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INTERACTION OF VOLUNTARY ACTIVITY AND FUNCTIONAL 
ELECTRICAL STIMULATION IN THE UPPER EXTREMITY AS A METHOD 
FOR SHORT-TERM ALTERATION OF CORTICOSPINAL EXCITABILITY 

AND FORCE CONTROL  
 

by 
Katherine Maia Gerton 

Repetitive movement training (RMT) is a well-established method for rehabilitating 

functional movement. However, many stroke survivors are not able to participate in RMT 

for the necessary duration to produce results due to rapid muscle fatigue or inability to 

perform the desired movement at all. Often, functional electrical stimulation (FES) is 

applied passively, as a rehabilitative therapy, to stroke subjects who are unable to 

participate in RMT. The effects of voluntary contraction and FES are not well understood 

for the upper extremity following a stroke. This experiment was designed to elucidate the 

mechanisms of functional and neurophysiological changes associated with combining 

FES and voluntary movement vs. the effects of each intervention alone in healthy 

subjects, with a within-subjects single day design.  

Eleven right-handed, neurologically healthy subjects participated in a series of 

three experimental sessions. The testing conditions were voluntary movement alone 

(VOL), functional electrical stimulation alone (FES), and voluntary movement 

supplemented by functional electrical stimulation (VOL+FES). Subjects were evaluated 

for changes in maximum force and force control before and after each session. 

Corticospinal excitability was evaluated using transcranial magnetic stimulation (TMS) at 

five time points throughout each session. There were no significant changes pre-post or 

between conditions for the maximum force or the force control. FES alone was found to 

immediately and significantly reduce corticospinal excitability; that reduction continued 



	

through the post measurement. Both VOL and VOL+FES increased corticospinal 

excitability pre-post, although not significantly. At the post measurement, both VOL and 

VOL+FES were significantly larger than FES, although not different from each other. 

These results indicate that adding voluntary movement to functional electrical stimulation 

may serve to increase corticospinal excitability while allowing the subject to participate 

in meaningful rehabilitative movements.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 The Problem: Stroke Induced Hemiplegia of the Upper Extremity 

Stroke is the third leading cause of death and the leading cause of long-term disability in 

the United States, costing over $33 billion each year in health care and lost productivity 

[1]. In the U.S. someone experiences a stroke every 40 seconds [1] however, with 

improved acute care and post-stroke treatment, stroke survivors are living longer while 

still experiencing the functional disabilities that accompany a stroke. 8 out of 10 stroke 

survivors experience hemiplegia, the partial to full loss of control over voluntary muscles 

on one half of the body [2].  While 90% of stroke survivors regain the ability to walk [3], 

only 50% will regain functional arm use and fewer than 20% will achieve good arm and 

hand recovery [4]. 

Most recovery of motor function post-stroke occurs spontaneously during the 

acute stage, up to 6 months after the event [5]. The level of potential recovery for stroke 

survivors scales directly with the severity of the stroke [5]. However, even during the 

chronic stage, significant gains in functional outcomes can be made through rehabilitative 

therapy [6]. 

Upper extremity hemiplegia is the most common cause of post-stroke disability 

[7] and those who are more severely impaired immediately following stroke have a lower 

potential for recovery [8]. The affected arm commonly develops a flexion synergy, with 

the elbow flexed and the fingers closed into a fist [9]. Patients may recover to a point 

where they can generate movements outside of the flexion synergy however, the synergy 
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and muscle spasticity are significant barriers to producing functional movements [10].  

Breaking the flexion synergy in order to produce isolated, volitional movements to open 

the hand is critical to rehabilitation of unaided reach-and-grab movements necessary for 

activities of daily living. 

Following a stroke, the upper limb is difficult to rehabilitate. One of the sources 

of this difficulty is the complexity of function of the upper limb. The arm and hand work 

together to function as a mover, stabilizer, and manipulator to perform daily tasks [11]. 

This complexity of function is possible because of the multitude of small, specific, 

overlapping muscles of the forearm and hand (Figure 1.1). This physiological 

organization makes targeting a specific muscle for rehabilitation difficult and the small 

size of the muscles means that they fatigue rapidly. Because of this complexity one type 

of movement or one type of therapy is not sufficient to restore natural movement in all of 

these tasks. Most upper extremity stroke rehabilitation focuses on retraining the proximal 

arm muscles as opposed to training hand movements. Training the hand is a much more 

difficult task than retraining the proximal arm and has a substantially greater impact on 

improvement of function.  
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Figure 1.1 Muscles of the posterior forearm. 
Source: [12] 

1.2 Functional Outcomes of Repetitive Movement Training and Functional 
Electrical Stimulation in Current Clinical Practice 

 
Many stroke patients are unable to perform activities of daily living due to restricted arm 

movement.  Current US health care models prioritize skills for independence and stroke 

survivors with severe hand impairment are often to trained to use compensatory 

movement, performing tasks with their unaffected limb alone [6].  Any occupational 

therapy that is implemented rarely causes functional improvements in the ability to 

perform reach and grasp tasks. This frequently leads to patterns of no-use in the affected 

limb, characterized by muscle atrophy and increased muscle spasticity [6], making 

therapies more difficult to implement and any further improvement less likely. 
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The most pervasive and effective form of rehabilitation therapy is repetitive 

movement training (RMT). RMT of skilled movements focused on consistently and 

efficiently achieving a specific goal [13] has been proven to induce long-term functional 

improvement in arm and hand use [14]–[16]. A two-week course of RMT can induce 

functional improvements that last for a year [17]. However, many stroke patients are 

unable to participate in RMT because they do not have the level of motor function to 

complete the task effectively, or may fatigue too rapidly to participate for the duration 

required to cause lasting improvement.  

When subjects are excluded from RMT, functional electrical stimulation (FES) 

can be applied to rehabilitate hand and arm function [18]. Muscle spasticity, the muscle’s 

resistance to passive stretching, is generally worse when a spastic muscle is voluntarily 

contracted; in stroke subjects, voluntary effort toward a movement can increase muscle 

spasticity and bring the subject further into the flexion synergy [19]–[22]. FES has been 

clinically proven to cause physiological improvements in muscle behavior by reducing 

muscle spasticity [23]. However, the evidence that FES therapy alone can improve 

functional arm use after stroke is limited and contradictory [24].  

The failure of FES to produce lasting improvements in function, like the 

improvements seen from RMT, arises from several factors, the first of which is that FES 

is typically applied to the patient at rest [25]–[30]. When the subject is passively resting, 

FES is treated as a purely sensory phenomenon; the stimulation is not integrated into part 

of the central motor drive or the motor plan [31], [32]. When the motor cortex is not 

engaged in sending the commands to move, FES correlates only to an increase in muscle 

strength without an accompanying improvement in function [30], [33]–[35]. 
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Additionally, while voluntary contraction is more fatiguing than FES at the 

cardiovascular and nervous system levels, FES therapy is more fatiguing at the ATP 

consumption level due to unnatural recruitment of muscle fibers [36].  

 

1.3 Influence of Repetitive Movement Training and Functional Electrical 
Stimulation on Corticospinal Excitability 

 
Transcranial magnetic stimulation (TMS) can be used to non-invasively quantify 

corticospinal tract integrity by measuring changes in amplitude, referred to as 

corticospinal excitability, and latency, the length of time required for the descending 

volley to travel from the cortex to the target muscle, of the evoked contralateral muscle 

contraction, known as a motor evoked potential (MEP). TMS depolarizes the cortex by 

transmitting an electric field through the scalp and skull. This creates a descending volley 

of action potentials that travels down the corticospinal tracts and generates a measureable 

response from the target muscle [37] (Figure 1.2).. MEP amplitude represents the 

strength of the corticospinal pathway between the cortex and the target muscle [38]. 

