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ABSTRACT

UNDERSTANDING COGNITIVE DIFFERENCES IN PROCESSING
COMPETING VISUALIZATIONS OF COMPLEX SYSTEMS

by
Madhavi Mukul Chakrabarty

Node-link diagrams are used represent systems having different elements and

relationships among the elements. Representing the systems using visualizations like

node-link diagrams provides cognitive aid to individuals in understanding the system

and effectively managing these systems. Using appropriate visual tools aids in task

completion by reducing the cognitive load of individuals in understanding the problems

and solving them. However, the visualizations that are currently developed lack any

cognitive processing based evaluation. Most of the evaluations (if any) are based on the

result of tasks performed using these visualizations. Therefore, the evaluations do not

provide any perspective from the point of the cognitive processing required in working

with the visualization.

This research focuses on understanding the effect of different visualization types

and complexities on problem understanding and performance using a visual problem

solving task. Two informationally equivalent but visually different visualizations - geon

diagrams based on structural object perception theory and UML diagrams based on

object modeling - are investigated to understand the cognitive processes that underlie

reasoning with different types of visualizations. Specifically, the two visualizations are

used to represent interdependent critical infrastructures. Participants are asked to solve a

problem using the different visualizations. The effectiveness of the task completion is

measured in terms of the time taken to complete the task and the accuracy of the result



of the task. The differences in the cognitive processing while using the different

visualizations are measured in terms of the search path and the search-steps of the

individual.

The results from this research underscore the difference in the effectiveness of the

different diagrams in solving the same problem. The time taken to complete the task is

significantly lower in geon diagrams. The error rate is also significantly lower when

using geon diagrams. The search path for UML diagrams is more node-dominant but for

geon diagrams is a distribution of nodes, links and components (combinations of nodes

and links). Evaluation dominates the search-steps in geon diagrams whereas locating

steps dominate UML diagrams. The results also show that the differences in search path

and search steps for different visualizations increase when the complexity of the

diagrams increase.

This study helps to establish the importance of cognitive level understanding of

the use of diagrammatic representation of information for visual problem solving. The

results also highlight that measures of effectiveness of any visualization should include

measuring the cognitive process of individuals while they are doing the visual task apart

from the measures of time and accuracy of the result of a visual task.
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CHAPTER 1

INTRODUCTION

Information visualizations have been used in many domains to aid in the cognitive effort

of individuals in problem understanding and problem-solving. The advantages of

visualizations in solving complex problems have resulted in the implementation of

visualizations in various planning and management areas of environmental systems,

hydraulic systems, and transportation systems (Bartz et al. 2001; Card, Mackinlay and

Shneiderman 1999; Treinish 2002; Yoo et al. 2000). Prior research has shown that for a

large volume of information, visual models capitalize on a fundamental, native expertise

of humans: the ability to solve complex problems by reasoning with visualizations (Bartz

et al. 2001; Card, Mackinlay and Shneiderman 1999; Treinish 2002; Yoo et al. 2000).

Visual models can offer advantages over purely lexical models by increasing

interpretability and reducing cognitive load, thus enabling decision-makers to devote

additional cognitive resources to problem-solving (Larkin and Simon 1987).

There has been substantial research in the field of visualization for model analysis

(Brown and Afflum 2002; Dungan, Kao and Pang 2002; Mark et al. 1999; Sugumaran,

Davis, Meyer and Prato 2000; Sui and Maggio 1999), manipulation (Aliaga 1996;

Brisson 1989) and control (Elmqvist, Mattson and Otter 1999). These studies have shown

the effectiveness of visualization models over existing tools and techniques in model

understanding and usage. Advantages of using visual tools and widgets for manipulation

and control of models have also been well established (Nielson 1995; Sutcliffe 2003).

Other visualization studies have focused on developing simulation-based approaches for

understanding and analyzing complex models (Peerenboom, Fischer and Whitfield 2001).

1
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Applications and implementations of different information visualization techniques have

been capitalized in many different domains of engineering, management and

organizational systems and processes (Peuquet and Kraak 2002; Prichett 2002; Sui and

Maggio 1999).

Investigating the history of the currently used visual tools shows that most of the

existing visual tools, widgets and techniques are developed based on experience,

availability of tools and intuition regarding the benefits of a certain representation. Few

of the tools have evaluation studies to show their effectiveness. Even when evaluations

are conducted, they are restricted to comparison of the performance of the visualization to

an alternative approach including sentential representation where text is predominantly

used. Therefore the problem is two fold. First, only a handful of visualizations have any

evaluations to back up their effectiveness claims; second, there is very little known about

the effectiveness of the different techniques used to evaluate visualizations. Also, since

most of the evaluations/studies are focused on individual visualizations and isolated

visual problems for a given scenario in a prescribed knowledge domain, the development

of visualizations as well as the evaluations that have been carried out is isolated. This

approach to evaluating visualizations limits the applicability of the results to the single

visualization. Since there is no way to link the results to any theory of visualization, the

results that are derived are non-extensible. This is another major gap with the current

research related to developing adequate visualizations. This gap and the importance of

bridging it is well recognized in the research community (Kerren, Stasko, Fekete and

North 2008; Plaisant, Fekete and Grinstein 2007).
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This research is focused on techniques for evaluating different visualizations,

which are currently evaluated primarily on how fast a task is completed or how error-free

a solution is when using a given visualization for a given problem. These evaluation

techniques limit the measures of effectiveness to the result derived out of the visual task.

But the time-to-completion and error-rate do not provide the complete picture regarding

the effectiveness of visualizations because they do not measure the process of completing

the task using the visualization.

The research in this thesis provides a complementary view of the existing research

for evaluating of visualizations of different systems. This view includes measuring the

cognitive process of individuals using the visualizations. Previous studies have shown

that visualizations can amplify cognition and aid in the problem-solving capabilities of an

individual (Card, Mackinlay and Shneiderman 1999). The results of these studies show

that suitable visualizations enable individuals to complete their intended work by

increasing comprehensibility of the underlying information and enabling effective

analysis and manipulation of the information. To understand the impact that visualization

has on the representation and comprehension of information, it is necessary to understand

how the information is viewed by individuals that makes one visual representation more

effective than another. Therefore, understanding the cognitive processes that individuals

use in solving a problem can provide insights into the characteristics of visualization that

make them more effective. Hence the need arises to understand the cognitive processes

that individuals use in visual problem-solving. Moreover, this understanding will enable

better design of visualizations for a given task. Accordingly, the focus of the current
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research is on evaluating the cognitive processes of individuals when working with

different visualizations.

To understand the effectiveness of different visualizations in terms of the

cognitive processing associated with them, a specific set of visualizations called node-

link diagrams is used. Node-link diagrams are usually represented as a set of nodes

(circles or other geometric shapes) and connected with arcs or lines (straight or curved),

which depict some relationship among the nodes. Node-link diagrams have been used to

represent systems, with nodes depicting the entities of the system and links depicting the

relationships among the different entities (Howard and Matheson 1981; Modell 1996;

Sommerville 2001). The nodes and the links can be used to represent specific information

about the entities and their relationships. This information is stored as attributes of the

nodes and links. Different shapes, colors, boundary styles and highlighting features

represent different types of nodes (Becker, Eick and Wills 1995). The links have symbols

attached, and are dashed or dotted to represent different types of relationships (Irani and

Ware 2003). Node-link diagrams are pervasive in situations where it is desirable to have

an understanding of how elements relate to one another in a system. Examples of node-

link diagrams include influence diagrams (for decision analysis), data flow diagrams (in

computer software design), Gantt and PERT charts (in planning and management) and

communication network diagrams (Howard and Matheson 1981; Modell 1996;

Sommerville 2001). The wide applicability of node-link diagrams makes them suitable

candidates for understanding individual cognitive processes in visual problem-solving.

The research investigates the impact of visualization using measures that go

beyond speed and accuracy. It attempts to compare two visualizations by understanding
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the cognitive process of individuals navigating through the two visualizations and the

information cues they use to complete a visual task. Class diagrams from Unified

Modeling Language (UML) and Geon diagrams developed from Structural Object

Perception Theory (S OPT) are used to develop hypothetical test scenarios of

interdependent critical infrastructures for evaluating the difference that arises out of using

different visualizations. Two parameters developed to measure this cognitive process of

individuals are defined as search path and search-steps. Participants are asked to

complete a problem-solving task using different visualizations types and complexity for

the hypothetical scenarios. The process of completing the task and the results of the task

together are used to draw the conclusions regarding the difference resulting from the two

visualizations in completing the visual task.

The remaining part of the document is organized as follows. Chapter 2 outlines

the theoretical background used to develop the research propositions leading to this

proposed work. Chapter 3 provides the details of the design of an experiment that was set

up for addressing the research propositions and the method of data analysis. Chapter 4

describes the results of the experiments conducted. Chapter 5 presents the discussion and

Chapter 6 discusses the contribution of the research and future work.



CHAPTER 2

THEORETICAL BACKGROUND

Visualizations are used widely in different applications and different domains, and prior

studies show that visualizations aid in cognitive processing of individuals during

problem-solving (Kress and Leeuwen 1996; Larkin and Simon 1987). The differences in

individual cognitive processing in visual problem-solving depend on the way information

is encapsulated and presented in visualizations and the way this information is perceived

by the individuals. For the most part, no theories are strictly followed to develop these

visualizations. Despite considerable development in the field of information visualization

(Card and Mackinlay 1997; Card, Mackinlay and Shneiderman 1999; Chi 2000;

Shneiderman 2002) there is little guidance available on how to design or even select

visualizations for a given purpose. Most visualizations that are developed and used have

to meet the minimal requirements of adequacy, cost-effectiveness and adaptability (North

and Shneiderman 2000; Spoerri 1999). Hence, these visualizations are developed based

on experience, usability principles, availability of tools and intuition (Hartson and Hix

1989; Henninger, Haynes and Reith 1995; Nielson 1992). Less importance is given to

understanding deeper aspects of which attributes of a visualization make them adequate

and adaptable. The current research is an attempt to understand how different

visualizations lead to differences in the way information is perceived. Since node-link

diagrams are extensively used in different domains, two different node-link diagrams will

be used for the study. A few key concepts used in the proposed study are discussed in the

next section.

6
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2.1 Key Concepts

This section introduces the main concepts, the literature review of related research and

the research framework for the proposed work. Visual tools can be defined as a collection

of symbols graphically linked by mental associations to create a pattern of information

and a form of knowledge representation about an idea (Hartley 1996). Visual tools reduce

the cognitive load associated with information presentation and processing, and have

been used in various applications (Card, Mackinlay and Shneiderman 1999; Ware 2000).

Visualization widgets or visual tools used to control or process a visual model enable

individuals to interact with models (Lo and Yueng 2002). Examples of widgets include

menus, control buttons, sliders for navigating through a computer interface (Gahegan

1998). The emphasis in the current work on visualization is on the representation aspect

and not on the control aspect. The research draws upon visualization and modeling

sciences and tries to integrate system development perspectives to help design and

develop a visualization appropriate for a visual task in a given application domain.

Individuals use a three-step process of analyzing, refining, and expanding to

reason with visualizations in problem-solving tasks. These steps help them to extract

information from a visualization that is otherwise not obvious to them (Stylianou 2002).

The process of reasoning with visualizations depends on the problem-solving task to be

accomplished and the type of visualization used to represent the problem (Halverson and

Hornof 2004; Shneiderman 2002). To develop the right visualization, there is a need to

understand the characteristics of the visualizations that lead to the differences in cognitive

processing techniques of individuals. This leads to the question of how different

visualizations are developed and what makes these visualizations different from each
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other. Because understanding visualizations depends on the perceptual abilities of

individuals (Gershon 1994; Gordon 1989; Gregory 1990; Ware 2000), investigating

different visualizations will be limited to the attributes that lead to their perceptual

properties. Two types of visualizations and their perceptual properties are discussed

below.

2.1.1 Types of Visualization

Literature on object perception talks about how individuals understand objects based on

their visual representations (Bruce 1996; Gordon 1989; Johnston 1996). Regardless of the

method of developing visualizations, there are syntactic principles, rules and heuristics

that underlie the visual language used to represent information (Kress and Leeuwen

1996). Different features or characteristics of the object representation help an individual

form a mental image of the object and its function (Bruce 1996; Johnston 1996). These

characteristics of the object representation are dictated by the underlying visual language.

This may lead to amplifying certain characteristics of an object in the visualization and

reduction of other characteristics. Based on the way the objects are visualized, certain

features of the objects provide cues to their use and functionality (Bruce 1996). For

example, an object perceived to be a hollow container may provide the impression that it

can be used to store a liquid. Following are two types of visualizations and their

implementation details.
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2.1.2 UML Diagrams

UML (Unified Modeling Language 2001) is a modeling language from the Object

Management Group (OMG) (Booch, Rumbaugh and Jacobson 1999). It is the result of

combining many design methodologies for describing object-oriented systems developed

in the late 1980s (Koch and Kraus 2002). It standardizes several diagramming methods,

including Grady Booch's work at Rational Software, Rumbaugh's Object Modeling

Technique and Ivar Jacobson's work on use cases (Booch, Rumbaugh and Jacobson

1999). The rich vocabulary of UML consists of twelve diagrams including four structural,

five behavioral and three model management diagrams (Booch, Rumbaugh and Jacobson

1999). UML diagrams are an example of an elaborate graph diagram where nodes

represent objects and links represent relationships or associations between the objects.

The large set of UML diagrammatic views has made it possible to view and understand

software system requirements for system design. It has become a de facto standard in

user interface design (Kovacevic 1998). UML diagrams are one of the more widely

accepted and commercially available tools for building diagrams based on Object-

Oriented Design (OOD) (Booch, Rumbaugh and Jacobson 1999).

In object-oriented design methodology, designers abstract all OOD components

(objects, attributes, methods, and messages) to emphasize the important points and to

suppress immaterial or diversionary details (Kim and Lerch 1992). OOD helps to

simplify problem interpretation by focusing on individual objects of interest rather than

on functions, and by transforming the general operators and constraints into

functionalities of individual objects. Therefore, OOD representation reduces memory

overloading of designers, which leads to fewer errors and interrupts and leading better
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understanding of the information behind the representation (Burton-Jones and Meso

2006). Also, designers spend less time in absolute and relative terms in the task domain

and develop a better understanding of the underlying problem structure that is the

emphasis in object modeling (Bodart and Vanderdonckt 1996). In modeling software

systems with complex interactions, abstracting the concepts and relationships between

the concepts as objects in the physical world allows the developer to think on a higher

level of detail than is possible with structured code (Collins 1995; Gamma, Helm,

Johnson and Vlissides 1995; Szekely 1996). This methodology of abstracting the

concepts in a design problem and representing those concepts using analogous familiar

objects from the real world is the concept behind Object-Oriented Design (OOD)

(Sutcliffe 1999). OOD vocabulary includes definitions and techniques for representation

of different objects that are instantiations of the elements being represented, attributes

that are the characteristics of the element, methods including the functions of the object

and messages to communicate with other objects.

Object-oriented methodology in software development is an implementation of

object modeling (Cattell et al. 1997; Jacobson, Christerson, Jonsson and Overgaard

1992). The concept of Object Modeling (OM) is based on the perception of the object

based on their representations using identifiable objects from the physical world. It

assumes that creating an abstraction of reality is a fundamental way in which individuals

understand the world (Powell 1995). This technique uses successive decomposition and

refinement of a problem until the components of the objects are abstracted as objects

resembling objects in the physical world. Mental models of the objects are formed based

on the preliminary information gathered when individuals assimilate information from
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the representation of the objects. Individuals process the information by continuously

storing, retrieving and intermediate steps of analyzing the information (Silva and Paton

2000). The process of abstraction in OM helps individuals in object recognition by

reducing the cognitive processing required to analyze the visualization. Recognition of

objects happen by perceiving their different parts as represented by the abstracted

physical objects and their relative association as conveyed by the relationships of the

abstracted objects. The abstracted representation of the system helps to uncover details of

the objects and their relationships that would otherwise not be so obvious (Bodart and

Vanderdonckt 1996; Johnson 1992).

In software development methodology, object modeling has been extended and

used to design, analyze and build software systems. In software designing, object

modeling helps focus the designers' attention on different and uncommon issues of the

design problem and attempts to facilitate the process of transforming problem

requirements into software solutions (Harmelen 2001). By abstracting out the

unnecessary details of the problem, individuals can analyze by focusing only on the

design issues that need their attention. This process of abstraction and use of the

abstracted representation has been successfully implemented for problem-solving in

multiple paradigms.

The specific type of diagram under investigation is one of the commonly used

diagrams in UML called the class diagram. In UML class diagrams, an object is defined

as an entity that is generally drawn from the vocabulary of the problem space. A class is a

description of a set of common objects. Every object has three attributes: identity, state

and behavior (Unified Modeling Language 2001). UML class diagrams can be used to
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represent any physical or virtual object, using the guidelines outlined for developing

UML class diagrams. Since any object would have numerous behavior attributes, for

reasons of simplicity only those attributes are listed that have a direct bearing on the

design being considered. Figure 2.1 shows a UML class diagram representing a person

(or customer) in a banking scenario. The first section in Figure 2.1 is the name of the

class. In this case, the class is called Person. The second section shows the attributes of

the Person and the third shows the functions of the Person. Only the attributes (income)

and functions (isMarried, isUnemployed, birthDate, age, firstName, lastName, sex)

applicable to a banking scenario are presented here.

Person

income(Date) : Integer

isMarried : Boolean
isUnemployed : Boolean
birthDate : Date
age : Integer
firstName : String
lastName : String
sex : enum {male, female}

Figure 2.1 	 UML representation of a class layout .

(Source: Booch, Rumbaugh and Jacobson 1999).

Similarly, any physical object can be represented using a UML class diagram.

Figure 2.2 shows the UML representation of a horse. The name of the object "horse" is

shown in the first section. Attributes or properties of the horse are shown in the second

section and functions are shown in the third.
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Horse 

4 legs 
Conical mouth 

- Bushy tail - Slender body 

Eats grass 
Runs fast 

Figure 2.2 UML representation of a physical object (horse). 

Since UML class diagrams are used to depict objects, properties of the objects and 

relationships of the objects with other classes, UML class diagrams will be used as one of 

the candidate visualizations. The next section discusses another type of visualization. 

2.1.3 Geon Diagrams 

Geon stands for Geometrical Ions. Geon diagrams consist of 3D primitive shapes like 

cones, cylinders, cubes and wedges, which can be combined to form a set of generalized 

cones. These generalized cones can be attached to one another in various ways to 

represent the object. 

Geon diagramming is an implementation of Structural Object Perception Theory 

(SOPT) (Biederman 1987). SOPT is a theory of object perception that analyzes the 

structure of the object independent of the viewpoint or direction in which the object is 

viewed. It is based on recognition-by-components (Biederman 1987) and proposes a 

series of processing stages culminating in object recognition. In SOPT there are three 

steps leading to object recognition. First, the visualization is analyzed and decomposed 

into primitives at the edges, based on luminance, color or texture, so that the boundaries 
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of objects can be extracted. The object is parsed at the concave edges simultaneously

with the edge detection. Second, a structural skeleton is identified, that contains

information about how the components are interconnected (Biederman and Gerhardstein

1993; Marr 1982). Third and finally, all the information is combined for identification of

the object (Biederman 1987).

The first stage of edge identification of an object is done with the five detectable

optical properties of objects: curvature, co-linearity, symmetry, parallelism and co-

termination (Biederman 1987). These five properties help in dissecting an object into a

number of simple geometric, convex and volumetric components such as cylinders,

blocks, wedges and cones. Since the geometric shapes have convex faces and are

volumetric, these shapes are invariant over changes in orientation, object position and

presentation quality (Biederman 1987). That is, these shapes can be perceived to be the

same by an individual, regardless of their orientation, rotation or direction of viewing.

Another characteristic of such geometric volumetric components is that they can be

determined from just a few points on each edge (Biederman and Gerhardstein 1993; Marr

1982). Consequently, an object formed with these geometric components can be

extracted or perceived even with a large variation in viewpoint, occlusion and noise

(Biederman 1987). When a geometric component is perceived, the continuity of the

occluded portion is mentally completed to form the perceptually complete object in the

mind of the individual (Ware 2000). Apart from the five optical properties already

mentioned, additional properties and characteristics that aid easy recognition and

extraction of the geometric components include texture and color.
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The second stage of determining the skeletal structure of the object helps to

mentally form an arrangement of all the components of the object which is then matched

against a representation in the memory in the third step. In a nutshell, the stress in SOPT

is on recognizing an object based on its constituting primitives or components and the

way the components are connected to one another.

An object represented as a geon diagram is perceived by individuals using the

three stages of object detection mentioned earlier. The first stage of processing is the

early edge extraction stage. The differences in surface characteristics like luminance

texture or color provide this information for the object. This results in the decomposition

of the object into a set of geons which are the component of the object. The second stage

involves the detection of the regions of concavity from the non-accidental properties of

the image, like co-linearity and symmetry, to give the skeletal structure of the object.

This leads to understanding how the different geons are attached to each other. The final

stage is matching the geon structure and its associations against the representation of the

object in the memory to complete the identification process (Biederman 1987; Biederman

and Gerhardstein 1993).

Implementing geons to represent objects is governed by rules for their creation

and layout. Geons can be used to represent very rich node-link diagrams. Different geons

combined in different ways are used to form the nodes. The links between the nodes are

represented by different geon shapes between corresponding geon structures. Minor

subcomponents are represented as small geon components attached to the larger ones.

Geons can be shaded to make their 3D shape clearly visible. Different attributes of

entities and relationships of geons are represented by color and texture or by symbols
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mapped onto the surface of the geons (Biederman 1987; Biederman and Gerhardstein 

1993). All geons should be visible from the chosen viewpoint, and junctions between 

geons should be clearly visible. The geon diagram should be laid out in the plane 

orthogonal to the direction of viewing. Figures 2.3, 2.4 and 2.5 show how different 

objects can be formed from simple geometric shapes. Figure 2.4 shows that the same two 

shapes can be joined in different ways to form very different objects. As shown in Figure 

2.3, these geometric shapes are invariant over changes in orientation and can be 

determined from a few points on each edge, even with a large variation in viewpoint, 

occlusion and noise (Biederman 1987). 

Figure 2.3 Different layouts are readily identified as being the same shape 
(Source: Irani and Ware 2003). 

e 
Figure 2.4 Different arrangements of geon components produce different objects 
(Source: Biederman 1987). 

I I 
Figure 2.5 Geon representation of a physical object (horse) and constituent shapes. 

Table 2.1 summarizes the difference in UML and geon diagrams' representation 

of a node-link diagram. 
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Table 2.1 Summary of Difference Between UML and Geon Diagrams 

I UML Geon 

Nodes are perceived as the Objects are decomposed at 

I Main concept 

representation of the abstracted the regions of concavity to 
I entities . Links provide information to form geons. Connectivity 
I form an association among the of the object gives a 

I

I different nodes. meaning to the overall 
object structure. 

~~----~---1--~N-o-d~e-s-ar-e-p-e-r-ce-i-v-ed-:---:f-:-ir-st-; .......,.l-:-inkc::-s~-+-- --:O::-:b--:~--:e-ct-r~e-p-re-s-e-ntation is 
provide supplementary information parsed at the region of 

Steps in 
recognition 

Recognition 
strategies 

Perception of I 

representation I 

I 

for associating the different nodes. concavity. The structure is 
As the nodes are recognized and the identified as object 
associations are formed between the skeleton based on the 
nodes, the object tends to become different object blobs and 
specific until ultimately, it forms the way the different geons 
something that uniquely identifies are attached. The resulting 
some system or concept that is structure is matched in the 
already present in the user's memory. user's memory to existing 
If it does not result in a match, the patterns for object 
object may become a new entry in recognition 
the user's memory. 

