Fossil fuels are not renewable.

• There is a need for a fuel that is environmentally safe.

• Dependence on other countries for fossil fuels is detrimental to the economic
security of the nation.

Hydrogen is a versatile energy carrier that has many potential applications,

including powering of nonpolluting vehicles and aircrafts, and domestic heating.

Therefore, along with photovoltaics, hydrogen is expected to be the foundation of

sustainable energy systems [1-3, 7].

Hydrogen is not present in nature in a gaseous form; however, it is abundantly

available in water. Therefore, hydrogen must be extracted from the water. To date, steam

6
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reforming has been the principal technique to produce hydrogen [2, 7]. Hydrogen is also

produced by water electrolysis using electricity obtained from the combustion of fossil

fuels. However, these technologies cannot be considered environmentally friendly

because they emit CO

2

. On the other hand, a better option to consider is hydrogen

obtained using photoelectricity. In addition, such hydrogen represents a storable fuel that

is produced from photoelectricity, a nonstorable source of energy [1].

The advantages of hydrogen as a universal energy medium are listed as follows [8]:

• Non-toxic.

• Combustion of hydrogen simply produces liquid water and steam. In this respect,
hydrogen use is completely safe from an environmental perspective.

• Easily assimilated into the biosphere: its combustion products are recycled by
plants to make carbohydrates.

• Possible to produce hydrogen from the most abundant chemical on earth: water.
Hydrogen can be obtained electrolytically, photoelectrochemically,
thermochemically, by direct thermal decomposition of water, or biochemically
from water.

• The most suitable fuel for use in fuel cells—direct conversion of chemical energy
into electricity with an enhanced efficiency.

• Can be used as a feedstock for the chemical industry, enabling the production of
an entire gamut of chemicals from hydrogen and conventional petrochemicals.

• Transmission of energy in the form of hydrogen is more economical than through
high-voltage alternating-current (AC) lines at large distances.

Hydrogen Generation Using Solar Energy

Unlike fossil fuel reactions—which results in carbon monoxide, carbon dioxide, sulfur

dioxide, or particulates—the combustion of hydrogen results in the generation of water,

which does not result in air pollution or lead to the emission of greenhouse gases. The
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electrolysis of water to produce hydrogen is easily achieved using an electrochemical

cell. Water will be split into hydrogen and oxygen gases if a voltage is applied between

two electrodes submerged in an acidic or basic aqueous solution. The water-splitting

reaction will only occur when external energy is supplied, for example, in the form of

electricity. Hydrogen can be produced sustainably—and its generation considered

environmentally friendly—if the energy required for splitting water electrochemically is

supplied by a renewable energy source, such as solar, wind, hydroelectric, or

hydrothermal energy. Solar hydrogen can be produced wherever sunlight and water are

available, enabling distributed energy generation and reducing the dependence on

countries rich in fossil fuels for energy supplies.

To date, the technologies for hydrogen generation using sources of renewable

energy are in the incubation stage. But, there is tremendous growing interest in

developing hydrogen technologies that rely on renewable sources of energy. From the

literature, the most-promising method of hydrogen production is photoelectrochemical

(PEC) water decomposition using a source of renewable energy such as solar energy [1,

9-53]. There have been many papers published on the impact of various structures and

materials on the performance of PEC cells since the first reports of this method were

published by Honda et al. [9-12] almost 30 years ago [1].
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2.2 Photoelectrochemistry of Water Decomposition

2.2.1 Principles

The photoelectrochemical decomposition of water is based on the principle that when two

electrodes, at least one of which is a semiconductor, are immersed in an aqueous

electrolyte and exposed to light, the absorbed light energy will be converted into

electricity. This electricity is then used for water electrolysis [1]. In the PEC process,

reactions occurring at the photo-anode and cathode result in the separate evolution of

oxygen and hydrogen, respectively.

The photo-electrodes in the assembly can be arranged as follows: (1) photo-

anode made of an n-type semiconductor and cathode made of metal or photo-cathode

made of a p-type semiconductor, and (2) anode made of metal and photo-cathode made

of a p-type semiconductor.

Figure 2.1 shows the PEC cell for the photoelectrolysis of water. In a typical PEC

cell, both photo-anode (semiconductor) and cathode (metal) will be immersed in an

electrolyte. When light is exposed to the photo-anode, if the energy of the photons (hv) is

equal to or larger than the bandgap of the semiconductor material, intrinsic ionization of

the n-type semiconducting materials over the bandgap occurs, leading to the formation of

electrons in the conduction band and holes in the valence band.

where, h is Planck's constant, v is frequency, e 1 is the electron, is the hole.

The process results in water oxidation into gaseous oxygen and hydrogen ions at the

photo-anode/electrolyte interface:
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The charge transport involves electron transport in the external circuit and the migration

of hydrogen ions in the electrolyte to the cathode, where hydrogen ions are reduced to

gaseous hydrogen [1]:

Accordingly, the overall reaction of the PEC cell may be expressed in the form:

Figure 2.1 Structure of photoelectrochemical cell for water photoelectrolysis [1, 9].

2.2.2 Formation of Electrochemical Chain of PEC

Figure 2.2(a—d) shows a schematic of various stages in the formation of the

electrochemical chain of the PEC cell, involving the photo-anode of an n-type

semiconductor and metallic cathode. The figure shows the band structure of anode

(semiconductor), cathode (metal), and electrolyte under various conditions, such as initial

condition when no contact is made, after galvanic contact under dark condition, after

light illumination, and after light illumination with applied anodic bias in comparison
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with the corresponding H+/H

2

 and O

2

/H

2

O redox couples. These figures show the various

energy quantities, such as: work function, band levels of the electrodes before and after

the chains are established, and band bending [1].

Figure 2.2(a) shows the energy diagram before the galvanic contact is made

between the two electrodes. The semiconductor has a low work function compared to

metal, so when the contact is made between the two electrodes under dark condition, the

result is electronic charge transfer from the semiconductor to metal until the work

functions of both electrodes assume the same value, as shown in Fig. 2.2(b). This charge

transfer results in a region depleted of electrons at the semiconductor surface known as

space-charge layer or depletion layer. Negatively charged ions in the electrolyte are

attracted toward the positively charged region, resulting in a very thin (< 1 nm)

Helmholtz layer. The equilibration of the electrochemical potentials of the electrolyte and

the semiconductor leads to band bending of magnitude VB.. The H +/H

2

 energy level is

still above the Fermi energy level of the cathode (metal), which is not favorable for water

decomposition. The surface potential of the photo-anode and H+/H

2

 potential are lowered

by the illumination of light, as shown in Fig. 2.2(c). To elevate the cathode EF level

above the H+/H

2

 energy level, anodic bias is applied under illumination, thus making the

process of water decomposition possible (as shown in Fig. 2.2(d)) [1].
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Figure 2.2 Energy diagram of PEC components: Anode (semiconductor), electrolyte, and
cathode (metal): (a) before galvanic contact, (b) after galvanic contact between anode and
cathode, (c) effect of light on electronic structure of PEC components, and (d) effect of
light on the energy diagram of PEC cell with externally applied bias [1].

2.3 Material Aspects of Photoelectrochemical Cells

The photo-electrodes materials used in P EC cells should perform three fundamental

functions: (1) optical function required to obtain maximum absorption of solar energy,

(2) catalytic function required for water decomposition, and (3) stability in the aqueous
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solution. The properties of photo-electrodes should satisfy several specific requirements

in terms of semiconducting and electrochemical properties, including [1, 12, 24, 29, 40,

53]:

• Bandgap

• Helmholtz potential

• Schottky barrier

• Flat-band potential

• Electrical resistance

• Corrosion resistance

2.3.1 Bandgap

A semiconducting material is characterized by bandgap Eg. The bandgap is defined as the

energy difference between the bottom of the conduction band and top of the valence

band. Only that part of incident radiation having energy more than the band gap will be

absorbed by the bandgap. This indicates that photons having energy less than E g, are not

available for energy conversion. Therefore, photon-induced ionization through the

bandgap is an important quantity for materials that are candidates for photo-electrodes.

The optimal bandgap for high-performance photo-electrodes is —2 eV [1, 12, 24, 29, 53,

54, 55].

2.3.2 Helmholtz Potential Barrier

When a semiconducting photo-electrode material is immersed in a liquid electrolyte, the

charge transfer from the semiconductor to the electrolyte leads to the formation of a

surface charge of the semiconductor and results in upward band bending, forming a

potential barrier similar to that of the solid/solid interface. This surface charge is
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compensated by a charge of the opposite sign, which is induced in the electrolyte, which

forms a very thin layer (< 1 nm) and is formed of oriented water-molecule dipoles and

electrolyte ions adsorbed at the electrode surface known as the Helmholtz layer [1, 53,

56, 57]. The height of this potential barrier is called the Helmholtz barrier. The properties

of the photo-electrode surface and nature of the aqueous environment of the electrolyte

have a profound influence on the Helmholtz barrier, which, in turn, determines the

performance of PEC cells [1, 53].

2.3.3 Schottky Barrier

Because of surface states, concentration gradients, and adsorption states, a potential drop

occurs within the interface layer of the solid, called a Schottky barrier. The Schottky

barrier plays a crucial role in preventing recombination of the charge formed as a result

of photo-ionization [1]. This is because holes, which reside in the valence band, tend to

float and move to upper energy levels in the valence band, whereas electrons, which lie in

the conduction band, tend to move to lower energy levels in the conduction band. In the

case of an n-type semiconductor, the band edges near the interface are curved upward.

The absorption of photons can occur at the interface or the bulk of the semiconductor

depending on the depth of penetration of light; but the holes produced always move to the

interface where they can move to higher energy levels because of the upward curvature.

The electrons, on the other hand, move to the bulk of the semiconductor, where they find

lower energy than the interface. This effectively separates the electron-hole pairs.
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2.3.4 Flat-band Potential

This flat-band potential, Ufb, is an important parameter in photo-electrode reactions in

PEC cells. To make the bands flat, a potential has to be imposed over the

electrode/electrolyte interface, termed as the flat-band potential [24, 53, 54]. When the

flat-band potential is higher than the redox potential of the H +/H2 couple, water photo-

electrolysis may occur [24, 53, 54].

2.3.5 Electrical Resistance

The major source of energy losses from the ohmic resistances of the internal and external

circuits of PEC cell constitute electrodes, electrolyte, electrical leads (wires), electrical

connections, measurement and control equipment. The electrical resistances of these

sources must be minimized to achieve maximum conversion efficiency [1].

2.3.6 Corrosion and Photo-Corrosion Resistance

A very important property desired in the photo-electrodes is very high resistance to

electrochemical corrosion and photo-corrosion, from the reactions at the solid/liquid

interface, resulting in degradation of its properties. The chemical corrosion occurs when a

semiconductor may itself be reactive toward the electrolyte and reacts with it even in the

absence of light-generated charge carriers. In contrast, photo-corrosion results when free

electrons and holes are generated in the semiconductor, causing a chemical reaction

between the semiconductor and electrolyte, and thus altering the chemical nature of the

semiconductor and destroying its semiconducting properties. When any form of reactivity

occurs, the chemical composition and the related properties of the electrode and photo-

electrode change [1, 53, 54]. These changes are not beneficial to the properties of the
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photo-electrode, which is essential for photo-conversion. Therefore, the photo-electrodes

must be resistant to these types of undesired reactivities [1].

Although valence semiconductors [58, 59] exhibit suitable semiconducting

properties such as bandgap width and direct transition, they are not resistant to

electrochemical corrosion when exposed to aqueous environments. More suitable

candidates for photo-electrodes for electrochemical water decomposition are certain

oxide materials, such as TiO2 and its solid solutions, because they are particularly

resistant to these reactivity types [1, 9, 19, 53].

2.4 Impact of Bandgap of Photo-Electrode Material on Solar Energy Spectrum

2.4.1 Solar Energy Spectrum

It is well known that that the maximum amount of energy of the solar spectrum is in the

visible region (above —1.4 eV and below —3 eV). Hence, to obtain maximum conversion

efficiency, an ideal semiconductor should have a bandgap that can absorb the visible

region of the solar spectrum [1]. In theory, the minimum energy required to split the

water molecule is 1.23 eV. The solar energy spectrum illustrated in Fig. 2.3 depicts

segments defining phonon fluxes corresponding to different energy ranges.

In practice, because of various energy losses, the energy that may be used for

conversion is smaller than the theoretical energy limit. The estimated value of these

combined losses is —0.8 eV; therefore, the optimal energy range in terms of the photons

available for conversion is —2 eV.
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Figure 2.3 Solar energy spectra (AM of 1.5) in terms of number of photons vs. photon
energy, showing different flux photon regimes corresponding to specific properties of
photoelectrodes [1, 60].

2.5 Literature Review

Various semiconductors have been studied as water-splitting photoelectrodes, but none

examined thus far meet all of the requirements to be optimal. Wide-bandgap

semiconductors such as TiO

2

 and SrTiO3 have the appropriate band-edge energies for

water splitting and have good PEC stability, but their bandgaps are too large to absorb a

reasonable fraction of the solar spectrum. Valence semiconductors have appropriate

bandgaps, but they are not stable in aqueous solutions [1].

The energy conversion efficiency (nc) of an undoped TiO

2

 photo-anode for both

thin-film [11] and single-crystal [61] morphologies has been measured to be 0.4% [11,

61]. Cr-doped TiO

2

 resulted in a slight increase in nc to 0.44%, whereas Al doping

resulted in 0.6% efficiency increase [61]. Cu, Ta, V, or Y doping did not lead to any

substantial changes in the energy conversion efficiency [62]. A substantial increase in
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energy conversion efficiency is observed when an external bias (chemical or electrical) is

applied. TiO

2

 single-crystals studied by Akikusa and Khan [63] reported much larger

values (nc = 1.6%), which were achieved by applying a chemical bias. Nozik reported the

total energy conversion efficiency of 10% for TiO2 single-crystals, with the application of

chemical and electrical biases, as well as ultraviolet (UV) light [1, 16]. Quantum energy

conversion efficiencies for various TiO

2

 specimens, including single-crystals,

polycrystals, thin films, and thin TiO2  layers formed on metallic Ti through oxidation,

were reported by Mavroides et al., and from these data, TiO

2

 layers formed by oxidation

on metallic Ti exhibited the best performance [15].

Significantly high total energy conversion up to 20% [18] or 25% [27] using high-

energy light of specific wavelengths was reported for SrTiO 3 single-crystals without the

application of a bias [18]. At present, only PEC cells based on SrTiO 3 as the photo-anode

have been shown to exhibit electromotive force (EMF) values that are sufficient for water

decomposition without a bias [1].

Photo-electrodes made of non-oxide materials, including GaAs and Al-doped

GaAs, exhibited very high total energy conversion efficiencies, in the range of 12%—

18%; however, these reports provided no information about the stability of the photo-

electrodes [58, 59]. Energy conversion efficiencies up to 4.46% have been reported for

photosensitizers of organic compounds, but they exhibit very little stability in aqueous

environments [64, 65]. It is clear from the reported data that the energy conversion

efficiencies obtained by using specific energy sources whose energy spectrum differs

from that of solar energy may be substantially larger than that from solar energy.
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Accordingly, the use of UV light resulted in a substantial increase in energy conversion

efficiency [1, 28].

The optimal bandgap for high-performance photo-electrodes is —2 eV. Such a

material that satisfies this requirement and is also corrosion resistant is not available

commercially. Therefore, there is a need to develop such a material by bandgap

engineering. Philips et. al. [66] have reported that, although adding 30 mol% V to single-

crystals and polycrystalline specimens of TiO2  reduces the bandgap to 1.99 eV, the

formation of (TiO0.7VO0.3)O

2

 had a detrimental effect on the photo-activity due to a

substantial increase in the flat-band potential. Zhao et al. [49, 50] observed that

increasing the V content resulted in an increase in the energy conversion efficiency. From

the above results, it is possible that the effect of V on the photo-electrode is

morphological rather than compositional. V4+/5+-doped TiO

2

 has also been attempted,

which forms a solid solution (Ti 1-x,Vx)O

2

. N-incorporated bandgap-reduced TiO

2

 and

WO3 have been reported by some groups. A significant amount of N can only be

incorporated at low temperatures. However, films grown at low temperatures usually

exhibited very poor crystallinity, which is extremely detrimental to the PEC cell

performance.

2.6 Zinc Oxide

2.6.1 Introduction

Zinc oxide is an inorganic compound with the formula ZnO. It occurs in nature as the

mineral zincite. It is usually white in color and nearly insoluble in water. Zinc oxide is an

important material for a variety of applications, and because many of our industries rely
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critically on this compound, it has been studied intensively since 1935 [67, 68]. There

has been development in growth technologies for fabricating high-quality single-crystals,

epitaxial layers, quantum wells, nanorods, quantum dots, and related objects of ZnO.

Much of the renewed interest in this material has focused on blue/UV lasers, light-

emitting diodes (LEDs), and other optoelectronic devices, in addition to (or instead of)

the GaN-based structures, transparent thin-film transistors, electronic devices,

spintronics, and transparent conducting oxides (TCOs).

ZnO is an II-VI semiconductor with a direct wide-bandgap of around 3.2 eV and a

large exciton binding energy of 60 meV at room temperature. ZnO is naturally an n-type

semiconductor partially due to its deviation from stoichiometry, i.e., due to the presence

of interstitial Zn atoms (Zn i) in large voids and the presence of oxygen vacancies (Vo) in

the crystal and partially due to the presence of background donors such as H and Al.

These defects form donor levels at —0.05 eV [69].

2.6.2 Crystal Structure

Most group II-VI binary compound semiconductors have cubic, zincblende or hexagonal

wurtzite structure. The crystal structure of ZnO can be rock salt, zincblende, and wurtzite,

as shown in Figs. 2.4 and 2.5. Its ionicity is at the boundary between the covalent and

ionic semiconductors.



Figure 2.4 The hexagonal wurtzite structure of ZnO. 0 atoms are shown as large white
spheres, Zn atoms as smaller black spheres [67].
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Figure 2.5 The rock salt (left) and zincblende (right) phases of ZnO. 0 atoms are shown
as white spheres, Zn atoms as black spheres [68].

Zinc oxide crystallizes in the wurtzite (B4 type) structure because it is most stable

and thus most common at ambient pressure and temperature. This is a hexagonal lattice,

belonging to the space group P6 3mc, and it is characterized by two interconnecting sub
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lattices of Zn2+ and O2-, such that each Zn ion is surrounded by a tetrahedron of 0 ions,

and vice versa [67]. Growing ZnO on substrates with cubic lattice structure, the

zincblende form can be stabilized. The rock salt NaCl-type structure is only observed at

relatively high pressure of —10 GPa. With ZnO in the wurtzite and zincblende structure,

tetrahedral coordination gives rise to polar symmetry along the hexagonal axis. This

polarity and other lattice symmetry properties are responsible for a number of the

properties of wurtzite ZnO, including its spontaneous polarization and piezoelectricity,

and it is also a main factor in etching, defect generation, and crystal growth [67].

2.6.3 Lattice Parameters

Lattice parameters are important to consider when one develops semiconductor devices.

There are four main factors that determine the lattice parameters of the semiconductor.

The first is free-electron concentration, which affects the potential of the bottom of the

conduction band normally occupied by electrons. The second factor is the concentration

of impurities and defects and the difference in ionic radii between these defects and

impurities and the substituted matrix ions. The third factor is the external strains. The last

factor is the temperature-dependence in the semiconductors. The lattice parameters of the

hexagonal unit cell are a = 3.2495 A and c 5.2069 A, and the density is 5.605 g cm -3

[70]. Table 2.1 shows basic physical parameters of ZnO [67].
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Table 2.1 Key Physical Parameters of ZnO [67]

Properties Value
Stable crystal structure Wurtzite

Space group C6,,4 (C63mc)

Eg (eV) 3.4

m*e (mo) 0.28

m*' hh  (mo ) 0.78

a (Å ) 3.2

c (Å ) 5.2

Density ρ  (g cm -3) 5.606

Melting point (°C) 1975

Refractive index 2.008
2.029

Thermal conductivity at 300 K (W/(cm.K)) 0.6, 1-1.2

Linear thermal expansion (/°C) a: 6.5 x 10-6
c: 3.0 x 10-6

2.6.4 Electrical Properties and Bandgap

ZnO is considered a good candidate for electronic and optoelectronic devices because it

is a direct and wide-bandgap semiconductor with large binding energy (-60 meV). For

example, a device made by material with a larger bandgap may have a high breakdown

voltage, lower noise, and can operate at higher temperatures with higher power. The

performance of electron transport in a semiconductor is different at low and high

electrical fields.
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The energy distribution of electrons in ZnO does not change much at very low

electrical fields, because the electrons cannot get much energy from the applied electrical

field, compared with their thermal energy. So, the scattering rate, which determines the

electron mobility, does not change much and results in constant electron mobility. At a

high electrical field, the energy of the electrons from the applied electrical field is

comparable with their thermal energy. The electron distribution function then deviates far

away from its equilibrium value. These electrons become hot electrons, whose

temperature is higher than the lattice temperature. When the electron drift velocity is

higher than its steady-state value, it is possible to make a higher-frequency device.

Due to the large variance of the quality of sample available, the electrical

properties of ZnO are very difficult to quantify. Depending on the quality of the layers,

the carrier concentration varies considerably, but is typically ~10 16 cm-3 . The largest

reported n-type doping is ~1020 electrons cm-3, and the largest reported p-type doping is

~1019hole cm-3[67, 71]. The electron effective mass is 0.24mo, and the hole effective

mass is 0.59mo. The corresponding electron Hall mobility at 300 K for low n-type

conductivity is 1.1 = 200 cm2V-1 s-1 and for low p-type conductivity is 5-50 cm2V-1 s-1 [67,

72].

Optical bandgap values from 3.1 to 3.3 eV have been reported for the ZnO

single-crystals at room temperature, as well as 3.44 eV at 4 K [73, 74]. The optical

bandgap of pure polycrystalline ZnO film is close to 3.28-3.30 eV for various deposition

methods [75-77].

All ZnO films exhibit n-type conductivity, made without any intentional doping,

caused by a deviation from stoichiometry due to native defects [78]. Traditionally, the
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two intrinsic defects most commonly reported in the literature as the dominant

background donors in ZnO are the oxygen vacancy (V 0) and interstitial Zn (Zn i) [79, 80].

It has been demonstrated that Zn, is a shallow donor, and the donor levels lie in the range

of 0.025-0.03 eV below the conduction band [81]. Recent work shows that V 0 does not

give rise to a shallow donor level [82]. In contrast to the earlier investigations, it was

considered to be a deep center about 0.6 or 0.7 eV below the conduction band [83]. In

addition, based on first-principles calculations and experimental confirmation, a new

source responsible for the observed n-type conductivity has been suggested recently,

namely, hydrogen atoms that act as shallow donors [84-86].

Figure 2.6 shows the local-density approximation (LDA) band structure of bulk

wurtzite ZnO calculated using dominant atomic self-interaction-corrected

pseudopotentials [67, 87]. Both the valence-band maxima and the lowest conduction-

band minima occur at the r point k = 0, indicating that ZnO is a direct bandgap

semiconductor. The bandgap determined from this calculation is 3.77 eV, which matches

reasonably well with the reported experimental value of 3.4 eV. Table 2.2 summarizes

important electrical parameters of ZnO [67].

Figure 2.6 The LDA band structure of bulk wurtzite ZnO calculated using dominant
atomic self-interaction-corrected pseudopotentials [1, 87].
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Table 2.2 Important Electrical Parameters of ZnO [67]

Properties Value
Bandgap Eg (eV) (300 K) 3.4 direct
Static dielectric constant εs/ε0 8-8.5
Effective mass of an electron in
conduction band, m *e

0.28 mo

Effective mass of an hole in valence
band, m*h

1.8 mo

Pressure coefficient dE

g

/dp  (meV kbar -1 ) 2.33
Electron affinity (eV) 4.35
Work function (eV) 4.45
Electron mobility at 300 K (cm 2/V-s) 200
Hole mobility at 300 K (cm2/V-s) 180

Donor level (Es-Ed) (eV) 0.03

2.6.5 Mechanical Properties

Mechanical properties are also very important in semiconductors, which are related to the

following concepts: hardness, piezoelectric constants, bulk modulus, and yield strength.

ZnO is a relatively soft material, with a hardness of —5 GPa at a plastic penetration depth

of 3000 nm (for c-axis-oriented bulk ZnO) [67, 88]. There is also some indication that the

crystal orientation of ZnO influences the mechanical properties due to the orientation of

the basal planes [67, 89, 90]. A-axis-oriented bulk ZnO is significantly softer than c-axis

material, with a hardness of GPa at a plastic penetration depth of 50 nm below

contact. Studies show that epitaxial ZnO grown on sapphire is slightly harder than its

bulk counterpart, with a hardness of —5.7 GPa for a c-axis epitaxial layer. Table 2.3

shows key mechanical properties of c-axis-oriented wurtzite ZnO, as determined by

experiment and theory [67].
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Table 2.3 Key Mechanical Properties of c-axis-oriented Wurtzite ZnO, as Determined by
Experiment and Theory [67]

Parameter Experimental Theoretical

Bulk Young's modulus, E (GPa) 111.2±4.7
Bulk hardness, H (GPa) 5.0±0.1
Epitaxial Young's modulus, E (GPa) 310±40
Epitaxial hardness, H (GPa) 5.75±0.8
Bulk modulus, B (GPa) 142.4 156.8
dB/dP 3.6 3.6
e33 (C m-2) 0.96 1.19
e31 (C m-2) -0.62 -0.55
e15 (C m-2) -0.37 -0.46

Spontaneous polarization (C m -2) -0.047
c11 (GPa) 209 246

C
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 (GPa) 216 246
C12 (GPa) 120 127
c13 (GPa) 104 105
c44 (GPa) 44 56

Born effective charge, Z* 2.1

2.6.6 Thermal Expansion Coefficient, Thermal Conductivity and Specific Heat

The thermal expansion coefficients of ZnO are α s = 4.31 x 10-6 K-1 and αc = 2.49 x 10-6

K-1 at 300 K [91]. Figure 2.7 shows a plot of the ZnO thermal expansion coefficient, αth,

as a function of temperature. The highest measured values of thermal conductivity on the

polar faces of ZnO [67, 92] gives the value of k = 1.02+0.09 and 0.98+0.08 W cm -1 K-1 .

The other values measured from ZnO typically fall in the range of k = 0.6-1 W cm-1 K-1

[67, 93].
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Figure 2.7 Graph of the ZnO thermal expansion coefficient α th as a function of
temperature [67, 94].

There are very limited data available in the literature for specific heat

measurements in ZnO [67]. The specific heat capacity of ZnO at constant pressure is Cp =

40.3 J mol-1K-1 [71]. Figure 2.8 shows the specific heat data for pure (bulk) and varistor

ZnO measured between 1.7 and 25 K [95].

Figure 2.8 The specific heat data for pure (bulk) and varistor ZnO measured between 1.7
and 25 K [67, 95].
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sites (see Fig. 2.9) [116-118]. Therefore, isovalent substitution on the spinel cations sites

can, in principle, be used to influence both the band-edge character and the magnitude of

the electronic bandgaps and optical absorption.

Figure 2.9 Illustration of crystal-field splitting of the minority spin Co 3d states in Co 3O4
and band-edge electronic structure in the ternary CoX2O4 (X = Al, Ga, In) spinels.

The majority of ternary oxides of the form AB204 adopt the spinel structure, as

shown in Figure 2.10. The cubic spinel crystal lattice is based on a face-centered cubic

(fcc) packing of oxygen atoms. The A atoms, generally in a +2 oxidation states, occupy

l/8 of the tetrahedral holes, while the B atoms, generally +3, occupy l/2 of the available

octahedral holes. In addition to this "normal" spinel arrangement, it is also possible for

the B atoms to occupy tetrahedral sites with a mixture of A and B atoms distributed on

the octahedral sites, referred to as the "inverse" spinel structure.
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Figure 2.10 Representation of the 56-atom conventional AB 2O4 spinel unit cell with 8 Td
(A) and 16 Oh (B) cation sites colored green and blue, respectively. The 32 oxygen sites
are colored red.

CoAl2O4 has been used in various applications, such as ceramic pigment

(Thénard's blue) [119] and optical coatings, and it is also important as a heterogeneous

catalyst in the reformation of methane [120]. The solid-state reaction of Co and Al oxides

to form CoAl 2O4requires a very high temperature of 1200°C [121]. However, CoAl2O4is

known to exhibit high chemical stability and is insoluble even in acidic solutions, which

makes it particularly interesting for PEC applications. CoAl 2O4exhibits hole-mediated p-

type conductivity [122], which is characteristic of oxides formed from transition metals

with accessible higher oxidation states.



CHAPTER 3

DEPOSITION TECHNIQUES

3.1 Introduction

The structural, optical, and electrical properties of thin films are of great importance in

their device applications. It is demonstrated that the film fabrication techniques play a

significant role in governing the properties of films because they depend strongly on the

preparation methods and parameters used for a given processing technique. This section,

in general, describes the main film growth equipment employed for preparing thin films

in this work—a physical vapor deposition (PVD) technique, namely, RF magnetron

sputtering.

A variety of deposition techniques, including spray pyrolysis [123-125], sol-gel

method [126], chemical vapor deposition (CVD) [127, 128], molecular-beam epitaxy

(MBE) [129], pulsed-laser deposition (PLD) [130, 131], and sputtering [132, 133] have

been employed to grow ZnO thin films on various substrates. Of special interest is RF

magnetron sputtering because it offers safety advantages, avoids the use of toxic gases,

has low cost, has high stability in hydrogen plasma and heat cycling, and grows at low

temperatures. In addition, sputtering of ZnO has a relatively high deposition rate and

hence is well suited for industrial-scale and large-area deposition for applications in PEC

devices.

For many decades, thin films have been deposited using physical and chemical

vapor deposition techniques. Thin films are of interest not only because they are thin, but

also, because the ratio of the surface area to bulk volume is so high that the surface

36
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properties become very important [134]. Physical vapor deposition processes involve

controllable transfer of atoms or molecules from a source to a substrate, in which film

formation and growth proceeds. Main categories of PVD are vacuum evaporation and

sputter deposition. Vacuum evaporation is a process in which atoms or molecules,

emitted from a thermal evaporation source, deposit on the substrate with little or no

collision with gas molecules in space between the source and the substrate, so that their

trajectory is a line of sight. One of the advantages of evaporation can be the high

deposition rates [135]. In sputtering, atoms are removed from the solid target (source)

surface through impacts of gaseous ions. Chemical vapor deposition is the process of

forming stable solids by the decomposition of gaseous chemicals using heat, plasma,

ultraviolet, or other energy sources, or a combination of sources [134].

3.1.1 Sputtering

The sputtering phenomenon can be described as follows: when a solid surface (target) is

bombarded by accelerated ions (energetic particles), atoms of the solid near the surface

can be knocked out due to collisions between the surface atoms and accelerated ions.

Sputtering is a process that uses plasma for deposition of films. Plasma is defined as a

partially ionized gas (typically 0.001% to 10% of the available atoms and molecules),

containing an equal number of positively and negatively charged particles. This allows

gas to be conductive by flowing current through the gas medium. At room temperature, a

plasma or glow discharge can be initiated and sustained between two electrodes with a

sufficiently high voltage difference, and placed in a gaseous environment at a pressure in

the medium vacuum range. This condition, often called the fourth state of matter, is

characterized by a visible glow and increased electric conductivity. The plasma is caused
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by the relaxation of excited gas atoms, in which an electron makes a transition from a

higher to a lower energy state, emitting energy in the form of visible light, characteristic

of that gas.

