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ABSTRACT 

 

FIELD ORIENTED CONTROL OF PERMANENT MAGNET 

SYNCHRONOUS MOTOR WITH THIRD-HARMONIC INJECTION PULSE 

WIDTH MODULATION TO REDUCE QUADROTORS’ SPEED RIPPLES 

 

by 

Yuxi Shi 

The world’s commercial unmanned aerial vehicle (UAV) industry has witnessed 

unprecedented boom in recent years. Delighted with an ample supply of this excellent 

high-tech product, global consumers are paying more attention on UAVs. Civilian 

UAVs now vastly outnumber military ones, with the estimate of over a million sold by 

2016. An UAV has various degrees of autonomy as enabled by the use and precise 

control of motors. Traditional Direct Current (DC) motors are replaced by permanent 

magnet synchronous motors (PMSM) associated with the new power electronic 

inverters. Because of a PMSM’s higher power density than a DC motor, it reduces the 

rotor losses, thus improving its efficiency. The other improvement comes from the 

advanced control methods. The simple drive system based on a DC motor with open-

loop control is outdated. High frequency switches in power electronic inverters offer an 

opportunity to change motor input voltage values and frequencies faster than ever 

before. Vector control approaches are employed with closed-loop feedback control, 

which brings high precision and good dynamics. Integrated inverter-motor drive 

systems are in progress. This thesis focuses on how to control PMSM installed in the  

 

 



 

 

 

 

UVAs with a high performance of dynamic response and fewer speed ripples. Field 

Oriented Control (FOC) is one type of vector controls to control a PMSM in a quadrotor. 

FOC of PMSM and Pulse Width Modulation (PWM) are introduced. The simulation 

results of FOC of PMSM with third-harmonic injection PWM and traditional FOC are 

compared. This comparison proves that FOC of PMSM with third-harmonic injection 

provides a better dynamic response for a quadrotor’s movement in vertical direction. In 

addition, since PWM is helpful to reduce the speed ripples, PMSM has a better steady-

state response during operations.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

An unmanned aerial vehicle (UVA) is an aircraft without a human pilot aboard, which 

originated in military applications. The world’s commercial UAV industry has 

witnessed unprecedented boom in recent years. UAV companies have expanded their 

clients beyond the military applications and pay more and more attention to scientific 

and commercial market. Civilian UAVs now vastly outnumber military ones and were 

estimated to reach over a million sales by 2016. 

An unmanned aircraft system (UAS) includes an UAV, a ground-based 

controller, and a communication system between the two. An UAV has various degrees 

of autonomy. It can be remotely controlled by a human operator and also onboard 

computers fully autonomously. The applications of UVAs fall into the following 

categories. 

1. Target: UAVs can simulate as a ground and aerial enemy aircraft or missile. 

2.  Reconnaissance: UAVs provide battlefield intelligence in real time. 

3.  Combat: UAVs have attack capability to assist people for high-risk missions. 

4.  Logistics: UAVs can deliver cargo, which leaves a profound impression on the   

public. 

 



2 

 

5.  Civil and commercial applications: Traditional industries gradually make use 

of UAVs. 

      Among these applications, the general public are usually familiar with the civil 

and commercial applications. It is dramatic that UAVs are resolving some risky 

problems and providing additional auxiliary work in traditional industry. To some 

extent, this kind of UAVs resemble a partner during work thanks to its good interactions 

with people. The increasing volume of searching for ‘Unmanned aerial vehicle’ in 

Google reflects the prosperity of civil and commercial UAVs in the world, as shown in 

Figure 1.1. 

 

Figure 1.1 Google searches for “Unmanned aerial vehicle”. 

      Numbers in vertical axis represent search interest relative to the highest point 

on the chart for the given region and time. A value of 100 is the peak popularity for 

the term. A value of 50 means that the term is half as popular. Likewise, a score of 0 

means the term is less than 1% as popular as the peak. The first peak took place on  
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December 27, 2015. In that week the Amazon company announced that a small UAV  

was tested to deliver cargo in thirty minutes. Another peak took place on December 

24, 2016. This was because a Chinese UAV company called DJI released a new 

product named ‘Mavic’, a kind of breakthrough folding quadcopters. 

1.2 Objective 

It is getting harder to go anywhere without seeing propaganda from the flat media and 

Internet. The leading civil and commercial UAV company is currently Chinese DJI 

with over $500 million dollar global sales in 2016. About 325,000 civilian UAVs were 

registered with the U.S. FAA, though it is estimated more than a million UAVs have 

been sold in the United State alone. 

     In recent years, more and more people benefit from the applications of UAVs 

because they help raise the productivity. The common civil uses include aerial 

photography, inspection of power line and pipelines, cooperative environment 

monitoring, and forest fire detection and monitoring.  

     Needless to say, most users could control UAVs with ease. UAV manufacturers 

often build in specific autonomous operations, such as: 

1. Self-level: stabilizing its altitude. 

2. Hover: attitude stabilization on the pitch, roll and yaw axes.  

3. Care-free: The UAV automatic roll and yaw control while moving horizontally. 

4. Take-off and landing 
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5. Failsafe: The UAV automatically landing upon loss of control signal 

6. Return-to-home 

7. GPS waypoint navigation 

8. Orbit around an object 

9. Pre-programmed tricks such as rolls and loops 

For small UAVs, the design has become popular, though this layout is rarely 

used for a manned aircraft. It is easy to recognize the following components of a UAV, 

such as: 

1. Body: There are two kinds of UVAs. One is tailless quadcopters and the other one 

is fixed-wing UVA. Tailless quadcopters are common.  

2. Power supply: Small UVAs mostly use lithium-polymer batteries. Larger UAVs 

usually use aviation gasoline. 

3. Sensor: Position and movement sensors give information about the aircraft state. 

Non-cooperative sensors are able to detect targets autonomously and used for 

separation assurance and collision avoidance. 