Individuals first locate the main 
entities (or nodes). The nodes are 
grouped mentally before proceeding 
with the links to form a mental 
association image. A mental model is 
formed based on the preliminary 
knowledge gathered during the 
comprehension phase. The mental 
image keeps forming as the first node 
is perceived and as more nodes and 
links are perceived ("pmt-to-whole") . 

Representation seen as composed of 
different nodes and therefore, seen as 
different objects or components of 
objects joined by some rule of 
association 

I 

Individuals may locate any 
part of the representation as 
a convex blob. The mental 
image is formed after all 
the blobs are recognized 
and the individual is able to 
form a skeletal structure of 
the representation based on 
the connectivity of the 
different blobs ("whole-to
part"). 

The whole representation is 
treated as one object that 
has various regions of 
separation 
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After presenting the two visualizations, the next section discusses another factor,

viz., diagrammatic complexity that impacts cognitive processing in visual problems.

2.1.4 Diagrammatic Complexity

This section discusses another factor, diagrammatic complexity, which impacts cognitive

processing in visual problem solving. Complexity of visualization is a measure of the

ease or difficulty in understanding it either computationally or cognitively. Though

numerous definitions of complexity have been developed in different studies, the current

focus is on defining the measure of complexity as a measure of diagrammatic complexity.

A working definition of complexity of node-link diagrams may be found in graph

theory (Ware, Purchase, Colpoys and McGill 2002). This definition is a function of the

readability of the node-link diagram. Readability of a graphic visualization is defined as

the relative ease with which an individual finds the information sought. That is, the more

readable the visualization, the faster the individual executes the task at hand and the

lower the number of errors made. If the individual answers quickly and correctly, the

visualization has high readability for the task. If the individual needs a lot of time or

answers incorrectly, then the visualization is not well-suited for that task (Ghoniem,

Fekete and Castagliola 2004).

The complexity of a node-link diagram is a measure of its readability. With the

increase in the number of nodes or with the increase in link density in the node-link

diagrams, the diagrams become harder to comprehend because of occlusions arising out

of overlapping links, crossover links and undistinguishable nodes and links (Batagelj and

A. Mrvar 2003; Ghoniem, Fekete and Castagliola 2004; James 2006; Shen and Ma 2007).

Thus, it becomes difficult for individuals to visually explore the node-link diagram or
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interact with its elements (nodes and links) as the complexity of the diagram increases

(Ghoniem, Fekete and Castagliola 2004).

Previous studies in the information visualization community focused on

understanding the impact of complexity of node-link diagrams from a cognitive point of

view by evaluating graph layout algorithms using different sizes of node-link diagrams

(Keller, Eckert and Clarkson 2006; Ware and Bobrow 2005). These studies show how the

comprehension of node-link diagrams decreases as the number of nodes and the number

of links per node increases (Ware and Bobrow 2005). A few other studies evaluate the

aesthetic criteria for graph creation and graph layout algorithms (Purchase 1998;

Purchase, Carrington and Allder 2002; Purchase, Cohen and James 1997). The

contribution of these studies is a set of guidelines that improve the presentation of the

node-link diagrams in an aesthetic sense. Other experiments included node-link diagrams

in 2D and 3D (Bertin 1983; Cohen, Eades, Lin and Ruskey 1994; Ghoniem, Fekete and

Castagliola 2004; Herman, Melançon and Marshall 2000) that concentrated on

understanding how increasing a dimension in representation impacts the understanding of

node-link diagrams. Therefore, from all these studies, it can be concluded that the

complexity of a node-link diagram consists of an objective part based on the number of

nodes and links in the diagram, as well as the qualitative part of aesthetic compliance of

the layout of the nodes and links.

The number of nodes and the link density of a node-link diagram greatly

influence its readability (Ware and Bobrow 2005). Link density d in a node-link diagram

is defined as d = 4(1/n2): where d is the density, 1 is the number of links, and n is the

number of nodes in the node-link diagram (Ghoniem, Fekete and Castagliola 2004). This
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value varies between 0 for a node-link diagram without any edge to 1 for a fully

connected diagram. Figure 2.6 shows a node-link diagram. There are 9 nodes (n) for this

diagram and 9 links (1). The link density for this node-link diagram is d = 4(9/(9)2) =

0.33.

Figure 2.6 A node-link diagram showing the link density.

The readability of node-link diagrams tends to deteriorate as the size of the node-

link diagram and its link density increases. Previous studies have shown that for a node-

link diagram with a very large number of nodes and a large link density (typically greater

than 0.6), a matrix representation tends to be more suitable than a node-link diagram

(Ghoniem, Fekete and Castagliola 2004) for understanding the information used to

develop the matrix or node-link diagram. Therefore, construction of node-link diagrams

when the link density is greater than 0.6 is not recommended and is out of scope of this

research.

For reasons of clarity and ease of presentation in a regular sized presentation

medium, a typical node-link diagram used has less than 20 nodes and 30 links (Ware and
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Bobrow 2005). Also, the number of nodes that can be comfortably represented on a

computer screen or a sheet of paper is approximately 20. This ensures that individuals do

not have to scroll or refer to multiple pages to look at the complete node-link diagram.

For specification on the link density, a node-link diagram used to show a large number of

nodes and links does not exceed a link density of 0.6, with the majority of them in the

range of 0.3 and 0.6 (Ware and Bobrow 2005).

However, there are factors other than complexity that impact the readability of

node-link diagrams. There are established principles and methods drawing effective

graphs that can be used to draw node-link diagrams more effectively (Ware, Purchase,

Colpoys and McGill 2002). Drawing the node-link diagrams according to guidelines of

aesthetic principles improves their presentation by increasing their readability (Battista,

Eades, Tamassia and Tollis 1999). Some of these principles include minimizing the

length of the edges, minimizing the number of edge crossings and minimizing the sum of

the lengths of the edges (Ware, Purchase, Colpoys and McGill 2002). Other principles

include minimizing the number of branches emanating from nodes in the node-link

diagram, displaying the symmetry of the node-link diagram and minimizing the number

of bends in the links or edges (Koffka 1935). In practicality, it may not be possible to

eliminate all edge crossings and bends and it may be worth allowing an occasional

crossing in a node-link diagram if it reduces the bendiness of path. It can be argued that

with good guidelines, it is possible to create a node-link diagram perceivable by

individuals that can help reduce the cognitive load of those individuals that use them to

accomplish a task via visualization of the system.
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Complexity of node-link diagrams is taken as a function of the number of nodes,

the number of links and the maximum number of links emerging out of a node. While the

aesthetic factors of drawing node-link diagrams do not contribute to its complexity, every

effort should be made to incorporate these factors in drawing node-link diagrams to make

them more efficient and avoid compounding factors.

To address the impact of different visualization type and complexity on the

cognitive processing of individuals, a scope of the task expected to be accomplished

using the visualization needs to be defined. As discussed earlier, visualizations are

particularly effective in problem-solving activities because they reduce the cognitive

processing required by individuals to complete the activity. Problem-solving activities

such as searching, recognizing relevant information and drawing inferences from that

information have benefited from visualizations (Simon and Hayes 1976). Therefore, the

task that will be designed to investigate individual cognitive differences for different

visualization types and complexities will be a problem-solving task. This is discussed in

detail in Section 2.1.5.

2.1.5 Visual Problem-Solving Task

A visualization is an external pictorial representation that makes it easy to see certain

patterns in data (Shneiderman and Maes 1997). A visual problem-solving task includes

understanding the visual elements and being able to identify an element of interest based

on certain conditions in a given visualization. For this research, the task is a what-if type,

where the individuals are asked to analyze the implications given that a certain node or

link has been removed.
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Two important activities accomplished during a problem-solving task are search

and decision-making. Both these activities depend on an individual's cognitive skill and

pattern regarding how they seek and use information (Wolfe 1998). Individuals look for

information either by searching or scanning, depending on various factors like the nature

of the problem, nature of the visualization, time at hand, amount of information available

and kind of expertise at hand (Vandenbosch and Huff 1997). Any system developed to

help individuals work with the underlying information should be able to provide them

with an interface to search, scan, evaluate and transparently integrate between them

without requiring additional cognitive processing to understand and process the interface

(Treisman and Kanwisher 1998).

In the context of a node-link diagram, the result of the impact of a what-if type of

decision-making problem is a substructure which is usually a set of nodes and links that

depicts a concept from the visualization of the problem. The problem space of a given

visual problem is the set of states and valid transformations between the states to solve

the problem and complete the task. The terminating state in the problem space represents

the goal of the task. In a visual problem-solving task, the terminating state is reached

when the impacted substructure is found. Also, tasks making use of visualizations like

recognition, decision-making or analyzing involve a search task. Therefore, the current

research proposal focuses primarily on visual problem-solving tasks.

The cognitive difference between individuals using informationally equivalent but

visually different visualizations will be understood using a pre-defined problem-solving

task. To understand the difference, it is necessary to understand the cognitive level

processing by individuals doing a visual search task. It is also necessary to devise a way
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to measure and quantify parameters to measure cognitive processing. The next section

discusses different ways in which the impact of visualization on cognitive processing by

individuals can be measured.

2.2 Impact of Visualization on Cognitive Processing of Individuals

A good visualization helps decision-makers act on the visualization and make decisions

as if they were working on the actual system. To understand the effectiveness of any

visualization, it is necessary to be able to quantify the parameters used to measure

cognitive processing. These measures are developed in this section.

2.2.1 Effectiveness of Visualization

Effectiveness of any visualization is the extent to which the visualization helps derive

results in a visual problem-solving task. When different visualizations are used to

represent the same information, and individuals are asked to solve a problem using both,

one ends up being cognitively richer compared to the other (Kosara 2003; Treisman

1988). The more effective visualization helps the individuals to comprehend the problem

better and solve the problem more effectively. Two common parameters for comparing

the relative effectiveness of two visualizations are precision and duration (Freitas et al.

2002; Kobsa 2004; Plaisant, Grosjean and Bederson 2002). Precision (a.k.a. accuracy)

can be defined as the degree of conformity of an indicated value to an accepted standard

or ideal value (Pickett 2000). Duration is the time taken to solve a problem (Pickett

2000). Prior studies have established that visualizations can be developed so that they

lead to greater effectiveness in time to task completion and precision, compared to

existing representation techniques in the domain of visual problem-solving and decision-
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making (Johnson 1992; Larkin and Simon 1987). Apart from measuring effectiveness

based on the result of a visual task, effectiveness of a visual task can also be measured by

understanding the cognitive processes of individuals doing the task (Johnson 1992). Two

such measures are discussed next.

2.2.2 Visual Search Path

To find an embedded structure in a given visualization, individuals look for the presence

of particular elements and/or their combinations. To locate a particular element, an

individual in some way navigates the visual space until the search element is located or

the individual decides to give up the search process. This navigated path that the

individual takes to locate a search element in the visualization is called the search path.

When individuals are looking for information of interest in a given visualization, they

may attempt mentally to divide the visualization into subparts to look for the information

in each subpart, moving to other subparts in succession (Halverson and Hornof 2004).

Individuals tend to fix their attention at certain points on the visual display and then

transfer their attention to other locations (Chen, Cribbin, Kuljis and Macredie 2002;

Pirolli and Card 1995). The number and sequence of fixations and the nature of elements

and their features also influence the search process (Halverson and Hornof 2004; Hu,

Dempere-Marco and Yang 2003).

In visualizations containing numerous elements and relationships between the

elements, individuals tend to perceive multiple elements in a single fixation (Hornof

2001), while the number of objects that can be examined with single fixation decreases

during a visual search (Hornof 2001; Treisman 1988). Individuals may also randomly

miss or ignore certain elements during a searching exercise (Hornof and Halverson
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2003). Analyzing an individual's traversal through different visualizations helps in

understanding how individuals perceive and process information encapsulated in the

visualization (Smilek, Enns, Eastwood and Merikle 2006).

In node-link diagrams, the search path shows the sequence of nodes and links

traversed by individuals in completing the search task. The sequence and length of the

search path helps in understanding the elements that are traversed and, more importantly,

the set of elements that are skipped by individuals while doing the search task. Therefore,

the search path helps to identify the difference in the information being used to complete

the search task when different visualizations are used to present the same information.

2.2.3 Visual Search-Steps

The cognitive process for identifying an element in a given problem visualization

requires the individual to memorize the element to be identified and use the problem

visualization to look for evidence to support accepting or rejecting the presence of the

element (Proulx 2007). The mental organization and navigation of the subparts of the

visualization of a problem differs from individual to individual. The presence or absence

of textual labels in visualizations, impacts a user's search in certain ways. Depending on

the task at hand, the methodology applied and the goal in mind, individuals may stop

searching for the substructure once they find it or continue to search for multiple

instances or patterns in a given visualization.

Search-steps can be used as a measure to quantify the cognitive process of

individuals in a search task. The task of searching for a pre-defined element can be

condensed to a set of basic steps (Hornof and Halverson 2003; Hu, Dempere-Marco and

Yang 2003). The first step is to define and formulate a suitable query. The second step is
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to identify an entry point either randomly or by using an index or other search

parameters. The third step is to examine and evaluate the search results and rate their

relevance. The fourth step is to accept or reject the result. Steps 2-4 are repeated until the

desired result is achieved.

Node-link diagrams can be classified as unstructured and structured

visualizations. In unstructured visualizations, where the representation is neither

hierarchical nor follows a systematic top-down approach, a visual search may or may not

follow an ordered search (Hornof and Halverson 2003). The eyes may move directly to a

random element with the sudden recognition of the target (Hornof 2001). The eyes may

also move haphazardly from one node to another, resulting in an unordered scanning until

the target is located. In an unstructured layout of nodes and links, the eyes of the

individual move from one particular element to another until the candidate structure is

located (part-to-whole).

On the other hand, in a node-link diagram with a better hierarchical structured

layout, an individual searches a substructure in an organized path that starts from a top

level set of abstracted elements and successively moves to a more specific set of nodes

and links (whole-to-part) by eliminating the elements that do not conform to the search

conditions (Hornof and Halverson 2003). Therefore, depending on the organization in the

diagrammatic layout, the search can be either part-to-whole or whole-to-part. The next

section integrates and summarizes the concepts of different visualization types, based on

different perception theories and the different complexities to visualizations, to develop

research propositions that will be addressed in this proposal.
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2.3 Discussion

The theoretical details provided so far can be summarized as follows. Use of

visualizations can increase the effectiveness of individuals presenting and analyzing

information. Effective visualizations can be developed based on different perception

theories. Two such visualizations are UML diagrams and geon diagrams. These two

diagrams are selected as candidate visualizations that will be used to understand the

difference in cognitive processing of individuals in visual problem-solving. Another

factor that will be studied as a part of this research is the diagrammatic complexity of the

visualization, which is a function of the number of nodes and the link density of the

visualization.

Different measures used to understand the difference in cognitive processing of

individuals include effectiveness of the visualization measured in terms of the time taken

to complete a search task and the precision of the result of the search task. The measures

of cognitive processing of individuals are expected to contribute to the major results of

this research. These measurements include the search path and the search-steps used by

individuals to complete the search task. The difference in the underlying theories of

object perception gives rise to the difference in the effectiveness and the cognitive

processes of individuals using the visualizations. There are a few assumptions underlying

this research design. These are discussed in the next section.

Assumptions

There are certain assumptions underlying the research model and design. A problem-

solving task involving a "what-if' scenario is the only task type being considered in the

study. It may be argued that different types of tasks have different cognitive
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requirements, and a search task may not reflect the same cognitive processing as other

visual tasks. But because the given problem type is a task that would benefit from a

cognitively rich visualization, it is more relevant to use this as a basis for the research.

Only two types of visualizations are being considered in the research. As

discussed previously, not many theories are widely used to develop visualizations.

Therefore, the most often used visualizations have been used as a basis for selecting the

theories for this research.

The research design will take advantage of analyzing the verbalizations of the

participants as they complete the search task. The effect of verbalization on the time

taken to complete a task is not taken into consideration. There is a possibility that,

because of verbalizing their actions, the individuals may slow the task they are doing.

However, given the expected benefit of the analysis of the verbalization of the

participants, the effect of talking aloud while doing the experiment will be ignored. Also,

the increase in time for each task can be assumed to be in the same proportion for every

experimental condition. Hence, it can be assumed with high confidence that the results

will not be skewed because of protocol analysis.

Given the background of the research and after presenting the key concepts used

to develop the research design, a set of research propositions are developed to uncover

and explain differences in cognitive processing in a search task by using geon and UML

diagrams. The answer to the research propositions will reflect the cognitive differences of

individuals in understanding and using different node-link diagrams.
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2.4 Research Propositions

In node-link diagrams, simple search tasks require individuals to identify nodes and links

in the visualization. Using different node-link diagrams results in differences in the way

the visualization is understood and the visual problem-solving task is performed. The

following subsections develop research propositions to understand the difference in the

search process for the two visualizations that are informationally equivalent but visually

different.

2.4.1 Effect of Visualization Type on Task Effectiveness

Effectiveness of any visualization is the extent to which the visualization helps to derive

results in a visual search task. Two common parameters for comparing the relative

effectiveness of two visualizations are precision and duration (Freitas et al. 2002; Kobsa

2004; Plaisant, Grosjean and Bederson 2002). As discussed earlier, prior studies have

established the advantages of developing cognitively richer visualizations that result in

greater effectiveness over existing representations (visual or sentential) in problem-

solving and decision-making (Shneiderman and Maes 1997). Because of the inherent

differences in different types of visualizations (Gershon 1994; Gordon 1989; Gregory

1990; Ware 2000), it is expected that different visualizations will have different

effectiveness for a given problem scenario. To understand the effectiveness of the results

derived using SOPT (Structural Object Perception Theory) and OM (Object Modeling),

time taken to complete the task and the error rate of the task result are measured. In a

paper on diagrammatic perception (Irani and Ware 2003), the research proposition of the

effectiveness of identification of a substructure in a larger visualization is measured (Irani
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and Ware 2003). The first research proposition is formulated based on the results of this

research as:

Proposition 1: A problem-solving task using geon diagrams will require less time and

result in lower error rate.

2.4.2 	 Effect of Visualization Type on Search Path

In the visual search task, individuals are required to find a given substructure in UML and

geon diagrams. The search path of an individual doing a visual search task is affected by

factors like motivation, cues presented, and prior information (Halverson and Hornof

2004). The individual's search process will include looking for particular nodes and links

and/or their combinations, or multiple nodes and links based on these factors (Halverson

and Hornof 2004; Hu, Dempere-Marco and Yang 2003). UML class diagrams represent

the set of classes and the relationships between the classes. Such diagrams are

comprehended by understanding the classes in the context of the problem and the

different relationships that govern interaction between the classes (Sutcliffe 1999).

Therefore, to assimilate a set of such diagrams will require individuals to look at the

classes and see if the relationships are as anticipated or stored in their memory. In UML

class diagrams, visualizations are interpreted by first understanding the objects in the

visualization and then the subsequent association between the objects. Therefore,

individuals will first tend to look for the objects to identify a substructure, and will then

look for relationships (associations) between the objects only if satisfactory results have

not been obtained.

In geon diagrams, the visualization is understood using the geometric shapes and

the attachment of the shapes to one another (Biederman and Gerhardstein 1993; Man,



32

Pascoe, Benwell and Mann 1998). In recognizing geon diagrams, the arrangement of

components is matched against a substructure in the memory (Biederman 1987).

Individuals using geon diagrams will try to segregate out the convex shapes (objects or

relationships or their combinations) and try to match them against the representation of

the substructure in their memory (Biederman and Gerhardstein 1993). During the search

task, as individuals keep referring to the candidate geometric shapes in the visualization,

a combination of the different shapes is assimilated in the individual's memory as a

single object. Therefore, as the search task progresses, individuals start referring to

combinations of multiple geometric shapes rather than a single one. The object

recognition happens in the stage when the candidate structures are matched against the

structure in the memory (Biederman 1987). Over time, individuals will tend to recognize

the combination of objects and relationships as a single object. Therefore, fewer steps

will be required to reach the result. To address the difference in search path in the

visualizations developed using UML and geon diagrams, the research proposition can be

formalized as follows.

Proposition 2: A problem-solving task using UML diagrams will lead to longer and

more node-dominant search paths than the one using to geon diagrams.

2.4.3 Effect of Visualization on Search-Steps

In a search task, the individual's cognitive processes of reasoning while traversing the

visualization can be condensed to a set of steps consisting of initiate, locate, evaluate,

and decide that the individual takes to identify a substructure in the visualization

(Halverson and Hornof 2004; Hu, Dempere-Marco and Yang 2003). After initiating the

search process, locate is the identification of nodes and links in the visualization, and
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evaluate is the evidence used to support accepting or rejecting the identified substructure

(Halverson and Hornof 2004). The search process iterates through the "locate" and

"evaluate" steps until a decision is reached (Halverson and Hornof 2004; Hu, Dempere-

Marco and Yang 2003). The number of locate and evaluate steps and their sequence aids

comprehension of the mental process of individuals as they complete the search task.

In UML diagrams, searching for a substructure consists of looking for objects

(Kim and Lerch 1992). Once a familiar object is found, individuals try to locate

additional information about relationships between the objects to determine whether or

not the substructure is found. Once a satisfactory substructure is located by the

individual, based on the objects and the relationships between the objects, the search task

is completed (Kim and Lerch 1992). Therefore, the stress in UML diagrams is on

locating the right objects.

In geon diagrams, recognition of objects happens at the last stage when the

components extracted are matched against a mental image of the individual (Biederman

1987). The individual evaluates the geometric shapes or their combinations against a

mental image before accepting or rejecting the identified substructure (Biederman 1987).

Hence, in geon diagrams, the stress in the search-steps is on "evaluate" steps. This leads

to research proposition 3.

Proposition 3: In a visual problem-solving task, visualizations developed using UML

class diagrams will result in locate-dominant search-steps while visualizations developed

using geon diagrams will result in evaluate-dominant search-steps.
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2.4.4 Effect of Diagrammatic Complexity on Effectiveness

For all types of visualizations with low complexity, since the number of nodes and links

is much fewer, the time taken to navigate through all the nodes and links is lower, as

compared to visualizations with higher complexity. Similarly, the error rate in a task is

much lower in visualizations with lower complexity as compared to visualizations with

higher complexity. The scope of making an error increases with the increase in the

number of nodes and links that an individual has to process while completing a visual

task. Also, limitations on the number of nodes and links that can be evaluated

simultaneously result in more errors when working with visualizations of higher

complexity. This leads to the research proposition 4.

Proposition 4: More complex visualizations lead to lower effectiveness in a visual

search task.

2.4.5 Effect of Diagrammatic Complexity on Search Path

The search path of an individual in a visual problem task depends on the diagrammatic

complexity of the visualization, where the complexity of the visualization is a function of

the number of nodes and the link density (Batagelj and A. Mrvar 2003; Ghoniem, Fekete

and Castagliola 2004; James 2006). For a very trivial task involving a very small number

of nodes, the node-link diagram is a very sparse representation of the system elements

and their connections. In such a node-link diagram, the completion of the task may not

require the individual to refer to the visualization more than once. For a more complex

visualization, the limits on the individuals' working memory restrict the number of nodes

and links that can be perceived and evaluated by the individual to complete the visual

search task (Ghoniem, Fekete and Castagliola 2004). For a task using low-complexity
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visualizations, an UML or geon diagram aids better system understanding; for high-

complexity visualizations these benefits may be overshadowed by the enormous number

of different nodes and links that the individual must store in their working memory.

Therefore, the advantage provided by easily recognizing of nodes and links in the

visualization is overshadowed by the large number of nodes and the large number of

nodes per link, and the complexity of placement of the nodes and links relative to one

another. This leads to the research proposition 5.

Proposition 5: High-complexity visualizations lead to longer search paths in a visual

search task.