In general, the sputtering process consists of four steps: (1) the ions (charged

particles) are generated and accelerated toward the target, (2) the ions sputter the target

atoms, (3) the ejected (sputtered) atoms are transported to the substrate, where (4) they

condense and form a film. The number of sputtered atoms per incident ion is known as

the sputtering yield of the target material. Sputtering yields of metals with argon ions

with energy below 1 keV are of the order of unity [136]. Sputtering has proven to be a

successful method for coating a variety of substrates with thin films of electrically

conductive or non-conductive materials. One of the main characteristics of sputtering is

its universality. Because the coating material is transferred in the form of atoms or

molecules by ion impacts rather than a chemical or thermal process, virtually any

material can be deposited. Direct current (DC) is used to sputter conductive materials

(DC sputtering) while radio-frequency is used for non-conductive materials (RF

sputtering).

3.1.2 Interaction of Ion and Surface of Solid

When an energetic ion approaches the surface of a solid, usually called the target, the

following phenomena may occur, as shown in Figure 3.1.

• The impact may cause the target atoms to emit a secondary electron.

• The ion may become implanted.

• The ion may be reflected, probably as a neutral and probably with a large loss of
energy.



39

• The ion impact and the resulting collision cascade may cause some structural
reordering in the surface layers of the target.

The ion impact may set up a series of collisions between atoms of the target,
leading to the ejection of one of the target atoms. The ejection process is known
as sputtering [137] .

Figure 3.1 Interactions of ions with a surface [137].

3.1.3 Mechanism of Sputtering

Sputtering is a process operating on an atomic or molecular scale whereby an atom or

molecule of the surface of a solid (target) is ejected when the surface is struck by fast

incident accelerated ions (charged particles). The ejected atoms and/or molecules are

deposited on the surface of the substrate and condensed to form solid thin films.

Sputtering can be used as a method of film deposition or etching because sputtering

removes and transports the target material atoms and/or molecules. The process is often
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linked to a game of atomic snooker, as shown in Figure 3.2, because the scattering

process employs similar mechanics. In snooker, the cue ball (the bombarding ion) strikes

the neatly arranged pack (the atomic array of the target), scattering balls (target atoms) in

all directions, including some back toward the player, i.e., away from the target surface

[134, 138].

In the energy range most relevant to sputter deposition, the interaction between

the impinging ion and target atoms, and the subsequent interactions amongst the latter,

can be treated as a series of binary collisions. In the real sputtering process, the

interatomic potential function—which is the variation of interatomic repulsion or

attraction with separation distance—is rather different from the hard-sphere snooker case;

nevertheless, the snooker model is instructive [137].
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Figure 3.2 Sputtering as an atomic snooker game [137].

3.2 Sputtering Modes

Ultra-thin films to thick coatings of target material can be deposited by sputtering onto

the substrate surface. A wide variety of coatings of pure elements, alloys, and

compounds can be deposited on a variety of substrates with a reactive or non-reactive

sputtering process.

Depending on the various modes to accelerate plasma ions onto the target material,

sputtering can be basically classified into four types: (l) DC sputtering, (2) RF sputtering,

(3) bias sputtering, and (4) ion-beam sputtering.
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3.2.1 DC Sputtering

A DC sputtering system basically consists of two electrodes—a cathode and anode—

placed in an evacuated chamber. Figure 3.3 shows the schematic of DC sputtering. A

high negative DC voltage is applied to the cathode (sputtering target), whereas the anode

(substrate) is grounded, floating electrically, or is biased positively or negatively. Inert

gas, generally argon, is introduced in the chamber at some specific pressure. A large

potential between the cathode (target) and anode (substrate) with the presence of gas at

lower pressure will result in the formation of plasma containing electrons and ions.

Positive ions generated in the plasma are accelerated toward the target and impinge on it.

During these interactions, momentum transfer from the ions to the target atoms cause the

ejection of the latter. They may also liberate secondary electrons from the target and it is

these secondary electrons that are responsible for maintaining the electron supply and

sustaining the glow discharge. The sputtered atoms from the target fly off in random

directions, and some of them land on the substrate, condense there, and form a thin film.

DC sputtering can only be used to deposit coatings that are electrically

conductive. This method of deposition cannot be used to deposit insulators because

charge will build up on the target surface [137-1391 The DC diode sputtering process

cannot be used to sputter insulators because the glow discharge cannot be maintained

with a DC voltage if the cathode is not electrically conductive. This can be explained by

the fact that when the cathode is bombarded by a positive ion, which is neutralized, an

electron is stripped from the cathode surface. Such electrons can be replaced by electrical

conduction if the cathode is a conductor; but in case of an insulator, this is not possible.

Hence, the front surface of the cathode (insulator) accumulates the positive charge and
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the potential difference (between cathode surface and anode surface) decreases. When

this value decreases below the value required to sustain the plasma, the plasma

extinguishes.

Figure 3.3 Schematic of a DC sputtering system [140].

3.2.2 RF Sputtering

To replenish the lost electrons on surfaces of insulators, a technique was developed that

involves the application of an AC voltage instead of DC to the electrode. Radio-

frequency sputtering was invented as a means of depositing insulating thin films because

they cannot be deposited by DC sputtering technique due to requiring unattainable

potential differences between the cathode and anode. The technique of RF sputtering uses

an alternating voltage power supply at radio-frequencies above 10 MHz, so that the

sputtering target is alternatively bombarded by ions and then electrons to avoid charge

built-up. A schematic diagram of an RF sputtering system is shown in Figure 3.4.
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RF sputtering can be used to deposit both conductors and insulators. In such a

system, the RF power alone is capable of generating the plasma and accelerates ions to

the target, followed by electrons, so as to avoid charge build-up, to cause sputtering.

However, deposition rate is generally lower than that of DC sputtering. Another

advantage of RF sputtering over DC sputtering is less potential for arcing, which is

sometimes a problem in DC sputtering systems. Arcing can be due to patches of dirt

(with a higher secondary electron coefficient), pockets of outgassing (higher pressure,

higher current density locally), or asperities (higher electric field strength). These arcs are

less likely to form in RF discharges because the field is maintained in one direction for

less than one cycle, and it reduces to zero twice in each cycle, making it more difficult for

the arc to be sustained [137].

Figure 3.4 Schematic of a simplified RF sputtering system [140].
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3.2.3 Ion-Beam Sputtering

In ion-beam sputtering, a high-energy ion beam impacts the sputtering target. With the

impact of the high-energy ion beam, material is sputtered off the target and reflected at an

oblique angle to the incident ion beam. The material sputtered off the target is reflected

toward the sputtering substrate, where it is deposited to form a film.

This technique employs a noble-gas ion beam, extracted from the ion source, to

bombard a target, as shown schematically in Figure 3.5. Ions are generated by an external

ion-beam source. This means that the substrate can be located in a virtually field-free

high-vacuum environment, and this has several implications for the growth of the film.

The ion-beam system requires that the ion reach the target without being diverted by

collisions with gas atoms. One should have increased control over the energy and the

current density of the incident ions on the substrate surface in this type of sputtering

technique [134,139]. It can be used to deposit both conductive and non-conductive films

[138]. The deposition rate is relatively low.

Figure 3.5 Typical configurations for ion-beam sputtering [137].
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The advantages of such sputtering are the following [137]:

• Because the substrate is not part of the electrical circuit, it is much easier to
incorporate substrate heating, cooling, and process controls.

• Due to isolation of the substrates from the glow-discharge generation process,
unwanted heating of the substrates and fast electron bombardment are minimized.

• The low operating pressure reduces energy-attenuating collisions of the sputtered
particles en route from target to substrate.

• The low operating pressure in the process chamber minimizes gas contamination
of the growing film.

3.2.4 Bias Sputtering

Bias sputtering is the process of negatively charging the substrate with respect to the

plasma potential, thus creating an attraction between ions and the substrate. With so

many particles bombarding the film, and with the sensitivity of the nucleation and growth

processes to this bombardment, changing the flux and energy of incident particles can

control the properties of the films. It is difficult to control the behavior of the neutral

particles, but the charged particles can be controlled by changing the local electric field,

and this is the basis of bias sputtering [137].

In this technique, electric fields near the substrate are modified to vary the flux

and energy of incident charged species. Generally, a negative DC or RF bias is applied to

the substrate. With target voltages of -1000 to -3000 V, bias voltages of -50 to -300 V are

typically used. Due to charge-exchange processes in the anodic dark space, very few

discharge ions strike the substrate with full bias voltage. As a result, substrates are not

heated substantially [137]. This technique can be applied to any sputtering

configurations (DC, RF, magnetron, and reactive). It has also been found that bias

sputtering has been effective in altering a broad range of properties in deposited films
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such as hardness, resistivity, and residual stress, optical reflectivity, etch rate, dielectric

properties, step coverage, film morphology, adhesion, and density [140].

3.2.5 Reactive Sputtering

In reactive sputtering, thin films of compounds are deposited on substrates by sputtering

from metallic targets in the presence of a reactive gas, usually mixed with the inert

working gas (generally Ar) to obtain chemical compound films. The reaction could take

place at any of all or three locations—i.e., at the target, in the gas phase, or at the

substrate surface [134]. Reactions can occur on the target surface, following which the

reacted material is sputtered. They also occur at the substrate, and in cases of high

working pressure, in the gas phase. When sputtering with a reactive gas and argon

mixture, the relationship between film properties and the reactive-gas injection rate is

generally non-linear. Irrespective of materials considered, during reactive sputtering, the

resulting film is either a solid-solution alloy of the target metal doped with the reactive

elements, a compound, or some mixture of the two. Reactive sputtering can be applied to

any of the sputtering methods. Examples of reactive sputtered films include Zn sputtered

in 02 to form ZnO, Al sputtered in 02 to form Al203, Nb and Ti sputtered in N2 to form

NbN, TiN, all in the presence of argon.

The advantages of this method are the following:

• Insulating films can be deposited.

• Compounds can be formed using metallic targets.

• It offers a means for controlling the stoichiometry of the film.

• Films can be of graded composition.
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The disadvantages of this method are the following:

• Target poisoning (a compound layer formed on the target due to excess reactive
gas), which leads to instabilities such as sparks and plasma extinguishing. By
increasing the pumping rate of the chamber and decreasing the concentration of
reactive elements in the working-gas atmosphere, the problem can be resolved.

• The gas injection rate affects the film properties in a non-linear fashion that is
difficult to predict. The effects are evident in the growth rate, composition, and
film structure [139].

3.2.6 Magnetron Sputtering

In diode sputtering, most secondary electrons emitted from the target do not cause

ionization events with Ar atoms. They end up being collected by the anode and

substrates, where they cause unwanted heating. Because most electrons pass through the

discharge region without creating ions, the ionic bombardment and sputtering rate of the

target is low because only some electrons are involved in ionizing collisions. Magnetron

sputtering is used to increase ionization efficiency and sputtering rate.

Magnetron sputtering dates back to 1936 when Penning [141] proposed applying

a perpendicular magnetic field to increase the plasma concentration of glow discharge. If

a magnetic field is applied parallel to the surface of a target of a DC sputtering system

(perpendicular to the electric field), then, due to Lorentz forces, the secondary electrons

that are accelerated from the target to the substrate are forced into a spiral path in the

vicinity of the target surface.
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3.2.6.1 Principles of Magnetron Sputtering

To understand this effect, consider an electron emitted normally from a surface with

velocity v into a region of magnetic field B and zero electric field. The electron will

describe a semicircle of radius r, provided it does not collide and it will return to the

surface with velocity v. Hence, the effect of the magnetic field is to trap the emitted

electron near the surface. To examine a situation that is closer to the magnetic sputtering

application, consider a strong electric field that exists in the space above the surface of

the sputtering target and also the magnetic field that is parallel to the surface. Let the

electric field E decrease linearly with the distance from the target through the dark space

(L). The electric field is thus given by:

Here, y is the dimension perpendicular to the target with y = 0 at the target surface and

the electric field is E0.

The electrons emitted from the target will be rapidly accelerated vertically—

initially away from the target by the strong normal electric fields at the surface, but

simultaneously it experiences an increasing force due to magnetic field, F = q(v x B). The

presence of an electric field along with the magnetic field changes the electron path from

circular to cycloidal (hopping), as shown in Figure 3.6, provided the electron stays in the

dark space [137]. This increases the electron path length in the plasma and hence

increases the probability of collision with sputtering gas atoms near the target surface.

The increase in the production rate of ions that strike the target increases the sputtering

rate. The deposition rate enhancement is commonly a factor of 10 over the diode

sputtering method. It is also possible to sputter at a lower pressure as compared to DC



50

diode sputtering process. Sputtering also leads to the heating of the target due to energetic

ion bombardment, so the magnetron target mounting incorporates channels for water-

cooling during operation to extend the life of the magnet [136, 137]. The system

geometry for a simple planar magnetron sputtering system is similar to DC and RF

sputtering system, but the applied magnetic field makes the system more effective.

Magnetron sputtering is presently the most commonly used sputtering method [142].

Figure 3.6 Motion of an electron ejected from a surface with velocity v into a region of
magnetic field B parallel to the surface: (a) with no electric field, and (b) with a linearly
decreasing field [137].

There are many types of magnetrons in practical sputtering systems. The most

widely used magnetron electrode configuration in a sputtering system is the circular

magnetron [136]. In circular magnetrons, the target surface is planar, and the B-field is

created by a permanent magnet behind the target. A schematic of the target arrangement

and magnets for a circular magnetron is shown in Figure 3.7. The plasma is most intense

where the magnetic field is parallel to the target surface and this is where maximum

ejection of target atoms is expected. This result in the target erosion pattern is called the
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racetrack. A schematic of a detailed cross-section view of a circular magnetron sputtering

source is shown in Figure 3.7.

Figure 3.7 Cross section of a circular magnetron source, showing the magnetic field,
racetrack, and electron orbits [136].

The disadvantage of magnetron sputtering is the localized erosion of the target,

which gives low target material utilization, non-uniform deposition pattern, and requires

frequent replacement of the target. Uniformity improves as the target-to-substrate spacing

is increased, but this causes a decrease in the deposition rate. Thus, a tradeoff is often

made between deposition rate and thickness uniformity. Magnetron sputtering is a

powerful and flexible technique that can be used to coat virtually any substrate with a

wide range of materials—any metal or alloy and a variety of compounds.



CHAPTER 4

EXPERIMENTAL METHODOLOGY

4.1 RF Magnetron Sputtering System

In this research work, an RF magnetron sputtering system was used to deposit thin films.

Figures 4.1 and 4.2 show photographs of the RF magnetron sputtering system used in this

work. Figure 4.l shows the Edwards 306 auto sputtering system, and Figure 4.2 shows

the AJA sputtering system. The working principle of both systems is the same; the only

difference is that the AJA sputtering system is an advanced version of the Edwards

sputtering system, with additional features such as computer control, large chamber size,

and multiple guns.

Figure 4.1 RF reactive magnetron sputtering system (Edwards Auto 306) at National
Renewable Energy Laboratory.
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Figure 4.2 RF reactive magnetron sputtering system (AJA) at National Renewable
Energy Laboratory.

The system consists of a sputter chamber, vacuum pumping system, and gas-

delivery system. The sputter chamber is cylindrical in shape, with an inside diameter of

36 inches and an inside height of 14 inches. The chamber has numerous ports that allow

flexibility in attaching various accessories, gauges, and vacuum feedthroughs. The front

of the chamber has a view port to allow viewing of the process. Inside the chamber, two

sputter guns, working with two different targets, can allow simultaneous sputtering from

both the targets. In the sputter chamber, a target (Zn metal or ZnO or ZnO-2 wt% Al, or

any other metal oxide or metal) that is 3 inches in diameter is clamped to a copper base

plate on the water-cooled cathode, which houses permanent magnets for directing

charged particles. The RF power is supplied by a RF generator operating at a frequency

of 13.56 MHz, which is connected to the cathode through an impedance-matching

network with variable capacitors. The RF power for the sputtering process can be



54

selected by using the knob in the control panel of RF power supply. The RF power has a

maximum of 400 W.

Figure 4.3 is a photograph of the sputtering chamber (Edwards Auto 306) with the

top lid lifted, showing the platter with the substrate holder. A stainless-steel shield is

mounted below the substrate platter on the top lid of the chamber. This stainless-steel

shield prevents deposition on the chamber top lid. A motorized hoist lifts the heavy top

lid of the chamber. The top lid has many ports, one of which has the carrousel substrate

platter attached to it. Other ports on the top lid of the chamber have feedthroughs for the

substrate rotator, thermocouples, and cables for cooling water and heating lamps.

An inner view of the sputtering chamber (Edwards Auto 306) is shown in Figure

4.4. The chamber has two sputtering guns, to which a target of 3-inch diameter and

0.125-inch thickness is clamped to the water-cooled copper base plate. A shutter is placed

above the target, which can be closed and opened. Stainless-steel foil is covered inside

the chamber to avoid cross-contaminants.
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Figure 4.3 A view of the sputtering chamber (Edwards Auto 306) with the top lid lifted,
showing the platter with the substrate holder.

Figure 4.4 An inner view of the sputtering chamber (Edwards Auto 306), showing the
two guns with shutter.

The sputtering system set up with the configuration of substrate is placed above

the target facing the target. The distance between the target and substrate is 8 cm and can

be varied. A shutter is placed between the target and substrate, which can be closed and
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opened using the knob placed outside the chamber during the pre-sputtering and

sputtering process. The substrates are placed onto the substrate holder (anode), which can

heat substrates via the temperature controller. The substrate holder is heated from the

back by irradiative mercury (Hg) lamp and the temperature measured indirectly by a

thermocouple located below the substrate holder. The substrate can be rotated at different

RPMs by using the substrate rotator knob, thus allowing for uniform films. A motorized

hoist lifts the heavy top lid of the chamber. The top lid has many ports, one of which has

the substrate platter attached to it. Other ports on top have feedthroughs for

thermocouples, cables for heating lamps, and the substrate rotator. High-purity

(99.9999%) gases, such as argon, oxygen, and nitrogen, are delivered from the high-

pressure gas cylinders via Rota meters, mass flow meters, and a control system into the

chamber. The high vacuum in the chamber is established by using a rotary pump and

turbo molecular pump, which reaches a minimum pressure of 1 x 10 -7 ton.

4.2 Substrate Preparation

Substrate surface preparation is an important step in thin-film deposition because it

ensures good bonding between the thin film and substrate. Substrate preparation can also

influence other characteristics of the thin films. In the present study, a substrate of FTO

that is 12 inch x 12 inch and 0.1 inch thickness was cut using a 2.25 inch x 1.5 inch

diamond-tip indenter.

The substrate was cleaned ultrasonically, using high-intensity sound waves that

generate pressure fluctuations that produce microscopic bubbles in the liquid medium.

These bubbles produce the shockwaves, which impinge on the sample surface and
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remove dirt from the surface of the substrate. This cleaning process involves three steps.

During the first step, the substrates were ultrasonically cleaned with acetone for 30

minutes, and during the second step with methanol for 30 minutes. In the final step,

substrates were cleaned with deionized water for 60 minutes and finally dried using N2

gas. The samples were then kept in desiccators to prevent any contamination before

loading them in the sputtering chamber.

4.2.1 Substrate Mounting

Substrates of FTO (2.25 inch x l.5 inch) are mounted on steel holders using four screws

that hold the substrate that is attached to the substrate holder and prevent any movement.

Figures 4.5 and 4.6 are photographs of the mounted FTO substrate for the Edwards Auto

306 and AJA sputtering systems, respectively. After the film-deposition step, FTO

substrates are cut into five equally sized pieces for various sample characterization.

Substrates are mounted in the holders outside the chamber and the holders are then

inserted into the slots in the platter.

Figure 4.5 Fluorine-doped tin oxide (FTO)-coated glass substrate mounted on the
substrate holder for the Edwards Auto 306 sputtering system.
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Figure 4.6 Fluorine-doped tin oxide (FTO)-coated glass substrate mounted on the
substrate holder for the AJA sputtering system.

4.2.2 Deposition Parameters

A series of depositions were carried out on the FTO substrate by changing the sputtering

parameters. The magnetron source was energized by a RF power supply. Targets used

include metal, oxide, and nitride targets (3 inches in diameter and 0.125 inch thick) for

different sputtering conditions. The metal targets were Zn, Ti, W, or Cu; the oxide targets

were ZnO, ZnO-2 wt% Al, CuO, Ga2O3, Al2O3 , or Co3O4 ; and the nitride target was

GaN. Gallium oxide powder and Cu metal chips (area: 2 x 5 mm 2) were used as a co-

dopant for co-doped ZnO films.

In some cases, metal-oxide powders were used as co-dopants for co-doped metal-

oxide thin films. The distance between the target and substrate was maintained at 8 cm in

most of the experiments. The distance was chosen to generate the conditions for the

proper deposition rate. The base pressure was kept below 5 x 10 -6 ton and the working
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pressure was below 5 x 10 -3 torr. The chamber ambient was either pure argon, oxygen,

mixed argon and oxygen, or mixed oxygen and nitrogen with different gas flow rate

ratios. Argon (99.999%) was used as the sputtering gas and oxygen (99.99%), nitrogen

(99.999%) was also used for some of the experiments. During the deposition of the N-

doped ZnO films, Zn metal and ZnO were reactively sputtered with an oxygen and

nitrogen mixture. For metal-oxide thin-film deposition, a mixture of argon and oxygen

gas was used.

During experiments in which substrate heating was required, the substrate holder

was heated from the back by an irradiative Hg lamp and indirectly measured by a

thermocouple located below the substrate holder. For most of the experiments, substrates

were rotated at 30 RPM to enhance deposition uniformity. A pre-sputtering cleaning was

performed for 30 minutes to eliminate possible contaminants from the target. This can

increase the temperature of the substrate up to 800 °C. Post-deposition annealing was

carried out for most of the deposited samples at 500 °C in air for 2 hours, and in some

case, oxygen or ammonia gas was used.

The following procedure was followed for the process:

1. Samples were prepared as explained in the previous section and loaded into the
sputtering chamber.

2. The sputtering system was pumped down until the base pressure was below 5 x 10 -6
torr.

3. Depending on the experiment, appropriate gas and flow rate is selected and the
gas flow valve is opened.

4. RF power is selected depending on the experiment.

5. Pre-sputtering was carried out for about 20 to 30 minutes with the shutter closed.

6. Depending on the experiment, the substrate is heated until the temperature stabilizes.
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7. Substrate is rotated at 30 RPM.

8. Thin film was deposited.

At the completion of the deposition run, the system was allowed to cool down

before venting with nitrogen and removing the substrate with the deposited thin film.



Figure 4.7 Chart summarizing steps followed during deposition process.
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CHAPTER 5

CHARACTERIZATION TECHNIQUES

5.1 Surface Profilometry

Many direct and indirect techniques exist for measuring the thickness of a deposited thin

film. The most generally used technique is the surface profilometer. The stylus

profilometer uses a diamond-tipped stylus with a tip radius of 12.5 lam to scan across the

sample surface, and it measures the surface topography of thin and thick films. The stylus

force is adjustable from 1 to 40 mg, and vertical magnification of a few thousand up to a

million times is possible. The instrument has vertical resolution in manometers and

horizontal resolution as small as 20 nm and measures film thicknesses from 5 nm and

over 500 pm. The step height is measured by electromechanically tracking the motion of

the mechanical stylus as it sweeps across the step. Figure 5.1 shows a Dektak

profilometer setup. The measurement functions and leveling are computer controlled in

this equipment. Its output is a graph of stylus height versus position, from which step

height, surface roughness, and other features can be determined. The deposition rate was

calculated by dividing the total thickness of the film by the total time of deposition.

Figure 5.1 Dektak Profilometer [143].
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5.2 Scanning Electron Microscopy

Scanning electron microscopy (SEM) is the most widely used technique to characterize

very small features of surfaces with a resolution of micrometer or even less. SEM

provides information related to morphology, topography, composition, and

crystallography. In this technique, the area to be examined or the microvolume to be

analyzed is irradiated with a finely focused electron beam. Figure 5.2 shows a schematic

of a combination instrument, which can be operated as an electron microprobe and as an

SEM.

An SEM consists of an electron accelerator that focuses the electron beam from a

tungsten or lanthanum hexaboride (LaB 6) cathode filament onto the specimen using

electromagnetic lenses. Pairs of scanning coils located at the objective lens deflect the

beam either linearly or in raster fashion over a rectangular area of the specimen surface.

Electrons that have energies ranging from a few keV to 50 keV are used. When they

impinge on the specimen, the primary electrons are scattered elastically and some loose

energy inelastically to other atomic electrons and/or to the lattice. The types of signals

produced when the electron beam impinges on a specimen surface include secondary

electrons, characteristic X-rays, Auger electrons, backscattered electrons, and photons of

various energies. A detection system measures the intensity of electrons scattered by the

specimen and forms the image. These signals are obtained from specific emission

volumes within the sample and can be used to examine many characteristics of the

sample [144, 145]. Insulating specimens cannot be analyzed directly in the SEM, because

they accumulate the absorbed electrons on the surface. The accumulated electrons

eventually build up a charge region, which can deflect the beam in an irregular manner
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and lead to severe image distortion. Insulating samples can often be coated with a thin

conducting layer such as Ag paste or Al for subsequent examination.

Figure 5.2 Schematic of a scanning electron microscope [145].

In X-ray energy dispersive analysis (EDX), frequently referred to as electron

microprobe analysis, the primary radiation of interest is the characteristic X-rays emitted

as a result of the electron bombardment. The analysis of the characteristic X-rays can

yield both qualitative identification and quantitative compositional information from the

region of a specimen as small as a micrometer in diameter.
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5.3 X-Ray Diffraction

X-ray diffraction (XRD) provides a unique technique for obtaining crystallographic

information such as lattice constant, identification of crystalline materials, orientation of

single crystals, preferred orientation of polycrystals, phases, and even composition

(determined by comparison with standard data).

X-rays are form of electromagnetic radiation. A diffraction beam may be defined

as a beam composed of a large number of scattered rays mutually reinforcing one another

[145]. A parallel beam (1 and 2) of X-rays of wavelength X. is incident on parallel planes

(A-Al and B-B1) at an angle 0, as shown in Figure 5.3. When a beam of X-rays

impinges, a portion of this beam (labeled 1 and 2) will be scattered in all directions by the

electrons associated with each atom (P and Q). If the path-length difference between

diffracted beams (1-P-1a) and (2-Q-2a) is equal to a whole number, n, of wavelength X.,

the condition of diffraction is satisfied. This condition is given by Bragg's law:

Where:

n = integral number describing the order of reflection,

= wavelength of the X-rays,

d = interplanar spacing for the reflected plane,

0 = Bragg angle where a maximum in the diffracted intensity occurs.

The XRD instrument consists of three basic parts: (1) a source of radiation,.

consisting of an X-ray tube and a high-voltage generator, (2) the detector and counting

instrument, and (3) the diffractometer. The X-ray diffractometer works as shown in

Figure 5.4.



Figure 5.3 Diffraction of X-rays by planes of atoms (A-Al and B-B1) [146].
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Figure 5.4 Schematic diagram of an X-ray diffractometer [146].

A specimen S in the form of a flat plate is supported so that rotation about the axis

labeled 0 is possible. The X-ray beam is generated at source (point T), and intensities of

diffracted beams from the sample are detected by a counter at point C. As the counter

moves at constant velocity, a recorder automatically plots the diffracted beam intensity as
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a function of diffraction angle 20 and peaks are obtained [146]. The powder diffraction

pattern of a material is characteristic of that substance, so the diffraction data obtained

from an unknown material can be compared with the standard Powder Diffraction Files

(PDF) of many known materials compiled by the Joint Committee on Powder Diffraction

Standards (JCPDS) to determine its crystallinity, chemical composition, and other

important properties of materials of interest. The three most-intense diffraction lines form

the basis of data on each powder diffraction file.

Advantages of XRD are that it is a non-destructive technique and does not require

any sample preparation or removal of the film from substrate. The disadvantages of XRD

relates to studying very thin films of light elements. The great penetrating power of X-ray

means that with typical incident angles, their path length through such films is too short

to produce diffraction beams of sufficient intensity. Under such conditions, the substrate,

rather than the film, dominates the diffracted X-ray signal.

5.4 Atomic Force Microscopy

Atomic force microscopy (AFM) is one of the most commonly used characterization

techniques for surface study. This technique is a very attractive method for measuring

surface topography on a scale from angstroms to 100 microns. AFM is a type of scanning

probe microscopy (SPM). Figure 5.5 shows the schematic of a generalized SPM.
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Figure 5.5 Schematic of a generalized scanning probe microscope [147].

5.4.1 Principle of Operation of Atomic Force Microscopy

An atomically sharp tip is scanned over a surface with feedback mechanisms that enable

the piezoelectric scanners to maintain the tip at a constant force (to obtain height

information) or height (to obtain force information) above the sample surface. Tips are

typically made from Si3N4 or Si and are extended down from the end of a cantilever. The

nanoscope AFM head employs an optical detection system in which the tip is attached to

the underside of a reflective cantilever. A diode laser is focused onto the back of a

reflective cantilever.

As the tip scans the surface of the sample, moving up and down with the contour

of the surface, the laser beam is deflected off the attached cantilever into a dual-element

photodiode. Several forces typically contribute to the deflection of an AFM cantilever.
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The force most commonly associated with AFM is an inter-atomic force called van der

Waals force. The photodetector measures the difference in light intensities between the

upper and lower photodetectors, and then converts it to voltage. Feedback from the

photodiode difference signal, through software control from the computer, enables the tip

to maintain either a constant force or constant height above the sample. In the constant-

force mode, the piezoelectric transducer monitors real-time height deviation. In the

constant-height mode, the deflection force on the sample is recorded. AFM can be

operated in mainly two modes: (1) contact mode and (2) tapping mode.

In the contact regime, the tip is held less than a few angstroms from the sample

surface, and the inter-atomic force between the tip and sample is repulsive. In the non-

contact regime, the tip is held on the order of tens to hundreds of angstrom from the

sample surface, and the inter-atomic force between the tip and sample is attractive. A

schematic arrangement of major components for tapping-mode operation of AFM is

shown in Figure 5.6. Tapping mode in AFM operates by scanning a tip attached to the

end of an oscillating cantilever across the sample. The cantilever is oscillating at or near

its resonant frequency with amplitude typically ranging from 20 to 100 nm. The

frequency of oscillation can be at or on either side of the resonant frequency. During

scanning, the tip lightly "taps" on the sample surface, contacting the surface at the bottom

of the swing. The feedback loop maintains constant oscillation amplitude by adjusting the

distance between the tip and sample surface and maintains a constant root mean square

(RMS) of the oscillation signal acquired by the split photodiode detector.
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Figure 5.6 Schematic arrangements of AFM showing the feedback loop for tapping-
mode operation [147].

The laser deflection detects the RMS amplitude of the cantilever oscillation.

Topographical image will be formed by recording the vertical movement of the cantilever

at every x,y data point. Compared to contact mode, the main advantage of tapping mode

is that lateral shear forces are eliminated, which are present in the contact mode.

