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ABSTRACT

ADVANCED CLASSIFICATION OF OFDM AND MIMO SIGNALS WITH
ENHANCED SECOND ORDER CYCLOSTATIONARITY DETECTION

by
Miao Shi

With the emergence of cognitive radio and the introduction of new modulation techniques

such as OFDM and MIMO, the problem of Modulation Classification (MC) becomes more

challenging and complicated. In the first part of the thesis, we explore the automatic

modulation classification to blindly distinguish OFDM from single carrier signals. We

use the fourth order cumulants; an approach which in the past has been also applied to

classify single carrier signals. A blind OFDM parameter estimation scheme was then

followed, which includes the estimation of number of subcarriers, CP length, timing and

frequency offset and the oversampling factor for the OFDM signal. For the second part

of the thesis, we improve the statistical signal processing techniques that were used in

the first part. Particularly, the second order cyclostationarity based methods have been

examined and improved. Based on the fact that most of the cyclostationary communication

signals has a real cyclostationary part and a complex non-cyclostaionary part, we suggest an

approach that enhance the second order cyclostationarity and hence increase its probability

of detection. Using such improved second-order cyclostationarity, we present an improved

synchronization method based on second order cyclostationarity. With the proposed approa-

ch, it is shown that the timing estimator, is independent of the frequency offset estimator,

and therefore performs better than the previously proposed class of blind synchronization

methods. To negate the dependence of the blind synchronization scheme on the prior

knowledge of the raised cosine pulse shaping filters, we proposed a blind roll-off factor

estimator based on the second order cyclostationarity. Last, we address the MIMO classifica-

tion problem, wherein we estimate the number of transmitting antennas. Here the second

order cyclostationarity test has been applied in distinguishing STC from BLAST modulation.
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Part I

OFDM MODULATION CLASSIFICATION AND BLIND ESTIMATION
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CHAPTER 1

INTRODUCTION

Through years, automatic modulation classification (AMC) has been applied in many milit-

ary applications. A lot of work has been done on AMC in literatures and in practice. With

the introduction of cognitive radio concept, software defined radios, AMC became not only

limited to military applications, as more civilian applications demanded blind modulation

identification as a first step. Furthermore, with the need of high spectral efficiency and

better performance in dispersive environment, Orthogonal Frequency Division Multiplexing

(OFDM) systems and Multiple Input Multiple Output (MIMO) space systems were introdu-

ced and applied in various areas. Thus the task of AMC has become more complicated

with the emergence of these new modulation techniques. New scenario introduce many

new challenges for the design of AMC algorithms.

In our research, we concentrate on OFDM modulation classification and blind OFDM

system parameters estimation methods. The goal of the OFDM classification and estimation

includes distinguishing OFDM modulation from single carrier modulation and OFDM

system parameters extraction, such as the number of subcarriers, the CP length as well

as the timing and frequency offset in OFDM systems.

Several methods have been proposed for the OFDM signal modulation classification.

One class of methods are based on the feature of the cyclic prefix (CP) of OFDM signal.

Due to the introduction of CP, OFDM signal becomes cyclostationary [1]. A simple

correlation test can find a correlation peak by which one can distinguish OFDM signal from

single carrier signal [2]- [3]. Punchihewa, et al. [2] distinguished OFDM from the single

carrier modulation signals by considering CP as a feature of the OFDM signal, which can

introduce cyclostationarity. However, this method will fail when the single carrier is block

coded (SC-BC) since the later also contains a CP and will depict cyclostationarity the same

as the OFDM signal. Yücek and el. [3] proposed a likelihood based methods that also

2



3

uses CP as a feature of the OFDM signal. This will also fail in case of SC-BC signal.

Furthermore, since most of the commercial signals has inherent cyclostationarity due to

the training sequence, then in case of noisy environments, this cyclostationarity may be

mistaken for the CP-induced cyclostationarity in OFDM signal.

Another class of methods are based on the asymptotic Gaussianity of the OFDM

signal. In [4], [5] , Li H., et al. suggest to compare the EDF (Empirical Distribution

Function) of the received signal to Gaussian distribution. The received signal is declared

to be OFDM signal if its EDF is close enough to the Gaussian distribution within a given

threshold. Due to the weakly convergence of EDF of OFDM signal to Gaussian distribution,

this method proved to have poor performance in high SNR scenarios. Akmouche [6]

proposed to use the fourth order cumulants to recognize OFDM signal. However, in

approximating the OFDM signal as Gaussian, the method also face the same problem as

Li H.'s method in high SNR scenarios. Furthermore, this method is very complicated

compared other methods (require 0(M6 ) computation, where M is the observed number

of data sample).

We also had explored the CP feature based method using a simple correlation test.

Then, a fourth order cumulants method was proposed. Although we use the same feature

as Akmouche's paper, our work is inspired by Swami's approach [7] for single carrier

classification, is more simple than [6] (with only 0(M) computation). Instead of setting

threshold based on the asymptotic Gaussian property of the OFDM signal, we set the

threshold simply as the center of the cumulants average of the OFDM and single carrier

signals. It is also proved that the difference between OFDM signal and Gaussian signal is

not large enough to deteriorate the performance in high SNR scenarios.

Standard notation is used throughout the thesis. E [•] denotes expectation. Re (•) and

Im (•) are the real and imaginary operator. Superscripts (*), (T), and (H) represents the

complex conjugate of a scalar, the transpose and the Hermitian of a matrix, respectively.

H denotes the nearest integer function. arg denotes the unwrapped phase. arg denotes

the unwrapped phase. Column vectors are denoted using bold characters. Matrices are
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denoted using upper case bold characters. I, and Z represents the set of integers and

complex numbers respectively. 0 represents the zero matrix.

The organization of the thesis is as follows:

The first part "OFDM modulation classification and blind estimation" includes four

chapters.

Chapter 1 briefly introduces the OFDM modulation classification problem.

Chapter 2 presents the OFDM modulation classification method by using the CP

feature.

Chapter 3 introduces the OFDM modulation classification method based on the fourth

order cumulants.

Chapter 4 proposes the first version of the blind estimation scheme for OFDM system

parameters.

The second part "Second order Cyclostationarity analysis and applications" has three

chapters.

Chapter 5 presents the simple method to enhance the detection of the second order

cyclostationarity.

In Chapter 6, after revisiting the previous proposed joint timing and frequency offset

estimation based on the second order cyclostationarity, we propose a new scheme where

the timing estimator is independent of the frequency estimator.

Chapter 7 presents a new method to estimate the raised cosine pulse shaping by using

the second order cyclostationarity. Specifically, the roll-off factor of the raised cosine pulse

shaping filter is estimated using the delay "0" second order cyclostationarity.

Last part "MIMO classification" has one chapter.

Chapter 8 presents a scheme for distinguishing the STC signal from BLAST signal.



CHAPTER 2

CP BASED OFDM SIGNAL CLASSIFICATION METHODS

2.1 Frame structure (preamble based and CP based)

Conventionally in practice, there are two kinds of frame structure. One frame structure is

called preamble based frame structure, wherein a known preambles are appended at the

front of each unknown data block (or in the middle, termed, midamble). These preambles

are usually correlated with each other (or most likely (in practice), they are the same.). Such

preambles, that use repeated patterns can generate multiple periodic correlation peaks.

Another frame structure uses CP as in OFDM or in single carrier block coded (SC-

BC) system. The correlation introduced here is only over the CP length. It is limited to one

OFDM symbol or single carrier block coded signal. Therefore, in this case, the correlation

test will give rise to one peak whose index corresponds to the number of sub-carriers (in

OFDM) or the length of the data part (in SC-BC), multiplied by the over-sampling factor.

Frequently in commercial systems, both frame structure are used. For example, in

IEEE 802.11a [8], 802.16g [9], and ETSI system [10], there are preambles for each large

OFDM frame, and, a CP for each OFDM symbol.

2.2 Conventional single carrier system and CP based block modulation

In the second and third generation wireless systems, GSM and CDMA systems have been

used. Both are single carrier systems. The frame is that of preamble based structure. For

example, in GSM systems, a TDMA frame of 4.615 ms contains 8 time slots, each includes

around 16% training bits. For TD-CDMA system, each frame of 10ms contains 10 time

slots and each slot includes around 17% training bits in the middle.

In the OFDM systems and the SC-BC systems, both CP and preambles have been

applied. For example, in IEEE 802.16, each OFDM frame (burst) has two OFDM symbols

at the front of the frame (burst) used as preambles. Besides, each OFDM symbol has a CP

5
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appended at the front to combat ISI. The length of CP can be from 1/32 to 1/4 of the data

part of the OFDM symbol. In the single carrier block systems (3GPP LTE uplink) [11], the

similar frame structure as OFDM is used.

2.3 Scheme for using CP to distinguish between CP based block modulation from

regular single carrier system

We propose to use CP as a feature to distinguish CP based block modulation, which

includes both OFDM and SC-BC system from the regular single carrier system. According

to a paper by the authors [12] on OFDM blind estimation, the correlation test can serve

well for the detection [12].

A flowchart of the scheme is shown as in Fig. 2.1.

2.4 Threshold set up

As shown in the flowchart of the scheme, we need to set up the threshold to decide whether

correlation peaks indicate that the signal contains CP. When the threshold is sufficiently low

and the preambles are in a large percent of the data block, then a regular single carrier signal

will also generate multiple peaks above the threshold. That is why we need another step

to check whether the peaks we got is in multiples. For the CP based modulation schemes,

there is only one CP generated peak in the correlation test.

Consider the correlation test as given by

{ m-1
R(r)--= Re -1 E [s (n) + w (n)] [s(n — 7) + w (n — 7)]*
M 

(2.1)
n=0

s(n) is the transmitted signal with variance o and w(n) is the noise at the receiver with

variance ot. M is the length of the observed data samples. Re[.] represents the real part

operator. The above equation becomes power of the signal when 'r = 0.

When T 0, when there are no correlation peaks, the correlation 7Z(r) is a Gaussian

distributed random signal with zero mean, because in such case, s(n) and s(n — 7) is not
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Figure 2.1 Flowchart of the scheme.
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correlated with each other.( E [s(n)s* (n — T)] = 0, while the expectation of the cross term

of signal and noise,

E Is (n)w* (n — 	 = E [w(n)s* (n — T)1 = 0

The expectation of the noise correlation term,

E [w(n)w*(n — 	 0 when 	 0.)

On the other hand, at the correlation peaks, when T equals to the length of the data

part of the OFDM or SC-BC modulated signal, s(n) and s(n — T) is the copy of each other

due to the adding of the CP.

For another case, when T is equal to the length of the time slot, when n corresponds

to the times where the training symbols located, s(n) and s(n — -r) is equal to each other.

Hence, E [s(n)s* (n — Sr)] 0. The correlation R(τ) is a Gaussian distributed signal with

nonzero mean.

This is a simple detection problem. Denote Hypothesis 1 as 'R,(7- ) has a peak generated

by the CP; Hypothesis 0 as R(τ) does not have a correlation peak. To set up the threshold,

we need to find out the mean value of the magnitude of R(τ) when T corresponds to the

length of the data part (of the OFDM or SC-BC signal). Also, we need to find out the

variance of different hypotheses.

2.4.1 Mean value

The following equations give the mean values of R(τ) = E [R,(τ)] with different delay T.

Let TN represents the length of the data part of the OFDM or SC-BC signal (which equals

N q, where N is the number of subcarriers, q is the oversampling factor). G is the length

of CP. Tp represents the length of the time slot 1 (which equals Lq). L is the length of

¹A frame contains many time slots. Generally, each time slot contains data part, training symbols
part, and the synchronization part.
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the burst or time slot. Denote a as a fractional number which depends on the portion of

the preambles in the data time slot. For example, in IEEE 802.16 [9], there are 2 OFDM

symbols appended as preambles in front of each OFDM burst 2. Hence, a depends on

the number of OFDM data symbols in each burst. For the regular single carrier signal, a

depends on the portion of the training bits in each time slot. Note that we do not have the

prior knowledge of N, G, and a.

(2.2)

(2.3)

(2.4)

As shown above the mean value depends on many parameters. To eliminate the effect

of the signal power σ²s, we normalize the mean value by the correlation at delay 0, R(0).

Thus the mean value of the normalized correlation peak R(TN) will become

(2.5)

where E [Rnor (TN)] is the normalized mean value of 'R(TN). SNR is the signal to noise

ratio.

It can be seen from equation (2.5), that the normalized mean value E [Rnor(TN)]

depends on SNR, the length of CP and the number of subcarriers. At high SNR scenarios,

the second term at the RHS of equation (2.5) can be approximated by 1. Here, to simplify

the detection process, we can instead take G/N+G as 1/33 due to the fact that in most of the

current OFDM systems, the CP length is 1/32 to 1/4 of the length of data part [8]- [10].

2Each OFDM frame may contain one or a few OFDM bursts, while each burst contains one or many
OFDM symbols.



Figure 2.2 Pdfs for the detection problem.

2.4.2 Variance

The variance of R(τ) under the two hypotheses are given by

(2.6)

(2.7)

According to the above equations, the variances of 'RN under the two hypotheses

are different from each other. (Note that we ignore the case when T = Tp for simplicity.)

The variance of R(TN) is less than that of (R(τ TN). The difference is very little when

the CP length is small which result in close to 1.

2.4.3 Threshold

Based on the above derivation, we set up the threshold 'y at the intersection of the two

pdf for the Gaussian distribution of the two hypothesis according to their means value and

variances. Using σ²1 = Var [R(τ TN)], QZ = Var [R(TN)] and m = E [R(TN)] (The

mean value E [R(τ TN)] = 0). We have (see Fig. 2.2)

10
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which leads to:

((„_2 _ ,,2 ) , t2 _ 9,_ 12,,,,„ + „_12,m2 + 4C4 In -u2 = 0σ 1 	 σ 2) / 	 1" / 1 	u	 σ1

From the above equation, one can find that the threshold according to the above mean

value and variances is given by

(2.8)

Apparently, the above threshold is complicated and contains a lot of parameters

which is hard to get for our detection problem. Therefore, in practice, we may set the

threshold as 7 = z . As shown from Fig. 2.2, the less the CP length, the closer the two

variances, and the two pdf will be alike to each other and the threshold -y t is approaching

the true threshold -y.

Alternatively, we can also set the threshold according to a given false alarm probability

of the pdf of hypothesis 0 using the cdf table of the Gaussian distributed pdf.

2.5 Example of possible correlation from different systems

In this section, we list some examples of the possible correlation pattern from different

systems. The observed time duration is 0.12 ms. 3

According to IEEE 802.11a, we set the OFDM symbol duration as 4us. The CP is

1/4 of the length of the data part of the OFDM symbol. Each frame contains 10 bursts and

each burst contains a preamble of 2 OFDM symbols. SNR=0dB. We average 100 runs to

get the correlation pattern. The normalized timing correlation is given below.

3Note here, different from Hong Li's simulation set up [5], we use the same observed time duration
instead of the same number of symbols for the detection. This is more reasonable because in
practical detection process, we collect certain time duration of the sampled data. That means, for
the regular single carrier signals, which tend to have larger time frame than the OFDM signals, we
actually collect less data symbols than for OFDM signal. While on the other hand, for the OFDM
signal, for example in IEEE 802.11 [8], its symbol time duration is only 4µs, we may collect much
more OFDM symbols. Therefore, it is not appropriate to use the same number of symbols for the
detection problem.
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Figure 2.3 Correlation peaks of the OFDM signal.