4. Motor: Brushless DC motors were previously installed in most UAVs. Nowadays 

permanent magnet synchronous motors are replacing brushless DC motors 

gradually in some advanced UAVs. 

      In spite of UAVs’ violent reputation, many areas could benefit from them. Their 
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electrical power capacity really sets them apart. It roughly has passed 

through three stages of development of quadcopter motors. The first stage was direct 

current (DC) motors with a simple structure. Then brushless DC motors were 

introduced into quadcopters. Since this kind of motors has lower amounts of magnets, 

it is difficult to have a very good dynamic performance and high control precision. High 

dynamic requirements are satisfied by using Permanent Magnet Synchronous Motors 

(PMSMs) because they have higher amounts of magnets. So PMSMs are gradually 

replacing brushless DC motors in quadcopters. In this thesis, by systematically 

considering the control system of PMSM in quadcopters and how to obtain a fast 

dynamic while minimizing speed ripple, Field Oriented Control (FOC) with third-

harmonic injection-based Pulse Width Modulation (PWM) is designed to identify an 

opportunity to improve operational performance of UAVs. Simulation results are given 

and compared to FOC with PWM but not including third-harmonic injection. The 

simulation provides a better understanding of controlling a quadcopter in different 

operations. 

1.3 Organization of This Thesis 

The rest of this thesis is organized as follows. Chapter 2 presents the related works 

including AC motors and their typical control methods, field oriented control of 

permanent magnet synchronous motor and pulse width modulation. Chapter 3 

introduces how to build a model of a permanent magnet synchronous motor in a d-q 

frame by using Clark transformation and Park transformation. Chapter 4 gives the 
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concept of pulse width modulation and third-harmonic injection. The simulation results 

are also given. Chapter 5 discusses the details of field oriented control of a permanent 

magnet synchronous motor. The basic control scheme is illustrated by using 

MATLAB/Simulink. Chapter 6 discusses experimental results and makes comparison 

between the proposed method and the traditional field oriented control of permanent 

magnet synchronous motor. The simulation results are specified in this section. Chapter 

7 concludes the whole thesis and indicates the future work. 
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CHAPTER 2                                              

LITERATURE REVIEW 

2.1 Introduction to High Performance Control of AC Electric Motors 

An AC motor is one of the essential components of a tailless quadcopter. Every 

autonomous operation depends on the high performance of AC motor installed in a 

tailless quadcopter. Thus, there exists a huge demand for the improvement of its 

performance. 

One approach could be the special design of motors with high-energy efficiency 

especially for aviation gasoline motors. Other approach is to do the proper control of 

machines. Tailless quadcopters employed in various application run at different speed. 

Controlling the operation of an electrical machine by varying its speed, in literature, is 

called ‘variable speed drives’ or ‘adjustable speed drives’. These control techniques are 

in general called ‘high-performance drives’ because they offer extremely fast and 

precise dynamic and steady-state response of electric machines. 

      Design and operations of electric drives for tailless quadcopters require the 

knowledge of electric motors, actuators, power electronic converters, sensors and 

instrumentation, control hardware and software, and communication links. In this thesis, 

we primarily pay attention to AC motors, control system and power electronic in a 

tailless quadcopter to drive its propellers. These three parts will be discussed one by 

one. 

https://en.wikipedia.org/wiki/Quadcopter
https://en.wikipedia.org/wiki/Quadcopter
https://en.wikipedia.org/wiki/Quadcopter
https://en.wikipedia.org/wiki/Quadcopter
https://en.wikipedia.org/wiki/Quadcopter
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Figure 2.1 Electric drive system for tailless quadcopters. 

 

2.2 AC Motors 

Thanks to the contribution to the success of AC motors in motion control and to the 

continuing growth of their application, AC motors with high performance are used in 

UAVs especially for tailless quadcopters. Choosing the suitable control methods 

associated with AC motors for tailless quadcopters to satisfy different requirements is 

a significant issue. 

      ‘AC motors’ refers to electric machines that convert AC electric energy into 

mechanical energy. Considering their huge difference of operational principles, 

physical characteristics and power level, there is a wide variety of such machines. 

According to their operation principles, AC motors are usually classified two main 

categories: induction and synchronous ones. Each kind of motor also contain two 

categories, as shown in Figure 2.2.  
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Figure 2.2 Categories of AC motors. 

      Induction motors include two types, squirrel cage and wound rotor ones. 

Synchronous motors also contain two kinds of motors, permanent magnet and wound 

rotor ones. There have been continued developments in the field of electric drives since 

the inception of the first principle of electrical motors by Michael Faraday in 1821 [1]. 

The world dramatically changed after the first induction machines was patented (US 

Patent 381968) by Nikola Tesla in 1888 [2]. Induction motors have gained widespread 

use in industry because of their affordable price and reliable performance. However, 

permanent magnet synchronous motors are one technological wave squeezing 

induction motors. They are more suitable for tailless quadcopter than induction motors. 

Over the last decades, people payed ever-increasing attention to permanent 

magnet synchronous motors (PMSMs). The idea of substituting the electrical excitation 

winding of a synchronous machine with the magnets dates back to the nineteenth 

century, but only with discovery of rare-earth magnets the PMSM begins to be 

gradually applied to industry. 

      Nowadays, PMSMs are widely used for the following reasons: 
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1. No rotor windings are present, and electrical contacts are on the stators side only.  

2. The absence of excitation windings reduces electrical losses and PMSMs need 

less cooling. 

3. PMSMs have a higher torque density and power density than induction motors. 

4. A higher air-gap flux density brings PMSMs to a better dynamic performance 

relative to induction motors.  