5.5 Secondary-lon Mass Spectroscopy

Secondary-ion mass spectroscopy (SIMS) is a failure-analysis technique used in the

compositional analysis of a sample. SIMS operates on the principle of bombarding a

material with a beam of ions (incident ions) with high energy (1-30 keV) onto the

surface, thereby transferring some of the energies into the lattice atoms. These incident

ions are also called primary ions and they interact with the sample or surface that is to be
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measured. Initially, the upper layer of the sample gets amorphized and some of the ions

get implanted due to atomic collisions within the solid, resulting in the ejection or

sputtering of atoms from the material. A small percentage of these ejected atoms leave as

either positively or negatively charged ions, which are referred to as "secondary ions,"

which can be analyzed via mass spectrometry. Figure 5.7 represents the basic principle of

the SIMS technique. The secondary ions are characteristic functions of the composition

of the surface. This method is a highly sensitive surface analytical technique and the

typical detection limits range from 10 14 to 10 15 cm -3 . The range of lateral resolution is

from 1 to 100 JAM and the depth resolution ranges from 50 to 100 A [149, 150].

Figure 5.7 Principle of operation of SIMS [150].

Figure 5.8 shows the detailed flowchart of SIMS operation. SIMS can be used for

almost any element in the Periodic Table except for noble gases because of the difficulty

in ionization. SIMS has its own advantages and disadvantages. Advantages of SIMS are

the following: (l) It can be used for a wide range of materials, including organic,

inorganic compounds, polymers, ceramics, solid-state materials, and biological samples;

(2) It has high spatial resolution; (3) The sensitivity of this analysis is very high and
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ranges from ppm to ppb; and (4) It is able to distinguish isotopes. Disadvantages are that

it is a destructive technique and the equipment is highly complex.

Figure 5.8 Flowchart explaining the SIMS technique [150].

5.6 X-Ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy (XPS), also known as electron spectroscopy for

chemical analysis (ESCA), is a very powerful tool for obtaining chemical compound

information on the sample surface, and it can be combined with ion-beam etching

equipment to measure depth profiles of XPS spectra.

XPS operation involves irradiating a sample surface with mono-energetic X-rays,

and then measuring the states of electrons that are ejected from the sample surface by

means of an energy analyzer. The energy analyzer acts as a band-pass filter, allowing

only electrons with a particular kinetic energy to the electron detector. Figure 5.9 shows a

schematic of an XPS setup. The main components of an XPS system include: (1) source

of X-rays, (2) ultra-high-vacuum (UHV) stainless-steel chamber with UHV pumps, (3)

electron collection lens, (4) electron energy analyzer, (5) (Mu-metal) magnetic field
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shielding, (6) electron detector system, (7) moderate-vacuum sample introduction

chamber, (8) sample mounts, (9) sample stage, and (10) set of stage manipulators. The X-

ray is irradiated on the sample surface, which has sufficient energy to ionize an atom and

emit a free electron from either the core or valence levels. The emitted electron is usually

called the "photoelectron." The binding energy EB of electrons in the sample can be

determined by the following equation:

where, Ekin is the kinetic energy of the emitted photoelectron, hv is the photon energy, EB

is the electron binding energy, and 0 is the work function of the material. This equation

forms the basis of photoelectron spectroscopy. The binding energy of an electron depends

on the sub-shell from which it originated. The characteristic energies at which electrons

are emitted from the various sub-shells allow the atom to be identified. The above

equation shows that the kinetic energy of a photoelectron changes with the photon

energy, but the electron binding energy is independent of photon energy. XPS spectra are

therefore usually plotted in terms of binding energy.
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Figure 5.9 X-ray photoelectron spectroscopy [151].

XPS can also be used to identify chemical state, because the chemical bonding of

an atom has an influence on the binding energy of all electrons. Shifts in binding energy

make XPS a useful tool in chemical-state analysis. The advantages of XPS are the

following: (l) chemical-state identification on surfaces, (2) identification of all elements

except for H and He, (3) quantitative analysis, including chemical-state differences

between samples, (4) applicable for a wide variety of materials, including insulating

samples (e.g., paper, plastics, and glass), (5) depth profiling with matrix-level

concentrations, and (6) thickness measurements. Disadvantages include: (l) detection

limits typically —0.1 at%, (2) smallest analytical area —10 lam, (3) limited specific organic

information, and (4) sample compatibility with a UHV environment [152].

5.7 Transmission Electron Microscopy

Transmission electron microscopy (TEM) is the most powerful tool for studying the full

range of structural properties of interfaces, crystals, and thin films. It can also provide

high spatial resolution information on composition, chemistry, and electrical properties.
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The high spatial resolution of TEM is achieved by focusing the charged electron beam.

Generally, higher the operating energy of the TEM, greater will be the lateral spatial

resolution. TEM offers two mechanisms for observing the sample: sample and

diffraction. The image mode produces a representation of the entire sample depth, as well

as contrast results from several mechanisms, including mass contrast, phase contrast,

thickness contrast, and diffraction contrast. Each of these modes provides specific

information about a selected sample area. In the diffraction mode, the image of the

diffracted electrons is obtained from the electron-illuminated sample, which provides

information on crystallinity and crystal orientation.

Figure 5.10 shows a schematic diagram of the TEM setup. A light source at the

top of the microscope emits the electrons that travel through the vacuum in the column of

the microscope. Instead of glass lenses focusing the light in the light microscope, the

TEM uses electromagnetic lenses to focus the electrons into a very thin beam. The

electron beam then travels through the specimen of interest. Depending on the density of

the material present, some of the electrons are scattered and disappear from the beam. At

the bottom of the microscope, the unscattered electrons are incident on a fluorescent

screen, which gives rise to a shadow image of the specimen with its different parts

displayed in varied darkness according to their density.



76

Figure 5.10 Transmission electron microscope [153].

TEM has its advantages and disadvantages. The advantages of TEM are the

following: (l) the ultimate elemental mapping resolution of any analytical technique, (2)

sub-0.5-nm image resolution, and (3) small-area crystallographic information. The

disadvantages of TEM are the following: (1) significant sample preparation time, (2)

samples are often prepared that are <100 nm, and (3) some materials are not stable in an

electron beam environment.

5.8 Focused Ion Beam Microscope

Focused ion beam microscopy (FIB) is a widely used technique to characterize very

small features of surfaces. FIB operates in a similar fashion to a scanning electron

microscope, except for using a beam of ions instead of electrons used in SEM. Generally,

a FIB microscope uses a finely focused beam of gallium ions of spot size < 10 nm, which

is ejected from a liquid gallium ion source, to scan across the sample. The imaging of a
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FIB microscope, using secondary electrons, provides surface information with similar

resolution to that obtainable from an SEM. Figure 5.11 shows a schematic diagram of

FIB setup.

Figure 5.11 Focused ion beam microscope [154].

A major difference between FIB and SEM is that FIB can directly etch material in

selected regions for in-situ sectioning and imaging. The FIB microscope operates in two

modes: (l) In high-magnification microscopy mode, only a low-beam current (< 100 pA)

operation must be employed. This mode is used to take images of samples; (2) In the

high-beam current (>1000 pA) operation mode, a large amount of material can be

removed by sputtering, allowing precision milling of the specimen down to a submicron

scale.
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5.9 Spectrophotometer

Spectrophotometry is one of the most important tools for investigating the optical

properties of the films. Figure 5.12 shows the Varian Cary 5G optical layout, which is

based on two monochromators with a sampling and reference beam. The principle

advantage of a double-beam spectrophotometer is that fluctuations in lamp intensity do

not affect measurement results, because a reference signal is constantly taken throughout

the scan, and the final measured value does not rely on a previously measured reference

scan as is the case for a single-beam spectrophotometer.

Figure 5.12 Spectrophotometer [155].

The Cary 5G system uses a tungsten halogen lamp as the visible and near-infrared

(NIR) source and a deuterium lamp as the ultraviolet (UV) source. An automated

carousal swaps the lamps at a specified wavelength of 300 nm. The light beam passing

through the sample or along the reference-beam path is detected by a photomultiplier

tube (PMT) in the UV-Vis region and a lead sulfide (PbS) detector in the NIR region.
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5.10 n & k analyzer

The n & k analyzer is an important technique for measuring the optical properties of the

films. The n & k 1280 Analyzer uses broadband spectrophotometry over a wavelength

range of 190 to 1000 nm, with innovative optics in conjunction with the Forouhi-Bloomer

dispersion equations and other proprietary algorithms.

Figure 5.13 n & k analyzer [156].

Figure 5.13 shows the n & k analyzer 1280. These n & k analyzers determine film

thickness, the spectra of refractive index (n), and extinction coefficient (k), as well as

energy bandgap, interface roughness, and other optical properties. The spectra on n and k

can be correlated to various other physical parameters, such as composition, resistivity,

and degree of crystallinity. A wide variety of materials can be characterized including

dielectrics, semiconductors, polymers, transparent conductors, and metals. Optical

properties of structures such as thin films (less than 20 angstroms), thick films (up to 300

microns), and multi-layer stacks, deposited on transparent, opaque, or rough substrates,
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can be measured using n & k 1280 Analyzer. Furthermore, an n & k analyzer is non-

destructive and fast, providing results within seconds [156,157].

5.11 Photoelectrochemical Cell

A photoelectrochemical cell is the same as an electrochemical cell, except that it must

allow for the easy illumination of the photoelectrode. A typical cell has three electrodes:

the working electrode, reference electrode, and counter electrode. The cell consists of

these three electrodes immersed in an aqueous solution held in a container. This is shown

in Figure 5.14. For example, the container is a glass beaker, and it should be transparent

to light. The glass container should be large enough to allow easy placement of the

electrodes without being so large as to waste aqueous solution. They are also convenient

for doing repeated measurements in many solutions. The electrolyte can be acidic or

basic aqueous solution with different pH buffers. The working electrode is the

semiconductor under examination, which generally has an exposed area of less than 0.25

cm2. The counter electrode is a platinum sheet with an exposed area of about 2 cm2 . The

reference electrode is a standard Ag/AgCl electrode filled with a saturated KCl solution.

The working electrode is located right in front of the reference electrode. There is no

ohmic loss associated with the reference electrode, because it does not pass any current.

The counter electrode should be kept next to the reference electrode to minimize the

ohmic loss.
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Figure 5.14 A schematic diagram of the photoelectrochemical cell.

Generally, a platinum sheet is used as the counter electrode, because it is

chemically and electrochemically inert in many aqueous solutions. This removes the

possibility that the dissolution products from the counter electrode will contaminate the
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solution or the counter electrode will fail because of the buildup of an insulating

corrosion product. In general, the counter electrode should have a much larger active area

than the working electrode so that charge transfer at its surface is not hampered by high

current densities.

A saturated Ag/AgCl reference electrode is usually selected because it is rugged,

easy to maintain, and relatively inexpensive. Proper regular maintenance of a calomel

electrode consists of keeping it filled with saturated KCl solution and storing it in

saturated KCl solution when it is not being used. Less often, the electrode needs to be

flushed with deionized water to remove large deposits of the KCl crystals that inevitably

precipitate in it as the solution evaporates.



CHAPTER 6

RESULTS AND DISCUSSION

The research aimed to investigate high-quality metal-oxide thin films on fluorine-doped

tin oxide (FTO)-coated glass for photoelectrochemical water splitting using solar energy.

This chapter presents the results and discussions of the work carried out in this thesis.

6.1 Bandgap Narrowing of ZnO:N Films by Varying
RF Sputtering Power in 02/N2 Mixtures

In this part of the research, bandgap narrowing of ZnO:N films by varying RF sputtering

power in O2/N2 mixtures were investigated. ZnO:N thin films were synthesized by

reactive RF magnetron sputtering using a Zn metal target in mixed N2 and O2  ambient

with low O2 mass flow rate [(02/N2+02)) = 5%].

To synthesize ZnO:N films with similar thickness, deposition rates for different

RF powers were determined. The deposition rate increased linearly with the increase of

RF power. The rates were 9, 17.5, 27.5, 40, and 73 nm/min for the ZnO:N films grown at

80, 100, 120, 150, and 200 W, respectively. The deposition rates were 3.7 and 74.2

nm/min for pure ZnO and Zn 3N2 films, respectively. The gas ambient has a big impact on

the deposition rate. The deposition rate of ZnO:N film grown in mixed N2 and O2

ambient is much higher than that of ZnO films grown in pure O2  ambient, even though

the same RF power was used. On the other hand, the deposition rate of the ZnO:N film

grown in mixed N2 and O2  ambient at 200 W is similar to that of the Zn 3N2film grown at

200 W. The enhancement of deposition rate in N 2-containing ambient could be due to the

83
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nitridation of the Zn metal target surface, because the Zn nitride is more conductive than

the ZnO, leading to much higher sputtering yield [158, 159]. The ZnO:N frlm grown at

70 W had reproducibility problems, whereas those grown at RF powers of 80 W or higher

were reproducible. This indicates that an RF power of at least 80 W is required to activate

the N source for reproducible ZnO:N films in our sputtering system [160-163].

Figure 6.1 shows the XRD curves of ZnO, Zn 3N2, and ZnO:N grown at different

RF powers. It is seen that the ZnO film exhibits poor crystallinity due to the room-

temperature sputtering process. The ZnO:N film grown at 80 W shows better crystallinity

than the pure ZnO film, despite a faster deposition rate. For pure ZnO growth, the

ambient is pure O2 gas. For ZnO:N growth, the ambient is mainly N2 with only 5% O2 .

The substrate temperature was indirectly measured by a thermocouple (TC), which was

placed next to the substrate. The TC indicated that the substrate temperature was about

41°C during the sputtering process for pure ZnO films. The substrate temperature during

the sputtering process is affected by the bombardment of the sputtered ions and,

therefore, the substrate temperature increases with increase in sputtering yield (or

deposition rate) and sputtering time. Higher sputtering yield enhances the ion

bombardment, accelerating the increase in substrate temperature. However, it also

simultaneously reduces the sputtering process time for the same thickness of the film,

limiting the increase of the substrate temperature. It is also seen that the temperature

measured by the TC did not increase above 44°C for any of the ZnO:N films [160-163].
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Figure 6.1 X-ray diffraction curves of pure ZnO, Zn3N2, and ZnO:N films grown at
various RF powers [160-163] .

When the RF power was increased to 100 W, the crystallinity again became poor.

The peaks belonging to ZnO, seen in the XRD curve of the ZnO:N grown at 80 W,

disappeared. The ZnO:N film at 100 W grew at almost twice the deposition rate observed

during 80 W deposition. In addition, the concentrations of N in 80 W and 100 W samples

were about 2 at% and 20 at%, respectively, as determined by XPS. It is known that a high

concentration of dopant can deteriorate crystal structure. Therefore, poor crystallinity of

the ZnO:N film grown at 100 W may be caused mainly by the high concentration of N, as

well as by the high deposition rate. Crystallite sizes were 9.4 and 24.4 nm for the pure

ZnO and the ZnO:N grown at 80 W, respectively, which were estimated by applying the

Debye-Scherrer equation to the XRD data. The ZnO:N film grown at 100 W exhibited

only weak diffraction near 35°, indicating that it had a short-range order, amorphous-like

structure. When the RF power was further increased to 200 W, the film became Zn3N2-
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like. It is also noted that when the growth ambient was changed into mixed N2 and 02, a

small peak appeared, as indicated by *. This peak shifted to a lower angle as the RF

power increased, indicating increased N concentration. These peaks indicate the

formation of zinc oxynitride films. The XRD data reveal that the sample grown at 200 W

became polycrystalline Zn3N2-like [160-163] .

The microstructure of the zinc oxynitride films was investigated by TEM. We

found that the zinc oxynitride films have an intermediate ordering structure. Figure 6.2(a)

shows a high-resolution TEM image obtained from a ZnO:N film grown at an RF power

at 120 W. The grain sizes are very small, in the range of a few nanometers. Nanoprobe X-

ray energy-dispersive spectroscopy (EDS) [Fig. 6.2(b)] revealed that these small grains

are indeed zinc oxynitrides, with about 20 at% of N [160-163].

Figure 6.2 (a) High-resolution TEM images of a zinc oxynitride film deposited at an RF
power of 120 W. (b) Nanoprobe X-ray dispersive spectroscopy obtained from the zinc
oxynitride grains [160-163] .

Figure 6.3(a) shows the relative absorption coefficients for the ZnO:N films

grown at different RF powers. The absorption coefficient was assumed in order to

evaluate the bandgap energies of the films [164]. The direct electron transition from
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valence to conduction bands was also assumed for the absorption coefficient curves,

because both ZnO and Zn3N2 films are direct-bandgap materials [159, 165]. The optical

bandgap for the direct electron transition is described by the following equation [159]:

where, hv is the photon energy, Eg is an optical bandgap, and f3 is the edge width. In

accordance with this equation, [(-lnT)(hv)] 2 was plotted against the photon energy hv, as

shown in Fig. 6.3(a). The optical bandgaps of the films were also determined by

extrapolating the linear portion of each curve in Fig. 6.3(a) to [(-lnT)(hv)] 2 = 0. They are

about 2.9 eV (RF power = 80 W), 2.31 eV (RF power = 100 W), 2.15 eV (RF power =

120 W), 1.76 eV (RF power = 150 W), and 1.55 eV (RF power = 200 W). The bandgaps

are 3.28 and 1.52 eV for pure ZnO and Zn3N2, respectively. It shows clearly that the

bandgap decreased with the increase in RF power.

Figure 6.3(b) shows the absorption spectra of ZnO:N films grown at various RF

powers. In order to eliminate the effect of the substrate, the absorbance was calculated by

the following equation [166]:

where, R and T are the measured reflectance and transmittance, respectively. The

absorption spectra show that the light absorptions are successfully shifted into visible

regions with the increase in RF power. Therefore, it demonstrates that RF power can be

used effectively to control the N concentration in ZnO:N thin films.
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Figure 6.3 (a) Relative absorption coefficients of pure ZnO, Zn3N2, and ZnO:N films
grown at various RF powers. (b) Optical absorption spectra of the ZnO:N films grown at
various RF powers [160-163].

To understand the effects of N incorporation on the optical properties of ZnO:N,

we calculated the electronic structure of N-incorporated ZnO by first-principles density-

functional theory using the super-cell approach [167, 168]. The host supercell contains

128 atoms. Figure 6.4 shows the calculated density of states (DOS) of ZnO and ZnO:N.
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The red curve indicates the calculated total DOS of the supercell containing pure ZnO

(marked by ZnO). The blue curve is the calculated total DOS of the super-cell containing

one substitutional N atom (marked by ZnO:N). The dark-yellow curve indicates the

calculated partial DOS of the N atom [marked by N(x4)], which is scaled up by 4 times.

The valence band of ZnO is mainly derived from 0 2p orbitals. The N 2p orbitals are

much shallower than the 0 2p orbitals. When N atoms are incorporated in ZnO, they

introduce an impurity band above the valence band of ZnO. As a result, the valence-band

maximum (VBM) of ZnO:N becomes shallower due to the mixing between 02p and N

2p states. In the mean time, the conduction band remains unchanged, as is seen in Figure

6.4. Therefore, the bandgap is reduced. The position of the VBM depends on the

concentration of N atoms. A higher N concentration leads to a shallower VBM, and

therefore, a smaller bandgap. Thus, the bandgap of ZnO:N can be controlled by the

concentration of N in ZnO:N [160-163].

Figure 6.4 Calculated total DOS of pure ZnO (red curve indicated by ZnO) and ZnO:N
(blue curve indicated by ZnO:N), and partial DOS of the N atom (dark-yellow curve
indicated by N) in supercell [160-163].
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6.2 Photoelectrochemical Properties of N-Incorporated ZnO Films

The photoelectrochemical properties of ZnO:N thin films prepared by reactive RF

magnetron sputtering in mixed N2 and 02 gas ambient and comparison of those as-grown

and annealed pure ZnO films are presented in this part of the research.

Figure 6.5 shows XRD curves of the as-grown and annealed ZnO and ZnO:N

films. The as-grown ZnO frlm exhibits nanocrystalline features with crystallite sizes

below 10 nm, as estimated according to the Scherrer equation. However, the as-grown

ZnO:N films showed a sharper peak, indicating larger crystallite sizes of about 24 nm.

Deposition rate analyses show that the growth rate was 9 nm/min for ZnO:N film

deposition, but 3.7 nm/min for pure ZnO. A higher deposition rate is known to result in

increased crystallinity. Because the crystallinity of the film is closely related to its PEC

property, the pure ZnO film was annealed for 1 h at 500°C in air ambient to achieve

similar crystallinity to that of ZnO:N. After annealing, the crystallite sizes were shown to

have increased to about 22 nm, close to that of ZnO:N film, as shown in Figure 6.5 [161-

163, 169].

Figure 6.5 X-ray diffraction curves of the as-grown ZnO, ZnO:N, and annealed ZnO
frlms [161-163, 169].
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Figure 6.6 shows optical absorption spectra of the as-grown and annealed ZnO

films and the as-grown ZnO:N films. The as-grown and annealed ZnO films showed

similar optical absorption spectra and could only absorb light with wavelengths below

450 nm, due to their wide bandgap. However, the ZnO:N films could absorb lower-

energy photons, up to 700 nm, indicating that the bandgap was narrowed by N

incorporation in ZnO [159, 170].

Figure 6.6 UV-Vis optical absorption spectra of the as-grown and annealed ZnO and
ZnO:N films [161-163, 169].

Figure 6.7 shows Mott-Schottky plots of the as-grown and annealed ZnO films

and the ZnO:N films. The positive slopes indicate that all of the samples are n-type

semiconductors. The origins of the n-type conductivity in the as-grown and annealed

ZnO films are likely due to native defects such as Zn interstitials or/and oxygen vacancies

(Vo) [171]. It is known that an N occupying an 0 site (N o) is an acceptor, which should

result in p-type ZnO:N [172]. However, Figure 6.7 shows that the ZnO:N film was

actually n-type. It was reported that the ZnO films deposited in N2 plasma are usually n-
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type, due to substitutional N2 molecules at an 0 site that act as shallow double-donors

[173, 174]. Perkins et al. [173] reported recently that a N2/02 plasma can contain a

substantial fraction of N2+ molecules that can become incorporated into the ZnO films,

leading to the n-type behavior. Theoretical study [174] has also shown that the

dissociation energy for N2 molecules is very high (9.9 eV).

Figure 6.7 Mott-Schottky plots of the as-grown and annealed ZnO and ZnO:N films
[161-163, 169].

To confirm the presence of N states in the ZnO:N films, XPS measurements were

employed. Figure 6.8 shows the XPS spectra of the N is region of the annealed ZnO film

and the ZnO:N film. The annealed ZnO film exhibits no N 1s peak, whereas the ZnO:N

film shows three N 1s-related components. The N 1s peak around 404.2 eV corresponds

to the substitutional N2 at the 0 site [173]. The peaks around 396.4 and 398.5 eV (the

shoulder part of the peak) correspond to substitutional N and carbon/hydrogen-related

nitrogen, respectively [173]. These data indicate that the ZnO:N film contains substantial
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amounts of substitutional N, as well as substitutional N2 , at 0 sites. The calculated total N

concentration is about 2 at.%.

Figure 6.8 XPS spectra of the N is region for the annealed ZnO and ZnO:N films [161-
163, 169].

From the slopes of the Mott-Schottky plots, the donor densities in the films were

evaluated according to the following equation [175]:

where, Nd is the donor density, so is the permittivity of vacuum, e is the dielectric

constant of the semiconductor, E is the electrode potential, Efb is flat-band potential, and

kT/eo is the temperature-dependent term in the Mott-Schottky equation. Assuming the

dielectric constant of the samples to be about 8.5 [176], the donor densities of the as-

grown and annealed ZnO films and the ZnO:N film are calculated to be 4.6x10 16 ,

1.8x10 16, and 3.8x10 17/cm3 , respectively. The annealed ZnO film exhibits lower donor
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density than the as-grown ZnO films. This may be due to the annealing being conducted

in air, which can reduce the amount of Zn interstitials and 0 vacancies. ZnO:N films

exhibit a higher donor density than the as-grown ZnO frlms due to N2 incorporation

and/or native defects such as Zn interstitials and 0 vacancies [161-163, 169].

The flat-band potentials (E

fb

) of these films are obtained by the x-intercept of their

Mott-Schottky plots. The as-grown ZnO films and the ZnO:N films have similar E fb (≈ -

0.49 V vs. Ag/AgCl). However, the annealed ZnO films have an Eft ) value of -0.38 V,

which is about 0.1 V higher than that of the as-grown ZnO films [161-163, 169].

Figure 6.9 shows photocurrent-voltage curves for the as-grown and annealed ZnO

films and the ZnO:N films under illumination with the ultraviolet/infrared (UV/IR) filter

and dark currents. The anodic photocurrents of all the samples increase with increasing

potentials, which is again indicative of n-type semiconductor (as corroborated in Figure

6.7). The photocurrent onset potentials of the samples were about 0.2 to 0.4 V anodic

from their Mott-Schottky-determined flat-band potentials. This overpotential is due to

slow charge transfer and surface recombination at the semiconductor/solution interface

[177, 178]. Figure 6.10 shows photocurrent behavior with time for the annealed ZnO

under light on/off illumination at 1.0 V. It shows that initial photocurrent decay appeared

with light on illumination, despite a high potential of 1.0 V. The photocurrent decay

indicates recombination of photogenerated charge carriers through the surface states. In

addition, crystallite size was small, as shown in Figure 6.5, leading to a large number of

surface recombination centers. Therefore, this overpotential is due to the surface

recombination. Because the dark anodic currents begin to appear around 1.1 V, the

maximum photocurrents of the three samples are compared at this potential. No limiting
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photocurrents are observed before the appearance of the dark anodic currents at 1.1 V

[161-163, 169].

Figure 6.9 Photocurrent-voltage curves for the as-grown and annealed ZnO and the
ZnO:N films under light illumination (intensity 120 mW/cm2) with the UV/IR filter and
under dark condition, indicated by the circle. (0.5 M Na

2

SO4 aqueous solution and scan
rate of 5 mV/s were used.) [161-163, 169].

This phenomenon appears to be related to the small width of the space-charge

layer of these samples. A photocurrent normally increases with the increase in the width

of the space-charge layer if the width is shorter than the film thickness [179]. If the width

of the space-charge layer is larger than the film thickness, a limiting photocurrent should

be observed. Assuming a Schottky approach for the semiconductor/solution interface, the

width of the space-charge layer, W, can be expressed as [180]:

From the data of the Mott-Schottky plots in Figure 6.7, the W values of the

samples are calculated. At a potential of 1.1 V, the W values are about 181, 281, and 62

nm for the as-grown and annealed ZnO films and the ZnO:N films, respectively. These W
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values at 1.1 V are much smaller than that for the film thickness of 500 nm, resulting in

no limiting photocurrents. The photocurrent of the annealed ZnO films at 1.1 V is larger

than that of the as-grown ZnO films, most likely due to both better crystallinity and larger

value of W of the annealed ZnO films. It should be noted that the photocurrent of the

ZnO:N films at 1.1 V is larger than of the annealed ZnO films, despite its much smaller

W value. Even with similar crystallinity (as shown in Figure 6.5) and smaller W value,

the larger photocurrent of the ZnO:N films indicates that the photocurrent is affected

more significantly by the optical properties of the ZnO and ZnO:N films [161-163, 169].

Figure 6.10 Photocurrent behavior with time for the annealed ZnO films performed
under light on/off illumination with the UV/IR filter at 1.0 V. (Light intensity of 120
mW/cm2 and 0.5 M Na2 SO4 aqueous solution were used) [161-163, 169].

To investigate in more detail these two competing factors (i.e., the width of the

space-charge layer and inherent optical property), we measured photoresponses with

color-filtered illumination. Figure 6.11 shows the photocurrent-voltage curves of the

samples under illumination with UV/IR filter in combination with a blue filter (a), yellow
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filter (b), and red filter (c) that correspond to wavelength ranges of 350-475, 505-800,

and 580-800 nm, respectively. The insets show the optical spectra of the filters. The

photocurrents of the as-grown and annealed ZnO films in Figure 6.11(a) are almost the

same as in Figure 6.9. Because ZnO films have large bandgaps and can only absorb light

in the short-wavelength region below 450 nm (Figure. 6.6), the blue filter should pass all

above-gap photons, leaving photocurrents unaltered. However, data indicate that with

blue filtering, the photocurrent of the ZnO:N films is smaller than that of the ZnO films at

potentials below 1.1 V. In the long-wavelength regions, the ZnO:N films exhibit

photoresponse, but the pure ZnO films do not, due to their large bandgap. Figures 6.11(b)

and (c) show that both the as-grown and annealed pure ZnO films do not demonstrate any

photoresponse in the long-wavelength region. Figure 6.11(c) using the red and UV/IR

filter shows no discernable difference with Fig. 6.11(b) and corroborates the visible light

absorption of the ZnO:N films. Note that ZnO:N films are not optimized and the

photocurrents generated by ZnO:N films are not high. These results demonstrate that N

incorporation in ZnO can shift the photoresponse of ZnO films into the visible-light

region, which is the main component of sunlight [161-163, 169].
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Figure 6.11 Photocurrent-voltage curves of the samples under light illumination with the
UV/IR filter and (a) blue, (b) yellow, and (c) red filters, whose light intensities are 5, 105,
and 75 mW/cm2 , respectively. The insets show the transmittance profiles of the filters
[161-163, 169].
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6.3 Synthesis of Bandgap-Reduced p-type ZnO Films by Cu Incorporation

In this part of the research, synthesis of both p-type and significantly reduced-bandgap

ZnO thin film by heavy Cu-incorporation is reported.

The density-functional theory calculations were performed using the VASP code,

with local density approximation [167], and ultrasoft pseudopotentials [168]. Zn 3d, Cu

3d, Ag 4d, and Au 5d were treated as valence states. The energy cutoff for the plane-

wave expansion was 380 eV. The impurities in ZnO were modeled by the supercell

approach. A 128-atom host supercell is used for all defect calculations. In all the

calculations, the supercell size was keep the same, but all the atoms are allowed to relax

until the Hellmann-Feynman forces acting on them become less than 0.01 eV/A [162].

The large bandgap of ZnO is attributed to the fact that both the 0 2p orbital and

the Zn 3d orbital are too deep. As a result, the valance-band maximum (VBM) of ZnO is

too deep. The position of conduction-band minimum (CBM) is appropriate for PEC water

splitting. Therefore, it is desirable to up-shift the VBM to reduce the bandgap of ZnO.

Accordingly, there are two methods to reduce the bandgap: (1) generating impurity bands

above the 0 2p orbital; and (2) up-shift the 0 2p orbital by introducing cations with d

orbitals shallower than Zn 3d. For the first method, the impurity bands can be generated

by incorporating impurities such as N, C, and S [162].

For the second method, Group-Ib elements are potential candidates, because their

d orbitals are shallower than the 3d orbital of Zn. The coupling between the Group-Ib d

orbital and 0 2p orbital is expected to push the valence band of ZnO upward, but the

conduction band should remain unchanged. In addition, the shallow d orbital would

produce impurity bands. Thus, the VBM will be up-shifted and the bandgap of ZnO will
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be narrowed. Figure 6.12 shows calculated PDOS of the first (red), second (blue), and

third (green) nearest-neighboring 0 atoms of an impurity and the PDOS of the impurity

(dotted black), which is (a) Cu, (b) Ag, and (c) Au. It is seen that the d bands of Cu, Ag,

and Au are all mixed with the 2p band of the 0, ensuring strong d-p coupling with the

first nearest-neighboring 0 atom. As a result, the p band of the first nearest-neighboring

0 atoms of the impurity is pushed to higher energy. The CBM is not affected

significantly by these impurities. It is thus expected that the VBM will be shifted to

higher energy after doping with Cu, Ag, or Au, resulting in preferred bandgap narrowing.

