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ABSTRACT

NONLINEAR EVOLUTION OF ANNULAR LAYERS AND LIQUID
THREADS IN ELECTRIC FIELDS

by
Qiming Wang

The nonlinear dynamics of viscous perfectly conducting liquid jets or threads under

the action of a radial electric field are studied theoretically and numerically here. The

field is generated by a potential difference between the jet surface and a concentrically

placed electrode of given radius. A long-wave nonlinear model that is used to predict

the dynamics of the system and in particular to address the effect of the radial electric

field on jet breakup is developed, Two canonical regimes are identified that depend on

the size of the gap between the outer electrode and the unperturbed jet surface. For

relatively large gap sizes, long waves are stabilized for sufficiently strong electric fields

but remain unstable as in the non-electrified case for electric field strengths below a

critical value, For relatively small gaps, an electric field of any strength enhances the

instability of long waves as compared to the non-electrified case. Accurate numerical

simulations are carried out based on our nonlinear models to describe the nonlinear

evolutiOn and terminal states in these two regimes. It is found that jet pinching

does not occur irrespective of the parameters, Regimes are identified where capillary

instability leads to the formation of stable quasi-static microthreads (connected to

large main drops) whose radius decreases with the strength of the electric field. The

generic ultimate singular event described by our models is the attraction of the jet

surface towards the enclosing electrode and its contact with the electrode in finite

time. A self-similar closed form solution is found that describes this event with the

interface near touchdown having locally a cusp geometry. The theory is compared

with the time-dependent simulations with excellent agreement.



In addition a core-annular flow problem is considered to include the external

viscous fluid. A full problem simulation, based on a boundary integral technique is

carried out to capture the full dynamics of the electrified viscous jet in the zero

Reynolds number limit. Pinching solutions of either electrified or non-electrified

viscous jets are obtained and the instantaneous velocity field and flow patterns are

studied numerically near breakup, As the electric field strength increases, the size

and shape of the drops are changed dramatically compared with the non-electrified

problem. HOwever, the local dynamics remain the same as shown in the non-electrified

capillary breakup problem, since the main and satellite liquid masses jOined by a

collapsing neck have the same potential and wOuld not feel the strong influence of

the external field. The pinching is suppressed if the field strength is sufficiently

large and another type of breakup behavior appears. Briefly speaking, the interface

is attracted and touches the outer electrode in the radial direction in a similar

phenOmenon found for a single jet problem, This type of terminal state is also

described by a lubrication model in the thin annulus limit. A comparisOn between

the bOundary-integral simulations and the asymptOtic results is also carried out.
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CHAPTER 1

INTRODUCTION

The effect of electric fields on the capillary instability of liquid jets is a fundamental

problem found in several applications, including ink-jet printing, fuel atomization,

electrohydrodynamic spraying of liquids and sO on. Capillary instability in liquid

cylinders manifests itself whenever the wavelength of the perturbation is longer than

the undisturbed jet circumference. See the theoretical work of Rayleigh [52] and the

subsequent analyses of Tomotika [64] and Chandrasekhar [8]. As the perturbation

grows into the nonlinear regime the jet disintegrates into droplets and such terminal

states were described recently in terms of similarity solutions of the Stokes and

Navier-Stokes equations (Papageorgiou [45], Eggers & Dupont [17], Papageorgiou

[44]). Direct simulations of capillary instability have also been carried out by several

investigators including Day et al, [13] and Lister & Leppinen [34] (for inviscid drops or

threads), Stone & Leal [61], Lister & Stone [36] and Pozrikidis [49] (for Stokes flows),

and Ambravaneswaran et al. [2] (for Navier-Stokes equations). Good agreement

between one and two-dimensional models, as well as the experimental work of Zhang

& Basaran [68], have also been obtained, Comprehensive reviews have appeared

recently by Eggers [16] and Eggers & Villermaux [18].

Although electric field effects have been an active research area for decades

there is still considerable work that needs to be done to understand the underlying

nonlinear dynamics and mechanisms. It has been pointed Out by Basset [6] and

observed experimentally in various configurations (see Raco [50], Taylor [62] and

Ramos et al. [51]) that axial electric fields stabilize liquid bridges and jets and can

act to support liquid bridge lengths beyond their critical Rayleigh length, for example.

Comprehensive linear theories providing an explanation for the effect of axial electric

1
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field stabilization have been carried out by Saville [54], [55], [56]. A more recent

study on this is done by Volkov et al, [65] who applied boundary integral methods

to calculate the equilibrium shapes of the electrified liquid bridge.

In the present study the nonlinear evolution of a viscous liquid thread or jet in

the presence of radial electric fields driven by a cylindrical electrode placed coaxially

to the undisturbed jet is considered. Linear stability analyses in this case have been

carried out by Basset [6], Schneider et al. [58], Huebner & Chu [27] for both viscous

and inviscid fluids, typically taken to be perfect conductors. The main findings are

that electric charge tends to produce smaller drOplets after breakup and evidence for

this is presented in the experiments of Magarvey & Outhouse [40]. More recent work

concentrating on absolute/convective instabilities of electrified jets under radial fields

has been carried out by Artana et al. [4], [3], where it is shown that the electric

field reduces perturbation wave speeds thereby increasing the parameter space where

absOlute instability emerges. The linear theory for an imperfectly conducting jet has

been built up by Lopez-Herrera et al. [39] based on a leaky-dielectric model ( Melcher

& Taylor [41] and Saville [57]), The role of finite permittivity and conductivity has

been explored and also the validity of lower order approximatiOns was examined and

discussed in detail. Interestingly the linear theories show that the electric stresses

also tend to destabilize the non-axisymmetric modes. This phenomenon is observed

experimentally as so called kink instabilities or whipping jets (e.g. Saville [56], Mestel

[42] and Hohman et al. [24]).

The nonlinear dynamics of electrified jets under the action of radial fields have

not received a lot of attention. Setiawan & Heister [59] computed the evolution of

an inviscid jet using a boundary integral method and found that the terminal states

can involve the usual main- and satellite-drop pinching states or, at higher electric

field values, spiky features form without jet thinning, The latter states correspond to

an axisymmetric Taylor cOne and are a precursor to small droplet atOmization taking
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place around the periphery of the jet as was observed in the experiments of Cloupeau

& Prunet-Foch [9] and Kelly [30]. The resolution of the computation in Setiawan &

Heister [59], however, may be not sufficiently definitive to provide accurate terminal

structures - in particular the minimum jet radii achieved may not be small enough

for the stabilizing effects of the radial field to enter and compete, as our results in the

present study. Such issues are addressed in the present work by performing accurate

numerics for reduced systems.

In addition, a Korteweg-de Vries (KdV) equation is derived through a weakly

nonlinear analysis for the inviscid jet in the long-wave limit. The electric force acts as

a radial gravity term and hence plays the role of gravity in the classical water waves

derivatipn. This is a novel and interesting application of the KdV in axisymmetric

electrohydrodynamics.

In another related work, Lopez-Herrera et al. [38] consider one-dimensional

models of electrified capillary jets placed in a coaxial electrode, They assume that

the fluid is a perfect conductor and derive a model that includes viscosity and inertia.

In addition they use the full curvature term in the normal stress balance (even though

this is not correct asymptotically) following the ideas adopted by Lee [32], for example.

(A comparison of the effect of different models and representations of the curvature on

pinching singularities is given in Papageorgiou & Orellana [47].) The computations in

[38] are mostly carried out for small Ohnesorge numbers (defined as Oh = μ/(ργR 0) 1 /2

where μ, ρ, γ and R0 are the fluid viscosity, density, surface tension coefficient and

the undisturbed jet radius respectively) and pertain to fluids with small viscosities,

In addition, the computation are not exhaustive enough to provide the definitive

dynamics for large times - for example, it is not conclusive from the results that

pinching does indeed take place and some results are presented where pinching appears

to be arrested with a different terminal state becoming relevant. Such phenomena

are computationally challenging and One objective of the present study is to obtain
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accurate descriptions of terminal states at order one or large Ohnesorge numbers.

Our findings indicate that according to the one-dimensional models, pinching does

not occur but an interfacial cusp at a finite jet radius emerges instead. Similarity

sOlutions that describe these terminal structures are also constructed, and confirmed

numerically. It is intriguing to find, therefore, that the solutions near the singular

time can be expressed in closed form. Recently the work by COllins et al. [11] shows,

however, that pinchoff does happen for certain electrification levels in full simulatiOns

of the Navier-Stokes equatiOns using finite-element methods. Those results suggest

that the global effect of the electric field is important and the local approximation

is rather inaccurate at some point (the axial velocity may depend on the radial

coordinate) which may exaggerate the effect of the electric field in the vicinity of the

breakup point. In the work of Collins et al. [11] they did an extensive and general

computational investigation on the influence of electric stresses, capillary pressure and

surface charges to the formatiOn of satellites and breakup times. It turns out that

the size of satellite drops will be bigger than the uncharged case and the main drops

will be elongated in the direction of electric fields, which is similar to our findings as

shown later. Another interesting result is that the charged Stokes jet breaks down

asymmetrically not like the uncharged problem, which is due to the migration of

the surface charge as the surface deforms. The sign reversal of the electric pressure,

depending on the positiOn of the electrode wall, accelerates the breakup and attributes

to form a local thread, hence shifts the breakup points.

The core-annular flow problem is also studied in the present work by including

the effect of external viscous fluid. The problem without electric effects is itself

interesting enough, where the possible self-similar description of pinch-off solutions

has been of considerable interest for decades. The analytic solution is described

by Papageorgiou [45] fOr a single viscous jet in vacuum. The infinite liquid-liquid

jet problem seems more complicated and no analytic solutions are available so far.
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Lister & Stone [36] numerically solved the equal viscosity problem in the Stokes

limit and showed evidence Of self-similar cOllapse close to breakup with very high

accuracy. Zhang & Lister [67] and Sireou & Lister [60] considered a wide range Of

viscosity ratios and solved the self-similar equations in a transformed domain but

the question remains, and the real physical problems have not been solved as far as

we know except for the cOmputations of Pozrikidis [49]. In our work more accurate

computations than these in the literature are carried out to capture the breakup

and understand the nonlinear evolution for different ranges of viscosity ratios. In

particular the satellite structure, as shown in a later section, is quite different as the

viscosity ratio varies. For the case that the core-thread is more viscous than the

surrounding fluid, λ  = μ ext/μ znt << 1 (µ the viscosity), the main drops become clOse

to spherical and are connected with a thin microthread. In the opposite limit, i.e.

the surrounding fluids more viscous, different satellite shapes fOrm compared tO the

previous case, and appear to be visually similar to the results of Tjahjadi et al, [63].

Interestingly, the extreme limits, A = 0 and A = oo in which case the jet surface is

symmetric in the axial coordinate near breakup, do not seem to connect with the

finite A shapes.

When the fluids are confined to a long cylindrical tube, the tube radius also

affects the nonlinear evolution and pinching may be even suppressed. This problem

was studied in a weakly nonlinear fashion by Papageorgiou et al, [46], where rich

dynamics, governed by a modified Kuramoto-Sivashinsky equation, are explored in

several distinct limits. A lubrication mOdel was derived by Hammond [22] fOr an

annular film and was recently revisited by Lister et al. [35], Complex film drainage

occurs at very long times with tiny film thickness and self-sustained axial motiOn

driven by surface tension alone. Their results also showed that the long-time behavior

depends on the length of the domain as well as initial conditions. Numerical computation

of the full Stokes problem with arbitrary gap between the core-fluid surface and the
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tube wall, through a boundary-integral technique, was carried out by Newhouse &

Pozrikidis [43] for purely capillary-driven flows and Kwak & Pozrikidis [31] for flows

with an interface covered by insoluble surfactant. Our present work will revisit some

of their calculations and then include the effect of electric fields. Not surprisingly the

electric force causes finite-time rupture and suppresses the axial motion found in the

uncharged case when the annulus is thin. The coupled Stokes and Laplace problems

for the fluid dynamics and electrostatics, respectively, are solved utilizing a similar

boundary-integral method to that mentioned earlier.

The structure of the thesis is as follows: In Chapter 2 the physical model of

electrohydrodynamics is introduced and the general gOverning equations as well as

the dimensionless parameters are given. In Chapter 3 we begin by considering a

single viscous jet subject to a radial electric field. Linear stability theory is carried

out to gain some analytic insights. A one-dimensional model is then derived and used

to investigate the nonlinear dynamics with or without inertia. Different nonlinear

behaviors for various parameters are determined. Self-similar solutiOn in the inertialess

case is also constructed to describe flows that terminates in finite-time singularities,

The effect of inertia is discussed through a simple scaling analysis. In addition, the

reason for pinching being suppressed in the asymptotic model is given with the help

Of numerical simulations. A novel derivation of the KdV equation in the long-wave

limit for an electrified inviscid thread is presented in Chapter 4. In Chapter 5 the

general problem of core-annular flows by including the effect of annular fluids is

considered. The numerical results of this chapter are presented based on boundary-

integral methods. The Green's function for the electrostatic problem in a long tube

with a periodic boundary conditiOn is derived, In particular, we examine how the

viscosity ratio, the dimensionless tube radius and the electric parameter affect the

nonlinear behavior. Various breakup characteristics can be determined and a new

type of breakup, 'splashing', is fOund as a transition between the core-fluid-pinching
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solution and annular film-rupture solution, A lubrication model is also presented in

the limit of thin annulus similar to the uncharged case (e.g. Hammond [22]) and the

self-similar scalings are identified through accurate numerical simulations. Finally

in Chapter 5 the results from the lubrication model and the full boundary-integral

simulatiOns are compared together. In Chapter 6 some concluding remarks are

discussed.