      The most important application of PMSMs is servo systems. This field requires 

high instantaneous torque, lower torque and speed ripple and a wide adjustable speed 

range. The control of a PMSM servo system plays an important role in achieving the 

objective of high performance subjected to parameter variations and external load 

disturbances. Some discussion on the control methods to reduce the speed ripples for 

PMSMs in Tailless quadcopters is to be discussed later.  

 

2.3 Control Systems of AC Motors 

The control methods of AC motors are broadly classified into ‘scalar controls’ and 

‘vector controls’. It is easy to implement scalar controls and obtain a relatively steady-

state response. However, the dynamic response that scalar controls offer is slightly.   

https://en.wikipedia.org/wiki/Quadcopter
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Figure 2.3 Control schemes of motors. 

To improve precision and dynamics, as well as a steady-state response, vector 

controls are increasingly employed with a closed-loop feedback. There are four kinds 

of control methods based on vector controls, namely Field Oriented Control, Direct 

Torque Control, Non-linear Control and Predictive Control. This thesis focus on using 

Field Oriented Control of PMSM and power electronic inverter to obtain a fast 

dynamics response and lower speed ripple. The basic way to convert DC voltage to AC 

voltage associated with the vector controls by using the power electronic high 

frequency switches is called Pulse Width Modulation (PWM); hence, PWM will be 

discussed later.  

      DC motors are installed diffusely in industries for variable speed application,  
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because of their inherent decoupled torque and flux control with minimum electronics 

involved. However, dating back to the early 1970s, a breakthrough principle permitting 

torque and flux to be decoupled, more usually called ‘field oriented control’ or ‘vector 

control,’ allowed DC motors to a better dynamics and steady-state response. Induction 

machines firstly used this control method. Later, it was realized that such control 

method was also possibly used to control synchronous machines. However, until the 

early 1980s, when the microprocessor era began and the realization of complex control 

algorithms became accessible, the development of speed control for AC machines did 

grow rapidly [3,4].  

      Control of PMSM drives is relatively simpler than that of induction machines. 

Since torque and flux are decoupled, these two variables can be controlled separately. 

The rotor flux is produced by the permanent magnet and it is known once the rotor 

position is detected. In this way, the flux model of PMSM is not strictly required. In 

most cases, PMSMs can work with the maximum possible angle. 

      As known, a DC motor can provide a decoupled control of torque and flux. A 

PMSM could be controlled as a DC motor by field oriented control (FOC), with the 

similar dynamic performance. In PMSM, the control could be exploited only though 

the stator windings. The research on FOC is still passionate, with the combination of 

more advanced features for highly precise and accurate control, such as sensorless 

operation. The effect of parameter variations, magnetic saturation on the behavior of 

FOC are the subject of research in sensorless drives. The realization of artificial 
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intelligence is another concerned research in this field. It is prosperous for many 

manufactures to use FOC to control variable speed drives. FOC are welcome and 

growing rapidly in the market. 

2.4 Pulse Width Modulation of Power Electronic 

Power electronics is the application of solid-state electronics to the control and 

conversion of electric power. It plays a significant role in flexible operation in drive 

system. Improvement of power electronics converters is heavily relying on the 

development of semiconductor switches. Nowadays high frequency switches are 

available for manufacturing power electronics converters. The power electronics 

converters fall into four kinds, i.e., DC-DC (buck, buck-boost, boost converters), AC-

DC (rectifiers), DC-AC (inverters), and AC-AC (cyclo-converters and matrix 

converters). 

A few years ago, uncontrollable switches constituted inverter systems. With the 

development of semiconductor switches, more and more uncontrollable switches have 

been replaced by controllable switches. Also, diode-based semiconductors have been 

increasingly replaced by transistor-based semiconductors, such as insulated-gate 

bipolar transistor (IGBT), integrated gate-commutated thyristor (IGCT), metal–oxide–

semiconductor field-effect transistor (MOSFET). 

      Employing an appropriate Pulse Width Modulation (PWM) technique, the 

output voltage or current can be improved. The main goal of this modulation technique  
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is to attain the maximum voltage and keep minimum Total Harmonic Distortion. There 

are two major types of PWM schemes. The most basic PWM is the Sinusoidal Pulse 

Width Modulation (SPWM). The high frequency carrier-wave is compared with the 

sinusoidal modulation wave to generate an appropriate gating signal for the inverters. 

The other type PWM, i.e., Space Vector Pulse Width Modulation (SVPWM), although 

appearing different to SPWM, has a strong implicit relationship with SPWM [9-13]. 

The gating time of each power switch is directly calculated from the analytical time 

equations in SVPWM. 

      The PWM technique is utilized in the inverter to output an AC voltage with 

variable frequency and amplitude. The input to the inverter is DC voltage, usually 

obtained from DC voltage or battery.  

      PWM and control of a power electronic inverter have attracted much attention 

for three decades. Research is still active in this area and several schemes have been 

suggested in the literature [5-6]. It is easier to apply the PWM than before  

because of modern signal processing devices, such as fast digital processors, 

microcontrollers, and Field Programmable Gate Arrays (FPGA).  

      The output voltage quality at the inverter side could be improved by using active 

or passive filters. Today, passive filtering is widely used at the output of the inverter. 

Such filters are hardware circuits installed in electric drive systems. The most common 

filters are based on resistors, inductors, and capacitors (LC filters).  
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The passive LC filters reduce the total harmonic distortion in both motor and 

line sides. However, in an electric drive system, instability may appear in case of 

electric resonance between L and C parameters. Then active damping techniques could 

be used to resolve the problem of instability and suppress the LC resonance at the same 

time. 
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Chapter 3  

MODELING OF PERMANENT MAGNET SYNCHRONOUS MOTOR 

3.1 Space Vector Representation 

Building a mathematical model of a permanent magnet synchronous motor (PMSM) is 

the first step to the design and application of a control system. Three-phase motor 

control system can be significantly simplified when a space vector method is adopted. 