Calculations also showed that the solubility of Cu in ZnO should be higher than that of

Ag and Au, because the size mismatch between Cu and Zn is smaller than that between

Ag or Au and Zn. Calculations further revealed that Group-lb elements are potential

dopants to produce p-type ZnO. However, because of their high ionization energies, high

concentrations of these impurities are needed to produce p-type conductivity. According

to calculated impurity formation energies [181], Cu incorporation may be the most

possible candidate that can lead to both p-type and bandgap-reduced ZnO [162].

Figure 6.12 Calculated PDOS of ZnO with a substitutional Group-lb element, (a)
substitutional Cu, (b) a substitutional Ag, and (c) a substituional Au [162].
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Figures 6.13(a) and 6.13(b) show X-ray diffraction curves for as-grown and

500°C-annealed ZnO:Cu films, respectively. The number n of ZnO:Cu(n) indicates the

number of Cu chips dispersed on the Zn target for the depositions. All the as-grown films

had a short-range ordered, amorphous-like structure. After post-deposition annealing, the

frlms exhibited a polycrystalline structure, with a main peak at 34.4° corresponding to the

(002) plane. There are no peaks corresponding to metallic Cu or its compounds,

indicating no obvious phase separation in as-grown and 500°C-annealed ZnO:Cu films.

However, it was found that a CuO phase begins to form when ZnO:Cu films were

annealed at 600°C. Figure 6.13(c) shows a comparison of XRD curves obtained from

ZnO:Cu(10) films annealed at 500° and 600°C. The diffraction peaks at 35.58° and

38.63°, corresponding to (111) and (111) of the CuO phase, are only seen in ZnO:Cu(10)

films annealed at 600°C [162, 182-184].
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Figure 6.13 X-ray diffraction curves of (a) as-grown, (b) 500°C-annealed ZnO:Cu films
with varying number of Cu chips (4, 6, 10, and 12), respectively, and (c) ZnO:Cu(10)
films annealed at 500° and 600°C. * and + indicate the peaks related to ZnO and FTO
substrate, respectively [162, 182-184] .
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It is known that the Zn-O bonding energy is rather low, only about 159 kJ/mol

[171,185]. Annealing at high temperature can dramatically enhance the formation of 0

vacancies in ZnO. To reveal the annealing effects, we measured the optical absorption of

pure ZnO films annealed at various temperatures. Figure 6.14 shows the optical

absorption of an as-grown ZnO film and ZnO films annealed at 500° and 600°C. It is

seen that the optical absorption of the film annealed at 600°C exhibits a dramatic change:

its absorption extends into regions with much longer wavelength, due to the formation of

a high concentration of 0 vacancies. This significant structural change at this annealing

temperature should help the formation of the CuO phase. These results suggest that the

annealing temperature should be lower than 600°C to avoid the formation of the CuO

phase [162, 182-184].

Figure 6.14 Optical absorption curves of the as-grown, 500 °C-annealed, and 600°C-
annealed pure ZnO films [162, 182-184].

Figures 6.15(a)—(c) show AFM surface morphology (1 x l μm 2 , height: 251 nm) of

the 500°C-annealed ZnO, ZnO:Cu(4), and ZnO:Cu(12) films, respectively. The grain size

of the annealed pure ZnO film is much larger than that of the annealed ZnO:Cu films.
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Figure 6.15(d) shows grain size and root-mean-square (RMS) surface roughness of the

annealed films as a function of the number of Cu chips. The surface roughness decreased

slightly from 20 to 15.5 nm with the increase of Cu chips.

Figure 6.15 [(a)-(c)] AFM surface morphologies (1 x 1 μm2 , height: 251 nm) of the
500°C-annealed pure ZnO, ZnO:Cu(4), and ZnO:Cu(12). (d) Grain size and root-mean-
square (RMS) surface roughness of the 500 °C-annealed films as a function of the number
of Cu chips [162, 182-184].

The Cu concentrations in ZnO:Cu films were measured by XPS, which increased

from 3.0 to 9.8 at% with the increase in Cu chips from 4 to 12. Cu can have various

bonding states, such as Cu°, Cu l+, and Cu2+ [186]. Figure 6.13 showed that there are no

CuO peaks for the 500°C-annealed ZnO:Cu films, indicating that Cu atoms exist in either
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the Cu° or Cu l+ states. The Cu l+ state in ZnO acts as an acceptor state [181].

Unfortunately, the Cu° and Cu l+ states have very similar 3p3/2 values of 932.7 and 932.5

eV, respectively, which make it very difficult to distinguish them by XPS [186].

Figures 6.16(a) and 6.16(b) show the optical-absorption spectra of as-grown and

500°C-annealed pure ZnO and ZnO:Cu films, respectively. The as-grown and 500°C-

annealed pure ZnO films showed similar optical-absorption spectra and could absorb

only light of wavelengths below 450 nm, due to its wide-bandgap nature. Figure 6.16(a)

shows that the absorption of the as-grown ZnO:Cu frlms extend into the infrared region.

These absorptions may only be explained by the metallic Cu states. Because the

depositions were carried out at room temperature, the ZnO:Cu films were not fully

crystallized, as shown by the XRD curves. It is very likely that Cu atoms may not be fully

oxidized, leaving metallic Cu in the as-grown films. Such metallic Cu atoms are

responsible for the absorption in the infrared region. However, the 500°C-annealed

ZnO:Cu films did not absorb the photons in the infrared region. XRD revealed that

recrystallization occurred during the annealing process. It is very likely that the metallic

Cu atoms were activated to occupy Zn sites during this process and the metallic Cu atoms

changed their states from Cu° to Cu l+. As a result, the optical absorption moved to the

shorter-wavelength region, because there is no more metallic Cu-induced absorption in

the infrared region [162, 182-184].
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Figure 6.16 Optical absorption spectra of (a) as-grown and (b) 500 °C-annealed ZnO:Cu
films with varying number of Cu chips [162, 182-184].

Figure 6.17(a) shows absorption coefficients of the 500°C-annealed pure ZnO and

ZnO:Cu films derived from Figure 6.16(b). The optical bandgap cannot be modeled by a

simple direct or indirect transition. Theoretical study [24] has shown that the Cu 3d

orbital is much shallower that the Zn 3d orbital. When a Cu atom occupies a Zn site in

ZnO, it introduces two main effects: (1) The strong d-p coupling between Cu and 0
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moves O  2p up, which narrows the direct fundamental bandgap; and (2) The Cu 3d

orbital creates impurity bands above the ZnO valance band. The transitions from the

impurity bands to conduction bands are usually a mixture of direct and indirect. Thus, for

heavily doped ZnO:Cu thin films, their optical bandgap contains two parts—the direct

fundamental bandgap and the mixed impurity bandgap. The direct optical bandgaps of

the films were determined by extrapolating the linear portion of each curve in Figure

6.17(a) to (αhv)2 = 0. The measured optical bandgap for pure ZnO films annealed at

500°C was 3.26 eV, which is consistent with the results reported elsewhere [187]. The

direct optical bandgaps measured for ZnO:Cu films annealed 500°C gradually decreased

from 3.16 to 3.05 eV with the increase in the Cu concentration, as shown in Figure

6.17(b) [162, 182-184].
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Figure 6.17 Direct transition-optical-absorption coefficients of the 500 °C-annealed
ZnO:Cu films with different number of Cu chips. Inset shows indirect transition-optical-
absorption coefficients of the 500 °C-annealed ZnO:Cu(10 and 12) films. (b) Energy
bandgaps with the increase of the Cu concentration for the annealed pure ZnO and
ZnO:Cu films [162, 182-184].
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Figure 6.18 shows an XPS spectrum of the valence band of the 500°C-annealed

ZnO:Cu(10) films. Zero binding energy corresponds to the Fermi energy (EF). For pure

ZnO, the VBM is —3.2 eV below EF. However, Figure 6.18 shows that the annealed

ZnO:Cu(10) film has a VBM value located 1.2 eV below the EF, indicating that these

bandgap reductions are caused by the moving up of the valance band. Furthermore, the

impurity bands cause additional bandgap reduction, as shown by the absorption tails

below 3.0 eV. In these cases, it is difficult to give defined bandgaps, as shown in the inset

of Figure 6.17(a).

Figure 6.18 X-ray-excited valence band of the 500 °C-annealed ZnO:Cu(10) film. Zero
binding energy corresponds to the EF [162, 182-184].

The Cu1+ states indicate that annealed ZnO:Cu thin films should be p-type. To

confirm the p-type conductivity, Mott-Schottky plots are measured and shown in Figure

6.19. Mott-Schottky relationships on n-type and p-type semiconductors are expressed

according to the following equations [175, 188]:
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where, C is the depletion-layer capacitance per unit surface area, Nd and Na is the donor

and acceptor densities, respectively; ε o is the permittivity of vacuum, ε  is the dielectric

constant of the semiconductor, E is the electrode potential, E fb, is the flat-band potential,

and kT/eo is the temperature-dependent term in the Mott-Schottky equation. The diffuse

charge in the depletion layer in the semiconductor, together with its compact

countercharge in the Helmholtz plane, can be conceived as a series connection of two

capacitances (C scof depletion layer andCHof Helmholtz layer). In series, the smallest

capacitance dominates. Helmholtz capacitance of the semiconductor is ignored because it

is much larger than the CSC value associated with the depletion layer. Surface area of the

counter electrode is much higher than that of the working electrodes, leading to the

enhanced CH  value of the counter electrode. Therefore, the measured differential

capacitance of the cell corresponds to the differential capacitance of the semiconductor

depletion layer [189] .

Figure 6.19(a) shows the Mott-Schottky plot of the 500°C-annealed pure ZnO

film. It has a positive slope in the linear region of the plot, indicating an n-type

semiconductor according to Eq. 4(a). Assuming the dielectric constant of the samples as

about 8.5 [176], the donor concentration of the annealed ZnO film could be evaluated

from the slope of the linear part, which was 2.3x1016 cm-3 . Figure 6.19(b) shows the

Mott-Schottky plot of the 500°C-annealed ZnO:Cu(12) film, which had a negative slope

indicating p-type behavior. It indicates that the Cu° metallic states were activated into the
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form of Cu 1+substitutional acceptor states by the post-deposition annealing process at

500°C, because the Cu° metallic states cannot result in a p-type semiconductor [181]. In a

similar manner, all other 500°C-annealed ZnO:Cu films in this experiment showed

negative slopes. To confirm p-type conductivity, open-circuit voltage (Voc), and

photoelectrochemical (PEC) characteristics for the 500°C-annealed pure ZnO and

ZnO:Cu films were also investigated. The V oc value of the ZnO:Cu films moved anodic

with illumination, whereas the V oc value of the pure ZnO shifted cathodic with

illumination. Moreover, the PEC characteristics of the ZnO:Cu films under chopped

illumination showed cathodic photoresponses (indicative of p-type semiconductor),

whereas the pure ZnO film exhibited anodic photoresponses (n-type semiconductor).

These investigations confirm that the 500°C-annealed ZnO:Cu films are p-type

semiconductors.

The hole concentrations of the films were evaluated from the slope of the linear

part in Figure 6.19(b) with Eq. 4(b). Figure 6.19(c) shows the carrier concentrations of

the 500°C-annealed ZnO and ZnO:Cu films. The hole concentrations of the 500°C-

annealed ZnO: Cu films were increased from 1.8x10 19 to 2.8x 1020 cm-3 with the increase

of the Cu concentration. It should be noted that the hole concentrations are significantly

lower than the Cu concentrations. Theoretical study [181] showed that the activation

energy of the Cu acceptors in the ZnO:Cu film is very high (0.7 eV above the VBM).

This indicates that only a small fraction of the incorporated Cu is activated to donate

holes, resulting in the discrepancy between the hole concentrations and Cu

concentrations. These results demonstrate that p-type ZnO thin films with significantly
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reduced bandgaps can be synthesized for PEC water-splitting applications [162, 182-

184] .

Figure 6.19 Mott-Schottky plots of 500 °C-annealed (a) pure ZnO and (b) ZnO:Cu(12)
films. (c) Carrier concentrations of the 500 °C-annealed films as a function of Cu
concentration [162, 182-184].
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6.4 Carrier Concentration Tuning of Bandgap-Reduced
p-type ZnO Films by Co-Doping of Cu and Ga

In this part of the study, the synthesis of p-type ZnO films with similar bandgaps but

varying carrier concentrations through co-doping of Cu and Ga is reported. The

ZnO:(Cu,Ga) films are synthesized by RF magnetron sputtering in O 2 gas ambient at

room temperature, followed by post-deposition annealing at 500°C in air for 2 hours.

Two sets of samples were deposited, which exhibited different PEC behaviors.

Figure 6.20 shows XRD curves for the first set of samples. For comparison, XRD curves

of a pure ZnO sample and a ZnO:Cu sample with similar thickness are also shown. The

location of the (111) peak of Ga2O3  is indicated by the red line. It is seen that the

incorporation of Cu leads to decreased crystallinity as compared to pure ZnO films. The

incorporation of additional Ga showed similar crystallinity as compared to ZnO:Cu films.

Figure 6.20 XRD curves of ZnO:(Cu,Ga)0.001, ZnO:(Cu,Ga)0.002, ZnO:Cu, and ZnO
samples with similar thickness of about 0.5 μm. The dotted line indicates the peaks from
FTO substrate [190].
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The XRD curves showed no Cu oxides and Ga oxides, thus indicating no phase

separation. However, the incorporation of Cu and Ga changed the preferred orientation

of the films. For example, with the dopants, the (002) peak was suppressed and the (100)

and (101) peaks were enhanced. AFM images also confirmed that the ZnO:Cu and

ZnO:(Cu,Ga) films have similar grain sizes. Figures 6.21(a), 6.21(b), and 6.21(c) show

AFM images from the ZnO:Cu, ZnO:(Cu,Ga)0.001, and ZnO:(Cu,Ga)0.002 samples,

respectively. The images clearly show that the incorporation of a low concentration of

Ga did not significantly change the morphology and average crystallite sizes [190].

Figure 6.21 AFM images taken from (a) ZnO:Cu, (b) ZnO:(Cu,Ga)0.001, and (c)
ZnO:(Cu,Ga)0.002 samples [190].
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Figures 6.22(a) and 6.22(b) show the optical-absorption spectra and absorption

coefficients of the first set of samples, pure ZnO, and ZnO:Cu samples with similar

thickness. The ZnO:Cu sample exhibits absorption in the visible region due to two main

effects: (1) The strong d-p coupling between Cu and 0 upshifts the 0 2p orbital, which

narrows the fundamental bandgap; and (2) The Cu 3d orbital creates impurity bands

above the ZnO valance band. The bandgap for the ZnO:Cu sample is calculated to be

about 3.05 eV. Based on previous compositional study, this bandgap corresponds to

about 10 at.% Cu in the film. The incorporation of Ga does not significantly change the

absorption spectrum as compared to that of ZnO:Cu due to low Ga concentration. This

ensures that the effect of Ga incorporation is mainly to tune the carrier concentration of

Zn:Cu films. However, small blue shifts are observed for the sample co-doped with Ga

as compared to the ZnO:Cu sample. The measured bandgaps are about 3.12 eV for

ZnO:(Cu,Ga)0.001 and ZnO:(Cu,Ga)0.002 samples. The blue shift can be understood as

follows. The impurity band generated by Cu in ZnO is partially occupied. When Ga is

incorporated, the Ga 4s24p 1 electrons will fill some of the unoccupied states in the Cu-

induced impurity band. Such filling will lower the energy of the system through a

downward shift of the Cu-induced impurity band. This downward shift, therefore, leads

to the observed blue shift in the optical absorption spectra [190].
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Figure 6.22 (a) Optical absorption curves and (b) absorption coefficients of ZnO,
ZnO:Cu, ZnO:(Cu,Ga)0.001, and ZnO:(Cu,Ga)0.002 samples [190].

The conductivity of ZnO films is n-type, whereas it is p-type for ZnO:Cu with ten

Cu chips. The different type of conductivity was confirmed by photocurrent-voltage

curves. Figures 6.23(a) and 6.23(b) show measured photocurrent-voltage curves under

illumination with the UV/IR filter and dark currents for a pure ZnO film and ZnO:Cu,

respectively. Figure 6.23(a) shows that the photocurrent increases with an increase in

applied potential, which is characteristic of n-type conductivity. Figure 6.23(b) shows

that the photocurrent increases with a decrease in applied potential, which is

characteristic of p-type conductivity. Thus, the ZnO film is n-type and the ZnO:Cu film

is p-type. However, the photocurrent of the ZnO:Cu film is very low. The poor PEC
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performance can be attributed to the high concentration of Cu, which is necessary for

sufficient bandgap reduction. The high concentration of Cu results in very high carrier

concentration and, therefore, very small depletion width [179, 191]. In addition, the high

concentration of Cu also introduces a large number of charged defects, which can act as

recombination centers. These two effects are probably the main reasons for poor PEC

performance. These two undesired effects can be overcome by co-doping of Ga, which is

a shallow donor in ZnO [190].

Figure 6.23 Photocurrent-voltage curves under (red) continuous illumination, (black
curve) dark conditions, with an UV/IR filter measured from (a) ZnO:Cu and (b) ZnO:Cu
films [190].

Figure 6.24 shows the measured photocurrent-voltage curves under illumination

with the UV/IR filter and dark currents for ZnO:Cu, ZnO:(Cu,Ga)0.001, and

ZnO:(Cu,Ga)0.002. Both ZnO:(Cu,Ga)0.001 and ZnO:(Cu,Ga)0.002 films showed p-
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type conductivities, indicating that the role of Ga in these films is to reduce the hole

concentration that is generated by Cu incorporation. The reduction in hole concentration

increases the depletion width so that more photon-generated electron-hole pairs can be

collected. Furthermore, the incorporation of Ga will neutralize charged Cu ions, so that

recombination will also be suppressed. Thus, ZnO:(Cu,Ga)0.001 and ZnO:(Cu,Ga)0.002

films showed significantly increased photocurrents as compared to the ZnO:Cu film. The

photocurrent at a potential of -0.5 V for the ZnO:(Cu,Ga)0.001 sample improved by

almost one order of magnitude. The ZnO:(Cu,Ga)0.002 sample showed lower

photocurrents than the ZnO:(Cu,Ga)0.001 sample, indicating that an optimum carrier

concentration exists. If the carrier concentration of a film is very low, the film will

become very resistive and the photocurrent will begin to decrease. The incorporation of

more than a certain level of Ga may even cause p-type ZnO:Cu film to become n-type

[190].

Figure 6.24 Photocurrent-voltage curves under continuous illumination, (black curve)
dark conditions, with an UV/IR filter measured from ZnO:Cu, ZnO:(Cu,Ga)0.001, and
ZnO:(Cu,Ga)0.002 samples [190].
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Figure 6.25 shows XRD curves for the second set of samples. For comparison,

XRD curves of a pure ZnO sample and a ZnO:Cu sample with similar thickness are also

shown. All the peaks have higher intensities than that of the first set of samples due to

larger thickness. Similar to the first set of samples, the incorporation of Cu changes the

preferred orientation as compared to ZnO. The incorporation of additional Ga did not

significantly change the crystallinity as compared to ZnO:Cu films. AFM images also

confirmed this conclusion. The XRD curves showed no Cu oxides or Ga oxides, thus

indicating no phase separation. However, the incorporation of Cu and Ga changed the

preferred orientation of the films [190].

Figure 6.25 XRD curves of ZnO:(Cu,Ga)0.01, ZnO:(Cu,Ga)0.03, ZnO:Cu, and ZnO
samples with similar thickness of about 1 μm. The dotted line indicates the peaks from
FTO substrate [190].

Figures 6.26(a) and 6.26(b) show the optical-absorption spectra and absorption

coefficients of the second set of samples and ZnO:Cu samples with similar thickness.

The bandgap for the ZnO:Cu sample is calculated to be about 3.0 eV, which corresponds

to about 11 at.% Cu in the film. As in the first set of samples, blue shifts are also

observed for the second set of samples; however, the shift is much more significant. The
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measured bandgaps are very similar for ZnO:(Cu,Ga)0.01 and ZnO:(Cu,Ga)0.03 samples,

(about 3.15 eV). This indicates that more unoccupied states are now filled by the

electrons from Ga, as more Ga 2O3  powders were dispersed on the target.

Figure 6.26 Optical absorption curves and (b) absorption coefficients of ZnO:Cu,
ZnO:(Cu,Ga)0.01, and ZnO:(Cu,Ga)0.03 samples [190].

Figures 6.27(a) and 6.27(b) show measured photocurrent-voltage curves under

illumination with the UV/IR filter and dark currents for ZnO:(Cu,Ga)0.01 and

ZnO:(Cu,Ga)0.03, respectively. It can be clearly seen that both ZnO:(Cu,Ga)0.01 and

ZnO:(Cu,Ga)0.03 films are no longer p-type, but are n-type. Thus, the Ga concentration

is so high in these samples that holes are completely compensated and the films become

n-type. Both ZnO:(Cu,Ga)0.01 and ZnO:(Cu,Ga)0.03 films showed very high dark

currents indicating poor quality, which may be the result of incorporation of too much

Ga. Because the photocurrent-voltage curves indicate that both ZnO:(Cu,Ga)0.01 and
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ZnO:(Cu,Ga)0.03 are n-type, the bottom of the conduction bands in these materials may

be filled with electrons, which partially contribute to the large blue shift seen in Figure

6.26 [190].

Figure 6.27 Photocurrent-voltage curves under (red curve) continuous illumination,
(black curve) dark condition, with an UV/IR filter measured from (a) ZnO:(Cu,Ga)0.01
and (b) ZnO:(Cu,Ga)0.03 films [190].

6.5 Enhanced Photoelectrochemical Responses of ZnO Films
through Ga and N Co-Doping

The crystallinity and PEC responses of ZnO thin films co-doped by Ga and N are

reported in this part of the research. Ga and N co-doped ZnO [ZnO:(Ga,N)] and N-doped

ZnO (ZnO:N) films were grown by reactive RF magnetron sputtering for the same

growth conditions and annealed at 500°C in air for 2 hours. For comparison, ZnO:N films

were also grown at 500°C.
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Figure 6.28 shows the XRD curves for ZnO:N(1), ZnO:N(2), and ZnO:(Ga,N)

films. The ZnO:N(1) film exhibited the * peak around 55°, which is in between the peak

positions of the Zn3N2 and ZnO. From a previous study, it corresponds to the peak of the

Zn oxynitride, indicating that a high concentration of N has been incorporated into ZnO.

However, its crystallinity was inferior due to the incorporation of the nitrogen. The

crystalline quality was characterized from the full width at half maximum (FWHM) of

the XRD curve instead of the peak intensity, because the FWHM is an intrinsic property

[192]. The crystallite size, estimated according to the Scherrer equation with the FWHM,

is about 16 nm. The ZnO:N(2) films exhibited much better crystallinity (crystallite size:

29 nm). However, all the peaks correspond to pure ZnO without any indication of

oxynitride structure as seen in the ZnO:N(1) film.

X-ray photoelectron spectroscopy ()CPS) results confirmed that no nitrogen is

present in the ZnO:N(2) films grown at 500°C. However, the ZnO:N(1) film showed a

nitrogen concentration of 22 at%. These results indicate that a high concentration of N

can be incorporated into ZnO at low substrate temperatures, but these films have very

poor crystallinity. ZnO films with high crystallinity can be synthesized at high

temperatures; but at these substrate temperatures, it is very difficult to incorporate a

significant amount of nitrogen into the films. Surprisingly, however, the co-doped

ZnO:(Ga,N) films exhibited significantly enhanced crystallinity, yet with the

incorporation of N. From the XRD curve shown in Figure 6.28, the crystallite size of

ZnO:(Ga,N) films is estimated to be around 40 nm, which is even better than the

ZnO:N(2) films grown at 500°C. Such significantly enhanced crystallinity can be

attributed to the Ga source used (i.e., Ga

2

O3 ). Because the ionic radius of substitutional
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Ga3+ is close to that of Zn2+, the size mismatch is very small. Furthermore, the Ga 2O 3

source provides more oxygen during the sputtering process [193], leading to decreased

oxygen vacancies and enhanced crystallinity. A similar effect of the Ga oxide source on

ZnO crystallinity has also been reported [36]. The nitrogen concentration in the

ZnO:(Ga,N) films was estimated to be about 2 at%, which is much lower than that of the

ZnO:N(1) film. This is because the additional oxygen, with its high chemical activity,

generated from the Ga2O 3 source limited the N incorporation [194, 195].

Figure 6.28 XRD curves for a ZnO:N(1), ZnO:N(2), and ZnO:(Ga,N) films, respectively
[194, 195].

Figure 6.29 shows the optical absorption coefficients for the samples used in this

experiment. The direct electron transition from valence to conduction bands was assumed

to calculate the bandgap from the absorption coefficient curves, because both of the ZnO

and Zn nitride films are known to be direct-bandgap materials. The optical bandgaps of

the films were determined by extrapolating the linear portion of each curve. The bandgap

of the ZnO:N(2) film grown at 500°C is 3.27 eV, which corresponds well to the bandgap

of the pure ZnO. The ZnO:N(1) film exhibited a significantly decreased bandgap of 1.75
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eV, due to the high concentration of N. The co-doped ZnO:(Ga,N) film exhibited a

bandgap of 3.19 eV, which is slightly lower than the ZnO:N(2) film grown at 500°C.

This small reduction in bandgap is due to N-induced upshifting of the valance band. It is

shown theoretically that the incorporated N would generate an impurity band above the

valance band. The absorption from this impurity band cannot be characterized by direct

band transitions and typically results in an absorption tail in the measured optical

absorption curve. Such an absorption tail is clearly evident in Figure 6.29 for the co-

doped ZnO:(Ga,N) film. This tail can be considered to lead to further bandgap reduction,

which enables light harvesting in the much longer wavelength regions as compared to the

ZnO:N(2) film [194, 195].

Figure 6.29 (a) Direct transition-optical-absorption coefficients (b) Optical absorption
curves of a ZnO:N(1), ZnO:N(2), and ZnO:(Ga,N) films, respectively [194, 195].
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Figure 6.30(a) shows Mott-Schottky plots of ZnO:N(1), ZnO:N(2), and the co-

doped ZnO:(Ga,N) films. All the samples exhibited positive slopes, indicating n-type

semiconductors. From previous study, it is known that ZnO:N films deposited under a

N2/02 plasma showed n-type behavior, due to substitutional N 2 molecules that act as

shallow double-donors. The donor concentrations of the films were calculated from the

slopes of the Mott-Schottky plots, which were about 9.93, 2.1, and 2.43 x 10 17 cm-3 for

ZnO:N(1), ZnO:N(2), and ZnO:(Ga,N), respectively. The co-doped ZnO:(Ga,N) film

exhibited similar donor concentration compared to the ZnO:N(2) film grown at 500°C,

indicating that the co-doped film is a highly compensated system [194, 195].

Because the major contribution to PEC response is from the collection of carriers

photogenerated in the built-in electrical field near surface regions, the depletion width is

an important factor for PEC application of semiconductors. In general, a larger depletion

layer (W) is preferred to suppress the recombination rate. Figure 6.30(b) shows the W

values with the potential for the samples, which were calculated from the results of the

Figure 6.30(a). It shows that the co-doped ZnO:(Ga,N) and the ZnO:N(2) film grown at

500°C exhibited much wider W values, compared to the ZnO:N(1) film, owing to lower

donor concentration [194, 195].
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Figure 6.30 (a) Mott-Schottky plots of a ZnO:N(1), ZnO:N(2), and ZnO:(Ga,N) films,
respectively. (b) W values with the potential, estimated from (a) [194, 195].

Figure 6.31(a) shows the photocurrent-voltage curves of ZnO:N(1), ZnO:N(2),

and ZnO:(Ga,N) films under illumination with the UV/IR filter. The inset in Figure

6.31(a) shows the enlarged photocurrent-voltage curves. It showed clearly that the

ZnO:(Ga,N) film exhibited significantly increased photocurrents, compared to the other

films. At the potential of 1.2 V, the photocurrents were 484, 55, and 38 μAcm-2 for the

co-doped ZnO:(Ga,N), ZnO:N(1), and ZnO:N(2) films, respectively. To investigate the

photoresponses in the long-wavelength region, a green color filter (wavelength: 538.33

nm; FWHM: 77.478 min) was used in combination with the UV/IR filter, as shown in

Figure 6.31(b). The ZnO:N(2) film grown at 500°C exhibited no clear photoresponse, due

to its wide bandgap. The ZnO:(Ga,N) film exhibited much higher photocurrent than the

ZnO:N(1) film, despite much less light absorption. It indicates that a very high

recombination rate of the photogenerated electrons and holes is present in the ZnO:N(1)

film, due to its inferior crystallinity and small W value. On the other hand, the co-doped
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ZnO:(Ga,N) exhibited remarkably increased crystallinity and good W value, which led to

greatly enhanced photocurrent than the ZnO:N(1) film. The results demonstrate clearly

that photocurrents can be obtained from the impurity-band-induced absorption tail. We

expect that further enhanced photocurrents should be possible with higher N

incorporation in ZnO facilitated by the co-doping approach [194, 195].

Figure 6.31 (a) Photocurrent-voltage curves of a ZnO:N(1), ZnO:N(2), and ZnO:(Ga,N)
films, respectively, under the illumination (a) with an UV/IR filter and (b) with the
combined green and UV/IR filter. The inset shows the enlarged photocurrent-voltage
curves. Scan rate of 5 mV/s was used [194, 195].
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6.6 Effect of Substrate Temperature on Photoelectrochemical
Responses of ZnO Films Co-Doped by Ga and N

In this part of the research, effect of substrate temperature on the crystallinity and PEC

responses of ZnO thin films co-doped by Ga and N are reported. Ga and N co-doped ZnO

[ZnO:(Ga,N)] films were grown by reactive RF magnetron sputtering at various substrate

temperatures.

Figure 6.32 shows the X-ray diffraction curves for ZnO and Ga-N co-doped ZnO

films deposited at substrate temperatures of 100°, 300°, and 500°C. The ZnO films

exhibited poor crystallinity due to deposition at low temperatures. However, Ga-N co-

doped ZnO film deposited at 100 °C showed sharper peaks. As the substrate temperature

is increased to 300° and 500°C, the peak intensities are decreased, indicating the

incorporation of more N in the films. It is known from recent reports that incorporated N

atoms can deteriorate the crystal structure and modify the growth mode [196-198]. The

crystallite size of the ZnO films, estimated according to the Scherrer equation, is about 21

nm. The Ga-N co-doped ZnO films deposited at 100 °C exhibited much better crystallinity

(crystallite size: 44 nm). This is because the deposition is carried out at the increased

substrate temperature of 100 °C, and very low concentration of N incorporated in the film,

whereas ZnO film was deposited at room temperature. Such significantly enhanced

crystallinity may be because Ga203 powders were used as the Ga source. The ionic radius

of substitutional Ga3+ is close to that of Zn2+ . The size mismatch between them is very

small. Furthermore, the Ga 203 source provides more oxygen during the sputtering

process [193], leading to decreased oxygen vacancies and enhanced crystallinity. A

similar effect of the Ga oxide source on ZnO crystallinity has also been reported by other

groups [193]. The crystallite size of Ga-N co-doped ZnO films deposited at a substrate
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temperature of 300 ° and 500°C is 35 and 24 nm, respectively, indicating that more N is

incorporated in these films.

Figure 6.32 XRD curves for ZnO, and ZnO:N:Ga films deposited at a substrate
temperature of 100°, 300°, and 500°C [199].

XPS results confirmed that a very low concentration of nitrogen (0.19 at.%) is present in

the Ga-N co-doped ZnO films grown at 100°C, whereas films deposited at 300° and

500°C contain 0.8 and 1.4 at.% N, respectively. ZnO films with high crystallinity can be

synthesized at high temperatures, but a significant amount of nitrogen is very difficult to

be incorporated into ZnO films at these substrate temperatures. However, with Ga-N co-

doping, a significant amount of N can be incorporated into ZnO even at higher substrate

temperatures [199] .