As shown in Fig. 2.3, there are several peaks with delay less than 1000. The first

peak is the correlation peak due to the CP. The magnitude is 0.0997, which is quite near

the theoretical value we derive G  SNR 1/5/2 (equation (2.5) for SNR=OdB). TheN+G 1+SNR

second obvious peak is due to the preambles. Its magnitude is 0.0836, which is also very

SNR near to the theoretical value a 1+SNR = 1/6/2 = 0.0833 (equation (2.2) and (2.4)). Note

that 1/6 comes from that there are 2 preambols in a burst of 12 OFDM symbols. There

is also a very small peak which is due to the CP of the preambles (Each preamble are 2

OFDM symbols which contains CP and thus introduce correlation).

For the regular single carrier system, we set the time slot (TS) duration as 0.1 ms

(In GSM system, it is larger than 0.1ms. We set it smaller than the TS duration in GSM

system to ensure that there are correlation peaks in the range of 'T < 1000.) The number of

symbols (we use QPSK) in each TS is 200. The length of the training symbols is 39 (which

can generate an approximate 16% training symbols). The normalized timing correlation is

as the following.
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Figure 2.4 Correlation peaks of the regular carrier signal with training symbols.

As shown in Fig. 2.4, there are several peaks with delay τ less than 1000. The peaks

behind the first peak are all located at multiples of the first peak's index. This is due to the

repeated preambles (or training symbols). The magnitude is 0.0796, which is very near to

the theoretical value we derive ασ²s/σ²+σ²µ= 0.16/2 (formulated by equation (2.2) and ( 2 . 4)).

2.6 Effect of pulse shaping

In practice, raised cosine pulse shaping filters are used. This will result in side-lobes around

the correlation peaks. As shown in Fig. 2.5, a raised cosine pulse filter of upsampling rate

4 3 and delay 10 symbols (result in a filter of 30 taps) is used in the OFDM systems.

As shown in Fig. 2.5, there are many side-lobes around the peak at delay 0 and delay

192 64 x 3 (where the number of subcarriers N = 64). The 3 is due to the upsampling

factor of the raised cosine filter. Note also the magnitude is lower than that of figure 1

(0.0497). In simulation, the raised cosine pulse shaping allocated the signal power to more

4 Oversampling with extra points deleted.
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Figure 2.5 Correlation peaks of the OFDM signal with raised cosine pulse shaping.

samples while the noise term maintains the same for each data sample. Therefore, the

overall SNR is lower. The correlation at delay 0 given by E [R, (0)] = (σ²s + σ²w ) from (2.2)

changes to E [R. (0)] = (σ²s + 3a,,2 ), while the correlation at delay corresponding to the CP

length is given by equation (2.5) E [R(TN )] = G/N+Gσ²s. When SNR=0dB, this will result

in another 1/2 loss compared to the previous normalized mean value N+G SNR/1+SNR = 1 /5/2

5 .

Since with pulse shaping, the correlation peak becomes broader, to locate the peak at

index 192, we should modify our detection method. First, all possible peaks are found by

setting a threshold according to the equations (2.2)-(2.5). Second, find the local maximum

if there are a group of peaks. These peaks correspond to the main lobe and side-lobes.

5According to (2.5), the term SNR/(1 SNR) = 1/2.
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2.7 Effect of timing offset and frequency offset

The timing offset does not affect our correlation test because we are summing over all the

samples in the observed window.

The frequency offset will affect the previous method due to the fact that the mean

of R, (TN ) becomes complex instead of real number. The previous correlation test in (2.1)

only takes the real part and thus frequency offset will result in performance loss. Therefore,

we suggest to change the correlation test as follows:

(2.9)

With the frequency offset, the correlation at zero delays becomes

(2.10)

(2.11)

(2.12)

The pdf of the two hypothesis are chi-squared distributed instead of Gaussian because

I?, (7) is the modular square of two Gaussian distributed signal. It is more complicated than
nor (TN)]the previous case. To simplify the problem, we still set the threshold as E[Ř
 	 ( The2

mean value E[Řnor(TN)] is given in equation (2.12)).
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Figure 2.6 Probability of detection for OFDM signals with different N and G.

2.8 Simulation results

Monte Carlo simulations are conducted to test the performance of the above scheme under

different scenarios. The observed duration is 1.2ms. Each OFDM burst contains 10 data

symbols and 2 preambles. The symbol duration for OFDM symbol is 4 µs.

First, we assume that no frequency offset and pulse shaping exist. Different number

of subcarriers or CP length are used in test. The threshold is set as in (2.5). The number of

runs is 1000. In the simulation, OFDM signal is transmitted through AWGN and 1.2ms data

samples are collected. With the correlation test (equation (2.1)), when the first correlation

peak is within 2 samples of the length of the data part of OFDM symbol, we decide that

the detection is successful.As shown in Fig. 2.6, the larger the CP length, the better the

performance of the detection.

Second, we take as a frequency offset of 0.3 x 27r (per sample). The number of

subcarriers is 64 and the length of CP is 16. The threshold is set according to equation
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Figure 2.7 Probability of detection for OFDM signals with frequency offset.

(2.12). As shown in Fig. 2.7, the modified scheme according to (2.12) has a similar

performance as the scheme according to (2.1).

Third, raised cosine pulse shaping is used. Finding the first group of correlation peaks

by setting the threshold according to equation (2.9), then select the peak with the maximum

magnitude. Similar to the previous tests, when the index of the peak is within 2 samples of

the length of the data part of OFDM symbol, we conclude the detection is successful.

Similarly, we apply single carrier signal (without training symbols). and take time

slot duration of 50µs, which contains 200 symbols. We repeat the above three scenarios for

this single carrier signal, and consider failed detection if there is a peak over the threshold;

otherwise, it is considered successful.

Last, we apply single carrier signal with training symbols, with the same time slot

duration of 50µs, of 200 symbols in each time slot. This constitute number of training

symbols per TS of 16%. We repeat the above three scenarios for this single carrier signal

with training symbols. If there is multiple peak over the threshold, and the indices of the
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Figure 2.8 Probability of detection for OFDM signals with frequency offset and pulse
shaping.

Figure 2.9 Probability of detection for single carrier signals without training symbols.
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Figure 2.10 Probability of detection for single carrier signals with training symbols.

following peaks are of the first multiples, the detection is considered successful; otherwise,

it is considered failed.



CHAPTER 3

FOURTH ORDER CUMULANTS BASED OFDM SIGNAL CLASSIFICATION

In this Chapter, we propose to use the fourth order cumulants to distinguish OFDM from

single carrier signals.

We first show analytically that the value of am (N) and C42 (N) as a function of

the number of subcarriers "N" of the OFDM signal and its SNR. We use these values

as estimates of these functions, together with the estimates of the cumulants for different

single carrier modulated signals as they were given in the literature [7] including SC-BC or

by experiments we performed, as for others.

From all set of values we create thresholds detectors that compare the estimates of

different groups using either one cumulant or both depending on the assumed environments

which include timing offset, phase rotation, frequency offset of the received signals, and

pulse shaping. To show robustness we use the variance of these cumulants.

Finally, in the Chapter, we use Monte Carlo simulations under different scenarios to

examine the probability of distinguishing OFDM from different single carrier signals.

3.1 Signal Model and fourth order cumulants

The fourth-order cumulants can be defined as

C40 = cum (r (m) , r (m) , r (m) , r (m)) 	 (3.1)

C41 = cum (r (m) , r (m) , r (m) , r* (m)) 	 (3.2)

C42 = cum (r (m) , r (m) r * (m) r * (m)) 	 (3.3)

20
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where r (m) is the received sample sequence. For the zero-mean modulated signal, cum

can be written as

cum (wxyz) = E (wxyz) — E (w x) E (yz) 	 (3.4)

— E (wy) E (x z) — (w z) E (xy)

The cumulants can be estimated from the sample estimates which are given by [7]

(3.6)

(3.7)

where M is the length of the observed data samples. C20 and C2 1 are given by [7]

(3.8)

M -1

(3.9)

Apparently, C21 measure the average power of the received signal. In practice, we

estimate the normalized cumulants [7]

(3.10)

In the case of noisy data, e21 must be replaced by C21 - d21 ,„„ where d21 ,,, is an

estimate of the variance of the additive noise w (m).
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In the following, we will use C40 and C42 for the detection problem. In Table 3.1,

the theoretical values are obtained by computing the expectation of the signal in noise-free

scenarios, under the constraint of unit energy [7].

Table 3.1 The theoretical cumulant statistics C40 and C42 for various constellation types.

constellation 	 C40 	 C42

BPSK 	 -2 	 -2

QPSK 	 1 	 -1

8PSK 	 0 	 -1

QAM16 	 -0.68 	 -0.68

QAM64 	 -0.62 	 -0.62

CIRC16 	 -1.36 	 -0.30

OFDM 	 0 	 0

We start by comparing cumulants of OFDM with that of Gaussian distributed signal.

Using simulation with 50 OFDM symbols, 64 subcarriers, and 16 CP length, we have

C40 —0.009 — j0.005 and C42 0.018. When the number of subcarriers changed

to 256, CP length is 16, C40 = —0.004 — j0.002 and C42 = 0.005. With complex

Gaussian distributed signal generated by MATLAB, for the same length of the observed

sequence, C40 = —0.002 + j0.001 and C42 = 0.002. This shows that, the difference

between cumulants of OFDM signal and the Gaussian distributed signal is small compared

to the difference in cumulants among OFDM and other SC signals.

3.2 Cases with timing, frequency offset, phase rotation and pulse shaping filtering

3.2.1 Effect of timing offset, phase rotation, and frequency offset

The timing offset does not affect the cumulants based detection scheme because we are

summing over all the samples in the observed window.
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From its definition, C42 is a combination of the absolute values of different terms,

hence it is real. Also one can show [7] that Co will have a complex multiplier exp (j40),

where 0 is a phase rotation of the signal. Therefore phase rotation will not affect e40 and

e42 •

The effect of the frequency offset has not been thoroughly discussed in [7] ¹ . In this

report, we consider the case when the frequency offset which is caused by the mismatch of

the oscillator at receiver and the transmitter is considerably large. For example, when the

frequency offset is E = 0.3 x 27r per sample (radial frequency), we have e40 and C42 given

in Table 3.2. This value is the same for any frequency offset except 71 or

Table 3.2 The theoretical cumulant statistics C40 and C42 for various constellation types
with frequency offset 0.3 x 27r.

constellation C40 C42

BPSK 0 -1

QPSK 0 -1

8PSK 0 -1

QAM16 0 -0.68

QAM64 	 0 -0.62

CIRC 16 	 0 	 -0.30

OFDM 	 0 	 0

With frequency offset, we notice from Table 3.2 that in comparison to Table 3.1,

Co becomes zeros for all constellation, while C42 stays the same except for BPSK. That

is, frequency offset eliminates the difference in Co between different constellation, and

hence it can not be used to distinguish different SC signals. Instead here we can use C42 to

distinguish OFDM from other SC constellations. Note however that the difference in C42

between OFDM and Circ16 is the smallest.

¹Swami conducted simulations to test the effect of a very small frequency offset.
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On the other hand without frequency offset (Table 3.1), we may use C40 to distinguish

MPSK(M > 4) signals or OFDM from other signal and then use C42 to distinguish between

OFDM and MPSK(M > 4) signals.

3.2.2 Effect of pulse shaping

In practice, pulse shaping filters specifically, raised cosine are applied. This will result in

change in the phase and magnitudes of the signal samples, and thus change the values of

the cumulants.

For the case where no phase rotation but frequency offset are present, we present in

Table 3.3 the simulated cumulant statistics with different roll-off factors. Due to using the

simulated cumulant statistics, instead of theoretical values, the value of the cumulants for

different roll-off factors are different for Table 3.1 and Table 3.2.

Table 3.3 The simulated cumulant statistics C40 and C42 for various constellation types
with various roll-off factors with no rotation or frequency offset (number of samples=4000).

roll-off = 0 roll off = 0.5 roll off = 1

constellation C40 C42 040 C42 C40 C42

BPSK -1.38 -1.38 -1.69 -1.69 -1.74 -1.74

QPSK -0.69 -0.69 -0.93 -0.82 -1.18 -0.77

8PSK 0 -0.69 0 -0.82 0 -0.77

QAM16 -0.47 -0.47 -0.63 -0.52 -0.80 -0.39

QAM64 -0.43 -0.43 	 -0.57 -0.47 -0.73 -0.32

CIRC 16 	 -0.94 -0.20 	 -1.26 -0.17 	 -1.60 0.06

OFDM 	 0 -0.01 	 0 0.08 	 0 	 0.39

A simple way to distinguish OFDM signal from the other signals is to employ the

sum of C40 and C42. Without prior information of the roll-off factor, one use to define



25

the threshold, the sum, C40 + C42, of that constellation and that roll-off factor, which is

closest to that of OFDM at all roll-off (lower bound). From Table 3.3 this corresponds

to 8PSK signal with roll-off factor 0, which equals to —0.69. Other single carrier signal

has values even less than -0.69. For that roll-off, the value of C40 + C42 for the OFDM

signal with roll-off 0 is —0.01. Therefore, according to the detection theory, we should set

the threshold as a half of the distance between C40 + C42 of 8PSK and OFDM 2, which is

(-0.69 + 0.01) /2 = —0.34. Therefore, when C40 + C42 > —0.34, we declare the signal

is OFDM. Otherwise, it is SC.

If frequency offset exist, we notice from Table 3.2 that only the value of C42 is non-

zero which can be used for our detection. Without prior knowledge of the roll-off factors,

we notice from Table 3.4 that when the roll-off factor is 1, Circ16 signals have C42 equals

to 0.06, which is already larger than that of OFDM signal with roll-off 0 (-0.01). Hence, it

is impossible to distinguish between Circ16 and OFDM signals for such case by using C42 .

Restricting the roll-off factor to no larger than 0.5 (which is almost true for most

of the practical system), then according to Table 3.4, and using C42 alone, the closest

case happens for distinguishing between Circ16 signal with roll-off factor 0.5 and OFDM

signals with roll-off 0.

Therefore, for this case to distinguish OFDM signal from Circ16 signal, we can set

the threshold as (-0.17 + 0.01)/2 = —0.08. "-0.17" corresponds to the sum of C40 and

C42 for Circ16 signal with roll-off 0.5. 3 While "-0.01" is the value of C40 + C42 for

OFDM signal with roll-off 0. Hence, when C40 + C42 > ( — 0 . 1 7 + 0.01) /2 = —0.08, we

declare the signal is OFDM. Otherwise, it is SC, including Circ16.

2This is the asymptotic threshold since we assume the sample variance for different signal
constellations are the same [7].
3 Similar to the case without frequency offset, C40 + C42 is used. Actually, only C42 is non-zero.
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Table 3.4 The simulated cumulant statistics 040 and C4² for various constellation types
with various roll-off factors with frequency offset E = 0.3 x 27r (number of samples=4000).

rolloff = 0 roll off = 0.5 roll off = 1

constellation C40 C4² 040 04² 040 C4²

BPSK 0 —0.38 0 —0.70 0 —0.74

QPSK 0 —0.69 0 —0.82 0 —0.77

8PSK 	 0 —0.69 0 —0.82 0 —0.77

QAM16 	 0 —0.47 0 —0.52 0 —0.39

QAM64 	 0 —0.43 0 	 —0.47 0 —0.32

CIRC16 	 0 —0.20 0 	 —0.17 0 0.06

OFDM 	 0 	 —0.01 0 	 0.08 0 0.39

3.3 The mean and variance analysis

For the evaluation of the mean and variance of C40 and C4² we start by calculating the real

value of C40 and C4² for an OFDM symbol which given by

(3.11)

where N is the number of subcarriers. Xk are the data symbols drawing from some

constellation. in the following analysis we restrict Xk to be BPSK symbols.