Thus, the concept of a space vector is introduced first before designing a controller for 

a PMSM. A three-phase AC motor can be represented by using the space vector model 

[7-15], as shown in [6]. The space vector represents AC motor variables, such as current, 

voltage and flux. Using the space vector principle to AC motors, the variables in three-

phase ABC system are transformed to an α-β stationary frame (called Clark 

transformation), or d-q rotating frame (called Park transformation). 

3.1.1 Clark Transformation 

As shown in Figure 3.1, three-phase current is represented in the α-β stationary frame.  

Figure 3.1 Stator current Vector in an α-β stationary frame. 
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Usually, AC motor stator three-phase currents are defined as isA, isB and isC. The stator 

current vector isα and isβ are described in a complex form: 

is = isα + jisβ                         (3.1) 

 where 

isα = Re
2

3
isA + aisB + a2isC (3.2) 

isβ = Im
2

3
isA + aisB + a2isC (3.3) 

                  a =𝑒𝑗
2

3
𝜋

  (3.4)

 a2=𝑒𝑗
4

3
𝜋

(3.5)

isA + isB + isC=0 (3.6)

 

Figure 3.2 is in a three-phase frame and an α-β stationary frame. 

As shown in Figure 3.2, is has two components separately in α and β axes. isα and isβ 

can be calculated from: 

isα = isA (3.7) 

isβ = 
1

√3
 (isA + 2isB)                   (3.8) 
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This is equivalent to 

                [
𝑖𝑠𝛼
𝑖𝑠𝛽

] = [
1 0 0
1

√3

2

√3
0] [

𝑖𝑠𝐴
𝑖𝑠𝐵
𝑖𝑠𝐶

]                    (3.9) 

The above transformation is named as Clark transformation. 

The inverse Clark transformation from an 𝛼-𝛽 stationary frame to a three-phase ABC 

system is 

 [
𝑖𝑠𝐴
𝑖𝑠𝐵
𝑖𝑠𝐶

] = 

[
 
 
 

1 0

−
1

2
−

√3

2

−
1

2

√3

2 ]
 
 
 

 [
𝑖𝑠𝛼
𝑖𝑠𝛽

]                    (3.10) 

3.1.2 Park Transformation 

As shown in Figure 3.2, three-phase current is represented in the d-q rotating frame. 

Park transformation aims to transform variables in an 𝛼-𝛽 stationary frame to a d-q 

rotating frame. 

 

Figure 3.3 Stator current Vector in a d-q rotating frame. 

The current vector in d-q frame is 

is = isd + jisq                                      (3.11) 

which is equivalent to  
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is (isαcose isβsine) + j(isβcose－isαsine)       (3.12) 

This is equivalent to 

[
𝑖𝑠𝑑
𝑖𝑠𝑞

] = [
cos𝑒 sin𝑒
−sin𝑒 cos𝑒

] [
𝑖𝑠𝛼
𝑖𝑠𝛽

]              (3.13) 

The inverse Park transformation is  

[
𝑖𝑠𝛼
𝑖𝑠𝛽

] = [
cos𝑒 −sin𝑒
sin𝑒 cos𝑒

] [
𝑖𝑠𝑑
𝑖𝑠𝑞

]              (3.14) 

Combining Clark transformation with Park transformation givers the Park-Clark 

transformation from three-phase variables to a d-q rotating frame. 

The stator current transformation from three-phase to d-q rotating frame is 

[
𝑖𝑠𝑑
𝑖𝑠𝑞

] = [
cos𝑒 cos (𝑒 −

2𝜋

3
) cos (𝑒 −

4𝜋

3
)

−sin𝑒 −sin(𝑒 −
2𝜋

3
) −sin(𝑒 −

4𝜋

3
)
] [

𝑖𝑠𝐴
𝑖𝑠𝐵
𝑖𝑠𝐶

]    (3.15) 

It is much simplified that using Clark transformation and Park transformation 

to calculate stator current 𝑖𝑠𝑑 and 𝑖𝑠𝑞 instead of three-phase currents isA, isB and isC

In field oriented control system, 𝑖𝑠𝑑   is commonly kept in zero. So the only stator 

current need to be calculated is 𝑖𝑠𝑞. The details are discussed in chapter 5.

3.2 Model of Permanent Magnet Synchronous Motor 

The interesting fact about the mathematical model of permanent magnet synchronous 

motor (PMSM) in the d-q rotating frame is that the current and voltage variables are no 

longer sinusoidal signals. Instead, they are changed to DC signals. In this way, the 

reference signals in d-q rotating frame are capable to be constants or step signals, which 

explains why PI controllers are widely used for PMSM drive systems.  
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      It is convenient to design a control scheme for PMSM by representing a PMSM 

model in a d-q rotating frame instead of a three-phase frame. The variables 

transformation is realized according to Clarke Transformation and Park Transformation, 

using the equations presented earlier in this chapter. 

      Mathematical models of the a PMSM in the d-q rotating frame can be 

represented as differential equations of stator variables, i.e.,  

           
𝑑𝑖𝑑

𝑑𝑡
 = −

𝑅𝑠

𝐿𝑑
𝑖𝑑 +

𝐿𝑞

𝐿𝑑
𝜔𝑟𝑖𝑞 +

1

𝐿𝑑
𝑢𝑑                    (3.16) 

 
𝑑𝑖𝑞

𝑑𝑡
 = −

𝑅𝑠

𝐿𝑞
𝑖𝑞 −

𝐿𝑑

𝐿𝑞
𝜔𝑟𝑖𝑑 −

1

𝐿𝑞
𝜔𝑟𝜓𝑓 +

1

𝐿𝑞
𝑢𝑞          (3.17) 

𝑑𝜔𝑟

𝑑𝑡
= 

1

𝑇𝑀
[𝜓𝑓𝑖𝑞 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝑖𝑞 − 𝑡𝑙]               (3.18) 

𝑑𝜃𝑟

𝑑𝑡
= 𝜔𝑟                         (3.19) 

where 

ud: Stator voltage at to d axes. 

uq: Stator voltage at to q axes. 

id: Stator current at to d axes. 

iq: Stator current at to q axes. 