Figure 6.33 shows optical absorption spectra of ZnO films and Ga-N co-doped

ZnO films deposited at a substrate temperature of 100° to 500°C. The ZnO films showed

optical absorption due to light with wavelengths below 450 nm because of their wide

bandgap. However, Ga-N co-doped ZnO film can absorb lower-energy photons, up to
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750 nm as the substrate temperature increased from 100 ° to 500 °C, indicating that the

bandgap was narrowed by Ga-N incorporation in ZnO [159, 170].

Figure 6.33 Optical absorption curves of a ZnO, and ZnO:N:Ga films deposited at
substrate temperature of 100°, 300°, and 500°C [199].

Figure 6.34 shows the optical absorption coefficients for the samples used in this

experiment. The direct electron transition from valence to conduction bands was assumed

for the absorption coefficient curves, because ZnO films are known to be direct-bandgap

materials. The optical bandgap of the films was determined by extrapolating the linear

portion of each curve. The bandgap of the ZnO film is 3.26 eV, which is consistent with

the results reported elsewhere. The direct optical bandgaps measured for Ga-N co-doped

ZnO films deposited at a substrate temperature of 100 ° to 500 °C gradually decreased

from 3.25 to 3.22 eV. This small bandgap reduction is due to N-induced upshifting of the

VBM. It is shown theoretically that the incorporated N would generate an impurity band

above the valence band. The absorption from this impurity band cannot be characterized

by direct band transitions and typically results in an absorption tail in the measured
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optical absorption coefficients curve. Such an absorption tail is clearly evident in Figure

6.34 for the Ga-N co-doped ZnO film. This tail can be considered to lead to further

bandgap reduction, which enables light harvesting in the much longer-wavelength

regions as compared to that of the ZnO film [199].

Figure 6.34 Direct transition-optical absorption coefficients of a ZnO, and ZnO:N:Ga
films deposited at substrate temperature of 100°, 300°, and 500° C [199].

Figure 6.35 shows Mott-Schottky plots of ZnO, and Ga-N co-doped ZnO films

grown at substrate temperatures of 100 °, 300°, and 500°C. All the samples exhibited

positive slopes, indicating n-type semiconductor behavior. Previous studies reported that

ZnO:N films deposited under a N2/02 plasma showed n-type behavior, due to

substitutional N2 molecules that act as shallow double-donors. For Ga-N co-doped

samples, Ga atoms are shallow donors. The Ga concentration in the films tunes the donor

(free electron) concentration. The donor concentrations of the films, calculated from the

slopes of the Mott-Schottky plots [191, 200], were about 8.6 x 10 16 , 2.85 x 10 17 , 2.74 x

10 17 , and 2.52 x 10 17 /cm 3 for ZnO, and Ga-N co-doped ZnO films deposited at 100° ,

300° , and 500°C, respectively. The Ga-N co-doped ZnO film exhibited nearly similar
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donor concentration as compared to ZnO:N film grown at 500°C [194, 195], indicating

that the co-doped film is a highly compensated system.

Figure 6.35 Mott-Schottky plots of a ZnO, and ZnO:N:Ga films deposited at substrate
temperature of 100°, 300°, and 500°C [199].

The depletion width is an important factor for the PEC application of

semiconductors. In general, a larger depletion layer, W, is preferred to promote photo-

generated carrier separation. Figure 6.36 shows the W values with the potential for the

samples, which were calculated from the results of Figure 6.35. It shows that ZnO

showed much wider W compared to the Ga-N co-doped ZnO films. The Ga-N co-doped

ZnO film exhibited increased W values as the substrate temperature is increased, due to

lower donor concentration [199].
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Figure 6.36 Depletion layer width (W) values with the potential, estimated from 6.35
(above graph) [199].

Figure 6.37 shows the photocurrent-voltage curves of ZnO and Ga-N co-doped

ZnO films under illumination with an UV/IR filter. It shows clearly that the Ga-N co-

doped ZnO films exhibited increased photocurrents, as compared to the ZnO film.

Furthermore, as the substrate temperature is increased for Ga-N co-doped ZnO film, the

photocurrents increased accordingly [199].

Figure 6.37 Photocurrent-voltage curves of a ZnO, and ZnO:N:Ga films deposited at
substrate temperature of 100°, 300°, and 500°C, under the illumination with a UV/IR
filter [199].
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At the potential of 1.25 V, the photocurrents were 20, 56, 115, and 203 μAcm-2

for the ZnO, Ga-N co-doped ZnO films deposited at 100°, 300°, and 500°C, respectively.

This indicates that a very high recombination rate of the photogenerated electrons and

holes is present in the ZnO film, despite its wider W value; this may be due to its inferior

crystallinity combined with wider bandgap. To investigate the photoresponses in the

long-wavelength region, a green-color filter was used in combination with the UV/IR

filter, as shown in Figure 6.38. The ZnO film exhibited no clear photoresponse, due to its

wide bandgap. The Ga-N co-doped ZnO films exhibited photocurrent, despite much less

light absorption. It is evident that the Ga-N co-doped ZnO films exhibited increased

crystallinity, good W value, reduced bandgap, and compensated charge, which led to an

enhanced photocurrent compared to the ZnO film [199].

Figure 6.38 Photocurrent-voltage curves of a ZnO, and ZnO:N:Ga films deposited at
substrate temperature of 100°, 300°, and 500°, under the illumination with the combined
green and UV/IR filters [199].

The results demonstrate clearly that photocurrents can be obtained from the

impurity-band-induced absorption tail. The co-doping of Ga and N in ZnO can shift

photoresponse of ZnO into the visible-light region, which is the main component of
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sunlight. It is expected that further enhanced photocurrents should be possible when more

N is incorporated in ZnO by the co-doping approach [199].

6.7 Phase Separation of Ga and N Co-Incorporated ZnO
Films and Its Effect on Photo-Response

In this part of the research, phase separation of Ga and N co-incorporated ZnO films and

its effect on photoresponse are reported. Ga and N co-doped ZnO [ZnO:(Ga,N)] films

were grown by reactive RF magnetron sputtering at various substrate temperatures.

Figure 6.39 shows the XRD curves for ZnO, ZnO:N, and ZnO:(Ga:N) films

deposited in mixed N2 and 02 with an oxygen gas ratio [021(N2+02)] = 1.2% and 2.5%.

The ZnO film exhibited poor crystallinity due to deposition at room temperature. The

ZnO:N film also showed poor crystallinity, due to the deposition at low temperature,

along with the heavy incorporation of nitrogen. According to the previous study, the

ZnO:N film exhibited the * peak around 31 °, which corresponds to zinc oxynitride,

indicating that a high concentration of nitrogen was incorporated in ZnO. The ZnO:N

film showed a nitrogen concentration of 22 at.% as determined from XPS results.

However, charge-compensated co-incorporated ZnO:(Ga:N) films exhibited significantly

enhanced crystallinity, with the incorporation of nitrogen. The crystallite sizes were

estimated according to the Scherrer equation using the FWHM of specific peaks. The

(002) peak was used for ZnO and ZnO:(Ga:N) films, while * peak was used for ZnO:N

film. The crystallite size was estimated to be about 21, 29, 34, 44, and 40 nm for ZnO,

ZnO:N, ZnO:(Ga:N)(1), ZnO:(Ga:N)(2), and ZnO:(Ga:N)(3) films, respectively [201].
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Figure 6.39 Optical absorption coefficients of a ZnO, ZnO:N, and ZnO:Ga:N films
deposited in mixed N2 and 02 with an oxygen gas ratio 02/(N2+02) = 1.2% and 2.5%
[201].

Figure 6.40 shows AFM surface morphologies of the ZnO, ZnO:N,

ZnO:(Ga:N)(1), and ZnO:(Ga:N)(3) samples, respectively. It clearly shows that the

ZnO:(Ga:N) films have slightly larger grain size, as compared to ZnO and ZnO:N films.
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Figure 6.40 AFM images taken from (a) ZnO, (b) ZnO:N, (c) ZnO:Ga:N(1), and (d)
ZnO:Ga:N(3) samples [201].

Significantly enhanced crystallinity of co-incorporated ZnO:(Ga:N) films can be

attributed to the Ga source used (i.e., Ga2O 3 powder): theGa2O 3  source provides more

oxygen during the sputtering process, leading to decreased oxygen vacancies and

enhanced crystallinity. The nitrogen concentration in ZnO:(Ga:N)(1, 2), and

ZnO:(Ga:N)(3) films was estimated to be about 6 and 2 at.%, respectively. This low

incorporation of N in co-doped ZnO:(Ga:N) films, as compared to ZnO:N film, is

partially due to the additional oxygen generated from the

Ga2

O

3

 source. The

ZnO:(Ga:N)(1, 2) films showed higher concentration of N incorporation than that of
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ZnO:(Ga:N)(3) film. This is due to the decreased oxygen gas ratio in mixed N

2

 and

O 2

ambient from 2.5% to 1.2%. However, ZnO:(Ga:N)(1) and ZnO:(Ga:N)(2) films

deposited in an oxygen gas ratio 1.2% showed a (332) Zn3N

2

 peak, indicating a phase

segregation in the films. In contrast, ZnO:(Ga:N)(3) film grown in mixed N 2 andO 2  with

an oxygen gas ratio 2.5% did not show any phase separation, indicating that the phase

separation is very sensitive to the gas flow ratio in mixed gas ambient [201].

Figure 6.41 shows optical absorption spectra of the ZnO, ZnO:N, and ZnO:(Ga:N)

films deposited in mixed N

2

 and O

2

. The ZnO films showed optical absorption spectra

and could only absorb light with wavelengths below 450 nm, due to their wide bandgap.

However, the ZnO:N film could absorb lower-energy photons due to the very high

concentration of N. The ZnO:(Ga:N) films also showed light absorption into the visible-

light region due to the N incorporation in the films.

Figure 6.41 Optical absorption curves of ZnO, ZnO:N, and ZnO:Ga:N films deposited in
mixed N

2

 and O

2

 with an oxygen gas ratio 02/(N2+02) = 1.2% and 2.5% [201].

The optical absorption coefficients for the samples are shown in Figure 6.42. The

direct electron transition from valence to conduction bands was assumed for the

absorption coefficient curves of Figure 6.42 (a), because ZnO films are known as direct-
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bandgap materials. The bandgap of the ZnO film is 3.26 eV, which is consistent with the

results reported elsewhere. The direct optical bandgap measured for ZnO:N film is 1.75

eV, due to the high concentration of N. The co-doped ZnO:(Ga:N)(1) and ZnO:(Ga:N)(2)

films exhibited a direct bandgap of 3.23 eV. The co-doped ZnO:(Ga:N)(3) film exhibited

a bandgap of 3.19 eV, which is slightly lower than the ZnO film. The ZnO:Ga,N (1, 2)

films also exhibited long absorption tails and it may be related to the indirect electron

transition. To confirm this, the indirect transition absorption coefficients were plotted in

Figures 6.42(b) and 6.42(c) for ZnO:(Ga,N)(1 and 2) and ZnO:(Ga,N)(3), respectively.

Figures 6.42(a) and 6.42(b) clearly show that the ZnO:(Ga,N)(1 and 2) have both direct

and indirect transitions for high-energy and low-energy regions, respectively. It indicates

that these films were phase-separated into the mixed form of the ZnO and Zn 3N2, which

is in good agreement with XRD data.

However, Figure 6.42(c) clearly shows that ZnO:(Ga,N)(3) is not according to

the indirect transition, indicating no existence of the Zn3N2. Rather, it can be due to the

N-induced impurity bands mixed with the Ga. The absorption of the films with the

impurity band cannot be characterized only by direct band transition, and it typically

results in an additional absorption tail together with reduced bandgap, due to the VBM

moved up by the N impurity band. We should also note that although the ZnO:Ga,N (1

and 2) films had more N incorporation than the ZnO:Ga,N(3); they exhibited higher

direct absorption coefficients of ZnO:(Ga:N)(3) films deposited in 2.5% N2 gas flow rate

mixed N2 andO 2  gas ambient [201].



140

Figure 6.42 (a) Direct-transition optical-absorption coefficients of ZnO, ZnO:N, and
ZnO:(Ga:N) films deposited in mixed N 2 andO 2  gas ambient. (b) Indirect-transition
optical-absorption coefficients of ZnO:(Ga:N)(1) and ZnO:(Ga:N)(2) films deposited in
1.2% N

2

 gas flow rate mixed N

2

 and O

2

 gas ambient. (c) Indirect-transition optical-
bandgap in Figure 6.42(a). It is because the nitrogen of ZnO:Ga,N (1 and 2) films has
mixed phases of ZnO and Zn 3N2 [201].
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Figure 6.43(a) shows Mott-Schottky plots of ZnO, ZnO:N, and ZnO:(Ga:N) films

deposited in mixed ambient. All the samples exhibited positive slopes, indicating n-type

semiconductors. Previous studies reported that ZnO:N films deposited in a N2/02 plasma

showed n-type behavior, due to substitutional N2 molecules that act as shallow double-

donors. The donor concentrations of the films were calculated from the slopes of the

Mott-Schottky plots, which were about 6.2 x 10 16, 9.9 x 10 17 , 2.7 x 10 17, 2.9 x 10 17 , and

2.4 x 10 17 cm -3 for ZnO, ZnO:N, ZnO:(Ga:N)(1), ZnO:(Ga:N)(2), and ZnO:(Ga:N)(3)

films, respectively. The ZnO:N film exhibits a higher donor density compared to ZnO

film due to high concentration of N2 incorporation and/or native defects such as Zn

interstitials and 0 vacancies. The incorporated ZnO:(Ga:N) films exhibited lower donor

concentration than the ZnO:N film but higher than that of ZnO film. The donor

concentration of ZnO:(Ga:N) films with or without phase separation of Zn3N2 are similar.

The major contribution to PEC response comes from the carriers photogenerated in the

built-in electrical field near surface regions, so the depletion width is an important factor

for PEC application of semiconductors. In general, a larger depletion layer (W) is

preferred to increase the harvesting efficiency of the photogenerated electron-hole pairs

without the recombination.

Figure 6.43(b) shows the W values with the potential for the samples, which were

calculated from the results of the Figure 6.43(a). It shows that ZnO showed much wider

W compared to the ZnO:N and ZnO:(Ga:N) films. Co-doped ZnO:(Ga:N) films exhibited

increased W values compared to ZnO:N film, due to lower donor concentration [201].
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Figure 6.43 (a) Mott-Schottky plots of ZnO, ZnO:N, and ZnO:Ga:N films, respectively.
(b) W values with the potential, estimated from (a) [201].

Figure 6.44 shows the photocurrent-voltage curves of ZnO, ZnO:N, and

ZnO:(Ga:N) films deposited in mixed N 2 andO 2  gas ambient, under illumination with an

UV/IR filter. It clearly showed that the ZnO:(Ga:N)(3) film exhibited significantly

increased photocurrents, as compared to the other films. Even though the ZnO:Ga, N (1

and 2) films had better crystallinity than the pure ZnO, their PEC properties were lower
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than that of the pure ZnO at the low potential region below 0.8 V. It indicates that a high

recombination rate between the photogenerated electrons and holes exists in the films.

Their inferior photocurrents are attributed to the phase segregation of Zn3N2, which is

photo-inactive [201].

Figure 6.44 Photocurrent-voltage curves of ZnO, ZnO:N, and ZnO:Ga:N films,
respectively, under the illumination with an UV/IR filter [201].

To investigate the photoresponses in the long-wavelength region, a green-color

filter was used in combination with the UV/IR filter, as shown in Figure 6.45.
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Figure 6.45 Photocurrent-voltage curves of ZnO, ZnO:N, and ZnO:Ga:N films, under
illumination with the combined green and UV/IR filter [201].

The ZnO film exhibited no clear photoresponse due to its wide bandgap. The

ZnO:(Ga:N)(3) film exhibited much higher photocurrent than the other films, due to the

improved crystallinity, reduced bandgap, proper W value, and N-incorporated single

phase without the phase separation. On the contrary, the ZnO:(Ga:N)(1 and 2) films

exhibited no photoresponses. It indicates that the Zn3N2 phase in these films is photo-

inactive, even though it had a very low bandgap below 2 eV. Therefore, the formation of

the Zn3N

2

 in the co-doped ZnO:(Ga:N) films is very detrimental to obtaining an enhanced

PEC response. Encountered instability issues when the film is in contact with

electrolytes. Nonetheless, these results demonstrate clearly that growth conditions must

be controlled carefully to avoid the formation of Zn
2

N
2

 in Ga and N co-incorporated ZnO

thin films to improve PEC response [201].
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6.8 Enhancement of Photoelectrochemical Response by
Aligned Nanorods in ZnO Thin Films

In this part of the research, deposition in pure Ar ambient leads to polycrystalline ZnO

thin films. However, the presence of N

2

 in the deposition ambient promotes the formation

of aligned nanorods above 300°C. ZnO thin films are deposited in pure Ar and mixed Ar

and N2 gas ambient at various substrate temperatures by RF sputtering ZnO targets.

Figures 6.46(a)—(d) show XRD curves for the ZnO(Ar) films and ZnO(Ar:N 2)

films deposited at various substrate temperatures for 100, 200 and 300 W RF power,

respectively. The crystallinity of ZnO films increases gradually with the increase in

substrate temperatures in both cases. For both cases, films have random orientation at low

substrate temperature. With the increase in substrate temperature to 500°C, the (002)

peak of the film was greatly enhanced, as shown in Figure 6.46. The measured FWHM

values of (002) peaks are shown in Figure 6.47(a). The FWHM of ZnO(Ar) was slightly

decreased with the increase in the substrate temperature. ZnO(Ar:N 2)(100W) films grown

at temperatures below 200°C and ZnO(Ar:N2)(300W) films grown at temperatures below

300°C exhibited random orientation and larger FWHM values than the ZnO(Ar) films

grown at the same temperatures. This is because a high concentration of the N is

incorporated in ZnO(Ar:N2) films at these temperatures. However, ZnO(ArN

2

)(100W)

films exhibited smaller FWHM values than the ZnO(Ar) films. The reason for these low

FWHM values for ZnO(Ar:N

2

)(100W) films is the very low incorporation of the N in the

film because the RF power was comparatively low to dissociate enough N. It is known

from recent reports that incorporated N atoms can deteriorate the crystal structure and

modify growth mode [196-198].
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Figure 6.46 XRD curves for the ZnO(Ar) and ZnO(Ar:N 2) films deposited at different
substrate temperatures for 100, 200 and 300 W RF power [202-204].

However, the FWHM values of ZnO(Ar:N2)(200W) and ZnO(Ar:N

2

)(300W)

films increase rapidly when the substrate temperatures are above 300°C because no

significant N can be incorporated at these temperatures. At a substrate temperature above

300°C, ZnO(Ar:N

2

) films exhibit much smaller FWHM values than the ZnO(Ar) films.

The rapid growth of the FWHM values indicates either increased crystallinity or

formation of nanorods or nanowires along the c-axis [202-204].
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The N concentrations (at.%) for the ZnO(Ar:N2) films measured by XPS are shown

in Figure 6.47(b). With the increase in substrate temperature, the N concentration

decreased rapidly and disappeared at temperatures above 300°C. Also, it is clearly

evident from Figure 6.47(b) that, as the RF power increases, there is more N

incorporation in the film [202-204].

Figure 6.47 (a) FWHM values estimated from (002) peak for the ZnO(Ar) and
ZnO(Ar:N

2
) films. (b) The N concentrations for the ZnO(Ar:N

2
) films as a function of the

substrate temperature [202-204].

Figure 6.48(a) shows XRD curves for the ZnO(Ar:N

2

) films deposited at a

substrate temperature of 100 °C at varying RF power from 100 to 500 W. The crystallinity

of ZnO films decreases gradually with the increase in RF power. The measured FWHM

values of (002) peaks are shown in Figure 6.48(b). The FWHM of ZnO(Ar:N

2

) was

slightly increased with the increase in the RF power, indicating gradual increase in N

concentration in the film. Figure 6.48(c) shows the N concentrations (at.%) for the

ZnO(Ar:N2) films. With the increase in RF power, the N concentration increased

gradually [202-204].
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Figure 6.48 (a) FWHM values estimated from (002) peak for the ZnO(Ar) and
ZnO(Ar:N

2
) films. (b) The N concentrations for the ZnO(Ar:N2) films as a function of the

substrate temperature [202-204].

AFM images reveal that the significantly increased (002) peak in the XRD curve

obtained in ZnO(Ar:N

2

) at different RF power is largely due to the formation of aligned

nanorods along the c-axis. Figures 6.49, 6.50, 6.51, and 6.52 show AFM surface

morphology (5x5 μm 2) of ZnO(Ar), ZnO(Ar:N

2

)(100W), ZnO(Ar:N

2

)(200W), and

ZnO(Ar:N2)(300W) films deposited for varying substrate temperatures, respectively. It

shows clearly that the ZnO(Ar:N

2

) deposited at 100°C has a random orientation. As

substrate temperature increases, aligned nanorods along the c-axis were promoted to
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form. At 500°C, the ZnO(Ar:N 2) film deposited at 200 and 300 W and at 400 °C for 100

W reveals growth of hexagonal-like nanorods. However, the ZnO(Ar) film deposited at

the same temperature is polycrystalline, as shown in Figure 6.49. It should be noted that

diameters of the nanorods are smaller than that of the grains in polycrystalline ZnO film.

The smaller FWHM value for the ZnO(Ar:N

2

) film is attributed to the nanorod feature

[205-207].

Figure 6.49 AFM surface morphology (5x5 μm2) of (a-d) the ZnO(Ar)(200W) films
deposited at the substrate temperatures of 100°, 200°, 400°, and 500°C, respectively
[202-204].
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Figure 6.50 AFM surface morphology (5x5 μm 2) of (a-e) the ZnO(Ar:N2)(100W) films
deposited at the substrate temperatures of 100°, 200°, 300°, 400°, and 500°C,
respectively [202-204].

Figure 6.51 AFM surface morphology (5x5 μm 2) of (a-e) the ZnO(Ar:N2)(200W) films
deposited at the substrate temperatures of 100°, 200°, 300°, 400°, and 500°C,
respectively [202-204].
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Figure 6.52 AFM surface morphology (5x5 μm 2) of (a-e) the ZnO(Ar:N2)(300W) films
deposited at the substrate temperatures of 100°, 200°, 300°, and 500°C, respectively
[202-204].

Figures 6.53(a-d) show FE-SEM top-views of the ZnO(Ar) and ZnO(Ar:N2) films,

respectively, deposited at a substrate temperature of 500°C. It clearly shows that the

nanorod structure was not present in the ZnO(Ar), whereas Figures 6.53(b), 6.53(c), and

6.53(d) exhibited vertically aligned, single-crystal hexagonal-like nanorods with flat

(0002) surfaces for the ZnO(Ar:N 2) films at 400°C (100W), 500 °C for 200 and 300 W.

No metal clusters were found at the end of the nanorods, indicating that the growth

mechanism is not catalyst-assisted, vapor-liquid-solid (VLS) growth [206-208].
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Figure 6.53 FE-SEM top-views of (a) ZnO(Ar)(200W), (b) ZnO(AnN2)(100W), (c)
ZnO(Ar:N2)(200W), (d) ZnO(Ar:N2)(300W) deposited at 500°C [202-204].

Recently, catalyst-free ZnO nanorods/nanowires have been synthesized by

various chemical and physical techniques such as metal-organic vapor-phase epitaxy,

plasma-enhanced chemical vapor deposition, and pulse-laser deposition [206-209]. The

nanorod structures provide high surface areas and superior carrier transport (or

conductivity) along the c-axis, which may lead to increased interfacial reaction sites and

reduced recombination rate [210, 211]. Therefore, the aligned nanorod films should lead

to enhanced PEC response [202-204].
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Figure 6.54 (a-d) shows absorption coefficients for the ZnO(Ar)(200W),

ZnO(Ar:N2)(100W), ZnO(Ar:N 2)(200W), and ZnO(Ar:N2 )(300W) films deposited at

various substrate temperatures, respectively [202-204].

Figure 6.55(a) shows optical bandgaps of the ZnO(Ar) and ZnO(Ar:N

2

) films

deposited at different substrate temperatures by varying the RF power from 100 to 300

W. The measured optical bandgaps for ZnO(Ar) films deposited at 200° to 500°C

increased very slightly (from 3.235 to 3.26 eV). The bandgap of the ZnO(Ar:N

2

)(100W),

(200W) and (300W) film deposited at 100° and 200 °C is lower than that of the ZnO(Ar)

films.

Figure 6.54 Optical absorption coefficients of (a) ZnO(Ar)(200W), (b)
ZnO(Ar:N

2

)(100W), (c) ZnO(Ar:N 2)(200W), and (d) ZnO(Ar:N

2

)(300W) films [202-
204].
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Figure 6.55 Estimated optical bandgaps of (a) ZnO(Ar:N

2

) films deposited at varying RF
power from 100 to 300 W as a function of the substrate temperature, and (b) ZnO(Ar:N

2

)
films deposited at varying RF power from 100 to 500 W at a substrate temperature of
100°C [202-204].

This bandgap reduction is due to the incorporation of N, which generates an

impurity band above the valence band of ZnO [212]. However, when substrate

temperatures are increased to 300° and 400°C for 100 and 200 W, the bandgap reduction

disappears. The reason is because, at these temperatures, N incorporation is suppressed,

as confirmed by XPS composition measurements. Thus, the bandgaps of ZnO(Ar:N 2)

grown at these temperatures should have similar bandgaps as the ZnO(Ar) films. It is

interesting to note, however, that the ZnO(AnN

2

) films with aligned nanorods deposited

at 500°C for 200 W and 300 W exhibited a much lower bandgap than the ZnO(Ar) film

grown at the same temperature. Because XPS indicates no detectable N incorporated in

the ZnO(Ar:N

2

) nanorod film, the bandgap reduction must be induced by intrinsic

defects, likely oxygen vacancies [213], which could explain the absorption tail below 3

eV. The impurity band can enable light absorption in the long-wavelength regions. In the

case of ZnO(Ar:N

2

)(100W), when substrate temperatures are increased above 300°C, the

film showed lower bandgap than the ZnO(Ar) film grown at the same temperature. The
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bandgap reduction can be attributed to intrinsic defects, likely oxygen vacancies. Figure

6.55(b) shows optical bandgaps of the ZnO(Ar:N

2

) films deposited at substrate

temperature of 100°C by varying the RF power from 100 to 500 W. The measured

optical bandgaps for ZnO(Ar:N 2) films increased as RF power increased from 100 W to

200 W and then started to decrease as RF power is increased above 200 W. The bandgap

reduction can be attributed to N concentration incorporated in the film as the RF power is

increased [202-204].

Figures 6.56(a) and 6.56(b) show photocurrent-voltage curves of the ZnO(Ar:N

2

)

and ZnO(Ar) films deposited at 400°C, respectively, under continuous illumination (red

curve) and dark condition (black curve), with an UV/IR filter. Both ZnO films show very

small dark currents up to a potential of 1.4 V. The photocurrents under light-on and light-

off conditions are the same as those under illumination and dark currents, respectively,

because of the small dark currents. The ZnO(Ar:N

2

) nanorod film deposited at 400°C

exhibits much higher photocurrents than the ZnO(Ar) film deposited at the same substrate

temperature [202-204].
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Figure 6.56 Photocurrent-voltage curves of (a) ZnO(AnN 2)(100W) nanorod and (b)
ZnO(Ar)(100W) films, deposited at 400°C under (red curve) continuous illumination,
(black curve) dark condition, with an UV/IR filter. Electrolyte and scan rate were 0.5 M
Na

2

SO4 mild aqueous solution and 5 mV/s, respectively [202-204].

To see the effects of substrate temperature at varying RF power on PEC response,

photocurrents were measured at 1.2 V potential for ZnO(Ar:N

2

) and ZnO(Ar) films under

continuous illumination with UV/IR filter. Figure 6.57(a) shows the measured

photocurrents as a function of the substrate temperature for the ZnO(Ar:N

2

) and ZnO(Ar)

films in different ambient at varying substrate temperature and RF power. At low

substrate temperatures (below 300°C), the photocurrent of ZnO(Ar:N

2

) films are slightly

higher than that of ZnO(Ar) films, because these ZnO(Ar:N

2

) films have smaller

bandgaps than ZnO(Ar) films. For these ZnO(Ar/N

2

) films, the low crystallinity should

be responsible for the small increase in photocurrents. However, the photocurrent

increases for ZnO(Ar:N

2

) films as the substrate temperature increases. The ZnO(Ar:N

2

)

film deposited at 500°C for 200 and 300 W exhibits the best PEC response—more than

two times higher than the ZnO(Ar) films deposited at the same temperature. The

ZnO(Ar:N

2

) film deposited at 400°C for 100 W exhibits a better PEC response than the

ZnO(Ar) films deposited at the same temperature. The enhancement can be attributed to
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the aligned nanorod structure along the c-axis and additional light absorption in the long-

wavelength regions. Figure 6.57(b) shows the measured photocurrents as a function of

the RF power for the ZnO(Ar:N 2) films deposited at a substrate temperature of 100 °C.

The decrease in photocurrent as the RF power is increased from 100 to 500 W can be

attributed to a decrease in crystallinity [202-204].

Figure 6.57 (a) Photocurrents measured at 1.2 V as a function of the substrate
temperature for the ZnO(Ar:N2) and ZnO(Ar) films deposited at different RF power. (b)
Photocurrents measured at 1.2 V as a function of the RF power for the ZnO(Ar:N2)
deposited at a substrate temperature of 100 °C [202-204].

These currents can only result from the photon absorption by the defect bands.

Thus, these results indicate that the formation of impurity bands do not necessarily

significantly increase the recombination rate and can be used to provide additional photon

absorption in the long-wavelength regions. However, it should be noted that the

concentration of point defects should be optimized. If the concentration is too high, the

point defects may significantly increase the electron-hole recombination rate and act as

dominant recombination centers, resulting in decreased photoresponse. This has been

observed in the low-crystallinity ZnO(Ar:N 2) films deposited below 300°C. Nevertheless,
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these results show that sputter-deposited ZnO films at a substrate temperature of 500°C

for 200 and 300 W and 400 °C for 100 W in mixed Ar:N 2 gas ambient exhibited aligned

nanorods along the c-axis and a slightly reduced bandgap, leading to greatly enhanced

PEC response [202-204].

6.9 Effect of Gas Flow Rate for Forming Aligned Nanorods in ZnO Thin Films

In this part of the research, effect of gas flow rate in forming aligned nanorods in ZnO

thin films is summarized.

Figures 6.58 shows XRD curves for the ZnO thin films deposited at different

nitrogen-to-argon ratios at a substrate temperature of 500 °C. From the results reported in

the previous section, aligned nanorod can be formed in mixed N

2

 to Ar chamber ambient

at a substrate temperature of 500 °C. The crystallinity of ZnO thin films increases

gradually with the increase in nitrogen percentage in the chamber ambient up to 25%.