CHAPTER 2

MATHEMATICAL FORMULATIONS

2.1 Flow Domain and Governing Equations

Axisymmetric viscous core-annular flows in cylindrical coordinates (r, z) are considered.

The fluids are confined to a cylindrical tube (electrode) as illustrated in Figure 2.1.

The parameters a and b are unperturbed thread radius and tube radius respectively.

L is typically One period (later the problem is formulated in a periodic domain).

The fluids are assumed to be immiscible, incompressible and the effect of gravity

and buoyancy is neglected. For simplicity, the core fluids are assumed to be perfect

Figure 2.1 A sketch of the domain.

conductors and the annular fluids to be perfect dielectrics with no effective charge

density at the interface. The radial electric field is generated by the potential difference

between the interface and the outer electrode. Under this assumption, the time scale

required for charge to move around the fluid surface is much smaller than the time

8
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scale on which the hydrodynamics occurs. Therefore an electrOstatic problem exterior

to the core thread needs tO be solved. Note that in the static case, the equations for

the electric field and magnetic field are uncoupled, Since we are not interested in the

effect of magnetic fields only the equations for the electric field will be considered. If

the external magnetic field is absent magnetic effects can be completely ignored (see

Saville [57]).

More specifically from Maxwell's equations the characteristic time scale fOr

electric phenomena (charge relaxatiOn time) and magnetic phenomena are

where Ep , μm, and σ  are, respectively, the electric permittivity, magnetic permeability

and electric conductivity Of the material, and sl is the characteristic length scale of

the system. For a typical system in experiments (around 20°C) with

σ= 0(10-3)S na-1,γ =0(50) dyn cm-1, Ep= 0(50)E0,μm= 0(1)μ0, (2.2)

where 60 8.854 x 10 -12 Fm -1 and ,μ0 = 4π  x 10 -7NA' are the electric permittivity

and permeability Of free space respectively, the time scale in (2.1) gives τe  ~ 5 x 10 -7 s,

and τm 10 -12 s for a 0.01 m jet and even smaller τm, for thinner jet.

For the electrostatic problem, the electric potential is denoted by 0(r, z, t) and

satisfies E = Vφ , where E is the electric field and in component form we write

E = (E1 , 0, E2 ). Since E is divergence free, the electric potential satisfies Laplace's

equation in the annular region S(z, t) < r < b,

with boundary conditions φ  = V0 on the wall and φ  = 0 at the interface, without loss

Of generality.



10

The governing equations for the fluids are then given by the Navier-Stokes

equations and the continuity equation in the core (fluid 1) and annular (fluid 2)

regions respectively.

where u = (u r , uz ) is the fluid velocity vector, p is the pressure and ρ i , μ i , i = 1,2

are respectively the density and viscosity of the fluids.

On the tube wall, the no-slip and no-penetration boundary conditions require

that

In addition, at the fluid interface, F(r, z, t) 	 0, the kinematic cOndition is,

and tangential and normal stress balances ([ ] = indicates the jump from inside tO

outside)

where t and n are unit tangential and normal vector respectively On the surface and

lc is the curvature at the interface, defined as
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with -y the coefficient constant surface tension, T = σ+M, a Newtonian stress tensor

and a Maxwell stress tensor which are given by

2.2 Dimensionless Parameters

The problem is nondimensionalized using a for lengths, γ/μ 1  for velocities, γ/a for

pressure, μ1a/σ a for time and 1/0 for the voltage potential:

The prime variables are dimensionless and we end with several parameters to measure

the physical quantities,

Re is the ReynOlds number; x and A are the density and viscosity ratios the of

two fluids respectively; d is the dimensionless tube radius; Eb is the electric Taylor

number which represents the ratio Of electric to surface tension forces and measures

the strength of the electric fields. Sometimes, the electric Taylor number is also

described by Eb = EpE2∞a/γ(e,g. Lopez-Herrera et al. [38]), whereE∞is the electric

field strength far away. Using (2,2) and taking the fluid viscosity to be 0(10) Pa s,

the Reynolds number and the electric Taylor number are estimated as

So to obtain an electric Taylor number of Eb = 1, an electric field of strength

E∞  = 105 V/m is required. At a temperature of 25°C, common water has electric

permittivity 6p = 80.160 with 'y = 71.97 dyn/cm, while glycerol at 20°C, has E p = 47E0
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with -y = 63 dyn/cm. In order to cOver certain ranges of viscosities and cOnductivities,

mixtures of water and glycerol are usually used (see Lopez-Herrera Gañán-Calvo

[37]) and they typically are of the order that is considered here. At the same time

inertial effects are seen to be fairly small. In the present study, highly viscous flows

are of particular interest and an asymptotic theOry is built up for a single Stokes

jet in Chapter 3. A boundary-integral simulation is carried out for Stokes flows

in Chapter 5. The parameter estimates given above provide good suppOrt for our

nonlinear mOdeling. Another relevant parameter for two-phase fluid systems is the

Bond number, defined as

with g the acceleration due to the gravity and Ap is the density difference between

the fluids. The Bond number measures the relative importance of gravity over surface

tension, and using the physical values given above B, D (10- 5 ). Hence, gravitational

effects can be neglected in the problems considered here.



CHAPTER 3

ELECTRIFIED VISCOUS THREADS

In this chapter the axisymmetric deformation of a perfectly conducting, single viscous

jet or thread under a radial electric field is considered. Hence = y and p1 = p and

fluid 2 is passive, i,e. air or vacuum (p2 = 0, /22 = 0). Using cylindrical coordinates

(r, B , z) and assuming axisymmetry, the fluid dynamics in the region 0 < r < S(z, t)

(region 1, say) and for the electrostatics in S(z, t) < r < d (region 2, say), where

r = S(z, t) denotes the jet interface, need to be solved.

3.1 Governing Equations

Nondimensionalization has already been introduced in Chapter 2. The dimensionless

Navier-Stokes equations are (in cylindrical coordinates),

where

The parameter Re = (γρa/μ2) is the square of the inverse Ohnesorge number,

Oh = (μ/√γρa ) - Re is referred as a Reynolds number, as mentiOned in Chapter 2.

u and w are the radial and axial velocity components, respectively. 0 is the voltage

potential and note that the electrOstatic problem needs to be solved in S(z, t) < r < d.

13
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The boundary conditions at r = S(z, t) are those of tangential and normal stress

balances, a kinematic condition, and a zero equipotential conditiOn for the voltage.

Written out in full these read,

Recall that the dimensionless parameter Eb = (E0V02/γa) represents the ratio of

electric to surface tension fOrces and measures the strength of the electric field. In

addition tO the interfacial conditions (3.5)-(3.8) regularity conditions are required for

the velocities at r = 0 and a Dirichlet condition for 0 at the cylindrical electrode

where d = (b/a) is the dimensionless radius of the cylindrical electrode (note that

0 < S(z, t) < d, unless the jet pinches or touches the outer electrode).

3.2 Linear Stability

3.2.1 Characteristic Equation

Linear stability theory is used to investigate the behavior Of a small disturbance to

an initially uniform, unbOunded liquid thread stressed by a radial electric field, The

base states are
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and it is assumed that infinitesimally small perturbations have the normal-mode-form

where k is the wavenumber, w the growth rate of the disturbance and f denotes a

perturbation function which can be pressure, interface position or electric potential.

The linearized field equations become:

where ' = d/dr . The linearized version of the tangential and normal stress balance

equations (3.5), (3.6) and also the kinematic condition (3,7), on r = 1 read

where pe denotes the linearized Maxwell stress contribution to (3.6).

Then in a similar manner to Tomotika [64] and Papageorgiou [45], for example,

the linear system is solved to obtain the characteristic equation determining the

growth rate w(k), to find

where F (k) = kI0(k)/k2 = k2 + Reω  and pe comes from solving the Laplace

equation in region 2 and evaluating the Maxwell stresses at r = 1 (see also Saville



16

[56] and Collins et al. [11])

It is noticed immediately that (3.19) recovers the result of an uncharged jet when

Eb = 0 and this serves as a quick check for our results.

The stability for a highly viscous jet and inviscid jet can be obtained from (3.19)

by taking appropriate limits. In the viscous limit, R e —f 0, the effect of inertia can

be neglected relative to viscosity. Consider the Taylor series of F(k) for small Re so

that

to find that (3.19) becomes

which coincides with the result in Wang et al. [66], where (3.22) is derived by directly

solving the linearized system with Re = 0. In another limit, the inviscid limit,

Re —f oo, viscosity can be neglected relative to inertia and k can be written as

After some algebra, (3.19) becomes

In the inviscid case the nondimensionalization is different in that the time scale is

taken as (ρa3/γ)1/2  instead of μ1a/γ. Therefore (3.24) turns out to be, after resealing,
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3.2.2 Long-wave Expansion

The characteristic equation (3.19) is complicated since k is a function of w and is

contained in the arguements of the Bessel functions. In order to get analytic insight,

simplified equations in the long-wave limit k 0 is considered. Thus (3.19), assuming

Reω << 1, becomes

where a = E b (ln d — 1)/(ln d) 3 . Immediately it is seen that some transition would

happen at In d = 1 which indicates that the electric fields do not affect the linear

stability in the long-wave limit at this point. By solving equation (3.26) for w, the

following relation is found,

and it is seen that the instability occurs when α  < 1 while α  = 1 gives the neutral

stability. In addition, negative a always gives instability which corresponds to the

case d < e ti 2,7183, irrespective of Eb. This implies the necessity of investigating this

case since in the literature (e.g. Satiawan Heister [59], Lopez-Herrera et al. [38] and

Collins et al. [11]) people usually take d = 10 which is far away from the critical value

e. In the highly viscous and inviscid limit the same result is obtained in the long-wave

limit, since, as we mentioned, the electric effect only enters the normal stress balance

that gives the term 1 - k2 - α. To summarize, then, the following expressions are

obtained in the long-wave limit from the full dispersion relation ((3.22) and (3.24))

and
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They will be revisited when the long-wave model is discussed. On the other hand,

for In d > 1, increasing Eb is stabilizing against capillarity and stable wave solutions

(a > 1) might be expected when inertia is present (Grandison et al, [21] and Gleeson

et al. [20]). However it should be noted that non-axisymmetric modes may dominate

when the electrification level is too high ( Saville [56]), Different breakup modes are

identified asymptotically by Hohman et al. [24].

3.2.3 A Note on The Linear Stability of An Imperfectly Conducting Jets

For a poorly conducting jet, the governing equations for the electric potential follow

the leaky-dielectric model (e.g. Saville [57]). The long-wave axisymmetric perturbation

is still of interest and after some algebra the growth rate in highly viscous jets (the

derivation not shown here) becomes

Similar to the perfect conductor case the electric field still has the stabilizing effect

depending on d and Eb and it is observed that poor-conductor assumption only shifts

the 'critical' value on the parameters. For example, in the case of perfect conductor,

the dispersion relation in long-wave limit indicates that d e for fixed Eb is critical.

Going below or above it will give different dynamic behaviors, while in the poor

conductor case, the critical value for d is e374 ti 2.117. Similar results in the long-wave

limit but for different viscosity ranges have been obtained by Lopez-Herrera et al. [39].

3.3 Long-wave Model

A slenderness parameter S is introduced such that
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and no confusion should be caused by the same symbol z being used for the scaled

axial coordinate. In addition d << δ -1 is assumed. The asymptotic analysis is similar

to that of Papageorgiou [45], Craster et al. [12] who analyzed the non-electrified

problem.

Applying the change of variables (3.31) to (3.4) and the expansion = 00 +

62 0 1 + ..., leads to the leading order problem

The solution is

The appropriate expansions in region 1 are

which on substitution into the Navier-Stokes equations (3.2), (3.3) and then (3.1) and

consideration of the leading order problem yields
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Using (3.36)-(3.38) into the normal stress balance (3.6) at r = S 0 provides an expression

for the leading order pressure at a given axial position,

One evolution equation (corresponding to mass conservation) connecting the leading

order quantities w 0 and S0 follows from the kinematic condition (3.7) at leading order,

and reads

To close the system we need to proceed to the next order solution of the N avier-Stokes

system and its boundary conditions (the tangential stress balance (3.5) enters at this

order). In order to retain inertia in the second order terms of (3.2), the canonical

scaling Re = 62M with M a positive constant is chosen. At order 6, then, the axial

momentum balance becomes

Since all terms in (3.41), except the one containing w 1 , are independent of r, we

integrate and use regularity at r 0 to obtain

The second evolution equation connecting w 0 and S0 arises from the tangential stress

balance condition (3.5) at leading order (order 6; the 0(6') equation is satisfied

identically), which provides an expression for w1r(S0 , z, t); equating with (3.42) and

evaluating at r = S0 , after some algebra the- equation becomes
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The evolution is governed by the nonlinear system (3.40) and (3.43) (see also Eggers

& Dupont [17] and Craster et al. [12]), When Eb = 0 the system is that derived and

studied by Eggers & Dupont ([17]), while in the additional limit a = 0 the inertialess

Stokes flow model of Papageorgiou [45] is obtained. We are in a position, therefore,

to evaluate quantitatively the effect of the radial electric field on capillary instability

and jet pinching. In what follows the subscript zero is dropped from the dependent

variables and the problem on 27r spatially periodic domains is considered.