Rs: Stator resistances. 

Rd: Rotor resistances at to d axes. 

Rq: Rotor resistances at to q axes. 

Ld: Rotor inductances at to d axes. 

Lq: Rotor inductances at to q axes. 

ωr: Rotor angular speed 
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J: Moment of inertia 

𝑡𝑙: Load torque 

𝑇𝑀: Mechanical time constant 

𝜓𝑓: Permanent magnet flux 

            The scheme of the PMSM in a d-q frame is shown in Figure.3.3. In the PMSM, 

the main magnetic field is produced by permanent magnets. Those magnets are placed 

on the rotor. Assuming the stator current has no effect on the magnet field, the flux is 

constant during operation. However, in reality the stator current produces its own  

 

     

Figure 3.4 Scheme of the PMSM in a d-q frame. 

magnetic field influencing the original one. This phenomenon is called armature 

reaction. Consequently, the stator flux consists of two fluxes. 

𝜓𝑑 = 𝐿𝑑𝑖𝑑 + 𝜓𝑓                     (3.20) 

𝜓𝑞 = 𝐿𝑞𝑖𝑞                          (3.21) 
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where the stator leakage fluxes 𝜓𝑙𝑑 and 𝜓𝑙𝑞 satisfy 

𝜓𝑙𝑑=𝐿𝑑𝑖𝑑                         (3.22) 

𝜓𝑙𝑞 = 𝜓𝑞 = 𝐿𝑞𝑖𝑑                      (3.23) 

At no load condition, the armature reaction is usually neglected because of the very 

small amounts of stator current. The produced torque of a PMSM in the d-q frame is 

𝑇 =
3

2
𝑧𝑃𝜓𝑓𝑖𝑞                         (3.24) 

where 

𝑧𝑃 is the number of pole pairs. 

The maximum rotor speed can be identified as: 

                           𝜔𝑚𝑎𝑥 =
𝐸𝑚𝑎𝑥

𝜓𝑠
                         (3.25) 

where 

𝐸𝑚𝑎𝑥: The maximum phase voltage in a PMSM. 

𝜓𝑠: Stator flux 

ω𝑚𝑎𝑥: Maximum rotor speed for rated flux. 

Higher rotor speed can be obtained by weakening the stator flux. An appropriate rotor 

speed and torque are decided by the stator current. That is why the stator current is 

control objective in the control system of PMSM.  
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CHAPTER 4                                               

THIRD-HARMONIC INJECTION PULSE WIDTH MODULATION OF 

POWER ELECTRONIC INVERTER 

4.1 Pulse Width Modulation 

A Pulse Width Modulation (PWM) technique is increasingly used in a PMSM control 

system. It is a convenient and fast method to output AC signals with variable amplitude 

and frequency. PWM is usually classified in sinusoidal carrier-based PWM (SPWM) 

and space vector PWM (SVPWM). In the SPWM scheme, the three-phase modulating 

waves are compared with a triangular high frequency carrier to determine when an 

electronic switch is on or off. In the SVPWM scheme, an electronic switch is on when 

its leg average voltage vector is equal to the sampled reference vector in every 

switching period. Nowadays, SPWM is an important part of control system of PMSM 

in quadcopters. In this thesis, a PMSM control system take full advantage of SPWM. 

       An SPWM scheme includes a sinusoidal or cosine modulating signal and a 

high frequency carrier signal. Usually, a triangular wave is chosen as a carrier signal, 

as it offers good harmonic performance. 

       Nowadays, the transistor-based IGBT inverters are most commonly used. Here 

is an example to explain how a three-phase SPWM works. As shown in Figure 4.1, this 

is a DC/AC three-phase inverter model. Every IGBT is an electronic switch represented 

by S1 to S6. Vdc is a DC voltage source and the DC voltage will be transformed to AC 

voltage. Three-phase loads are represented by R-L1 to R-L3. They receive the three- 
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phase voltage from the inverters.  

  

Figure 4.1 DC/AC three-phase inverter model. 

The IGBT switches’ gating signals are generated at the instant overlap of 

sinusoidal modulating signal and a triangular carrier signal. Phase A has upper switch 

S1 and lower switch S4. If the sinusoidal modulating signal amppitude Vs is more than 

-  

Figure 4.2 Modulating signal and carrier signal. 
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the carrier signal amplitude VT, i.e. Vs≥VT , the upper swith S1 is on and lower swith 

S4 is off. If the former is less than the latter, the upper swith S4 is on and the upper 

swith S1 is off. The average leg voltage amplitude VAO of the inverter is  

                       VAO =m
𝑉𝑑𝑐

2
                        (4.1) 

where m is a modulation index and Vdc is DC voltage. 

      In a three-phase SPWM system, leg voltages, phase-to-neutral voltages and line 

voltages are very important. Leg voltages VAO, VBO and VCO are listed in Table 4.1. 

Phase-to-neutral voltages VAn, VBn and VCn are listed in Table 4.2. Line voltages VAB, 

VBC and VCA are listed in Table 4.3.  