Above 25% nitrogen, the crystallinity begins decreasing. Of all these chamber ambients,

ZnO thin film deposited at 25% nitrogen showed greatly enhanced (002) peak. The ZnO

thin film grown at 75% nitrogen showed the least crystallinity. The FWHM of the (002)

peak of ZnO thin films decreased as the N

2

 percentage in the chamber ambient increased

from 0% to 25%, and FWHM started increasing again as the N

2

 gas flow rate increased

above 25%. The ZnO thin film deposited at 75% nitrogen ambient showed the maximum

FWHM value. It is known from recent reports that incorporated N atoms can deteriorate

the crystal structure and modify the growth mode. However, when the substrate

temperatures are above 300°C, no significant N can be incorporated at these

temperatures. The rapid decrease of the FWHM values as the N

2

 percentage in the
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chamber ambient increased from 0% to 25% indicates either increased crystallinity or the

formation of nanorods or nanowires along the c-axis. No significant N concentrations

(at.%) were found for the ZnO thin films measured by XPS [214-215].

Figure 6.58 X-ray diffraction curves for ZnO thin films deposited at different nitrogen-
to-argon ratios [214-215].

Figure 6.59 Absorption coefficients for the ZnO thin films deposited at different
nitrogen-to-argon ratios [214-215].
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Figure 6.59 shows absorption coefficients of the ZnO thin films deposited at

different N2-to-Ar gas flow rate ratios in the chamber ambient. The direct optical

bandgaps of the films were determined by extrapolating the linear portion of each curve

in Figure 4 to (αhv2) = 0. The measured optical bandgaps for ZnO thin films deposited at

different N2-to-Ar ratios are almost identical (~3.25 eV). It should be noted that when

films were deposited at a substrate temperature of 500°C, no significant amount of

nitrogen is incorporated in the film, as confirmed by XPS. However, ZnO thin films

deposited at 25% nitrogen in the chamber ambient showed little reduction in the bandgap.

Because there is no detectable N incorporated in the ZnO (25%N2) nanorod film,

bandgap reduction may be caused by intrinsic defects, likely oxygen vacancies, which are

responsible for the absorption tail below 3 eV [214, 215].

AFM images reveal that the significantly increased (002) peak in the XRD curve

obtained in ZnO thin films is largely due to the formation of aligned nanorods along the

c-axis. Figure 6.60 shows AFM surface morphology (5x5 1..1m 2) of ZnO thin films

deposited at 0%, 75%, and 25% nitrogen. It clearly shows that the ZnO thin film

deposited at 0% N2 has a random orientation. In comparison, ZnO thin film grown at a

chamber ambient of 25% N2 reveals the growth of hexagonal-like nanorods. It should be

noted that the diameters of the nanorods are smaller than those of the grains in

polycrystalline ZnO thin film. The smaller FWHM value for the ZnO thin film is

attributed to the nanorod feature. ZnO thin film grown at 75% nitrogen chamber ambient

is polycrystalline [214, 215].
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Figure 6.60 AFM surface morphology (5X5 μm2) of (a-c) the ZnO thin films deposited at
the nitrogen-to-argon ratio of 0%, 25%, and 75%, respectively [214-215].

Figures 6.61 shows FE-SEM top-views of the ZnO thin films deposited at 0%,

75%, and 25% nitrogen. It clearly shows that the nanorod structure was not present in the

ZnO thin film grown at 0% and 75% N 2 chamber ambient, whereas ZnO(25%N2 ) film

exhibited vertically aligned, single-crystal hexagonal-like nanorods with a flat (0002)

surface. The nanorod structures provide high surface areas and superior carrier transport

(or conductivity) along the c-axis, which may lead to increased interfacial reaction sites

and reduced recombination rate. Therefore, the aligned nanorod films should lead to

enhanced PEC response [214, 215].
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Figure 6.61 FE-SEM top-views of (a-c) the ZnO thin films deposited at the nitrogen-to-
argon ratio of 0%, 25%, and 75%, respectively [214-215].

Figures 6.62(a) and 6.62(b) show photocurrent-voltage curves of the ZnO (0%

N2) and ZnO (25% N2) thin films deposited at 500°C, respectively, under dark condition

(black curve) and continuous illumination (red curve), with an UV/IR filter. A very small
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dark current up to a potential of 1.2 V is shown by both the films. The ZnO (25% N2) thin

film exhibited much higher photocurrent than the ZnO (0% N2) film due to the aligned

nanorod formed along the c-axis [214-215].

Figure 6.62 Photocurrent-voltage curves of (a) ZnO(0%N

2

) and (b) ZnO(25%N

2

) films,
deposited at 500°C under (red curve) continuous illumination, (black curve) dark
condition, with an UV/IR filter. Electrolyte and scan rate were 0.5 M Na 2 SO4 mild
aqueous solution and 5 mV/s, respectively [214-215].

Figure 6.63 shows the measured photocurrents as a function of the nitrogen-to-

argon gas flow rate ratio in the chamber ambient for the ZnO thin films. To see the

effects of N percentage in the chamber ambient on PEC response, we measured

photocurrent at 1.2 V potential for ZnO thin films under continuous illumination with

UV/IR filter. At 0% nitrogen, the photocurrent of the ZnO thin film is lower than that of

the films deposited at 12.5% nitrogen chamber ambient because of the low crystallinity.

However, the photocurrent increases for ZnO thin films as the nitrogen percentage

increased in the chamber ambient up to 25%, and it begins decreasing again as the

nitrogen percentage is further increased above 25%. The ZnO thin film deposited at 25%

nitrogen exhibited the best PEC response. The enhancement can be attributed to the
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aligned nanorod structure along the c-axis. The decrease in photocurrent above 25%

nitrogen in the chamber ambient is due to no more nanorod structure in the films; rather,

there is a random orientation of grains. These results show that an optimum chamber

ambient must be present to form nanorods along the c-axis in sputter-deposited ZnO thin

films, which leads to greatly enhanced PEC response [214-215].

Figure 6.63 Photocurrents measured at 1.2 V as a function of the nitrogen-to-argon ratio
for the ZnO thin films deposited at a substrate temperature of 500°C [214-215].

6.10 Synthesis of Nanocoral Structure in ZnO films
and Their Impact on Photoelectrochemical Response

In this part of the research, the synthesis and characterization of ZnO nanocoral structures

is presented. Porous ZnO nanocoral structures on FTO substrates are synthesized using a

two-step process: sputter-deposition of the Zn films with different RF powers, followed

by thermal annealing at 500°C in flowing 02.

The effect of RF power on the grain size and orientation of the synthesized Zn

films is shown in Figure 6.64(a), which shows the XRD curves for the substrate and the

Zn metal films deposited at different RF powers. The sputtering was performed under Ar
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ambient, so all samples exhibited pure Zn metal phases. The peak intensity and the

FWHM show that the grain size increases with increasing RF power. This is due to the

increased energy of the sputtered Zn ions [216]. It is evident that the intensity of the

(0002) peak increases with increasing RF power. Figure 6.64(b) shows the intensity ratio

between the (0002) and the (101) peaks for the Zn films as a function of the RF power.

The intensity ratio is 0.53 for Zn powder samples. It is seen that the Zn films deposited at

RF powers greater than 150 W exhibited a higher peak intensity ratio, indicating that high

RF power promotes (0002) orientation. Figures 6.64(c) and 6.64(d) show the SEM

images for the Zn films deposited at 50 and 200 W, respectively. It clearly shows that the

Zn film deposited at 50 W has randomly oriented small grains, whereas the 200-W Zn

films exhibited large hexagon-like grains. This is in a good agreement with the XRD

results [217].

The Zn films were then annealed at 500°C in the 02 environment for at least 8

hours to ensure full oxidization. XRD revealed that the annealed films contain only the

ZnO phase. Annealed samples are referred to as 35-W ZnO, 50-W ZnO, 100-W ZnO,

150-W ZnO, and 200-W ZnO. It is found that the orientation and grain size of the initial

Zn films can dramatically affect the microstructure of the thermally oxidized ZnO films

[217].
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Figure 6.64 Structure of as-deposited Zn films. (a) XRD curves of the substrate and the
Zn metal films deposited at RF powers of 35, 50, 100, 150, and 200 W. (b) XRD peak
intensity ratio of (0002)/(101) estimated from (a). (c and d) SEM images of 50-W and
200-W Zn films, respectively [217].

Figure 6.65 shows the SEM images taken from the annealed samples of 35-W

ZnO, 50-W ZnO, 100-W ZnO, and 150-W ZnO. Clearly, the 50-W ZnO (Fig. 6.63(b))

and the 100-W ZnO (Fig. 6.63(c)) samples exhibit a nanocoral structure. The average

size of the nanocorals for the 50-W ZnO is significantly smaller than that of the 100-W

ZnO samples, indicating that the size of the nanocorals can be tuned by the RF power.

The 35-W ZnO consists of nanoparticles, as seen in Figure 6.65(a). The 150-W ZnO and

the 200-W ZnO are simply nanocrystalline ZnO films, as seen in Figure 6.65(d). These
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nanoparticle and nanocrystalline films are not as compact as films deposited directly as

ZnO. The SEM images reveal two unique features for the nanocoral structures. First,

because the nanocorals are composed of nanosheets, the structure is very porous,

producing a large surface area. Second, the nanosheets grow together smoothly,

providing an excellent electrical pathway for carrier collection. These two unique

features are very favorable for PEC applications [210, 218-220].

Figure 6.65 Microstructures of thermal oxidized ZnO films. (a, b, c, and d) SEM images
of 35-W, 50-W, 100-W, and 150-W ZnO films, respectively. The 35-W ZnO sample
shows nanoparticles. The 50-W ZnO and 100-W ZnO samples show nanocoral
structures. The 150-W ZnO sample is a nanocrystalline film. The 200-W ZnO sample
has a similar nanocrystalline feature [217].
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The nanosheet features in the nanocoral nanostructures were further examined by

TEM. Figures 6.66(a) and 6.66(b) show bright-field (BF) TEM images taken from 50-W

ZnO and 100-W ZnO samples, respectively. The nanosheet features are clearly evident.

It was found that the sizes of nanosheets in the 50-W ZnO sample are more uniform than

those in the 100-W ZnO sample. The nanosheets in the 50-W ZnO sample are typically

similar to those shown in Figure 6.66(a). However, in the 100-W ZnO sample, it was

often observed additional nanosheets with much larger sizes than those seen in Figure

6.66(b). Figure 6.66(c) shows an example of a large nanosheet seen in the 100-W ZnO

sample. Thus, both the 50-W ZnO and 100-W ZnO samples have similar features, but

the average size of nanosheets for 100-W ZnO is much larger than 50-W ZnO, consistent

with the results obtained from the SEM images.

From the diffraction contrast, we also observed that the nanosheets are typically

single crystals. The nanosheets with small sizes are usually free from lattice defects and

strains, whereas the nanosheets with large sizes usually contain defects and strains,

marked by the white arrows in Figure 6.66(c). The growth direction of the nanosheets

was also determined. ZnO has polar surfaces, such as ±(0001) and ±(101), and non-polar

surfaces, such as ±(100) and ±(110). In catalytic growth, the growth directions can be

along the polar and non-polar surfaces. For the 50-W ZnO and 100-W ZnO samples, the

surface of most of the nanosheets is the non-polar surface (110). Figure 6.66(d) shows a

high-resolution TEM image (HRTEM) taken from a nanosheet. The inset is a

convergent-beam electron diffraction (CBED) pattern taken from the same area. Both the

CBED pattern and HRTEM image indicate that the surface is the (110) non-polar surface.
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Cross-sectional TEM samples also revealed that the 50-W ZnO and 100-W ZnO samples

are porous [217].

Figure 6.66 TEM images of the nanocoral structures. (a and b) Typical TEM BF images
taken from 50-W ZnO and 100-W ZnO, showing nanosheets or nanoleaves. (c) Typical
large-size nanosheets or nanoleaves, (d) HRTEM image from a nanosheet in 100-W ZnO.
The inset is a CBED pattern taken from the same area. These images indicate that the
surface of the nanosheet is a non-polar (110) surface [217].

The above SEM and TEM images show that 50-W ZnO and 100-W ZnO samples

both have nanocoral structures. These samples should exhibit enhanced PEC performance

as compared to the normal compact ZnO thin films. The 50-W ZnO sample has smaller

nanosheets, larger surface area, and better crystallinity than the 100-W ZnO sample.

Thus, the 50-W ZnO sample is expected to exhibit better PEC performance than 100-W

ZnO. These expectations have been confirmed by PEC response tests on various ZnO

film morphologies. Figures 6.67(a)-6.67(c) show the photocurrent-voltage curves for the

50-W, 100-W, and 150-W ZnO films, respectively, under chopped light illumination with
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an UV/IR filter (see Methods). A 0.5-M Na

2

SO4 aqueous solution with a pH of 6.8 was

used as the electrolyte. All of the samples showed very small dark currents up to a

potential of 1.3 V, indicating that the photocurrents under light-on conditions are

generated only by absorbed photons without a dark-current contribution.

To compare the PEC responses, the photocurrents for all samples at 1.2 V were

plotted, as in Figure 6.67(d). For comparison, the PEC responses of compact ZnO films

are also plotted in the figure. Because all the films have similar thicknesses, the

photocurrents can be compared. Clearly, the nanoparticle film (35-W ZnO) and the

nanocoral films (50-W ZnO and 100-W ZnO) exhibited higher PEC responses than

compact ZnO films. Among them, the 50-W ZnO nanocoral film exhibited the best PEC

response and its photocurrent at 1.2 V is ten times higher than that of the compact ZnO

films. On the other hand, the 150-W and 200-W ZnO films showed much lower PEC

responses than the ZnO coral nanostructures. The insets in Figures 6.67(a)-6.67(c) show

the current transients, performed at constant 1.2 V under light on/off illumination. The

photocurrents of the ZnO nanocoral structures decay very sharply without exhibiting

photocurrent tails under light-off conditions.

However, the photocurrents for the nanocrystalline ZnO structures (150-W ZnO)

decays slowly, showing photocurrent tails, which indicates a trap-related carrier transport

process [211, 220-222]. This suggests that the ZnO nanocoral films have much better

carrier transport than the nanocrystalline structures. This can be attributed to the

deformation-free nature and smooth electrical pathway as shown in the SEM and TEM

results. The 35-W ZnO nanocoral structure exhibited a lower PEC response than the other

nanocoral structures, indicating that the surface area of the nanoparticle films is not as
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large as the nanocoral films. The comparative PEC performance tests have been repeated

over many runs, and the results are reproducible. The greatly enhanced PEC response of

the 50-W ZnO nanocoral film suggests that the nanocoral structure has advantages for

PEC applications such as water splitting by sunlight, dye-sensitized solar cells, and Li

batteries [217].

Figure 6.67 PEC performances of various ZnO films. (a, b, and c) Photocurrent-voltage
curves of the 50-W, 100-W, and 150-W ZnO nanostructural films, respectively, measured
under chopped light illumination with an UV/IR cut-off filter. Insets are the current
transient with time performed at 1.2 V under the light on/off illumination. (d)
Photocurrents of different ZnO films measured at 1.2 V. Ten times increase on the
photocurrent at this potential is demonstrated for the 50-W ZnO nanocoral structure as
compared to the conventional compact ZnO films [217].



172

6.11 Synthesis and Characterization of ZnO:N Films Using ZnO Target

Synthesis and characterization of ZnO:N films sputtered using ZnO target is the subject

of this part of the research. ZnO:N thin films were synthesized using a ZnO target by

reactive RF magnetron sputtering in mixed N2 and 02 ambient with low 02 mass flow

rate [(02/(N2+02)) = 10%].

Figure 6.68 shows the XRD curves of ZnO, and ZnO:N films grown at different

RF powers in mixed N2 and 02 ambient with 02 mass flow rate of 10%. It is seen that

the ZnO film exhibits poor crystallinity due to the low-temperature sputtering process.

The ZnO:N film grown at 100 W showed better crystallinity than the pure ZnO film,

despite a faster deposition rate. For ZnO growth, the ambient is pure Ar gas. For ZnO:N

growth, the ambient is mainly N2 with only 10% 02. When the RF power was increased

to 200 and 300 W, the crystallinity again became poor. The ZnO:N films deposited at

higher RF power grew faster compared to the deposition rate observed during 100-W

deposition. The concentrations of N in 100, 200, and 300 W samples were about 1, 1, and

2 at.%, respectively, as determined by XPS. It is known that a high concentration of

dopant can deteriorate crystal structure. However, poor crystallinity of the ZnO:N film

grown at 200 and 300 W may be caused mainly by the high deposition rate. Crystallite

sizes were about 21, 42, 34, and 35 nm for the ZnO, ZnO:N(100W), ZnO:N(200W), and

ZnO:N(300W) samples, respectively, which were estimated by applying the Debye-

Scherrer equation to XRD data [223].
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Figure 6.68 X-ray diffraction curves of ZnO, and ZnO:N films grown at different RF
powers in mixed N

2

 and O

2

 ambient with O

2

 mass flow rate of 10% [223].

Figure 6.69(a) shows the optical absorption spectra of the ZnO and ZnO:N films

grown at different RF powers. The ZnO films showed optical absorption spectra and

could only absorb light with wavelengths below 450 nm, due to their wide bandgap.

However, the ZnO:N film could absorb lower-energy photons, up to 1000 nm, indicating

the N incorporation in ZnO. Figure 6.69(b) shows the optical absorption coefficients of

the ZnO and ZnO:N films grown at different RF powers. The direct electron transition

from valence to conduction bands was assumed for the absorption coefficient curves,

because ZnO films are known to be direct-bandgap materials. The optical bandgaps of the

films were determined by extrapolating the linear portion of each curve. The bandgap of

the ZnO film is 3.26 eV. The direct optical bandgaps measured for ZnO:N films

deposited at a substrate temperature of 100 °C, for 100 to 300 W, gradually decreased

from 3.2 to 3.15 eV. This small bandgap reduction is due to N-induced upshifting of the

valance band. It is shown theoretically that the incorporated N would generate an

impurity band above the valance band [223].
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Figure 6.69 (a) Optical absorption spectra of the ZnO and ZnO:N films grown at
different RF powers. (b) Optical absorption coefficients of the ZnO and ZnO:N films
grown at different RF powers [223].

Figure 6.70 shows Mott-Schottky plots of ZnO:N thin films. All the samples

exhibited positive slopes, indicating n-type semiconductors. As reported in earlier

sections, ZnO:N films deposited under a N2/02 plasma showed n-type behaviors due to

substitutional N2 molecules, which act as shallow double-donors [223].

Figure 6.70 Mott-Schottky plots of ZnO:N [223].
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Figure 6.71(a) shows the photocurrent-voltage curves of ZnO:N thin films under

illumination with the UV/IR filter. It clearly showed that the ZnO:N films exhibited very

small photocurrents. At the potential of 1.2 V, the photocurrents were 11.6, 15.14, 13.09,

and 12.1 μAcm -2 for the ZnO, 100-W, 200-W, and 300-W ZnO:N films, respectively. To

investigate the photoresponses in the long-wavelength region, a green-color filter

(wavelength: 538.33 nm; FWHM: 77.478 nm) was used in combination with the UV/IR

filter, as shown in Figure 6.71(b). The ZnO and ZnO:N films exhibited no clear

photoresponse, due to the wide bandgap and very low concentration of N incorporation.

This indicates that a very high recombination rate of the photogenerated electrons and

holes is present in the ZnO:N film because of its inferior crystallinity and uncompensated

charges [223].

Figure 6.71 (a) The photocurrent-voltage curves of ZnO:N thin films, under illumination
with the UV/IR filter. (b) The photocurrent-voltage curves of ZnO:N thin films, under
illumination with the combined green and UV/IR filters [223].
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6.12 Synthesis and Characterization of Al and N Co-Doped ZnO Films

Synthesis and characterization of ZnO:(Al,N) films is the subject of this part of the

research. ZnO:(Al,N) thin films were synthesized using a ZnO target by reactive RF

magnetron sputtering in mixed N

2

 and O

2

 ambient with low O

2

 mass flow rate

[(02/(N2+02)) = 10% and 25%].

Figure 6.72 shows the XRD curves of ZnO, ZnO:Al deposited at 300 W and

ZnO:(Al,N)(2) films grown at different RF powers in mixed N

2

 and O

2

 ambient with 02

mass flow rate of 10%. It is seen that the ZnO:Al film exhibits poor crystallinity, which

may be due to the low-temperature and high-RF sputtering process combined with pure

Ar gas ambient. The ZnO:(Al,N)(2) film grown at 100 W shows better crystallinity than

the ZnO, and ZnO:Al films, despite faster deposition rate. For pure ZnO growth, the

ambient is Ar gas. For ZnO:(Al,N)(2) growth, the ambient is mainly N 2
 with only 10%O

2

. When the RF power was increased to 200 and 300W, the crystallinity surprisingly

increased, yet with significant incorporation of N. Such significantly enhanced

crystallinity is attributed to the charge-compensated donor-acceptor co-doping, because

co-doping reduces the formation energy, which enhances the N incorporation in the film.

As the RF power is increased from 100 to 300 W, N incorporation in the film is

increased. The concentrations of N in 100-W, 200-W, and 300-W samples were about 2,

4, and 5 at.%, respectively, as determined by XPS. Applying the Debye-Scherrer

equation to XRD data, crystallite sizes were 21, 24, 32, 35, and 39 nm for the ZnO,

ZnO:Al, ZnO:(A1,N)(2)(100W), ZnO:(A1,N)(2) (200W), and ZnO:(A1,N)(2) (300W)

samples, respectively [223].
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Figure 6.72 X-ray diffraction curves of ZnO, ZnO:Al deposited at 300 W, and
ZnO:(A1,N)(2) films grown at different RF powers in mixed N

2

 and O

2

 ambient with

O 2

mass flow rate of 10% [223].

Figure 6.73(a) shows the optical absorption spectra of the ZnO, ZnO:Al, and

ZnO:(Al,N)(2) films grown at different RF powers. The ZnO and ZnO:Al films showed

optical absorption spectra and could absorb only light with wavelengths below 450 nm,

due to their wide bandgap. However, the ZnO:(Al,N)(2) films showed optical absorption

that moved to the shorter-wavelength region, indicating a significant amount of N

incorporation in the films. The optical absorption coefficients of the ZnO, ZnO:Al, and

ZnO:(Al,N)(2) films grown at different RF powers are shown in Figure 6.76(b). The

bandgap of the ZnO:Al film is 3.35 eV. The direct optical bandgaps measured for

ZnO:(Al,N)(2) films at 100 to 300 W reduced drastically from 3.13 to 2.02 eV. This

significant bandgap reduction is due to enhanced N incorporated in the films [223].
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Figure 6.73 (a) Optical absorption spectra of the ZnO, Zno:Al and ZnO:(Al,N)(2) films
grown at different RF powers. (b) The optical absorption coefficients of the ZnO,
ZnO:Al, and ZnO:(Al,N)(2) films grown at different RF powers [223].

Figure 6.74 shows the XRD curves of ZnO, ZnO:Al deposited at 300 W, and

ZnO:(Al,N)(3) films grown at different RF powers in mixed N

2
 and O

2
 ambient with

O 2
mass flow rate of 25%. Clearly, as the RF power is increased from 100 to 300 W,

crystallinity is greatly enhanced. Applying the Debye-Scherrer equation to our XRD data,

crystallite sizes were 21, 24, 28, 35, and 44 nm for the ZnO, ZnO:Al,

ZnO:(Al,N)(2)(100W), ZnO:(A1,N)(2) (200W), and ZnO:(A1,N)(2) (300W) samples,

respectively. However, an insignificant amount of N is incorporated in the ZnO:(Al,N)(3)

film grown at 100 W, confirmed by XPS, indicating that RF power was not enough to

activate the N source. As the RF power is increased to 200 and 300 W, incorporation of

N is increased, indicating that there should be minimum RF power needed to dissociate

the N

2

 molecules. The concentrations of N in 100-W, 200-W, and 300-W samples were

about 1, 2, and 3 at.%, respectively, as determined by XPS. Compared to ZnO:(Al,N)(2)

films grown in mixed N

2

 and O

2

 ambient with 02 mass flow rate of 10%, ZnO:(Al,N)(3)

thin films deposited in mixed N2 and 02 ambient with O

2

 mass flow rate of 25% showed
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comparatively less N incorporation at respective RF power. These results make it clear

that with limited oxygen pressure, N incorporation in ZnO thin films can be controlled by

varying the RF power during sputtering and charge-compensated donor-acceptor doping

[223].

Figure 6.74 X-ray diffraction curves of ZnO, ZnO:Al deposited at 300 W and
ZnO:(Al,N)(3) films grown at different RF powers in mixed N

2

 and O

2

 ambient withO

2

mass flow rate of 25% [223].

Figure 6.75 shows the optical absorption coefficient of the ZnO, ZnO:Al, and

ZnO:(Al,N)(3) films grown at different RF powers. The direct optical bandgaps measured

for ZnO:(Al,N)(3) films at 200 and 300 W are 3.13 and 2.9 eV, respectively [223].



180

Figure 6.75 The optical absorption coefficient of the ZnO, ZnO:Al, and ZnO:(Al,N)(3)
films grown at different RF powers [223].

Figures 6.76(a) and 6.76(b) show Mott-Schottky plots of ZnO:(Al,N)(2) and

ZnO:(Al,N)(3) thin films, respectively. All the samples exhibited positive slopes,

indicating n-type semiconductors. As reported in earlier sections, ZnO:N films deposited

under a N

2

/O

2

 plasma showed n-type behavior due to substitutional N2 molecules, which

act as shallow double-donors [223].

Figure 6.76 (a) Mott-Schottky plots of (a) ZnO:(Al,N)(2) and (b) ZnO:(Al,N)(3) thin
films [223].
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Figures 6.77(a) and 6.77(b) show the photocurrent-voltage curves of

ZnO:(Al,N)(2) and ZnO:(AL,N)(3) thin films, respectively, under illumination with the

UV/IR filter. Clearly, the ZnO:AL:N(2) films exhibited enhanced photocurrents compared

to the ZnO:(AL,N)(3) films. At a potential of 1.2 V, the photocurrents were 14.6, 29.2,

40.1, and 54.3 

2

μAcm-2 for the ZnO:Al, 100-W, 200-W, and 300-W ZnO:(AL,N)(2) films,

respectively. At a potential of 1.2 V, the photocurrents were 23.77, 33.64, and 35.66

μAcm-2for the 100-W, 200-W, and 300-W ZnO:(Al,N)(3) films, respectively [223].

Figure 6.77 (a) The photocurrent-voltage curves of (a) ZnO:(Al,N)(2), and (b)
ZnO:(AL,N)(3) thin films, under illumination with the UV/IR filter [223].

To investigate the photoresponse in the long-wavelength region, a green-color

filter (wavelength: 538.33 nm; FWHM: 77.478 tun) was used with the UV/IR filter, as

shown in Figures 6.78(a) and 6.78(b). The ZnO and ZnO:Al films exhibited no clear

photoresponse, due to its wide bandgap. The co-doped ZnO:(Al,N) films exhibited much

higher photocurrent than the ZnO and ZnO:Al films, despite much less light absorption.

This indicates that a very high recombination rate of the photogenerated electrons and

holes is present in the ZnO and ZnO:Al films, due to inferior crystallinity and
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uncompensated charges. On the other hand, the co-doped ZnO:(Al,N) film exhibited

remarkably increased crystallinity and charge compensation, which led to enhanced

photocurrent compared to the ZnO and ZnO:Al films. The results clearly demonstrate

that significantly reduced bandgap and enhanced photocurrents can be obtained with low

O pressure by varying the RF power during sputtering and charge-compensated donor-

acceptor doping approach [223].

Figure 6.78 The photocurrent-voltage curves of (a) ZnO:(Al,N)(2), and (b)
ZnO:(Al,N)(3) thin films, under illumination with the combined green and UV/IR filters
[223].

6.13 Effect of Gas Ambient on Synthesis of Al and N Co-Doped ZnO Films

In this part of the research, effects of gas ambient on the synthesis of Al and N co-doped

ZnO films are presented. The co-doped ZnO:(Al,N) thin films are synthesized by RF

magnetron sputtering in mixed Ar and N

2

 and mixed O

2

 and N

2

 gas ambient at 100°C,

followed by post-annealing at 500°C in air for 2 hours.

Figure 6.79 shows the XRD curves of ZnO grown in Ar ambient and

ZnO:(Al,N)(Ar/N2) grown in mixed Ar and N

2

 gas ambient with N

2

 mass flow rate of
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25% to 75%. Dotted lines in the XRD plots indicate substrate peaks. The ZnO film

exhibits poor crystallinity because of the low-temperature sputtering process. The

ZnO:(Al,N)(Ar/N

2

) films showed better crystallinity than the ZnO film. The mixed N

2

and Ar gas ambient should be the reason for enhanced crystallinity [224].

Figure 6.79 X-ray diffraction curves of ZnO, and ZnO:(Al,N)(Ar/N2) films grown at 200
W in Ar and mixed Ar and N

2

 gas ambient with N

2

 mass flow rate of 25% to 75%,
respectively [224].

No significant change in crystallinity is observed by varying the N

2

 mass flow

rate from 25% to 75%. One would expect that the incorporated N concentration should

increase as the N

2

 mass flow rate increases. This may be because no significant N

concentration is incorporated in the film. It is known that a high concentration of dopant

can deteriorate crystal structure. However, applying the Debye-Scherrer equation to our

XRD data, crystallite sizes were 21, 30, 32, and 37 nm for the ZnO, ZnO:(Al,N)(Ar/N

2

)

films for 25%, 50%, and 75% N

2

 mass flow rate, respectively. These indicate that N may

not be incorporated in ZnO even when the samples were deposited in mixed Ar and N gas
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ambient. Indeed, XPS measurements confirmed that no detectable N concentrations were

found in these ZnO:(Al,N)(Ar/N

2

) films [224].

Figure 6.80 shows the optical absorption coefficients of the ZnO and

ZnO:(Al,N)(Ar/N

2

) films. The direct electron transition from valence to conduction bands

was assumed for the absorption coefficient curves because ZnO has a direct bandgap [24,

25]. The optical bandgaps of the films were determined by extrapolating the linear

portion of each curve. The bandgap of the ZnO film is 3.25 eV, which is consistent with

the results reported elsewhere. The direct optical bandgaps measured for

ZnO:(Al,N)(Ar/N

2

) films with N2 mass flow rate of 25%, 50%, and 75% are about 3.28,

3.32, and 3.35 eV, respectively, which, surprisingly, are larger than that of ZnO. These

bandgap differences can be understood by the crystallinity of the samples. ZnO has the

lowest crystallinity, meaning that it has point defects, such as oxygen vacancies. The

presence of these defects introduces impurity bands and leads to a reduced bandgap

compared to high-purity ZnO. When the N2 mass flow rate increased from 25% to 50% to

75%, the crystallinity of ZnO:(Al,N)(Ar/N

2

) films increased, as indicated by XRD

curves; this means decreased defect concentration. Furthermore, no N was incorporated.

Thus, the bandgaps of ZnO:(Al,N)(Ar/N

2

) films are generally larger than that of the ZnO

grown in pure Ar ambient and the bandgap increased as the N2 mass flow rate increased

[224].
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Figure 6.80 The optical absorption coefficients of the ZnO and ZnO:(Al,N)(Ar/N

2

) films
grown at 200 W in Ar and mixed Ar and N

2

 gas ambient with N

2

 mass flow rate of 25%
to 75% [224].