3.3.1 Calculated values of C40 and C4² of OFDM signal

Value of C40 (N) According to (3.4) we can write C40 (n, N) as

C40 (n, N) = E{r4 (n)} — 3E{r²(n)}² 	(3.12)
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(3.13)

while

(3.14)

Thus the value of C40 (n, N) is given by

(3.15)

Averaging over the OFDM symbol (0 < n < N — 1) we get

(3.16)

Value of C4² (N) Following the same steps for C4² (n, N) it can be shown that

C4² (n, N) = E{|r(n)|4} — IE{r ² (n)}| ² — 2E{Ir(n)| ² } ² =
(3.17)

Thus, after averaging we get

C4² (N) (3.18)

3.3.2 Mean and Variance of C40 and C4² of OFDM signals

By its definition (given by (3.5) and (3.7)) C40 and C4² are sample estimates. Sample

estimate is known to be an unbiased estimator hence the mean values of C40 and C4² are
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given by (3.16) and (3.18) respectively. In [7] the variances of 040 and C42 were derived

for general signals and are given by

M • var [OA m84 |m40|², 	 (3.19)

and for C42 in (3.7) calculate estimated C21 term complicates the variance calculation which

is approximated by

M var [042] R--1 [m84 — m42 ] + 477/21 [3m42m21 — 2m63 277-4 1 ] 	 (3.20)

where M is the number of samples and mk,m = E[y k-m(y)*m] is the mean of Ck,m . An

asymptotical approach is used to ease the derivation of this term. By assuming that the

number of subcarriers N is large we omitted all terms that are 0(1/Nd) for d > 0, i.e.

consider only terms that are 0(1). Using combinatorics reasoning it is easy to show that

m84 = 24 	 (3.21)

and following the same steps it can be shown that

m63 = 6 	 (3.22)

Similarly, we have

m400

m42 
r;"--'' 2 	 (3.23)

m²1 = 1

Putting it all together we conclude that

var [Ĉ40]Ĉ≈ 24/M
(3.24)

var [042] 4/M
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We can conclude that the mean values of C40 and C42 are indeed goes to zero for large

N as expected from an OFDM symbol which is approximated as Gaussian. The variance

is shown not to vary substantially with N.

3.4 Simulation

Monte Carlo simulations were conducted to test the performance of the above scheme under

different scenarios. The length of the observed symbols was 4000 for single carrier signals.

For OFDM signals, there were 50 OFDM symbols, each with 64 subcarriers and CP length

16, resulting in 4000 observed data samples for detection. For SC-BC signals, there were

50 SC-BC symbols, each with data block length 64 and CP length 16, also resulting in 4000

observed data samples for detection.

First, we assume that neither frequency offset nor pulse shaping is used (referring to

Table 3.1). We first use 040 to successfully distinguish the other modulation types from

OFDM or8PSK signal (since only OFDM and 8PSK signal have a zero C 40). then we use

C42 to distinguish OFDM from 8PSK signal. According to Table 3.1, we set the threshold

as —0.5. When C42 > —0.5, we declare the signal is OFDM. Otherwise, it is 8PSK

signal. OFDM and 8PSK, 8PSK SC-BC signal are transmitted respectively, each of which

implementing Monte Carlo simulation experiments of 1000 runs resulting in Probability of

detection as in Fig.3.1.

Second, assuming that a frequency offset of 0.3 x 27r (per sample, normalized to the

sampling frequency at the receiver) is used. Then from Table 3.2, we can only use the

nonzero C42, and a threshold of (-0.3 — 0)/2 = —0.15. When C42 > —0.15, we declare

the signal is OFDM. Otherwise, it is SC signal. With a Monte Carlo of 1000 runs, the

probability of detection is given in Fig.3.2. As it is shown, the detection of the SC-BC

signals has the similar performance as SC signals.

Third, assuming that a frequency offset of 0.3 x 27 (per sample) and raised cosine

pulse shaping with roll-off factor of 0.25 is used. Without prior knowledge of the roll-



Figure 3.1 Probability of detection for OFDM signal vs 8PSK signal.
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Figure 3.2 Probability of detection for OFDM signal vs SC signal with frequency offset
0.3.
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Figure 3.3 Probability of detection for OFDM signal vs SC signal with frequency offset
0.3 and pulse shaping (roll-off factor 0.25).

off factor, we set the threshold according to Table 3.4 and as discussed in section 3.2 it

equals (-0.17 + 0.01) /2 = —0.08. When C42 > —0.08, we declare the signal is OFDM.

Otherwise, it is SC signal. With a Monte Carlo of 1000 runs, the probability of detection is

given in Fig.3.3.

Fourth, as shown in Fig.3.4, assuming that a frequency offset of 0.3x 27r (per sample)

and also raised cosine pulse shaping is used, but with roll-off factor 0.5. The threshold is

set again to (-0.17 + 0.01) /2 = —0.08 according to Table 3.4. When C42 > —0.08, we

declare the signal is OFDM. Otherwise, it is SC signal. With a Monte Carlo of 1000 runs,

the probability of detection is given in Fig.3.4.

3.5 Proof that Co of SC constellations with frequency offset are zeros

According to [7] (see Table 3.1 for 8PSK), the fourth order cumulant C40 is zero for

MPSK(M > 4) signals.
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Figure 3.4 Probability of detection for OFDM signal vs SC signal with frequency offset
0.3 x 27r and pulse shaping (roll-off factor 0.5).

For QPSK signals, when the normalized frequency offset equals to 7F or 2 , the

constellation will not change. On the other hand, when the normalized frequency offset

is not equal to 7r or the constellation of the signals with frequency offset will form a

circle similar to the constellation of MPSK(M > 4) signals (as shown in Fig.3.5), and

hence, the cumulant C40 is zero.

For BPSK signals, when the normalized frequency offset equals to 71, its constellation

will not change. However, when the normalized frequency offset equals the constellation

of the BPSK signals changes to that of QPSK signals which according to Table 3.1, given

C40 = 1. On the other hand, similar to the QPSK signals, when the normalized frequency

offset is equal to iv or the constellation of the signals will form a circle similar to the

constellation of MPSK(M > 4) signals (as shown in Fig. 3.5), and hence, the cumulant

C40 is zero.

For other signal constellations (QAM or Circ), we can regard the signals as PSK

signals with multi-level magnitude. Similarly, when the normalized frequency offset is not
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equal to 7F or 5- , the constellation of the signals form several circle which corresponds to

the constellation of several MPSK(M > 4) signals with different magnitudes (as shown in

Fig. 3.5), and hence, the cumulant C40 is zero.

3.6 Proof that C42 of SC constellations with frequency offset stays the same

From its definition, C42 is a combination of the absolute values of different terms, hence it

is real. According to Swami's paper, C42 = —1 for MPSK(M > 2). In such cases, when

the frequency offset is present, since the signal sample's absolute value does not change,

the cumulant C42 stays the same, i.e, C42 = —1.

For BPSK signals, when the normalized frequency offset equals to 71, the constellation

will not change, i.e, C42 = —2 as in Table 3.1. For other frequency offset, the constellation

of the BPSK signals changes to that of MPSK(M > 2) signals, for which C42 = —1 (see

Table 3.2 for BPSK).

For other signal constellations (QAM or Circ), we can regard the signals as MPSK(M >

2) with multi-level magnitude, therefore, the constellation of the signals with frequency

offset will form several circle which corresponds to the constellation of several MPSK(M >

4) signals with different magnitudes. Hence, the cumulant C42 stays the same as in Table

3.1.

3.7 Summation and discussion

It is shown from above sections, the fourth cumulant based AMC we proposed for OFDM

system has several limitations.

First, the threshold is subject to the pool of AMC candidates. For example, when

Circ16 signal is not present, in the worst case (Table 3.4), the threshold can be set —0.32 +

0.01/2 —0.155 instead of —0.08. Actually, this problem is inherent in the AMC of

OFDM signals. Generally, in the case of modulation classification of a particular signal

from a bunch of signal candidates, we may apply the Neyman-Pearson theorem where
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Figure 3.5 The constellation diagrams for various modulation types (a) original (b) with
frequency offset (c) after raised cosine pulse shaping (roll-off = 0.5).
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the probability density function (pdf) of that particular signal is known. While exact pdf

expression for OFDM signal is extraordinary complicated, the approximation of the pdf of

OFDM signal as Gaussian seems promising. However, previous Gaussianity based OFDM

AMC methods fail in high SNR scenarios due to the fact of assuming OFDM signal is

Gaussian distributed.

Second, the pulse shaping filtering will introduce correlation between the cumulants

and thus deteriorate the performance. As we discussed in section 3.2, without restricting

the roll-off factor, it is impossible to distinguish OFDM with Circ16 signal. A possible way

to solve this problem is to whiten the fourth order cumulants using the Giannakis-Tsatsanis

normality-test [13]. This is the same as proposed by Akmouche in [6] and as we discussed

in Chapter 1, are very complicated. The impact of the fading channel is similar to that of

pulse shaping due to the correlation introduced between samples and also between fourth

order cumulants.



CHAPTER 4

BLIND OFDM SIGNALS PARAMETERS ESTIMATION

4.1 Introduction

After identifying the OFDM signals, blind OFDM parameters as well as the synchronization

parameter estimation process is conducted thereafter needed for blind demodulation.

Blind estimation of OFDM signals has been widely explored in [1], [15], [16], [17],

[18]. Most of which ( [1], [15]) focused on the synchronization parameters or on one or

two other parameters [16], [17]. According to our knowledge, to date a more complete

OFDM signal parameters extraction has only been discussed in [14] and [18]. Both papers

employed the correlation method to explore the system parameters of OFDM systems at

the assumption of a known sampling frequency. Although it is not clearly emphasized, the

method proposed in [18] can not perform well when the symbol timing is not synchronized.

In this chapter, we propose a blind estimation process that consider the complete

system parameters and synchronization parameters for OFDM demodulation. The proposed

blind estimation process is divided into three steps 1 : sampling frequency estimation,

number of subcarriers estimation, joint estimation of CP length and timing/frequency estimation.

First, using the cyclostationarity introduced by the oversampling, we employ the cyclostationarity

test algorithm proposed by Dandawaté and Giannakis for the sampling frequency estimation

[19]. In the second step, a simple correlation method is used to extract the number of

subcarriers. Last, the length of the cyclic prefix (CP) as well as the timing and frequency

offset are jointly estimated by using the cyclostationarity test [19], [1], [15].

'This is the first version of the work on OFDM blind estimation, which has been published in [12].
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4.2 Cyclostationarity in the received OFDM signals

A signal x (t) is called second-order cyclostationary if its time-varying correlation function

²

R (t, r) 	 E [x (t) x* (t + 7- )] 	 (4.1)

is periodic in t for a given delay T. Denote M as the length of the data. The cyclic-

correlation at cycle frequency ci, C (ci, T) , is the Fourier series of R (t,7-) with respect to

time t [19], given by (note that t here is integer)

(4.2)

Let x (t) be the received OFDM signal, which can be given by

(4.3)

where s (7n) is the transmitted OFDM signal with CP. Tb is the received signal duration of

one sample in time domain. h (t) results from the transmitting and receiving filters and the

fading channel. w (t) is additive white Gaussian noise (AWGN) with variance σ ²w .

To simplify the derivation, we assume that the transmitted signal have a rectangular

pulse shape and the channel is AWGN. We assume that q Tb/T'b , the over-sampling

factor, is large enough. The oversampled sequence x (n) is obtained by oversampling the

received signal with sampling frequency VT() ; i.e.

x (n) 	 s (m) g (n — mg) + w (n) 	 (4.4)

²In literature, E[x(t)x(t -r)], ie. without conjugation is also considered.
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where we used Ti, = 1. g (1) is the rectangular pulse given by

(4.5)

Suppose q > 2, the discrete time-varying correlation function R (n, 7) at τ 1 3 will

be periodic with period equals q (when q is an integer number) or almost-periodic (when q

is a fractional number) with period q, that is

(4.6)

where 1 is any integer larger than 1. Note that since the received signal is now change to

discrete sequence, we will use the discrete number to indicate the time delay 'T without

specific mention.

For example, when q is an integer, and since the OFDM signal s (m) is independent

of the noise, the signal power is as, R (n, 7) will be a rectangular pulse train given by

(4.7)

Obviously, the above function is a periodic function with period q. Therefore, when we

choose the delay q > τ = 1, the discrete time-varying correlation function R (n, τ) will be

a periodic function with period q.

Actually, due to the introduction of CP, the OFDM signal itself is cyclostationary

[1]. The time-varying correlation function of the OFDM signal s (m) is periodic having

rectangular pulse shape of a period Tau T, + Tcp , where Tcp GTb , the duration of the

CP part. T, = NTb is the useful OFDM symbol duration. N is the number of subcarriers.

G is the length of the CP.

3τ is a integer here after sampling in the receiver.
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4.3 Blind estimation of system parameters

4.3.1 Sampling frequency estimation

The first step of the blind estimation process is to extract the sampling frequency or the

oversampling factor q. We employ the existing cyclic spectrum analysis method proposed

by Dandawaté and Giannakis [19].

If the signal is cyclostationary with cyclic-frequency a (or oversampling frequency

when q > 1) for delay T, the estimator gives by

(4.8)

where "a (a, τ) is given by

(4.9)

C (a, T) is the estimate of C (a, T), the cyclic-correlation at cycle frequency a, which is

given by

(4.10)
t=o

and 1/ is the asymptotic covariance matrix of the estimator C (a, T), which can be computed

by using the equations given in [19],

(4.11)

where Q2c and Q2c(*) are given by
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W(i) is a spectral window of length b.

Note that we used T = 1. From the previous section, the oversampled received signal

will be cyclostationary when τ < q. It is shown that 7- = 1 is enough for cyclostationarity

test [32].

Subsequently, the oversampling factor q will be given by

(4.14)

where a is the estimated cyclic frequency in radian with oversampling q. Using FFT for

the cyclic spectrum analysis, the above equation can be rewritten as

(4.15)

where P is the FFT size, K is the index of the peak value.

4.3.2 Estimation of the number of subcarriers

The target of this sub-section is to estimate the data part duration of an OFDM symbol,

Ts . Combined with the sampling frequency we estimated in the last section, we can get the

number of subcarriers given by N = [Ts/Tbl.