MEPs can be used to evaluate the neurological effect of rehabilitative therapy in that an 

increase in MEP amplitude following therapy indicates a stronger connection between the 

brain and muscle while a decrease in amplitude indicates the reverse.  

 

Figure 1.2 Muscle MEP response to cortex stimulation using TMS. 
Source: [37] 
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TMS outcome measures after stroke vary with the stage of recovery and the 

degree of motor function [39]. Due to the damage to cortical motor neurons, stroke 

patients generally have reduced MEP amplitudes and longer latencies than healthy 

subjects [40]–[42]. When rehabilitating movement following a stroke, increasing 

corticospinal connections between the damaged cortex and the muscles is key to 

functional recovery.  

Repetitive movement training has been consistently shown to increase the 

corticospinal excitability of the trained muscles (Figure 1.3) [43]. A study by Classen 

[44] found that repetitive training of a muscle can transiently reorganize the cortex, 

giving more cortical space to the representation of the practiced movement. Subsequent 

studies of repetitive movement in the tibialis anterior in the leg [45]–[48] and many 

muscles of the arm and hand [49]–[51] have shown consistent and significant increases in 

corticospinal excitability following 20 to 60 minutes of repetitive movement. 

 

Figure 1.3 A standard TMS experimental setup, recording motor evoked potentials from 
the muscles of the arm and providing visual feedback of the participant’s movement on 
the screen. 
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The effects of FES on corticospinal excitability in the upper extremity are less 

consistent. Corticospinal behavior of arm rehabilitation differs depending on whether the 

peripheral stimulation is applied over the nerve or over the muscle belly and whether the 

muscles targeted are flexors or extensors. A study by Mang [52] provided electrical 

stimulation over the median nerve for 40 minutes and recorded significant increases in 

the MEP amplitude of the abductor pollicis brevis (APB). Another study by Yamaguchi 

[50] stimulated the median nerve and found significant increases in MEP amplitude of 

the wrist flexors, but a decrease in MEP amplitude of the wrist extensors.  Even in studies 

where the FES is applied over the muscle to target flexion, the results are inconsistent. 

McGie [53] stimulated the muscle belly of the APB and found a decrease in excitability 

as a result of FES and also found a decrease in excitability as a result of voluntary 

movement. These results contradict the results of Andrews [54] who also stimulated the 

muscle belly of the APB but found increases in corticospinal excitability after 20, 40, or 

60 minutes of stimulation but a decrease in peripheral excitability. In another study, Barsi 

[55] trained flexion and extension in a grasping exercise using FES over the muscles but 

only measured corticospinal excitability over the flexor digitorum profundus (FDP) and 

found FES to cause an increase in corticospinal excitability while voluntary movement 

caused a decrease. 

While the majority of studies into corticospinal excitability as a result of hand and 

arm therapy focus on the muscles responsible for flexion, flexion is not the problem in 

stroke. Stroke patients need to be rehabilitated out of the strong flexion synergy and into 

control over extension of the hand and arm. The ulnar nerve is difficult to stimulate using 

surface electrodes and, therefore, most FES for finger and wrist extension is applied over 
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the motor point of the extensor carpi radialis (ECR) or the extensor digitorum communis 

(EDC). There have been limited studies on the corticospinal excitability effects of FES 

based therapy for hand and arm extension. Taylor [49], when studying the ECR, found 

FES to decrease the corticospinal excitability while voluntary movement increased it. 

These limited results, coupled with the contradictory results in the flexor muscles make 

determining the most effective therapy difficult. 

 

Figure 1.4 Schematic of peripheral and central pathways. Motor units are recruited by 
the electrically evoked motor and sensory volleys initiated by depolarisation of axons 
beneath the stimulating electrodes. The contribution from the evoked sensory volley is 
limited by antidromic transmission in motor axons at high stimulation amplitudes 
(adapted from Collins 2007). 
Source: [56] 
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1.4 Previous Attempts to Combine RMT and FES: Effects on Functional and 
Neurophysiological Outcomes 

 
Combining voluntary activity with FES, such that the stimulation is triggered by 

activation of the target muscle, has been associated with functional improvements in 

addition to increases in muscle strength [57]. Most of the research into this combined 

treatment paradigm has been focused on correcting foot-drop in the chronic stroke 

population [45], [47], [58], [59]. Foot drop is a result of muscle weakness coupled with 

abnormal timing of muscle contraction throughout the gait cycle [60], that results in an 

inability to dorsiflex the ankle during ambulation. Functional electrical stimulation to 

correct foot-drop is most often applied to the common peroneal nerve, but can be applied 

to the tibialis anterior (TA) directly. Results of voluntarily triggered FES for 

rehabilitation of foot-drop, regardless of stimulation location, parameters, or duration 

consistently show increases in MEP amplitude for the TA [61], [62], which imply greater 

cortical control over those muscles. That increase in control manifests in consistent 

reports of functional improvements in gait [63], [64]. 

For voluntarily triggered FES (VOL+FES), the mechanisms that control muscles 

of the arm are different than the mechanisms that control the muscles of the leg, but the 

effects on corticospinal excitability are similar. Studies investigating corticospinal 

excitability as a result of combining voluntary activity and functional electrical 

stimulation in the upper extremity have begun to show that the combined training 

paradigm can cause increases in corticospinal excitability. These studies indicate 

increases in excitability regardless of whether the stimulation was applied over the 

muscle [49], [53], [55] or the nerve [50], [52] or was targeting flexion or extension. 

However, these results are limited by the small number of studies investigating the 
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combined protocol, by the wide variety of stimulation parameters, and varying treatment 

dosage between studies.  

 

1.5 Study Significance 

Functional outcomes of rehabilitation protocols involving FES are inconsistent for upper 

limb rehabilitation and, for the same treatment protocol in the upper and lower extremity, 

improvements are less pronounced in the upper extremity [65]. Additionally, the target-

specific effect on hand muscles as opposed to the global effect on leg muscles [66], can 

make effectively rehabilitating the complete upper extremity difficult. 

Current clinical therapies favor training proximal arm function and current 

research into more effective wrist and hand therapies have focused on the muscles 

responsible for flexion. These strategies have limited ability to cause improvements in the 

patient’s ability to produce fractionated hand movement and engage in the activities of 

daily living. Determining and implementing the optimal strategy for breaking the flexion 

synergy and being able to voluntarily elicit finger and wrist extension are much more 

significant in being able to independently perform tasks. 

Therapy involving the combination of FES and voluntary activity may increase 

participation for patients who are unable to participate in traditional rehabilitation 

paradigms. This study represents the first systematic investigation of functional and 

neurophysiological outcomes of voluntary activation and FES based therapy for finger 

extension. Results of this investigation will enhance our understanding of the effects of 

FES pulse width on stimulation of the finger extensors.  
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1.4.1 Study Aims and Hypotheses 

To maximize upper extremity rehabilitation outcomes we need to understand the 

underlying physiology and mechanisms of corticospinal excitability changes and 

physiological changes that are present following a long-term rehabilitation protocol. 