Table 4.1 Leg voltages of three-phase SPWM 

Switches On Leg voltage VAO Leg voltage VBO Leg voltage VCO 

S1, S2, S5 0.5Vdc −0.5Vdc 0.5Vdc 

S1, S2, S6  0.5Vdc −0.5Vdc −0.5Vdc 

S1, S2, S3  0.5Vdc 0.5Vdc −0.5Vdc 

S2, S3, S4 −0.5Vdc 0.5Vdc −0.5Vdc 

S3, S4, S5 −0.5Vdc 0.5Vdc 0.5Vdc 

S4, S5, S6 −0.5Vdc −0.5Vdc 0.5Vdc 

       

In this example, m=1 and Vdc=2V. The VAO amplitude is 1V. As shown in Figure 

4.3, the VAO curve is between -1V and 1V. VAO is an AC waveform, which explans that 

the DC voltage is transformed to an AC voltage. 



26 

 

 

Figure 4.3 VAO curve. 

 

Table 4.2 Phase-to-neutral voltages of three-phase SPWM 

Switches 

On 

Phase-to-neutral 

voltage  

VAn 

Phase-to-neutral 

voltage 

 VBn 

Phase-to-neutral 

voltage 

VCn 

S1, S2, S5 1/3Vdc −2/3 Vdc 1/3 Vdc 

S1, S2, S6  2/3 Vdc −1/3 Vdc −1/3 Vdc 

S1, S2, S3  1/3 Vdc 1/3 Vdc −2/3 Vdc 

S2, S3, S4 −1/3 Vdc 2/3 Vdc −1/3 Vdc 

S3, S4, S5 −2/3 Vdc 1/3 Vdc 1/3 Vdc 

S4, S5, S6 −1/3 Vdc −1/3 Vdc 2/3 Vdc 

      In this example, m=1 and Vdc=2V. From the Table 4.2, we can calculate that 

1

3
Vdc=

2

3
V, 

2

3
Vdc=

4

3
V, −

1

3
Vdc=−

2

3
V, and −

2

3
Vdc=−

4

3
V. As VAn curve is shown in Figure 

4.4. 
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Figure 4.4 VAn curve. 

Table 4.3 Line voltages of three-phase SPWM 

Switches On Line voltage VAB Line voltage VBC Line voltage VCA 

S1, S2, S5 Vdc −Vdc 0 

S1, S2, S6  Vdc 0 −Vdc 

S1, S2, S3  0 Vdc −Vdc 

S2, S3, S4 −Vdc Vdc 0 

S3, S4, S5 −Vdc 0 Vdc 

S4, S5, S6 0 −Vdc Vdc 

 In this example, m=1 and Vdc=2V. From the Table 4.2, we can calculate that 

Vdc=2V and −Vdc=−2V. As VAB curve is shown in Figure 4.5. 
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Figure 4.5 VAB curve. 

The output voltage of SPWM is limited to 0.5Vdc. This voltage may be 

insufficient for a high-speed motor operation. To enhance the output voltage, third-

harmonic is injected in the modulating signal.  

4.2 Third-harmonic Injection Pulse Width Modulation 

 

The three-phase modulating signals with injection of third-harmonic are 

  VA= VA1 sin (𝜔𝑡)+ VA3 sin (3𝜔𝑡) 

VB= VB1 sin (𝜔𝑡)+ VB3 sin (3𝜔𝑡)                (4.2) 

                       VC= VC1 sin (𝜔𝑡)+ VC3 sin (3𝜔𝑡) 
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As shown in Figure 4.6, sinusoidal modulating signals is added a third-harmonic 

and create a new resultant modulating signal. The peak value in the resultant modulating 

signal is less than the original sinusoidal modulating signal. That leads a higher output 

  

Figure 4.6 Sinusoidal modulating signals with injection of third-harmonic. 

voltage at the inverter. The third-harmonic cancels out in the IGBT legs and does not 

appear in the output leg voltages. Thus, the output voltage does not contain the 

undesired low-order harmonic.   
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CHAPTER 5   

FIELD ORIENTED CONTROL OF PERMANENT MAGNET 

SYNCHRONOUS MACHINE 

 

5.1 The Principle of Field Oriented Control 

Dated back to the beginning of 1970s, the principle of torque and flux control called 

‘field oriented control ’or ‘vector control’ was introduced. This control method was 

firstly used for induction machines and later for synchronous machines. The essential 

idea relies on the use of alternating current (AC) machine stator current space vectors 

to control an AC machine in a similar way to a direct current (DC) machine.  

      Most types of AC motors cannot be controlled as easily as DC motors. To design 

an AC motor model, the magnetic flux and torque should be decoupled for maintaining 

linearity between input and output. The dynamic models of AC machines are nonlinear 

and more complex than those of DC machines. 

      It is possible to solve this problem by using space vector representations of AC 

machines. The field oriented control methods allow representation of AC machines to 

obtain control linearity, decoupling, and high performance drives. This method was first 

formulated by Blaschke [13]. Field oriented control aims to decouple torque and flux. 

      It is easy to decouple flux and torque for DC motors. But it is not so simple for 

AC motors. For example, in squirrel cage AC motors, the only current signal would be 

received is stator current signal because the rotor current is not accessible. The torque  
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production depends on the armature current and machine flux. Keeping constant flux 

would build a linear relationship between motor and armature current. However, using 

stator current to calculate flux will leads to a nonlinear flux and torque. In this way, 

linear control of torque is difficult to achieve. 

      By using a vector control AC motor model, torque can be controlled separately 

from the flux. In this way, decoupled control between the two subsystem is achieved 

when the flux is kept constant.  

5.2 Basic Field Oriented Control of PMSM Scheme 

This thesis focus on using field oriented control for a permanent magnet synchronous 

motor (PMSM). The model of PMSM is discussed in Chapter 3. Figure 5.1 describes 

the basic scheme of vector control of a PMSM. In typical PMSM drive system, PMSM 

three phase currents are measured. The measured currents are transformed using the  

 

Figure 5.1 Field oriented control of PMSM scheme. 
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Clarke transformation into a stationary frame (𝛼-𝛽) Isα and Isβ. These two currents then 

are transformed into rotating frame (d-q) Isd and Isq. The PI controllers compare the  

command values with the measured values to judge the operation condition. 