Due to the correlation introduced by the CP in OFDM signal, a simpler estimator for

the data part duration Ts can then be given by

(4.16)

4.3.3 Joint estimation of CP length, frequency and timing offset

The joint estimation of CP length and the timing/frequency offset is presented in this sub-

section. Since the OFDM signal itself is a cyclostationary signal at a delay τ Ts, when

Ts was estimated from the previous sub-section, we can employ (4.8) with τ = Ts for

estimating the corresponding cyclo-frequency or symbol duration Tau, and find the Tcp =

Tall — Ts.
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Also from [1] and [15], the frequency and timing offset can be obtained by using

the cyclostationary statistics. The frequency estimator we will use here are different from

theirs, though the performance are approximately the same as these two. We assume the

signal at this step is already downsampled and as the above, is rectangular pulse shaping

under AWGN channels. Considering the timing offset v and the frequency offset E, the

signal can be given by

x (k) s (k — v) exp ( —j2πεk/N) + w (k) (4.17)

Note that we may consider the correlation term in (4.16) as the cyclic-correlation at

cycle frequency 0. Due to the introduction of the CP, when the delay 'r = N, the correlation

term can be rewritten as

(4.18)

where I is the set of k which are inside the CP or, I = {14 < (k — v) mod N + G < G},

and

(4.19)

With the assumption that the noise is independent from the signal and the signal

outside of CP is independent, Z (.) can be approximated due to the central limit theorem

as Gaussian noise. When the number of OFDM symbols for the estimation is large, the

frequency offset s can be given by

F = 	
27

1 
N 

arg G (0, Kr) (4.20)
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where G (0, g) is the estimate of the cyclic-correlation at cycle frequency 0 and delay R.
Note G (0, St) can also be given by (4.18).

After obtaining the frequency offset as in (18), we use eqn.(21) of [1] to obtain the

timing offset V, i.e.

(4.21)

where Tau was estimated earlier.

According to the standards [8], [9], the maximum CP length is 1/4 of the useful

symbol duration. For example, when N = 64, G = 16, and the FFT size for the cyclic

spectrum analysis is 1024, the peak will appear around the index [1024/ (N +G)]~=  13.

Since at this step, we already know the number of subcarriers N, the peak we expected will

be smaller than [1024/N1 . Using such prior information of the CP length, the performance

of the estimator can be drastically improved. Also, to improve the resolution of the

cyclo-period estimation, larger FFT size for the cyclic spectrum can also be employed.

As shown in the Fig. 4.1, Cyclostationarity test was conducted when N = 64, G =

16, timing offset v = 36, normalized frequency offset E = 0.3, SNR = 25dB, and the FFT

size for the cyclic spectrum analysis is 4096. The received signal duration used was around

100 OFDM symbols. Using the estimator given in (4.8), (4.20) and (4.21), we get the

estimated cyclo-period Tau = [4096/51 -1 = 80, the estimated frequency offset F = 0.30,

the estimated timing offset 1-J = 36. Note from Fig. 4.1, there are three peaks clustered

together, corresponding to the cyclic-frequency and its multiple. Without prior information

about the CP length, the performance of the estimator will deteriorate due to the existence

of such multiple peaks in the cyclic correlation spectrum.

4.4 Simulation

Monte Carlo simulations are conducted to test the performance of the above estimators

under different scenarios. First, the performance of the each of the estimators is tested
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Figure 4.1 Cyclostationarity test for CP length estimator at fixed τ Ts.

independently in different scenarios. In the first case, AWGN channel with ideal rectangular

pulse shaping is used with N = 64, G = 16, q = 5/2, v = 20Tb , E = 0.3 and the

number of runs was 1000. The received data used for estimation is around 50 OFDM

symbols. The normalized mean square error (NMSE) of the estimated oversampling factor

q and the frequency offset, the absolute sample deviation of the number of subcarriers

N, and the symbol duration (N + C) as well as the timing offset v under different SNRs

are measured and shown in Fig. 4.2. As it can be seen, the correlation based method

for the estimate of N is quite robust even with low SNRs. The estimator for q based on

cyclostationarity test is not good enough when the noise is larger than a certain value, while

the estimator for (N + G) based on cyclostationarity test is robust. Note that the FFT size

for cyclostationarity test will affect the performance. This will consequently results in an

error floor in the timing offset estimate.

In the second set of simulation, a square raised cosine filter with roll-off equals to 0.25

is used in the transmitter. We carry out the simulations under slow timing varying multipath
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Figure 4.2 Performance of the estimator of oversampling factor q, number of subcarriers
N, symbol duration Tau , timing offset v, frequency offset E under AWGN channel.

channels. Fig. 4.3 shows that the performance of all the estimators will deteriorate somewhat.

The timing offset estimator will have an error floor corresponding to the delay due to the

raised cosine pulse filter.

To evaluate the overall performance of our proposed estimators, a chain test is performed

under the above three different scenarios. The system parameters we used is N = 64,

G = 16, q = 3, v = 20Tb, r = 0.3. The number of runs is 1000. The received data used

for estimation is around 50 symbols. The performance of the estimator is as shown in the

Fig. 4.4 and 4.5, respectively. It is shown that the performance of the sampling frequency

estimator is very crucial.
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Figure 4.3 Performance of the estimator of oversampling factor q, number of subcarriers
N, symbol duration Tau, timing offset v, frequency offset E with raised cosine pulse shaping
under multipath channel.

Figure 4.4 Performance of the chain estimator of oversampling factor q, with number
of subcarriers N, symbol duration Tau, timing offset v, frequency offset e under AWGN
channel.
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Figure 4.5 Performance of the chain estimator of oversampling factor q, with number of
subcarriers N, symbol duration Tait, timing offset v, frequency offset E with raised cosine
filtering under multipath channel.



Part II

SECOND ORDER CYCLOSTATIONARITY AND APPLICATIONS
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CHAPTER 5

A SIMPLE METHOD TO ENHANCE THE DETECTION OF SECOND ORDER

CY CLOSTATIONARITY

5.1 Introduction

Cyclostationarity is an important feature of wireless communication signals and many other

man made processes. Exploration of cyclostationarity started in the 1950s, when Bennett

applied it in synchronization algorithms for communications systems [26]. The detection

of cyclostationarity of communication signals has been studied by Gardner [27], [28].

Giannakis and Dandawaté proposed statistical tests to show the existence of cyclostationarity

[19].

The detection of cyclostationarity has been explored and applied in many areas in

literature [27]- [38]. It can be used for symbol rate estimation in traditional modulation

classification [32]- [33]. In the recent development of modulation classification, it has

been used to estimate the OFDM system parameters as well as MIMO classification [12]-

[20]. With the development of cognitive radio, problems like spectrum sensing requires

a strong and reliable cyclostationarity detection scheme [35]- [37]. Cyclostationarity was

also applied for estimating frequency offset, timing recovery and channel equalization [30]-

[31]. More papers on the application about cyclostationarity have been listed by E. Serpedin

and el. [38]. Hence improving capability of detecting cyclostationarity will ease performing

these processes.

In this Chapter, we consider a scheme to enhance the performance of detecting

(probability of detections) the second order cyclostationarity of the received communication

signal. By noticing that the second order time varying auto-correlation of the received

communication signal contains a cyclostationary real part and a non-cyclostationary complex

part, we propose to combine the positive part and the negative part of the cyclo-spectrum.

(Note that we use the term "cyclo-spectrum" to denote the Fourier transform of the time

48



49

varying correlation function. Different from this, it has been called cyclic autocorrelation

or cyclic covariance in [28] and [19] respectively. We use the term "cyclo-spectrum" to

emphasize its feature in frequency domain.) We note that the DFT at the positive and the

negative cyclic frequencies of the real cyclostationary part is conjugate to each other, while

the DFT of the non-cyclostationary part (noise part), which is complex, does not have such

feature. This property is similar to having cyclostationary part from two different bases.

Therefore, it presents extra degree of freedom that can enhance detection performance of

the second order cyclostationarity.

5.2 Signal Model and second order Cyclostationarity

The signal model and the definition of second order cyclostationarity have been discussed

in section 4.2 in Chapter 4.

Originally proposed for the detection of cyclostationarity in signals, Dandawaté and

Giannakis [19] proposed a generalized ML (maximum likelihood) method. This method

can also be used to estimate the cyclic frequency (1 [32].

Define C (a, Ti ) as the estimate of C (a, τi ), the cyclo-spectrum at cyclic frequency

a with delay τi, which is given by

(5.1)

and 4a, F) by the vector of dimension 2p,

(5.2)

where τ is a vector of T. Since the cyclo-spectrum for different τ have the same cyclic

frequency α^ [19], the estimator (5.3) prewhitens the cyclo-spectrums 	 i = 1, p,
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before combining them together. The cyclic frequency estimator for delay 7"-i is given by

(5.3)

where Y is of size 2p x 2p is the asymptotic covariance matrix of the estimator a (a, 71,

which can be computed by using the equations (16) and (17) given in [19] (Y of size 2 x 2

is given in equation (4.11) in Chapter 4).

As noticed from (5.3), the scheme proposed by Dandawaté and Giannakis [19] combines

the cyclo-spectrums at different delay 'r to enhance the detection probability of the cyclostationarity

test. In the following, we present a new method for enhancing the cyclostationarity of

the received signal by combining the information contained in the positive and negative

frequency part of the cyclo-spectrum.

5.3 New methods to enhance the second order cyclostationarity

5.3.1 direct combining schemes

To simplify the derivation, we assume first that no pulse shaping filtering is used in the

transmitter, hence the received signal x (t) oversampled with q > 1 is given by

(5.4)

where we normalize the sample duration at the receiver, 77, to 1. g (1) is the rectangular

pulse given by

(5.5)

The discrete time-varying correlation function R(n,τ) at τ = 1 ¹ will be periodic

with period q (when q is an integer) or almost-periodic ² (when q is a fractional number)

1 τ is taken as integer after sampling in the receiver.
²To simplify the derivation, we only consider the periodic case.
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[19].That is,

(5.6)

when 1 is any integer. Hence the choice of τ = 1 does not restrict generality. Note that since

the received signal is now changed to discrete sequence, we will use the discrete number to

indicate the time delay without specific mentioning.

For example, when q is an integer, and since the signal s (m) is independent of the

noise, R(n,1) will be a rectangular pulse train given by

(5.7)

where v is the timing offset, v = 0, • • • , q — 1, though we will assume v = 0 in our

derivation Obviously, the above function is a periodic function with period q.

In practice, the estimate of the time-varying correlation function, Rˆ(n, 1) is given by

(5.8)

where n = 0, • • • M — 1, with M is the length of the observed data samples. Note that

the estimate of the time-varying correlation function contains four terms. The first results

from the signal, which we denote as Rˆs(n, 1). We split Rˆs(n, 1) into two complementary

sequences: 4s(n, 1) and R eps (n, 1). The first shown to be cyclostationary sequence,

which we call the cyclostationary signal part, is defined as

(5.9)
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Clearly, when the received signal is oversampled, the expectation of the Rps(n, 1) is periodic

and is given by (5.7).

The other part of As (n, 1) is non-cyclostationary, which we call the non-cyclostationary

signal part, is defined as

(5.10)

The expectation of Rˆnps (n, 1) is zero for all n due to the fact that the signal s (m) and s (1),

m 1, are independent from each other.

To conduct cyclostationarity test, we use at the front end of the receivers a wide

band filter, causing the noise samples be independent and thus contributes to the non-

cyclostationary part of Rˆ(n, 1). The non-cyclostationary sequence noise part (the other

three terms of (5.8)) is given by

(5.11)

The expectation of Rˆnpn(n, 1) is zero for all n.

As an example of the sequence of (12), (13) and (14), for OFDM systems, when the

oversampling factor q = 3, timing synchronized (v = 0), the sequence of the oversampled

signal is given by [s (0) , s (0) , s (0) , s (1) , s (1) , ...1, then the received signal x (n), n =

0, ..., is given by

(5.12)
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The cyclostationary signal part of the time-varying correlation, p s (n, 1), n = 0, ...,

is given by

^ps (n,1)= [ Is (0 )|2 , I s (0 )|2 , 0, I s ( 1 )|2 , I s ( 1 )|2 , ...] (5.13)

while the sequence of the non-cyclostationary signal part Rˆnps(n, 1), n = 0, ..., is given

by

(5.14)

The non-cyclostationary noise part Rˆnpn(n,1), 1), n = 0, ..., is given by

(5.15)

We note from (5.13) that the cyclostationary sequence, Rˆps(n, 1) is real while from

(17) and (18) the non-cyclostationary part, Rˆnps (n, 1) and Rˆnpn(n, 1) are complex. According

to the property of DFT, the Fourier transform of a real periodic sequence has symmetric

feature, that is, F(—α) = F* (a), where F(α) denotes the DFT at frequency a. Hence, the

DFT of Pps (n, 1) will have the aforementioned symmetry; while the non-cyclostationary

parts, kips (n, 1) and Rˆnpn (n, 1) are complex and aperiodic which does not have the above

symmetries. Note that these conclusions can also be applied to the case where delay τ > 1.

Straightforwardly going to frequency domain, the detection of cyclostationarity will

be enhanced by combining the positive frequency part with the negative frequency part of

the cyclo-spectrum. This is a simple method which we call the direct combining scheme.

In fact, with this approach, the cyclic frequency estimator is given by

2
= arg ma xκ1 (a, -r) = arg max[ 0 1 (a, 7-) + O'*( —a, τ) ] (5.16)a
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where C' (a, .7-) is half of the cyclo-spectrum of (8.17) with a positive, and (—a, 7- ) is the

other half corresponds to a negative, a E [0, 7]. is κ1 (a)is the cost function for this scheme.

Note that αˆ is a function of τ.

5.3.2 prewhiten combining scheme

In [19], Dandawaté and Giannakis proposed a generalized maximum likelihood scheme

to estimate the cyclic frequency by combining the cyclo-spectrums for p different delay τ

(5.3), which can be regarded as prewhiten before combining. In the following, we apply this

approach to combine the corresponding negative frequency part and the positive frequency

part of the cyclo-spectrum together i.e with p = 1. Note that the asymptotic covariance

matrix Y in (5.3) is estimated by using the cyclo-spectrum vector c (a) 3 . We propose two

ways to obtain the covariance matrix Y . First, we present a method which uses the exact

covariance matrix of the cyclo-spectrum 0' (a). Then we use the asymptotic estimates of

Y similar to the method proposed by Dandawaté and Giannakis. To distinguish these two

methods from the method proposed in previous, we call in the following two methods as

prewhitening combining methods.

Assuming that the FFT which generates the cyclo-spectrum has size M, which is the

same as the length of the observed sequence, when (M mod q) = 0 or the period q fits the

measurement M, the cyclo-spectrum of Rˆps (n,1) has peaks only at indices a = lM/q and

zeros elsewhere. 1 is an integer. This is because the Fourier transform of a periodic signal

is an impulse train in the frequency domain with the impulse values proportional to the

discrete Fourier series. To simplify the derivation, we can approximate the cyclo-spectrum

of .hps (n, 1) will generate peaks only at indices a = 271/q and zeros elsewhere when the

observed sequence is long enough (more periods of data is taken in the measurement. )

The cyclo-spectrum of Rˆps (n, 1) can be expressed by using the Fourier transform of one

3Note that we dropped the dependence of τ as we took it to equal to one.
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period of the cyclostationary sequence, which is given by

(5.17)

where 6 (•) is a delta function. Z1 , 1 = 0, 	 , q — 1, is the lth sample of the DFT of one
q-v-1 	 v

period of the periodic sequence σ²s, • • , s2 0, 0.82 , . . 	 0.82 	 To simplify the derivation,

in the following, we assume the signal is timing synchronized, or v = 0. When v 0, the

above sequence will be rotated accordingly, and thus change the value of Z1 .

The noise in the cyclo-spectrum is due to the non-cyclostationary part which is the

overall result of Rˆnps (n, 1) and Rˆnpn (n,1). Since the signal is independent of the noise, it is

possible to find directly the cyclo-spectrum noise introduced by Rn̂ps(n, 1) and R̂nm (n, 1)

separately. When v = 0, from (5.10), the DFT of kips (n, 1) is given by

Note that when v 	 0, according the property of the DFT, Ĉ nps (a) will have an

additional exponential term on the right corresponding to the non-zero timing offset v.