2.4.6 Effect of Diagrammatic Complexity on Search-Steps

Different complexities of visualization lead to different search steps for completing a

problem-solving task. A high-complexity visualization limits the number of nodes and

links that can be located and evaluated by individuals (Ghoniem, Fekete and Castagliola

2004). More iterations of locate and evaluate steps will be required to investigate the

visualization to locate the substructure for a visual search task (Batagelj and A. Mrvar

2003; James 2006). Also, because the number of links per node also increases for high-

complexity visualizations, the number of locate steps for the same node or link may also

be higher for such visualizations. If the number of nodes as well as the link density of the

visualizations is low, individuals are expected to complete the search task in a single

iteration of traversing the visualization. But as the number of nodes and the link density

increase, the number of elements (nodes, links or combinations) that can be

simultaneously located and evaluated by an individual decreases (Ghoniem, Fekete and

Castagliola 2004). Therefore, there is a possibility that the individual may have multiple
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traversals of the same information. This leads to a higher number of "locate" and

"evaluate" steps when individuals are using a complex visualization. This leads to

proposition 6.

Proposition 6: High-complexity visualizations lead to more search-steps as compared to

low-complexity visualizations.

2.4.7 Interaction Effect of Visualization Type and Complexity

The impact of visualizations based on different perception theories and different

complexities of visualizations on the cognitive processing of individuals has been

presented earlier. To investigate if one factor has a compounding effect on the other (i.e.,

does the impact of varying complexity of geon diagrams differ from the impact of

varying complexity of UML class diagrams), the interaction of the two factors needs to

be investigated. When the complexity of the visualization is varied for a given

visualization, there may be a change in the way the visualization is traversed and

understood by individuals. This is so because with the increase in the number of nodes

and links per node, the visual space becomes denser (Batagelj and A. Mrvar 2003;

Ghoniem, Fekete and Castagliola 2004; James 2006). Also, the working memory of

individuals is limited in terms of the number of objects that can be remembered

(Ghoniem, Fekete and Castagliola 2004). When the number of nodes and link density in

any visualization increases, the problem space enlarges. The solution paths also become

longer. Therefore, the time taken to complete a task and the error rate also vary as the

visualization type and complexity of the problem vary.

While geon diagrams can aid in cognitive processing of a visual problem, a more

complex layout of a geon diagram may lead to increased processing of the elements
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(nodes and links) that may lead to longer search paths and a larger number of search-

steps (Halverson and Hornof 2004). Also, while UML class diagrams require processing

and traversal techniques that are different from geon diagrams (Biederman 1987;

Sutcliffe 1999), increasing the complexity of the visualization by increasing the number

of nodes and the number of links per node, may change the way the visualization is

processed and traversed. Therefore, with the increase in the complexity of UML class

diagrams and geon diagrams, the effectiveness, search path and search-steps of

individuals are impacted in different ways. This leads to propositions 7, 8 and 9.

Proposition 7: When UML class diagrams and geon diagrams are varied in terms of

complexity, the time taken to complete the task and the error rate in UML class diagrams

continue to be higher, and the magnitude of difference is greater with the increase in

complexity.

Proposition 8: When UML class diagrams and geon diagrams are varied in terms of

complexity, search paths in UML class diagrams continue to be longer and node-

dominant for complex visualizations, although magnitude of difference may reduce with

the increase in complexity.

Proposition 9: When UML class diagrams and geon diagrams are varied in terms of

complexity, the search-steps in UML class diagrams continue to be "locate" dominant

and the search-steps in geon diagrams continue to be "evaluate" dominant, although the

difference in the search-steps reduces with the increase in the complexity of the

visualization.
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To analyze the research propositions, testable hypotheses of the propositions need

to be developed. The next section develops the experimental scenario and operationalizes

the independent and dependent variables with respect to the scenarios and experimental

task. After discussing the task and the parameters to be measured in the task, the

hypotheses are developed using the measured parameters.



CHAPTER 3

DESIGN OF EXPERIMENTS

This section operationalizes the propositions developed in Section 2.4. It develops the

research task and hypotheses that will be used in the current research. Following the

experimental design and process for data collection, the plan for the data analysis is

provided. The proposed research model will help to explain how different visualization

types and visualization complexity impact individual navigation and search-steps in

visual problem-solving. The problem-solving strategy will be investigated by answering

the research propositions developed earlier.

3.1 Scenarios

The experimental scenarios will be developed for a set of complex geographical systems.

Complex geographical systems are geographical systems consisting of a large number of

interrelated or interconnected parts, entities or agents. Some of these physical systems are

crucial for the economic well-being and security of a nation. These are called critical

infrastructure systems. The United States government has identified eight infrastructure

systems as critical infrastructure systems. These include emergency services;

transportation; information and communications; electric power; banking and finance;

gas and oil production, storage and transportation; water supply; and government. These

services may not be degraded, whether by willful acts such as terrorism or by natural or

random events such as earthquakes, design flaws or human errors, as their operation is

mandatory for the regular operations of the nation and its people. (U.S. General

39
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Accounting Office 2001). The degradation of these infrastructures, by willful or natural

acts, results in substantial damages in terms of money, life and recovery efforts (U.S.

General Accounting Office 2001). Also, since these infrastructures are viewed as

interconnected and interdependent systems of systems, they must be managed over

geographic space and time. The optimum management of complex systems is non-trivial

and is crucial to the flawless functioning of all the individual systems, as well as to the

individuals who utilize the services provided by these systems. Improved methods are

needed for constructing visual tools for the management of interdependent infrastructure

systems (Chakrabarty and Mendonça 2004). Even in practice—as in the response to the

2001 World Trade Center attack—system visualizations such as maps are used

extensively in managing critical infrastructures (Kendra and Wachtendorf 2003). This

leads to the need for developing a good visualization of the interdependent systems which

can be used by the managers of the systems to understand and manage them.

The critical systems mentioned above are good examples of complex

geographical systems. For example, consider the system of telecommunication. Entities

of the telecom network like transmitters, telecom stations, and hubs are interconnected in

the real world with other infrastructure systems like buildings, transportation

infrastructure and electricity. Such interdependency of different infrastructure systems

with other systems increases the complexity of their management and maintenance. The

different types of interconnections and interrelationships between different infrastructures

can be identified as input, mutually dependent, shared, exclusive-or and co-located

(Rinaldi, Peerenboom and Kelly 2001; Wallace et al. 2003). Input interdependency

occurs when one infrastructure requires as input one or more services from another
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infrastructure to provide some other service. Mutually dependent interdependency occurs

when at least one of the activities of each infrastructure in a collection of infrastructures

is dependent upon each of the other infrastructures. (An example of mutual dependence

between two infrastructures occur when an output of infrastructure A is an input to

infrastructure B, and an output of infrastructure B is an input to infrastructure A.) Shared

interdependency means that some physical components or activities of the infrastructure

used in providing the services are shared. Exclusive-or interdependency refers to the

condition when only one of two or more services can be provided. Exclusive-or can occur

within a single infrastructure system or among two or more systems. Co-located refers to

components of two or more systems that are situated within a prescribed geographical

region (Lee 2006).

Management of complex systems provides a special challenge with regard to the

depiction of these systems to the managers. This was evident in different situations as

shown during the aftermath of the 2001 World Trade Center attack (Mendonça, Lee and

Wallace 2004), as well as power blackouts in the U.S. (U.S.-Canada Power System

Outage Task Force 2004). The set of complex interdependent infrastructure systems now

goes beyond physical systems. Apart from the physical infrastructure, there is also the

information infrastructure (Luiijf and Klaver 2004). The extent and usage of these

systems have grown by leaps and bounds over the last decade, and current research work

on interdependent systems now includes information systems as well (Luiijf and Klaver

2004).

A disruption in an infrastructure can involve a wide variety of infrastructures as a

result of these interdependencies. To illustrate the point, consider an example of "input"
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interdependence between a telecommunications company and the switching station for

which it is responsible. The switching station is used to route calls through the network.

Power from an electric utility's transformer is required to operate the switching station,

thus creating an input interdependency from power to telecommunications. An incident

involving loss of power in the power system would therefore lead to a disruption in the

telecommunications system.

The integration of models of complex infrastructure systems with GIS

(Geographic Information Systems) leads to a wide range of benefits upon investigating

the behavior of spatio-temporal processes through simulation studies. These studies

incorporate human decision-makers. Currently such models of complex systems are

based on environmental models (e.g., transportation, hydraulic), which follow directly

from the human perception of infrastructures being a part of the environment (Brown and

Afflum 2002; Sui and Maggio 1999; Treinish 2002; Yoo et al. 2000). With the increasing

capabilities of computer systems (including the Internet) has come the opportunity to ease

the process of developing and rendering visualizations (Huang and Worboys 2001). This

has also led to the model becoming more interactive, real time, and has been successful in

leveraging the added benefits of concurrent usage of the model for decision-making.

Given these complexities and interdependencies, management of interdependent and

complex systems is likely to require a variety of tools. Given the wide implications of the

use of visualizations in the management of complex systems, it has been chosen as the

scenario on which the experimental tasks will be focused.

The scenarios being developed are hypothetical layouts of complex

interdependent infrastructures. The scenarios have been developed based on the research,



43

"Assessing Vulnerability and Managing Disruptions to Interdependent Infrastructure

Systems: A Network Flows Approach" (Lee 2006). Consider the electrical substations,

subway system and telephone networks in a large city. The electrical substations supply

electricity to certain residential and commercial organizations in specific geographical

areas. The electric substation also supplies electricity to the nearby subway stations. That

implies that the electric substations provide electricity as "input" to the residential,

commercial and transport systems. This is referred to as input interdependency.

Telephone switching stations also receive their electric supply from the substation. The

electric substation supplies the telephone exchange with electricity supply and the

telephone exchange serves the electrical substation with telecom lines to provide it the

necessary monitoring facility (SCADA - Supervisory Control And Data Acquisition) and

basic telecom connection. This is an example of the mutually-dependent type of

interdependency. The telephone switching station is also responsible for providing

services to nearby residential and commercial organizations. This is another example of

input interdependency. As in any practical layout, it is essential to note that some of these

entities are located in the same geographical area. This is referred to as co-located

interdependency. Given this general backdrop, two sets of scenarios are created as

described below.

To develop the visualizations for the UML and geon diagrams, Table 3.1 and

Table 3.2 serve as the key. Table 3.1 provides the key used to develop the UML and geon

equivalents of the elements used to visualize the complex systems. Table 3.2 provides the

UML and geon equivalents of the different interdependencies present among the

elements of the complex interdependent systems.
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Table 3.2 Key of Interdependencies Used to Develop UML and Geon Diagrams 
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The first set of scenarios is low-complexity visualizations. They consist of less

than nine nodes of infrastructure elements like residential areas, financial institutions,

electric substations, telephone switching stations, and subway stations. The various

interdependencies among all the infrastructure nodes are also shown. The link density for

these visualizations is below 0.2. Sixteen such visualizations are developed in UML and

geon. The second set of scenarios represents a larger geographic region consisting of a

larger number of infrastructure nodes (greater than 18). The interdependencies among all

the nodes are represented. The link density is maintained between 0.3 and 0.6. The higher

number of nodes and the higher link density makes the visualization in this set of

scenarios involving complex visualizations. Fourteen such visualizations are developed in

UML and geon. All the visualizations are provided in Appendix A.

The experiment for the current research is designed to understand the impact of

different visualization types and diagrammatic complexity on individual cognitive

processing. The impact of difference in visualization type and complexity on search tasks

is the specific focus in this experiment. There are two independent variables in this study:

visualization type (UML vs. geon) and diagrammatic complexity (low vs. high). The

dependent variables are search time, search precision, search path and search-steps.

Task

To pick a task that is suitable for the visualizations developed using the key provided, the

different tasks that can be accomplished using node link diagrams are investigated. There

are different ways tasks based on node-link diagrams have been classified, including the

list of generic tasks (Ghoniem, Fekete and Castagliola 2004) that can be accomplished
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using node-link diagrams and task taxonomy for graph visualization (Lee et al. 2006).

The task taxonomy classifies the different tasks as follows.

• Topology-based tasks: These include finding adjacency (direct connection),
accessibility (direct or indirect connection), common connection or connectivity.

• Attribute-based tasks: These include tasks on specific nodes or links.

• Browsing tasks: These include tasks that include following a path or revisiting
parts of the graphs.

• Overview tasks: These include compound exploratory tasks to obtain estimated
values like size of the diagram quickly.

For the present research on evaluating the cognitive differences of individuals

doing a task using visualizations of complex infrastructure systems, a topology-based

task is chosen that requires the participants to determine all the nodes that are impacted

when a certain link is disrupted. The specifications of the task are derived from a couple

of pilot experiments conducted using the candidate UML and geon diagrams.

3.2 Pilot Studies

Two pilot studies were conducted before the experiment design was finalized. The results

from the pilot studies motivated further research in this area and the final experimental

design. Both studies are discussed next.

3.2.1 	 Pilot Study 1

A pilot study was conducted to understand the difference in the cognitive processes that

underlie reasoning about theoretically based visualizations that are informationally

equivalent but visually different. Two visualizations of the same problem were presented

to a set of participants in an experiment where individuals were asked to search for a
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substructure in a given visualization. Two sets of ten UML diagrams and their equivalent

sets of geon diagrams were used. A substructure consisting of a few nodes and links was

constructed for each set of diagrams. For the first sets, the substructure had two nodes;

and for the second sets it had four nodes. A substructure is said to be present in a diagram

if the substructure's nodes and links are present in the diagram. However, the orientation

can be different so that it is not as trivial as a simple template-matching task. Using two

substructures in two different visualizations leads to four experimental conditions: two-

node substructure in UML; four-node substructure in UML; two-node substructure in

geon; and four-node substructure in geon.

Participants were first given three practice problems with three complete

diagrams. After the practice session, they were presented with 10 random diagrams. The

diagrams appeared on the computer screen with a "yes" and "no" button at the bottom of

the screen. The participants had the option of clicking either "yes" or "no" for each of the

diagrams based on whether the substructure was present or not. The response time of

each participant and the correctness of the response were recorded unobtrusively via the

computer interface. They were asked to "talk aloud" as they were doing the task. The

complete experiment was recorded using a camera.

A task under each experiment involved identifying a substructure in a set of 10

randomly presented diagrams. The experiment was designed as repeated measures where

all the participants were asked to complete a task under all the four conditions (2 UML

and 2 geon diagram based tasks). The order in which the participants were presented the

task was randomly selected. The problems represented in UML and geon diagrams are

hypothetical problems. In UML class diagrams, labels are used to identify each class. The
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geon diagrams did not use any text labels, and shapes and texture are used to distinguish

different classes. In the experiment, the individuals were first shown a substructure and

then asked to identify its presence or absence in a given set of diagrams. The time to

complete the task, the error rate of the results, the search path used by the participants and

the search-steps were used to study differences arising out of visualizations based on

different theories of object perception.

3.2.2 Results From Pilot Study 1

The results of this experiment are explained in four parts. The first part discusses the

descriptive statistics and enumerates the average time and error of each participant under

each condition. The second part describes the results derived based on the original

experiment (Irani and Ware 2003) reflected in research proposition 1. The third and

fourth parts discuss some results from the protocol analysis to present the results of

research questions 2 and 3, respectively. All hypotheses were tested at a = 0.05.

Descriptive Statistics

Table 3.3 shows the average time taken (in seconds) by the four participants for each

problem set. The time taken by participants Si, S2 and S4 was more for geon diagrams as

compared to UML diagrams. The time taken for participant S3 was higher for UML

diagrams.
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Table 3.3 Pilot Study 1 Result: Average Time for Each Participant

Table 3.4 shows the number of errors made by each participant under each

experimental condition. For UML two-node diagrams, no participant made an error. For

UML four-node diagrams, all but participant Si made at least 1 error. For geon diagrams,

only 1 participant made an error under the two-node condition.

Table 3.4 Pilot Study 1 Result: Error Rate of Each Participant

Results for Research Question 1: Effectiveness

For testing the hypotheses for research question 1 concerning the effectiveness of

a diagram, the time taken by each participant to solve a problem and the correctness of

the solution are recorded. The average time required by the participants to find the

presence or absence of a substructure is used to test hypothesis 1.1. Average number of

incorrect answers in the four sets of questions is used to test hypothesis 1.2. The number

of observations n is equal to 16.
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As seen from the results in Table 3.5, on average the participants took 12.24

seconds to identify (correctly or incorrectly) the presence of the substructure in the geon

diagram and 10.13 seconds for the UML diagrams. The research hypothesis (H1.1)

suggested that the time taken to recognize substructures in geon diagrams is less than the

time taken to identify substructures in UML diagrams. A sign test was done to test the

difference in the two diagrams. But the results imply that the participants spent more time

with the geon diagrams as compared to the UML diagrams. As a result, the null

hypothesis (H1.10) was not rejected. The sign test shows this difference to be not

significant (p = 0.3371).

Hypothesis H1.2 hypothesized that the error rate is lower in geon diagrams as

compared to UML diagrams. The results of the experiments show that the error rate is

higher in the UML diagrams (5%) than the geon diagrams (2.5%). Among the four

participants, two participants correctly identified the substructure in more geon diagrams

than UML diagrams, one participant identified the substructure equally often with the

geon diagrams and the UML diagrams and the remaining one is more accurate with UML

diagrams. Therefore, this result agrees with the result in the original experiment. The sign

test result, however, shows this difference is not significant (p = 0.625).

Table 3.5 Pilot Study 1: Summary of Results for Research Question 1

Hypothesis
H1.1 Time taken to recognize
substructures in geon diagrams is
less than time taken to identify
substructures in UML diagrams.

H1.2 The error rate is lower in
geon diagrams as compared to
UML diagrams.
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The results from the current experiment are about the same as the results from the

prior experiment (Irani and Ware 2003). However there are certain deviations in the

results of the current experiment. In the original experiment, the participants took

significantly less time using geon diagrams as compared to the UML diagrams. The

summary of the statistics from the hypotheses of RQ1 is presented in Table 3.5.

Results for Research Question 2: Search Path

To understand the difference in the search path of individuals while using different

visualizations during visual problem-solving, the transcripts of the participants are coded.

The transcripts of the protocols are coded to see patterns in the solution path of the

participants. The number, sequence and type of the nodes and links traversed are coded

from the participant's verbal transcripts. The length of the solution path is calculated as

the number of nodes and links traversed by the participant to identify the presence or

absence of the substructure. A t-test is used to understand if the difference in search path

is significant or not when using different visualizations of the same problem (a = 0.05).

The results are shown in Table 3.6. All null hypotheses except H2.20 are rejected

with significant t-test results. The results in Table 3.6 show significant differences in the

search paths when different visualizations are used for the same task. Therefore, the

search path of participants tends to differ based on the type of visualization presented.

The effect that arises out of the complexity of the diagram presented is not analyzed, but

it is expected that as the diagrammatic complexity increases, the participants will take

more steps to traverse through the diagrams, implying larger cognitive load. The next part

reports the results pertaining to search-steps.
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Table 3.6 Pilot Study 1: Summary of Results for Research Question 2 

Hypothesis p::value Result 
H2.1: Number of nodes traversed during the search 0.0004 Reject null 
process is greater in UML as compared to geon. hypothesis 
H2.1o: Number of nodes traversed during the search 
process using UML is less than or equal to the number of 
nodes traversed using geon diagrams. 

H2.2: Number of links traversed is -higher In geon as 0.1605 Fail to reject 
compared to UML null 
H2.2o: Number of links traversed when using geon is less 1 hypothesis 
than or equal to the number of links traversed using UML. 

H2.3: Number of components (combinations of one or 0.0045 Reject null 
more nodes and/or links) traversed is higher in geon as hypothesis 
compared to UML. 
H2.30: Number of components traversed using geon is less 
than or equal to the number of components traversed using 
UML. 

H2.4: Number of total elements (nodes/links/components) 0.0276 I Reject null 
traversed is higher in UML as compared to geon diagrams. hypothesis 
H2.4o: Number of total elements traversed using UML is I I 
less than or equal to number of total elements traversed 
using geon diagrams. 

I 

Results for Research Question 3: Search-Steps 

To analyze the difference in search-steps, verbal protocols of the participants are coded 

again. The transcript from the verbal protocol for each task is coded as a sequence of 

"Initiate (I)", "Locate (L)", "Evaluate (E)", and "Decide (D)". Individual's search-steps 

are analyzed by examining the coded protocol of the participants solving the problem. 

The counts and sequence of these coded protocols are used to develop directed graphs as 

shown in Table 3.7. The coded sequence is used to count the transitions from one state to 

another. The first row in Table 3.7 shows the graphs with the raw counts of the 

participants' traversals. The arc from state i to state j shows the total number of 
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transitions between them. The bottom row of the table provides the normalized weights 

of the arcs in terms of number of transitions made between the states for each type of 

visualization. As can be seen, the sum of the normalized weights on the outgoing arcs 

from any node is equal to 1. The graph provides evidence that participants went through a 

conscious cognitive process while performing the given task. 

Table 3.7 Search-Steps for UML and Geon Diagram 
"--..-~-----

UML Geon 

* Raw counts above; normalized weights below. 

To analyze the differences in the sequences of UML and geon diagrams, the 

counts of the transformations from each state (1, L, E, and D) to every other state is 

counted and represented in a matrix. The process represented in Table 3.7 is modeled as a 

Markov process resulting in a 3X3 (L, E, D) matrix. The asymptotic state occupancy 

statistics of the two visualizations are evaluated to obtain the steady state behavior of the 
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search-steps over a very large number of iterations. The transition probability matrix for

the UML diagrams evaluates to αUML = (0.68, 0.23, 0.09) and for geon diagrams is α geon

(0.03, 0.82, 0.15). Therefore, for locate transition, the probability for UML is 0.68 and

for geon is 0.03. For evaluate transition, the probability for UML is 0.23 and for geon

diagrams is 0.82. The probabilities for locate and evaluate transitions for UML and geon

diagrams indicate that there are differences in the number of transitions based on the type

of visualization. The probability of locate transitions is higher in UML diagrams as

compared to geon diagrams and the probability of evaluate transitions is higher in geon

diagrams as compared to UML diagrams. The significance in the difference in the

probabilities for the two visualizations is analyzed by modeling the state transitions as

binomial probabilities. For analysis purposes, success is assumed as the transition of

interest (locate or evaluate). The number of replications, n is 160 (4 participants * 4

conditions * 10 tasks). Because the value of np > 5 for every case, normal

approximations of the binomial distributions can be used. A t-test shows the difference to

be significant for locate transition at a<0.05 (p <0.0001). For evaluate transitions, the

difference is significant at a<0.05 (p <0.0001).

The experiment results in the preceding sections provide detailed insight into the

way individuals understand and traverse different visualizations while searching for

information. Apart from the time taken by individuals to process the information layout,

and the error rate in the result of the task, parameters such as the search path of the

individuals and the search-steps were included to understand the underlying cognitive

processes of individuals while performing a search task. The results bring out significant
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differences in the way individuals look for cues and interpret visualizations that are

informationally equivalent but visually different.

The summary of the research results is presented in Table 3.8. Summarizing the

results, analyzing the verbal protocols in the experiment shows considerable differences

between different visualizations. The path traversed in the process of problem-solving is

shortened using geon diagrams. The number of nodes traversed is much larger for UML

diagrams as compared to geon diagrams. More participants tend to recognize link

components and combinations (of nodes and links) in geon diagrams as compared to

UML diagrams. For search-steps of the participants completing the search task, the

number of transitions to locate elements is higher in UML diagrams than in geon

diagrams. Therefore, participants tend to search or locate for the nodes and links but do

not evaluate the nodes and the links. In geon diagrams, the number of transitions to

evaluate steps is significantly greater than in UML diagrams. This shows that there is

considerable difference in the way individuals navigate the visual space to search for

information of interest.
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3.2.3 Discussion of Results from Pilot Study 1

An experiment was designed and conducted to understand the difference in cognitive

processing of individuals using two sets of visualizations that are informationally

equivalent but visually different. Search path and search-steps were the parameters

chosen, with the two visualizations based on SOPT and object modeling (geon and UML,

respectively). The test results underscore the difference in cognitive processing of the two

visualizations in terms of search path and search-steps.