3.3.1 Conserved Quantities

Equation (3.40) represents mass conservation which can be seen by multiplication by

S and integration with respect to z to obtain

where 2L periodicity is assumed. Equation (3.43) represents conservation of momentum,

that is

To show this (3.43) is multiplied by S2 and the left hand side is rewritten as

which on elimination of (S 2 ) t from (3.40) and manipulation of the right hand side,

casts (3.43) into

This is a conservation law for S ew and integration in z and use of periodicity gives

the result (3.45), Both conserved quantities are utilized to monitor the accuracy of

the numerical calculations described later.
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3.3.2 Linear Stability Properties

Linearizing equations (3.40) and (3,43) about the undisturbed states S 1, w = 0,

and looking for solutions proportional to exp(ikz+ wt), yields the following dispersion

relation

which is consistent with the result (3.26) that was derived in section 3.2.2. In the

Stokes limit R  = 0

is found, which agrees with Papageorgiou [45] in the absence of an electric field,

Eb = 0. It follows that if ln d > 1 the electric field is increasingly stabilizing as Eb

increases, whereas increasing destabilization takes place if ln d < 1.

In understanding the numerical solutions that are presented later (in particular

the formation of stable slender secondary threads), it is useful to consider the linear

stability of the system about the state S = a, w = 0, where 0 < a < d is some

constant. The growth rate in this case is

As a 1 (3.48) is recovered; the more relevant regime is 0 < a < 1 for which

neutral stability is always possible for non-zero Eb and a sufficiently small thread

radius a, with stabilization of thinner threads. The reason for this is that as a --> 0

the electric field term dominates in (3,49). The physical reason for this is that the

electric field pressure at the surface of a sufficiently thin thread dominates the capillary

pressure which scales with 1/a. Since the former pressure is stabilizing it competes

and overcomes the capillary pressure that tends to pinch the thread. This mechanism

is seen in the nonlinear calculations described later.
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3.4 Results and Discussion

In this section the equations (3.40) and (3.43) are considered and solved numerically

together with some analytic descriptions. The Stokes jet is investigated first and the

results of Navier-Stokes jet are also presented.

3.4.1 Numerical Method

The highly nonlinear partial differential equations (3.40) and (3.43) are solved numerically

through a pseudo-spectral method (e.g. Papageorgiou [45]) and advanced in time

using a fourth order Runge-Kutta method, where proper filters are employed to

smooth the calculation as explained below. Another code, EPDCOL (Keast & Muir

[29]), is also used to solve the initial value problem and serves as a check. The

numerical routine, which utilizes finite-element collocation in space and Gear's method

in time, has been proven to be accurate and efficient for the jet problem (e.g Craster

et al. [12]). In general, the numerical solutions are determined starting from the

initial condition

together with the boundary conditions

where -L < z < L.

In the case M = 0, only the initial condition for S is needed and the axial

velocity can be determined immediately from the momentum equation. To see this

let x = S - Eb(1/ ln(d/S) - 1/2[1n(d/S)) 2) and integrate (3.43) once to obtain
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where k(t) is to be found. A further integration over one period gives

Equation (3.52) shows that w follows from S and hence an initial condition on w

would over specify the problem. The numerical method is similar to Papageorgiou

[45] and utilizes the integrated form (3.52). A pseudo-spectral method is employed

and all required integrals are evaluated spectrally (whether by computing the Fourier

transform of the integrand or by using a trapezoidal quadrature) . The numerical

procedure starts with knowing the shape S at either t = 0 or at a given time level

and using it in (3.53) to compute k(t). With k(t) known we integrate (3.52) to obtain

w - this is done by inverting —i/kH, where H is the Fourier transform of the right

hand side of (3.52) (the mode k = 0 is set to zero due to the odd parity of w). With

w updated, S can be evolved through the kinematic condition (3.40). The derivative

S, is computed spectrally and time integration is done in real space using a fourth

order Runge-Kutta method.

The numerical method deals with aliasing errors by employing a cutoff filter of

the form (see Hou & Li [25])

which sets to zero all Fourier coefficients which are below the filter level cf . Unless

otherwise specified, typical values used here are c0 = 36,p = 36, Ef = 10'. The

filter is implemented at every time step and whenever a fast fourier transform (FFT)

is used. In order to resolve the solution near a finite time singularity, an adaptive

method is implemented to gain spatial accuracy when needed. The computation

monitors the index of the smallest non-zero Fourier mode after every filter operation.

If this index is greater than N/4, where N is the number of current grid points,

the solution is padded with zeroes in Fourier space to a transform containing 2N
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modes. An inverse FFT provides a spectrally interpolated solution in real space.

The higher spatial resolution requires a smaller time step to preserve stability and

this is implemented by choosing an empirical constant C < 1 and updating the time

step using Δ t = C/N3/2 . The adaptive method stops if the minimum value of the

difference between jet and electrode, d — Smax say, is less than 10 -7 , i.e. right before

the surface touches the outer electrode, or if Smin (the shape minimum) is less than

10 -7 , or if the number of points becomes larger than 256 2 . These stopping criteria

are sufficient to produce an accurate almost singular solution that agrees with the

self-similar asymptotic theory developed later.

In the Stokes limit the model contains two dimensionless parameters, d and Eb,

that correspond to the distance between the undisturbed cylindrical liquid surface

and the outer electrode, and the strength of the electric field, respectively. According

to the linear dispersion relation (3.48), it is established that if ln(d) < 1 the liquid jet

will be linearly unstable, while if ln(d) > 1 then linear stability ensues if Eb > Ebc =

(ln d) 3/(ln d — 1), Both of these cases are considered and in particular the dynamics

is followed numerically into the nonlinear regime.

3.4.2 Stokes Jet: ln(d) > 1

Numerical solutions are first presented for the system (3.40) and (3.43) in the Stokes

limit R  = 0. In order to fix things the effect of the radial electric field on the

dynamics when d = 5 is considered. Note that this implies the value Ebe ≈M6.84 and

so according to linear theory the jet is unstable if Eb < 6.84 and stable if Eb > 6,84.

The relatively large initial condition (3.50) with L = 7r places us outside the

realm of linear theory, but as the latter suggests, two distinct behaviors are found

depending on the value of Eb. If Eb is sufficiently small (smaller than a number

between 1 and 1.5 for the present set of parameters - this is smaller than Ebe 6.84

due to the size of the initial disturbances), we find that the shape evolves to a sequence
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of large drops connected with very thin stable threads whose radius decreases with

decreasing Eb. Figure 3.1 (L = 7r) depicts the evolution of S and w for Eb = 1 as well

as the corresponding electric stresses (square of surface charge density q), defined as

which relates the electric pressure as

and the minimum thread thickness Sman. At early stages the shapes of the surface

and the axial velocity (Figure (3.1) (a), (b)) evolve in a fashion reminiscent of

non-electrified inertialess jet breakup (see Papageorgiou [45]) but at large times

breakup is arrested and a long thin thread survives connecting neighboring drops.

The surface charge begins to accumulate around the center-thread part as seen in

panel (c), and panel (d) shows that Sman becomes almost a constant. The magnitude

of the axial velocity decreases monotonically with time but eventually sharp features

evolve at large times as can be seen in the results of Figure 3.2 which show the

final computed interfacial profile and corresponding axial velocity. It is observe

that S becomes increasingly steeper with time and w appears to be forming a cusp

singularity - eventually the interfacial slope becomes unbounded and violates the long

wave approximation. What is particularly striking, however, is the stabilization and

formation of the thin connecting threads. Considering the results of Figure 3.1(d)

for Eb = 1, for example, the asymptotic value Smin 0.022872 is found. The linear

result (3.49) predicts a balance between capillary destabilization and electric field

stabilization (i.e. neutral stability) at a value a 0.0311 and the agreement is

seen to be good - a possible source for the discrepancy is the fact that the linear

stability is performed about a uniform quiescent state which is not quite the case in

the quasi-static stages of the dynamics.
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Figure 3.1 (a) Evolution of the interfacial shape S(z, 1), (b) the axial velocity
w(z, 1), and, (c) the electric stresses, (d) the Smin . d = 5, Eb = 1.0 and the final time
is 12 time units.

Figure 3.2 The solutions at the final computed time t = 12 for d = 5, Eb = 1. (left
panel) Interfacial shape S, (right panel) the axial velocity w.

Small values of Eb are also attempted in the numerical simulations and even

for a very weak electric effect a thin thread is formed eventually. A typical example
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for Eb = 0.1 is shown in the left panel of Figure 3.3 and a comparison between the

nonlinear calculations and linear predictions is performed in the right panel of the

same figure. In the left panel, Smin ≈  8.2 x 10' and it is amplified in the insets for

the local thread formation and the corresponding axial velocity (dark line) which is

similar to the results in Figure 3.2. This suggests that the linear result (3.49) can be

used to predict the radius of the stable thin threads that can form in this regime.

Figure 3.3 Final computed stage for the Stokes jet profile S with corresponding
axial velocity w in the case d = 5 and Eb = 0.1. The local formation of the
microthread is illustrated in the small box above. (Right) Smin for different Eb,
A— numerical computation; o- prediction of linear theory

Next we consider larger values of Eb but still small enough to make co (3.48)

positive. Eb = 5 (d = 5 is fixed) is chosen and the left panel of Figure 3.4 shows

that in this case the dynamics are significantly different from those corresponding

to the smaller values of Eb described above. It is found that the local interfacial

maximum in the initial condition spikes up and eventually touches the wall in finite

time (the bounding top horizontal line in the figure is the position of the electrode

at r = 5); the corresponding axial velocity develops an infinite slope singularity at

the terminal time (not shown here) and the slenderness assumption is violated. The

mathematical structure of these solutions is analyzed later and we show that the

dynamics is self-similar. It is interesting to note that such terminal behavior is found
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for other parameter values also and that the structures observed are cylindrically

symmetric analogues of a Taylor cone.

Figure 3.4 Evolutions of the thread interface S for (left) d = 5, Eb = 5 and (right)
d = 5, Eb = 10.

For Eb bigger than Ebc , the electric field is stabilizing and the deformed jet

surface returns to a flat state (see the right panel of Figure 3.4) under the consideration

of axisymmetric perturbations. Of course as mentioned above, in this case high

electrification level risks the activation of non-axisymmetric modes that are not

covered by our model.

3.4.3 Stokes Jet: ln(d) < 1

Taking ln(d) < 1 in the linear dispersion relation (3.48) shows that the growth rate is

a positive increasing function of Eb. To illustrate the dynamics typical values d = 2,

Eb = 2 are chosen and the initial condition is the same as before. The evolution along

with computed profiles at the final time t 0.19798 are shown in Figure 3.5. The

solutions terminate in a finite time singularity with the interface touching the wall

electrode with a cusp geometry, and the corresponding axial velocity attaining a shock

discontinuity in the vicinity of the touchdown point. Self-similar dynamics are again

at play as will be shown later. The evolution of q 2 is shown in panel (c) of Figure
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3.5 indicating the accumulation of charge near the sharp geometry when it is close

to the electrode. Panel (d) shows the evolution of the minimum distance d— Smax of

the interface from the cylindrical electrode. The results show the fast touchdown at

the final stages of the evolution and indicate that the approach to touchdown occurs

with an infinite time rate of change (the slope of the curve is infinite and in fact it

will be shown later that d ~ Smax (t s - t) 1 /3 as t  --> tswhere isis the singular

time). The rate of blow-up is determined analytically in a subsequent section. The

Figure 3.5 (a) Evolution of the interfacial shape S(z, t), (b) the axial velocity
w(z, t), and, (c) the electric stresses, (d) the d - Smax . d = 2, Eb = 2 is fixed.

overall behavior is analogous to the ln(d) > 1 cases at intermediately large values

of Eb as computed in the example of figure 3.4. As Eb increases we have verified

numerically (not included here) that the solution terminates with the same type of

singular behavior but at smaller terminal times.
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Figure 3.6 Touchdown with spike formation for small Eb = 0.001, d 2. Left
panels show the interface at the last computed time along with a magnification of
the nearest approach region (top panel). Right panel shows the evolution of d — Smax

indicating the fast dynamics at the very late stages.

The dynamics are more intricate at very small values of Eb that correspond to

a weak electric field. Ultimately a self-similar behavior at the very final stages of the

evolution is obtained but the dynamics are altered resulting in significantly higher

computational costs. A typical example with Eb = 0.001 (d = 2 as before) reveals that

initially the evolution follows the capillary instability of the non-electrified flow with

thinning taking place and no incipient spike formation. This is expected physically

due to the dominance of capillary forces over electric ones, at least initially. Breaking

does not take place and eventually the interfacial maxima evolve sufficiently close

to the electrode so that electric forces enter and indeed eventually dominate over

the capillary forces (see Figure 3.6). This electrostatic mechanism violently attracts

the interface towards the electrode through a spike formation. The time-scale of the

touchdown is very fast and it is found that it can only be resolved accurately with

very small time-steps and long computations (the number of modes also increases

due to singularity formation). It is noted that the dynamics away from the spiking

region behaves quasi-statically. In our simulations of this example, it is found that

the singular event is initiated when the interface evolves such that d- Smax is between
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10' and 10'. At previous times and in particular when 10 -3 < d - Smax < 10 -1

in this example, the interface behaves as if it is almost stationary. The singularity

formation takes place over a very fast time-scale when the quasi-static evolution

brings the interface very close to the electrode. The left panel in Figures 3.6 depicts

the interface at the final time and a detail of the liquid surface near the electrode.

The right panel shows the evolution of d - Smax and indicates the fast dynamics as

the singularity is approached.