Since both Ĉnps (a) and 04s (—a) are complex, and Re[Ĉ*nps (—a)] = Re[Ĉnps ( —a)],

Im[Ĉ*nps (—a)] = — Im[Ĉnps (a)], the covariance matrix of 0"s (a) and Ĉ*nps ( — a ) , covnps

is given by

(5.19)

where

(5.20)
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(5.21)

(5.22)

(5.23)

Note that zr (k) = Re [s (k) s* (k + 1)] and zi (k) = Im [s (k) s* (k + 1)]. E [zr (l) zr (m)] =

E [zi (l) z, (m)]	 0, 1	 m, since the signal s (k) is i.i.d. E [z²r (k)] = E [4 (k)] =

and E [Zr (k) zi (k)] = 0 since the real and imaginary part of the signal s (k) is also i.i.d.

Through mathematical manipulation, we have

(5.24)

Similarly, we can get

(5.25)
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(5.26)

(5.27)

and

(5.28)

Note that except at the cyclic frequency 171q, where 1 is an integer, all the non-diagonal

entries of the covariance matrix covnps(α) given by (5.19) are approximately zeros, that is,

the cyclo-spectrum noise generated by the signal is almost white.

Similarly from (14), we can get Ĉnpn (α) , the DFT of Rnpn (n, 1), and the covariance

matrix of Ĉnpn (a) and 04, ( — a), covnpn. Except the frequency at 0, +π, cov npn (a) is

given by

(5.29)

where 14 is the unit matrix of size 4, and covnpn2(a) is the covariance matrix generated by

the cross term of the signal and noise, which is a 4 x 4 matrix given by

(5.30)
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where

ςii(α) = C220) 	 (5.31)

C33 (a) = c-440) 	 (5.32)

(5.33)

(5.34)

and

(5.35)

In summary, the first term on the RHS of (5.29) is diagonal, which means that the

cyclo-spectrum noise from the additive noise w (n) is white (except the frequency at 0, +π)

4 . However, the second term on the RHS of (5.29) is not diagonal, meaning that the cross

term of the signal and noise will bring correlated cyclo-spectrum noise. Similar to (5.3, the

cyclic frequency estimator using prewhiten combining scheme is given by

(5.36)

(5.37)

4The oversampling factor q 2 will insure that cyclic frequency is not equal to ±π.
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where as in (5.2)

(5.38)

except C' (α) is only half of the cyclo-spectrum. (The prime identifies this fact). 5 .

In the above prewhiten scheme, the covariance matrix is derived theoretically. According

to (5.19) and (5.29), to calculate the covariance matrix, we need the prior knowledge of

oversampling factor q, timing offset v, signal power σ²s and noise power mow. Dandawaté and

Giannakis avoid this difficulty by evaluating the covariance matrix experimentally without

resorting to the particular information of other parameters except the cyclo-spectrum itself.

Following their approach, we will present a modified and more practical prewhiten combining

scheme next.

We directly apply Dandawaté and Giannakis's scheme to get the covariance matrix

for the negative and positive half of the cyclo-spectrum. Note that x(n)x* (n + τ) and

x(n + 7- )x* (n) are conjugate to each other. If the positive part of the Fourier transform of

x(n)x* (n + τ. ) is 0Ĉ'(α), then according to the properties of Fourier transform, the positive

part of the Fourier transform of x(n + τ)x* (n) will be 01 * ( — α). Therefore, by calculating

the covariance matrix of the cyclo-spectrums of x (n)x* (n + τ) and x(n + τ)x* (n), we

can get the covariance matrix of Ĉ'(α) and 0 Ĉ'*( —α) without exact calculation using the

prior knowledge of q, v, o and Later in simulation, to distinguish from the previous

proposed prewhiten combining scheme, we will call this scheme as the experimental prewhiten

combining scheme, while the previously proposed one as theoretical prewhiten combining

scheme.

5We only consider one cyclo-spectrum with negative and positive parts to combine, which
corresponds to p = 1 for (5.2) in [19]. When p > 1, for each cyclo-spectrum, it can be divided into
two parts, negative and positive, to combine as in (5.2).
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Figure 5.1 Polar graph of the cyclo-spectrum at α = +π/3 for cases with or without
frequency offset, q=3, SNR=25dB .

5.4 Cases with frequency offset

We have not considered the effect of frequency offset in the above section. The frequency

offset will introduce a complex multiplicative in the received data samples. In a block

fading scenario, where the frequency offset maintains the same for a block of samples, the

time-varying correlation function R(t, τ) in a block changes to

R(t, τ) = E[x(t)x* (t τ)] exp (j2πετ) (5.39)

where a- is the sample frequency offset for the block. The signal is block cyclostationary and

have block cyclo - spectrum. However, due to introduction of the complex multiplicative,

"exp (j2πετ)" , the second order time varying auto-correlation of the cyclostationary signal

part is not real any more. Therefore, the above methods will fail since the cyclo -spectrum

of the positive frequency part and the negative frequency part does not have the symmetric

property any more. Instead, the cyclo-spectrum of C' (α, 7- ) and Ĉ'*( —α) will be symmetrically
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located around the cyclo-spectrum of the cases without frequency offset, as shown in

Fig.5.1.

Hence, the multiplication of 0 1 (α, τ) and 0 Ĉ'*( — α) will correct the angle of the

cyclo-statistics introduced by the frequency offset. A modified scheme for the cases with

frequency offset is given by

(5.40)

where ic3 (α) is the cost function for this scheme.

5.5 Cases with pulse shaping

In practice, pulse shaping filtering is applied for spectral management. For the second order

cyclostationarity test, the pulse shaping filter will introduce correlations between successive

samples and thus degrade its performance.

To simplify the derivation, we assume the cyclostationarity test is conducted before

the pulse shaping match filtering in the receiver. Similar to the no pulse shaping filter case,

we can get the mean value and the covariance matrix of the cyclic spectrum noise due to

the periodic and aperiodic signal and noise. It was also found that for the pulse shaping

case, the theoretical derivation of the prewhiten scheme is very complicated. Therefore, in

simulation with pulse shaping, we only test the performance of the direct combining and the

experimental prewhiten combining scheme which use the estimated asymptotic covariance

matrix.

5.6 Simulation

Monte Carlo simulations are conducted to test the performance of the above methods(5000

trails for each point). In the first scenario, no pulse shaping is used in the transmitter. The

received signal is oversampled with q = 3 (In the half cyclo-spectrum, there will be only

one peak. When q > 3, there will be multiple peaks in the cyclo-spectrum, and hence



Figure 5.2 Probability of detection for the scenario without pulse shaping filtering.
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Figure 5.3 Probability of detection for the scenario with pulse shaping filtering.
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Figure 5.4 Probability of detection for the scenario with frequency offset E = 0.2 without
pulse shaping filtering.



Figure 5.5 Probability of detection for the scenario with frequency offset E = 0.2 with
pulse shaping filtering.
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need an approximate range to detect the peak corresponding to the oversampling rate.)

The methods, direct combining (direct) and prewhiten combining schemes are applied

respectively. Note that we apply two methods for the prewhiten combining scheme; one

is the theoretical prewhiten combining scheme which uses the exact covariance we derived

(prewhiten 1) and the other is experimental combining scheme which uses the asymptotic

covariance matrix (prewhiten 2) [19]. We also applied the original algorithm in [19] (ori)

without using our schemes but for fairness, with the search range limited to half of the

cyclo-spectrum. QPSK and OFDM modulation are used. The number of the received

symbols for cyclostationarity test was 1000. The detection is considered successful when

the absolute cyclic frequency a is detected within 27r • (3/M) error. As it is shown in

Fig.5.2, for both OFDM and QPSK, all the schemes outperform the original scheme.

The direct combining scheme has almost similar detection performance as the theoretical

prewhiten (prewhiten 1) combining schemes. The performance of the theoretical prewhiten

combining scheme is also better than the experimental scheme. The reason is for the latter,

the covariance matrix is only an asymptotic estimation of the actual covariance matrix.

In the second set of simulation, raised cosine pulse shaping is added in the transmitter.

The oversampling rate is again q = 3. The delay of the filter is 10 taps. Two methods, direct

combining (direct) and the second prewhiten combining schemes (prewhiten 2) are applied

respectively. All the parameters and test conditions are as in the case of no pulse shape. As

it is shown in Fig.5.3, for QPSK signals, the performance of the direct combining scheme

is better. For OFDM signals, the performance of the prewhiten combining scheme is better.

The reason is that for QPSK signals, the cyclostationary signal part of the cyclo-spectrum

Rˆps(n, 1) is already periodic sequence without statistical expectation. While for OFDM

signals, only the statistical expectation of Rˆps(n, 1) is periodic sequence. And thus, it

may result in additional cyclo-spectrum noise which degrades the detection performance,

especially for the direct combining scheme.

In the third set of simulation, frequency offset E = 0.2 (the frequency offset per

sample will be el q) is introduced in the receiver. All the parameters and test conditions
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are as in the previous cases. Three methods, direct combining (direct) (equation (5.16)),

the second prewhiten combining scheme (prewhiten 2) and the modified scheme (equation

(5.40)) are applied respectively. As it is shown in Fig.5.4, both the direct scheme and the

second prewhiten scheme have a degraded performance due to the frequency offset. The

modified scheme will outperform the direct and the second prewhiten schemes for the case

of QPSK modulation. For the case of OFDM modulation, the second prewhiten combining

scheme will have a better performance when SNR is high. It is due to that the additional

cyclo-spectrum noise introduced in OFDM case may be correlated and thus degrade the

performance of the modified scheme.

Last, with the same frequency offset, raised cosine pulse shaping with rolloff factor

as 0.5 is added in the transmitter. The parameters and test conditions are as in the previous

cases. Three methods, direct combining (direct) (equation (5.16)), the second prewhiten

combining scheme (prewhiten 2) and the modified scheme (equation (5.40)) are applied

respectively. As it is shown in Fig.5.5, the performance is like the above simulation, where

both the direct scheme and the second prewhiten scheme have a degraded performance and

for the case of OFDM modulation, the second prewhiten combining scheme will have a

better performance in high SNR scenario.

5.7 Proof that cyclo-spectrum noise introduced by Rˆnps(n, 1) and Rˆnpn(n, 1) are

independent

To prove that the cyclo-spectrum noise introduced by Rˆnps (n, 1) and Rˆnpn(n, 1) are independent,

that is,

(5.41)
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The sufficient condition for the independence of Ĉ nps (a) and Ĉnpn (a) is that flu, (n, 1)

and Rˆnpn(n, 1) are independent of each other for any n, that is:

(5.42)

From (5.10) and (5.11), it can be shown straightforwardly that (5.42) is satisfied for

any n. Hence, it is proved that the cyclo-spectrum noise introduced by Rˆnps(n, 1) and

Rˆnpn(n, 1) are independent from each other and can be analyzed separately.

5.8 Proof of approximating zeros for E[M-k=0] cos [2qkα 2 (q — 1) a] and

(5.43)

(5.44)
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When (M mod q) 0, M is large enough, the difference between a = 24 and a l =

Ml 	 L1is very small. Note M' = [M q. Hence, we have that E[k=0 -¹/q]1/q]cos[2qkα +2(q — 1) a]

and Σ[M-¹ k=0] sin [2qkα + 2 (q — 1) a] are approximately zeros when a 17 I q.

5.9 Derivation of covnpn(α)

(5.45)

The first term on the RHS is caused by the additive noise. The second term on

the RHS is due to the cross term of the signal and the additive noise. Since the signal

is independent of the noise, we can analyze the covariance matrix of these two terms

separately.
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For the first term Ĉnp1  (a), the covariance matrix of Ĉnpn1  (a) and 04n1 ( — a) can

be given by

(5.46)

where

(5.47)

(5.48)
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(5.49)

(5.50)

and E [Ur (n) v2 (n)] = 0 since the real and imaginary part of the noise w (n) is also i.i.d.

Through mathematical manipulation, we have

(5.51)

(5.52)

(5.53)
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(5.54)

and

(5.55)
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According to Appendix B, it is shown that except at the cyclic frequency 171, where 1 is an

integer, all the non-diagonal entries of the covariance matrix covnpn1  (a) are approximately

zeros, that is, the cyclo-spectrum noise generated by the additive noise only is almost white.

For the second term Ĉnpn2 (a), the covariance matrix of Ĉnpn2 (a) and 6;n2 ( — a)

can be given by

(5.57)
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(5.58)

(5.59)

(5.60)

Note that pr (n) = Re {x(n) — w (n)] w*(n + 1) + w (n) [x (n + 1) — w (n + 1)]*} and

(n) = Im {[x(n) — w (n)] w* (n + 1) + w(n) [x (n + 1) — w (n + 1)1*}. E [µ²r (n)]

E [p,2 (n)] = σ²sσ²w and E [p,, (n) (n)] = 0 since the real and imaginary part of the noise

w (k) is also i.i.d. Different from the case for the cyclo spectrum noise introduced by the
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(5.61)

Through mathematical manipulation, we have

(5.62)

Similarly, we can get

(5.63)

(5.64)
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{cos (am) sin (an) + sin (am) cos (an)}

(5.65)-

(5.66)
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{cos (am) cos (an) + sin (am) sin (an)}

The overall covariance matrix covnpn(α) is the sum of covnpn1 (a) and covnpn2(α). Except

the frequency at 0, ±71, covnpn(α) is given by

(5.67)

where 14 is the unit matrix of size 4.



CHAPTER 6

REVISITING THE TIMING AND FREQUENCY OFFSET ESTIMATION BASED

ON CYCLOSTATIONARITY

6.1 Introduction

The increased demand for more bandwidth, and the rapid emergence of cognitive radio had

attracted more interests at both industry and academia in blind synchronization schemes.

Particularly, among the blind synchronization schemes proposed, there is a group of timing

and frequency offset estimators that explore the second-order cyclostationarity.

Cyclostatioanrity based synchronization schemes dates back to the 1950s, when Bennett

proposed to use these synchronization algorithms for single carrier communications systems

[26]. In [7] and [41], the square law based synchronization were applied. But due to the

introduction of the noise term in the squared cyclostationarity of the signal, the method

in [41] results in deteriorated performance. The method proposed by Ghogho and el. [7]

combined delay "1" and delay "0" (square law) cyclostationarity to improve performance,

but it requires additional computations. The method of Scott [42] which is later extended

by Gini and Giannakis [30], uses delay "1" based second order cyclostationarity. However,

in both [42] and [30], the estimation of the timing offset requires frequency offset estimate

first. Therefore, it has a propagation error caused by the frequency offset error. In this paper,

we propose a new method where a new timing estimation scheme is presented without the

required frequency offset estimate. That is, the timing and frequency offset estimators are

independent and result in an enhanced performance ¹ .

Due to the inherent cyclostationarity in OFDM signal, second order cyclostationarity

based blind synchronization schemes have also been applied in these systems [1]- [?]. The

estimators for timing and frequency proposed in these articles are extension of those for

¹There are many other works that deal with the time difference problems which used correlation
(see Gardner's [51]).
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the single carrier system [41]- [30], which are not independent. Extended to OFDM, it is

shown that our new method also has an improved time and frequency offset estimation.