We intend to elucidate the mechanisms of functional changes, which are normally 

seen over weeks of physical therapy, by evaluating each training paradigm in a single day 

within-subjects experimental design. Perez [67] showed that active involvement skilled 

task performance increases corticospinal excitability more compared to non-skillful 

training or the passive training of FES therapy alone. We hypothesize that the 

combination of FES and voluntary activity in a rehabilitation protocol will cause the 

greatest increase in MEP amplitude, a measure of corticospinal excitability, and also 

cause the greatest improvement in functional behavior, measured by fatigue and force 

control. 

Study Aim 1: To test the interaction between voluntary contraction and 

functional electrical stimulation on corticospinal excitability in the upper extremity. 

Voluntary drive has been shown to have a consistently excitatory effect on the portion of 

the primary motor cortex (M1) responsible for controlling that movement; the effects of 

FES on M1 excitability are less consistent across muscle groups. When FES accompanies 

voluntary drive, the stimulation is no longer treated only as a sensory phenomenon; 

instead, it is incorporated into the motor command. We will measure M1 excitability at 

five time points throughout each paradigm as well as collect motor recruitment curves 

before and after the session to determine how excitability changes, over time, in response 



12 

to each paradigm. We predict that the combination of FES and voluntary contraction will 

increase corticospinal excitability more than either training alone.   

Study Aim 2: To test the effect of the interaction between voluntary contraction 

and functional electrical stimulation on force control and motor fatigue in the upper 

extremity. FES is known to induce motor fatigue due to the unnatural recruitment of 

muscle fibers; accompanying FES with voluntary movement should induce more fatigue 

than either protocol alone. However, the benefit of producing the correct movement, due 

to the influence of the FES, should produce the most improvement in functional 

outcomes. We predict that the combination of FES and voluntary contraction will 

increase force control more than either paradigm alone while inducing the most motor 

fatigue.  

Study Aim 3: To compare the effects of narrow pulse-width electrical stimulation 

(200µs) to the effects of a wide pulse-width electrical stimulation (2ms) on corticospinal 

excitability in the upper extremity. Several studies have investigated the effect of 

stimulation frequency on corticospinal excitability and there has been limited 

investigation into the effect of pulse width on functional measures. However, no studies 

to date have investigated the effect of altering the pulse width of electrical stimulation on 

corticospinal excitability in the upper extremity. We predict that altering the pulse width 

of the electrical stimulation will have no significant effect on corticospinal excitability for 

each experimental paradigm. 
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CHAPTER 2 

METHODOLOGY 

 

2.1 Experimental Set-Up 

2.1.1 Participants 

Eleven able-bodied participants (5 men and 6 women) completed all 3 experimental 

sessions. Participants were 23.7 ± 4.9 years of age.  Participant demographics are listed in 

Table 2.1. All participants provided written, informed consent to participate in this study. 

A medical history and health screening was conducted prior to enrollment to ensure that 

the subjects had no neurological impairments, were not taking medications known to 

influence neurological function, and had no other contraindications for TMS (Appendix) 

[68]. All participants self-identified as right-handed and performed all training sessions 

with their right hand. 

Table 2.1 Participant Demographics for each Experiment 

Subject ID Gender Age Experiment 
Part 1 

Experiment 
Part 2 

1 F 24 X X 
2 M 23 X  
3 M 34 X X 
4 F 30 X X 
5 M 19 X  
6 M 24 X  
7 F 19 X  
8 F 19 X  
9 M 21 X  
10 F 24 X  
11 F 23 X  
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2.1.2 Experimental Set-Up 

Each of the three experimental conditions, voluntary movement alone (VOL), functional 

electrical stimulation alone (FES), and voluntary movement supplemented by electrical 

stimulation (VOL+FES), was conducted in the same way, using the same experimental 

procedures. Conditions were separated by a minimum of 48 hours to ensure washout of 

the effects of the previous condition. Conditions were presented in a randomized order to 

each participant. 

Participants were seated comfortably facing a computer screen. During testing, 

the right shoulder was abducted approximately 30 degrees, and the right elbow was 

flexed approximately 90 degrees, with the arm and hand rotated such that the right pinky 

rested on the armrest (Figure 1.3). The left arm was in the same position as the right. 

Each intervention consisted of four 5-minute blocks of training, separated by 2 

minutes of rest (Figure 2.1). Each block of training was 30 cycles of 5 seconds of 

activation, followed by 5 seconds of rest. During each 2-minute block of rest, 15 resting 

MEPs were collected. The training protocol was consistent across interventions and 

across subjects. 

For all conditions, visual cues were presented on a computer monitor, instructing 

the subject when to contract and when to relax. The visual cue to contract was 

accompanied by an audible ‘beep’ to reduce the chance of the subject missing the cue. 

Feedback of the subject’s EMG activity was provided on the screen, with a large dot 

representing the level of activation. The target activation range was bounded by dashed 

lines and the dot changed colors from blue to green when the subject was activating 

within the target range. 
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Figure 2.1 Timeline of the training protocol. This figure represents the four cycles of 
training, shown in Figure 2.3. 
 
 
2.1.3.2 Motor Evoked Potentials  Before the training began, the subject’s motor hot-

spot and resting motor threshold (RMT) were determined. MEPs were elicited with a 

Magstim Rapid2 magnetic stimulator with a 70mm, figure eight coil (Magstim, 

Morrisville, NC). All MEPs were recorded from the EDC during TMS of the motor 

cortex.  

To detect the motor hot-spot of the subject’s EDC, the coil was held tangentially 

to the skull with the handle pointing backward and laterally at a 45° angle to the sagittal 

plane [69] over the approximate location of the hand area of the motor cortex. The 

optimal stimulus site was determined as the site where TMS, at a suprathreshold 

intensity, consistently produced the largest MEPs. The BrainSight navigation software 

(Rogue Research Inc., Cardiff, UK) was used to visualize the brain and virtually mark the 

location of the hot-spot for all TMS measures throughout the experiment. The hot-spot 

was located and verified at the beginning of each day of intervention. 

Resting motor threshold (RMT) was defined as the minimum stimulus intensity 

that elicited >3 MEPs of >50µV in 6 consecutive trials [70]. This level was determined 

by setting the %MSO to +5 from the %MSO used during hot-spot detection and 

providing 6 stimuli per intensity to the motor hot-spot, separated by -2% MSO. Once a 
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level was reached where fewer than 3 MEPs had an amplitude of >50µV, that %MSO 

was recorded as the RMT. 

2.2 Experimental Design 

One experiment, with two parts, was conducted under this paradigm. In part 1, the 

subjects completed three training sessions: voluntary contraction only (VOL), functional 

electrical stimulation only (FES) and voluntary contraction supplemented by FES 

(VOL+FES). In the conditions requiring electrical stimulation, the electrical stimulation 

was applied at 40Hz with a 2ms pulse width. In part 2, a subset of the population from 

experiment 1 (N=3, 2 female) returned to complete the FES and VOL+FES conditions 

again, with altered stimulation parameters (Table 2.1). To investigate the effects of 

altering pulse width on corticospinal excitability, the electrical stimulation was applied at 

40Hz with a 200µs pulse width.   