Figure 6.81(a) shows Mott-Schottky plots of the ZnO and ZnO:(Al,N)(Ar/N

2
)

films. All the samples exhibited positive slopes, indicating n-type behaviors. It is known

from earlier reports that ZnO and Al-doped ZnO films are n-type semiconductors. The

photocurrent-voltage curves of the ZnO and ZnO:(Al,N)(Ar/N

2

) films, under illumination

with the UV/IR filter, are shown in Figure 6.81(b). It showed clearly that the

ZnO:(Al,N)(Ar/N

2

) films exhibited enhanced photocurrents, as compared to the ZnO

film. The enhanced photocurrent should be due to the increased crystallinity of

ZnO:(Al,N)(Ar/N

2

) films. At a potential of 1.2 V, the photocurrents were 3.5, 8.5, 14.56,

and 18.7 μAcm-2 for the ZnO, ZnO:(Al,N)(Ar/N 2) films with 25%, 50%, and 75% N

2

mass flow rates, respectively. To investigate the photoresponses in the long-wavelength

region, a green-color filter (wavelength: 538.33 nm; FWHM: 77.478 nm) was used with

the UV/IR filter.
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Figure 6.81 (a) Mott-Schottky plots of the ZnO and ZnO:(Al,N)(Ar/N

2

) films grown at
200 W in Ar and mixed Ar and N

2

 gas ambient with N

2

 mass flow rate of 25% to 75%.
(b) Photocurrent-voltage curves of the ZnO and ZnO:(Al,N)(Ar/N

2

) films under
illumination with the UV/IR filter [224].

The ZnO and ZnO:(Al,N)(Ar/N

2

) films exhibited no clear photoresponse, as

shown in Figure 6.82, confirming that no detectable N was incorporated. The modest

photocurrents achieved in ZnO and ZnO:(Al,N)(Ar/N

2

) films are because of its wide
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bandgap, which limits absorption to UV light only. It is clear that the mixed Ar and N2

gas ambient did not promote N incorporation [224].

Figure 6.82 Photocurrent-voltage curves of the ZnO, ZnO:Al, and ZnO:(Al,N)(Ar/N

2

)
films under the illumination with the combined green and UV/IR filters [224].

However, when the growth ambient was changed to mixed 02 and N2 (second set

of samples), N incorporation was observed. Figure 6.83 shows the XRD curves of

ZnO:Al, grown in Ar ambient and ZnO:(Al,N)(O

2

/N

2

) films in mixed O

2

 and N

2

 gas

ambient with N2 mass flow rate of 25%, 50%, and 75%. Dotted lines in the XRD plots

indicate substrate peaks. It is seen that the ZnO:Al film exhibits poor crystallinity because

of the low temperature and pure Ar gas ambient. The ZnO:(Al,N)(O

2

/N

2

) films show

better crystallinity than that of ZnO and ZnO:Al films. The enhancement of crystallinity

is attributed to both charge-compensated donor-acceptor co-doping and the mixed 02 and

N2 gas ambient. We found that the co-doping enhanced the N incorporation in the

ZnO:(Al,N)(O

2

/N

2

) film. The concentrations of N in ZnO:(Al,N)(O

2

/N

2

) films for 25%,

50%, and 75% N

2

 mass flow rate were about 1, 1.6, and 3 at.%, respectively, as

determined by XPS. Applying the Debye-Scherrer equation to our XRD data, crystallite
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sizes were 21, 24, 33, 35, and 40 nm for the ZnO, ZnO:Al, ZnO:(Al,N)(O

2

/N

2

) films for

25%, 50%, and 75% N2 mass flow rate, respectively [224].

Figure 6.83 X-ray diffraction curves of X-ray diffraction curves of ZnO, ZnO:Al, and
ZnO:(Al,N)(O

2
/N

2
) films grown at 200 W in O

2
 and mixed O

2
 and N

2
 gas ambient with

N2 mass flow rate of 25% to 75%, respectively [224].

Figure 6.84(a) shows the optical absorption spectra of the ZnO, ZnO:Al, and

ZnO:(Al,N)(O

2

/N

2

) films. The ZnO and ZnO:Al films showed optical absorption spectra

and could only absorb light with wavelengths below 450 nm, due to their wide bandgap.

However, the ZnO:(Al,N)(O

2

/N

2

) films showed optical absorption in the longer-

wavelength region, indicating that a significant amount of N has been incorporated into

these samples. The optical absorption coefficients of the ZnO, ZnO:Al, and

ZnO:(Al,N)(O

2

/N

2

) films are shown in Figure 6(b). The bandgap of the ZnO:Al film is

3.35 eV, which is consistent with the results reported elsewhere. The direct optical

bandgaps measured for ZnO:(A1,N)(O

2

/N

2

) films for N

2

 mass flow rate from 25% to 75%

gradually decreased from 3.13 to 2.85 eV. This reduction in bandgap is due to N-induced
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upshifting of the VBM. It is shown theoretically that the incorporated N would generate

an impurity band above the VBM.

Figure 6.84 (a) Optical absorption curves of ZnO, ZnO:Al, and ZnO:(Al,N)(O

2

/N

2

) films
grown at 200 W in O

2

 and mixed O

2

 and O

2

 gas ambient with N

2

 mass flow rate of 25%
to 75%, respectively. (b) The optical absorption coefficients of the ZnO, ZnO:Al, and
ZnO:(Al,N)(O

2

/N

2

) films grown at 200 W in O

2

 and mixed O

2

 and O

2

 gas ambient with
N2 mass flow rate of 25% to 75% [224].

The absorption from this impurity band cannot be characterized by direct band

transitions, and it typically results in an absorption tail in the measured optical absorption

curve. Such an absorption tail is clearly evident in Figure 6.84(b) for the co-doped
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ZnO:(Al,N)(O

2

/N

2

) films. This tail can be considered as further bandgap reduction, which

enables light-harvesting in the much longer-wavelength regions as compared to the ZnO,

ZnO:Al, and ZnO:(Al,N)(Ar/N

2

) films [224].

Figure 6.85(a) shows Mott-Schottky plots of the ZnO:Al and ZnO:(Al,N)(

O 2

/N

2

)

films. All the samples exhibited positive slopes, indicating n-type semiconductors.

Previous studies report that ZnO:N films deposited under a N

2/O 2

 plasma had n-type

behavior due to substitutional N

2

 molecules that act as shallow double-donors. In

ZnO:(Al,N)(O

2

/N

2

) films, excess Al can also be the source of donors. The photocurrent-

voltage curves of the ZnO, ZnO:Al, and ZnO:(Al,N)(O

2

/N

2

) films, under illumination

with the UV/IR filter, are shown in Figure 6.85(b). It clearly shows that the

ZnO:(Al,N)(O

2

/N

2

) films exhibited enhanced photocurrents, compared to the ZnO,

ZnO:Al, and ZnO:(Al,N)(Ar/N 2) films. The enhanced photocurrent can be attributed to

the increased crystallinity, enhanced N incorporation, and compensated-charge defects in

ZnO:(Al,N)(O

2

/N

2

) films. At a potential of 1.2 V, the photocurrents were 3.5, 13.24,

21.69, 33.12, and 34.18 μAcm -2 for the ZnO, ZnO:Al, and ZnO:(Al,N)(O

2

/N

2

) films with

25%, 50%, and 75% N2 mass flow rate, respectively [224]. To investigate the

photoresponses in the long-wavelength region, a green-color filter was used in

combination with the UV/IR filter, as shown in Figure 6.86.
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Figure 6.85 (a) Mott-Schottky plots of the ZnO, ZnO:Al, and ZnO:(Al,N)( O

2

/N

2

) films
grown at 200 W in O

2

 and mixed O

2

 and N

2

 gas ambient with N

2

 mass flow rate of 25%
to 75%. (b) Photocurrent-voltage curves of the ZnO, ZnO:Al, and ZnO:(Al,N)(O

2

/N

2

)
films under the illumination with the UV/IR filter [224].
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Figure 6.86 Photocurrent-voltage curves of the ZnO, ZnO:Al, and ZnO:(Al,N)(O

2

/N

2

)
films under the illumination with the combined green and UV/IR filters [224].

The ZnO and ZnO:Al films exhibited no clear photoresponse because of their

wide bandgap. The co-doped ZnO:(Al,N)(O 2/N 2) films exhibited photocurrents. The

results clearly demonstrate that significantly reduced bandgap and enhanced

photocurrents can be obtained with mixed O

2

 and N

2

 gas ambient with varying N

2

 mass

flow rate and the charge-compensated donor-acceptor co-doping approach [224].

6.14 Synthesis and Characterization of ZnO and GaN Solid-Solution Films

Synthesis and characterization of ZnO and GaN solid-solution films (ZnO:GaN) are

reported in this part of the research work. ZnO:GaN solid-solution thin films with

significantly reduced bandgaps were synthesized by using ZnO and GaN targets at

100°C, followed by post-deposition annealing at 500 °C in ammonia for 4 hours.

Figure 6.87 shows the XRD curves of ZnO, and solid solution of ZnO:GaN thin

films grown in Ar and mixed N

2

 and O

2

 ambient with N

2

 mass flow rate of 25% to 75%,
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respectively. The ZnO film exhibits poor crystallinity due to the low-temperature

sputtering process. The ZnO:GaN solid-solution thin films grown at different N

2

 mass

flow rates showed better crystallinity than the pure ZnO film, despite faster deposition

rate. Lack of significantly enhanced crystallnity for ZnO:GaN solid-solution thin films

may be due to high RF power for ZnO target, resulting in faster deposition rate. It is

known that a faster deposition rate sometimes deteriorates the crystal structure. As the

mass flow rate of N

2

 is increased from 25% to 75%, the (002) and (100) peaks are

enhanced. Crystallite sizes were about 21, 22, 20, and 26 nm for the ZnO, 25%, 50%, and

75% N

2

 mass flow rate for ZnO:GaN solid-solution thin films, respectively, which were

estimated by applying the Debye-Scherrer equation to our XRD data. Figures 6.88(a-d)

show AFM images from the ZnO, 25%, 50%, and 75% N

2

 flow rate for ZnO:GaN solid-

solution films. AFM images also confirmed that ZnO, and ZnO:GaN solid-solution films

have similar morphology, and average crystal size is increased for ZnO:GaN films

compared to ZnO films [225].
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Figure 6.87 The X-ray diffraction curves of ZnO, and solid solution of ZnO:GaN thin
films grown in Ar and mixed N

2

 and O

2

 ambient with N

2

 mass flow rate of 25% to 75%,
respectively [225].

Figure 6.88 AFM images taken from (a) ZnO, (b) 25%, (c) 50%, and (d) 75%, ZnO:GaN
solid-solution thin films [225].

Figure 6.89(a) shows the optical absorption spectra of the ZnO, and the solid

solution of ZnO:GaN thin films grown in Ar and mixed N

2

 and O

2

 ambient with N

2

 mass

flow rate of 25% to 75%, respectively. The ZnO films showed optical absorption spectra

and could only absorb light with wavelengths below 550 nm, due to their wide bandgap.

However, the ZnO:GaN solid-solution thin films could absorb lower-energy photons, up

to 1000 nm, indicating that the solid solution of ZnO and GaN (ZnO:GaN) can be used to

shift the optical absorption into the visible region. Figure 6.91(b) shows the optical
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absorption coefficients of the ZnO, and the solid solution of ZnO:GaN thin films. The

direct electron transition from valence to conduction bands was assumed for the

absorption coefficient curves, because ZnO and GaN films are known as direct-bandgap

materials. The optical bandgaps of the films were determined by extrapolating the linear

portion of each curve. The bandgap of the ZnO film is 3.25 eV. The direct optical

bandgaps measured for ZnO:GaN solid-solution thin films deposited at varying N2 mass

flow rate from 25% to 75% gradually decreased from 3.15 to 2.9 eV. This reduction in

bandgap is due to N-induced upshifting of the valance band. It is shown theoretically that

the bottom of the conduction band for ZnO:GaN is mainly composed of 4s and 4p

orbitals of Ga, whereas N2p orbitals are followed by Zn3d orbitals situated on the top of

the valence band. The presence of Zn3d and N2p electrons in the upper valence band

provides p-d repulsion for the VBM, which results in narrowing of the bandgap. The

absorption from this impurity band cannot be characterized by direct band transitions and

typically results in an absorption tail in the measured optical absorption curve. Such an

absorption tail is clearly evident in Figure 6.89(b) for the ZnO:GaN solid-solution thin

films. This tail can be considered further bandgap reduction, which enables light-

harvesting in the much longer-wavelength regions compared to the ZnO film [225].
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Figure 6.89 (a) The optical absorption spectra of the ZnO, and solid solution of
ZnO:GaN thin films grown in Ar and mixed N

2

 and O

2

 ambient with N

2

 mass flow rate of
25% to 75%, respectively. (b) Optical absorption coefficients of the ZnO, and solid
solution of ZnO:GaN thin films [225].

Figure 6.90 shows Mott-Schottky plots of ZnO, and solid solution of ZnO:GaN

thin films grown in Ar and mixed N 2 and O 2 ambient with N 2 mass flow rate of 25% to

75%, respectively. All the samples exhibited positive slopes, indicating n-type

semiconductors [225].

Figure 6.90 The Mott-Schottky plots of ZnO, and solid solution of ZnO:GaN thin films
grown in Ar and mixed N

2

 and O

2

 ambient with N

2

 mass flow rate of 25% to 75%,
respectively [225].
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Figures 6.91(a) and 6.91(b) show the photocurrent-voltage curves of ZnO and the

solid solution of ZnO:GaN thin films grown in Ar and mixed N

2

 and O

2

 ambient with N

2

mass flow rate of 75%, respectively, under light-on/light-off illumination with the UV/IR

filter. It showed clearly that the solid solution of ZnO:GaN thin film exhibited

significantly increased photocurrents compared to the ZnO film. ZnO:GaN solid-solution

thin films deposited with N

2

 mass flow rate of 25% and 50%; it also showed enhanced

photocurrents (not shown here) compared to ZnO thin film [225].

Figure 6.91 (a) Photocurrent-voltage curves of a ZnO film under light-on/light-off
illumination with the UV/IR filter. (b) Photocurrent-voltage curves of a solid solution of
ZnO:GaN thin films with N

2

 mass flow rate of 75%, under light-on/light-off illumination
with the UV/IR filter [225].

The photocurrent-voltage curves of ZnO, and solid solution of ZnO:GaN thin

films grown in Ar and mixed N

2

 and O

2

 ambient with N

2

 mass flow rate of 25% to 75%,

respectively, under illumination with the UV/IR filter is shown in Figure 6.92. The ZnO

film exhibited no clear photoresponse, due to its wide bandgap. The solid solution of

ZnO:GaN thin films exhibited much higher photocurrent than the ZnO film, despite much
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less light absorption. It indicates that a solid solution of ZnO:GaN thin films with

significantly enhanced crystallinity using proper RF power and N

2

 flow rate in the

ambient can shift the optical absorption into the visible-light regions, thereby improving

the PEC performance [225].

Figure 6.92 Photocurrent-voltage curves of a ZnO, and solid solution of ZnO:GaN thin
films, respectively, under the illumination (a) with an UV/IR filter [225].

6.15 Effect of Gas Ambient and Varying RF Sputtering Power
on ZnO and GaN Solid-Solution Films

In this part of the research work, effect of gas ambient and varying RF sputtering power

for the synthesis of the solid solution of ZnO and GaN (ZnO:GaN) thin films are

presented. The ZnO:GaN solid-solution thin films are synthesized by RF magnetron

sputtering in Ar and mixed O

2

 and N

2

 gas ambient at 100°C, followed by post-annealing

at 500°C in ammonia for 4 hours.

Figure 6.93 shows the XRD curves of ZnO, and solid solution of ZnO:GaN(Ar)

thin films grown in Ar gas ambient. The ZnO film exhibits poor crystallinity. The

ZnO:GaN(Ar) films deposited at ZnO(200W)GaN(70W) showed reduced crystallinity
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compared to the ZnO film. This may be because of GaN-rich film. As the RF power of

ZnO is increased to 300 W, ZnO:GaN(Ar) film showed improved crystallinity. The best

crystallinity is observed for ZnO:GaN(Ar) film deposited at ZnO(400W)GaN(70W) RF

power. When the RF power is increased to 500 W for ZnO, the crystallinity again

becomes poor. It is known that a faster deposition rate can deteriorate the crystal

structure. Therefore, poor crystallinity of the ZnO:GaN(Ar) thin films deposited at

ZnO(500W)GaN(70W) RF power may be caused by high deposition rate. Crystallite

sizes were 21, 6, 18, 28, and 16 nm for the ZnO, 200-W, 300-W, 400-W, and 500-W RF

power of ZnO target for ZnO:GaN solid-solution thin films, respectively, which were

estimated by applying the Debye-Scherrer equation to our XRD data [226].

Figure 6.93 The X-ray diffraction curves of ZnO, and solid solution of ZnO:GaN(Ar)
thin films grown in Ar gas ambient [226].

Figure 6.94 shows the optical absorption coefficients of the ZnO, and solid

solution of ZnO:GaN(Ar) thin films grown in Ar gas ambient. The optical bandgaps of

the films were determined by extrapolating the linear portion of each curve. The bandgap
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of the ZnO film is 3.25 eV. The direct optical bandgaps measured for solid solution of

ZnO:GaN(Ar) thin films for 200-W, 300-W, 400-W, and 500-W RF power of the ZnO

target were 3.52, 3.48, 3.46, and 3.38 eV, respectively. It is clear that as the RF power of

the ZnO target is increased from 200 to 500 W, the bandgap is decreased from 3.52 to

3.38 eV. These results indicates that the solid solution of ZnO:GaN(Ar) thin films grown

in Ar gas ambient failed to shift the optical absorption into the long-wavelength region

[226].

Figure 6.94 The optical absorption coefficients of the ZnO, and solid solution of
ZnO:GaN(Ar) thin films grown in Ar gas ambient [226].

The photocurrent-voltage curves of the ZnO and solid solution of ZnO:GaN(Ar)

thin films, under illumination with the UV/IR filter, are shown in Figure 6.95. It clearly

shows that the solid solution of ZnO:GaN(Ar) thin film deposited at

ZnO(400W)GaN(70W) RF power exhibited the best photocurrents, compared to any

other films. The enhanced photocurrent may be due to the increased crystallinity of the



201

film grown at ZnO(400W)GaN(70W) RF power. At a potential of 1.2 V, the

photocurrents were 6.5, 7.9, 8.2, 12.5, and 8.1 μAcm -2 for the ZnO, 200-W, 300-W, 400-

W, and 500-W RF power of ZnO for the solid solution of ZnO:GaN(Ar) thin films,

respectively. To investigate the photoresponses in the long-wavelength region, a green-

color filter (wavelength: 538.33 nm; FWHM: 77.478 nm) was used with the UV/IR filter.

The ZnO and solid solution of ZnO:GaN(Ar) thin films exhibited no clear photoresponse,

due to its wide bandgap nature. The modest photocurrents achieved in ZnO and solid

solution of ZnO:GaN(Ar) thin film grown in Ar ambient is because of its wide bandgap,

which limits absorption to UV light. Therefore, it is necessary to reduce the bandgap of

ZnO:GaN solid solution by reducing the bandgap to make absorption in the visible region

possible and to use sunlight more efficiently. Using a proper gas mixture in the chamber

ambient may play a significant role in narrowing the bandgap for ZnO:GaN solid-

solution thin films [226].

Figure 6.95 Photocurrent-voltage curves of the ZnO, and solid solution of ZnO:GaN(Ar)
thin films grown in Ar gas ambient, under illumination with the UV/IR filter [226].
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Figure 6.96 shows the XRD curves of ZnO, and ZnO:GaN(N

2

/O 2) solid-solution

films grown at fixed RF power of GaN target and varied RF power of ZnO target in

mixed N2 andO 2  gas ambient with N2  mass flow rate of 75%. It is seen that the ZnO film

exhibits poor crystallinity. The ZnO:GaN(N2/02) films grown in mixed N

2

 andO

2

 gas

ambient with N

2

 mass flow rate of 75% shows better crystallinity. The enhancement in

crystallinity is attributed to the use of mixed N

2

 andO

2

 gas ambient. The (002), (100),

and (101) peaks are enhanced as the RF power of the ZnO target is increased with the

fixed RF power (35 W) of the GaN target [226].

Figure 6.96 X-ray diffraction curves of the ZnO, and solid solution of ZnO:GaN(N

2

/O

2

)
thin films grown in mixed N

2

 andO

2

 gas ambient [226].

Figure 6.97(a) shows the optical absorption coefficients of the ZnO, and

ZnO:GaN(N

2

/O

2

) solid-solution films grown at fixed RF power of the GaN target and

varied RF power of the ZnO target in mixed N

2

 andO

2

 gas ambient with N

2

 mass flow

rate of 75%. The direct optical bandgaps measured for ZnO:GaN(N

2

/O

2

) solid-solution

films at N

2

 mass flow rate from 75% for an increase in RF power of the ZnO target,
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gradually decreased from 3.13 to 3.09 eV. The Mott-Schottky plots of the ZnO and

ZnO:GaN(N

2

/O

2

) solid-solution films grown in mixed N

2

 andO

2

 gas ambient with N

2mass flow rate of 75% is shown in Figure 6.97(b). All the samples exhibited positive

slopes, indicating n-type semiconductors [226].

Figure 6.97 (a) The optical absorption coefficients of the ZnO, and solid solution of
ZnO:GaN(N

2

/O

2

) thin films grown in mixed N

2

 andO

2

 gas ambient. (b) The Mott-
Schottky plots of the ZnO, and solid solution of ZnO:GaN(N

2

/O

2

) thin films grown in
mixed N2 and O 2 gas ambient [226].

The photocurrent-voltage curves of the ZnO, and ZnO:GaN(N

2

/O

2

) solid-solution

films grown in mixed N

2

 andO

2

 gas ambient with N2 mass flow rate of 75%, under

illumination with the UV/IR filter, is shown in Figure 6.98. It clearly shows that the

ZnO:GaN(N

2

/O

2

) solid-solution films exhibit enhanced photocurrents, compared to the

ZnO film. The enhanced photocurrent may be due to the increased crystallinity and

bandgap reduction. At a potential of 1.2 V, the photocurrents were 6.5, 14, 17.5, and 26

μAcm-2for the ZnO, 100-W, 200-W, and 300-W RF power of the ZnO target for

ZnO:GaN(N

2

/O

2

) solid-solution films, respectively. The results clearly demonstrate that
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significantly reduced bandgap with enhanced photocurrents can be obtained in solid

solution of ZnO and GaN, (ZnO:GaN) films with mixed N

2

 andO

2

 gas ambient with

varying the RF power approach [226].

Figure 6.98 (a) Photocurrent-voltage curves of the ZnO, and solid solution of
ZnO:GaN(N

2

/O

2

) thin films grown in mixed N

2

 and OV gas ambient, under illumination
with the UV/IR filter [226].

6.16 Synthesis and Characterization of Ternary Cobalt Spinel Oxides

Synthesis and characterization of ternary cobalt spinel are reported in this part of the

research work.

Co l + X

2

 - O4  (X = Al, Ga, In) thin films were grown on Ag-coated stainless-steel

plates (Ag/SS) and quartz glasses for PEC measurement and optical characterization,

respectively, using an RF magnetron reactive co-sputtering system. Here, Ag/SS was

required as the substrate because of the high-temperature oxide growth (800°C). Two

sputter guns were used for the Co-Al-O and Co-In-O syntheses, where the Co 3O4  target

was fixed and the secondary target was changed to Al and In

2

O3  for CoAl

2

O4  and
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CoIn

2

O4 , respectively. The Co-Ga-O films were deposited using different amounts of

Ga

2

O3  powder on the Co3O4  target. The distance between the sputter guns and substrate

was fixed at 11 cm. The substrates were rotated during deposition for enhanced

uniformity and the working pressure was 1.22 Pa. The sputtering ambient environment

was mixed Ar andO

2

 (O

2

:Ar = 5:1) and the RF power of each sputter gun was varied to

obtain appropriate chemical stoichiometry. All of the samples were controlled to exhibit

similar film thicknesses on the order of 500 nm, as measured by stylus profilometry.

The representative experimental optical data for each ternary cobalt oxide

material, synthesized under a range of sputtering conditions, are shown in Figure 6.99.

From both the measured optical absorption coefficient and a fit to the Tauc relation for

direct transitions, tailoring of the optical bandgap from 1.5 to 2.25 eV can be observed.

Taking into account that the separation between the H

2

/H

2

O reduction andO

2

/H

2

O

oxidation potentials is 1.23 eV, and that due to the presence of unavoidable losses (e.g.,

component resistance, electron-hole recombination) an additional overpotential is

required (raising the optimal voltage to 1.7 eV), this optical bandgap range appears quite

promising for PEC water-splitting application [113].
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Figure 6.99 Measured optical absorption spectra (upper) and direct-bandgap fits (lower)
of Co1+X2-O4  compounds as a function of sputtering conditions: (left) X = Al, (centre) X
= Ga and (right) X = In [113].

For CoAl

2

O4 , the measured absorption features are consistent with previous

reports [227,228]. The low-energy absorption peak for CoAl

2

O4  originates from the spin-

allowed, parity-forbidden Co 4 A

2

4 T1, transitions, whereas the drop in absorption

coefficient at higher energies results from a range of low-intensity spin-forbidden

transitions. The shift to longer wavelengths with lower Al sputtering power can be

understood as a transition toward the inverse Co

2

AlO4 spinel, which is known to possess

a lower bandgap [229]. For CoGa

2

O4, the strong absorption profile is red-shifted to

around 2.25 eV and begins to overlap with the low-energy absorption feature; this

overlap is even more pronounced for CoIn

2

O4  at high Co 304 sputtering power. At high

In

2

O3  sputtering power, the Co-In-O samples exhibit the high levels of visible

transmission expected from mixed-phase Co-substituted In

2

O3 , i.e., the ternary composite

is not fully formed. The time-dependent PEC response of each material was investigated

under chopped-light illumination at a constant applied bias potential (vs. Ag/AgCl). The
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cathodic currents of CoAl 2O 4 and CoGa2O4 were found to increase on illumination, as in

Figure 6.100.

Figure 6.100 Time-dependent PEC response under light-on/light-off illumination at
constant applied voltage for (left) Al, (center) Ga, and (right) In ternary cobalt oxides.
For the Al and Ga spinels, illumination induces an increase in the background cathodic
current (p-type response), whereas for In a small increase in the anodic current is
observed (n-type response) [113].

This p-type PEC response suggests the presence of intrinsic hole carriers, which

prior calculations have identified as cation vacancies [230]. However, poor photocurrents

on the order of 20 μA cm-2  are observed in both cases (currents on the order of 10 mA

cm' will be required from commercially viable materials). It is worth noting that the PEC

response of CoAl 2O 4 is better than that of CoGa2O 4, which will be discussed in more

detail below. Unfortunately, all synthesized CoIn 2O 4 films failed to exhibit any

significant PEC response. Indeed, the weak PEC response varied from p-type to n-type

with different samples, but no significant photocurrent was observed in either case [113].

In addition to the low generated photocurrents, the second discouraging trend emerging

from Figure 6.100 is the long relaxation times between sample illuminations. For the

majority of PEC materials, the recovery time on the removal of light is on the order of

seconds or less; however, for these materials, it is on the order of minutes. This implies

poor carrier transport kinetics, originating from confined electrical carriers (i.e., heavy

hole effective masses). A more-detailed comparison between the relaxation times of
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CoAl2O 4 and CoGa2 O4 is shown in Figure 6.101. Ideally, the photocurrent decay for the

chopped-light PEC system will closely follow a square wave; however, the response

deviates greatly here [113].

Figure 6.101 Photocurrent decay comparison between the CoAl 2O 4 and CoGa2 O4 samples
with the same bias voltage (-1 V) [113].

Direct comparison of the normalized current of the Al and Ga ternaries in Figure

6.101 shows much faster decay in the former, indicating better carrier transport kinetics;

hence, CoAl2O 4 exhibits marginally improved PEC response. One encouraging outcome

is that both materials exhibited no evidence of corrosion in solution for sustained PEC

testing periods.

Based on the initial electronic structure analyses, it was anticipated that the Co—In

spinel may possess both the lowest bandgap and highest n-type conductivity (through the

presence of the In 5s conduction states). However, although the synthesized 1n-based

ternary oxides did not exhibit any significant photocurrent on illumination, the n-type

PEC response time was much shorter, indicating the beneficial influence of the

delocalized In 5s orbitals in the lower conduction band. To explore the origin of the

performance failure in more detail, we first measured the dark currents without
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illumination, as shown in Figure 6.102. Even for small applied potentials, the dark

current is large, indicating that the film is not an intrinsic semiconductor; in fact, it is

closer to a semimetallic state [113].

Figure 6.102 Measured dark current—voltage curve and powder XRD data for
synthesized Co—In systems. The crosses in the XRD spectrum correspond to reflections
associated with bixbyite In 2O 3 [113].

The XRD curves are also shown in Figure 6.102. The measurements clearly show

that the deposited films are not pure CoIn2O 4, but that they undergo significant phase

segregation into Co 3O 4 and In2O 3 (this has been confirmed by TEM analysis). Taking into

account that In 2O 3 itself exhibits degenerate electron conduction behavior as an n-type

transparent conducting oxide [75-77], the presence of In2O 3 in the film will contribute to

both the inferior PEC response and high dark-current levels. Within the limitations of our

co-sputtering system, we could not succeed in synthesizing a homogeneous CoIn 2O 4 film

[113].
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6.17 Synthesis and Characterization of CoAl

2

O4–Fe

2O3

p-n Nanocomposite Electrodes

Synthesis and characterization of CoAl 2 O4–Fe2O3  p-n nanocomposite electrodes are

reported in this part of the research work.

The preparation of CoAl

2

O4–Fe

2

O3  p-n nanocomposite film electrodes starts from

dispersing CoAl

2

O4 and Fe

2

O3  nanoparticles (size <50 nm, Sigma-Aldrich Co.) in

ethanol by paint shaking for 2 hour. Mixed nanoparticles with Fe

2

O3  concentrations from

5 to 20 wt% were prepared. These colloids were thoroughly dispersed using a

conditioning mixer by adding ethyl cellulose as the binder and -terpineol as a solvent for

the pastes, followed by concentration using an evaporator. The pastes were doctor-bladed

on Ag-coated stainless-steel substrates (Ag/SS), followed by calcination at 800°C for 4

hours in air to remove the binder. All samples have a similar film thickness of about

6 gm as measured by stylus profilometry [234].

When p-type and n-type nanoparticles are mixed together well with good

nanoparticle interconnection, a three-dimensional p-n junction can be formed. To ensure

quality nanoparticle interconnection, the mixed nanoparticle films need to be annealed at

high temperature—here, 800°C, below the solid reaction temperature. The widely used

fluorine-doped tin oxide-coated glass substrate is not suitable for this application because

it is thermally unstable at this annealing temperature. Therefore used Ag/SS as an

alternative substrate because the solubility of Ag in Fe is extremely small and the melting

point of Ag is 960°C. Figure 6.103(a) shows XRD patterns for SS and Ag/SS before and

after annealing at 800°C in air.



Figure 6.103 (a) XRD curve of unannealed and annealed SS substrates, annealed Ag/SS
substrate, and CoAl

2

O 4/Ag/SS. (b) SEM image of annealed CoAl2O4/Ag/SS [234].

The SS shows the formation of iron oxide ( peaks) on the surface after the

annealing, indicating that SS is not appropriate as the substrate for CoAl

2

O4  electrodes.

This is because iron oxide has very poor electrical conductivity, making it difficult to

collect current from the CoAl

2

O 4 to the SS. On the other hand, Ag/SS exhibited no

evidence of formation of oxides after the annealing at 800°C in air. Therefore, CoAl

2

O4 —

Fe

2

O3  nanocomposite films could be coated on Ag/SS and annealed at 800°C without

substrate deterioration (see the XRD curve of the annealed CoAl

2

O4 /Ag/SS sample in

Figure 6.103 (a)). The SEM image shown in Figure 6.103(b) indicates that the annealed

nanocomposite electrode is nanoporous, and its particle size corresponds well to the

crystallite size (33 nm) calculated from the XRD peak around 36.8°. The particle size is

also the same as the unannealed particles, indicating that no obvious solid reaction

occurred during the annealing [234].