3.4.4 Finite-time Singularity and Self-similar Solutions

The numerical results suggest two canonical scenarios: (i) the liquid jet thins to

form an electrically stabilized micro-thread that does not break, and (ii) a nonlinear

evolution that causes the interface to touch the cylindrical electrode in finite time,

This section is concerned with the analysis of the second regime which is generic in

cases where the electrode is sufficiently close to the undisturbed interface (ln(d) < 1

- see results of section 3.4.3), or if it is sufficiently far away (ln(d) > 1) then the

electric field strength measured by Eb is in the spike formation range as discussed

in the results of section 3.4.2. Our analysis is started from the dimensionless system

below

Since we are interested in solutions that touch the cylindrical electrode r d after

a finite time, t = is say, we look for similarity solutions near the touchdown point

z z, and at times τ  = i s - t close to the singular event. Introducing a similarity

variable ξ = (z - zs)/τβ, whereβ> 0 is to be determined, the following expressions

are used
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where α  > 0 but γ  can be negative. Equations (3.57)-(3.58) transform according to

δ/δz --> 1/τβδ/δξandδ/δt --> δ/δτ + βξ/ξτ δ/δξ,and a dominant balance of terms can be carried

out for τ  << 1. To leading order a balance of terms St ~ Swz in equation (3.57) and a

balance between the term 3S 2wzz and (Eb/2) ((1/ln(d/S))2) z in equation (3.58) are found.

Note that not all terms in the equations balance because S d to leading order, and

hence Swz >> Saw, for example, with similar deductions holding for equation (3,58).

Carrying out the dominant balances gives a — 1 = -y - and -y-2,3 = -2a — from

equations (3.57) and (3.58), respectively. Solving yields

and the following equations for the scaling functions:

g can also be eliminated to get a single equation for f,

 The equations (3.61)-(3.63) need to be solved for -∞  < ξ  < ∞  and the numerical

results will be shown later. It is noted that it is sufficient to solve for ξ  > 0 due

to the symmetry g(-ξ ) = -g(ξ ) and f(-ξ ) = f(ξ ) (observed from our numerical

simulations also). Here, we first combine local analysis and far field solutions to fix

the parameter 0. The behavior for large e is established as

The balance can be obtained from equation (3.61) and (3.62), which means the

solution should be quasisteady far away (the quantity w z behaves quasi-statically
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there). It is concluded that f grows and g' decays for all β . The large ξ behavior of

g(ξ ) from (3.64) is obtained by integration to find

where the constant c1 is undetermined by this analysis and the constant e2 is expressible

in terms of A > 0 if we write f(ξ) = Aξ1/3β + 0(ξ-2/3β). The initial value problem

indicates that c 1 ≠ 0 because the axial velocity w blows up away from the similarity

region - see Figure 3.5 (b) for example. Using (3.64) and (3.65) into the ansatz

(3.59) and expressing in terms of z provides the behavior of the outer solutions as the

touchdown region is approached, i.e. as z --> 0+. The result is

which shows the blowup of w away from the centerline.

On the other hand, f and g are expanded near ξ = 0, which is a singular point

of equations (3.61)-(3.62), to perform a local analysis:

From equation (3.63) and (3.61), the expression of f0 and g1 in terms of d, Eb and 13

are obtained

It can be shown that the higher order coefficients f4 , f6 , 	 g3 , 95 , .., can be expressed

in terms of f2 and β . In particular
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Next (3.62) is integrated once to obtain

where is some constant independent of ξ . Setting ξ = 0 in equation (3.72) and

using (3.69), (3.70) gives

In (3.72), it has been shown that, g' --> 0, 1/f2 --> 0 for ξ —> ∞  which

immediately implies that κ  = 0. Hence, β = 1/2. So the scalings become

and

follows. Hence, equation (3.63) becomes

which can be solved in closed form to give

with A > 0 a constant introduced earlier in our far-field analysis, The analogous

expression for g(ξ ) can be written as the quadrature

with the odd parity properties providing g(-ξ  = -g(ξ ). Sample solutions are given

in figures 3.7 for two different values of A 3 = 0,6, 1, d = 2 and Eb = 2. As can be
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seen from (3.77) the effect of A can be removed by a horizontal re-scaling and that

an increase in d or Eb or both leads to sharper profiles.

Figure 3.7 Typical similarity solutions f (ξ ) and g(ξ ) for d = 2, Eb = 2. The values
of A are indicated on the figure.

Next we turn to the validation of the self-similar theory using the numerical

solutions. If the functions are defined as Sm (t) = max, (S(z, t)) and wm (t) =

max, (bv(z, t) |) then the theory predicts

In addition using the self-similar spatial scaling ξ = 	 z/(ts-t)V2 leads to the prediction:

In Figure 3.8 we present numerical results as the singularity is approached. Panels

(a) and (b) show, on log-log plots, the evolution of d - Sm (t) and wm (t) with (t, — t),

while panels (c) are log-log plots of the evolution of max, (|Sz|) with wm( t). Panel

(c) contains a collection of results for different values of the parameters d and Eb as

shown in the figure, providing numerical confirmation that the asymptotic behavior

is universal. To construct such plots the singular time i s is required and is estimated

as follows. Consider the evolution of d— Sm (t) as in panel (d) of figure 3.5 and guided
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by the predicted infinite slope of this function at t = t, we simply approximate i s

with the last computed time and exclude this data point from the constructions in

the figures. Guided by the theoretical predictions (3.79) and (3.80) we superimpose

dashed straight lines of slopes 1/3 in panel (a), -1/6 in panel (b) and 1 in panels (c)

respectively. It is seen that the predictions of the theory are supported very well by

the numerical work. Additional evidence of the cusp-like behavior of d - S(z, t) in

the vicinity of the touchdown point can be inferred from the spectrum of d - S(z, t)

at times close to the singularity. According to the theory the spatial dependence of

the singularity is given by d - S ~ z213 as seen from (3.66) with 0 = 1/2. Using

Watson's Lemma (see Bender & Orszag [7] for example) we deduce that for large k

the spectrum should behave like k-513. This agreement is shown in figure 3.9 where

the evolution of the spectrum of d - S(z, t) is depicted with the right panel showing

the spectrum at the final time. A line of slope -5/3 is superimposed indicating good

agreement and providing further support for the self-similar asymptotic structures.

Briefly speaking, we are interested in the spectrum of the function d — 8,

and the asymptotic behavior for large k in the above integral. Assuming f is analytic

(except perhaps at x = 0) and has an asymptotic approximation

Watson's lemma enables us to integrate term by term to produce the asymptotic

result,
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Figure 3.8 Comparison between numerical solutions and the self-similar theory for
d = 2, Eb = 2, and an initial condition S0 = 1 -  0.5 cos(z). (a) Log-log plot of the
evolution of d - Smax with t s -  t; (b) log-log plot of the evolution of wmax with ts-  t;
(c) log-log plot of the evolution of max |w| versus max |Sz' parameterized with time.

To apply this in our case, T = ik and z = x are chosen. Because x is proportional to

and in the far field f ~ ξ 0 = 2/3 and F(k) ~ k-5/3 follows. More details can

be found in Hinch [23].

The numerical solutions of the initial boundary value problem can also be used

to compare with the scaling functions f(ξ) and g(ξ). We focus on the case d =

2, Eb = 2 and numerical results for the initial condition S0 = 1 - 0.5 cos(z). The

breakup time is estimated as described earlier and in this case 1 3 = 0.1979805 is

found. The scaling functions are constructed from the computed solutions S(z, t

and w(z, t) using the ansatz (3.59) and ξ =z/(t, —t)1/2for a sequence of timest

near i s . The results are given in Figure 3.10. It is seen that as t --> ts - there is
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Figure 3.9 The evolution of the spectrum |S| 2 of the interfacial shape indicating loss
of analyticity as the singularity is approached. The right panel shows the spectrum at
the final time along with the predicted line of slope -5/3 found from the self-similar
analysis.

convergence to scaling functions in the vicinity of ξ  = 0 which contain the features

of those calculated using the similarity solutions (3.77) and (3.78). To make a direct

comparison with the solutions (3.77)-(3.78) an estimate for the constant A is required

from the constructed scaling functions of Figure 3.10 - note that in general A depends

on initial conditions. This is achieved by using the large ξ  form f(ξ) ~ Aξ 2/3 from

(3.77) which in turn implies ln(f) ~ ln(A) + (2/3) ln( ξ ) - a least squares fit from

the data for f(ξ ) from Figure 3.10 at the last computed time yields the estimate

A3 ti 1.0343. Figure 3,11 provides a comparison of the similarity solutions (3.77) and

(3.78) calculated using A 3 ti 1.0343, with the numerically computed scaling functions

at the final time t = 0.1979805. Panel (c) of Figure 3.11 shows a detail of the region

< 0 - the solid line is the numerically computed scaling function g() and the dotted

line comes from the similarity solution (3.78). The horizontal dash-dotted lines denote

the asymptotic values g(±∞ ) predicted by the theory once A is known. Once again

agreement is very good and the self-similar structures derived analytically describe

the final stages of the evolution very accurately.
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Figure 3.10 The scaling function f (ξ ) in panel (a) constructed from the computed
solution S(z, t) using (3.59) at times t indicated; i s ti 0.197981, d = 2, Eb = 2. Panel
(b) shows detail in ξ ≥ 0; The scaling function g(ξ)  in panel (c) constructed from
the computed solution w(z, t) using (3.59) at times t indicated; i s 0.197981, d = 2,
Eb = 2. Panel (d) shows detail in ξ ≤ 0.

Finally it should be pointed out that the surface tension at leading order is

negligible compared with the electric force term. However, the axial curvature part,

δ 2 Szz blows up for the spike solutions. Then it is necessary to include this correction

term in our model (see also Papageorgiou Orellana [47]) so that the curvature reads

κ = 1/S - δ2 Szz. It is interesting to find that the scalings remain the same, since

Sz, ~τ-213and is of the same order as the contribution from the electric force term

1/(S 1/(Sln(d/S)) 2 ~τ-2/3in equation (3.58). This self similar scalings are also observed

in numerical simulations (not shown here) as expected, although the scaling functions

in fact will be different.
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Figure 3.11 Comparison of scaling function f( ξ ) (dotted line) in panel (a) with
the numerically constructed scaling function (solid line) for d = 2, Eb = 2. The value
of A 3 = 1,0343 needed to obtain f (ξ) was estimated by a least squares fit of the
far-field of the computed solution. Panel (b) and (c) show comparing g(ξ) (dashed
line) with its numerically constructed analogue (solid line). The panel (c) is a detail
of the region ξ ≤  0. The dotted lines represent the asymptotes g(± ∞ ) provided by
the theory.

3.4.5 Numerical Results for Navier -Stokes Jets and Scaling Arguments

In this section numerical results for Navier-Stokes jets are presented. The momentum

equation (3.43) when inertia is included is rewritten as

where the Szz term is asymptotically small but provides a higher order correction

to the curvature and aids in the numerical simulations (e.g. Eggers & Dupont [171).
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In what follows ,4) is taken to be one since it can be scaled out (e.g. Craster et al.

[12]) and analogously to the Stokes jet case we will first consider In d > 1 followed

by In d < 1. Before investigating the electrified jet, Figure 3.12 shows a numerical

simulation for a non-electrified Navier-Stokes jet (L = 5). The code EPDCOL is

used here. A satellite drop is formed in the middle of the domain and panels (b) and

Figure 3.12 (a) The jet profile at pinching in the non-electrified case; panel (b) and
(c) show the similarity solutions constructed from the final computed results. The
initial conditions are S(z, 0) = 1 + 0.5 cos (π z/5) and w(z, 0) = 0.

(c) in Figure 3.12 show the resealed functions which follow the self-similar scalings

derived by Eggers & Dupont [17], namely, S(z, t) ~ τ  and w(z, t) ~  τ -1/2 , where

τ = tS - t and i s is the estimated breakup time. The scalings can be derived by

considering the balance between the inertia, the capillary force and viscous force, i.e.

wt ~ (1/S)z ~wzzwith the kinematic estimate w ~z/t.



43

Figure 3.13 The jet profiles and satellite formation at final computed stage for
Eb 0, 0.01 and 0.1 respectively (d = 5 fixed) are shown in panel (a). With the same
lines panel (b) shows the evolution of the Smin against time. Axial velocities in the
case Of Eb = 0.01 and Eb = 0.1 are presented in panel (c). The initial conditions are
S(z, 0) = 1 + 0.5 cos (π z/5) and w(z, 0) = 0.

The dynamics change dramatically when electric fields enter. In the Stokes

limit it is found that the pinching solution is suppressed by the radial electric field.

Electric stress competes with capillary stress and hence retards the breakup process

and this also occurs in the presence of inertia. First d 5 is taken which implies that

the cylindrical electrode is initially far away from the fluid interface. In Figure 3.13,

panel (a) outlines the final computed jet profiles for varying Eb as indicated in the

figure. Panel (b) shows the corresponding evolution of Smin versus time. In contrast

to the non-electrified case the thinning process slows down significantly due to the

effect of electric stresses, at about S min ≈ 5 x 10 -5 for Eb = 0.01 and Smin≈9 x 10-4

for Eb 0.1. Panel (c) shows the axial velocity at t = 9.498 for Eb = 0.01 and
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t = 10.3 for Eb = 0.1 compared to the breakup time t = 9.4343 for Eb = 0. The

axial velocities decrease in magnitude (dash-dot line for Eb = 0.01 and dashed line

for Eb = 0.1) when Eb increases as seen in panel (c) of Figure 3.13 and local cusps

are observed corresponding to the points where a steep jet profile is found. Finally

the interface meets with infinite slope singularity (see dashed line result in panel (a)

of Figure 3.13) before it pinches. This result is consistent with the results that we

show for the Stokes jets. The contribution of individual terms on the right hand side

of (3.84) is investigated numerically at the final computed stage (Smin≈0.001) for

Eb = 0.1 and d = 5 in Figure 3.14. Different terms are defined as follows,

x 1 represents the capillary contribution to the momentum and x 2 , x3 stand for electric

and viscous effect respectively. x4 represents the total contribution at the right hand

side of (3.84). It turns out that as the jet thins the gradient of the viscous, capillary

effect and electric forces are comparable. Therefore it is conjectured that the local

dynamics may be influenced significantly by the electric field and this is left for future

work of simulation of the full problem.