2.3.1 Experimental Conditions 

u  Voluntary Contraction Only  

In the “voluntary” condition (VOL), the subject voluntarily contracted his/her EDC, 

without FES assistance, in time with the visual cues on the screen. The target was set to 

20% of the subject’s maximum voluntary contraction (MVC) of his/her EDC, collected 

before the start of the training, with the total target window representing 10% to 30% of 

the MVC. The subject had to maintain the contraction within the target window for 

200ms following the “GO” cue before the 5 seconds of “HOLD”ing the contraction; the 

subject had a maximum of three seconds to achieve the 200ms in the target. If the subject 

failed to trigger the training for three trials in a row, the training was paused for 2 minutes 

for the subject to rest. If the subject failed to trigger the electrical stimulation for a second 
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set of 3 trials in the same block, the training session was stopped. The subject maintained 

the contraction for 5 seconds, until cued to rest for 5 seconds. 

u  FES Only  

In the “FES only” condition (FES), the subject was asked to remain completely relaxed 

for the duration of the training.  Disposable, self-adhesive electrodes (VERMED, 

Buffalo, NY) and a stimulator (Digitimer, Ft. Lauderdale, FL) were used to stimulate the 

subject’s EDC.  The stimulations were applied at 40 Hz with a 2ms pulse width. The 

stimulation amplitude was determined at the beginning of each session that required FES 

and was set to the level that elicited functional hand opening without causing pain to the 

subject. The stimulation was active for 5 seconds, followed by 5 seconds of rest without 

FES. 

u  Voluntary Contraction with FES  

In the “voluntary with FES” condition (VOL+FES), the subject voluntarily contracted 

his/her EDC, without FES assistance, when cued on the screen. When the subject had 

maintained a contraction within the 10% to 30% MVC window for 200ms, the FES, with 

the same parameters as the FES only condition, activated. The subject had a maximum of 

3 seconds to trigger the electrical stimulation; if the subject failed to achieve 200ms in the 

target range for three trials in a row, the training was paused for 2 minutes for the subject 

to rest. If the subject failed to trigger the electrical stimulation for a second set of three 

trials in the same block, the training session was stopped. The subject was asked to 

maintain the 20% voluntary contraction that was required to trigger the stimulation, while 

the FES was active. When cued to rest, the subject relaxed his/her voluntary contraction 

and the FES turned off. Every first, fifteenth, and thirtieth trial in each block occurred 
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without FES. The subject was informed that some trials might not have FES but were not 

told at which trials this would occur, so that the experimenter could verify that the subject 

was voluntarily participating. 

 
Figure 2.2 Diagram of a single cycle of training during the VOL or VOL+FES condition. 
 

2.3 Outcome Measures 

All assessments were conducted immediately before and immediately after the 

intervention. Additionally, 15 resting MEPs were collected during each of the three, two-

minute rest periods. Each session was separated by a minimum of 48 hours to ensure 

washout of any effects from the previous training. For each day of training, assessments 

were collected in the order shown in Figure 2.3. 

ON:	5	sec	 REST:	5	sec	200ms	<	t	<	3	sec	

200ms	in	
target	

20%	
MVC	

Subject	EMG	
Trace	
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Figure 2.3 Timeline of a single session. The 7-minute training cycle was repeated four 
times. 
 

2.3.1 Maximum Voluntary Contraction and Maximum Force 

The maximum voluntary contraction (MVC) was defined as the EMG activity during 

maximal effort and was	 the	 first	 measure	 collected	 before	 the	 experiment. EMG 

activity was recorded from the EDC, FDI, APB, ADM, and FDS muscles using reusable 

surface electrodes (Delsys, Natick, MA). The subject was resisted by the experimenter 

while performing the appropriate movement with maximum effort. MVC was quantified 

as the mean of the half-second of greatest activity in the rectified EMG signal for each 

muscle.  
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Maximum finger extension force was assessed by fixing the subject in a custom 

designed apparatus made from 3D printed parts and a 6 degree-of-freedom force sensor 

(ATI, Apex, NC) (Figure 2.4). The subject was asked to open his/her hand, by extending 

the fingers as strongly as they could, for 5 seconds, followed by 30 seconds of rest, for 

three trials. The maximum extension force of each trial was calculated as the mean force 

during the half-second of maximum activity. The maximum extension force was 

calculated as the mean of the maximum force achieved in each trial.  

 
Figure 2.4 Subject in the force sensor apparatus, with electrodes recording from five 
muscles and electrodes delivering FES to the EDC. 
 
2.3.2 Force Control 

Sine wave tracing was used to assess force control. With the subject still in the force 

sensor apparatus from the maximum force trials, subjects were presented with four force 

tasks. Each subject was presented with a practice task to familiarize him or herself with 

the mechanism of control. The signal scrolled from the bottom to the top of the screen 

such that finger extension corresponded to the peak of the signal on the right of the screen 
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and finger flexion corresponded to the peak of the signal on the left of the screen. This 

orientation was used such that controlling the trace was more intuitive for their hand 

position.  

Following a practice task each subject performed three sine-wave traces [71]. The 

sine traces occurred at three frequencies, 0.5, 1.0, and 1.5 Hz with a DC component of 

20% max force and an amplitude of 10% max force. These parameters constrained the 

subject to control the force only in extension, between 10 and 30% of their max force. 

The order in which the subject performed the sine trace was randomized at the beginning 

of each trial, with the same order presented pre and post training, with the straight-line 

trace always being performed last. Each trace consisted of 2 seconds of DC, followed by 

30 seconds of signal oscillating between 10 and 30% max force, followed by 2 seconds of 

DC again. Each second was followed by 1 min of rest.  

2.3.3 Motor Fatigue 

Straight-line tracing was used to assess motor fatigue. With the subject still in the force 

sensor apparatus from the force control sine wave tracing, subjects were presented with a 

single fatigue task. The extension force required to match the presented line was set to 

20% of the subject’s maximum force. The signal consisted of 2 seconds to achieve the 

target force, followed by 60 seconds of signal, followed by an additional 2 seconds that 

were removed for analysis.  
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2.3.4 Resting MEPs  

Resting MEPs were collected as a measure of corticospinal excitability at five time points 

throughout each session. TMS stimulation was delivered over the EDC hot spot at 120% 

RMT with 4 seconds between pulses. The PRE and POST collections consisted of 20 

MEPs while the collections between training blocks consisted of 15 MEPs.  

2.3.5 Recruitment Curves 

The recruitment curve describes the input-output properties of the corticospinal system, 

or how MEP size is affected by changes in TMS intensity [72].  MEPs were evoked and 

recorded at stimulator intensities ranging from 90% to 140% of the subject’s RMT. Each 

level was separated by 10% of the subject’s RMT. If 10% RMT was between whole 

numbers, the value was rounded to the nearest whole percent. If the subject’s RMT was 

at a level such that 140% RMT was above 100% MSO, the recruitment curves were 

collected up to 130% RMT. 

For the resting recruitment curve, there were a total of 60 stimulations, with 10 

stimulations applied at each intensity. The inter-stimulus interval was 4 seconds. The 

subject remained at rest for the duration of collecting the recruitment curve. 
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Table 2.2 The Resting Motor Threshold and Resting Recruitment Curve Percent 
Stimulator Intensity (%MSO) for each Subject during the VOL Condition 
 
Subject 

ID RMT Resting Recruitment Curve (*RMT) 
0.9 1.0 1.1 1.2 1.3 1.4 

1 44 39 44 49 54 59 64 
2 77 69 77 85 93 100 ~ 
3 66 59 66 73 80 87 94 
4 56 49 56 63 70 77 84 
5 50 45 50 55 60 65 70 
6 75 67 75 83 91 99 ~ 
7 50 45 50 55 60 65 70 
8 64 58 64 70 76 82 88 
9 56 51 56 61 66 71 76 
10 62 56 62 68 74 80 86 
11 55 49 55 61 67 73 79 

 

For the active recruitment curve, there were a total of 36 stimulations, with 6 

stimulations applied at each intensity. The inter-stimulus interval was 5 seconds. The 

subject triggered the TMS stimulus by contributing between 5 and 15 percent of his/her 

MVC. When the target was reached, a stimulus was triggered and the subject was cued to 

relax. The number of stimulations per intensity was reduced from 10 to 6 and the inter-

stimulus interval was increased from 4 to 5 seconds to reduce the potential for pre-

training fatigue and so that they could successfully complete the recruitment curve 

following the training.  
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2.4 Analysis 

2.4.1 Data Analysis 

Data was analyzed for changes in functional measures between pre- and post-intervention 

as well as changes in corticospinal excitability between pre-, during-, and post-

intervention. 