The results of research proposition 1 present some deviations from the original

experiment (Irani and Ware 2003). In the current experiment, the time taken to identify

the geon substructure was not faster as expected from the results of the original

experiment. The reason could be because of the inclusion of "protocol analysis" during

the experiment where the participants spent additional time justifying their steps which

they would have avoided in the original experimental setup. The fact that the average

times were higher in all the cases, as compared to the original experiment, reinforces this

justification. Participants may have spent more time on the geon diagrams because it took

more time to explain the 3D shapes and connectors as compared to the UML diagrams,

and because, unlike the UML diagrams, the geon diagrams did not have a well-

established vocabulary. On the other hand, the UML notations were more easily

described using an existing vocabulary and the labels that appear on the classes in the

class diagrams.

The verbalization of the participants was analyzed to draw insights into the

cognitive process of individuals doing a visual search using visualizations that are

informationally equivalent but visually different. Apart from the results of accuracy and
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speed, understanding the process of solving the task helps to bring forth the differences in

visual problem-solving using two sets of visualizations that lead to different processes for

a similar nature of tasks.

The results of research proposition 2 show the difference in search path of

individuals when using different visualizations. When solving the visual problem using

geon diagrams, participants tended to treat a group of nodes and links as a single

component. This was because over time participants tended to recognize multiple

connected components together, leading them to identify an entire group of nodes and

links as a single component. This helped them to reduce the time and effort required to

recognize substructures in geon diagrams. Participants using geon diagrams looked for

clusters of nodes and links and then resolved to evaluate the individual nodes and links,

suggesting a whole-to-part approach. When using UML diagrams, individuals spent more

time looking for nodes. This indicates more cognitive effort in looking for initial fixation

points. But once the initial node or link was located, less effort was required to validate

secondary information. In UML diagrams, search usually began at one of the end nodes

and proceeded according to the structure of the layout of the nodes and links, indicating a

part-to-whole approach. Therefore, search path of individuals in a visual problem can be

indicative of their cognitive processing.

Research proposition 3 evaluates the search-steps of individuals in a visual

problem-solving task. The results of research proposition 3 show the difference arising

out of the different visualizations in the search-steps of participants. Evaluation

dominates the search-steps in geon diagrams, whereas locating steps dominates UML

diagrams. Over the course of the task in geon diagrams, participants moved from
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evaluating one node to evaluating the whole substructure. This followed from the ability

of the participants to eventually assimilate the whole substructure as a single component.

The two steps in the set of search-steps - initiate and decide - were not considered in the

analysis. For the initiate step, feature played an important role in enabling the participants

to locate an initial node or link in the visual problem.

During this experiment participants began the problem solving process in

different ways. In some cases, they began by repeating the problem statement. For

example, participant Si opening statements were "... so this is the substructure I need to

find ... (1.1)". For the second problem, too, participant Si reinstated the problem

statement as "... User library - user library the label has to be the same ... (1.15)". In

other cases, participants began with the first candidate node in the problem diagram. For

example, participant S3 said "... Ok elevator - elevator button ok ... (3.37)". The decide

step had either active pressing of the "yes" and "no" buttons (explicitly stating that they

were pressing the button and the task was completed) or a passive pressing of the buttons

(with no verbalizations).

The diagrams that were used in the experiment are of relatively small dimensions

i.e., they are easily viewed on a computer screen without having to scroll the window in

any direction. None of the problem diagrams have more than ten nodes. However, despite

the simplicity of the diagrams, most participants scanned the problem diagram to find

objects of interest. That is evident from some of the verbalizations, where the participants

listed all the nodes and links present in the problem diagram as they were trying to look

for the substructure.



60

The next pilot was conducted using the visualization of hypothetical scenarios of

critical infrastructure systems.

3.2.4 Pilot Study 2

The results of pilot study 1 clearly indicate regarding the potential of addressing the

research propositions on the differences in cognitive processing of individuals when

using different visualizations for completing a task. The results on the whole show that,

apart from the measures of precision and time to completion, factors such as search-steps

and search path provide significant insight into how individuals interact with different

diagrams while completing a search task.

To understand the cognitive impact of visualizations that are informationally

equivalent but visually different, a second pilot experiment was conducted considering

the factors: visualization type and diagrammatic complexity. This experiment used UML

and geon diagrams as candidates for node-link diagrams. Hypothetical scenarios were

constructed to depict interdependent complex systems. Another contributing factor was

the diagrammatic complexity of the visualization. Complexity is an objective measure

that is a function of the number of nodes in the visualization and the link density of the

visualization. Therefore, there are four visualizations that were used to complete the

search tasks. These four visualizations correspond to the four cases arising out of two

types of visualizations (UML vs. geon) and two levels of diagrammatic complexity (low

vs. high).

The specific task given to the participants was to find the system elements having

the given type of relationship. Four sets of five visualizations were developed and

presented to the participants. An additional 10 visualizations were developed to serve as
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practice cases for the participants. The visualizations were presented as a handout for the

participants to work with. A camcorder was set up to record the proceedings of the

experiment. Participants were given a tutorial on the type of visualizations and were

tested on their proficiency. They were asked to talk aloud while completing the tasks.

There was no time limit set for them to complete the task. The recordings of the

participants were transcribed and coded.

Two participants were recruited to complete the tasks. The students were graduate

students from the Master of Infrastructure Planning (MIP) program in the College of

Architecture and Design. Both the participants were asked to complete the tasks under all

the conditions. The complete protocol of the experiment was followed to ensure that there

was no problem with the experiment instructions.

3.2.5 Results from Pilot Study 2

The process of conducting pilot study 2 helped to formalize the experiment protocol. One

of the main outcomes of pilot study 2 was standardization of the coding instruction for

the transcribed protocols. Two different coders were asked to code the transcribed

protocols, and the inter-rater reliability was evaluated. Based on the outcomes of the

coding process and the inter-rater reliability analysis, the coding instructions were fine-

tuned.

Another outcome of pilot study 2 was modification of the experimental task. As a

result of this experiment, the simple search task was modified to a problem-solving task.

The specific task given to the participants in the main experiment as developed after the

two pilot studies was:

• Find the nodes that are impacted when the shown interdependency fails.
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The complete experiment material is presented in Appendix A.

3.3 Experiment Design and Participant Assignment (Main Study)

The experiment design in this study uses a repeated-measures design with two

independent variables (visualization type and complexity). There are two dependent

variables: time taken to complete task and correctness of the result. Within-subjects

repeated-measures ANOVA is used to analytically test the effect of visualization type and

complexity. A repeated-measures design offers greater power than a between-subjects

design that does not use repeated measures (Kutner et al., 2004). Repeated-measures

ANOVA carry the standard set of assumptions associated with an ordinary analysis of

variance: multivariate normality, homogeneity of covariance matrices, and independence

(Steven 1996). Repeated-measures ANOVA is robust to violations of the first two

assumptions. Violations of independence produce a non-normal distribution of the

residuals, which results in invalid F ratios. The assumption of independence of the

variables is violated when either random selection or random assignment is not used

(Steven 1996).

The total number of participants or the sample size is 25. The sample size is

sufficient to ensure adequate power of the result of the experiment. The experimental

design is shown in Table 3.9. Because each participant completes tasks under all the four

conditions, there are 100 observations per condition.
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The experimental conditions (visualization type and complexity) are fixed. There

are four sets of tasks (two visualizations X two complexities). As shown in Table 3.10,

the sets of tasks include tasks using low-complexity UML diagram (T1), the high-

complexity UML diagrams (T2), the low-complexity geon diagrams (T3) and the high-

complexity geon diagrams (T4). Each set of tasks consists of five visualizations and five

tasks. Figure 3.1 shows sample visualizations for each condition corresponding to Table

3.10. The UML diagrams are shown in the left column, and the Geon diagrams are shown

in the right column. The low-complexity visualizations are shown in the top row, and the

high-complexity visualizations are shown in the bottom row. The low-complexity

visualizations (L) have a complexity factor of 0.15, and the high-complexity

visualizations (H) have a complexity factor of 0.60.

Table 3.10 Setup of Experimental Tasks

UML

Low-complexity
visualization

High-complexity
visualization

Geon



Fi
gu

re
 3

.1
	

E
xa

m
pl

e 
of

 v
isu

al
iz

at
io

ns
 fo

r l
ow

-c
om

pl
ex

ity
 a

nd
 h

ig
h-

co
m

pl
ex

ity
 U

M
L 

an
d 

ge
on

 d
ia

gr
am

s.



65

All 25 participants are required to complete the task in all four conditions. To

reduce variability arising due to differences in individuals, each participant is asked to

complete all tasks in all sets (a total of 20 tasks). Therefore, the study is designed as a

balanced complete block design with random assignment. The randomization in the task

allocation to the participants is done as follows. Firstly, the order of the tasks in a task set

is randomized. That means the presentation of the visualization of a task set to the

participant will be randomized. Secondly, the order in which the sets of tasks will be

allocated to the participants will be randomized. The order of the sets of tasks ensures

that for a given visualization type, the participant completes the low-complexity

visualizations before the high-complexity visualizations. Completing the high-complexity

visualizations before the low-complexity visualizations may result in minimal

verbalization from the participants while working with the visualizations with lower

complexity one as the specific traversal through elements may become too "obvious" for

them to say it aloud. The task order is shown in Table 3.11. For example, the task order

for participant S1 is T1, T2, T3, and T4. This means that the participant first completes

the set of tasks using the low-complexity UML diagrams (T1); followed by the set of

tasks using the high-complexity UML diagrams (T2); followed by the set of tasks using

the low-complexity geon diagrams (T3) and finally the set of tasks using the high-

complexity geon diagrams (T4). The randomization processes will ensure that the

variability arising out of task order and task set order is minimized.
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3.4 Solicitation of Participants

A total of 25 participants were recruited for completing the experiments. All participants

were male undergraduate students from the Civil Engineering department majoring in

Infrastructure Planning, Civil Engineering or Transportation Engineering. All the

participants satisfied the requirement that they had completed a course related to critical

infrastructure systems. To minimize any confounding factor leading from speech rate

differences and articulation of thoughts by the participants, all the participants were

selected such that they were native speakers of English. All the students were males to

control for the gender differences in spatial information processing. These participants

were familiar with different infrastructure systems and their functioning and were

exposed to working with different types of systems and their representations. None of the

participants had any experience with UML or geon diagrams. Each participant completed

all the tasks (for a total of four conditions and 20 tasks per condition). The participants

were all awarded a 2 GB flash drive for successfully completing the entire experiment. In

addition, a raffle was conducted where they will had a chance to win a GPS, a digital

picture frame or one of two gift cards.
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3.5 Measures

Of the four measurements planned, there were two objective measurements taken for

each participant under every experimental condition. The time taken to complete the

search task was measured for each task. Since each task has a correct result, the accuracy

of the result could be measured after the experiment by checking the number of errors the

participants made under each condition. The two other measured parameters were search

path and search-steps. Search path was measured as the sequence of nodes, links,

components (combinations of nodes and links) and total number of elements (sum of

nodes, links and components) traversed by the participant to complete a search task.

Length was calculated as the count of nodes, links and combinations of nodes and links

navigated. Search-steps were measured as the length and sequence of "locate" and

"evaluate" steps that the participants used to complete the task. Length was calculated as

the number of "locate" and "evaluate" steps used by the participant. Sequence was

calculated as the number of transitions from one state to another ("locate" to "evaluate"

and vice-versa).

3.5.1 	 Independent Variables

Visualization type: Visualizations for all the hypothetical scenarios were developed in

• UML — Notations from standardized UML class diagrams were used to
represent nodes (classes) and links (relationships between classes)

• Geon — Notations were created using geon structures attached to one another to
make the nodes and links.

Diagrammatic complexity: As mentioned in Section 2.1, a typical node-link

diagram used in practice that can be effectively displayed in any regular display

environment so that the individual does not have to scroll the page, is less than 20 nodes
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and 30 links (Ware and Bobrow 2005). In practice, a node-link diagram used to show a

large number of nodes and links does not exceed a link density of 0.6, with the majority

of them ranging from 0.3 to 0.6 (Ware and Bobrow 2005). Based on these objective

measures, low and high complexity visualizations are operationalized as:

• Low-complexity visualization — A visualization having less than nine nodes and
a link density of less than 0.2.

• High-complexity visualization — A complex node-link diagram has between
eighteen and twenty nodes and a link density of 0.3 to 0.6.

3.5.2 Dependent Variables

• Search time — Duration or the time taken to solve the visual search task. It is
measured as the time taken by the participants from the time of reading the task
till the time of task completion (location of the substructure)

• Search precision — Conformity of the indicated substructure, as discovered by
the participant during the experiment to an indicated or accepted value. The
accuracy of the task completed (error) is measured as correct (1) or incorrect
(0).

• Search path — The navigated path consisting of the explicit nodes and links that
the participant takes to locate a search element in the visualization is called the
search path. The search path is calculated as the total number of nodes, links,
and components (combinations of one or more nodes and/or links) and total
number of elements (nodes + links + components) traversed by the participant to
identify the search substructure.

• Search-steps — Search-steps are the cognitive processing involved in
assimilating and using available information to determine the substructure. It is
counted as the "locate" and "evaluate" steps of the participants as they complete
the visual search task. The search-steps is calculated as the total number of
"locate" and "evaluate" steps and the number of transformations between the
"locate" and "evaluate" steps taken by the individual in the process of
identifying the substructures.
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3.6 Protocols

The total duration of the experiment was estimated to be 45 to 60 minutes. The

introduction, consent form and completion of the background questionnaire took about 5

minutes, and the practice case took about 10 minutes.

The consent forms and questionnaires are coded and stored safely. These are

accessible only to the investigator and faculty related to the project. Each participant had

one consent form and one background questionnaire. An ID was issued to each

participant that will be used to identify their consent forms and questionnaire.

The four sets of five visualizations (total of 20: 10 UML and 10 geon diagrams

with 5 low-complexity and 5 high-complexity diagrams for UML and geon diagrams)

were developed to be presented to the participants (shown in Appendix A). An additional

10 visualizations (five UML diagrams and five geon diagrams) were developed to serve

as a practice set for the participants. Participants were shown the visualizations on the

computer screen. A camcorder was set up to record the participants for the whole

duration of the experiment. Another camera was set up right above the computer screen

to record the eye movement of the participants. The recordings of this camera can be used

to study the eye-movements of the participants. For the current study, the recordings of

the eye-movements are not analyzed. Visualization type and complexity were

manipulated by assigning participants to a pre-determined order of tasks.

Once a participant arrived to participate in the experiment, the participant was

given an introduction to the experiment. The participant was then asked to sign the

consent form. After that the participant was handed a background questionnaire. The

background questionnaire was a set of questions intended to ascertain the demographics



70

of the participants and their fluency in English. A copy of the background questionnaire

is provided in Appendix C. Participants were tutored so that they understood protocol

analysis, the two different visualizations and the different interdependencies. Each

participant was asked to complete a problem-solving task which asked them to identify

the impacted nodes when a particular link fails. As a practice session, participants were

first shown the ten practice visualizations (5 UML and 5 geon) and asked to complete the

task. Then the participants were shown the experimental visualizations one at a time to

complete similar tasks. There was no time limit to complete the task.

After completing the experimental task, the participants were asked the following

questions.

• Which visualization did you prefer?

• What did you like about the UML diagrams?

• What did you dislike about the UML diagrams?

• What did you like about the geon diagrams?

• What did you dislike about the geon diagrams?

These questions were not be coded for search path and search-steps. The answers

to these questions were intended to be used for exploring any issue or problems that the

participant may have had.

3.7 Data Collection and Coding Preparation

For analyzing individual search techniques in problem visualization, a search task is

considered to be the unit of analysis. Data is collected in two different ways. First the

time taken by each participant to complete the task and the correctness of the result are
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recorded unobtrusively for each task. The time to completion for each task is logged

automatically in a log file as the participants move from one condition to another. These

two values were used to test the effectiveness of the visualizations as formulated in the

hypotheses resulting from research proposition 1. The second part of the data is gathered

from audio and video recordings of the participants as they perform the tasks during the

experiment. The hypotheses from research propositions 2, 4, 6 (related to search path)

and 3, 5, 7 (related to search-steps) were tested by investigating the cognitive process of

the participants while using different visualizations of the same problem. For this, audio

recordings were transcribed and coded to analyze the results. Five verbalizations were

chosen at random and given to a second coder for coding. This resulted in twenty percent

of the verbalizations being coded by two coders. The inter-coder reliability was

calculated to check acceptable reliability levels. Coding instructions provided in

Appendix D was given to the coders to complete the coding.

3.8 Research Hypotheses

The specific hypotheses are developed in this section for each of these measures as

explained for each research proposition.

3.8.1 	 Effectiveness of Visualization Type

The results from the experiment on diagrammatic information structures (Irani and Ware

2003) strongly suggest that using geon diagrams significantly reduces the time taken to

recognize a substructure from a given problem visualization. The error rate is also

significantly lower for geon diagrams when compared to UML diagrams. In order to

understand the impact of the search task on the result of the task, the time and error rate
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in completing the visual task are measured. The hypotheses for proposition 1 (A problem-

solving task using geon diagrams will require less time and result in lower error rate.) are

adapted from the experiment on diagrammatic information structures (Irani and Ware

2003). The human visual system contains significant processing machinery designed to

decompose the visual image into a set of generalized cone primitives. Therefore,

individuals should be able to process diagrams created using these same primitives,

because they would be more effective. 3D diagrams using geon primitives may provide a

better match to high-level processes that occur in human object recognition, and because

of this they should be easier to interpret and remember. The hypotheses are:

H1.1: Time taken to complete a visual task using geon diagrams is less than time taken to
complete a visual task using UML diagrams

H1.2: The error rate is lower in geon diagrams as compared to UML diagrams.

3.8.2 	 Effect of Visualization Type on Search Path

Search path is measured as the number of nodes, links and components (combinations of

one or more nodes and/or links) that are traversed by the participants while completing

the search tasks. The sum of the nodes, links and components traversed by the

participants is considered as the total number of elements. UML diagrams are interpreted

by first understanding the classes in the diagram and then the subsequent relationships

between the classes. It can therefore be proposed, that individuals using a UML diagram

will first try to look for classes (nodes) to identify a substructure, and will look for

relationships (links) between the classes (nodes) only if satisfactory results have not been

obtained. In geon diagrams, geon structures are used to represent nodes and the links

between the nodes. The substructure to be searched in the geon diagram is also a set of
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nodes and links formed using geon structures. Therefore, as per SOPT, individuals using

a geon diagram will try to segregate out the convex shapes (nodes or substructures or

links) and try to match them against the representation of the substructure in their

memory. Over time individuals will tend to recognize a combination of geon structures

(nodes and links) as a single object. Therefore, fewer steps will be required to reach the

result. Operationalizing the research proposition on search path (Proposition 2: A

problem-solving task using UML diagrams will lead to longer and more node-dominant

search paths than the one using to geon diagrams.) using the variables that were measured

as a part of this experiment leads to the following hypotheses:

H2.1: Number of nodes traversed while completing the visual task is greater in UML as
compared to geon.

H2.2: Number of links traversed while completing the visual task is higher in geon as
compared to UML.

H2.3: Number of components traversed while completing the visual task is higher in
geon as compared to UML.

H2.4: Number of total elements traversed while completing the visual task is higher in
UML as compared to geon diagrams.

3.8.3 	 Effect of Visualization Type on Search-Steps

The dependent variable search-steps is determined as the number and sequence of

"locate" and "evaluate" steps of the participants in completing the visual search task.

Since search-steps include multiple instances of locate and evaluate steps, the difference

in the length and sequence of "locate" and "evaluate" steps will indicate the difference

in search-steps. In UML diagrams, the search for a substructure is done by locating the

individual classes (node). Individuals try to locate additional information on relationships
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(links) between the objects for confirming the correctness of the search substructure.

Therefore, the stress in UML diagrams lies on locating the right classes (nodes). Once a

familiar object is found by the individual based on the node objects and the relationships

between the objects, the search task is completed. Therefore, in UML diagrams, locating

the appropriate classes will dominate the search task. In other words, the task completion

will consist of more "locate" steps. In geon diagrams, recognition happens when the

object seen by the individual is evaluated with the stored image of the substructure (node,

link or combinations of nodes and links) in the individual's memory. The task completion

is therefore, primarily composed of evaluation steps. Therefore, the search-steps in the

individual's verbalization are expected to primarily have sequences of "evaluate".

Therefore, the two hypotheses for evaluating the research proposition on search-steps

developed on the proposition (Proposition 3: In a visual problem-solving task,

visualizations developed using UML class diagrams will result in locate-dominant

search-steps while visualizations developed using geon diagrams will result in evaluate-

dominant search-steps.) are:

H3.1: UML diagrams will result in more locate sequences as compared to geon diagrams

H3.2: Geon diagrams will result in more evaluate sequences as compared to UML
diagrams

3.8.4	 Effect of Diagrammatic Complexity on Effectiveness

Complexity of visualization is a function of the number of nodes and links in the

visualizations. Therefore, while working with diagrams of higher complexity, more nodes

and links have to be navigated by individuals to complete a visual task. As a result the

time taken to complete a visual task will increase with the increase in the complexity of
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the diagrams. Because of the limitation on the number of nodes and links that can be

simultaneously processed, the possibility of missing a node or navigating an incorrect

path increases with visualizations with higher complexity. Therefore, the error rate will

also increase with the increase in the complexity of the visualizations. The two

hypotheses that can be developed on the research proposition on complexity and

effectiveness (Proposition 4: More complex visualizations lead to lower effectiveness in a

visual search task.) can be formalized as follows:

H4.1: The time taken to complete a visual task is higher in diagrams with high
complexity as compared to diagrams with low complexity.

H4.2: The error rate in completing a visual task is higher in diagrams with high
complexity as compared to diagrams with low complexity.

3.8.5 Effect of Diagrammatic Complexity on Search Path

Complexity of the visualizations is varied by the number of nodes and the link density of

the diagrams. Search path is measured as the number of nodes, links, components and

total number of elements traversed by the participants to complete the task. Since, the

search path is a traversal of the nodes and links in the visualization, for more complex

visualizations where the number of nodes and links are more, the number of steps in the

search path will be more. Also, because of the limitation of the number of nodes and links

that can be simultaneously stored in the working memory of the individual, the search

path may contain multiple traversals to the same nodes and links. The proposition

(Proposition 5: High-complexity visualizations lead to longer search paths in a visual

search task.) can be formulated into hypotheses as:

H5.1: Number of nodes traversed while completing the visual task is greater in the high-
complexity visualization as compared to low-complexity visualization.
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H5.2: Number of links traversed is higher in the high-complexity visualization than in
low-complexity visualization.

H5.3: Number of components traversed is higher in high-complexity visualization than in
low-complexity visualization.

H5.4: Number of total elements traversed is higher in high-complexity visualization than
in low-complexity visualization.

3.8.6 	 Effect of Diagrammatic Complexity on Search-Steps

Complexity of the visualization is determined by the number of nodes and link density of

the visualizations. Search-steps are determined by the number and sequence of "locate"

and "evaluate" steps of the participants in completing the search tasks. If the number of

nodes as well as the link density of the visualizations is low, individuals are expected to

complete the search task in a single iteration of traversing the visualization. But as the

number of nodes and the link density increase, the number of elements (nodes, links or

combinations) that can be simultaneously located and evaluated by an individual

decreases. This leads to a higher number of "locate" and "evaluate" steps when

individuals are using a complex visualization. The proposition (Proposition 6: High-

complexity visualizations lead to more search-steps as compared to low-complexity

visualizations.) then leads to the following hypotheses:

H6.1: Search-steps in high-complexity visualizations will result in more locate sequences
as compared to low-complexity visualizations.