6.2 Signal model

The received single carrier signal is given by [30]

(6.1)

h(n) is the flat channel fading; The introduced frequency, timing and phase offset are e,

and 0 respectively; q is the oversampling rate, while T is the symbol period. W.l.g, T is

normalized to "1". s(m) is the information symbols. g(n) = gtx(t) * grx(t) |n=[tq/T], is

the combined effect of the transmitter and receiver pulse shaping filters after oversampling,

where [•1 is the integer operator. w(n) grx (n) * v(n) is the filtered noise, and v(n)

is complex white Gaussian noise. Throughout the paper, we will make the following

assumptions:

(AS 1) h(n) is a zero-mean stationary sequence with real valued autocorrelation Rh ('r)

when the channel is flat (slow) fading [42]. This was assumed by most of the cyclostationarity

based synchronization scheme Fn.- [1.

(AS2) gtx (t) and grx (t) are real-valued pulse shaping filter, which is almost always

true in practice.

The time-varying auto-correlation for delay r;

R(n, T) = E{x(n)x*(n T)} 	 (6.2)

The cyclic correlation, Ĉ(k, 'r), which is the Fourier series of R(n, r) with period

P = q, is given by [30];

(6.3)
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(6.4)

and k is the cyclic frequency. Suppose the combined pulse shaping filter g (n) has 2dq

taps. (when each is raised cosine filters. d is the delay factor of the filter) Then it can be

shown that g „q (n, T) is a periodic sequence with period P = q. One period of g „q (n, T),

n = — 1 is given by

(6.5)

6.3 Previous methods of timing and frequency estimation

Using Parseval's relation to rewrite the term En g „q (n) • e-j²πkn/P, and compensate for the

effect of pulse shaping filter, Gini and Giannakis [30] gave the modified cyclic correlation

for single carrier as 2

(6.6)

(6.7)

and G( f) = 	 g(n)exp(—j27πf n) is the Fourier Transform of g(n). With this, the

authors of [30] proposed the following frequency and timing estimators ((10) and ( 1 1 )

in [30]):

(6.8)

(6.9)

21n simulation, as in [7], only the phase of -y-¹(k, T) is compensated to avoid propagation error.
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where arg { • } stands for unwrapped phase of (•) 3 . Note that the above timing estimator,

'V, is dependent of the frequency offset estimator, e. On the other hand, Ghogho and el. [7]

proposed a different timing estimator which does not require the estimate of frequency

offset;

(6.10)

but it is obtained by using two computations at delay "0" cyclostationarity statistics.

There are other kind of timing and frequency offset estimators based on different

kind of cyclic correlations. They are either dependent or more complicated due to the need

of calculating two values of g(k, T).

Bölcskei [1] extended the previous estimators to OFDM systems, in which the frequency

estimator as in (6.8). With no oversampling, q 	 1 and the delay T 	 N, the number of

subcarriers for OFDM system. The time estimator as in (6.9) except the period P = N ±G,

where G is the length of the cyclic prefix (CP).

(6.11)

(6.12)

Obviously, the estimate of the timing still depends on the performance of the frequency

estimator.

6.4 New method for timing and frequency estimation

From (AS2) we know that, for single carrier signal, g(n) is real, and thus the sequence

of g„q (n — v, 7) in (6.3) is real. As a result, its Fourier series, Gs(k,τ) 	 En gseq (n —

3Note we have P in numerator for the timing offset estimator which is different from equation (11)
in [30], where v is already normalized with P.



(6.13)

Since G s (k , 7- ) is Hermitian symmetric, we have arg {G ,(k , τ)} = — arg {G S (— k , τ)}

and we obtain when combining arg {Ĉ (k , 'r)} from (6.13) with arg {Ĉ (—k , T)}.

(6.14)

This frequency offset estimator is similar to that proposed by Ghogho with assumption

of real g (n) (page 3 in [7]).

For timing estimator, we note from its definition that G 8 (k, r) depends on timing

offset v. Then by the shift property of the Fourier transform, we have,

(6.15)

where G „q (k , 'r) F { g „q (n τ)} = gseq(n , τ) • e-j2πkn/P. Note the second term on

the RHS of (6.15) depends only on the pulse shaping filter, g (n). Instead of calculating it

in the frequency domain from (6.6)(as in [7]- [?]), we calculate it directly from (6.5) in the

time domain. Substituting (6.15) into (6.13), and using similar method of canceling out the

effect of the frequency offset, we obtain by using arg {G seq(k , τ)} = — arg {G seq (— k , T)}

(6.16)

For the OFDM system, whose number of subcarriers is N, and CP length is G, the

cyclic correlation, Ĉ(k, N), which is the Fourier series of R(n, N) with period of P =

N G, is given by;

(6.17)
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zseq(n) is a periodic rectangular sequence of period N ±G with rectangular window length

G [1] [?]. Similar to the derivation above for single carrier signal(eqn. (6.15)), the angle of

GS (k, T .) is given by

(6.18)

Through similar manipulations, the corresponding frequency and timing offset estimator

obtained by the new method for OFDM systems are given by

(6.19)

and

(6.20)

where Gz (k, N) is the Fourier Transform of the periodic sequence zseq(n).

6.5 Simulation

Monte Carlo simulations are conducted to test the performance of the above methods(1000

trials for each point).

In the first scenario, for single carrier signal, the transmit and receive filters were

raised cosine filters with roll-off 0.5, and upsampling rate 8, delay 7. Single carrier QPSK

symbols are assumed. Time-selective Rayleigh fading channel is assumed, with Doppler

spread of BhT = 0.05, where Bh is the bandwidth of h(n). Same as in [43], the channel

filter h(n) is obtained by bilinearly transforming a third-order continuous-time all-pole

filter, whose poles are the roots of the equation (s 2 + 0.35w0s + 4)(s + w0 ) = 0, where

w0 = 2πBh/1.2. The time offset v = 3 samples and frequency offset r = 0.1, are

implemented. Normalized Mean Square Error (NMSE) is used to evaluate the performance.

Three methods; the one proposed by Gini and Giannakis with T = 1(GG-single) [30], the
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Figure 6.1 NMSE of E and I) versus SNR for QPSK and OFDM in time-selective Rayleigh
fading channel.

new proposed method with τ = 1(new 1 -single), and the new proposed method with 'r = 0

(new 2 -single) are applied respectively. For the timing estimator, as shown in Fig. 6.1(a)

(marked single carrier), the new proposed scheme (new 1 -single) outperforms the scheme

proposed in [30] by almost 3dB when SNR  = 15dB. The new method (eqn. (6.16))

applied to T = 0 (new 2 -single) has similar performance as Ghogho (GSD) [7].

In the second scenario, CP-OFDM signal is transmitted. The number of subcarriers

was 64 with CP length equals 16. The frequency offset r = 0.1/64 and time offset

v = 18. Two methods; the one proposed by Bölcskei (HB-ofdm) (equation (20) and
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(21) in [1]), the new proposed method (new-ofdm) (equation (6.19) and (6.20)) are applied

respectively. We average the result over three cyclic frequencies (k = 1, 2, 3). As shown in

Fig. 6.1(a) (marked OFDM), the new proposed scheme has much better timing estimation

than the scheme proposed by Bölcskei [1]. The scheme proposed by Ghogho and el. can

not work in OFDM systems, since for delay "0" the time-varying correlation is not even

cyclo stationary.

The frequency offset estimators (Fig. 6.1(b)) have almost the same performance for

all the methods. Note that in the first scenario with single carrier, when using raised

cosine pulse shaping filter, the Fourier transform of g (n) only have non-zero values for

cyclic frequencies at k = 0, +1 [43]. Hence, we did not average the results over multiple

cyclic frequencies, but we only used k = 1.



CHAPTER 7

BLIND ESTIMATION OF RAISED COSINE PULSE SHAPING BY USING

SECOND ORDER CYCLOSTATIONARITY

7.1 Introduction

Chapter 7 discussed using the second order cyclostationarity in timing and frequency offset

estimation. As it is shown in Chapter 7, when raised cosine pulse shaping is employed in

the transmitter, the blind estimation of timing and frequency offset requires the knowledge

of pulse shaping filter. However, in practice, especially in the non-cooperative environment,

it is impossible to have such prior knowledge.

In this Chapter, we are going to explore the blind estimation of raised cosine pulse

shaping filter. The problem can be explored in time or frequency domain. In time domain,

a parametric model of the impulse response is required for the blind estimation. In [48],

several methods are presented which employs the traditional channel estimation methods

for pulse shaping filter estimation. Actually the estimation of the pulse shaping filter

parameters has been combined into the channel estimation process. Compared to estimation

in the time domain, blind estimation in the frequency domain appears more convenient for

the raised cosine pulse shaping filter. This is due to the fact that the frequency response

of a raised cosine pulse shaping filter depends only on one unknown variable, the roll-off

factor.

Since we only focus on the raised cosine filter, we can narrow down our blind

estimation to the roll-off factor estimation. The roll-off factor estimation has been explored

in [49]. The authors in [49] presents an experimental method for the estimation of pulse

shaping filter roll-off factor, where the roll-off factor is obtained through an approximate

solution without exact theoretical proof.
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In this Chapter, We propose to use the second order cyclostationarity for the roll-off

factor estimation. We will explore the delay "0" and delay "1" cyclostationarity for the

estimation purpose.

7.2 Raised cosine pulse shaping filter

The raised cosine pulse shaping filter is the most popular filter used in the area of digital

communication. Depending on the available extra bandwidth, the raised cosine filter can

be well defined using its roll-off factor. Its frequency domain function is given by [50],

(7.1)

where f is the frequency, 0 < fi < 1 is the roll-off factor.

The impulse response of the above filter is given by,

(7.2)

In practice, square root raised cosine filter is used in the transmitter and for the

matched filtering, the corresponding square root raised cosine filter is used in the receiver.

Their combined effect is that of a raised cosine filter given by (7.1).

The frequency domain function of a root raised cosine filter is given by [50],
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The impulse response of the root raised cosine filter can be given by,

(7.3)

7.3 second order cyclostationarity for raised cosine pulse shaping

In Chapter 6, we find that the roll-off factor will affect the cyclostationarity test. For

example, for QPSK signal, AWGN channel with SNR = 25dB, upsampling facor P = 4,

filter delay is 100, the cyclo-spectrum for delay "1" and delay "0" are plotted in Fig. 7.1

and Fig. 7.2 respectively. As shown in the figures, it is obvious that the magnitude of

the first peak (corresponds to frequency index "256") in cyclo-spectrum is related to the

roll-off factor of the raised cosine filter ¹ . The larger the roll-off factor, the larger the peaks

at cyclic frequency k = 1. Note that when using raised cosine pulse shaping filter, the

resulted cyclo-spectrum only has non-zero values for cyclic frequencies at k = 0, +1 [43].

Denote the magnitude of the first peak in cyclo-spectrum as 101,τ)|. T is the

delay. C(1, 0) and C(1, 1) are the first peak of the cyclo-spectrum at delay "0" and "1"

respectively.

We recall in Chapter 7, the cyclo statistics C(k , T) is given in (6.3). Specifically, the

first peak in cyclo-spectrum C(1, T) is given by

(7.4)
n

Note that when 7" = 0, the term ej²πετ/P is 1. That is, the delay "0" cyclo-spectrum

C(1, 0) is independent of the frequency offset e. To simplify the derivation, we first assume

'As we mentioned in Chapter 7, for the raised cosine pulse shaping case, the delay "0" and delay
"1" time varying correlation functions are all cyclostationary.
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Figure 7.1 Magnitude of delay "1" cyclo-spectrum, Ĉ(1, 1) for roll-off factor (a) 0 = 0.2
(b) 0 = 0.5 (c) 0 = 0.8.
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Figure 7.2 Magnitude of delay "1" cyclo-spectrum, Ĉ(1, 0) for roll-off factor (a) C3 = 0.2
(b) 13 = 0.5 (c) = 0.8.
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the AWGN channel with full synchronization. That is, the timing frequency offset are all

zeros. Hence, C(1, T) is simplified as

(7.5)

It shows that the value of C(1, T) depends on the Fourier transform of the periodic

sequence gseq(n, T). The periodic sequence g seq (n , τ), as derived in Chapter 7, depends on

the delay T, period P, and the impulse response of the pulse shaping filter.

Note that in this chapter, the pulse shaping filter g(n) is not the convolution of the transmitter

pulse shaping filter gtx (n) and the receiver pulse shaping filter grx (n) . Without the prior

knowledge of the raise cosine pulse shaping filter, g(n) is simply the transmitter filter

gtx(n).

To further explore the relation of roll-off factor and the mean value of C(1, T), we

show in Fig. 7.4 and Fig. 7.3 the relation of C(1, T) vs. roll-off factor with delay T equals

"0" and "1" for different upsampling factor P respectively.

Note to simplify the case, our simulation does not introduce any additive noise. Also,

the coefficient q is removed for simplification. The equation (7.5) then become the Fourier

transform of g gseq(n , τ). To differ from the previous notation, we will use CI), (1, T) to denote

the value of C(1, T) in such special case. 2

(7.6)

We use the normalized magnitude, | Cps (1, -01 |Cps (0 ) T)1' instead of the magnitude,

Cps ( 1 , T ) | due to the fact that different period P will cause different number of periods

2As shown in Chapter 6, when the size of FFT for cyclostationarity test M can be divided by P, the
two are actually the same. When the size of FFT for cyclostationarity test can not be divided by P,
there will be side-lobes around the peaks in cyclo-spectrum. To simplify the derivation, we assume
that M can be divided by P.
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Figure 7.3 The normalized magnitude, Cps (1, 0)/Cps(0, 0) vs. roll-off factor for P = 3,
4, 5, 6.

in a given observed window, and thus affect the magnitude of Cps (1, T). The normalized

magnitude, however, is independent of the length of the observed window or the period of

the cyclostationary sequence.

For delay "0" cyclo-spectrum, as it is shown in Fig. 7.3, the normalized magnitude,

ICps(1, 0)|/|Cps(0, 0)|, is linearly corresponding to the roll-off factors 0. The slope of the

line remains the same for different period P.

For delay "1" cyclo-spectrum, as it is shown in Fig. 7.4, similar to Fig. 7.3, the

normalized magnitude, |Cps (1, 1 )|/|Cps(0 , 1)|, is almost linearly corresponding to the roll-

off factors j3. Different from Fig. 7.3, the slope of the line changes when the period P

changes. The larger the period P, the smaller the slope of the line. While P is increasing,

the gap between the lines due to different P is decreasing.

The number of delay taps in raised cosine pulse shaping filter, however, will not affect

the normalized magnitude, 'Cps (1, τ)|/|Cps(0,τ)|.  In Fig. 7.5 and Fig. 7.6, the relation of

| Cps (1, τ)|I/|Cps(0,τ)| vs. roll-off factor 0 for different delay taps are shown with delay y
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Figure 7.4 The normalized magnitude, Cps (1, 1)/C(0, 1)1) vs. roll-off factor for P = 3,
4, 5, 6.

equals "0" and "1" respectively. As it can be shown, when the number of delay taps is larger

than 4, the value of the normalized magnitude, |Cps (1, τ)|/|Cps(0 , τ)| approaches to be the

same. This fact indicates that the method based on cyclostationarity which we are going to

proposed thereafter can not estimate the number of delay taps used in the transmitter filter.

Later we will explain that the knowledge of the number of delay taps will not affect the

synchronization scheme in Chapter 7.

