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ABSTRACT 

 

DENOISING TECHNIQUES REVEAL NEURAL CORRELATES OF 

MODULATION MASKING RELEASE IN AUDITORY CORTEX 

 

By 

Sahil Chaubal 

 

Hearing aids allow hearing impaired (HI) individuals to regain auditory perception in quiet 

settings. However, despite advances in hearing aid technology, HI individuals do not 

perform as well in situations with background sound as normally hearing (NH) listeners. 

An extensive literature demonstrates that when comparing tone detection performance in 

background noise, NH listeners have better thresholds when that noise is temporally 

modulated as compared to temporally unmodulated. However, this perceptual benefit, 

called Modulation Masking Release (MMR), is much reduced in HI listeners, and this is 

thought to be a reason for why HI listeners struggle in the presence of background sound.  

  This study explores neural correlates of MMR in NH and HI gerbils. Trained, 

awake gerbils (Meriones unguiculatus) listen passively to a target tone (1 kHz) embedded 

in modulated or unmodulated noise while a 16-channel microelectrode array records multi-

unit neural spike activity in core auditory cortex. In addition, microelectrodes also record 

nuisance signals due to animal movements and interference in the wireless recording setup. 

The current study examines the potency of three different denoising algorithms using signal 

detection theory. The first, amplitude rejection (AR) classifies events based on amplitude. 

The second, virtual referencing (VR) applies subtraction of a virtual common ground 

signal. The third, inter-electrode correlation (IEC) compares events across electrodes to 

decide whether to classify an event as noise or as spike. Using Receiver-Operator-

Characteristics (ROC), these classifiers were ranked. Results suggest that combining IEC 



and VR leads to best denoising performance. Denoised spike train reveals a robust 

correlation of spike rate with behavioral performance. Results hint that neural correlates of 

MMR are not primarily based on spike rate coding, at least in the core auditory cortex. 
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CHAPTER 1 

INTRODUCTION 

 

Most hearing impaired (HI) listeners can detect and identify sound cues in a quiet 

environment, but struggle to hear when background sound masks these cues. The ability to 

detect sound cues depends on the nature of the masking sound. Specifically, maskers may 

be temporally stationary (unmodulated) or fluctuating (modulated). Target detection 

performance for these maskers generally improves with increasing signal-to-noise energy 

ratio between target and maskers. Furthermore, tone detection performance is generally 

better with a modulated masker when compared with an unmodulated masker. One possible 

strategy that listeners may utilize in modulated background sound is to listen in the 

energetic dips of the masker where the SNR is high. Indeed, Normal Hearing (NH) listeners 

can take  advantage of dips of the time-varying noise and “listen in the dips” of fluctuating 

background noise (masking) to extract information from the target signal, a process termed 

a “dip-listening” (Jin et al., 2010, Ihlefeld et al., 2012) (Figure 1.1). 

 
Figure 1.1 Dip-Listening. When the sound cues (target in red) and fluctuating background 

noise (masker in black) are heard at the same time, normal hearing listeners can extract 

target information during the dips (pointed arrows) of the masker, this is called dip-

Listening.  
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Auditory sensitivity declines for NH and HI listeners in noisy environments, 

through masking, but it can improve when this masker level fluctuates, a phenomenon 

referred to as masking release (Hall et al., 1994, review: Verhey et al., 2003). A common 

test of masking release presents a target tone in the presence of a narrowband noise that is 

centered at the target frequency. There is an improved performance in tone detection with 

modulated masker as compared to unmodulated masker. This improved performance can 

be further enhanced by adding a band of noise (flanking band), which is spectrally remote 

from the target signal on the frequency spectrum (Figure 1.2). The flanking band must be 

coherently modulated with the Modulated and the unmodulated on-target masker. This 

perceptual benefit is called Modulation Masking Release (MMR).  

Previous studies show that along with humans there are other species which can 

benefit from MMR (Goense and Feng, 2012, Gleich et al., 2007). For example, Mongolian 

gerbils (Meriones unguiculatus) can benefit from MMR (Wagner 2002; Gleich et al., 

2007), and are a suitable model for studying the effect of hearing loss. 