H6.2: Search-steps in high-complexity visualizations will result in more evaluate
sequences as compared to low-complexity visualizations.



77

3.8.7	 Interaction of Visualization Type and Complexity on Effectiveness

When UML and geon diagrams are varied in terms of complexity, the time required to

complete the visual task continues to increase for complex visualizations for both the

visualization types. In both geon and UML diagrams, with the increase of complexity, the

traversal time increases. But in geon diagram, since the individual tends to form clusters

for different nodes and links as a single component and tries to traverse the diagram in

terms of these components, the increase in time to navigate the diagram is not as high as

that in UML diagrams where the individuals primarily tend to consider each node in

isolation. For the error rate, as discussed earlier, the error rate in diagrams of high

complexity is expected to be higher than the error rate in diagrams of low complexity.

Since in geon diagrams, individuals reduce the cognitive load by considering multiple

nodes and links as a single component, the increase in error rate is not as high as the

increase in the error rate for UML diagrams. Therefore, the magnitude of the difference

for time to complete task and the error rate is expected to be larger for visualizations with

high complexity as compared to visualizations with low complexity. Therefore, the

proposition on interaction between visualization type and complexity on effectiveness

(Proposition 7: When UML class diagrams and geon diagrams are varied in terms of

complexity, the time taken to complete the task and the error rate in UML class diagrams

continue to be higher and the magnitude of difference is greater with the increase in

complexity.) can be developed into the following hypotheses.

H7.1: For low-complexity visualizations, geon diagrams will require less time as compared to
UML; for diagrams with high-complexity, the difference will increase.

H7.2: For low -complexity visualization, geon diagrams will result in fewer errors; for diagrams
with high-complexity, the difference will increase.



78

3.8.8 	 Interaction of Visualization Type and Complexity on Search Path

Proposition 8 (When UML class diagrams and geon diagrams are varied in terms of

complexity, search paths in UML class diagrams continue to be longer and node

dominant for complex visualizations though magnitude of difference may reduce with the

increase in complexity.) tries to measure the impact on the search path that results due to

the interaction of visualization type with the diagrammatic complexity. For low-

complexity visualizations, geon diagrams may result in a smaller number of node

traversals. However as the number of nodes increase with the increase in the complexity

of the visualization, the limits of the working memory of the individual may restrict the

number of elements that can be evaluated by an individual. This may result in multiple

references to the same node at multiple points in the search process till an acceptable

solution is reached.

The same is true for UML diagrams. It is expected that for UML diagrams, the

number of nodes that are accessed are higher than for geon diagrams. As the number of

nodes and link density in the UML diagram increases, the search path of the individual

tends to include more nodes, links and components. But since the links of UML diagrams

do not play a primary role in aiding the individual to understand the visualization, the

number of links traversed in UML will continue to be lower in complex UML diagrams.

Therefore, the specific hypotheses can be formulated as:

H8.1: For low-complexity visualizations, geon diagrams will require traversals of fewer
nodes than UML, but for more high-complexity visualizations, geon diagrams will
require traversals of more nodes than UML.

H8.2: For low-complexity visualizations, geon diagrams will require traversals of more
links than UML diagrams, for high-complexity visualizations, geon diagrams will require
traversals of more links than UML diagrams.
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H8.3: For low-complexity visualizations, geon diagrams will require traversals of more
components; for high--complexity visualizations, geon diagrams will require traversals of
more components than UML diagrams.

H8.4: For low-complexity visualizations, UML diagrams will require traversals of more
number of total elements; for high-complexity visualizations, there will be no difference
in the number of total elements traversed in geon diagrams as compared to UML
diagrams.

3.8.9 Interaction of Visualization Type and Complexity on Search-Steps

As discussed in the Section 2.4, the number of "locate" steps is expected to be higher in

UML diagrams whereas, the number of "evaluate" steps is expected to be higher in geon

diagrams. When the complexity of the visualization in increased, the number the nodes as

well as the number of links per node increase. With the increase in the complexity of the

visualization, the number of "locate" and "evaluate" steps will increase because of two

reasons. Firstly, with the increase in the number of elements (nodes, links, and

combination of nodes and links), the number of candidates to be located and evaluated

will increase. Secondly, since the number of nodes, links and combinations (of nodes and

links) that can be located, evaluated and remembered tend to be limited for any individual

due to limitations of their working memory, the increase in the number of nodes and link

density will lead to more repeated traversals for the same nodes and links, thereby

increasing the number of "locate" and "evaluate" steps for the visualization. Therefore,

the proposition (Proposition 9: When UML class diagrams and geon diagrams are varied

in terms of complexity, the search-steps in UML class diagrams continue to be "locate"

dominant and the search-steps in geon diagrams continue to be "evaluate" dominant

though the difference in the search-steps reduce with the increase in the complexity of the

visualization.) can be developed into the following hypotheses:
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H9.1: For low-complexity visualizations, while using UML diagrams, search-steps will
have more "locate" steps as compared to the search-steps while using geon diagrams. For
high-complexity visualizations, there is no significant difference in the search-steps while
using UML and geon diagrams.

H9.2: For low-complexity visualizations, while using geon diagrams, search-steps will
have more "evaluate" steps as compared to the search-steps while using UML diagrams
but as the complexity of visualizations increase, there is no significant difference in the
"evaluate" steps while using geon and UML diagrams.

The research propositions and hypotheses that are developed suggest different

visualizations of similar information lead to different approaches in problem-solving

which may go beyond accuracy and speed advantages that one type of visualization

provides over another.

These research propositions along with the hypotheses are summarized in Table

3.12.
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Table 3.12 Summary of Research Propositions and Hypotheses for Main Study 

1 
Research Propositions 

Proposition 1: A problem
solving task using geon diagrams 
will require less time and result in 
lower error rate. 

Hypothesis 
H1.1: Time taken to complete a visual task using 
geon diagrams is less than time taken to complete a 
visual task using UML diagrams 

H1.2: The error rate is lower in geon diagrams as 
compared to UML diagrams. 

2 Proposition 2: A problem- H2.1: Number of nodes traversed while completing 
solving task using UML diagrams the visual task is greater in UML as compared to 
will lead to longer and more geon. 
node-dominant search paths than I 

3 

4 

the one using to geon diagrams. H2.2: Number of links traversed while completing 
I 

Proposition 3: In a visual 
problem-solving task, 
visualizations developed using 
UML class diagrams will result in 
locate-dominant search-steps 
while visualizations developed 
using geon diagrams will result in 
evaluate-dominant search-steps. 

I 
the visual task is higher in geon as compared to 
UML. 

i 
I H2.3: Number of components traversed while 

completing the visual task is higher in geon as 
compared to UML. 

I H2.4: Number of total elements traversed while 
completing the visual task is higher in UML as 
compared to geon diagrams. 

H3.1: UML diagrams will result in more locate 
sequences as compared to geon diagrams 

H3.2: Geon diagrams will result in more evaluate i 
sequences as compared to UML diagrams 

Proposition 4: More complex H4.1: The time taken to complete a visual task is I visualizations lead to lower : higher in diagrams with high complexity as compared 
I effectiveness in a visual search I to diagrams with low complexity. 

task 
H4.2: The error rate in completing a visual task is 

I higher in diagrams with high complexity as compared 
I to diagrams with low complexity. 
I 
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Table 3.12 Summary of Research Propositions and Hypotheses for Main Study 
(Continued) 

5 

Research Propositions r : : Hypothesis ' J 

Proposition 5: High-complexity H5.1: Number of nodes traversed while completing II 
visualizations lead to longer the visual task is greater in the high-complexity 
search paths in a visual search visualization as compared to low-complexity I 

task. I visualization. 

H5.2: Number of links traversed is higher in the 
high-complexity visualization than in low-complexity 
visualization. 

H5.3: Number of components traversed is higher in I 

high-complexity visualization than in low-complexity 
visualization. 

H5.4: Number of total elements traversed is higher in I 

high-complexity visualization than in low-complexity I 
visualization . 

6 Proposition 6: High-complexity H6.1: Search-steps in high-complexity visualizations 
visualizations lead to more I will result in more locate sequences as compared to 
search-~teps as compared to low- low-complexity visualizations. 

7 

complexity visualizations. I 

Proposition 7: When UML class 
diagrams and geon diagrams are 
varied in terms of complexity, the 
time taken to complete the task 
and the error rate in UML class 
diagrams continue to be higher 
and the magnitude of difference 
is greater with the increase in 
complexity. 

I H6.2: Search-steps in high-complexity visualizations 
I will result in more evaluate sequences as compared to 

low-complexity visualizations. 

H7.1: For low-complexity visualizations, geon 
diagrams will require less time as compared to UML; 
for diagrams with high-complexity, the difference 
will increase. 

I 
H7.2: For low-complexity visualization, geon I 
diagrams will result in fewer errors; for diagrams I 

with high-complexity, the difference will increase. I 
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Table 3.12 Summary of Research Propositions and Hypotheses for Main Study 
(Continued) 

8 

I Research Propositions ' Hypothesis 
r-Proposition 8: When uML clas; T H8.1: For -low-complexity visualizations, geon 

diagrams and geon diagrams are I diagrams will require traversals of fewer nodes than 
varied in tenns of complexity, UML, but for more high-complexity visualizations, 
search paths in UML class 'I geon diagrams will require traversals of more nodes 
diagrams continue to be longer than UML. 
and node dominant for complex 
visualizations though magnitude I H8.2: Fot low-complexity visualizations, geon 
of difference may reduce with the diagrams will require traversals of more links than 
increase in complexity. I UML diagrams, for high-complexity visualizations, 

I 
geon diagrams will require traversals of more links 
than UML diagrams. 

I H8.3: For low-complexity visualizations, geon 

I 
diagrams will require traversals of more components; 
for high--complexity visualizations, geon diagrams 
will require traversals of more components than UML 

1 diagrams. 

I H8.4: For low-complexity visualizations, UML 

I diagrams will require traversals of more number of 
total elements; for high-complexity visualizations, 

I there will be no difference in the number of total 
elemel'lts traversed in geon diagrams as compared to 

~ __ 4 _________________________ ~UM ___ L __ d_ia~gr~am __ s_. ~~~~~ ________ ~ __ ~ __ ~ 
9 

I 

Proposition 9: When UML class 
diagrams and geon diagrams are 
varied in terms of complexity, the 
search-steps m UML class 
diagrams continue to be "locate" 
dominant and the search-steps in 
geon diagrams continue to be 
"evaluate" dominant though the 
difference in the search-steps 
reduce with the increase in the 
complexity of the visualization. 

H9.1: For low-complexity visualizations, while using I 
UML diagrams, search-steps will have more "locate" 
steps as compared to the search-steps while using I 
geon diagrams. For high-complexity visualizations, 
there is no significant difference in the search-steps 
while using UML and geon diagrams. 

H9.2: For low-complexity visualizations, while using I 
geon diagrams, search-steps will have more 
"evaluate" steps as compared to the search-steps 
while using UML diagrams but as the complexity of 
visualizations increase, there is no significant 
difference in the "evaluate" steps while using geon 
and UML diagrams. 
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3.9 Data Coding and Analysis

To analyze the effectiveness of the visualizations, the time taken to complete the task and

the correctness (accuracy) of the task result are measured. To understand the cognitive

differences of the individuals while using two different visualization types, protocol

analysis is used (Simon and Ericsson 1993). The participants are asked to "think aloud"

while doing the task. The verbalized thought process of the participants is indicative of

the reasoning of the participants and the actions that they take. The verbalizations of the

participants are coded. The following sections explain in detail the process of coding and

analyzing the search path and search-steps.

3.9.1 Data Analysis for Effectiveness

The data for effectiveness is recorded as the time taken to complete the task and the error

rate in completing the task. The start-time and the end-time of the task are recorded by a

script in the experimental instrument (visualizations presented to the users). Time is

measured since the start of the experiment.

A sample snapshot of the data for time and error rate is shown in Table 3.13. The

first column is the participant ID. The second column is the condition: CL:U — low-

complexity UML diagrams, CH:U - high-complexity UML diagrams, CL:G - low-

complexity geon diagrams and CH :G - high-complexity geon diagrams. The next column

is the number of errors made by the participant under each condition. For example,

Participant 2 made 2 errors with low —complexity UML diagrams. Each time the user

moved to a new visualization, the time is recorded. Time is calculated as the difference
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terms of categories — correct vs. incorrect. The data analyses pertaining to the cognitive

differences of individuals are discussed next.

3.9.2 	 Data Analysis for Search Path

The transcripts of the participants are coded to mark the identification of a node or a link

or a structure (combination of nodes and links). The search path chosen by the participant

is quantified as a count and sequence of nodes and links explicitly identified by the

participant before completing the task or aborting the task. The path taken to identify the

substructure is represented as the coded string of nodes in the problem space. The process

of creating the problem space and the solution path is discussed next.

Problem Space

A problem space is generated for the search path of the participants completing a visual

task using a given UML or geon diagram. The problem space provides an exhaustive list

of the paths a participant can follow to accomplish the task. All legal state changes are

shown as arrows and the transforming event (number of nodes and links recognized) is

marked on the arrow in the format node/link. In the first step, the participant can either

identify a node (N), or a link (L) or a pair of nodes (S) or a set of nodes and links (S). For

example consider the problem space in Figure 3.2 which is developed for the simplest

node-link diagram - consisting of two nodes and a link. The inset in Figure 3.2 illustrates

such a node-link diagram. Node A of the problem space in Figure 3.2 represents a state in

which two nodes and a link are yet to be recognized. The state changes from A to B when

one node (node 1 or node 2) is recognized (N). State B denotes that one node and one

link are yet to be recognized. One can go to state B from state A only by recognizing one
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node (N). Similarly, if only one link is recognized (L), the state changes from A to D.

Recognizing one node and one link together (S) results in state C. A solution path in the

problem state starts at the initial state (A). Analysis of the solution path for determining

the search path of the participants is mentioned next.

Figure 3.2 	 Problem space of for a node-link diagram with two nodes and one link.

Solution

Any legal traversal of the problem space can be a solution path. The solution path

has certain characteristics. The traversal can terminate in any state — not necessarily in the

termination state (F). For example, a participant can identify one node and one link (in

one step) and abort the search process. The corresponding path for such a process in the
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problem space in Figure 3.2 will be shown as AC and will be coded as S. But if the

participant first identifies one node (N), followed by the second node (N) and then the

link (L), the path traversed will be ABEF or N-N-L. The solution does not necessarily

show the correctness or efficiency of deriving the result and is just a reflection of the

series of actions taken by participants while completing their task. The search path taken

by a participant is derived by coding the verbalizations of the participant recorded during

the experiment by applying the above mentioned technique. If there is a reference to a

node like residential areas, subway station, electric substation, telephone central office,

financial organization, stock market, code it as N. If there is a reference to a link like

shared, input, mutually dependent, co-located or connection, code it as L. If there is a

reference to a group of nodes and links like (this whole cluster, this set of elements, the

whole diagram, this area, these two, these three, all these etc), code it as S. Once the path

taken by individuals is determined by coding the verbalizations, statistical analysis will

be done to test whether the path derived for UML diagrams is significantly different from

the path derived from the geon diagram. The number of nodes, the number of links, the

number of combinations (of nodes and links) and the number of total steps taken in each

case will be used to perform this analysis. Repeated measures ANOVA will be used to

analytically test the effect of the independent factors. If the model assumptions for

repeated measures ANOVA are not met, Friedman's two-way analysis of variance will be

used.

A sample coding for the search path is shown in Table 3.14. The first column is

the identification of each segment. The second column is the actual segment as

transcribed from the recordings. The last column is the search path as coded by the
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coders. For example, the second segment (ID: 2) is "The substation here is mutually 

connected with this telephone". The word substation is coded as a Node (N), followed by 

mutually connected coded as (L) and telephone coded as (N). Therefore, the search path 

for segment 2 is coded as N-L-N. 

Table 3.14 Sample Coding for Search Path 

ID Segment 
1 

Code 

1 Here is the broken link L 

2 I The substation here is mutually connected with this telephone, N-L-N 

3 and if this telephone does not have [electric] power, N-L 

4 I these two financial organizations here can't get 
[service], ... 

telephone I S-L 

This concludes data coding for search path. The next section discusses the coding 

of the protocols in another way to evaluate the search-steps of the participants. 

3.9.3 Data Analysis for Search-Steps 

To address research proposition 3, the transcribed protocols recorded during the 

experiment will be re-coded in a different way. As explained in Section 2.1, the task of 

searching for a pre-defined element can be broken down to a set of basic steps (Hornof 

and Halverson 2003; Hu, Dempere-Marco and Yang 2003). The first step is to define and 

formulate a suitable query (initiate). In the second step, an entry point is identified either 

randomly or by using an index or other search parameters (locate). The third step 

examines and evaluates the search results and rates their relevance (evaluate). In the 

fourth step, the result is either accepted or rejected (decide). For analyzing the difference 
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in the search-steps of individuals using different visualizations, each verbalization will be

coded as a sequence of initiate, locate, evaluate and decide. The coding instructions are

as provided below:

• Initiate (I) — If a segment begins with a phrase like "I am looking for ...", or
pointing at a part of the display screen and/or starting a new problem with "This
diagram...", then it is coded as initiate. This is usually the introductory statement
made by the participant during the experiment.

• Locate (L) — If a segment includes phrases like "I can see", "I cannot find", "I am
searching", then it is coded as locate. Participants use key words like search and
find when they are trying to locate a candidate node or substructure for evaluation.
These fragments signify that the participant is looking for particular nodes in the
problem visualization. In the experimental setup, the participant could be looking
for a node, a link, a substructure or the whole search substructure.

• Evaluate (E) — If a segment includes a phrase like "It looks like the right node",
"Is this the one", it is coded as evaluate. Sometimes, participants use a phrase like
"This is different" to denote their evaluation of a node or link in the problem
visualization. The participant may evaluate a node, a link connected to the node, a
set of nodes and links or the substructure as a whole.

• Decide (D) — If a segment includes a phrase like "yes, I have completed" or "this
is it", it is coded as decide. If the participant does not say anything explicitly, then
the end of the task marks the end of the search-steps. This action specifies that the
participant has made the final decision regarding the visual problem and is ready
to proceed to the next task or end the experiment as the case may be.

• Clarify (C) — There may be sections of participants' verbalization where the
participant is either asking for a clarification from the experimenter or is trying to
figure out the working of the computer or mouse. These segments of the
verbalization are coded as clarify. The number of clarifications under each
condition can be counted to see if there is any difference between the two
visualization types and complexities.

A sample coding for the search steps is shown in Table 3.15. The first column is

the identification of each segment. The second column is the actual segment as

transcribed from the recordings. The last column is the search step as coded by the

coders. For example, the second segment (ID: 2) is "The substation here is mutually
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connected with this telephone". Here the participant is locating elements in the 

visualization as he is talking about it. Therefore, the search step for segment 2 is coded as 

L (Locate). 

Table 3.15 Sample Coding for Search Steps 

ID Segment Code 

1 I Here is the broken link I I i 
I 

2 The substation here is mutually connected with this telephone, ! L 

3 and if this telephone does not have [electric] power, I E 

4 
these two financial organizations here can't get telephone I 

D I [service], ... 

The coded transcripts are then analyzed to understand the difference in the search-

steps of the participants using different visualizations to complete a search task. After the 

coding process is complete, each search task can be represented as a sequence of "I", "L", 

"E" and "D", which represent the different states that the participant has been in during 

the search process. The evaluation of the difference in the search sequence is a measure 

of the difference in their search-steps while completing the search tasks using different 

visualization types and complexities. The number of transitions from one state to another 

is analyzed to answer the research propositions on search-steps. 

The coded search-steps sequence as mentioned is analyzed as follows to 

understand the impact of different visualization type and visualization complexities on 

the search-steps of individuals. The counts and sequence of the coded verbalizations are 

used to develop the directed graph as shown in Figure 3.3. The coded sequence is used to 

count the transitions from one state to another. As seen in Figure 3.3, the decision state 
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(D) is an absorbing state, (i.e., once a participant made a decision regarding the given

problem, they are expected not to enter any other state). Similarly, the initiate state (/) is

a source state, i.e., no arrows lead into this state. The arcs in the directed graph show the

valid transitions amongst the different states. The value on the arc from one state to

another state shows the normalized weights of the total number of transitions between

them. The normalized weight between state i and state j is calculated as the ratio of the

total number of transitions from i to j and the total number of transitions from state i.

Referring to Figure 3.3, wil is the normalized weight of the number of transitions between

initiate and locate. If nil is the total number of transitions from initiate to locate, n ie is the

number of transitions from initiate to evaluate and nid is the number of transitions from

initiate to decide, w =
n 

. The sum of the normalized weights on the
(n + n + n )

outgoing arcs from any node is equal to 1. The search-steps graph created this way shows

the transitions between different cognitive activities of the participants. The graph

provides evidence that participants went through a conscious cognitive process while

performing the given task.



93 

Figure 3.3 Graph representing search-steps. 

To determine if the graphs developed for the search-steps of individuals are 

significantly different for visualizations of different types and complexity, the graphs for 

each case are modeled as a Markov process. Representing the transitions from each state 

(I, L, E, and D) as a matrix, each cell of the matrix represents the number of transitions 

from the row state to the column state. The square matrix created thus represents a 

transition matrix of the search task for a given visualization as shown in the Table 3.16. 

Table 3.16 Transition Matrix for Search-Steps 

I 1 

I I L L E D '! 

I I 

b I I 0 ViI I Vie i 
I 

L 0 Vn VIe Vld 

I E I 0 Vel 

I Vee Ved 

, 

D 0 O· I 0 0 
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This matrix is treated and analyzed as a Markov process matrix (Howard 1971).

The state occupancy of a given state in the matrix can be modeled as a state occupancy

random variable vij(n), which denotes the number of times state j is entered through time

n given the system started at state i. The number of transitions is normalized as the

fraction of times state j is entered given the state started at i as compared to the total

number of transitions that started at C. Transitions between different states are calculated

as the asymptotic mean occupancy statistic. The asymptotic mean occupancy statistic is

defined as the steady state transformation matrix of a given set of state transformations

and provides the expected transformation probabilities about a large number of iterations

of the process. The asymptotic state occupancy statistics of the two visualizations are

evaluated to indicate the behavior of the search-steps over a very large number of

transformations.

As explained earlier in this section, the process represented in Table 3.16 is

modeled as a Markov process. It results in a 4X4 matrix for each case. Since, the graphs

in Figure 3.3 are directed in nature, with state T having no inputs and state 'D' having

no outputs, the corresponding row and column of the matrix are zero as shown in Table

3.16. Therefore, removing the row and one column with no entries reduces the matrix to

3X3 (L, E, D). The asymptotic state occupancy statistics of the two visualizations are

evaluated to get the steady state behavior of the search-steps over a very large number of

iterations. The asymptotic state occupancy statistic can be derived for the two

visualizations and the two visualization complexities as a probability vector of the form

αviz,complexity = (ail, ale, ade)• Four such vectors will be generated for the four experimental

conditions. The difference of the four vectors of the four experimental conditions will
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reflect the difference in search-steps due to different visualization types and complexities.

The asymptotic state occupancy vectors will be modeled as binomial probabilities, where

success is assumed as the transition to a state of interest (locate or evaluate). Normal

approximations of the binomial probabilities are used to test the significance of the

analysis.



CHAPTER 4 

RESULTS 

The results of this experiment are explained in four sections. Section 4.1 discusses the 

descriptive statistics and enumerates the average time and error of each participant under 

each condition. Section 4.2 describes the results corresponding to research proposition 1 

on effectiveness. Section 4.3 presents the results corresponding to research proposition 2 

on search path and Section 4.4 present the results corresponding to research question 3 on 

search steps. All hypotheses are tested at a = 0.05. 