Compared to the pinching solution presented by Collins et al. [11], for both

Stokes and Navier-Stokes jets, the low order system derived in the long-wave approximation

does not lead to the pinching phenomenon. The discrepancy occurs partially due to

the long-wave description of the axial velocity, w 	 w(z, t), which in the charged

case depends on the radial variable as well (see Collins et al. [11]). However, the

local behavior is expected to be captured. For Stokes jet in Figure 3.1, charge

accumulates in the middle portion of the thin thread and acts against the surface

tension, hence stabilizes the jet and a quasisteady microthread is formed between main

drops. Before the neck reduces to zero the infinite-slope singularity is encountered first
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Figure 3.14 Panel (a)-(d) show different terms x 1 -x4 respectively.

at which point charge concentration also blows up since charge tends to accumulate

at high-curvature regions where the long-wave model breaks down. This implies

that if pinching happens, then it can be asymmetric as confirmed by the numerical

simulations of Collins et al. [11]. It is also seen in our simulations of Stokes jets that

the axial velocity decreases slowly as the microthread forms, which indicates that

inertial effects are small; a similar phenomenon is desired in the long-wave simulation

of electrified Navier-Stokes jet and this is confirmed by the results of Figure 3.13.

Similar to the electrified Stokes jet, (3.47) indicates that In d < 1 causes the

jet to be linearly unstable. Here the neglect of inertia near the touchdown region is

valid. Characterize the local dynamic response by a Reynolds number Re = ρwz I ,u

following the idea of Lister & Stone [36]. Initially the Reynolds number is expressed
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as Re0 = ργa/μ2. Near touchdown z and w evolve as

Substituting these into the expression for the Reynolds number and using the scalings

we derived in the Stokes the limit gives,

Hence Re --> 0 as τ --> 0, and it is concluded that we can approximate the motion

by ignoring the inertia near touchdown. The inertia only affects the flow outside the

touchdown region.

Next, if it is assumed that touching of the outer electrode takes place in finite

time, then we proceed as before with a balance of terms in order to determine a

possible self-similar structure. Assuming an ansatz as in (3.59), it is found that

the kinematic condition (3.40) allows a leading order balance of terms S t ~ Sw, if

α—1 =γ-β, as before. In (3.84) balance the inertial terms on the left hand side with

the second derivative of the axial velocity and electric field terms on the right hand

side to obtainγ  - 1 = -2γ  + β - 2 andγ  - 1 = γ -2β . Combining these findings leads to

the same scalings we found for the Stokes limit case, i.e. a = 1/3,γ  = -1/6, β  = 1/2.

For completeness, the similarity equations are given for the inertial analogues of the

scaling functions f (ξ ) and g(ξ ) introduced by (3.59) - these equations are not pursued

further in the present work:

In Figure 3.15, sample numerical results of the initial value problem are shown

to support our analysis. Panel (a) shows the spike shape of liquid jet near touchdown.

The axial velocity is plotted in panel (b) showing a shock discontinuity in the vicinity
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Figure 3.15 (a) Jet shape and (b) the corresponding axial velocity solution in the
case d = 2, Eb = 2. (c) Evolution of d - Smax . (d) Log-log plot of evolution of max|w|
versus max|Sz| parameterized by time. Initial condition is S(z, 0) = 1 + 0.5 cos(z)
and w(z, 0) = 0.

of Smax similar to the Stokes case. Rapid touchdown dynamics under the effect of

the electric field is confirmed by the evolution of d — Smax in panel (c). As time

tends to the singular time, the scalings follow our theoretical prediction in panel (d)

of Figure 3.15. The dashed line is from the theory and of unit slope, while the solid

line represents the nonlinear computational result.



CHAPTER 4

ELECTRIFIED INVISCID THREADS

In this chapter the viscosity of the core jet is neglected and the annular fluid is

taken to be passive. Hence the governing equations become the Euler equation. For

convenience the velocity potential φ  is introduced in the rest of this chapter, which

satisfies u = Vφ  and V 2φ  = 0 in the fluid domain. The boundary conditions are the

kinematic and dynamic boundary condition (Bernoulli equation) on the jet surface.

The electric potential 0e as usual satisfies V 2φ 6 = 0 in the annular region. The

full nonlinear dynamics was investigated by Setiawan Heister [59] by a boundary

element method and axisymmetric traveling wave solutions were computed by Grandison

et al. [21]. Our interest in the present work lies in the stabilizing effect of the electric

fields in the long-wave limit as shown below. Therefore a slender jet will be considered

for the rest of this chapter.

4.1 Linear Stability

Before deriving the evolution equations, the linear stability is reviewed. As mentioned

in Chapter (3), the linear dispersion relation of the full problem is given by

and in the long-wave limit (k	 0)

where a = Eb (ln d - 1)/(ln d) 3 . The stabilizing effect of the electric fields is observed

when a is sufficiently large (a > 1) as illustrated in Figure (4.1) which shows the

growth rate curves of the full dispersion relation (4.1), As the electric field increases,

48
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a stability window emerges for small k (right panel in Figure (4.1)). Our aim is

to describe the nonlinear dynamics in the presence of such dispersive effects and to

derive Kortweg-de Vries type equations for this physical problem.

Figure 4.1 Growth rate for various Eb produced by linear theory with d = 10 fixed.
Right panel shows the long-wave portion under the same condition.

4.2 Long-wave Equations

Since viscosity is absent, the characteristic capillary time scale that is used here

is different from the one in Chapter 2 and is given by t 0 = (ρa3/γ)1/2 . Introduce

a slenderness parameter E = a/l, where a and I are radial and axial length scales

respectively. Given a typical velocity W 0 = //t 0 , and electric potential V0 , dimensionless

variables are defined as follows:

Then the dimensionless governing equations and boundary conditions (dropping the

primes) are given by the Laplace equation for the velocity potential φ  in the jet region
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the kinematic condition on r = S(z, t),

and the Bernoulli equation on r S(z, t)

In (4.6) φen = n. Vφe and (Eb/2)φ2n represents the electric force and the constant on

the right hand side is obtained from the unperturbed state. The electric potential in

the annular region (S < r < d) is governed by

with boundary conditions

4.3 Weakly Nonlinear Analysis: Electro-capillary Solitary Waves

In addition to the long-wave assumption, the interface is assumed to deform to heights

8, that is we write S =1 +δη(z,t) whereδ(E) << E. The derivation here is similar to

the derivation of the Korteweg-de Vries equation in shallow water theory (see Johnson

[28]), but in a completely different physical problem and geometry.

The electric potential has the asymptotic representation in the annular region

From the Bernoulli equation (4.6) it is seen that (φen)2 is central in the derivation.

Given the normal vector on the interface n = (1,-ESz )/(1+E 2 S2 z )1/2 the normal
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derivative of the electric potential at the interface can be written as

It will be shown later that higher order terms in (4,10) are not necessary in our

derivation. First, the 0(1) equation is considered

which, subject to the boundary conditions φE0 ) (r = d) = 1 and φe),(r = S(z, t)) = 0,

gives

Substituting S = 1 + δη (z, t) into φe0r yields

and

It is also necessary to proceed to the next order (0(E2)) problem which is
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with boundary conditions φe1(r = d) = φe1(r = S) = 0. Setting Φ (z) =Sz/Sln2(d/)) z

yields the following expression for cti (e),z

On substitution of (4.15) into (4,14) and integration with respect to r yields

where A = A(z , t) and B = B (z , t).

Applying the boundary conditions, it can be found that

which gives

Since only the derivative with respect to r is required to leading order, B(z, t) is not

needed in the sequel. It follows from (4.16) that

and on the interface
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Substituting (4.13) and (4.19) into (4.10) yields

which simplifies to

Having the information of the electric forces (4.20), we now turn to the fluid

mechanics problem and assume that the velocity potential has the appropriate expansion

The solutions for the first few orders are obtained by inserting (4.21) into (4.4) and

solving sequentially to find

where θ1 (z, t) and 02 (z, t) are unknown functions.

Next the boundary conditions (kinematic and Bernoulli condition) are considered

on the jet surface S = 1 + δη(z, t). The kinematic boundary condition (4.5) by

substituting (4,22)-(4.24) becomes
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The Bernoulli equation (4.6) becomes

Balancing the leading order in (4.25) and (4.26) gives

which yields the following equation for η  at the leading order

Clearly, if the coefficient in front of ηzz in (4.29) is positive, a wave equation follows

which is consistent with our analysis in section 4.1. Hereafter we consider this case

and set

Next the kinematic and Bernoulli equations are rewritten by truncating terms

up to 0(8€2 ) and 0(62 ) in (4.25) and (4.26). Eliminating δ , equation (4.25) becomes

Meanwhile, (4.26) gives
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Let x = z - ct and look for traveling wave solutions by applying the transformations

vhere c is given by (4.30). Then (4.31) becomes

and (4.32) becomes

Differentiating (4,35) with respect to x and changing time scale by δ t ----> Δδ r

yields

Next (4.34) is multiplied by 2c and becomes

Then the subtraction of (4.37) from (4.36) gives
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Set Δ  = δ = E2 and notice that φ0x ~ 2cη  follows from the leading order balance

φ0t - cφ0x ~ -2c2η. On substitution of this relation into (4.38) yields a final evolution

equation for surface elevation η

where P1 and P2 are defined as

The properties of equation (4.39) are analogous to the classical Kortweg-de Vries

equation. Existence of depression or and elevation traveling wave solutions depend

on the sign of the second and third terms. For example, when 10c 2 - P1 > 0,

c2 /6 - 1 - P2 > 0 gives elevation waves while c 2 /6 - 1 - P2 < 0 gives depression

waves.

Finally a large gap (d	 co) limit is considered, In order to maintain the

electric field term, q5e ti In r at infinity and hence Eb can be expanded as

It follows that

In this case the evolution equation of elevation traveling waves for an inviscid charged

jet is obtained to leading order

where 4 =	 - E0) provided E0 > 1.



CHAPTER 5

ELECTRIFIED CORE-ANNULAR FLOWS

In this section the core-annular flow inside a cylindrical tube is considered. For

simplicity set x = 1 so that the densities of the two fluids are equal and buoyancy

effects are negligible. The relevant physical quantities are discussed in Chapter 2 and

in this chapter results in the low Reynolds number case are presented.

5.1 Governing Equations

The governing equations (nondimensionalized as in Chapter 2) for the fluids are then

given by Stokes equations and the continuity equations in the core (fluid 1) and

annular (fluid 2) regions respectively.

where u = (ur , uz ) is the dimensionless fluid velocity field, p is the pressure and

λi= 1,λ2=λ=µ2/µ,iis the viscosity ratio of the two immiscible fluids, On the

tube wall, the no-slip and no-penetration boundary conditions require that

In the annular region, the electric potential (denoted by φ ) satisfies Laplace's equation,

with boundary conditions φ (r = d) = 1 on the wall and φ (r = S) = 0 at the interface;

as in previous chapters, the core fluid is taken to be a perfect conductor.

In addition, at the fluid interface, r = S(z, t) , the kinematic condition reads

57
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and tangential and normal stress balances

where t and it are unit tangential and normal vector respectively on the surface,

with Eb = Epν20/γa the electric Taylor number, κ  the curvature at the interface, T the

Newtonian stress tensor defined in Chapter 2.

5.2 Linear Stability

From the governing equations, it is easy to find the steady solutions for a perfectly

cylindrical interface:

Imposing a small perturbation to the unperturbed state, the radial position of the

interface is described as

where € is a small dimensionless coefficient, η  = A l exp(ikz + ω t) is the wave form

of the perturbation and A 1 is the complex amplitude. Taking advantage of the

axisymmetry of the flow, the velocities are expressed in terms of the Stokes stream

function ψ j , where j = 1, 2 for the inner and outer fluid respectively, The axial and

radial components of the perturbation velocity are given by

Using (5.9) and solving for the vorticity transport equation for the axisymmetric flow,

the following equation for is obtained
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where E 2 is a second order differential operator given as

The general solution can then be written as

where El,j and FI ,j are unknown coefficients.

Next kinematic and dynamic boundary conditions at the interface are considered.

Using (5.12), the continuity of velocities at the interface requires

Meanwhile, the boundary conditions on the tube wall require that

Finally, substituting (5.12) into the linearized version of the tangential stress balance

and normal stress balance

where

yields a homogeneous system for the growth rate w, with
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where w is a vector of unknown coefficients defined as

and the coefficient matrix is given by

I1 (k) 1-0 (k) -I-1 (k) -I0 (k) -K1(k) 	—Ko (k)

k10 (k) L 1 —0-0 (k) L2 kK0(k)	 L3

0 0 I1 (kd) dI0 (kd) K1 (kd) 	 dK0 (kd)

0 0 H0 (kd) L4 —kK0(kd)	 L5

S1 S2 S3 84 S5	 S6

T1 T2 T3 T4 75	 T6

The expressions for the components of matrix M are given out in Appendix A. Details

of similar derivations can also be found in Tomotika [64] and Kwak & Pozrikidis [31].