2.4.1.1 Functional Measures 

u  Maximum Force 

The maximum extension force was calculated as the mean force during the half-second of 

maximum activity averaged across three trials. For all activities involving force, the 

calculated maximum force from the pre-intervention time point measurement was used. 

Maximum force was calculated again at the end of the session. 

u  Force Control 

Tracking accuracy was measured by the root mean square error (RMSE) of the trace.  

!"#$ = !"#$%! − !"#$% !    (2.1) 

RMSE accounts for both differences in phase and differences in amplitude 

between the target and applied forces. An RMSE measurement closer to zero indicates a 

more accurate tracing of the presented signal. 
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Figure 2.5 Representation of the force applied by a single, representative subject 
performing the 1.0Hz signal trace task before and after the VOL+FES condition. The 
force data has been normalized to 20% pre-intervention MVC. Top: Pre-intervention. 
Bottom: Post-intervention. 
 
u  Motor Fatigue 

To evaluate fatigue between pre- and post-intervention, the coefficient of variation of 

produced force was used. The subjects were asked to trace a straight line at 20% of their 

pre-intervention maximum force for 64 seconds. The coefficient of variation measures 

the standard deviation of the subject’s force trace around the target trace, with the 

beginning and ending 2 seconds removed from the analysis. This measure has been used 

in several previous studies as a method for evaluating motor fatigue by fluctuations in the 

subject’s applied force [73], [74], [75], [76]. Decreases in force fluctuations are typically 

interpreted as an increase in fatigue. 
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Figure 2.6 Representation of the force applied by a single, representative subject 
performing the fatigue task before and after the VOL condition. The force data has been 
normalized to 20% pre-intervention MVC. Top: Pre-intervention. Bottom: Post-
intervention. 
 
2.4.1.2 Neurophysiological Measures 

u  MEP Amplitude and Stimulation Removal 

Changes in CS excitability were assessed by comparing the mean amplitudes of the 

MEPs collected before, during, and after the intervention sessions across the group. 

MEPs were measured as the peak-to-peak amplitude of the evoked motor response in the 

extensor digitorum communis (EDC).  

To ensure that inadvertent background muscle contractions did not influence MEP 

amplitudes, MEPs were removed from the analysis if the peak-to-peak amplitude was 
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below 50µV or was greater than 2 standard deviations from the mean of each set of 

MEPs. 

u  Recruitment Curves 

The recruitment curve describes the input-output properties of the corticospinal system, 

or how MEP size is affected by changes in TMS intensity [72]. In the recruitment curve, 

there is no MEP at low stimulation intensities, a steep increase in average MEP amplitude 

at the resting motor threshold (RMT) and then a plateau to a saturation level at higher 

intensities. Initially, the peak-to-peak value amplitude of each MEP was measured for all 

stimuli. The pre- and post-intervention stimuli were averaged for each TMS intensity, 10 

stimulations per intensity, and fitted with the Boltzmann sigmoidal function [77] 

(Equation 2.2). 

!"# ! = !"#!"# + !"#!"#

!!!
!!"!!
!

             (2.2) 

From this function a relationship was determined between stimulation intensity 

and peak-to-peak amplitude of the MEPs. The MEPmax is the maximal motor response 

that is obtained while the S50 and slope represent the threshold and gain, respectively, of 

the corticospinal neurons and motoneuron pool. [61]. Decreases in corticospinal 

excitability can be marked by a rightward shift of the recruitment curve, a decrease in the 

curve slope, or a decrease in MEPmax, or all of the above. Increases in corticospinal 

excitability are marked by the opposite: a leftward shift of the curve, an increase in slope, 

or an increase in MEPmax, or all of the above. 
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2.4.2 Statistical Analysis 

Statistical significance for all tests was set at P < 0.05. Significant results were followed 

by a post hoc test with Tukey’s correction, at 95%, to avoid errors associated with 

multiple comparisons. Analyses that use “condition” as a factor used the three levels: 

levels: voluntary movement alone (VOL), functional electrical stimulation alone (FES), 

and voluntary movement paired with FES (VOL+FES). 

2.4.2.1 Functional Measures 

u  Maximum Force 

A 2-way, repeated measures ANOVA was performed on the maximum extension force 

with the factors “condition” (three levels) by “time” (two levels: PRE and POST). The	

maximum	extension	 force	 used	 for	 evaluation	was	 the	mean	 of	 the	 three	 trials	 at	

each	time	point. 

u  Force Control 

A 3-way, repeated measures ANOVA was performed on the accuracy, measured by 

RMSE, of the force trace, with the factors “condition” (three levels) by “time” (two 

levels: PRE and POST) by Frequency (three levels: 0.5 Hz, 1.0 Hz, 1.5 Hz).  

u  Motor Fatigue 

A 2-way, repeated measures ANOVA was performed on the coefficient of variation of 

the extension force with the factors “condition” (three levels) by “time” (two levels: PRE 

and POST). 
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2.4.2.2 Neurophysiological Measures  

u  Normalization of MEPs 

A one-way, repeated measures ANOVA was conducted on the MEPs recorded at time 

“PRE” across conditions. Lack of statistically significant differences (p > 0.05) between 

the PRE measurements for each condition would verify that subjects began each session 

with similar basal excitability. Additionally, following verification of similar basal 

excitability, all following statistical evaluations on MEPs were conducted on MEPs that 

had been normalized to the PRE measurement of each subject per each condition, 

referred to as the MEP ratio. 

u  PRE-POST MEPs 

A one-way, repeated measures ANOVA was performed on the normalized MEP 

amplitude with the factors “condition” (three levels). Significant results were followed 

with a two-sided, one-sample t-test to determine whether the normalized MEP amplitude 

was significantly different from 1. 

u  MEPs Over Time 

Due to an equipment error during one session for Subject 2, MEPs for BLOCKs 1 and 2 

were not collected. Therefore, for the analysis of MEPs over time, this subject’s data was 

not included in any of the three conditions. The subjects included in the analysis of MEPs 

over time are N=10 (4 male, 6 female). 

A 2-way, repeated measures ANOVA was performed on the normalized MEP 

amplitude with the factors “condition” (three levels) by “time” (four levels: BLOCK1, 

BLOCK2, BLOCK3, POST). The time-point “PRE” was excluded from this analysis 
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because it is the value used for normalization such that “PRE” has an MEP ratio of 1 with 

a standard deviation of zero. 

u  Resting Recruitment Curves 

The three parameters analyzed for significance were the MEPmax, MEPhalfmax (S50) 

and the slope (K) of the fitted sigmoid. The pre-intervention values were compared using 

three 1-way repeated ANOVA with “condition” as a factor (three levels). A 2-way, 

repeated measures ANOVA was performed on each of the three parameters of the 

sigmoidal fit with the factors “time” (two levels: PRE and POST) and “condition” (three 

levels). MEPs of the recruitment curves were not normalized to any value.  