7.4 Roll-off factor estimation based on second order cyclostationarity

7.4.1 Derivation of delay "0" and delay "1" second order cyclostationarity

In the previous section, we show the relation of the magnitude of the first peak in cyclo-

spectrum, | Ĉps (1, 7- ) | is related to the roll-off factor. In this section, we will prove theoretically

Ĉps (1, T) as a function of the roll-off factor /3.
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Figure 7.5 The normalized magnitude, Cps (1, 0)/Cps (0, 0) vs. roll-off factor for number
of delay taps d = 1, 2, 3, 4, 7, 100, P =  4.

Figure 7.6 The normalized magnitude, Cps (1, 1)/Cps (0, 1) vs. roll-off factor for number
of delay taps d	 1, 2, 3, 4, 7, 100, P = 4.
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Figure 7.7 The periodic sequence gseq(n, T) with period P vs. time varying correlation
gcorr(n, T) with length (2dP +1 — T).

As in (6.4), g seq(n, 7- ) is the periodic sequence with period P. From (6.5), it appears

to be complicated to directly calculate the Fourier transform of gseq(n, T). Here, we propose

a simple method using the time-frequency symmetry. ³

In Fig. 7.7, the sequence gseq(n, T) is plotted. As shown, it is the sum of all the

overlapping sequence corr (n	 where gcorr(n, T) is simply the time-varying correlationg	Ti,

of two transmitter pulse shaping filters. gcorr (n, T) is given by

(7.7)

For raised cosine pulse shaping filter with delay d and upsampling factor P, the length

of gcorr(n, T) is (2dP +1 — T), which is larger than P, the period of gseq(n, T). According to

the Nyquist-Shannon sampling theorem, the signal that has been sampled can be perfectly

reconstructed from the samples if the sampling rate exceeds twice of the highest frequency

in the original signal. If the sampling rate is less than twice of the highest frequency, the

signal can not be recovered from its samples. The frequency spectrum of the under-sampled

signal will be overlapping each other with period 27π. Due to the time-frequency symmetry,

as in Fig. 7.7, the overlapping signal of gseq(n,τ) with period P indicates its Fourier

transform, Cps (k, T) is under-sampled.

³In [301, it is calculated directly using Parceval's theorem. This is equivalent to the method we
propose hereafter. The method we will use, however, can be used to explain some other fact as well.
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Figure 7.8 The convolution of two root raised cosine filters.

Therefore, the cyclo-spectrum Cps (k, T), whose time domain sequence is gseq(n, τ),

can be obtained by down-sampling the Fourier transform of agcorr ,n, ) • This result is

similar to equation (6) in [30].

Since the cyclo-spectrum is only under-sampled Frequency representation of the

time domain sequence gcorr(n, T), it is reasonable to say the cyclo-spectrum itself can not

recover the full information of gcorr(n, T), which include the delay factor of the raised

cosine pulse shaping filter.

Also, as mentioned in the previous section, the delay factor estimation will not

affect the estimation of the timing and frequency offset we proposed in Chapter 7. These

synchronization parameters are estimated through the cyclic frequencies, which are samples

of the Fourier transform of sequence gcorr(n, T). Since gcorr(n, T) is already fixed in the

transmitter, the estimation of the delay factor in the receiver will not change its spectrum,

and hence will not change the timing frequency estimation.

Now recall the Fourier transform of the product of two time domain signals, a (COT T (n, T),

equals the frequency domain convolution of individual Fourier transform. Hence, for the
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delay "0" cyclostationary sequence, as shown in Fig. 7.8, we calculate the convolution of

the two root raised cosine filter and obtain

(7.8)

Note that f0 = /372π.

As shown in (7.8), Cps (1, 0) is a linear function of the roll-off factor 0. Cps (0, 0) is

"1" since that in practice, the raised cosine filter has the overall power of "1". Hence,

Cm (1, 0)/Cps (0, 0) equals to Cps (1, 0). Also, note the above values are all real. The

simulated cyclo statistics Cps (1, 0) is plotted versus the linear function 27, in Fig. 7.9. As

shown, for delay of 100 taps, the theoretical value of Cps (1, 0) matches the simulated value

perfectly. For other delay factors larger than 4, there is still a good match except for roll-off

factor /3 = 0. The reason is that for perfectly rectangular window shaped spectrum, which

corresponds to 0 = 0, the delay factor must be very large to approximate the infinite sinc

sequence in time domain.

The case of delay "1" cyclostationary sequence, is more complicated. Recall that

the Fourier transform of a delayed timing sequence can be transformed into a frequency

rotation. Cps (1, 1) is given by

(7.9)
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Figure 7.9 The theoretical value vs. the simulated value of Cps(1, 0) for delay taps d =
100, P = 4.

From (7.9), we can see that Cps(1, 1) is not a linear function of roll-off factor 0.

However, when the sampling rate P is large, ( 71,-) 2 goes to zero. The term	 2 5 [

(5) - ( -7 ) 2 ]
approaches 0/7π, cos ( 74) can be approximated as "1". Hence, the value of CI)s (1, 1)

approaches to the value of Cps (1, 0) when P is large.

An interesting point to note is the phase of Cps (1, 1), obtained from (7.9), is exactly

(7.10)

Therefore, the phase of Cps(1, 1) is not depended on the roll-off factor 0. Actually

this will negate the effort to estimate the roll-off factor for the purpose of blind estimation

of the timing frequency offset using Cps (1, 1) in Chapter 7.
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For the delay "1" cyclostationary sequence, note that Cps (0, 1) is not "1". The value

of Cps (0, 1) can be calculated as

(7.11)

Fig. 7.10 compares the theoretical value of Cps (1, 1)/Cps (0, 1) and the simulated

value. As shown in the figure, the theoretical derivation fit the simulated value perfectly.

Similar to Fig. 7.9, we note that for delay taps larger than 4, there is still a good match

except for roll-off factor 0 = 0. When 0 = 0, the delay taps must be very large to

approximate the infinite sine sequence.

According to (7.8) and (7.9), the mean value of delay "0" cyclo-statistics is a linear

function of roll-off factor 0, while that of delay "1" cyclo-statistics is not. Therefore, in the

following section, we propose to use the delay "0" cyclostatistics, C(1, 0) for the roll-off

factor estimation.

7.4.2 Roll-off factor estimation

In Chapter 7, we show that the cyclic-statistics C(k, τ) is given in (6.3). Specifically,

C(1, 0) is given by

(7.12)



* simulated, d=3
* simulated, d=4

--* 	 simulated, d=100
O theoretical

Figure 7.10 The theoretical value vs. the simulated value of 0S (1, 1)/0S (0, 1) for delay
taps d = 100, P = 4.

Note that Rh (0) is the overall power of the channel profile, w.l.g, it can be assumed

as "1". Even if it is not, it can be combined into the estimate of the received signal power

It is shown in [19] that the estimate of the cyclic-statistics, Ĉ(k, T) can be approximated

as complex Gaussian distributed, where 0(k, τ) is the estimate of C(k, T), in practice, it is

given by

(7.13)

According to (7.8) and (7.12), the value of delay "0" cyclic-statistics C(1, 0) is a

linear function of roll-off factor 0. Hence, a direct estimator of the roll-off factor 3 is given

by

100

(7.14)
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where σ²sh = σ²sRh (0). Note that to negate the efforts to estimate the signal power σ
²
s and

the channel parameter Rh (0), the normalized cyclic statistics 6: (1 '°) is used. Ĉ(0,0)
Due to the fact that

σ²sRh (0)
C(0, 0) = 	

the roll-off factor estimator can also be given by

(7.16)

In the next section, we are going to prove that the above estimator (7.16) is a MLE of the

roll-off factor.

7.4.3 Maximum Likelihood Estimator for the roll-off factor

In this section, we are going to derive the MLE of the roll-off factor based on the delay

"0" second order cyclostationarity. As we known, the cyclic-statistics C(1, 0) can be

approximated as Gaussian distributed. To simplify the case, we use C instead of C(1, 0)

in the following derivation. The likelihood function of the cyclic-statistics C(1, 0) can be

given by

(7.17)

where Cr and Ci are the real and imaginary part of the cyclic-statistics C(1, 0), o - .2 and

al are the variance of the real and imaginary part of the non-cyclic noise of C(1, 0). p

is the correlation coefficient of the real and imaginary noise part. a is the linear function

coefficient which is given by as a47, as in (7.16). 0 is the angle corresponding to the timing

offset.

(7.15)
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After mathematical manipulations, the MLE of the roll-off factor β^MLE can be given

as a function of σr, Qi, p and O.

(7.18)

The value of 0 can be obtained by using the method proposed in Chapter 7. As in Chapter

7, the timing offset is given by

Note that the phase from the raised cosine filter arg {G²seq(k, -r)} = 0 for delay "0" cyclic-

statistics C(1, 0) according to (7.8). The value of C(1, 0) and 6'(--1, 0) are conjugate to

each other due to the symmetry of Fourier transform caused by the real timing sequence.

Hence, the angle corresponding to the timing offset, 0 is given by

(7.19)

Applying (7.19) into (7.18), we can show that the above MLE can be rewritten as

(7.20)

We denote the above estimator as Approximate MLE (AMLE). Note that the above AMLE

is exactly the same as the estimator given by (7.16).

7.4.4 Performance analysis

According to the previous chapter, the MLE of the roll-off factor is given by in (7.18). As

we known, the variance of an unbiased estimator is bounded by the inverse of the Fisher

information. The Fisher information of the roll-off factor, 1(13) is defined by

(7.21)
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The Cramer-Rao lower bound (CRLB) of the estimator can be obtained by

(7.22)

The CRLB depends on the value of the (7,2 , 01 and p. These values, however, depend on the

information of the specific raised cosine filter, such as the upsampling rate P, the roll-off

factor 3, and the delay d. As in chapter 6, the exact derivation of the value of a2, and p

are complicated and will not be shown here.

7.5 Simulation

Monte Carlo simulations are conducted to test the performance of the above estimators

(5000 trails for each point). The number of the received symbols for cyclostationarity test

was M = P * 300 = 1200. The raised cosine filters with roll-off factor 3 = 0.25, 0 = 0.5,

= 0.75, upsampling factor P = 4, and delay d = 7 are used. Single carrier QPSK

symbols are assumed. Time-selective Rayleigh fading channel is assumed, with Doppler

spread of BhT = 0.01, where Bh is the bandwidth of h(n). Same as in [43], the channel

filter h(n) is obtained by bilinearly transforming a third-order continuous-time all-pole

filter, whose poles are the roots of the equation (s2 + 0.35ω0s + 4)(s + co0) = 0, where

ω0 = 2πBh/1.2. The time offset v = 3 and frequency offset E = 0.1, are implemented.

The normalized mean square error (NMSE) are plotted in Fig.7.11. The performance of

two estimators are compared (equation 7.14 and equation 7.16). As shown in Fig. 7.11, the

larger the roll-off factor, the smaller the NMSE. This is because a larger roll-off factor will

cause higher peak or larger C(1, 0) and thus improve the performance.

Note that specially in low SNR scenarios, the second estimator (equation 7.16) ("est2")

has better performance. The first estimator (7.14) need an estimate of the value C(0, 0) and

at low SNR scenarios, the estimate of the value C(0, 0) which include the noise power will

deteriorate the performance of the estimator.
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Figure 7.11 NMSE of the roll-off factor estimator for QPSK signal with 0 = 0.25, 0.5,
0.75, P = 4.

When SNR=OdB and AWGN channel is used, we plot the histogram of the estimates

of these two estimators with 0 = 0.25. As shown in Fig.7.12, the first estimator is biased

while the second is slightly biased. The first estimator is biased because the term C(0, 0) in

the first estimator (7.14) include power of the additive noise. The second AMLE is actually

biased because the cyclo-spectrum noise is included. For performance comparison, we

limit to the cased P = 4 and synchronized AWGN channel (without timing offset). The

MLE for this case will be

(7.23)

where Real{.} is calculating the real part. We compare the above MLE with the previous

proposed estimators to the CRLB in Fig. 7.13. As it is shown, the AMLE has almost the

same performance as the MLE in high SNR scenarios. When the SNR is very low, the

estimator 1 (7.14) even outperform the CRLB. That is because the CRLB is only a local

bound. The implied condition that C(1, 0)| < |0(0 ; 0)| make the MSE of the estimator 1
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Figure 7.12 Histogram of the roll-off factor estimate for estimator 1 and 2.

(7.14) is even smaller than the bound. The performance of the estimator can be improved

when there is more observed symbols. Similar to the above simulation set up, we show in

Fig.7.14 the performance of the ML estimator (equation 7.16) for different M. It is obvious

that the larger the size M, the better the performance.
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Figure 7.13 Performance comparison of different estimators with CRLB, P=4, = 0.25.

Figure 7.14 NMSE of the roll-off factor estimator for QPSK signal with = 0.25, P = 4,
and M=1200, 2000, 2800.
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CHAPTER 8

STC AND BLAST MIMO MODULATION RECOGNITION

8.1 Introduction

The great potential provided by the use of multiple input multiple output (MIMO) encouraged

intensive research efforts in the field of communications in recent years. This effort led to

the design and implementation of MIMO systems in commercial and military communication

systems. The new scenario introduces many new challenges for both cognitive radios and

surveillance systems.

One form of exploring transmit diversity in MIMO is to apply STC. Alamouti's STC

is one of the first which studied the case of two transmitted antennas [44]. Tarokh extended

the results to the case of more transmitting antennas [45]. It was shown that for different

transmission rate, coding schemes are different. The STC schemes introduce redundant

information and explore the spatial diversity for better system performance.

Different from the STC schemes, Bell Labs Layered Space-Time Architecture (BLAST)

exploits spatial diversity to transmit more information [46]. Both schemes use multiple

transmit antennas and their decoding schemes are different depending on their coding

schemes.

The goal of this chapter is to blindly recognize the spatial coding schemes, or, more

specifically, to distinguish STC from BLAST schemes. We only consider the linear space

time block coding (STBC), proposed in [44] and [45]. Due to the redundant information

introduced in the STC schemes, the received signals will have temporal and spatial correlations;

while in the BLAST schemes, this is not the case. Since the time correlation introduced in

STC is in a block mode, we apply the cyclostationarity test to explore it. The cyclostationarity

test does not only distinguish STC schemes from BLAST scheme, but also can find out the

specific coding schemes used, whether it is full rate, half rate or other. Furthermore such

approach can help extract the timing and frequency synchronization parameters.

108
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8.2 System model and detection problem

Consider a MIMO environment with L transmit antennas and M receive antennas. The kth

received data vector r (k) is of size (M x 1) which is given by

r (k) = H (k) s (k) + w (k)	 (8.1)

where H (k) is the Raleigh distributed channel transfer matrix of (M x L). Assume that the

channel is slow time varying, to simplify the derivation, we will use block fading channel

where the channel is assumed to be the same during the detection period. w (k) is an

additive white Gaussian noise (AWGN) with variance o -2 , which is independent of the

signal. s (k) is the (k mod T)th column vector of the (L x T) transmission matrix (where

T is the block size), whose entries are linear combinations of the random m-PSK (m > 2)

or m-QAM signal and their conjugates.

For example, in Alamouti's scheme, when synchronized, s (k) and s (k + 1) are given

by

(8.2)

where x1 , x 2 are all random m-PSK signal with variance o-82 . Note that we ignore the timing

index for x1 , x2 for simplification. On the other hand, in BLAST scheme, s (k) is composed

of independent random m-PSK signals.