     The outputs of the controllers are transformed from a rotating frame to stationary 

frame by using the Park transformation. The commanded signals of the vector are sent 

to the pulse width modulation (PWM) block.  

      Previously, field oriented control is not used together with PWM in quadrotors 

as shown in the Figure 5.2 shown. The dynamic response of this control system is not 

as good as field oriented control with PWM. For this reason, field oriented control and 

Figure 5.2 Field oriented control without PWM scheme. 

PWM are always used together at present. However, inverters would create undesired 

harmonic in the circuit by using PWM. Harmonic could bring unsatisfied dynamic 

response such as speed ripple. To overcome this problem, this thesis proposes a third-

harmonic method injection PWM method. The simulation results of third-harmonic 
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injection PWM field oriented control of PMSM and traditional field oriented control 

are compared. This comparison proves that third-harmonic injection PWM field 

oriented control of PMSM provides a faster dynamic response and reduced the speed 

ripples during operation. 
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CHAPTER 6 

REALIZATION OF FIELD ORIENTED CONTROL OF PERMANENT 

MAGNET SYNCHRONOUS MACHINE WITH THIRD-HARMONIC 

INJECTION PULSE WIDTH MODULATION  

 

6.1 Simulation of FOC of PMSM with Third-Harmonic Injection 

Quadcopters’ autonomous operations mostly depend on the dynamic responses of their 

motors. This chapter focuses on the realization of field oriented control (FOC) of 

permanent magnet synchronous machine (PMSM) with third-harmonic injection pulse 

width modulation (PWM) by using MATLAB/Simulink. The simulation result is 

compared with FOC of PMSM without third-harmonic injection PWM. The 

comparison proves that FOC of PMSM with third-harmonic injection PWM will 

provide a faster dynamic response and reduces the speed ripple during operation. Using 

the FOC of PMSM allows similar dealings with the motor as with a direct current (DC) 

motor. The produced torque of motor could be presented as  

𝑡𝑒 =
3𝑍𝑃

2
[𝜓𝑓𝑖𝑞 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝑖𝑞]                (6.1) 

where 𝑍𝑃 is the number of pole pairs in a PMSM. 

The scheme of FOC of PMSM with third-harmonic injection PWM is shown in 

the Figure 6.1. It consists of a PMSM model and control system in the d-q rotating 

frame connected with the rotor spend loop.  
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Figure 6.1 Scheme of FOC of PMSM with third-harmonic injection PWM. 
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      Keeping 𝑖𝑠𝑑 = 0 is the common control for PMSM. It helps protect the motor 

against under or over excited conditions. 

      The PMSM in the d-q rotating frame is given in chapter 2. The essential process 

is using third-harmonic injection PWM to create inverters’ gate signals. This is shown 

in Figure 6.2. The block a, block b and block c are three phase sinusoidal currents to 

generate a third-harmonic. Then this third-harmonic is injected to the original 

sinusoidal three-phase current. The ‘≥’ blocks represent the electronic switches. The 

principle of PWM to control electronic switches is given in chapter 4.  

 

Figure 6.2 Third-harmonic injection PWM injection.  
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      The simulation result of FOC of PMSM with third-harmonic injection PWM is 

given in Figure 6.3. The PMSM parameters are shown in Table 6.1. We want to adjust 

the speed fast while reducing speed ripples. 

Table 6.1 PMSM parameters 

Parameter Value Unit 

Stator Resistance 1.5 Ohm 

Inductance Ld 0.007 H 

Inductance Lq 0.0058 H 

Inertia 0.0038 Kg*m^2 

Friction Vicious Gain 0.00035 Nm/rad/s 

Flux 0.1546 Wb 

Torque 7 Nm 

Number of Poles 6 P 

DC Source 50 V 

      At first, the command speed is set to 500 rpm and the load torque is 10 Nm. 

Simulation stop time is 0.2s. The blue curve represents the command speed and the red 

one represents the real speed response. In the [0.01,0.015] interval, the peak value of 

the red curve is 575 rpm and the minimal value is 386 rpm. The biggest difference value 

between them is 189 rpm. After 0.04s, the speed becomes stable obviously. The torque 
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response is shown in Figure 6.4. After 0.1s, the torque is stable. Figure 6.5 shows the 

two phase currents Id and Iq in a d-q rotating frame. 

 

Figure 6.3 500 rpm speed response. 
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Figure 6.4 500 rpm torque response. 

 

Figure 6.5 Id and Iq in a d-q rotating frame. 
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      The three-phase currents are calculated by Id and Iq. When the quadcopter is in 

a stable operation, the output currents of PMSM should look like three-phase sinusoidal 

curves, as shown in Figure 6.6. 

 

Figure 6.6 Three-phase currents curves. 

       Also, the quadcopter should have an ability to adjust speed quickly. Figure 6.7 

shows the simulation result. The speed is changed to 500 rpm from 1000 rpm at 0.1s. 

The speed ripples reduced quickly from 0.1 to 0.16s obviously. 

 

Figure 6.7 Speed changes from 500 rpm to 1000 rpm. 
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6.2 Comparison of Simulation of FOC of PMSM with Third-Harmonic Injection 

and Traditional FOC of PMSM 

To compare the FOC of PMSM with third-harmonic injection and traditional FOC of 

PMSM, quadrotor’s practical operations are simulated in MATLAB. As we known, a 

quadrotor can move in vertical direction and horizontal direction. This thesis focuses 

on controlling a quadrotor’s movement in vertical direction. Because researching on 

controlling a quadrotor’s horizontal movements needs more knowledge of 

aerodynamics besides electrical engineering. Future work will relate to the quadrotor’s 

movement in a horizontal direction. 