Active recruitment curves were collected but not included in this analysis. 
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CHAPTER 3 

RESULTS 

 

3.1 Functional Outcomes 

3.1.1 Maximum Force 

To evaluate the changes in the maximum extension force produced by a subject, a 2-way, 

within subjects ANOVA was conducted with factors “condition” (three levels) and 

“time” (two levels: PRE and POST). Neither the effect of “condition” [F(2, 30) = 0.247; 

P = 0.782], the effect of “time” [F(1, 20) = 3.199; P = 0.0787], nor the interaction [F(5, 

60) = 0.269; P = 0.7650] were significant.  

 
Figure 3.1 Three-trial average magnitude of maximum finger extension pre- and post-
intervention with FES delivered with 2ms pulse width. Data averaged across the group (n 
= 11; error bars = 1 SE). 
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3.1.2 Force Control 

A 3-way, within subjects ANOVA was conducted with factors “condition” (three levels), 

frequency (three levels: 0.5 Hz, 1.0 Hz, 1.5 Hz) and “time” (two levels: PRE and POST). 

Frequency was significant [F(2, 195) = 20.048; P = 0.000***] while neither the effect of 

“condition” [F(2, 195) = 1.70; P = 0.186], nor the effect of “time” [F(1, 196) = 1.677;  

P = 0.197] were significant. None of the interaction terms were significant. Although 

frequency was determined to be significant, this analysis was not followed with post-hoc 

analyses because neither of the training-related parameters (“condition” and “time”) was 

significant. 

 
Figure 3.2 Magnitude of the root mean square error (RMSE) during tracing of various 
frequency sine waves in finger extension, pre- and post-intervention with FES delivered 
with 2ms pulse width. Data averaged across the group (n = 11; error bars = 1 SE). 
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3.1.3 Coefficient of Variation 

A 2-way, within subjects ANOVA was conducted with factors “condition” (three levels) 

and “time” (two levels: PRE and POST). Neither the effect of “condition” [F(2, 30) = 

0.411; P = 0.665], the effect of “time” [F(1, 20) = 0.784; P = 0.379], nor the interaction 

[F(5, 60) = 0.269; P = 0.665] were significant. 

 
Figure 3.3 Magnitude of the coefficient of variation (CoVa) during isometric finger 
extension, pre- and post-intervention with FES delivered with 2ms pulse width. Data 
averaged across the group (n = 11; error bars = 1 SE). 
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3.2 Neurophysiological Outcomes 

3.2.1 MEPs Pre- to Post-Intervention 

A 1-way ANOVA was performed to test for group-wise differences between the pre-

intervention MEP measurements. The effect of “condition” was not significant [F(2, 30) 

= 1.498; P = 0.24] meaning that the pre-intervention MEPs were not different across the 

conditions. Because the conditions were not different before each intervention, the 

subsequent statistics were performed on MEPs that had been normalized to their pre-

intervention measurement, referred to as the MEP ratio.   

The changes in MEP amplitude between pre- and post-intervention were 

evaluated using a 1-way ANOVA on the post-intervention MEP ratio with the factor 

“condition” (three levels: VOL, FES, VOL+FES). The effect of “condition” was 

significant [F(2, 30) = 6.482; P = 0.00458**]. This analysis was followed with 3, one-

sample t-tests to determine whether the post-intervention MEP ratio was significantly 

different from 1, the normalized pre-intervention MEP amplitude. The t-test revealed that 

the MEP ratio for the FES condition was significantly reduced from the pre-intervention 

measurement [t = -3.3563; P = 0.007288**] while the VOL [t = 1.8116; P = 0.1001] and 

VOL+FES [t = 1.2919; P = 0.2255] conditions did not show significant increases from 

the pre-intervention measurement. The FES MEP ratio decreased from the pre- to post-

intervention measurement by 45 ± 11% while VOL increased by 30 ± 18.5% and 

VOL+FES increased by 15.5 ± 13.5% (Figure 3.4). 
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Figure 3.4 Motor evoked potential (MEP) amplitudes from extensor digitorum 
communis pre- and post-intervention with FES delivered with 2ms pulse width. Top: 
Individual responses, each line is a single subject. Bottom: Data averaged across the 
group (n = 11; error bars = 1 SE; *, p < 0.05, **, p < 0.01). 

*	*	
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3.2.2 MEPs Over Time 

To evaluate the changes in MEP amplitude a 2-way, within subjects (N=10) ANOVA 

was conducted with factors “condition” (three levels) and “time” (four levels: BLOCK 1, 

BLOCK 2, BLOCK 3, POST). The “PRE” time point was not included in this analysis 

because it was the normalization value and, thus, had a value of 1.0 with a standard 

deviation of 0. The effect of “condition” on MEP ratio was significant [F(2, 135) = 4.886; 

P = 0.00894**], while the effect of “time” was not significant [F(4, 132) = 0.315; P = 

0.868] and neither was the interaction [F(2, 135) = 1.222; P = 0.291]. The values of the 

MEP ratio at each time point are presented in Table 3.1. 

Following the ANOVA, because “condition” was the only significant factor, the 

data was separated into its time points and a Tukey post-hoc, at 95% was conducted 

within each time block. This evaluation reveals how the MEP ratio is affected by each 

condition in relation to the other conditions at each point in time. In BLOCK 1, VOL was 

significantly different from FES (P = 0.00583**) while VOL+FES was not different from 

FES (P = 0.213) or VOL (P = 0.246). In BLOCK 2, VOL was still significantly different 

from FES (P = 0.0157*) while VOL+FES was not different from FES (P = 0.527) or 

VOL (P = 0.164). In BLOCK 3, VOL was still significantly different from FES (P = 

0.00238**) while VOL+FES was not different from FES (P = 0.0736) or VOL (P = 

0.342). Following the intervention, at time “POST”, VOL remained significantly 

different from FES (P = 0.00483**); additionally VOL+FES was significantly different 

from FES (P = 0.0332*) although it was not different from VOL (P = 0.714). 
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Table 3.1 Averaged MEP Ratio Values for the Five Experimental Time Points are 
Presented for each of the Three Conditions. 
 

Condition PRE 
Mean±SD 

BLOCK 1 
Mean±SD 

BLOCK 2 
Mean±SD 

BLOCK 3 
Mean±SD 

POST 
Mean±SD 

VOL 1.00±0.00 1.2771±0.393 1.4589±0.513 1.2342±0.301 1.3041±0.608 

FES 1.00±0.00 0.5927±0.364 0.7283±0.495 0.7061±0.381 0.6703±0.367 

VOL+FES 1.00±0.00 0.8976±0.337 0.9422±0.337 1.0457±0.154 1.1376±0.432 

 
 

 
Figure 3.5 Motor evoked potential (MEP) ratio from extensor digitorum communis 
across the 5 experimental time points with FES delivered with 2ms pulse width (n = 10; 
error bars = 1 SE; Significance Codes: + VOL vs. FES, * VOL+FES vs. FES, # VOL vs. 
VOL+FES; * p<0.05, ** p<0.01). 
 
 
 
 
 
 

++ + ++ ++ 
* 
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3.2.3 Resting Recruitment Curve 

A 1-way ANOVA was performed to test for differences between the parameters extracted 

from the sigmoidal fit in the pre-intervention measurements. The effect of “condition” 

was not significant for MEPmax [F(2, 30) = 0.556; P = 0.574], S50 [F(2, 30) =0.314; 

P=0.733], or the slope [F(2, 30) =1.729; P=0.195] meaning that at baseline the 

parameters were not different across the conditions. The sigmoidal curve-fit for 

representative subjects in each of the three conditions are shown in Figures 3.6, 3.7, and 

3.8. 