4.1 Descriptive Statistics 

Table 4.1 shows the average time taken (in seconds) by the participants for each problem 

set. The average time taken to complete the task using low-complexity UML diagrams is 

34.64 seconds. The average time taken to complete a task using high-complexity UML 

diagrams is 59.824 seconds. For low-complexity geon diagrams, the average time taken 

is 30.456 seconds and for high-complexity geon diagrams is 47.440 seconds. 

Table 4.1 Table of Means for Time (Seconds) Taken to Complete Task 

Complexity I 
I 

Low High Mean 
Visualization 

I UML 34.640 (C) 59.824 (A) 47.232 

I Geon 30.456 (C) 47.440 (B) 38.948 -
I 

Mean 32.548 53.632 43.09 
* Means with the same letter are not significantly different 

96 
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Table 4.2 shows the number of errors made by the participants under each 

experimental condition. When completing the visual problem-solving tasks, the mean 

number of errors using low-complexity UML diagrams is 2.0, for high-complexity UML 

diagrams is 3.16, for low-complexity Geon diagrams is 0.4 and for high-complexity geon 

diagrams is 0.96. 

Table 4.2 Table of Means for Errors in Result 

." Complexity j I 

Low high Mean 
Visualization 

UML 2.0000 (B) I 3.1600 (A) 2.58 
Geon 0.4000 (D) 0.9600 (C) 0.68 

~ Mean I 1.2 I 2.06 1.63 
* Means with the same letter are not significantly different 

The significance of the results with respect to research question 1 is discussed 

further in Section 4.2. 

4.2 Results for Research Question 1: Effectiveness 

For testing the hypotheses for research question 1 concerning the effectiveness of a 

diagram, the time taken by each participant to solve a problem and the correctness of the 

solution are used. The average time required by the participants to find the presence or 

absence of a substructure is used to test hypothesis H 1.1. Average number of incorrect 

answers in completing all the five tasks under each condition is used to test hypothesis 

H1.2. 
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Figure 4.1 Distribution of time to completion for low and high complexity UML and 
geon diagrams. 

Table 4.3 Statistical Results for Time to Completion 

I Visualization (V) Complexity(C) I V*C I Order 

I 
F 12.15 40.85 6.02 0.01 

p-val <0.0019 <0.0001 0.0218 I 0.9149 

As seen from the results in Table 4.1, on average the participants took 38.948 

seconds to complete the task using geon diagram and 47.232 seconds while using UML 

diagrams. Hypothesis H 1.1 had suggested that the time taken to complete a visual task 

using geon diagrams is less than the time taken to complete a visual task using UML 

diagrams. Figure 4.1 shows the time taken to complete the visual task for UML and geon 

diagrams using visualizations of low and high complexity. Time taken using geon 

diagrams is lower than the time taken when using UML diagrams. The difference is 

greater for high-complexity visualizations as compared to low-complexity visualizations. 

A repeated measures ANOVA was done to test the difference in the four cases. The 
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results of the ANOV A are shown in Table 4.3. The null hypothesis (H1.10 There is no 

difference in the time taken to complete a visual task using geon diagrams as compared to 

UML diagrams) is rejected at p<0.0019(a=0.05). This shows that there is a significant 

difference in the time taken to complete a visual task when different visualizations are 

used. The results also show that there is no effect due to the order in which the condition 

was presented to the participant (p = 0.9149). 

3.5 -+- UML diagrams 

3 
___ Geon diagrams 3.16 

2.5 

\Il 
r.. 2 2 0 r.. 
r.. 
~ 1.5 
~ 
0 

=iI: ---- .... 0.96 ~ 
ell --- ---
~ 0.5 ----r.. 0.4 ... --~ .. 
< 0 

Low High 
Visualization Complexity 

Figure 4.2 Distribution of average number of errors for low and high complexity 
UML and geon diagrams. 

Table 4.4 Statistical Results for Error Rate 

I I 

I Visualization (V) Complexity(C) V*C Order 

F 228.00 I 70.89 I 5.14 
I 

0.03 

p-val <0.0001 <0.0001 I 0.0326 1 0.8734 
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Hypothesis H 1.2 hypothesized that the error rate is lower in geon diagrams as

compared to UML diagrams. The results of the experiments show that the error rate is

higher in UML diagrams as compared to Geon diagrams. As shown in Table 4.2, the

average number of errors per person using UML diagrams is 2.58 and the average

number of errors per person for geon diagram is 0.68. Figure 4.2 shows the average

number of errors per task when using UML and geon diagrams of low and high

complexity. The number of errors that occur for geon diagrams is lower than the number

of errors using UML diagrams. The difference is greater for complex diagrams. As

shown in Table 4.4, The null hypothesis (H1.20 There is no difference in the error rate in

geon diagrams as compared to UML diagrams) is rejected at p<0.0001(α=0.05). This

shows that there is a significant difference in the number of errors made in completing a

visual task when different visualizations are used. The summary of the results of the

research hypotheses for effectiveness are presented in Table 4.5. The detailed discussion

of the interpretation of these results is provided in Section 5.1.

Considering the effect of complexity of visualizations, Table 4.1 shows the mean

time taken to complete a visual task using visualizations with low and high complexity.

Mean time taken using visualizations with low-complexity is 32.548 seconds and the

mean time taken using visualizations with high-complexity is 53.632. The null hypothesis

(H4.10 There is no difference in the time taken to complete a visual task in diagrams with

low-complexity as compared diagrams with high-complexity) is rejected at

p<0.0001(α=0.05) as shown in Table 4.3. Table 4.2 shows that the mean error rate for

visualizations with lower complexity is 1.2 and the mean error rate for visualizations with

high-complexity is 2.06. The ANOVA results are shown in Table 4.4. The null



101

hypothesis (H4.20 There is no difference in the error rate in diagrams with low-

complexity as compared to diagrams with high-complexity) is rejected at

p<0.0001(α=0.05). The results also show that there is no effect due to the order in which

the condition was presented to the participant (p = 0.8734).

Considering the interaction effect of visualization type and complexity, the non-

parallel lines in Figure 4.1 and Figure 4.2 show that there is an interaction effect for both

time to completion and error rate. The ANOVA results in Table 4.3 provide quantitative

analysis of this interaction. For time to completion, the null hypothesis (H7.10 There is no

interaction effect in the time taken to complete a visual task due to visualization type and

complexity) is rejected at p =0.0218(α=0.05). For error rate, the ANOVA results are

shown in Table 4.4. The null hypothesis (H7.2 0 There is no interaction effect in the error

rate due to visualization type and complexity) is rejected at p =0.0326(α=0.05).

In general, effectiveness is higher for geon as compared to UML diagrams.

Complexity has a degrading effect on effectiveness for both UML and geon diagrams.

These results are in line with the expected result. The summary of the hypotheses testing

is presented in Table 4.5.
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Table 4.5 Summary of Results for Research Question on Efficiency 

Hypothesis I p-value j Result 
H1.10 There is no difference in the 
time taken to complete a visual task 

p <0.0019 
The null hypothesis is 

using geon diagrams as compared to rejected 
UML diagrams 
H1.20 There is no difference in the I 

The null hypothesis is error rate in geon diagrams as p <0.0001 
compared to UML diagrams. rejected 

H4.10 There is no difference in the 
time taken to complete a visual task 

The null hypothesis is 
in diagrams with low-complexity as 1 p <0.0001 
compared diagrams with high- I 

rejected 

I~lexity. 
H4.20 There is no differenc~ in the I 

I error rate in diagrams with low-
p <0.0001 

The null hypothesis is 
complexity as compared to diagrams rejected 
with high-complexity. 

I H7.10 There is no interaction effect in 
I the time taken to complete a visual 

p =0.0218 
The null hypothesis is 

i task due to visualization type and rejected 
! complexity. 
I H7.20 There is no interaction effect in 

The null hypothesis is the error rate due to visualization type p =0.0326 

I and complexity. rejected 

4.3 Results for Research Question 2: Search Path 

Search path analysis required the coding of the verbal protocols as a series of nodes, 

links, components traversed by the participants to complete the visual task. The inter-

rater reliability for coding the transcripts was calculated using Cohen IS kappa coefficient 

(Cohen 1960). The un-weighted kappa coefficient for coding search path is 0.71 which 

ranks the coding reliability as substantial agreement (Landis and Koch 1977). The 

measure of proportion of agreement (Fleiss 1981) for the two coders is 0.82. The 

research question on search path involves the number of nodes, the number of links, the 

number of components (combination of nodes and links) and the total number of 
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elements (sum of nodes, links and components) traversed by the participants to complete 

the visual task in all the four conditions. Therefore, the results for research proposition 2 

are discussed under separate subsections for each of these hypotheses. A repeated 

measures ANOV A is used for all the cases. The assumptions for repeated measures 

ANOVA are fulfilled for all the tests. 

4.3.1 Number of Nodes 

Table 4.6 is the table of means for the number of nodes traversed for UML and geon 

diagrams. Figure 4.3 presents the means graphically. For both levels of complexity (low 

and high), the number of nodes traversed is lower in geon diagrams as compared to UML 

diagrams. The difference is greater for complex visualizations. A repeated measures 

ANOV A was done to test if the difference was significant. The results of the ANOV A are 

presented in Table 4.7. The null hypothesis (H2.1o: No difference in the number of nodes 

traversed in while completing the visual task in UML and geon diagrams) is rejected at p 

<O.OOOl(a=O.05). This shows that there is a significant difference in the number of nodes 

accessed in completing a visual task using different visualization types for visualizations 

of both levels of complexity (low and high). 

Table 4.6 Table of Means for Number of Nodes Traversed 

Complexity 
Low high Mean 

Visualization 
UML I 8.4400 (B) I 15.8480 (A) 12.144 
Geon i 5.0320 (C) I 8.4640 (B) 6.748 

I I 
Mean 6.736 12.156 9.446 

* Means with the same letter are not significantly different 
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Figure 4.3 Distribution of average number of nodes traversed for low and high 
complexity UML and geon diagrams. 

Table 4.7 Statistical Results for Number of Nodes Traversed 

Visualization(V) Complexity(C) V*C Order 

r F 65.89 65.50 9.21 I 0.12 

I- p-val <0.0001 <0.0001 0.0057 1 0.7260 
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As shown in Table 4.6 and Figure 4.3, the number of nodes traversed for low-

complexity visualizations is lower than the number of nodes traversed for high-

complexity visualizations. The result of the ANOVA is presented in Table 4.7. The null 

hypothesis (H5.1o: There is no difference in the number of nodes traversed while 

completing the visual task using high-complexity visualization as compared to low-

complexity visualization.) is rejected at p <0.0001(0.=0.05). 

The results show that the average number of nodes accessed was the lowest with 

low-complexity geon diagrams and most for high-complexity UML diagrams. The 
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difference in number of nodes traversed is higher in high-complexity visualizations as

compared to low-complexity visualizations as shown in Figure 4.3. The null hypothesis

(H8. lo: There is no difference in the traversal of nodes when complexity is varied for

UML and geon diagrams) is rejected at p =0.0057(α=0.05) as shown in the ANOVA

results in Table 4.7. The results also show that there is no effect due to the order in which

the condition was presented to the participant (p = 0.7260).

From the letter in the parenthesis in Table 4.6, it can be seen that the number of

nodes accessed is not significantly different for low-complexity UML and high-

complexity geon diagram which is a co-incidence and is not a subjected to further

interpretation.

4.3.2 Number of Links

Table 4.8 is the table of means for the number of links traversed for UML and geon

diagrams. Figure 4.4 presents the means graphically. For both low-complexity and high-

complexity visualizations, the number of links traversed is higher in geon diagrams as

compared to UML diagrams. A repeated measures ANOVA was done to check if the

difference is significant. The result of the ANOVA is shown in Table 4.9. The null

hypothesis (H2.20: no difference in number of links traversed while completing the visual

task in geon as compared to UML) is rejected at p <0.0001(α=0.05). Therefore, there is a

significant difference in the number of links accessed in completing a visual task when

different visualizations are used.
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Table 4.8 Table of Means for Number of Links Traversed 

,- Complexity y 

Low I 
high Mean 

Visualization I 

: 
UML 1.1760 (C) I 2.3600 (B)(C) i 1.768 
Geon 3.6080 (B) ! 5.5040 (A) 4.556 

! 
I 
! 

Mean I 2.392 3.932 3.162 
~Means with the s_ame letter are not ~gnificantly different 

-.- UML diagrams 

. - .. . Geon diagrams 

-- _ ... 5.504 
--------------... --3.608 
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Figure 4.4 Distribution of average number of links traversed for low and high 
complexity UML and geon diagrams. 

Table 4.9 Statistical Results for Number of Links Traversed 

Visualization(V) Complexity(C) I V*C I Order 

F 39.13 23.00 1.42 I 1.77 I 

p-val <0.0001 
I 

<0.0001 0.2455 0.1867 
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As shown in Table 4.8 and Figure 4.4, the number of links traversed for low-

complexity visualizations is lower than the number of links traversed for high-complexity

visualizations. The difference is significant only for geon diagrams. The result of the

ANOVA is shown in Table 4.9. The null hypothesis (H5.20: There is no difference in the

number of links traversed while completing the visual task using high-complexity

visualization as compared to low-complexity visualization) is rejected

p<0.0001(α=0.05). For UML diagrams, the number of links traversed for low-

complexity diagrams is lower than the number of links traversed for high-complexity

diagrams as shown in Figure 4.4 but this difference is not significant (as shown by the

same letter in Table 4.8). The results also show that there is no effect due to the order in

which the condition was presented to the participant (p = 0.1867).

The results show that the average number of links accessed is the highest with

high-complexity geon diagrams and the lowest in low-complexity UML diagrams. The

number of links accessed in completing the task using high-complexity UML diagram is

not significantly different from the number of links accessed in low-complexity UML

diagrams. It is also not significantly different from the number of links accessed in low-

complexity geon diagrams. Based on the ANOVA results in Table 4.9, the null

hypothesis (H8.20: There is no difference in the traversal of links when complexity is

varied for UML and geon diagrams) cannot be rejected at p =0.2455(α=0.05). Therefore,

it can be derived that there is a difference in the number of links traversed while

completing visual problem tasks based on the visualization type and complexity but there

is no interaction between the type and complexity factors.
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4.3.3 Number of Components (Combinations of Nodes and Links) 

The table of means for the number of components traversed while completing the visual 

task using UML and geon diagrams is different as shown in Table 4.10. Figure 4.5 

presents the means graphically. For both low and high complexity visualizations, the 

number of components traversed is higher in geon diagrams as compared to UML 

diagrams. The difference is greater for high-complexity visualizations. A repeated 

measures AN OVA was done to check the significance of the differences. The ANOVA 

results are presented in Table 4.11 . The null hypothesis (H2.30: There is no difference in 

the number of components traversed while completing the visual task using geon as 

compared to UML) is rejected for high-complexity diagrams at p <0.0001(0.=0.05). The 

difference is not significant for low-complexity diagrams. 

Table 4.10 Table of Means for Number of Components Traversed 

' .... -.~. Complexity 
Low High I Mean 

Visualization 
UML 0.8000 (B) 1.7440 (B) 1.272 
Geon 2.3760 (B) 5.9360 (A) 4.156 

I 
Mean 1.588 I 3.840 2.714 

* Means with the sam7 letter are not significantly different . ___ ~I 
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Figure 4.5 Distribution of average number of components traversed for low and high 
complexity UML and geon diagrams. 

Table 4.11 Statistical Results for Number of Components Traversed 

Visualization(V) 
" --r--

Complexity(C) V*C Order 

F 20.58 30.64 7.68 0.94 
-

p-val <0.0001 I <0.0001 0.0106 0.3342 

The number of components traversed for low-complexity visualizations is lower 

than the number of components traversed for high-complexity visualizations. The 

ANOV A results are shown in Table 4.11. The null hypothesis (H5.30: There is no 

difference in the number of components traversed while completing the visual task using 

high-complexity visualization as compared to low-complexity visualization) is rejected at 

p <0.0001(0.=0.05). The number of components traversed in low-complexity UML 

diagrams is lower than the number of components traversed by high-complexity UML 

diagrams but this difference is not significant. The results also show that there is no effect 

due to the order in which the condition was presented to the participant (p = 0.3342). 



110

The number of components accessed in the highest for high-complexity geon

diagrams and lowest for low-complexity UML diagrams. The difference in the number of

components traversed is not significant for UML diagrams and low-complexity geon

diagrams. The difference becomes noticeable only for high-complexity geon diagrams.

The null hypothesis (H8.3 0 : There is no difference in the traversal of components when

complexity is varied for UML and geon diagrams) is rejected at p =0.0106(α=0.05). The

ANOVA results are shown in Table 4.11. Therefore, it can be derived that there is a

difference in the number of components traversed while completing visual problem tasks

based on the visualization type and complexity. It is to be noted that the difference

becomes significant only for high-complexity visualizations where there are more nodes

and links with more probability of mental formation of components. Also, for UML

diagrams, individuals do not tend to have these mental formations of components.

Therefore, there is no significant amount of components traversed by individuals when

using UML diagrams. The number of components traversed for high-complexity UML

diagrams is lower than the number of components traversed for low-complexity geon

diagrams.

4.3.4 Total Number of Elements (Nodes + Links + Components)

Table 4.12 shows the table of means for the total number of elements traversed in

completing the visual problem-solving task. Figure 4.6 shows the data graphically. A

repeated measures ANOVA was done to check if the difference is significant. The

ANOVA results are in Table 4.13. The null hypothesis (H2.40: There is no difference in

the number of total elements traversed while completing the visual task using UML as

compared to geon diagrams) cannot be rejected (p = 0.8018). As shown in the Table 4.12
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and Figure 4.6, the means for the total number of elements traversed are almost equal for 

UML and geon diagrams. 

Table 4.12 Table of Means for Number of Total Elements Traversed 

Complexity 
I 

1 Low I high Mean I 

VisualizatiOll '.' 

UML 10.416 (B) I 19.952 (A) 15.184 
Geon 11.016 (B) : 19.904 (A) 15.460 --

I 
Mean 10.716 .1 19.928 15.322 

* Means with the same letter are not significantly different 
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Figure 4.6 Distribution of average number of total elements traversed for low and 
high complexity UML and geon diagrams. 

Table 4.13 Statistical Results for Number of Total Elements Traversed 

I 

Visualization(V) Complexity(C) V*C Order 
I 

F 0.06 74.98 0.12 
! 

0.10 
I I , 

p-val 0.8018 <0.0001 0.7285 I 0.7571 
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The total number of elements traversed for low-complexity visualizations is lower

than the total number of elements traversed for high-complexity visualizations. The

ANOVA results in Table 4.13 show that the null hypothesis (H5.40: There is no

difference in the total number of elements traversed while completing the visual task

using high-complexity visualization as compared to low-complexity visualization) is

rejected at p <0.0001(α=0.05). Therefore, the total number of elements traversed is

significantly lower in low-complexity visualizations as compared to high-complexity

visualizations. The results also show that there is no effect due to the order in which the

condition was presented to the participant (p = 0.7571).

The total number of elements accessed in the highest for high-complexity UML

diagrams and lowest for low-complexity UML diagrams. The difference of total number

of elements traversed is significant for low-complexity and high-complexity diagrams.

The ANOVA result for interaction effect is shown in Table 4.13. The null hypothesis

(H8.40: There is no difference in the total number of elements traversed when complexity

is varied for UML and geon diagrams.) cannot be rejected at p <0.7285(α=0.05).

Therefore, it can be derived that there is a difference in the total number of elements

traversed while completing visual problem tasks based on the diagrammatic complexity

but not on visualization type. Also, there is no interaction effect. There is almost no

difference in the total number of elements traversed for high-complexity UML diagrams

and high-complexity geon diagrams. The difference is just noticeable for low-complexity

visualizations.
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A summary of all the hypothesis and the results developed from the propositions 

on search path are summarized in Table 4.14. 

Table 4.14 Summary of Results for Research Question on Search Path 

Hypothesis I ,e-value I Result 
.~~~~~~~~~~ 

I H2.10: There is no difference in the number of nodes traversed The null 
I while completing the visual task using UML as compared to geon. p <0.0001 hypothesis is 

L- ____ ---' ___ .~"'--__ ~_~~,--:-:--+~~ __ -j __ r.,.;eJ:...·e_c_te_d_~1 

I
" H2.20: There is no difference in the number of links traversed while The null 

completing the visual task using geon as compared to UML. I p <0.0001 hypothesis is 

i ~~ 
I H2.30: There is no difference in the number of components The null 

I traversed while completing the visual task using geon as compared p <0.0001 hypothesis is 
I to UML. . d 
' ~~re 

H2.40: There is no difference in the number of total elements 
traversed while completing the visual task using UML as compared 
to geon diagrams. p <0.8018 

H5.10: There is no difference in the number of nodes traversed 
I while completing the visual task using high-complexity 
i visualization as compared to low-complexity visualization. 

p <0.0001 
I 

H5.20: There is no difference in the number of links traversed using I 

high-complexity visualization as compared to low-complexity I p <0.0001 
visualization. 

H5.30: There is no difference III the number of components 
(combinations of one or more nodes and/or links) traversed using 
high-complexity visualization as compared to low-complexity p <0.0001 
visualization. 

H5.40: There is no difference in the number of total elements 
(nodes/links/components) traversed using high-complexity I 

p <0.0001 
visualization as compared to low-complexity visualization. 

Fail to reject 
null hypothesis 

The null 
hypothesis is 

rejected 

The nuB 
hypothesis is 

rejected 

The null 
hypothesis is 

rejected 

The null 
hypothesis is 

rejected 

H8.10: There is no difference in the traversal of nodes when I The null 
complexity is varied for UML and geon diagrams. p <0.0057 hypothesis is 

I-=_--------------~------------------------~I--------~---~r~ecred 
H8.20: There is no difference in the in the traversal of links when I 

Fail to reject 
complexity is varied for UML and geon diagrams. I p <0.2455 

null hypothesis 

H8.30: There is no difference in the number of components when I 
complexity is varied for UML and geon diagrams. ! p <0.0106 

The null 
hypothesis is 

rejected 
~---------------------------------------------+--------~----H8.40: There is no difference in the total number of elements 

Fail to reject 
traversed when complexity is varied for UML and geon diagrams. p <0.7285 null hypothesis 

A detailed discussion on the interpretation of the result is done in Section 5.2. 
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4.4 Results for Research Question 3: Search-Steps

Individual's search-step is analyzed by examining the coded protocol of the participants

in solving the problem. The coded sequence is used to count the transitions from one state

to another. The inter-rater reliability for coding the transcripts was calculated using

Cohen's kappa coefficient (Cohen 1960). The un-weighted kappa coefficient for coding

search steps is 0.81 which ranks the coding reliability as almost perfect agreement

(Landis and Koch 1977). The measure of proportion of agreement (Fleiss 1981) for the

two coders is 0.82. To analyze the differences in the sequences of UML and geon

diagrams, the average number of the transformations from each state (I, L, E, and D) to

every other state is counted and represented as weighted directed graphs. The individual

directed graphs showing the normalized weighted transitions for each condition are

presented in Appendix E. The value on each arc is calculated as the average number of

transitions made between the states for each type of visualization.