5.2.1 Long-wave Expansion

In the limit k 	 0 in (5.20), the following growth rate can be obtained explicitly

with

Equation (5.21) is valid for A away from extreme values. This result is consistent

with the one in Georgiou et al, [19] for the uncharged case. Clearly it is seen

from (5.21) that the way the electric fields affect the stability does not change much

compared with the single jet case in Chapter 3 because of the assumption of the
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perfect conductor which implies the coupling between the electrostatics and fluid

dynamics only occurs through the normal stress balances.

5.2.2 Linear Stability of The Core-annular Flow

In the absence of electric fields, the core thread is subject to Rayleigh instability when

the wavenumber of the perturbation is below a critical value k = 1 in dimensionless

terms. The effect of external viscous fluids is shown in Figure 5.1 that the most

unstable mode is shifted from k = 0 to a finite value. The dotted lines in panel (a)

Figure 5.1 Growth rate for varying Eb from 0 to 0.5 indicated by the arrows in the
figure with (a) d=2.5 and (b) d=3.0. Dotted lines represent the result for A = 0 and
solid lines for A = 0.001.

and (b) in Figure 5.1 represent the results for a single Stokes jet which agree with

the results in Wang et al. [66J. The parameter d is chosen to be d = 2.5 in panel

(a) and d = 3 in panel (b) which is based on the linear results discussed in section

3.3 of Chapter 3. Namely, d < e 2.7183 gives instability irrespective of Eb while

stabilizing effect takes place when d > e in the long wave limit. Therefore increasing

Eb enhances instability for both A = 0 and A = 0.001 as observed in panel (a) in
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Figure 5.1. Panel (b) shows that the long waves are stabilizing as Eb increases and

at the same time the short waves tend to be unstable as indicated by the arrows.

Figure 5.2 (a) Growth rate for Eb = 0.0, 0.25 and 0.5 shown by solid line, dashed
line and dotted line respectively, for fixed d = 2.5 and λ  = 1. In addition, the growth
rate is also plotted for λ  = 0.1 and 10 in the non-electrified case as indicated in the
figure. Panel (b) shows for fixed Eb = 0.5 and λ  = 1 the dependence of growth rate
on the parameter d. Long wave predictions are shown in dotted lines in the small k
portion.

Figure 5.2 investigates the effect of different parameters ( λ , d and Eb) on the

growth rate. In panel (a) of Figure 5.2 the solid lines represent the growth rate for

d = 2.5 and Eb = 0 with varying λ , which shows that the presence of a more viscous

annular fluid reduces the growth rate significantly, As shown later, λ  also significantly

affects satellite formation in the nonlinear regime. By increasing Eb, the same panel

shows that the range of unstable wavenumbers is extended, Dashed and dotted lines

correspond to Eb = 0.25 and Eb = 0.5 respectively. Panel (b) in Figure 5.2 shows the

dependence of the growth rate on d. for fixed Eb = 0.5 and λ  =- 1; d = 1.75 gives a

wide range of unstable modes in which case the electrode tube wall is relatively close

to the fluid interface. Physically, the small annulus ensures an intense field that gives

a fairly big electric force on the interface. The surface charge accumulates there and
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Figure 5.3 Effect of the electric fields on the growth rate of a wave with k = 0.5
for (a) varying d and fixed A = 1 and (b) varying A and fixed d = 2.8.

affects the fluid flow actively. In addition, long wave results obtained from (5.21) are

also verified in panel (b) and shown as dotted lines with the same parameters. For

the small wavenumber portion the agreement is excellent. A typical example showing

detail in the effect of tube radius and viscosity ratio is plotted in Figure 5.3 for A = 1.

Wavenumber k = 0.5 is picked and panel (a) shows that the growth rate is increasing

by increasing electric field strength for d = 1.25, 1.75 and 2.5, while a stabilizing

effect for d = 5 is observed by the decreasing curve for the growth rate. Panel (b)

in Figure 5.3 shows that growth rate is increasing faster when a less viscous fluid is

present in the annulus. This agrees with the results in panel (a) of Figure 5.2.

5.3 Thin Annulus Limit

When the thickness of an annular layer is sufficiently small, the motion may be

described under the approximation of local flow irrespective of the effect of core fluid,

as long as the viscosity ratio is comparable (see Hammond [22]). Again we will assume

the core fluid (U, W, P) is perfectly conducting and the annulus (u, w, p) is a dielectric.
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Following Hammond [22], set E = (d - 1)/d and assume E << 1 and Eλ  << 1. In

this limit the variable y = (d - r)/c is used so that the interface may be described by

with h = 0(1). The velocity and pressure fields in the film region are written as

and in the core

Substituting (5.25) into the Stokes equations in the film region yields

No slip on the tube wall requires that

and the continuity of velocities at the interface requires

which approximately are
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The tangential stress balance at the interface reads

from which the equation for w' becomes

The normal stress balance becomes

from which we obtain

where Δφ e is the electric force that is fixed later. The set of equations and boundary

conditions suggest that we pose asymptotic expansions φ ~ φ0 + Eφ10 + Eλφ01 , where φ

is some function (h, w, p), even though only the zeroth-order terms will be considered

here. Dropping primes, using (5.27), (5.28) subject to (5.30) and (5.34) the solution

for w at leading order is obtained as
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Formally it is seen that the core fluid does not enter into the leading order balances

in this case. In addition, combining the kinematic condition

with the solutions (5.37), (5.38), yields

The Ape in (5.36) is obtained by solving Laplace's equation for the electric potential

in the film region

which at the leading order gives

Then

In order to retain electrostatic effects the canonical limit Eb = E3β , with β = 0(1),

so that (5.36) becomes

which on substitution into (5.40) yields the thin-film type equation

When β= 0 electric fields are absent and the resulting equation has been studied

by Hammond [22], Lister et al. [35], who find that touchdown does not occur in

finite time. Our results show next, however, that the inclusion of electrostatic effects

induces finite time touchdown.
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5.3.1 A Note on Non-axisymmetric Modes

Here consider non-axisymmetric modes and the θ dependence is assumed g(r, θ,  z, t) =

g(r)ewt+i(mθ+kz), where g denotes a function under consideration at least in linear

theory. Due to the assumption of perfect conductor-core, it has already been mentioned

that the electric force term will only enter into the normal stress balances, since the

interface has uniform potential. The full curvature now has the form

Again for the thin annulus case, d = 1 + c, and in the leading order, the following

equation can be obtained in a similar way as described above

The growth rate follows immediately

compared with the one from the axisymmetric case

Therefore it is seen that the growth rate from (5.48) is smaller than the one from

(5,49) for m > 0 which means the axisymmetric perturbation in thin annulus limit is

dominant over the non-axisymmetric perturbation, Hence attention will only be paid

to the axisymmetric case for the rest of this thesis.
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5.3.2 Self-similar Solution

When ,8 0, it is interesting to find that the thin film equation assumes a solution

of the following form

where is is the breakup time. The scalings can be obtained by balancing ht ~

(h3 hzzz)z ~βhzz.Notice that without the electric force term, Hammond [22] shows

numerical evidence of an infinite time singularity. More resolved and extensive

numerical work by Lister et al, [35] reveal that touchdown does not occur but instead

a multiscale in time drop sliding and thinning takes place. In the electrified problem,

however, we have a finite-time singularity which will be confirmed by the numerical

simulations showed later.

5.3.3 Numerical Results

In order to solve equation (5.45), EPDCOL is used here, which utilizes finite element

collocation in space and Gear's method in time (see also section 3.4.5 in Chapter 3).

A typical run is presented in Figure 5.4. Panel (a) shows the shape of the film at

the breakup time with an initial condition h(z, 0) = 1 + 0.5 cos(2π/Lz). To verify

the self-similar behavior close to breakup, panel (b) illustrates that the evolution of

hmin follows the self-similar scaling through a log-log plot, where ts  is estimated from

simulation and the solid line has slope -1/3. Additional evidence is shown in panel

(c) of Figure 5.4, which indicates zz  ~ h4z (solid line is of slope one) since hz~τ-1/6

and hzz ~ τ-2/3 It can be seen from the figure that the simulation struggles when

the spike forms since only equal-spacing grids are used here. An adaptive-grid code

may resolve the singular solution better, but we do not pursue this in the present

study.
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Figure 5.4 (a) Solution of (5.45) at t, = 1.027884435 with L = 10 and β = 1. (b)
Log-log plot of hmin versus T = i s - t, (c) Log-log plot of max|hzz| versus max| h z|4.

In addition, as discussed in Lister et al. [35], the length of the film affects

the final shape of the solution when β ≠ 0 as well. Wavy structures appear and

the breakup tends to be asymmetric. Figure 5.5 outlines the final shapes of the

almost-ruptured films for (a) L = 15, (b)L = 20 and (c)L 30.

5.4 Boundary-integral Method

In this section we solve the Stokes equations coupled with the electrostatic problem

numerically, without assuming thin films. A comparison between asymptotic solutions

and the simulations is also carried out.
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Figure 5.5 Solutions of (5.45) for various axial lengths with β = 1. (a) L	 15,
(b)L = 20, (c)L = 30.

5.4.1 Formulation

The boundary integral method has been used widely to study physical and mathematical

problems for decades and the reader can be referred to, to name a few, Acrivos

Rallison [1], Pozrikidis [43] and recently Dubash 	 Mestel [14] for example. The

derivation and theory regarding the method for Stokes flow are well documented in

Pozrikidis [48]. Here we start with the equation in axisymmetric form (see Pozrikidis

[491)
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where the subscripts run over cylindrical coordinates z or r, PV denotes the principal

value of the double-layer integral, I is the interface over one period, x 0 lies on the

interface and n is the unit outward normal vector along the interface. The kernels M

and Q are the periodic Green's functions of axisymmetric Stokes flow for the velocity

and stress inside the tube. Δf is the force jump across the thread surface and is

given by

where n is the curvature and Eb is the electric parameter defined in section 5.1 (see

also Dubash & Mestel [14]); φn will be calculated from the electrostatic problem which

is discussed later in this section.

The velocity field will be determined by the single layer potential only for the

simplest case λ  = 1. In that case only the Green's function inside the tube is needed

and the no-slip boundary condition requires that the Stokeslets should vanish at the

wall. The details of the construction of the Stokeslets can be found in Pozrikidis [44

Meanwhile, it is found that the double layer potential term will disappear along the

tube wall automatically. So the axisymmetric free space Stresslets is used directly in

our computation for λ ≠ 1.

Next the boundary integral equation for electric potential φ is given. From

Dubash & Mestel [141, the equation can be written as

where P is the periodic Green's function for the potential problem. Knowing φ  = 1 at

the wall, it also requires P vanishes on the wall, In addition, no flux condition due to

the periodic structure is required along z = 0 and z = L, i.e. φn(z = 0, r) =φn(z=

L, r) = 0. Hence, axial images are chosen so that P r, (z = 0, r) = /3n(z = L, r) = 0 is

satisfied.



72

Before constructing P we first show how to choose axial images, We denote the

axisymmetric Green's function by G and express it in cylindrical coordinates (r, z),

where GR is the axisymmetric free space Green's function given in Appendix B and L

is the period. Therefore, a simple calculation confirms Gz (z = 0) = Gz (z = L) 0.

We show the calculation of Gz at z = 0 for completeness and start from the 3-D free

space Green's function G0 (x, x0) of the periodic version,

GP (x, y, z, x0, Y0,z0) = Σ+∞ k=-∞ G0(x, y, z, x0, y0, z0 + 2kL)± G0(x,y,x,x0,Y0, - z0 + 2kL)

Notice that the complementary part of the Green's functions has not been added

yet which aids to satisfy the boundary conditions at the wall. However the idea and

calculations are similar (not shown here). Taking a derivative with respect to z in

expression (5.55) gives



Evaluating (5.56) at z 0 yields
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Also noting that the z direction (axial direction) is independent of 0, Gz at z 	 0

becomes

A similar procedure works for z = L,

After manipulating the images in the axial direction, a simpler expression for

is obtained

The derivation of P is similar to Stokeslets and is simpler. Starting from the

ring of point forces, GR in free space, the Green's function inside a tube can be written

as
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the superscripts T and C stand for 'tube' and 'complementary' respectively, GT (z, z0 , r =

d, r0 ) = 0 is required, where d is the tube radius. After some algebra and manipulating

identities (see Duffy [15] and Pozirikidis [48]), the Green's function reads

where m 4rr0 /((z — z0 ) 2 + (r + r0 ) 2 ) and F is the complete elliptic integrals of the

first kind. Letting

the singular behavior of the integrand is observed when k tends to zero, namely,

g In k + , . ,. Because this is just logarithmic, the corresponding integral still

exists. For a computation convenience, we regularize the integral representation by

using the identity (e.g. see Pozrikidis [48])

and write

As k tends to zero, K0 (k(2d— r — r0 )) behaves as — ln(k(2d— r - r 0 )) and the modified

integrand
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tends to a finite value. Then the periodic version the Green's function can be obtained

immediately by summing over the index,

where L is the period, km = 2πm/L and 	 z - z0 , The first sum in (5.67) converges

exponentially, while the second one converges algebraically. The convergence of the

sum is discussed in detail in Pozrikidis [48].

5.4.2 Numerical Method

In this section the numerical implementation of the boundary-integral method is

briefly described. Because of the nature of the electric fields, we can compute 0, by

only knowing the surface position and independently of the flow, Then substitute

it into (5.52) and solve for (5.51). After obtaining the velocities, the interface is

advanced by the kinematic condition. In the simulations presented in this chapter,

the time integration is carried out by an Euler method or second order Runge-Kutta

method. The weak singularities in the kernels in the single-layer potential terms are

handled by Gauss-log quadrature and the regular integrals are computed by standard

8-point or 16-point Gauss-Legendre quadratures. Another way to tame the singularity

in (5.51) is to take advantage of the result with x 0 on the interface I

So the single-layer term in (5,51) can be rewritten as
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whose kernel now is regular, hence Gauss-Legendre quadrature can be applied directly.