Figure 6.104(a) shows the PEC response for a pure CoAl

2

O4  nanoparticle

electrode under light-on/light-off conditions at —1 V. When the light was on, cathodic

photocurrents were registered, indicating that CoAl

2

O4  is a p-type semiconductor. The

211
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photocurrent as a function of applied potential (from 0.0 to —1.0 V) is shown in Figure

6.104(b). It shows that the onset potential of the photocurrent occurs at —0.2 V and the

photocurrent saturates from —0.6 V. The inset in Figure 6.104(b) shows the stability of

the electrode against photocorrosion when operated at —1 V. It is seen that CoAl

2

O4 is

very stable in the basic solution, a property not typically seen for p-type materials [234].

Figure 6.104. (a) PEC response measured for pure CoAl

2

O4 nanoparticle electrode with a
time under the light-on/light-off conditions at constant —1 V. (d) Measured I-V curve for
pure CoAl

2

O4 nanoparticle electrode [234].

Figure 6.105(a) shows the comparison of PEC responses of a nanocomposite film

with 5 wt% Fe

2

O3 and a reference CoAl

2

O4 nanoparticle film. Again, the photocurrent is

cathodic, meaning that the overall electrode behaves as p-type. The saturated

photocurrents are lined up for comparison. It clearly shows that the photocurrent with the

nanocomposite film is much larger than that with p-type CoAl

2

O4 nanoparticle film only.

Figure 6.105(b) shows the photocurrents at —1 V for nanocomposite films with different

amounts of Fe

2

O3 . It is seen that all CoAl

2

O4—Fe

2

O3  p-n nanocomposite films exhibit

much-improved PEC responses over the CoAl

2

O4 nanoparticle film. However, the

enhancement does not increase linearly with the amount of Fe

2

O3 nanoparticles, because

too much Fe

2

O3 would lead to a lower amount of p-type CoAl

2

O4 and less contact area
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with electrolyte. The highest photocurrent is seen with an Fe

2

O3 content of 5 wt%. Figure

6.105(c) shows photocurrent measured at —1 V as a function as wavelength for the

CoAl 2O4 with 10 wt% Fe2 O3 . It clearly shows that the photoresponse of the

nanocomposite film only occurs at the wavelengths less than —532 rim (2.33 eV), which

corresponds to the bandgap of CoAl

2

O4 , rather than that of Fe

2

O3 . This result further

indicates that the enhanced photoresponses of nanocomposite films are not due to the

contribution from Fe2O3, but to the reduced carrier recombination or carrier separation

promoted by the three-dimensional p-n junction. Also note the very slow response time

for these electrodes that is due to the mechanism of charge transport in these materials.

Both the pure CoAl

2

O4 and the nanocomposite electrodes exhibit slow carrier-transport

kinetics due to the large effective masses for both electrons and holes in CoAl

2

O4 . The p-

n nanocomposite structure does not address this problem.
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Figure 6.105 (a) Comparison of PEC responses for pure CoAl

2

O4 nanoparticle and p-n
nanocomposite electrodes under the light-on/light-off conditions at –1 V. (b)
Photocurrents at –1 V for nanocomposite films with different amount of Fe

2

O3 . (c)
Photocurrent at –1 V as a function as incident monochromatic light wavelength for the
CoAl

2

O4 nanocomposite with 10 wt% Fe

2

O3 . (d) Band diagram for p-type CoAl

2

O24  and
n-type Fe

2

O3  nanocomposite [234].

The hypothesis as to why the CoAl

2

O4–Fe

2

O3  p-n nanocomposite electrodes

exhibit enhanced PEC performance over the CoAl

2

O4 nanoparticle films is as follows:

when p-type CoAl

2

O4 and n-type Fe

2

O3 nanoparticles are interconnected, a three-

dimensional p-n junction can form with their valance bands and conduction bands (CBs)

offset, as shown in Figure 6.105(d). Unlike conventional p-n junctions, no traditional

depletion region—and thus, no built-in electrical field is expected at the CoAl

2

O4 /Fe

2

O3

and electrode/electrolyte interfaces due to the nanoparticle structure. This built-in

electrical field in conventional p-n junction usually promotes holes to the p-side and
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electrons to the n-side of the junction, which, in this case, is not desirable for water

splitting. However, in this case, upon illumination, photogenerated electron-hole pairs

will be separated due to the band offset, leading to reduced carrier recombination.

Electrons will be injected into Fe

2

O 3 and holes will remain in CoAl

2

O4 . The electron

injection will be much faster kinetically than the hydrogen reaction at the CoAl

2

O4

surface. Thus, hydrogen will be preferentially evolved at the Fe

2

O3  sites. We speculate

that the enhancement on PEC performance is due to the formation of a three-dimensional

p-n junction, which promotes photogenerated carrier separation and reduces their

recombination. However, when an excessively large number of Fe

2

O3  nanoparticles is

added in the film, Fe

2

O3  nanoparticles could shadow the CoAl

2

O4 and/or block

interparticle hole-transport through nanoporous CoAl

2

O4 and thus limit the enhancement

of photocurrent [234] .

6.18 Synthesis and Characterization of Cu-W-Oxide Films

Synthesis and characterization of Cu-W-oxide films are reported in this part of the

research work.

Figure 6.106 shows XRD curves for Cu-W-oxide films grown inO

2

/Ar gas

ambient. The RF power for the Cu target is fixed at 100 W and the W target RF power is

changed from 100 to 150 W. It is seen that Cu-W-oxide films exhibited amorphous

characteristics and there is no phase separation. This is due to the low-temperature

deposition.
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Figure 6.106 The X-ray diffraction curves of Cu-W-oxide films.

Figures 6.107 (a) and 6.107(b) show the optical absorption and optical absorption

coefficients of the Cu-W-oxide films. The optical bandgaps of the films were determined

by extrapolating the linear portion of each curve. The bandgap of the Cu-W-oxide film is

about 2.1 eV.

Figure 6.107 (a) The optical absorption spectra (b) Optical absorption coefficients of the
Cu-W-Oxide films.

Figure 6.108 shows the photocurrent-voltage curves of Cu(100W)W(150W) film

under light-on/light-off illumination with the UV/IR filter. It clearly showed that Cu-W-

oxide film showed p-type behavior and exhibited photoresponse.
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Figure 6.108 Photocurrent-voltage curves of a Cu(100W)W(150W) film under light-
on/light-off illumination with the UV/IR filter in 1 M NaOH solution.

The Cu(100W)W(100W) film is annealed in air at 500 °C for 2 hour. Figure 6.109

shows the photocurrent-time curves of Cu(100W)W(100W) film at applied potential of

constant -0.3 V, before and after annealing. After annealing, the photoresponse increased

to 12 μA/cm2 from 9 μA/cm2(before annealing). The photoresponse decreased when the

measurement is taken for a longer time.

Figure 6.109 Photocurrent-time curves of a Cu(100W)W(100W) film at an applied
potential of -0.3 V under light-on/light-off illumination with the UV/IR filter (a) before
annealing and (b) after annealing.
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6.19 Synthesis and Characterization of Cu-Ti-Oxide Films

Synthesis and characterization of Cu-Ti-oxide films are reported in this part of the

research work.

Table 6.1 shows the sputtering conditions for Cu-W-oxide samples. Figure 6.110

shows XRD curves for Cu-Ti-oxide films grown in 02/Ar gas ambient. The RF power for

the Cu target and the Ti target RF power are varied. The Cu-Ti-oxide films also exhibited

amorphous character and there is no phase separation, due to the low-temperature

deposition.

Table 6.1 The Sputtering Conditions for Cu-Ti-Oxide Samples

Sample

ID

Substrate

Temp.

Oxygen

(sccm)

Argon

(sccm)

Cu

(RF power,

W)

Ti

(RF power,

W)

485 150 5 5 80 200

486 150 5 5 60 200

487 150 8 2 60 200

488 150 3 7 60 200

489 150 8 2 60 250

490 400 8 2 60 250

491 150 5 5 100 200

492 150 5 5 40 200

493 150 5 5 40 250

494 150 8 2 40 250



Figure 6.110 The X-ray diffraction curves of Cu-Ti-oxide films.
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Figure 6.111 AFM images taken from Cu-Ti-oxide samples numbered #485 to # 493.
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Figure 6.111 shows AFM surface morphologies of the Cu-Ti-oxide samples

numbered #485 to # 493. It clearly shows that the Cu-Ti-oxide films are amorphous with

porous character. Figure 6.112 shows FE-SEM top-views from Cu-Ti-oxide samples

numbered #486, #487, #489, #490, #491, and # 493 at different magnification.

Figure 6.112 FE-SEM top-views from Cu-Ti-oxide samples numbered #486, #487, #489,
#490, #491, and # 493.

Figures 6.113(a) and 6.13(b) show the optical absorption and optical absorption

coefficients of the Cu-Ti-oxide films. The optical bandgaps of the films were determined

by extrapolating the linear portion of each curve. The bandgap of the Cu-Ti-oxide film is

varied from about 1.4 eV to about 2.1 eV.
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Figure 6.113 (a) The optical absorption spectra; (b) Optical absorption coefficients of the
Cu-Ti-oxide films.

The Mott-Schottky plots of the Cu-Ti-oxide films are shown in Figure 6.114. All

the samples exhibited negative slopes, indicating p-type semiconductors.

Figure 6.114 The Mott-Schottky plots of the Cu-Ti-oxide films.

Figure 6.115(a) shows the photocurrent-time curves of Cu(100W)Ti(200W) film

under light-on/light-off illumination with the UV/IR filter in 1M NaOH solution. The Cu-

Ti-oxide film showed p-type behavior and exhibited photoresponse. Figure 6.115(b)
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shows the photocurrent-time curves of Cu(60W)Ti(200W) film at an applied potential of

a constant -0.3 V. It can be seen that the Cu-Ti-oxide films are very stable.

Figure 6.115 (a) Photocurrent-voltage curves of a Cu(100W)Ti(200W) film under light-
on/light-off illumination with the UV/IR filter in l M NaOH solution. (b) Photocurrent-
time curves of a Cu(60W)Ti(200W) film at an applied potential of -0.3 V under light-
on/light-off illumination with the UV/IR filter.

6.20 Synthesis and Characterization of Cu-Sn-Oxide Films

Synthesis and characterization of Cu-Sn-oxide films are reported in this part of the

research work.

Table 6.2 shows the sputtering conditions for Cu-Sn-oxide samples. Figure 6.116

shows XRD curves for Cu-Sn-oxide films grown in O 2/Ar gas ambient. The RF power

for the Cu target is fixed at 120 W, and tin oxide powder of varying amount is dispersed

on the Cu target. It is seen that Cu-W-oxide films exhibited amorphous character and

phase separation. It should be noted that is was difficult to place the tin oxide powder

uniformly on the slanted target.



Table 6.2 The Sputtering Conditions for Cu-Sn-Oxide Samples.

Sample

ID

Substrate

Temp

Oxygen

(sccm)

Argon

(sccm)

Cu

(RF power,

W)

SnO2

powder

(g)

495 150 j5 5 120 0.36

496 150 5 5 120 0.11

497 150 5 5 120 0.04

498 425 5 5 120 0.32

499 150 8 2 120 0.32

1500 400 3 7 120 0.32

501 150 5 5 120 0.72
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Figure 6.116 The X-ray diffraction curves of Cu-Sn-oxide films.
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Figures 6.117 (a) and 6.117(b) show the optical absorption spectra and optical

absorption coefficients of the Cu-Sn-oxide films. The optical bandgaps of the films were

determined by extrapolating the linear portion of each curve. The bandgap of the Cu-Sn-

oxide film is varied from about 1.6 to about 1.9 eV.

Figure 6.117 (a) The optical absorption spectra (b) Optical absorption coefficients of the
Cu-Sn-oxide films.

Figure 6.118 shows the (a) XRD curves, (b) optical absorption spectra, and (c)

optical absorption coefficients of the Cu-Sn-oxide films deposited at different O

2

-to-Ar

ratio. Figure 6.119 shows AFM surface morphologies of the Cu-Ti-oxide samples

numbered #495, # 498, and # 499.
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Figure 6.118 (a) X-ray diffraction curves of Cu-Sn-oxide films. (b) Optical absorption
spectra and (c) optical absorption coefficients of the Cu-Sn-oxide films deposited at
different O 2—to-Ar ratios.

Figure 6.119 AFM images taken from Cu-Sn-oxide samples numbered #495, #498, and
#499.
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The Mott-Schottky plots and photocurrent-voltage curves of Cu-Sn-oxide films

exhibited p-type behavior. However, the photocurrent was low and stability decreased

after the photo electrode was exposed for long-time measurements in 1M NaOH solution.

6.21 Synthesis and Characterization of Doped Cu-Ti-Oxide Films

Synthesis and characterization of doped Cu-Ti-oxide films are reported in this part of the

research work.

Table 6.3 shows the sputtering conditions for doped Cu-Ti-oxide samples. Figure

6.120 shows the (a) XRD curves, (b) optical absorption spectra, and (c) optical absorption

coefficients of the Al-doped Cu-Ti-oxide films deposited inO

2

/Ar gas ambient. It is seen

that Al-doped Cu-Ti-oxide films exhibited an amorphous character and phase separation.

It should be noted that it was difficult to place tin oxide powder uniformly on the slanted

target.

Table 6.3 The Sputtering Conditions for Doped Cu-Ti-Oxide Samples

Sample ID Substrate
Temp.

Oxygen
(sccm)

Argon
(sccm)

Cu
(RF Power,
W)

Ti
(RF Power,
W)

506 (Al

2

O3  =
0.1 gm)

150 5 5 100 200

507 (Al

2

O3  =
0.3 gm)

150 5 5 100 200

508 (WO3  =
0.6 gm)

150 5 5 100 200

509 (WO3 =1
gm)

150 5 5 100 200

510 (SnO

2

 =
0.3 gm)

150 5 5 100 200

511 (SnO

2

 =
0.6 gm)

150 5 5 100 200
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Figure 6.120 (a) X-ray diffraction curves, (b) optical absorption spectra, and (c) optical
absorption coefficients of the Al-doped Cu-Ti-oxide films.

Figure 6.121 shows the (a) XRD curves, (b) optical absorption spectra, and (c)

optical absorption coefficients of the W-doped Cu-Ti-oxide films deposited inO

2

/Ar gas

ambient. It is seen that W-doped Cu-Ti-oxide films exhibited amorphous character and

phase separation. It should be noted that it was difficult to place tin oxide powder

uniformly on the slanted target.



228

Figure 6.121 (a) X-ray diffraction curves, (b) optical absorption spectra, and (c) optical
absorption coefficients of the W-doped Cu-Ti-oxide films.

Figure 6.122 shows the (a) XRD curves, (b) optical absorption spectra, and (c)

optical absorption coefficients of the Sn-doped Cu-Ti-oxide films deposited in 02/Ar gas

ambient. It is seen that W-doped Cu-Ti-oxide films exhibited amorphous character and

phase separation. It should be noted that it was difficult to place tin oxide powder

uniformly on the slanted target.
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Figure 6.122 (a) X-ray diffraction curves, (b) optical absorption spectrum, and (c) optical
absorption coefficients of the Sn-doped Cu-Ti-oxide films.

Figure 6.123 shows AFM surface morphologies of the Al-doped (#506), W-doped

(#508), and Sn-doped (#510) Cu-Ti-oxide samples. The Mott-Schottky plots of the Cu-

Ti-oxide films are shown in Figure 6.124. All the samples exhibited negative slopes,

indicating p-type semiconductors.
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Figure 6.123 AFM images taken from Al-doped (#506), W-doped (#508), and Sn-doped
(#510) Cu-Ti-oxide samples.

Figure 6.124 The Mott-Schottky plots of the Al-doped (#506), W-doped (#508), and Sn-
doped (#510) Cu-Ti-oxide samples.
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Figure 6.125 shows the photocurrent-voltage curves of (a) Al-doped, (b) W-

doped, and (c) Sn-doped Cu-Ti-oxide films under continuous-light illumination with the

UV/IR filter in 1 M NaOH solution. It showed clearly that doped Cu-Ti-oxide film has p-

type behavior. However, there is not much improvement in exhibited photoresponse.

Figure 6.125 Photocurrent-voltage curves of (a) Al-doped, (b) W- doped, and (c) Sn-
doped Cu-Ti-oxide films under continuous-light illumination with the UV/IR filter in 1 M
NaOH solution.
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6.22 Synthesis and Characterization of Doped Cu-W-Oxide Films

Synthesis and characterization of doped Cu-W-oxide films are reported in this part of the

research work.

Table 6.4 shows the sputtering conditions for doped Cu-W-oxide samples. Figure

6.126 shows the (a) XRD curves, (b) optical absorption spectra, and (c) optical absorption

coefficients of the Al-, Ti-, and Sn-doped Cu-W-oxide films deposited inO

2

/Ar gas

ambient. It is seen that Al-, Ti-, and Sn-doped Cu-W-oxide films exhibited amorphous

character and no phase separation.

Table 6.4 The Sputtering Conditions for Doped Cu-W-Oxide Samples

Sample ID Substrate

Temp.

Oxygen

(seem)

Argon

(seem)

Cu

(RF Power,

W)

Ti

(RF Power,

W)

512 (SnO

2

 = 0.5

gm)

150 5 5 80 120

513 (TiO
2

 = 0.4

gm)

150 5 5 80 120

514 (Al

2

O3 = 0.1

gm)

150 5 5 80 120



Figure 6.126 (a) X-ray diffraction curves, (b) optical absorption spectra, and (c) optical
absorption coefficients of the Al-, Ti-, and Sn-doped Cu-W-oxide films.
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Figure 6.127 shows AFM surface morphologies of the Sn-doped (#512), Ti-doped

(#513), and Al-doped (#514) Cu-W-oxide samples.

Figure 6.127 AFM images taken from Sn-doped (#512), Ti-doped (#513), and Al-doped
(#514) Cu-W-oxide samples.

The Mott-Schottky plots and photocurrent-voltage curves of Sn-, Ti-, and Al-

doped Cu-W-oxide films exhibited p-type behavior. However, the photocurrent was low

and stability decreased after the photoelectrode was exposed for long-time measurements

in 1M NaOH solution.



CHAPTER 7

SUMMARY AND CONCLUSIONS

In this work, deposition of metal-oxide thin films on fluorine-doped tin oxide (FTO)-

coated glass substrates by RF reactive magnetron sputtering was studied with the

objectives of obtaining high-quality metal-oxide thin films and understanding the process

conditions and their feasibility as a photoelectrode for photoelectrochemical systems for

hydrogen production in an aqueous solution by solar energy. The following conclusions

can be drawn from the results of these experiments:

• Bandgap narrowing of N-incorporated ZnO (ZnO:N) was achieved by reactive RF

magnetron sputtering inO

2

/N

2

 mixture ambient. ZnO:N films with various bandgaps

were realized by varying N concentration, which was successfully controlled by varying

the RF powers. When RF power was increased to 200 W, the ZnO:N films exhibited

optical bandgaps similar to that of Zn3N2 films.

• The photoelectrochemical properties of N-incorporated ZnO (ZnO:N) films prepared by

reactive RF magnetron sputtering were measured and compared with those of pure ZnO

films. Nitrogen incorporation narrows the bandgap of ZnO and shifts the optical

absorption into the visible-light regions. It was further found that the ZnO:N films

provide considerable photoresponse in the long-wavelength regions up to above 600 nm.

As a result, the ZnO:N films exhibit higher photocurrents than pure ZnO films under

visible-light illumination.
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•p-type ZnO thin films with significantly reduced bandgaps were synthesized by high Cu

incorporation at room temperature and followed by post-deposition annealing at 500 °C in

air for 2 hours. The p-type conductivity was confirmed by Mott-Schottky plots and

illuminated I-V analysis. The Cu+1 acceptor states at substitutional sites and their

bandgap reduction were demonstrated by UV-visible absorption and X-ray excited

valence-band measurements.

•p-type ZnO films with similar bandgaps but varying carrier concentrations through co-

doping of Cu and Ga are synthesized. The ZnO:(Cu,Ga) films are synthesized by RF

magnetron sputtering inO

2

 gas ambient at room temperature, followed by post-deposition

annealing at 500°C in air for 2 hours. The bandgap reduction and p-type conductivity are

caused by the incorporation of Cu. The tuning of carrier concentration is realized by

varying the Ga concentration. The carrier-concentration tuning does not significantly

change the bandgap and crystallinity. However, it can optimize the carrier concentration

to significantly enhance the PEC response for bandgap-reduced p-type ZnO thin films.

• The ZnO thin films co-doped by Ga and N, (ZnO:(Ga,N)) thin films were deposited by

co-sputtering at room temperature and followed by post-annealing at 500 °C in air for 2

hours. The ZnO:(Ga,N) thin films exhibited significantly enhanced crystallinity

compared to ZnO doped solely with N at the same growth conditions. Furthermore,

ZnO:(Ga,N) thin films exhibited enhanced N incorporation over ZnO doped solely with

N at high temperatures. As a result, ZnO:(Ga,N) thin films achieved dramatically

improved PEC response, compared to ZnO thin films doped solely with N at any

conditions.
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• Ga and N co-incorporated ZnO thin films [ZnO:(Ga:N)] with reduced bandgaps were

deposited by co-sputtering at various N2 gas flow rates in mixed N

2

 andO

2

 ambient at

room temperature followed by post-annealing at 500 °C in air for 2 hours. It was found

that all of the ZnO:(Ga:N) films exhibited enhanced crystallinity, which can suppress the

recombination rate between the photogenerated electrons and holes. However, phase

segregation of Zn3 N

2

 occurred in ZnO:(Ga:N) thin films in N-rich sputtering ambient. It

was also found that ZnO:(Ga:N) thin films without phase separation of Zn 3N2 exhibited

much better PEC response due to the reduced bandgap and better crystallinity. Results

suggest that the growth conditions must be controlled carefully to avoid phase separation

in Ga and N co-incorporated ZnO thin films to improve PEC response.

• Ga-N co-doped ZnO thin films with reduced bandgaps were deposited on F-doped tin-

oxide-coated glass substrates by RF magnetron sputtering at various substrate

temperatures in mixed N

2

 andO

2

 gas ambient. It was found that Ga-N co-doped ZnO

films exhibited enhanced crystallinity compared to undoped ZnO films grown under the

same conditions. Furthermore, Ga-N co-doping ensured enhanced N-incorporation in

ZnO thin films as the substrate temperature is increased. As a result, Ga-N co-doped ZnO

thin films exhibited much improved PEC response, compared to ZnO thin films.

Therefore, results suggest that the passive co-doping approach could be a means to

improve PEC response for bandgap-reduced wide-bandgap oxides through impurity

incorporation.

• ZnO thin films are deposited in pure Ar and mixed Ar and N2 gas ambient at various

substrate temperatures by RF sputtering ZnO targets. It was found that deposition in pure
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Ar ambient leads to polycrystalline ZnO thin films. However, the presence of N2 in the

deposition ambient promotes the formation of aligned nanorods at temperatures above

300°C. ZnO thin films with aligned nanorods deposited at 500 °C exhibit significantly

enhanced PEC response, compared to polycrystalline ZnO thin films grown at the same

temperature.

• Effects of substrate temperature and RF power on the formation of aligned nanorods in

ZnO thin films were studied. ZnO thin films were sputter-deposited in mixed Ar and N2

gas ambient at various substrate temperatures and RF powers. It was found that substrate

temperature plays a more important role than RF power in the formation of ZnO

nanorods. At low substrate temperatures (below 300°C), ZnO nanorods do not form

regardless of RF powers. High RF power helps to promote the formation of aligned ZnO

nanorods. However, lower RF powers usually lead to ZnO films with better crystallinity

at the same substrate temperatures in mixed Ar and N2 gas ambient, and therefore, better

PEC response.

• ZnO thin films are deposited in pure Ar and mixed Ar and N2 gas ambient at a substrate

temperature of 500 °C by RF sputtering of ZnO targets. All the films were deposited on

fluorine-doped tin-oxide-coated glass substrates. It was found that the presence of an

optimum N2—to-Ar ratio in the deposition ambient promotes the formation of well-

aligned ZnO nanorods. ZnO thin films grown at 25% N2 gas flow rate promoted aligned

nanorods along the c-axis that exhibit significantly enhanced PEC response, as compared

to ZnO thin films grown at other N2-to-Ar gas flow ratios. Results suggest that the

chamber ambient is very important for forming aligned nanostructures, which offers
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potential advantages for improving the efficiency of PEC water splitting for H

2

production.

• Uniform and large areas of a new form of ZnO nanocorals are synthesized. These

nanostructures can provide suitable electrical pathways for efficient carrier collection, as

well as large surface areas for the PEC cells. PEC devices made from these ZnO

nanocoral structures demonstrate significantly enhanced photoresponse as compared to

ZnO compact and nanorod films.

• Al and N co-doped ZnO thin films, ZnO:(Al,N), are synthesized by RF magnetron

sputtering in mixed Ar and N

2

 and mixedO

2

 and N

2

 gas ambient at 100°C. The

ZnO:(Al,N) films deposited in mixed Ar and N

2

 gas ambient did not incorporate N,

whereas ZnO:(Al,N) films grown in mixedO

2

 and N

2

 gas ambient showed enhanced N

incorporation and crystallinity as compared to ZnO:N thin films grown in the same gas

ambient. As a result, ZnO:(Al,N) films grown in mixedO
2

 and N
2

 gas ambient showed

higher photocurrents than the ZnO:(Al,N) thin films deposited in mixed Ar and N
2

 gas

ambient. Results indicate that the gas ambient plays an important role in N incorporation

and crystallinity control in Al and N co-doped ZnO thin films.

• ZnO thin films with significantly reduced bandgaps were synthesized by doping N and

co-doping Al and N at 100°C. All the films were synthesized by RF magnetron sputtering

on F-doped tin-oxide-coated glass. It was found that co-doped ZnO:(Al,N) thin films

exhibited significantly enhanced crystallinity as compared to ZnO films doped solely

with N, ZnO:N, at the same growth conditions. Furthermore, annealed ZnO:(Al,N) thin

films exhibited enhanced N incorporation over ZnO:N films. As a result, ZnO:(Al,N)
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films exhibited improved photocurrents compared to ZnO:N films grown with pure N

doping; this suggests that charge-compensated donor-acceptor co-doping could be a

potential method for bandgap reduction of wide-bandgap oxide materials to improve their

PEC performance.

• ZnO:GaN solid-solution thin films with significantly reduced bandgaps were

synthesized by using ZnO and GaN targets at 100°C, followed by post-deposition

annealing at 500°C in ammonia for 4 hours. All the films were synthesized by RF

magnetron sputtering on F-doped tin-oxide-coated glass substrates. It was found that

ZnO:GaN solid-solution thin films exhibited significantly reduced bandgap, and, as a

result, showed improved PEC response compared to ZnO thin films. Furthermore,

ZnO:GaN solid-solution thin films with various bandgaps were realized by varying the

N2 mass flow rate in mixed N

2

 andO

2

 chamber ambient.

• The ZnO:GaN solid-solution thin films are synthesized by RF magnetron sputtering in

Ar and mixedO

2

 and N

2

 gas ambient at 100°C, followed by post-annealing at 500°C in

ammonia for 4 hours. The ZnO:GaN solid-solution films deposited in Ar gas ambient

failed to reduce the bandgap, whereas solid-solution ZnO:GaN films grown in mixedO

2

and N

2

 gas ambient showed bandgap reduction. The solid-solution ZnO:GaN films

deposited in mixedO

2

 and N

2

 gas exhibited enhanced crystallinity, shifting the optical

absorption into the visible-light regions. The bandgap reduction in ZnO:GaN solid-

solution films is realized by varying the RF powers; as a result, ZnO:GaN solid-solution

films grown in mixedO

2

 and N

2

 showed higher photocurrents than the solid-solution

ZnO:GaN thin films deposited in Ar gas ambient. Results indicate that reduced bandgap
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with enhanced PEC response can be attained using the appropriate gas ambient and by

varying the RF power.

• Co1 + δX2 - δO4 = Al, Ga, In) thin films were grown on Ag-coated stainless-steel

plates (Ag/SS) and quartz glass substrates using an RF magnetron reactive co-sputtering

system. Ternary cobalt-based spinel oxides show excellent stability in solution and good

visible-light absorption properties; their performance as PEC catalysts is limited by the

poor transport properties induced by small polaron mobility.

• CoAl2O4—Fe2O3p-nnanocomposite electrodes were deposited on Ag-coated stainless

steel substrates and annealed at 800°C. It was found that the nanocomposite electrodes

exhibited much improved photoresponses as compared to p-type CoAl 2O4 only. The

improvement in photoresponse to the band offset is at the three-dimensional p-n junction

interface, which promotes photogenerated carrier separation and reduces carrier

recombination.

• Cu-W-oxide films are deposited in mixed Ar and O2 gas ambient by co-sputtering Cu

and W targets at a substrate temperature of 300°C by using an RF magnetron sputtering

system. All the films were deposited on fluorine-doped tin-oxide-coated glass substrates.

It was found that films exhibited an amorphous structure with no phase separation.

Optical bandgaps of the films can be tuned using an appropriate composition of Cu and

W in the Cu-W-oxide films. All the films showed p-type behavior. After annealing the

films at 500°C for 2 hours in air, the photoresponse increased. However, the stability of

the film is decreased after PEC measurements are taken for a longer period of time.
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• Cu-Ti-oxide films are deposited in mixed Ar and 0 2 gas ambient by co-sputtering Cu

and Ti targets at substrate temperatures of 150° and 400°C by using an RF magnetron

sputtering system. All the films were deposited on fluorine-doped tin-oxide-coated glass

substrates. It was found that films exhibited an amorphous structure with no phase

separation. Optical bandgaps of the films can be tuned using an appropriate composition

of Cu and Ti in the Cu-Ti-oxide films. All the films showed p-type behavior and

exhibited good stability. However, the photoresponse was low.

• Cu-Sn-oxide films are deposited in mixed Ar and 02 gas ambient at substrate

temperatures of 150°, 400, and 425 °C by using an RF magnetron sputtering system. All

the films were deposited on fluorine-doped tin-oxide-coated glass substrates. It was found

that the films resulted in phase segregation. Optical bandgaps of the films can be tuned

using appropriate compositions of the Cu and Sn in the Cu-Sn-oxide films. All the films

showed p-type behavior. However, the photoresponse was low, and films exhibited poor

stability.

• Al, W, and Sn doped Cu-Ti-oxide films are deposited in mixed Ar and 0 2 gas ambient

at a substrate temperature of 150 °C by using an RF magnetron sputtering system. All the

films were deposited on fluorine-doped tin-oxide-coated glass substrates. It was found

that the films resulted in phase separation. All the films showed p-type behavior.

However, the photoresponse was decreased further compared to Cu-Ti-oxide films, and

films exhibited poor stability.

• Sn-, Ti-, and Al-doped Cu-W-oxide films are deposited in mixed Ar and 02 gas ambient

at a substrate temperature of 150 °C by using an RF magnetron sputtering system. All the
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films were deposited on fluorine-doped tin-oxide-coated glass substrates. It was found

that the films resulted in phase separation. All the films showed p-type behavior and

exhibited good stability. However, the photoresponse was decreased further compared to

Cu-W-oxide films, and films exhibited poor stability.
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