The effects of time and condition were quantified for the input-output relationship 

from the pre- and post-intervention curve-fit parameters. The effect of “time”, 

“condition” and the interaction were not significant for any of the parameters. For 

MEPmax, the interaction between the two factors was not significant [F(2, 63) =0.2331; 

P =0.106], nor was the effect of “time” [F(1, 64) = 0.741; P =0.393] and “condition” 

[F(2, 63) =0.659; P =0.521]. For S50, the interaction between the two factors was not 

significant [F(2, 63) = 0.597; P = 0.554], nor was the effect of “time” [F(1, 64) = 0.867;  

P = 0.356] and “condition” [F(2, 63) = 1.192; P = 0.311]. For the slope, the interaction 

between the two factors was not significant [F(2, 63) = 0.900; P = 0.4.12], nor was the 

effect of “time” [F(1, 64) = 1.7222; P = 0.273] and “condition” [F(2, 63) = 0.876;  

P = 0.422]. 
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Figure 3.6 Changes in motor output after training. EDC MEP recruitment curve pre- and 
post-intervention for a representative subject of the FES. All shown are curves fitted 
using Boltzman sigmoidal function. The curve was fit through the average of the ten 
stimuli of per percent of resting motor threshold (RMT).  

 
Figure 3.7 Changes in motor output after training. EDC MEP recruitment curve pre- and 
post-intervention for a representative subject of the VOL. All shown are curves fitted 
using Boltzman sigmoidal function. The curve was fit through the average of the ten 
stimuli of per percent of resting motor threshold (RMT).  
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Figure 3.8 Changes in motor output after training. EDC MEP recruitment curve pre- and 
post-intervention for a representative subject of the VOL+FES. All shown are curves 
fitted using Boltzman sigmoidal function. The curve was fit through the average of the 
ten stimuli of per percent of resting motor threshold (RMT).  
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CHAPTER 4 

DISCUSSION 

 

In this study, we investigated the effect of pairing voluntary movement with muscle 

located electrical stimulation for hand opening. No significant changes were seen in 

functional behavior following any of the three interventions. Contrary to our hypothesis, 

voluntary activation supplemented by FES did not cause a larger increase in corticospinal 

excitability than voluntary contraction alone. Increases in corticospinal excitability for 

the EDC, although not significant, were seen for both voluntary movement and voluntary 

movement supplemented by FES while significant decreases in EDC excitability were 

seen for FES alone. 

4.1 Functional Outcomes 

It is unlikely that a single day intervention would cause improvements in the functional 

behavior of healthy controls. For the measures of force control, determined by the RMSE 

of each subject’s signal traces, there was no difference in improvement, at any tracing 

frequency, for any condition. The three frequencies of the traces were chosen such that 

the subject had to engage different control mechanisms to perform the task. The 0.5Hz 

trace is “feedback” control while the 1.5Hz trace is predictive, or “feed forward”, control 

and the 1.0Hz trace is right on the edge between the two control mechanisms. Subjects 

were given the opportunity to practice the task once, before beginning the measurements, 

on each day of training. The subjects who performed best prior to any training or 

intervention were the subject who regularly engaged in athletic activities such as 

volleyball or tennis; these sports require better control over the muscles of the arm and 
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hand than activities of daily living for healthy controls who are not active in sports. It is 

likely that any subject improvement in force control seen in this study is directly related 

to the increasing familiarity with the task.  

Coefficient of variation was used as a measure of fatigue because we wanted to 

investigate the ability of the subject to smoothly and consistently perform a movement. 

Each condition in this study saw a drop in the magnitude of the maximum force between 

pre- and post-intervention of approximately 10%. Post-intervention, subjects were asked 

to perform the task at 20% of their pre-intervention maximum force; this means that the 

post-intervention task actually required about 30% of the fatigued maximum force. 

Taylor [73], investigated the effects of fatigue, measured by percent of the maximum 

voluntary force, on the coefficient of variation of produced force. Applying 30% of the 

maximum force leads to a reduction in the coefficient of variation and is the lowest point 

on Taylor’s [73] coefficient of variation curve (Figure 4.1). There were no significant 

differences between the magnitudes of the decreases in maximum force for each 

condition. Coupled with the decreases but lack of significant differences in coefficient of 

variation for each condition, this suggests that there is no difference in the amount of 

fatigue induced by the different interventions. 
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Figure 4.1 Fluctuations in index finger force during voluntary contractions performed 
with first dorsal interosseous muscle. Data consist of those parts of each trial when 
subjects received no visual feedback. B: coefficient of variation (CV) for force was 
greatest at low forces, decreased to a minimum at 30% MVC, and then increased to 
plateau after 50% MVC. Data in are plotted as median ± SE for 10 subjects. 
Source: [73] 
 

4.2 Neurophysiological Outcomes 

4.2.1 MEPs Pre- to Post-Intervention 

Part one of the experiment in this study was designed to study the effect of the interaction 

of voluntary contraction and FES on corticospinal excitability. We found no significant 

changes in corticospinal excitability for the voluntary contraction, such as the significant 

decreases seen by Barsi [55] or increases seen by Taylor [49], and no significant 

increases in corticospinal excitability for voluntary contraction with FES condition, such 

has been found in previous studies [53], [50], [59], [64]. The magnitude of the increases 

that were seen for these conditions were comparable to the conditions found by Taylor in 

the ECR [49], which were significant. Increasing N into the range of 15 or 20 subjects 

would likely enhance the significance of the results of this study. 
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The most significant finding of this study is the extent to which FES alone 

decreases corticospinal excitability and the ability of adding voluntary contraction to the 

stimulation to erase the negative corticospinal effects of the stimulation alone. The effects 

of FES were an immediate and persistent reduction in corticospinal excitability. This 

electrical stimulation had been designed to mimic a voluntary movement, hand opening, 

and the mimicry is not equivalent to a volitional movement toward the same task. These 

results imply that receiving passive electrical stimulation for rehabilitation, although it is 

the current clinical practice, is unable to produce positive connections between the motor 

cortex and the target muscle. Studies in the past have shown that the cerebellum creates a 

model of the desired movement [78] and compares it to the movement performed [79]; 

when these do not match up, the brain seeks to attenuate the error using the 

somatosensory cortex [78]. This mechanism is important for motor learning of a 

voluntary skill, but is also believed to play a role in the incorporation of FES into a part 

of the voluntary drive and the potential mechanism of the increase in excitability seen 

with voluntary activation supplemented by FES that is not seen in FES alone. 

Part two of the experiment in this study was designed to show the effect of pulse 

width of the peripheral electrical stimulation on cortical excitability. These effects were 

evaluated by bringing back three of the subjects who participated in the main experiment 

and retesting the FES alone and VOL+FES conditions using a 200µs pulse width instead 

of a 2ms pulse width. A 200µs pulse width for electrical stimulation is the most common 

pulse width used in studies involving FES. 

Hindle [80] found short (200µs) and long (1ms) pulse durations to be equally 

effective in enhancing corticospinal excitability of the TA. However, the widest pulse 
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width he investigated was 1ms. Previous studies investigating the effects of pulse width 

on corticospinal excitability in the upper extremity have found no significant differences 

in the effects induced by short or long pulse widths [46], [66], [80], [81] however, the 

pulse widths investigated were between 50µs and 1ms. Based on these previous results, it 

is unlikely that increasing the pulse width to 2ms would yield any significant differences 

over the more standard 200µs pulse width for electrical stimulation.  