      Figure 6.8 shows the quadrotor’s vertical ascending motion scheme. Increasing  

the output power of four motors at the same time, the total tension created by motors is 

getting bigger. When the total tension is enough to overcome the weight of the 

quadrotor, the quadrotor will rise vertically from the ground.  

 

 

 

Figure 6.8 Quadrotor’s rising vertical motion scheme. 

      FOC of PMSM with three-harmonic injection to realize a quadrotor’s vertical 

ascending motion is simulated, as shown in Figure 6.9. This result is compared to 

traditional FOC of PMSM, as shown in Figure 6.10. The PMSM speed is set to 1500rpm. 
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Figure 6.9 1500rpm with FOC of PMSM with three-harmonic injection. 

 

Figure 6.10 1500rpm with traditional FOC of PMSM. 
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Figure 6.11 Comparison two control methods at 1500rpm. 

      To compare these two results fairly, Figure 6.9 and Figure 6.10. are set in same 

size. As shown in Figure 6.11, in interval [0.04,0.06], traditional FOC of PMSM has 

more speed ripples. That means FOC of PMSM with three-harmonic injection reduces 

the motor speed ripples quickly. After 0.06s, the motor is stable by using FOC of  

PMSM with three-harmonic injection. Tradition FOC of PMSM needs more 0.02s to 

make the motor stable. From this comparison, we can find that FOC of PMSM with 

three-harmonic injection not only has a better dynamic response than traditional FOC 

of PMSM but also reduce the motor speed ripples.  

      Then we try to increase the speed quickly from 500rpm to 1500rpm at 0.1s. In 

this way, a quadrotor has an accelerating rising velocity. The simulations of two control 

methods are shown in Figures 6.12-6.13. 
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Figure 6.12 From 500rpm to 1500rpm with FOC of PMSM with three-harmonic 

injection. 

 

 

Figure 6.13 From 500rpm to 1500rpm with traditional FOC of PMSM. 
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Figure 6.14 Comparison between two control methods at from 500rpm to 1500rpm. 

      Traditional FOC of PMSM creates more red curve ripples in interval [0.05,0.1] 

and [0.04,0.06]. After 0.2s, motor is stable by using FOC of PMSM with three-

harmonic injection. Traditional FOC of PMSM makes a motor stable after 0.25s. This 

comparison shows that FOC of PMSM with three-harmonic injection still has a better  

 

dynamic response with fewer speed ripples when the motor speed is changed quickly. 

      Sequentially changing rising velocity randomly and quickly is a challenge to 

control a quadrotor. FOC of PMSM with three-harmonic injection can satisfy this high 

requirement. The simulation result is also compared that with traditional FOC of PMSM. 

The motor speed is set to 500rpm at the beginning and then changed to 1000rpm, 

1500rpm, 800rpm and back to 500rpm every 0.2 second. 
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Figure 6.15 Random speed with FOC of PMSM with three-harmonic injection. 

 

 

Figure 6.16 Random speed with traditional FOC of PMSM. 
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Figure 6.17 Comparison between two control methods at random motor speed. 

      In intervals [0.2,0.4], [0.4,0.6] and [0.6, 0.8], we can recognize that the red curve 

created by resulting from traditional FOC of PMSM has more ripples obviously. In this 

complex situation, FOC of PMSM with three-harmonic injection still have a better 

dynamic response with fewer speed ripples 

      On the other hand, landing is as important as rising for a quadrotor. However, a 

quadrotor cannot land at a high speed. It depends on the height from the ground and 

other environmental conditions. Basically, a quadrotor should decelerate gradually 

during landing. Simulation results of the two control methods are shown in Figure 6.18. 

The motor speed is set to decelerate 100rpm every 0.2 second. The two FOC methods 

have a similar dynamic response in this situation.    
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Figure 6.18 Motor speed reduction by the two control methods.  
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Chapter 7  

CONCLUSION 

 

7.1 Contributions of This Thesis 

The selection of a control method for a quadrotor depends on its types of motors. The 

latest quadrotors are using permanent magnet synchronous motors. This thesis makes 

the following contributions. 

      (1) Making literature review about field oriented control, permanent magnet 

synchronous motor and pulse width modulation. 

Field oriented control is an effective and convenient method for such motors.  

It aims to decouple torque and flux of a permanent magnet synchronous motor. This 

method allows representation of AC machines to obtain control linearity, decoupling, 

and high performance drives. To simplify the model of a permanent magnet 

synchronous motor, Clark transformation and Park transformation are introduced. Then 

the control objects are changed to two-phase stator currents in a d-q frame instead of 

the three-phase stator currents. Pulse width modulation changes a Direct Current (DC) 

voltage to an Alternating Current (AC) voltage to supply the permanent magnet 

synchronous motor installed in a quadrotor.  

      (2) Proposing the method: field oriented control with third-harmonic injection 

PWM 

To improve control quality will often develop a traditional control system. The 
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method proposed in this thesis has developed a power electronic scheme for the 

traditional field oriented control. Third-harmonic is injected to sinusoidal modulating 

signals to create a new resultant modulating signal. The cost of the control system may 

be raised because of extra power electronic devices. The results of field oriented control 

with third-harmonic injection PWM have resulted in a better dynamic response than the 

traditional one. In addition, it can reduce the speed ripples for permanent magnet 

synchronous motors. Thus, this method can satisfy a quadrotor’s high requirements of 

fast and precise control.  

7.2 Limitations and Future Work 

      In this thesis, only the vertical motion is considered for a quadrotor. The future 

work will include controlling a quadrotor in a horizontal direction. Aerodynamics have 

to be considered in order to build a control model for a quadrotor. A more complex 

control system is expected. Also, obstacle avoidance is a hot topic to study. It is the task 

of satisfying a quadrotor to non-intersection or non-collision position constraints. 

Image processing should be implemented in the control system to realize this operation. 
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