Suppose M = 2, for Alamouti's scheme, the synchronized received signal at antenna

i with length T = 2 can be rewritten as

(8.3)

where r, (k) is the kth synchronized received signal at antenna i. hij represents the channel

from the jth transmit antenna to the ith receive antenna. Since the channel is block fading,
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the time index k in the channel parameter is ignored for simplification. As it is shown,

r, (k) and r, (k + 1) are composed of correlated signals.

As for the BLAST scheme, the received signal at antenna i with length T = 2 can be

rewritten as

(8.4)

Note that the transmitted signals x i , i = 1, 2, 3, 4, is independent from each other.

Thus, the received signal r, (k) and r, (k + 1) are independent from each other.

If we restrict our attention to only linear processing, the detection problem can be

given as

(8.5)

where g[.] is a linear correlator function defined as

(8.6)

where 0 < i, j Є I < M. One can choose different correlators g[.] as long as the resulted

sequence for the STC schemes is statistically cyclic.

The above detector for distinguishing Alamouti's STC scheme from BLAST can be

generalized to the case where the number of transmit antenna L is larger than 2. Since the

STC schemes is block coding, the correlation of the transmitted signals is within one block,

and the detection problem can be rewritten as

(8.7)
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Figure 8.1 The cyclo-spectrum of the statistically cyclic sequence (a) ri (k) (k + 1),
i 	 j (b) ri (k) ri (k + 1) (c) ri (k) 7'j (k + 1), i 	 j

7-10 g [ri (k) , ri (k + u)] is not statistically cyclic

   BLAST scheme;

where u is an integer less than the block length T.

8.3 Criteria for choosing the correlator

As it is shown in the previous section, we have not yet specified g[•]. There is no unique

correlator for our detection problem. That is, we have the degree of freedom to choose

them. In fact, it is possible to show that, even though the received signals in STC scheme

contains correlated signals, not all the correlators can generate a statistically cyclic sequence.

For example, as shown in Fig.8.1, to detect an Alamouti's scheme, auto correlators

ri (k) ri (k + 1), 0 < i E I < M, cross conjugate correlators r i (k) r, (k + 1), i j E I <
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Figure 8.2 The cyclo-spectrum of the statistically cyclic sequence (a) L = 3, T = 8, half
rate, r, (k) r (k + 1), i	 j (b) L = 3, T = 8, half rate, r, (k) r j (k + 5), i	 j (c) L = 3,
T= 4, rate 3/4, r, (k)rj (k + 1), i j (d) L = 3, T = 4, rate 3/4,	 (k)|2.

M, are not statistically cyclic, while cross correlators r i (k) rj (k + 1) , i	 j, is statistically

cyclic.

From (8.5) and (8.7), the criteria to choose a correlator is to make the resulted

sequence statistically cyclic or

(8.8)

where f (k) is a periodic function with period p.

We can verify (8.8) with the previous example of Alamouti's scheme. Extending this

result to more transmit antennas, one finds that the choice of correlator depends on the

specific STC scheme applied.

As shown in Fig.8.2, when the number of transmit antenna L = 3, T = 4, which

corresponds to the rate 3/4 STBC, we found by experiment that one can choose correlators
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given by ri (k) (k + u), ri (k) rj (k + u), ri (k) ri (k + u), i y j, 0 j Є I <M, u Є

I < 4, or the energy detector |rm (k)| 2 . If L = 3, T = 8, which corresponds to the half rate

STBC, we found by experiment that one can choose correlator given by ri (k) r*i (k + u),

0 <u E I < 4, ri (k) (k + b), ri (k) rj (k + b), i j, 0 < j E I < M,0 <b E I < 8.

For all these correlators, the BLAST scheme can not give us a statistically cyclic

sequence.

According to (8.8), we have only listed the possible correlators for Alamouti's and

Tarokh's (half rate and 3/4 rate) scheme. For the general cases, a simple method can

be employed by using the transmission matrix of the STC scheme to get the possible

correlators satisfying (8.8). Essentially, we can get the following statements (see Appendix

for proof).

Theorem 1: The cross (conjugate) correlation between sequences from any two

receiving antenna or auto conjugate correlation of a sequence at any receiving antenna,

are statistically cyclic, if for any given 0 < u < T, the matrices E{s (k) s (k + u)T} or

E{s (k) s (k + u) H } are not the same;

Theorem 2: The auto correlation of a sequence at any of the receiving antenna is

statistically cyclic, if for any given 0 < u < T, the matrices E{s (k) s (k + u) T } is not

skew-symmetric with the same diagonals. That is when the matrices' diagonals are not the

same, the auto correlation sequence at any receiving antenna is statistically cyclic.

We can evaluate a table composed of matrices for straightforward view. For example,

when the number of transmit antenna L = 3, T = 4, which corresponds to the rate 3/4

STBC, the table is given by

s (0) s (0) H s (0) s (1)T s (0) s (2) T s (0) s (3)T

s (1) s (0) 11 s (1) s (1) H s (1) s (2)T s (1) s (3)T

s (2) s (0) H s (2) s (1) 11 s (2) s (2) H s (2) s (3)T

s (3) s (0) H s (3) s (1) H s (3) s (2) H s (3) s (3)H

(8.9)
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where s (i), i = 0, 1, 2, 3 are actually s (k|k mod T = i), which are the four column vectors

of the transmission matrix [45]. It is given by

(8.10)

The correlation matrices of size 3 x 3 are above the diagonal of the table given by

(8.9); while the conjugate correlation matrices are below the diagonal of the table.

To check whether we can use the energy detector, we simply check the matrices along

the principal diagonal, which corresponds to E [s (k) s (k)H ] . These matrices are given by

A, A, B, B, where

(8.11)

and

(8.12)

Apparently, their diagonals are not all the same. Thus following Theorem 2, energy detector

will work for the detection problem.

To check whether the auto correlator r, (k) r, (k + 1) is statistically cyclic, we can

simply check the matrices along the first sub-diagonal of the table (8.9) on the top. The

fourth matrix along the sub-diagonal is zero matrix because the transmitted signal out of

one STC block is independent of the other STC block. The four matrices are given by C,
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D, 0, 0, where

(8.13)

and

(8.14)

Since the matrices are all skew symmetric (with same diagonals), we can conclude that the

auto correlator ri (k) ri (k + 1) will not work. However, according to Theorem 1, the cross

correlator r i (k) rj (k + 1) will work since these matrices given by C, D, 0, 0, are not all

the same.

According to the above rules, one can conclude that a common correlator which

is suitable for all STC schemes in [44] and [45] is ri (k) rj (k + 1), i j. However,

this common correlator does not promise a good detection performance. For example, as

shown in Fig.8.2(a) , when L = 3, T = 8, the peak at frequency index 256 is only slightly

higher than others. Consequently, the performance of the detector with such correlator is

quite poor compared to others. Therefore, in the next section, we are going to find some

combining process for the correlators to improve the detection performance.

8.4 Detection with prior knowledge

8.4.1 The block length T is known

When the block length T is known, we can get the cyclic frequencies a is a multiple of 2π /T.

According to previous section, all the correlators satisfy the criteria (8.8) are statistically

cyclic. The question is then arise; how to combine these common correlators together to

improve the performance of the detector?
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We recall that in [19], to combine the cyclic statistics of the correlator with different

delays r (k) r (k i = 1, • • • , q, Dandawaté and Giannakis treat the cyclostationarity

test problem as detecting nonzeroness of the unknown mean of a multivariate normal

random variables. The test statistic was given by

(8.15)

where Rrr (a) is the 1 x 2q row vectors cyclic spectrum at cyclic frequency a with delays

(8.16)

in which R (a, τi ) is the estimate of the cyclic spectrum at cycle frequency a for delay To

which is given by

(8.17)

Y„ is the asymptotic covariance matrix of the estimator R rr (a), which is a 2q x 2q matrix

computed using the cyclic-spectrum given in [19].

The performance of the detector given by (8.15) is better than a single correlator

detector at only one T. One can show that, in the test statistic given by (8.15), a prewhitening

filter is applied to the different cyclic spectrums before summing them together.

Similar to [19], we suggest to combine different common correlators by applying a

prewhitening filter before summing them together. In such a case, the test statistic is the

same form as (8.15).

Therefore, for this combining process, the detection algorithm can be implemented

using the following steps:

Step 1: Get P common correlators according to the criteria (8.8) with the prior

knowledge;

Step 2: Computing the test statistic, it, given by (8.15) at cyclic frequency a = T ;
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Step 3: For a given probability of false alarms, PF, using the central x 2 tables for 2P

degrees of freedom, find a threshold so that PF = Pr {x2 > 'y};

Step 4: Declare it is STC if n > 7; otherwise, decide it is BLAST.

8.4.2 Both the channel parameters and the specific STC are known

In the cyclostationarity test derived above, we assume the mean of the cyclic-correlations,

E 	 (a)} is unknown. Similar to (8.17), the cyclic spectrum, E 	 (a)} , is the expectation

of the Fourier transform of the mth correlator. Note that E {Rm, (a)} can be determined by

the expectation of the correlator, which is dependent on the specific STC schemes and the

channel parameters. That is, the expectation of the correlator will affect E {Rm(α)}.

For example, when the number of transmit antenna L = 3, T = 4, the expectation of

the correlator ri (k) rj (k + 1) is given by

(8.18)

where 8 [k] is the delta function. While the expectation of the correlator r, (k) rj (k + 2) is

given by

(8.19)

Similarly, we can get the expectation for r, (k) rj (k + 3). Obviously, these cyclic

sequences generated by the correlators with different delays has different spectral shaping.

Consequently, the expectations of the cyclic spectrums at the cyclic frequency a will have

different phases. Assume the observed sequence is long enough, the phase of the first peak



= angle {h11h22 — h12h21} (8.21)
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of the statistically cyclic sequence (a = 2π/T) can be given by

(8.20)

where angle {·} represents the unwrapped phase operator. The term inside the expectation

is the correlator satisfying (8.8). Obviously, combining (8.18), (8.19) and (8.20), we can

find that the phases depends on the channel parameters as well as the specific STC schemes.

For example, in Alamouti's scheme, suppose the correlator we use is ri (k) rj (k 1), i

j, the phase can be calculated using (8.20) as

When we have the prior knowledge of the channel as well as the possible STC

scheme, which consequently give us the approximate phase Om , m = 1, ...P, corresponding

to the mean of P cyclic sequences, a simple non-ML suboptimal test statistic can be given

by

(8.22)

where P is the number of correlators satisfying (8.8).

Therefore, for this combining process, the detection algorithm can be implemented

using the following steps: 	 •

Step 1: Get P common correlators according to the criteria (8.8) with the prior

knowledge;

Step 2: Compute the phase for these correlators at cyclic frequency a = 2π/T = 2π/T;

Step 3: Computing the test statistic, κ, given by (8.22) at cyclic frequency a = 2π/T; ;

Step 4: For a given probability of false alarms, PF, using the central x2 tables for 2

degrees of freedom, find a threshold 7 so that PF = Pr {x2 > y};

Step 5: Declare it is STC if κ > 'y; otherwise, decide it is BLAST.
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8.4.3 Performance analysis of the two combining algorithms

In the previous subsections, to improve the performance of the detector, two algorithms

to combine the correlators have been proposed. The first algorithm requires computing

the inverse of the asymptotic covariance matrix of size 2q x 2q each run of Monte Carlo

experiment, resulting in a heavy computational burden. The second suboptimal algorithm

is much simpler than the first one. However, it requires the prior knowledge of the channel

parameters and the specific STC scheme we are going to detect.

Essentially, the first algorithm prewhitens the noise before combining several complex

signals with unknown means. With the prior knowledge of the phase of the mean value

of the complex signals, the second suboptimal algorithm corrects the phase of the means

and sum them together without prewhitening noise. Of course, the optimal but much

complicated algorithm can be the combination of these two algorithms. Actually, even

though suboptimal, the second algorithm outperforms the first algorithm when the phase of

the two unknown means has a large difference.

8.5 Simulation

Monte Carlo simulations are conducted to test the performance of the above detectors for

Rayleigh block i.i.d channels (5000 experiments for each point). In the first scenario,

Alamouti's STC scheme and the MIMO BLAST scheme are used. QPSK modulation is

used for both transmit antennas. The number of receiver antenna is 2. The number of

the received symbols for each detection block is 500. The probability of false alarm is

0.95. The cyclic frequency for testing is set as a = 	 As it is shown in Fig.8.3, three

different detectors: single correlator r 1 (k) r2 (k + 1) (single), the combined correlators

for correlators r 1 (k) r2 (k + 1) and r2 (k) r1 (k + 1) using test statistic given by (8.15)

(combined 1) and (8.22) (combined 2) are applied, respectively. As it is shown from

Fig.8.3, both of the algorithms which combine the linear correlators outperform the detector
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Figure 8.3 Probability of detection for Alamouti's scheme.

with only one linear correlator. The second algorithm (combined 2) outperforms the first

one (combined 1) because the phase difference for the two correlators is approximately π.

Secondly, 3/4 rate STC scheme with L = 3, and the MIMO BLAST scheme are

used. Similar simulation settings are applied as the first scenario. As it is shown in

Fig.8.4, three different detectors: single correlator r 1 (k) r2 (k + 1) (single), the combined

correlators for correlators r 1 (k) r2 (k + 1), r*1 (k) r2 (k + 1) and |n (k) | 2 using test statistic

given by (8.15) (combined 1) and (8.22) (combined 2) are applied, respectively. These

correlators were chosen randomly from those which are cyclostationary. Again, both of

the algorithms which combine the linear correlators outperform the detector with only one

linear correlator. A larger gap between the combined (1 &2) algorithms and the single

correlator can be observed due to more degrees of freedom (three correlators).

Still, the second algorithm (combined 2) outperforms the first combined algorithm

(combined 1). The phase difference of the mean value of the cyclic statistics at cyclic

frequency a = is more than π/2 for any two correlators.
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Figure 8.4 Probability of detection for STC 3/4 rate scheme.

8.6 Proof for Theorem 1 & 2

Proof for Theorem 1:

For the cross correlator or cross conjugate correlator or auto conjugate correlator, the

expectation is given by

	E {ri (k) (k + u)} = hi E {s (k) s (k + u)T h 3T 	(8.23)

or E {ri (k) (k + u)} hiE {s (k) s (k + u) r
I hH

or E	 (k) (k + u)} = 	 {s (k) s (k + u) H hH

where 11 2 , hj , are the ith and jth row vector of the channel matrix H respectively.

Since the channel parameter is randomly chosen, the term of the right hand side

(RHS) of the equation is the same only when E {s (k) s (k + u) T } or E {s (k) s (k + u) H

is the same. Only when the terms of E {s (k) s (k + u) T or E {s (k) s (k + u)H } is not

the same, the resulted correlator is periodic with a period larger than zero. Or we can say,

the correlator is statistically cyclic. Thus, we complete the proof for Theorem 1.
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Proof for Theorem 2:

For the auto correlator, the expectation is given by

(8.24)

For the auto correlator, the term of the RHS of the equation can be rewritten as

(8.25)

where Skk represents the diagonal element of matrix E {s (k) s (k + 11) T } and Slk, Ski are

the (1, k)th and (k, l)th elements of the matrix.

When the diagonal elements are not the same, the term h iE {s (k) s (k + u) T
}

will not be the same due to the randomness of the channel parameters. When the diagonals

are the same, and if Slk 	 wewe can get that the second sum term in (8.25) is zero and

consequently, the LHS of (8.25) will be the same. Since the correlator is statistically cyclic

if the LHS of (8.25) are not the same. We complete the proof for Theorem 2.
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