In this study, with a pulse width of 2ms, preliminary results from a limited sample 

size suggest that wider pulse widths may exaggerate the effects seen when FES is applied 

at a shorter pulse width, although the differences are not wide enough to imply 

significance (Figure 4.2). The exaggerated effects between the 2ms and 200µs pulse 

width could be caused by the ability of wider pulse widths to recruit more central 

pathways as opposed to peripheral pathways [56], [81] (Figure 1.4) or it could be caused 

by the relative ease with which the 200µs is integrated into native motor commands such 

that stimulation at 200µs is interpreted by the brain as a less erroneous signal than a 2ms 

pulse width signal [32]. Alternately, the decrease in excitability as a result of the FES 

condition between the 200µs and 2ms condition may be merely a result of increased 

muscle fatigue induced by the longer pulse width [82]. It will be important to collect a 

larger sample size in experiment 2 to determine whether the differences seen in the EDC 

for both short and long and very long pulse widths persist and whether or not the 

difference is significant.  

While all 11 subjects in this study were able to tolerate the 2ms pulse width 

stimulation, several reported it to be uncomfortable. Surface application of FES for 

muscle stimulation stimulates the pain receptors directly under the stimulation electrodes 
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in addition to stimulating the target muscles. Applying the stimulation with a 200µs was 

still able to elicit a functional contraction and the subjects reported that the stimulation 

was much more comfortable. An important aspect of determining the optimal FES 

stimulation parameters will be to balance what subjects find comfortable and tolerable 

with what stimulation parameters elicit the best results. This is particularly relevant when 

rehabilitating stroke patients, who generally have higher peripheral sensitivity than 

healthy subjects. 

 

Figure 4.2 Motor evoked potential (MEP) amplitudes as a pre- to post-intervention ratio 
from extensor digitorum comunus as a function of pulse width. Each group by pulse 
width contains the same subjects (n = 3; error bars = 1 SE). 
 

4.2.2 MEPs Over Time 

Iftime-Nielsen [32] found, during fMRI of similar tasks to the tasks evaluated in this 

study, that peripheral electrical stimulation alone is treated, by the brain, as an erroneous 

signal, however, the addition of voluntary drive to the electrical stimulation (VOL+FES 

condition) allows the FES to become a part of and to enhance the motor command. This 
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incorporation of the electrical stimulation is seen in the contrast between each of the three 

conditions. Voluntary contraction alone immediately increases corticospinal excitability 

and remains elevated throughout the experiment. FES alone immediately and 

significantly reduces corticospinal excitability and remains significantly reduced to the 

end of the intervention. However, voluntary contraction with FES causes an immediate 

decrease in corticospinal excitability but not to the extent of FES alone; at the subsequent 

time points within the intervention, corticospinal excitability of the EDC steadily 

increases, to the point where it is almost as elevated as the final measurement for the 

VOL condition (Figure 3.5). The results from this study solidify the previous results that 

voluntary participation in a movement is necessary for enhancing corticospinal 

connections between the motor cortex and the target muscle, results that cannot be 

achieved through passive electrical stimulation alone. 
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CHAPTER 5 

CONCLUSION 

 

5.1 Study Limitations 

The primary limitation of this study is the application of a 2ms pulse width. The longest 

pulse width found in the current literature is 1ms. This lack of similar electrical 

stimulation parameters in similar experimental paradigms limits our ability to draw 

meaningful conclusions from the results of this experiment. 

The second significant limitation of this study is the small sample size. Results of 

the first experiment would be solidified by increasing the N to between 15 and 20 

subjects. Additionally, recruiting more subjects into part 2 of this experiment would help 

to elucidate the effects of pulse width on corticospinal excitability under this 

experimental paradigm.  

While the design of this study targets the hemiplegic chronic stroke population, 

no stroke subjects were enrolled in this experiment. A stroke population will almost 

certainly respond differently to these treatments than a healthy population. Without a 

stroke population in the study, we are not able to determine the effects these 

rehabilitation paradigms may have on an affected subject. 

 

5.2 Future Investigations 

Future efforts in this area would focus on increasing the sample size of the healthy 

population in both experiments. Additionally, those efforts would build a stroke group to 

compare to the healthy population so that the true effectiveness of these paradigms as a 
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rehabilitation strategy can be evaluated. A longer term goal would be investigate each 

experimental paradigm in a longitudinal study, of three times a week for 6 to 8 weeks, 

comparable to the duration of a clinical rehabilitation paradigm. This longitudinal study 

would show whether or not the changes in corticospinal excitability caused by a single 

day of training persist over time. A longitudinal study would also allow for any 

improvements in functional behavior that would occur as a result of the training to be 

seen. 

 

5.3 Clinical Significance 

This study provided insights into how to engage stroke patients in more useful clinical 

rehabilitation. For patients with the ability to make some volitional movements, engaging 

them in making those movements during therapy has a positive effect on corticospinal 

excitability. This indicates stronger connections between the cortex and the target muscle. 

However, basing the FES on the subject’s recorded muscle effort would allow patients to 

participate in the therapy even if they are flaccid, or cannot produce visible volitional 

movement. Additionally, the required target participation can be increased or reduced 

with patient ability and recovery such that everyone is able to engage in the protocol 

effectively. 

 

5.4 Conclusions 

This study attempted to elucidate the mechanisms of functional improvement and 

increases in corticospinal excitability that are usually seen over weeks of physical 

therapy. The increase in corticospinal excitability caused by combining voluntary activity 
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with functional electrical stimulation has significant implications for rehabilitation in 

chronic stroke. FES enables the stroke patient to participate in therapy, producing 

meaningful movements, while the voluntary activation engages their motor cortex such 

that the neurological connections between the brain and the muscle are enhanced instead 

of inhibited.  
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APPENDIX  

 

This appendix contains the subject screening questionnaire that is used to determine 

whether the potential subject has any contraindications for TMS and whether or not they 

are medically qualified to participate in a TMS experiment. 
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CORTICAL STIMULATION SUBJECT SCREENING QUESTIONNAIRE 

Have you ever been diagnosed with any neurological or psychiatric condition? 
-for example, stroke, Parkinson’s disease, depression, or other 
If YES, please clarify (nature of condition, duration, current medication, etc). 
 
 

YES/NO 

Have you had epilepsy/seizures, febrile conculsions in infancy, or recurrent fainting 
spells? 
 

YES/NO 

Does anyone in your immediate or distant family have epilepsy? 
If YES please state your relationship to the affected family member. 
 
 

YES/NO 

Have you ever undergone a neurosurgical procedure (including eye surgery)? 
If YES please clarify. 
 
 

YES/NO 

Have you ever had a head injury? 
If YES please clarify. 
 
 

YES/NO 

Do you currently have any of the following fitted to your body? 
-Heart pacemaker, Cochlear implant, Medication pump, Surgical clips, other metal. 
 

YES/NO 

Are you currently taking any unprescribed or prescribed medication? 
If YES please clarify. 
 
 

YES/NO 

Have you had alcohol or recreational drugs in the past 12 hours? 
 

YES/NO 

Are you male or female?______________ 
If you are female, are you pregnant or is there a possibility you may be pregnant? 
 

YES/NO 

Do you have frequent or severe headaches? 
 

YES/NO 

Have you ever participated in a TMS study and had any adverse reaction? 
 

YES/NO 

 

I, _____________________________________, confirm that I have read the consent 
form and completed the above questionnaire. I confirm that I am not taking recreational 
drugs, have not participated in a TMS experiment earlier today and feel well rested. The 
nature, purpose and possible consequence of the procedures involved have been 
explained. I understand that I may withdraw from the study at any time. 
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