The process represented in the directed graphs is modeled as a Markov process

resulting in a 4X4 (I, L, E, D) matrix as shown in Table 4.15. As can be seen, the sum of

the normalized weights on the outgoing arcs from any node is equal to 1.
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Table 4.15 Summary Matrix of Distribution of Search-Steps 

Complexity , 
Low High 

Visualization 

I L E D I L E D 
I 0* 0.88 0.12 0* I 0* 0.88 0.11 0.01 

UML 
L 0* 0.41 0.45 0.14 L 0* 0.52 0.38 0.1 
E 0* 0.5 0.21 0.29 E 0* 0.49 0.34 0.17 
D 0* 0.6 0.34 0.06 D 0* 0.3 0.5 0.2 

I 

I 

I I L E D I L E D 
I 0* 0.59 0.41 0* I 0* 0.5 0.50 0* 

Geon I L 0* 0.13 0.76 0.11 L 0* 0.2 0.74 0.06 

I E 0* 0.19 0.49 0.32 E 0* 0.2 0.61 0.19 

I D 0* 0.17 0.83 0* j D 0* 0 1 0* 

I * -The 0 was_ re laced wIth a very small number (0.000001) to make sure th~_matrix was non-zero _~ 

The asymptotic state occupancy statistics for all the matrices are evaluated to get 

the steady state behavior of the search-steps over a very large number of iterations. The 

transition probability matrix for all the conditions are evaluated and presented in Table 

4.16. 

Table 4.16 Transition Matrix for Distribution of Search-Steps 

----, 

Initiate Locate Evaluate I Decide 
I 

,~ 

I 0.09 
i 

0.63 I 0.09 0.18 
I 

aUML-LC I 

I 

aUML-HC 
! 0.09 I 0.55 I 0.27 0.09 

ageon-LC 0.09 I 0.36 I 0.54 0.01 
J 

ageon-HC 0.09 
\ 

0.09 
I 0.73 I 0.09 

'----
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The transition probability matrix for the low-complexity UML diagrams evaluates

to αUML-LC = (0.09, 0.63, 0.09, 0.18), for high-complexity UML diagrams is αUML-HC =

(0.09, 0.55, 0.27, 0.09), low-complexity geon diagrams is ageon-LC = (0.09, 0.36, 0.54,

0.01), for high-complexity geon diagrams is α geon-HC = (0.09, 0.09, 0.73, 0.09). These

vectors can be interpreted as follows. For locate transition, the probability for low-

complexity UML is 0.63, for high-complexity UML is 0.55, for low-complexity geon is

0.36 and for high-complexity geon is 0.09. For evaluate transition, the probability for

low-complexity UML is 0.09, for high-complexity UML is 0.27, for low-complexity

geon is 0.36, and for high-complexity geon diagrams is 0.73. The asymptotic transition

probability matrix show that p(initiate) remains unchanged with different visualization

types and complexity levels. P(locate) is lower for geon than UML and p(locate) is lower

when the diagrammatic complexity is high. For evaluate, p(evaluate) is higher with geon

diagrams as compared to UML diagrams and p(evaluate) is higher when complexity is

high. There is no pattern evolving out of p(decide) values across the four conditions.

To calculate the statistical distance between these vectors, Bhattacharyya distance

can be used (Bhattacharyya 1943). The Bhattacharyya distance measures the similarity

(or dissimilarity) of two discrete probability distributions (Kailath 1967). It is normally

used to determine if two classes in a classification can be separated (Kailath 1967). For

discrete probability distributions p and q over the same domain X, Bhattacharyya

distance is defined as:
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Table 4.17 lists the Bhattacharyya coefficient for the asymptotic vectors for 

search-steps. The cells comparing the same vectors are denoted by "_". The values 

outside the parenthesis show the Bhattacharyya's co-efficient. Bhattacharyya's co-

efficient is the similarity between the row and column groups. The distance is calculated 

by subtracting the values from 1. This value is shown in parenthesis in Table 4.17. For 

example, consider the cell corresponding to "low-complexity UML" and "high-

complexity UML" having the value 0.96(0.04). 0.96 is the Bhattacharyya's co-efficient 

or the measure of similarity for low-complexity UML and high-complexity UML. The 

value in the parenthesis, 0.04 (1-0.96), is the distance that between them. 

Looking at Table 4.17, it is seen that the maximum distance between the search-

steps were for high-complexity UML diagrams and low-complexity geon diagrams at 

0.87. The next lower value is for the low-complexity UML and high-complexity geon 

diagrams at 0.34. This implies that the additive effect of visualization type and 

complexity attribute to the high difference in search-steps when completing a visual 

problem-solving task. 

Table 4.17 Bhattacharyya coefficient (distance) for Search-Steps Vectors 

Low-Complexity High-Complexity Low-Complexity High-COmPlexitY] 
UML UML geoD geoD 

Low-Complexity - i 0.96 (0.04) 0.76 (0.24) 0.66(0.34) I 
UML I I 

High-Complexity - 0.13 (0.87) 0.83(0.17) 
UML I 

I Low-Complexity I - 0.89(0.11) 
Geon I 

I 
I I 

High-Complexity - I 
Geon 
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The effect of visualization type can be seen by comparing the distance between

low-complexity UML and low-complexity geon and also for high-complexity UML and

high-complexity geon. The distance between the vectors representing the search-steps for

low-complexity UML and low-complexity geon is 0.24 and the distance for high-

complexity UML and high-complexity geon diagrams is 0.17. This is the effect of

visualization type. The effect is less than the combined effect of complexity and type.

The distance between the vectors representing the search-steps for low-

complexity geon and high-complexity geon is 0.11 and that between low-complexity

UML and high-complexity UML is 0.04 which means that the effect of the complexity on

the difference of search-steps is the least. The distance between low-complexity UML

and high-complexity UML is very less showing that the search-steps are almost similar

for a UML diagram irrespective of its complexity. Overall, it can be derived that

generally, there is a like with like affiliation for visualization types (UML and Geon).

Also, both complexity and visualization type have an impact on the search-steps.

Another perspective on the analysis of the search-steps can be derived from

Chebyshev's distance (Cantrell 2000). This statistic complements the analysis based on

Bhattacharyya's distance. While Bhattacharyya' s distance gives the distance amongst all

the vectors, Chebyshev' s distance gives the measure of the dimension that contributes

most to the distance. Chebyshev distance (or Tchebychev distance), is defined on a vector

space where the distance between two vectors is the greatest of their differences along

any coordinate dimension (Abello Pardalos and Resende 2002). The Chebyshev distance
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between two vectors or points p and q, with standard coordinates Pi and qi, respectively, 

is D Chebyshev 

Table 4.18 shows the Chebyshev's distance for the asymptotic vectors for search-

steps and the dimension leading to the distance. The numbers in the cells represent the 

Chebyshev's distance between the condition in the corresponding row and column. The 

transformation that leads to the maximum distance between any two search-steps is 

shown in parenthesis in Table 4.18. As shown in Table 4.18, the difference between low-

complexity UML and low-complexity geon can be contributed to evaluate steps but for 

high-complexity UML and high-complexity geon, the impact is the same from evaluate 

and locate steps. 

Considering the factor of complexity, the difference between low-complexity 

geon and high-complexity geon stems from locate steps and between low-complexity 

UML and high-complexity UML stem from evaluate steps. The difference between low-

complexity UML and high-complexity geon is from the Evaluate step and the difference 

between high-complexity UML and low-complexity geon is also from the evaluate step. 

Table 4.18 Chebyshev's Distance for Search-Steps Vectors 

Low-Complexity High-Complexity Low-Complexity High-Complexity 
UML UML geon geon 

Low.Complexity 0 O.18(E) ; O.45(E) I O.64(E) ! I 

UML I I 
High-Complexity 0 O.27(E) I O.46(EL) 

UML ~-
Low-Complexity 

~I 
0 I O.27(L) i I 

Geon ! I 

High-Complexity I 0 
Geon 
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Chebyshev's distance shows that the effect size is influenced more by evaluate 

transitions as compared to locate transitions. The two cases where the effect due to locate 

transitions were more are the difference between (a) high-complexity UML and high-

complexity geon and (b) low-complexity geon and high-complexity geon. Overall, the 

differences in evaluation step usually contribute most to the distance (with the exception 

of high-complexity geon diagram where the contribution is also from the locate steps). 

The combined analysis of Bhattacharyya's and Chebyshev's distance shows that 

the asymptotic transition matrices for the search steps for the four different conditions are 

indeed different from each other. The difference is significant when visualization type or 

complexity is varied. Therefore, based on these analyses, the results of the hypotheses for 

research proposition 3 are as enumerated in Table 4.19. 

Table 4.19 Summary of Results for Research Question on Search-Steps 

r----, " Hypothesis ; Result 
H3.1o: There is no difference in the locate i 
sequences in UML diagrams as compared to I Null hypothesis rejected 
geon diagrams 

H3.2o: There is no difference in the evaluate 
sequences in Geon diagrams as compared to Null hypothesis rejected 
UML diagrams 

I 
H6.1o: There is no difference in the locate I 

'I sequences in high-complexity visualization as I Null hypothesis rejected 
compared to low-complexity visualizations, I 

-+--------------------4 
H6.2o: There is no difference in the evaluate : 
sequences in high-complexity visualizations as Null hypothesis rejected 
compared to low-complexity visualizations. 

H9.1o: There is no difference in locate ~ 
sequences as complexity as varied for UML Null hypothesis rejected I 
and geon diagrams, I . 

r-m,2o: There is no difference in the evaluate I 

sequence as complexity is varied for UML and Null hypothesis rejected 
geon diagrams. 1 

-



CHAPTER 5

DISCUSSION

The interpretation of the results enumerated in Chapter 4 is discussed in this chapter. The

discussion is split into three subsections. Section 5.1 discusses the results corresponding

to research proposition 1 on effectiveness. Section 5.2 presents the results corresponding

to research proposition 2 on search path and Section 5.3 present the results corresponding

to research question 3 on search steps.

5.1 Efficiency

The results show that the time taken to complete a visual problem-solving task using

geon diagrams is less than the time taken to complete the same task using UML

diagrams. This difference is significant when the visualizations are complex. For simpler

diagrams, where there are fewer nodes and links, the difference in time taken to complete

the task is not significant though the time taken for geon diagrams is still lesser than the

time taken using UML diagrams. In simpler diagrams, the cognitive effort is lower as

compared to the complex diagrams. Individuals do not require a high degree of cognitive

effort in traversing through the diagram. The lower number of nodes and links make it

easier for the participants to memorize and work with them. All the elements are

perceived with more ease and the participants are able to complete the task without a

large number of iterations in going through all the elements in the diagrams. As the

complexity of the visualizations is increased, the time difference in using geon and UML

diagrams become more significant. This is because in complex diagrams, the participants

121
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spend more time to traverse the visualization. They also have to traverse and process a

larger number of the different nodes and links. Also, because there are limitations to the

number of elements the participants can remember, they tend to traverse to some nodes

and links more than once. As a result, the time taken to complete the task increases. The

increase is more in UML diagrams because of the information representation technique of

UML diagrams as well as the process of working with UML diagram.

In the results of pilot 1 provided in Section 3.2, it was argued that participants

spent more time on the geon diagrams because it took more time to explain the 3D shapes

and connectors as compared to the UML diagrams because unlike the UML diagrams, the

geon diagrams did not have a well-established vocabulary. In the current experimental

setup, each geon and UML element was developed on a pre-defined vocabulary. All the

participants were trained using this vocabulary before they completed the experimental

task. Hence the compounding factor arising out of unavailable vocabulary and element

set was removed from the current experiments. Once a well established vocabulary was

understood by the participants, the results were more in line with the expectations as set

by the research propositions.

For the results on the accuracy or error rate of completing the visual tasks using

the different visualizations, the number of errors is significantly lower in geon diagrams

as compared to UML diagrams. The trend is the same for simple and complex

visualizations. The results show that the average number of errors was the lowest with

low-complexity geon diagrams and the most errors were made for high-complexity UML

diagrams. The number of errors is increasing as the visualizations become simple to

complex and the number of errors is lower for geon visualizations as compared to UML
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visualizations. Another interesting point that emerges from the result for effectiveness is

that a four-fold increase in complexity reduces effectiveness by a factor of roughly two

for all measures (time to complete and error rate).

One important note in discussing the difference of error rate in completing a task

using UML and geon diagram is that the result of any task was either correct or

incorrect. Therefore, if the answer to a particular task required the participants to point

out 5 different elements in the visualization, and the participant only pick out 4 of the 5

correctly, or picked out 4 correct ones and 1 incorrect element, the answer is still

considered incorrect. There was no attempt to measure the correctness of a result over a

scale. Therefore, evaluating the correctness of a task in this experiment takes into

consideration the number of tasks where completed with errors for each visualization

type. Based on the result of the current experiment, it can be said that using geon

diagrams results in lesser errors as individuals do not miss out any relevant node, link or

component when working on a given task.

To ensure that there was no effect of a particular task on the correctness of its

result, i.e., that all the participants were not making a mistake in using the same diagram,

the distribution of the number of errors for a task under each condition is shown in Figure

5.1. The figure shows that the number of errors is evenly distributed over all the

visualizations. It fails to show that any particular visualization had a very high number of

errors. The highest number of errors (17) was for Task 1 and Task 4 for complex UML

visualization. The lowest number of errors (1) was for Task 2 and Task 5 for simple geon

diagrams. Therefore, any error that the participants made while completing the visual task

was not a function of the particular visual task.
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To ensure that there was no learning effect on the participants over the set of five 

tasks for the four conditions, the number of correct answers and the standard error are 

plotted to see if there is any trend in the data plot. Figure 5.2 - Figure 5.5 show the plots 

for the number of correct answers and standard errors for low-complexity UML, high-

complexity UML, low-complexity geon and high-complexity geon diagrams respectively. 

Figure 5.2 Low complexity UML: Plot of correct answers and standard error. 
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From the plotted data, it can be inferred that no learning effect is present in the 

data as a result of the task presentation order since the lines do not show a consistent 

increase in the number of correct answers over the task order. To confirm the results 

analytically, ANOV A was done on the subjects and the task order. The results are shown 

in Table 5.1. The results confirm that there is no effect due to subject (p = 0.2758) and 

due to task order (p = 1.0000). 

Table 5.1 Statistical Results for Subject and Task Order Effect 

Subject Task Order 

F I 1.19 

I 

0.00 

p-val 0.2758 1.0000 
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5.2 Search Path

The results of research proposition 2 show the difference in search path of individuals

when using different visualizations. As expected from the results of the pilots in Section

3.2 and the related literature in Section 2.2, when solving the visual problem using geon

diagrams, over time, individuals tend to recognize multiple connected components

together leading to identifying an entire group of nodes and links as a single component.

Participants using geon diagrams look for clusters of nodes and links and then resolve to

evaluate the individual nodes and links, suggesting a whole-to-part approach. While

using UML diagrams, individuals spend more time looking for nodes as their initial

fixation points. In UML diagrams, search usually starts at one of the nodes and proceeds

according to the structure of the layout of the nodes and links indicating a part-to-whole

approach.

The total number of elements traversed is significantly more in complex

visualizations as compared to simple visualizations. One interesting observation can be

drawn from the total number of elements traversed by the participants under all the

conditions. The total number of elements traversed is not significantly different for UML

diagrams and geon diagrams for either simple or complex visualizations. This means that

the excessive number of nodes traversed in UML diagrams is balanced by the excessive

number of links and components traversed in geon diagrams. This leads to the

interpretation that while the total number of elements may not differ across different

types of visualizations, the amount and diversity of information processed in a given time

is higher in geon diagrams.
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This can lead to a couple of interesting observations and questions regarding the

use of UML and geon diagrams. Does this mean that the use of geon diagrams is

encouraging the participants to process more information to complete a task or does this

mean that the increased efficiency of processing the geon diagrams is leading to more

information processing as it is evident from Section 4.3 that the time required to complete

the task is faster in geon diagrams as compared to UML diagrams?

Another observation worth noting is the distribution of the number of nodes, links

and components traversed by the participants while using the UML and geon diagrams.

Figure 5.6 and Figure 5.7 show the graphs depicting search path distribution in UML and

geon diagrams, respectively. Figure 5.6 shows that the number of nodes traversed in

UML diagrams dominates the search path and the number of links and components

traversed in UML diagrams are much lower. For geon diagrams, as shown in Figure 5.7,

the number of nodes, links and components are comparable with the number of nodes

still higher than the number of links and components.

Both Figure 5.6 and Figure 5.7 show that the graphs for simple and complex

diagrams have similar shape for a given visualization type. The traversal graph for the

simple diagram lies completely inside the traversal graph for the complex diagram. This

shows that the ratio of nodes, links and components traversed remains the same when the

complexity of the diagram is varied. The distribution for the complex diagram can be

derived by blowing up the distribution for the simple diagrams. The factor for blowing up

is a function of the complexity of the diagram. The number of nodes, links and

components traversed is directly proportional to the complexity of the diagram, which is

an expected behavior.
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5.3 Search-Steps 

Research proposition 3 evaluates the search-steps of individuals in a visual problem-

solving task. The results of research proposition 3 show that there are difference arising 

out of the different visualizations in the search-steps of individuals in completing a visual 

task. Evaluation dominates the search-steps in geon diagrams whereas locating steps 

dominate UML diagrams. Figure 5.8 shows the distribution of Initiate, Locate, Evaluate 

and Decide steps for the simple and complex UML and geon diagrams. The distribution 

shows that for UML diagrams, there are more transitions to Locate as compared to 

Evaluate steps. For geon diagrams, there are more Evaluate steps as compared to Locate 

steps. 

Figure 5.8 
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Graph depicting search-steps in UML and geon diagrams. 
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Another observation from Figure 5.8 is that the proportion of locate steps in

simple geon diagrams is more than the proportion of locate steps in complex geon

diagrams. The proportion of locate steps in simple UML diagrams is also more than the

proportion of locate steps in complex UML diagrams. As shown in Figure 5.8, this also

means that the proportion of evaluate transition steps are more in complex diagrams as

compared to simple diagrams, which concurs with the expectation that cognitive load

increases with increasing complexity of the diagrams. These numbers are proportions and

not to be confused with actual number of locate transitions that was made by the user

while completing the task.

Since search path and search-steps together provide the process view of task

completion, combining the results from search path and search-steps provide a few other

interesting insights. As with effectiveness, a four-fold increase in complexity increases

length of search path by a factor of roughly two for all measures. Geon appears to be

associated with a more holistic approach to interpretation of the information than UML

and higher complexity may be associated with narrower focus but stronger evaluation-

suggesting that a depth-first approach to search is being undertaken for both UML and

geon when complexity is high.



CHAPTER 6

CONCLUSION AND FUTURE WORK

This chapter presents the important contribution, conclusion and the future work for the

work accomplished in this thesis.

6.1 Contribution

This research work developed a set of propositions in order to understand how

individuals worked with different visualizations in solving a visual problem. The results

confirm the propositions that efficiency and process are both a function of the

visualization characteristic. The type of visualization and its complexity are both factors

that impact the way individuals process information presented to them. The different

contributions of this research are enumerated below.

The first and most important contribution of this research is how different

visualizations lead to different ways the information is processed by individuals.

Individuals tend to focus on different pieces of information when working with different

visualizations of the same information. In other words, it can be said that individuals tend

to ignore certain pieces of information when working with a given type of visualization.

The research presents an assessment of two different types of visualization that can be

used to present the same information as node-link diagrams. When the same information

is represented using UML and geon diagrams, individuals picked up different cues to

answer the same question using the visualizations. For UML diagrams, individuals

preferred looking for nodes and interpreting the information represented in the nodes to
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solve the problem. When the same problem was presented in geon diagrams, the focus of

the individuals shifted from a node-dominant approach to an approach where they looked

for both nodes and links to look for information. Apart from that, when individuals use

geon diagrams, they were more successful in combining different nodes and links as a

group to look for information and process them to come to a solution. The results from

this research show that based on the way information is presented, individuals pick

different cues to understand and work with them.

Another contribution of this research was complementing the effectiveness

analysis derived from the results of the task with the analysis from the process of

completing the task. This research shows that analyzing the results of a task to measure

the effectiveness of the visualizations does not generate the complete picture of the

performance of different visualizations in aiding individuals to complete a visual task.

Understanding the process of completing the task provides another perspective that is

equally important in understanding the difference and challenges presented by different

visualizations. Based on the results of this research it can be said that understanding the

process that individuals use to solve a visual problem provides additional information of

performance as a function of visualization type. The process measurement is

complementary to the measures of speed and accuracy that are traditionally used to

understand performance. The outcome of this research can be used to design

visualizations that will be appropriate for information representation in a specific

application domain. The expected result of this research will aid designers and usability

experts to develop visualizations that encapsulate information aptly and presents it to the

intended users to best address their requirements.
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Another important contribution of this research is the integration of the research

areas of visual perception, visualizations of node-link diagrams, cognitive psychology

and human computer interaction to answer the research propositions. Contributions from

prior work in all these areas are integrated to answer the research propositions. This

multi-disciplinary approach is an innovative way that is untouched by prior research in

this area.

Another contribution of this research lies in the methodology of conducting the

experiments to compare the two different visualizations. In this research, the data was

collected in multiple ways during the experiment process. Firstly, the time to complete

the task was collected unobtrusively as the participants were completing the task.

Secondly, the accuracy of the task was collected for each task as whether the result was

correct or incorrect. Third, the verbalizations of the participants were transcribed and

coded in multiple ways to get the search path and search steps of the participants.

Multiple analyses helped to understand the cognitive process that individuals underwent

to complete a task. It shows that there are factors inherent in the process of solving a

visual task that can help design an appropriate visualization for a task.

The contribution of the experiment in this study is targeted towards a specific user

group. Managers of complex systems need to work with visualizations of different

systems to understand the underlying system as well as use the visualization to make

decisions about the system. The result of this research work is geared towards aiding the

work of these managers and helping to reduce their cognitive effort in visual problem

solving.
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6.2 Limitations

This research focuses on the impact of different visualization types and complexities in a

problem-solving task in the domain of interdependent critical infrastructure systems.

While the results of this research can be extended to other visualization characteristics,

task characteristics and domain characteristics, there are certain limitations that exist in

the current study Some of these limitations can emerge as future studies in this area.

Some of these limitations are listed below.

6.2.1 Applicability of UML and geon diagrams

As discussed in Section 3.1, the set of complex interdependent infrastructure systems

now go beyond physical systems. The extent and usage of information systems have

grown by leaps and bounds over the last decade and current research work on

interdependent systems now also includes information systems (Luiijf and Klaver 2004).

Since these systems do not have a physical shape and form, it is hard to depict these

systems using the conventional approach as prescribed by UML and geon diagrams.

There may be other similar instances in other application domains where UML and/or

geon diagrams cannot be used as intended by their creators. Therefore, unless an

acceptable representation technique can be recommended for the representation of these

alternate objects, the use of UML and geon diagrams will be limited in these application

areas.
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6.2.2 Comparability of UML and geon diagrams

UML diagrams are developed at a semantic level whereas geon diagrams are developed

at a structural level. This difference has been ignored in this thesis. Also, UML diagrams,

by the virtue of their layout, encourage the inclusion of textual information that can

provide additional information about the element being represented. Geon diagram does

not have provision for inclusion of textual information. In the current research, care has

been taken to ensure that only similar information is represented in both diagram types.

The effect of the restrictions of each diagram type is not a part of this study and can be

considered as a limitation.

6.2.3 Confounding Factors

This thesis focuses on the effect of different visualization types and complexities. The

diagrams in each case have been developed on prescribed guidelines. Care has been taken

to minimize effects due to external factors. However, some instances of interference may

be attributed to the following:

UML diagrams in general do not include any color. Geon diagrams on the other

hand prescribe the use of color. Earlier studies have shown that even when colors were

removed from geon diagrams, they continued to exceed effectiveness as compared to

UML diagrams. Therefore, in this current study, it has been assumed that color does not

contribute to the effectiveness that is achieved using geon diagrams. Similarly, it has

been assumed for this thesis that text size does not pose any interference when

participants are using UML diagrams.