The curvature of the interface is calculated by using cubic-splines which is also used to

redistribute the nodal points along the interface at each time step in order to maintain

good resolution. The linear system after discretization of the integral equations is

solved by fortran package LAPACK, Also, in our computations, the for-aft symmetry

is forced, hence only half the period of the thread needs to be computed.

Introducing u = (uz , ur ) and F = (Fr , Fr), (5.51) may be written as

where l2 f is given in (5.52). Therefore, a linear system with unknown u = (uz , u.r ) is

obtained.

Before presenting numerical results of electrified threads we test the numerical

results against the linear theory. Figure 5.6 shows the evolving amplitude from a

nonlinear computation for a set of particular parameters, d = 2.5, Eb = 0.47, ka = 2/3

and A = 1. The dimensionless amplitude of the perturbation is taken to be 0.01

which is small. Clearly the solid line that corresponds to the nonlinear computation

evolves with the dashed line that is predicted by linear result from section 5.2 and

the agreement is excellent. Further validations of the code are presented later.

5.5 Results and Discussion

5.5.1 Nonlinear Evolution of Unbounded Liquid Threads

We begin by considering an unbounded thread (d = oo) with the electric field absent.

Figure 5.7 shows the nonlinear evolution in this case with differing viscosity ratios.
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Figure 5.6 A is defined as half the difference between the maximum and minimum
location of the interface. Solid line is for numerical simulation, while the dashed line
is from linear theory. A = 1, Eb = 0.47, d = 2.5.

The initial condition used is

where a l = 0.5a is the amplitude of perturbation and a is the unperturbed thread

radius. In Figure 5.7, k = 27/L is set to be 0.5, i.e. the wavenumber ka = 0.5 where

L is the wave length (period). Panel (a) shows a single Stokes jet evolving in air or

vacuum, namely, A = 0. Symmetric pinching is observed and no satellite drops are

formed in between as shown through a long-wave theory by Papageorgiou [45]. This

full simulation also agrees with the results in Pozrikidis [49]. Panel (b)-(d) in Figure

5.7 illustrate the evolutions of jets for A = 0.1, 1 and 10 respectively. Under the

external viscous drag (0 < A < oc,), the breakup is always asymmetric and different

satellite structures are obtained through numerical simulation. Clearly, the viscous

effect of the surrounding fluid plays an important role in determining the dynamics

and the thinning process, as well as the breakup location. For A = 10, the breakup

point tends to move further to the right compared to the case A = 1. When A = 0.1,
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Figure 5.7 Evolutions of jet profile over half period for differing viscosity ratios:
(a) λ  = 0, (b) λ  = 0.1, (c) λ  = 1 and (d) λ  = 10.

a nearly cylindrical thin thread is formed between main drops and the breakup point

is expected to occur away from the middle of the one period domain. In fact the

minimum neck point moves slightly to the left when λ  < 1 compared with the one

in λ  = 1 as can be seen from Figure 5.8. The differences regarding the location of

the breakup point is due to the competition of internal and external viscous forces

as described in Lister & Stone [36]. In Figure 5.8, accurately computed jet profiles

in the pinching stage are plotted for λ  = 0.03 in panel (a), λ  = 1 in panel (b) and

λ= 20 in panel (c). The code stopped when the dimensionless minimum radius is

approximately equal to 3 6 x 10 -3 . Up to 500 points over half period are used near
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Figure 5.8 Final computed stage of thread pinching in left panel for different
viscosity ratios, (a) A = 0.03, (b) A = 1 and (c) A = 20.

breakup. The evolution of Smin against time and the corresponding axial velocities

are shown in panel (a) and (b) in Figure 5.9 respectively. As seen from the linear

theory, the perturbation grows very slowly when the thread is less viscous than the

ambient fluid. It takes over 100 dimensionless time units to approach the breakup for

A = 20 seen in panel (a) in Figure 5.9. In addition it is seen from panel (b) that the

shifting of the pinching point is evident by inspecting the blowup of axial velocities

close to pinching.

As discussed by Lister & Stone [36] the local dynamics follows the scalings

S ti z 'T near breakup provided the internal viscosity is comparable or much bigger
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Figure 5.9 (a) EvolutiOn of Smin for viscosity ratios λ  = 0.03, 1 and 20 at final
computed stage. (b) Corresponding axial velocities close to breakup.

than the external one. The axial velocity increases slowly as a logarithmic function

of ,Bran for the equal viscosity case. Similar results are expected when λ ≠1 since

the single layer potential is always present and the double layer potential does not

contribute much as the geometry is slender. Yet the full numerical simulation has not

been carried out and questions still remain open.

5.5.2 Nonlinear Evolution of Electrified Liquid Threads

When a long cylindrical tube is present and a core-annular arrangement enters, the

nonlinear dynamics are affected and are quite different from the unbounded thread

case. To investigate the effect of external electric fields, the behavior of the flow

with the field absent, i.e Eb = 0, is considered. Figure 5.10 shows the nonlinear

deformations of non-electrified thread profiles under axisymmetric perturbation, for

the tube wall d = 2 and viscosity ratio λ  = 1. Panel (a) and (b) take different

wavenumbers in the initial perturbation. For example, ka = 0.3 in panel (a) means

the perturbation is a long wave one and the period is long, namely, L/a = 2π/0.3 =



81

20π/3, where a is the unperturbed thread radius in (5.72). Panel (b) in Figure 5,10

illustrates the evolution subject to a perturbation of period L/a = 3π. In both cases,

a fairly large main drop which is elongated in the axial direction (prolate) is observed.

In panels (c) and (d) in the same figure, the evolutions of axial velocities reveal the

approach to breakup as the interface deforms, and demonstrate the blowup of the axial

velocity near pinch-off. Figure 5.11 outlines the pinch-off solutions for fixed A = 1 but

Figure 5.10 Evolution of thread profiles over half period for d = 2 fixed with (a)
ka = 0.3 and (b) ka = 0.6667. The corresponding evolutions of axial velocities are
illustrated in panel (c) and (d).

different radii. Panels (a)-(c) show the results for d = 5, 2 and 1.5 respectively and

the upper and lower bound of the figure stand for the position of the outer cylindrical

wall. As the fluid interface approaches the wall, i.e. d becomes small, the drop
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Figure 5.11 Final computed stage of thread pinching in left panel for different tube
radius, (a) d = 5, (b) d = 2 and (c) d = 1.5.

structure changes significantly. Relatively big main drops and small satellite drops

are obtained when the wall is close to the interface initially (e.g. d = 1.5), compared

with relatively big d cases (e.g. d = 5). Also the geometry of the main drops tends

to have a flat portion close to the wall which agrees with laboratory observation (e.g.

Bai et al. [5]). Meanwhile the presence of the wall slows down the motion which

makes the thread take much longer time to break than in the unbounded thread. For

instance, the breakup times t, 26.96 for unbounded threads with A = 1 and with

the same viscosity ratio, i s = 32.96 for d = 2 and t, = 112.91 for d = 1.5 are obtained

from our calculations.
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Figure 5.12 Evolutions of core-annular flow profiles ( λ  = 1) over half period for
(a) ka = 0.3, d = 2 and Eb = 0.1047 and (c) ka = 0.5, d = 5 and Eb = 2.513.
Corresponding evolutions of φ 277  are plotted in panel (b) and (d) respectively.

In the presence of an electric field, Figure 5.12 shows the nonlinear evolution of

core-annular flows as well as the corresponding evolution of the electric forceφ

2

n  with

ka = 0.3, d = 2 in panels (a), (b) and ka = 0.5, d = 5 in panels (c), (d). As the

interface deforms, surface charge tends to accumulate on the satellite drops, through

which the electric force acts as an additional driving force to break the thread. A

large value of φ 2n is observed in the vicinity of the breakup point but not at the

breakup point itself (we will discuss this later). Instead, the electric force tends to

zero at the very breakup point, because no charge exists there at pinch-off. Figure

5.13 compares the final pinch-off solutions for varying electric field strength with
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Figure 5.13 Pinching solution of the core-annular flows for the equal viscosity case
(a) ka = 0.6667, d = 2.5, Eb = 0.0, 0.4712, 0.9425 correspond to dotted, long-short
dashed and solid lines respectively; (b) ka = 0.5, d = 5,Eb = 0,0, 2.5133, 5.0625
correspond to dotted, long-short dashed and solid lines respectively. The upper and
lower bounds of the figures stand for position of the tube wall.

d = 2.5, ka = 0.6667 in panel (a) and d = 5, ka = 0.5 in panel (b). It can be seen

that the effect of electric field is to elongate the main drops radially in the direction

of the electric field, and hence change their shapes. Meanwhile the volume of the

satellite drops is also changed. Due to the accumulation of charge at the interface

the satellite drops become bigger than in the non-electrified case. This phenomenon

is also observed by Satiawan & Heister (59], Lopez-Herrera et al. [38] and Collins et

al. [11] which implies its universality and that it is independent of fluid properties.

Following Lopez-Herrera et al, [38], we can assess the stability of the main and

satellite drops by calculating the charge Q that they carry at pinch-off and compare

with the Rayleigh charge limit (hereinafter referred to QR), which shows the upper

bound of the amount of charge that a spherical drop can bear (see Rayleigh [53]).
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In terms of dimensionless groups, in the present work, Q 2R = 48πEbV, where V is

Table 5.1 Some Characteristics Of Main And Satellite Drops After Pinch-off For
The Case d = 2.5 & ka = 0.6667

Eba Rs/Rs0 Rm/Rm0 QRs Qs/QRs QRm Qm/QRm

0.005 1.0214 0.9999 1.0057 4.6604 15.3487 4.6084

0.01 1.0429 0.9999 1.4667 3.2181 21.7063 3.2610

0.05 1.2403 0.9991 4,2554 1.1577 48.4754 2,0429

0.1 1.5613 0.9965 8.4990 1.1663 68.2937 1.4934

Table 5.2 Some Characteristics Of Main And Satellite Drops After Pinch-off For
The Case d = 5 8,6 ka = 0,5

Eba Rs/Rs0 Rini Rm0 QRs Qs/QRs QRm Qm/QRm

0,1 1,0726 0.9985 13.88 0.7167 90.75 0.4423

0.2 1.1634 0,9955 22.17 0.4991 127.83 0.311

0.4 1.4631 0.9862 44.22 0.2217 178.15 0.3716

0.43 1.5347 0.9831 49.25 0.2097 183.83 0.4344

the dimensionless volume of a drop. Since many drops formed at breakup are highly

deformed, the ratio Q/QR < 1 does not guarantee the stability of the drops after

pinch-off. On the other hand, the case Q/QR > 1 usually implies instability and the

drop will breakup further into more droplets to redistribute the amount of charge it

carries. Table 5.1 outlines the change of surface charge and effective drop radius in

the case d = 2.5 and ka = 0.6667, where the subscript s and m represent the satellite

and main drops, respectively. The effective drop radius is defined as
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and R0 corresponds to the effective radius in the non-electrified case. Table 5.1 shows

that the effective radius of satellite drops increases as Eb increases, which provides

evidence of bigger satellite drops with increasing electric field. At the same time the

size of the main drop decreases as expected. It is interesting to notice that in the case

d = 2.5 < e the ratio Q/QR is always bigger than one for both main and satellite

drops. Thus further breakup is expected to follow, In addition, Q/QR decreases as

Eb increases which shows a certain stabilizing effect of the electric field but we also

notice that the change of the charge ratio is not monotonic which differs from the

results shown for most cases in Collins et al, [111. For example, Qs/QRs for Eba = 0.1

is slightly bigger than the value for Eba = 0.05. As will be shown later this is due to

a transition between different breakup scenarios, In Table 5.2 analogous results are

presented for the case d = 5 and Ira = 0.5. Again bigger satellite and smaller main

drops are found. For this case d 5 > e, and the charge ratios are all below unity,

which indicates that an electrode located far away leads to relatively stable drops

after pinch-off.

Figures 5.14 and 5.15 illustrate further the fluid motion (d = 2 and d = 5

as in Figure 5.12) approaching breakup for the core-annular flow with and without

electric field. In Figure 5.14, d 2, and, the electrode is relatively close to the fluid

interface compared with d = 5 in Figure 5.15. A pinch-off solution is still obtained

and the flow pattern is almost the same when an electric field is present as in the

non-electrified case near the break point. However the far field flow on the main drop

is quite different as seen from the results. Based on previous linear theory it is shown

that when d < e always leads to linear instability. Physically this is due to the small

gap between the electrode and the Smax , so that the electric stress is bigger along the

interface of the big drop where more charge accumulates. This can also be discovered

from Figure 5.12 (b) which shows g along φ < z/L < 0.1 is bigger than the value

near z/L 0,5. Therefore after pinch-off, the main drops will tend to be unstable
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Figure 5.14 The disturbance velocity field and instantaneous streamline patterns
with λ  = 1, d = 2, ka = 0.3: Panel (a) and (b) outline the results for Eb = 0
at t = 52.005 and 57.017 respectively. Panel (c) and (d) outline the results for
Eb = 0.1047 at t = 53.506 and 60.534 respectively.

and be elongated further in the direction of the electric field. Interestingly the result

is actually opposite when d = 5 > e (see Figure 5.12 (d)), in which case the satellite

carries a higher concentration of surface charges, hence is potentially unstable after

pinch-off. The instantaneous velocity field together with streamline patterns before

pinch-off are presented in Figure 5.15, which shows that the presence of the electric

field allows the small eddy on the satellite drop to grow bigger. Hence more fluid

flows back and a longer (bigger) satellite drop is formed than in the non-electrified

case. As a result, the flow field is distorted further by adding the electric field.
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Figure 5.15 The disturbance velocity field and instantaneous streamline patterns
with λ = 1, d = 5, ka = 0,5. Panel (a) and (b) outline the results for Eb = 0 at
t = 21.49 and 26.41 respectively. Panel (c) and (d) outline the results for Eb = 5,03
at t = 34.54 and 37.74 respectively.