The size of the diagrams in this experiment was limited to diagrams that can fit on

the computer screen. In real-life scenarios, it is possible to have a much larger diagram
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that individuals have to deal with. It may be argued that the same experiment diagrams of

larger dimensions may produce different results. Increasing the display size can account

for larger diagrams to be displayed without compromising the size of the individual

nodes and links. However, a major requirement of managers of critical infrastructure

systems is mobility and portability, and the effort in that direction is to reduce the screen

size. So there is size-portability balance that needs to be considered to optimize the

function of the managers in managing infrastructure systems. This aspect of defining the

diagram size is outside the scope of the current research.

Another concern that rises is the speech rate of the participants. Different users

think at different rates and they also speak at different rate. Speech rates may or may not

be indicative of the thinking-rate of the participants. Having different speech rates leads

to difference in the verbalization of the participants. The difference in the speech rate has

been accounted for in two ways. First, as a preliminary requirement, only native-English

speakers were selected to run the experiment. This ensured that the participants' thoughts

and actions were not curtailed because of their command over the spoken language.

Second, since the experiment is designed as a repeated-measures design, so each

participant acts as his own control. So any difference in verbalization would have the

same impact for each participant under all the four conditions.

6.2.4 Hawthorne Effect

Hawthorne effect is an experimental effect where individuals rend to perform better when

they are participants in an experiment. There is a possibility of having a factor of

Hawthorne effect in the current study; however, the effect should have the same bearing

under all the four conditions and the effect should be even lower because the experiment
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is designed as a repeated-measures design and each participant acts as his own control.

Therefore, while being a limitation of the current thesis, it is assumed that there is no

significant effect due to Hawthorne effect.

6.2.5 Diagram Layout

This study focused on diagrams having a Manhattan layout. As discussed in Section

2.1.4, having a Manhattan layout increases the bendiness of links in the node-link

diagrams. This in turn increases the visual complexity of the diagram (Koffka 1935).

Using non-Manhattan layout would require the use of straight or curved lines to represent

links between the nodes. Use of straight or curved links would increase the number of

edge crossing which would again increase the visual complexity of the diagram (Ware,

Purchase, Colpoys and McGill 2002). Therefore, there is a trade-off in preferring

crossovers over bendiness of path. To make the comparison between different

visualization types without adding any confounding effect due to the nature of the links,

this study focuses only on Manhattan layouts. However, it is assumed that any

complexity factor that may be introduced as a result of this layout will equally impact the

visualizations in all the conditions (for visualization type and complexity). It may be

interesting to compare the performance when the links are replaced by straight or curved

links.

6.3 Conclusion

The current research (which includes the literature review, experiment design, data

collection, processing, analysis and interpretation) has been done to understand the

impact that different visualization types and complexities have on the way individuals



139

interact with them. The research attempts to look for patterns in the thinking process of

the participants to see if the cognitive differences arising out of the visualizations can be

understood from the way individuals navigate and process the visualizations. The

research propositions extend further than just analyzing the results of the visual tasks and

attempts to understand the differences while working with different visualization types

and complexities. The results show that geon diagrams are more effective than UML, but

higher complexity degrades performance for both. The results show that two

visualizations of the same information lead to different traversal techniques and search-

steps. This implies that depending on the visualization being used, different information

cues are accessed and processed by individuals during the task completion.

The research helps to explore the details of the cognitive processing of individuals

while navigating a visual problem, the specific information accessed by them and the way

that information is used to solve the visual problem. The result of this research helps to

understand what type of information is used by individuals in different node-link

diagrams to complete different tasks. Search with geon is associated with more holistic

(i.e., breadth-first) strategies. Higher complexity pushes search with geon and UML

towards depth-first strategies. This work offers is a post-hoc, empirical justification for

the efficacy of geon diagrams in supporting problem-solving (as opposed to recognition).

It may be possible to take a similar approach during the design phase in order to improve

visualization design. For example, there is an interest in the area of management of

critical infrastructure systems that includes development of GIS models and simulations.

In managing interdependent critical infrastructures, there is a need for a broad view (like

chasing bugs in software code) and geon diagrams appears to provide a more holistic
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view of the "system of systems" (as in breadth-first search). Since complexity uniformly

degrades effectiveness and increases search effort, there is always a note of caution when

expanding the scope of the system view.

This research is not intended to provide answers to the question of which

visualization is better than the other. But rather what features of which visualization leads

to a specific individual behavior. The research aims to discover measures of impact of

visualization by going beyond objective measures of speed and accuracy of results of the

given task. It develops measures that can quantify the mental process of the participants

while completing the task rather than the results of the task.

6.4 Future Work

Possible extensions, implementations and other related work that can be done in the

future include the following. Though eye-tracking data was collected in this study, the

analyses did not include any micro-level analysis (e.g., gaze). Another study can be

designed using eye-tracking software to drill down another level of analyzing the

difference between the perceptual and the cognitive aspects of how individuals interact

with visual layout of information of interconnected elements.

This study is specifically designed to understand an individual's problem-solving

technique in a visual environment. There was no attempt to understand the impact of

different visualization types when a group of individuals worked together to solve the

problem. A different study can be designed to understand the group impact on visual

problem solving using different types of node-link diagrams.
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The research propositions developed as a part of this proposal can be extended to

integrate with the computational models of specific application domains. Any

experimental tools and procedures developed as a part of this research can be easily

extended to other fields. An extension of this research can be in the integration of the

contribution of this research with decision tools that can then be applied to other areas

like business management or operations research or emergency management. Individuals

in these areas are required to solve different types of problems and a tool that can aid

them in their decision making can boost their effectiveness in decision making. Another

area of extending the research is in visualizing ontologies. Understanding the cognitive

processing of individuals working with such problems can lead to development of

visualizations suitable for different task-domain scenarios. The results from this work can

be merged with other research that depends on development of concepts and entities in

any domain. This forms the basis for ontology. Therefore, the research results from this

work can be extended to the area of ontology development.

Further exploration of the impact of complexity on processes and outcomes need

to be understood. This study focuses on only two levels of complexity. No effort has been

made on understanding the variance of effectiveness and process at intermittent levels of

complexity. Similarly, this experiment only compares two different diagrams. It made no

attempt to connect the diagrams to a semantic level or structure of the diagram or the

theory behind the creation of the diagrams. Another future study could look into impact

of these characteristics of the diagrams to the way they are interpreted/ used.

Another extension of this work could be in the modeling of user behavior (e.g.,

agent-based systems). Programming the dynamics of different users can provide
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beneficial feedback on user behavior under different conditions. Addition of constraints

like environment dynamics is another area where this work can be extended. An example

of adding constraints could be asking the participants to complete the task under a limited

time constraint.

There are certain factors that have been ignored in this experiment. One very

important factor is the gender of the users, another being user training. Earlier studies

have shown how gender influences how individuals interact with diagrams. Then there

are studies that have shown how training can suppress some of these gender based

differences. Understanding the compounding factor of gender and training can be studied

in another study. Understanding training as a compounding factor in itself can be another

extension to this study.

User satisfaction is another factor that is not considered in this study as the focus

of this study is to understand user's behavior in interacting to the information presented

in a given visualization. While users behave in a certain way in this study, their levels of

satisfaction may depend on various other factors like the system they currently use, the

level of control they prefer having over the tool and the flexibility of the widgets that

make up the tools. User satisfaction is one of the top factors impacting usage of current

systems as well as intention of using new systems. User satisfaction can be another area

of investigation in future studies.



APPENDIX A 

EXPERIMENT MATERIALS USED IN THE RESEARCH 

Figure A.I to A.54 show the slides that were used in the experimentation. 

Session Overview 

Madhavi Chakrabarty 

Figure A.l Slide 1: Introduction to participants. 
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Overview 

• Task: identify elements of a visualization 

["""" 

[
S""~ 

"'.ry tltll"'~ 

2 

Figure A.2 Slide 2: Overview of experiment. 

Consent form 
\-------

3 

Figure A.3 Slide 3: Explanation and signing the consent form. 



Pre-task questionnaire 

4 

Figure A.4 Slide 4: Pre-task questionnaire. 

Thinking aloud 

• Think aloud while you are doing the 
task 

• Say everything that you are thinking 
• Imagine you are alone in the room 

and speaking to yourself 

Figure A.5 Slide 5: Tutorial on thinking aloud. 

5 
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Practice tasks 

How many rooms are there in your home? 

Where's Waldo? 

Figure A.6 Slide 6: Practice tasks for thinking aloud. 

!1 

6 

Figure A.7 Slide 7: Practice tasks for thinking aloud picture to find Waldo. 
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Visualizations 

Figure A.S Slide 8: Start of tutorial for complex systems. 

I nformation visualization 
Two visualizations that show the same 

information. Here is an example 

UML 

Residential Area 

-Location 1 

Geon 

---- ---- - -------------, 
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9 

Figure A.9 Slide 9: Tutorial for visualizations of residential area. 



I nformation visualization 

UML 

SubwayStation 

-Location5 

Telephone Central Office 

-Location1 

Geon 

148 

10 

Figure A.I0 Slide 10: Tutorial for visualizations of subway station and telephone central 
office. 

Information visualization 

UML 

Electric substation 

-Location1 

Financial Organization 

-Location 1 

Geon 

11 

Figure A.ll Slide 11: Tutorial for visualizations of electric substation and financial 
organization. 



I nformation visual ization 

UML 

Stock Exchange 

-Location1 

Geon 

---

Figure A.12 Slide 12: Tutorial for visualizations of stock exchange. 

Recognize the following 

Telephone Central Office 

-Location1 

Geon - Subway 

U M L - Telephone 
office 

Geon - electric 
substation 

149 

12 

13 

Figure A.13 Slide 13: Practice tasks to test participants' understanding of complex 
systems. 



Recognize the following 

Financial Organization 

-Location1 
UML - Financial 
organization 

Geon - Stock 
exchange 
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14 

Figure A.14 Slide 14: Practice tasks to test participants' understanding of complex 
systems (continued.) 

Interdependencies 

15 

Figure A.lS Slide 15: Start of tutorial for interdependencies. 



Input 

occurs when output of one infrastructure is an 
input to another. 

Electric substation SubwayStation 

-Location2 _____________________ • -Location3 

Figure A.16 Slide 16: Tutorial for visualizations of input interdependency. 

Mutually dependent 

occurs when at least one activity of each 
infrastructure is dependent upon the other 

Electric substation Telephone Central Office 

-Location1 -Location2 

Figure A.17 Slide 17: Tutorial for visualizations of mutually dependent. 
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Shared 

occurs when at least one physical component 
or activity of two or more infrastructures are 
shared. 

Electric substation Electric substation 
-Location1 -Location2 

Figure A.lS Slide 18: Tutorial for visualizations of shared interdependency. 

Co-located 

occurs when components of two or more 
systems are in the same geographical region 

18 

SubwayStation Residential Area 
-Location1 -Location1 

Figure A.19 Slide 19: Tutorial for visualizations of co-located interdependency. 
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Recognize the following 

SubwayStation Financial Organization 

-Location1 -Location1 

20 

Figure A.20 Slide 20: Practice tasks to test participants' understanding of 
interdependencies. 

Examples 

21 

Figure A.21 Slide 21: Start of practice problem-solving tasks. 



Point the nodes impacted when 
the shown interdependency is 

removed? 

Figure A.22 Slide 22: Problem-solving task definition. 

22 
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Subway Slation 
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Figure A.23 Slide 23: Candidate visualization in simple UML for practice task. 
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Figure A.24 Slide 24: Candidate visualization in simple UML for practice task. 
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Figure A.25 Slide 25: Candidate visualization in simple UML for practice task. 
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Figure A.26 Slide 26: Candidate visualization in simple geon for practice task. 

27 

Figure A.27 Slide 27: Candidate visualization in simple geon for practice task. 



--- - ------ --------------, 

Figure A.28 Slide 28: Candidate visualization in simple geon for practice task. 
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Figure A.29 Slide 29: Candidate visualization in complex UML for practice task. 
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Figure A.30 Slide 30: Candidate visualization in complex UML for practice task. 

Figure A.31 Slide 31: Candidate visualization in complex geon for practice task. 
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Figure A.32 Slide 32: Candidate visualization in complex geon for practice task. 

Study tasks 

You will now be shown 20 
diagrams and asked to complete 
the same task. 

Point the nodes impacted when 
the shown interdependency is 
removed? 

Please talk aloud 

Figure A.33 Slide 33: Overview of experimental task. 
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Figure A.34 Slide 34: Candidate visualization in simple UML for experiment. 
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Figure A.35 Slide 35: Candidate visualization in simple UML for experiment. 
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Figure A.36 Slide 36: Candidate visualization in simple UML for experiment. 

AlISkientiBIArea 

·locatlon 1 

• 
• 
• 

AesldOfilialArea 

·Location2 

ResldantialAlea 

·Locatlon3 

1 • 
1 • 
1 • 

: ____ _____________ ~T~"""""~~,,,,~,~.o~'~"3- ________ ______ __ : 
Electric SUbstation l 
-Location t 

1- - - - - - - -Location 2 

1 

• 
• 1 

• 

36 
36 

34 
37 

Figure A.37 Slide 37: Candidate visualization in simple UML for experiment. 
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Figure A.38 Slide 38: Candidate visualization in simple UML for experiment. 
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Figure A.39 Slide 39: Candidate visualization in simple geon for experiment. 
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Figure A.40 Slide 40: Candidate visualization in simple geon for experiment. 
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Figure A.41 Slide 41: Candidate visualization in simple geon for experiment. 
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Figure A.42 Slide 42: Candidate visualization in simple geon for experiment. 
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Figure A.43 Slide 43: Candidate visualization in simple geon for experiment. 
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Figure A.49 Slide 49: Candidate visualization in complex geon for experiment. 
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Figure A.SO Slide 50: Candidate visualization in complex geon for experiment. 
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Figure A.Sl Slide 51: Candidate visualization in complex geon for experiment. 
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Figure A.52 Slide 52: Candidate visualization in complex geon for experiment. 
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Figure A.53 Slide53: Candidate visualization in complex geon for experiment. 
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Thank you!

Figure A.54 Slide 54: Thanking the participant and debriefing.



APPENDIX B

CONSENT FORM

NEW YEASEY INSTITUTE or TECHNOLOGY
323 &CART MS! Lurt-nat min es..vb.
xEmeARK, 071D2,

CONSlarr TO SIAP:nelPATE IN'.A 'RI 	 .{H STUIDY 

TITLE oF STLyirlin Lialisuraidzsg cagruári difissumonisi,zabtimgal peuSillmo lam infrusnagiusaily
aqsrralrnt 3s vinufly•Mignon orpniunnincru

REEF-ARCH EMMY:
gw	 , have bony setarti tutisicirox in a

reacatrk nutty untler the Aiarriacin off Da. nava Mentionça. Carr ranfiasannal ictunia who

wurk. 419.41 	 Az 	 wall* away maid. co aw:x fur Win,

"rior purrnac of den illuky- as be Baas taharritsbahos of kturitm pro&rhan saki% =nag voarsua

criamscatiniosti.

DURATION1
My Fararivaturre is lima unsxly , vral last fur. 30 ruinous.

333133CEE3CIRES:
I furor Ifirsi Intl thin, luring  Jac Qom= alarm ana..4y, the Itillowiag m arr.ian

3 will 6c alku wri two r4itirscro visual. mint:m-111=10m far rite.t aimac act of 'art-um= anti dirk

cartimoustairm and OVCII a Jim& rouripliana- The bosh wilt be b.r LOA Farr a asst cif clernerna am tic

givna vintal arprcacnastinri- .dui I am rciwiliktisig asst tails,. 1 will Law 1,=. Trak aanuil Avant the
articala I mica to rumple= clic lintel will 6c, indro Arra gartiirr capack mu cr.nuriccc Ithe awilt. The tank

wall take ■tmout SO inisrabra to cumertir.

I
PART10EPANTS:

grill be um a Aunt SD TuntirTants in this

You. WWI. be 1 Tcara age: ur carter and rzattivrritr EaaK1ah w phaticwatc. TOM afro =Qat tic Ante

co rasa atm in& ennuis= farcsertaxl 011 aim =tam Nazar kat ike ircatarcluza know iwarnctliaarly if you

An not saucer tin= criccais.

;Lima it) ISCO frIFORTS:
ThearrE max kc risks and ilincl:nufurne clot are nor irct known.

I fully nctugni:Er clot dicer anc titian ghat I away be capnaral tar Icy voluatorairtz in atria ■uni,y adluich

gerr inherent it parkiripatinx in any muscly; I unarcataria Aian I am not coward 373•411rs iinsucanoc

policy fur any ialunf Lir loam I 'night wastain orc iris amnia of Tiarticiparing in. air Ban*.

N	 I

Appnaftwd by 	 itar ill II its. 5,,i torl.
moortomiteut mars not bomb:lb ha Me baishari loan withaui 	 Hit ApprawaiL

171



172

ODNIFItENTIALETV:
1 =Arnim-hi , :ncla-zzial to -nzt Ast :arisc at arturryinalit Cumli4=riai =rant iltii, my =Jam will
tint lir Ain1ii,iil iit:!Atir rtimt a .lin-t=rinril listiain hrtwern my il,....nitity atid =y rt.:Ft:mei at
rtvrvilrA'C.., ihr rtarara rro..-c Als. ETry rffact .iinj lir twit to nusintain mkt cctillilriiiiility ci=y
mitnly rcoarit. lithc lit iutga k:= t.....,r sin* .art knitj.thlic,i, f -A-d, ii tic ulriitäiril hy num. My
airlines 'ILI r=xn inn11:1=.tiil intim lin Inturc is reluiril ly law.

11,52GOTAIFINGIALKIDIOT ARSIG::
1 iJrnlii1d dui I will hr "Jr Jc..1 ainliz. trt!Ll Icing t.27.e 1.121.Ele	 116 iltintr. 1Witit:1 =AI 111111116:

r.17%, Will 4.--C: MUM al CDC 2 :rum air= ihr end cititit 1ir:rLt (3 I.. :::tiritsha 2:117). Afirt dist t.r,
eV' Latrien willlit rraitil lii rr&ngT ?:rrJrJ sea r'..i.11 ii.

'rl•t raga will 	 smud in a 1,..-4..krd .ulf....r at Nizr area vr.it int 1-ic =ailr at-iambic in anyene tat rFit
:).viil Mr:-..eitnica and 1`..ladiurri l'rt Claktaliarry mix, arc .....tiltril in 'kit rcirarc-:.:

31AYMN FOR rA117. :CIPAT1QN
1 krot kwen it:lA that:: wi...'. rrccivc =.1: tufty rutinin= kw ini , itcn.:1Fatual in ant auall.

RICK!: TO REFISE OR.VMHDRAW:
:Itc,Arratasill that iny partirieniri= us wril.z.ntaity and I may Tatum itirrtictparx, ur ntay ilirsocciustic

t
my partixatt' 1= at sw.if Itisnt WL nu allit-nir cctiaciptucc. Ishii unAczatirvii that ilic k•--ecitigainr
Ii tlis ai i to WL3..air1tIrair rz.z. Elm clic 	 iystudy at n..r.

Ntit-vmum. TO co.t.trtAcr,
III 6,0, ..9, quati,,,, Aunt my irelilillnt ZCI: rtstarch inuctilintar 2 unilcraintil that I alma,
retitail thy Fti-rtpal. isitzttipitur larrA s‘frntionkii at:

ininrmaittni Syn=a I. 	 iri2TC 4 lilii
Cuilz7 n1Clinuizig Sarin=
Ncw Jenny fnatiiutt Ili Tccinnlogy
313 Martin Lutlicr Kus;, it. 11:v4ii
Nrn-arlsr l'-',7 aTioz
itunir: 973 5% 5 71'
Entail' ristnilunc.agittitc447

iii ;taw in-f alin izrziL-cis alurLt my rights alai rezwarcl rut a, : may .inn= i.f..

:NATtli Hall litmr, rid). IRI Chair
t..lcw :friary Enetnutt el TtArtulugy
311 Martin Luthrr King auulchnil
Ntwack, l*-7.= 0701
(973)641-7616
flawitivg.viiin.jit.riln

l'4, Ill

Jilppriamadtqin*Ilift III W115.110317

Atomic-dim mar nal barrow...to was coaraipoi ham Pdaillati 111.111 III applinsit



173



APPENDIX C

BACKGROUND QUESTIONNAIRE FOR PARTICIPANTS

Email id:
Date: 	

BACKGROUND QUESTIONNAIRE

Demographic:

1) Your gender:
Male
Female

2) Your age:
_16-25
_26-35

36-45
46-55
56 and Over

3) Current degree program:
_Undergraduate

Master
Ph.D.
Post Graduate

4) Your major: 	

5) English language proficiency
native English speaker
non-native English speaker
English as second language

6) Your expertise in using UML (Unified Modeling Language) design
Use extensively
Have used at least once
Had a course which included it
Have some idea about it
	 No clue

7) Number of Computers at Home:
None
One
Two or more

Thank You Very Much! ©
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APPENDIX D

INSTRUCTIONS FOR CODERS TO CODE PARTICIPANT VERBALIZATION

D.1 Coding the Protocols for Search Path

For each transcript, start reading at the beginning. As you read the text, for each

quotation,

➢If there is a reference to a node like residential areas, subway station, electric

substation, telephone central office, financial organization, stock market, code it

as N

➢If there is a reference to a link like shared, input, mutually dependent, co-located or

connection, code it as L.

➢If there is a reference to a group of nodes and links like (this whole cluster, this set of

elements, the whole diagram, this area, these two, these three , all these etc), code

it as S

If you have any notes or comments for any quotation, make a note of it for

discussing during our next meeting. Hand over the transcript(s) and the coding back to

the investigator after completing the task.

Thank you!
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D.2 Coding the Protocols for Search-Steps

For each transcript, start reading at the beginning. As you read the text, for each

quotation, code it as follows:

A Initiate (I) — If a segment has an opening phrase like "The visualization ...", or

pointing at a part of the display screen and/or starting a new problem with "This

diagram...", then it is coded as initiate. This is usually the introductory statement

made by the participant during the experiment.

A Locate (L) — If a segment includes phrases like — "this is", "I can see", then it is

coded as locate. Participants use key words like "this", these elements here" "this

area" or other demonstrative pronouns, when they are trying to locate a node or

substructure for evaluation. These fragments signify that the participant is looking for

particular nodes in the problem visualization. In the experimental setup, the participant

could be locating a node, a link, a substructure or the whole search substructure.

➢ Evaluate (E) — If a segment includes a phrase like "because of", "Is this the one", it is

coded as evaluate. Sometimes, participants use phrase like "This is different" to

denote their evaluation of a node or link in the problem visualization. The participant

may evaluate a node, a link connected to the node, a set of nodes and links or the

substructure as a whole.

A Decide (D) — If a segment includes a phrase like "this is affected", "this is not

affected", "yes, I have completed" or "this is it", it is coded as decide. If the

participant does not say anything explicitly, then the end of the task marks the end of

the search-steps. This action specifies that the participant has made the final decision
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regarding the visual problem and is ready to proceed to the next task or end the

experiment as the case may be.

➢ Clarify (C) — There may be sections of participants' verbalization where the

participant is either asking for a clarification from the experimenter or is trying to

figure out the working of the computer or mouse. These segments of the verbalization

are coded as clarify. These segments are coded during the coding process but not used

for analyzing the participants' search-steps.

After reading the complete text, the complete protocol must now be annotated

with one of I, L, E, D or C. Verify that no portion of the text is left out. Enter any

comment or notes in column 3. After the coding is complete, hand over the transcript(s)

and the coding to the investigator.

Thank you for your effort.



APPENDIX E

MARKOV PROCESS GRAPHS OF SEARCH STEPS

Figures E.1 to E.4 show the graphs of the Markov process transformations for simple and

complex UML and geon diagrams.

Figure E.1 Normalized transition for search-steps in simple UML diagrams.
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Figure E.2 Normalized transition for search-steps in complex UML diagrams.

Figure E.3 Normalized transition for search-steps in simple geon diagrams.



Figure E.4 Normalized transition for search-steps in complex geon diagrams.
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