For a longer period L/a = 10π, i.e. ka = 0.2, with d 5, Figure 5.16(a)

illustrates a complex formation of satellite drops under the electric stresses. In this

case, the axial length of the satellites is bigger than in the previous cases that we

considered, and even before the pinch-off, the drops tend to be unstable due to a

high concentration of surface charge. Similar undulation along the jet surface was

also observed in the calculations of Setiawan & Heister [59] for inviscid electrified jets

subject to long wave length perturbation (ka = 0.4 in their paper). The instantaneous

velocity field and streamline patterns over half period are shown in Figure 5.16 in
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Figure 5.16 (a) Complex satellite formation for electrified core-annular thread with
ka = 0.2, d = 5 and Eb = 3.142. Dotted line represent the non-electrified solution.
Panel (b) arid (c) show the instantaneous velocity field and flow patterns before
breakup for Eb = 0 and Eb = 3.142 respectively.

panel (b) (at t = 73.51 with Eb = 0) and panel (c) (at t == 122.74 with Eb = 3.142)

which suggests that the electric field increases the mobility of the thread significantly

(four eddies in the electrified case compared to three in non-electrified case), Complex

motion occurs along the interface which may lead to multiple-subsatellite formation

after the first pinch-off (see Tjahjadi et al. [63] for the uncharged problem but under

a different mechanism, caused by shear).

Finally, we show that the pinch-off solution is not always possible. When the

electric field strength is strong enough, the fluid interface tends to form a sharp tip

that is analogous to the Taylor cone. A small amount fluid tends to be ejected from

the thread due to high charge density around that point, or the fluid is simply pulled



90

up by the electric force then moves towards the electrode. Figure 5.17 illustrates

different breakup behaviors for the threads under the electric field. The breakup

times are presented by the vertical coordinates in the figure. The upper panel shows

the behavior for d = 2 and ka = 0,3, while in the lower panel corresponds to d = 5

and ka = 0,5, If a pinch-off solution is obtained, the results show that the breakup

is retarded and the shape of the droplets is changed as we discussed earlier. As the

electric field increases further, the pinch-off solution is suppressed as we showed in

Chapter 3 in the long wave model, and a transition to a touchdown solution takes

place. A spiky solution is found for the case d = 2 (see the upper panel) around

Eb = 0.25. If Eb increases further, e.g. Eb = 0.5027 in the figure, the shape is

completely different and the singular time is smaller than in the previous cases; the

fluid spikes up and shoots toward the electrode. For a case that has the electrode is

far away, d = 5 (lower panel), similar behavior is found. In addition, between the

pinch-off and spike solution, a 'transition' solution has also been found. In the lower

panel of Figure 5.17 at Eb = 7,54, a small droplet tends to be ejected from the top

tip of the interface. In Collins et al, [11] a similar solution was presented but they

claimed that pinch-off still occurs. The difference is due to the choice of d. In their

paper, d = 10 is taken and this large distance value allows pinching to happen first.

5.5.3 Local Dynamics

As discussed in Lister & Stone [36], near pinch-off the local scaling analysis shows a

linear dependence of Smin with τ  = t s —t for the non-electrified problem and the aspect

ratio is proportional to O(μext/μint)1/2  which is constant instead of asymptotically

small, This implies that for Stokes flow, directly solving the problem may do a

better job than the long-wave approximation. It is pointed out in Cohen et al, [10]

that the slope of the decrease is around —0.0335 (compared with —0.0304 for single
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Figure 5.17 Influence of electric parameter Eb on the breakup time for the case
(above) ka = 0.3, d = 2 and (below) ka = 0.5, d = 5. In addition, different breakup
behaviors are identified for different Eb.

Navier-Stokes jet [17] and —0.0709 for single Stokes jet [45]). Similar results are

expected for the electrified problem here as discussed next.
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Figure 5.18 Evolution of Smin versus time for various d and Eb indicated in the
figure.

From previous results (e.g. Figure 5.12), we see that close to pinch-off φ 2n--> 0

at the minimum neck position while it takes large values in its vicinity. This can be

understood by considering (5.59)

and following Hinch [23] to obtain

(for x0 on the interface) at leading order where r = ER(z) is assumed. Hence

This is the contribution from the intermediate region of breakup (E << | z - z0 << L) .

Notice that in our long-wave model in Chapter 3, φn ≈ 1/(Sln S) which is consistent

with the estimate here. We argued in that chapter that pinching is suppressed by
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adding an electric field when the slender geometry is assumed. In fact the gradient

of the electric force becomes comparable to the gradient of curvature in the long

wave model and hence the pinch-off solution can not be obtained. In contrast, the

scaling analysis in the full problem suggests the use of the full curvature and the

pinch-off solution is obtained. This indicates that the long-wave model overestimates

the electric force and exaggerates it when the neck is small. However, some useful

information is still obtained by considering the shallow cone of the pinching solution,

Locally it is still a slender thread so we see that the electric effect (balancing the

leading order of curvature effect) stops the thread to break at the point where it

would have done so in the non-electrified problem. Thus the breakup is retarded and

the thin thread keeps extending until the capillary effect dominates over electric effect

near the minimum neck region. This explains the formation of a bigger satellite drop

in the electrified problem compared to the non-electrified one. In addition, this does

not depend on the viscous effects, so big satellite formation is always observed (see

Satiawan Heister [59] and Collins et al. [11]) Consistently, Huebner [26] shows the

size of main droplets decreases as the voltage increases.

Next we show that the electric field does not affect the local dynamics near

pinching. In Figure 5.18 the evolution of Smin  is plotted against time, showing the

numerical evidence of the predicted slope (dashed line in figure) for infinite and

core-annular threads irrespective of the electric field. This is consistent with the

observation that On 0 at the minimum neck. Additional evidence can be seen from

Figure 5.19 where the resealed function H(ξ) = S/S minis plotted for various cases.

Panel (a) shows the collapse of the infinite jet profiles (three profiles) near breakup,

Smin ≈0.005, and suggests self-similarity. This agrees with the result in Lister &

Stone [36] where simulations of a finite viscous drop was carried out. Panel (b) in

Figure 5.19 illustrates several jet profiles at the final computed stage for the wide

range of parameters of Figure 5.18 and again we see that they almost have the same
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Figure 5.19 Panel (a) shows three profiles from the simulation (resealed according
to H = S/Smin and ξ= (z - zmin)/Smin)of the infinite jet (λ= 1), where the collapse
suggest self-similarity. Panel (b) outlines local shapes for various parameters that are
the same as in Figure 5.18.

shape. The solid line in panel (b) represents the profile for the infinite thread (d = ∞

and Eb = 0). The other lines have the same parameters as shown in Figure 5.18.

Again excellent agreement is observed for both core-annular breakup and electrified

breakup. Therefore the angles of the shallow and deep cones take roughly 6.0° and

78.2° respectively as described in Lister & Stone [36].

The axial velocity in the case of a radially unbounded thread (d = ∞ ) and

core-annular thread still increases slowly. It turns out that the scaling law derived by

Lister & Stone [36] still applies for the problems here,

w = -0.02431n Smin + lower order terms. (5,75)

Figure 5.20 shows that as Sm in 0 the curves start converging to the predicted line

(dark dotted line) which provides additional evidence of the same local dynamics.

Solid line represents the solution of infinite thread which shows a relatively quick



95

Figure 5.20 Linear increase of max|w| with ln(Smin) for several simulations with
the same lines as in Figure 5.18.

convergence than other cases. Again the different lines correspond to the cases shown

in Figure 5.18. Intuitively it is suspected that the presence of a tube wall or electric

field only reduces the rate of convergence, but eventually the local dynamics follow

the non-electrified problem.

5.5.4 Nonlinear Evolution of Annular Layers

In the limit of a thin annulus, even without an electric field the pinch-off in the core

thread can be suppressed. A lubrication model was derived and solved by Hammond

[22J where an infinite-time singularity is predicted. The capillary drainage and details

about the long-time behavior of the thin film was revisited and explored recently by

Lister et al. [35], who show that the lobe and collar formation depends on the axial

length of the film and at large times, they may interact and merge to minimize the

surface energy. Figure 5.21 presents a solution calculated with the boundary-integral

method developed here for the full Stokes problem, with A = 1, L/a = 20 and
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Figure 5.21 Formation of lobes and collars of the annular layer for Eb = 0, ka =
7/10 and d = 1.14 at t 9666.1.

Figure 5.22 Touchdown solutions of the annular layers under radial electric fields
for (a) ka = 0.5, d = 1.3, Eb = 0.1005, (b) ka = 0.5, d = 1.5, Eb = 0.1257 and (c)
ka = 0.2, d = 2.0, Eb = 1.5708.
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d = 1.14. The simulation stopped at time (dimensionless) t = 9666.1 when the

gap (dimensionless) between the tube wall and the interface is about 0.002. The

corresponding axial velocity near the minimum gap does not show blowup (not shown

here) which implies further fluid motion that may follow the results in Lister et al.

[35]. However due to the numerical cost we do not pursue this further. Instead the

electrified problem is of our interest where, as we discussed previously, a finite-time

singularity occurs.

Figure 5.23 Log-log plot of d - Smax versus wm-2/3 for the case ka = 0.5, d = 1,5,
Eb = 0.1257. Dashed line has slope One.

Figure 5.22 outlines a few spike formations for different parameters. Panel

(a) shows a solution for small gap d = 1.3, For a bigger gap, increasing Eb, i.e.

increasing the electric field strength can still produce similar breakup solution (d =

1.5 in panel (b) and d = 2 in panel (c)). From linear theory it has been found

that short waves tend to be unstable. In our simulation, small wavy structures are

observed and these are unstable as expected. Additionally the scalings predicted by

the lubrication model are also observed in our boundary-integral simulation. Figure

5.23 shows the scalings, d - S ~ w-2/3  ~τ1/3in the case d = 1.5,Eb =0.1257,
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which implies that the lubrication model is appropriate and useful near the film

rupture. Unfortunately, direct comparison between the boundary-integral simulation

and the lubrication results does not show good agreement. Higher order model may

be required and meanwhile in the full simulation a sufficiently small gap (d —1) might

be necessary in order to apply the lubrication model. But due to the expensive cost

these are left for future work.



CHAPTER 6

CONCLUSION

The nonlinear dynamics of perfectly conducting liquid jets or threads subject to a

radial electric field has been studied here. In the single jet case (the annular region is

passive), we have addressed the effect of the electric field by initially investigating a

long-wave model by adopting a local approximation of the electric potential. Pinching

is eventually suppressed and stable quasi-static microthreads connected to large drops

are found for relatively large outer electrode radii, that is, relatively weak fields, The

jet can also be attracted to touch the outer electrode in finite time for different

parameter settings, in which case, the touchdown singularities are examined and

similarity solutions are constructed analytically. Those results are supported by

numerical simulations of the nonlinear partial differential equations with excellent

agreement. When the viscosity of the jet is negligible, a Korteweg-de Vries equation

is derived in the weakly nonlinear regime in the long wave limit which corresponds

to the stabilizing effect of the electric field.

A boundary-integral method has also been implemented to solve the full problem

(Stokes equations) when the external viscous drag is reintroduced. The construction

of the Green's function for the electrostatic problem was presented in detail. From the

numerical results, different breakup scenarios are identified with different parameters.

Pinch-off solution is still obtained and a local dynamics analysis reveals the mechanism

of bigger satellite drop formation based on the slender-jet approximation. Our results

also showed that the local dynamics at pinching is not changed to leading order, by

a adding radial electric field; this was shown by illustrating the computed thread

profiles in a self-similar frame, Additionally, the instantaneous flow patterns were

presented to obtain the nonlinear evolution and fluid motion, As the electric field
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strength increases, or the gap between the electrode and fluid interface decreases, a

'spike' solution appears as described in our previous long wave model. In particular,

when the annulus is thin enough a lubrication model was derived to describe the

touchdown and self-similar scalings are verified through numerical simulations,

Our formulation assumed that the core-thread is a prefect conductor while

the surrounding fluid is insulating. Recent research implies that the leaky-dielectric

model, which allows for the accumulation of free charge along the interface, may be

better suited to describe the electric problem. At this point the finite permittivities

and conductivities become important, and this constitutes a wide field for future

research.



APPENDIX A

THE COMPONENTS OF MATRIX

In this Appendix, the expressions of the components of the matrix M defined in

equation (5.20) are presented.
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APPENDIX B

GREEN'S FUNCTIONS

Green's function for potential flow problem:

where k2 = 4rr0/(z - z0)2 + (r = r0)2 and F and E are the complete elliptic integrals of the first

and second kind with argument k, defined as

The Stokeslets and Stresslets used in the boundary-integral formulations for Stokes

flow are well documented in the literature (see Pozrikidis [48], Lee & Leal [33]). The

Stokeslets in our notation are given by
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and the Green's functions in double layer potential (Sαβ = Qαβγnγ) are given by
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where the integrals Iran are defined as

and k is the same as it appears above.
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