To study the effect of MMR in the central auditory system, neural recordings from 

auditory cortex of NH and HI gerbils were obtained during target detection in MMR 

condition at different sound intensities (dB SPL). Intracortical microelectrode arrays offer 

the spatial and temporal resolution to record spike activity (Schwartz AB, 2006).  

Specifically, the electrical activity is measured over a population of neurons by placing one 

or more electrodes that are closely spaced into the core auditory cortex and a ground 

electrode that is some distance away from the recording electrodes. Once electrodes are 

implanted, they record neural activity in a discrete brain area by transducing extracellular 

spike activity into voltage signals that are amplified and stored for further analysis. 
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Figure 1.2 Stimulus Design. A) Unmodulated on-target noise. B) Modulated on-target 

noise.  

Source: Antje Ihlefeld, Yi Wen Chen, Dan H. Sanes. (2016). Developmental Conductive Hearing LOSS 

Reduces Modulation Masking release. 
  
 

These electrodes were positioned in the left auditory cortex with ground wire was 

inserted contralaterally. A 16-channel wireless headstage and receiver was used in 

conjunction with a preamplifier and analog-to-digital converter (Buran, von Trapp, & 

Sanes, 2014) (Figure 1.3). Example voltage traces of the recorded electrophysiological 

signals are shown in Figure 1.4. 
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Figure 1.3 Experiment Block Diagram. In this experiment, Microelectrodes (2A) are 

inserted in the left auditory cortex of Gerbil (1). The neural activity received in the form of 

voltage is preamplified (2B) and transmitted wirelessly (2C).At the receiver (3) the signal 

received is digitized at Analog to digital converter (4) and sent to the computer (5) where 

the electrophysiological signal (Figure 1.4) is viewed. 

 

 

 

 
Figure 1.4 The electrophysiology signal from 16 electrodes after multi-unit study. The 

voltage traces received from the auditory cortex of the Gerbil in trials of different masker 

type. The above figure shows two trials without the presence of common noise 

(uncontaminated), the experienced researcher marks such trials as “uncontaminated” trials.   
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During recordings, animals were awake and non-restrained inside the recording 

cage. As animals groom, chew and accidently bang against the cage structure, these 

physical movements cause addition of nuisance signals to the desired neural discharge. 

Therefore, in addition to multi-unit neural spike activity, microelectrodes also record 

electromyographic activity (EMG) from muscles, especially mastication signals, and 

relatively large signals generated by abrupt animal movements, or interference with the 

recording setup (Gilmour et al., 2006, Paralikar et al., 2009). This adds nuisance noise to 

the signal. These non-neural nuisance signals have similar spectral and temporal 

characteristics as the desired neural signals, complicating the detection of neural spikes. 

To get a first order approximation, this nuisance noise should present in all 

recording electrodes and is thus referred to as common noise. Those trials during a 

recording session where common noise was presented are referred to as contaminated 

trials. When the combined voltage of neural spikes and common noise exceeds the 

threshold defined by a criterion respective of the channel, it is referred to as a spike event. 

Spike-detection schemes that involve threshold-based neural spike detection on an 

electrode by electrode basis may suffer from high false-positive detection due to the 

presence of common noise, thereby negatively impacting spike-sorting operations.  

In this study, we tested how three different classifiers performed for eliminating 

these recording artifacts. Specifically, these classifiers were compared and ranked using 

signal detection theory. We then used the best classifier to denoise the data. Analyzing the 

clean data reveals a modest correlation between mean neural firing rate in auditory cortex 

and behavioral sensitivity. 
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CHAPTER 2 

BACKGROUND 

 

2.1 Modulation Masking Release 

A recent study by Ihlefeld et al. measured behavioral threshold for tone detection for NH 

and HI gerbils. The ability to detect a tone in a background of modulated or unmodulated 

masking nose at different sound intensity level (TMR-target masker ratio) was measured, 

and the percent correct scores were fit by logistic psychometric function (Ihlefeld et al., 

2016). The results were converted into d’ (d-prime) scores, by calculating the difference in 

z-scores of hit rate versus false alarm rate, to correct for the bias (Klein, 2001). 

 
Figure 2.1 Sketch of psychometric curves for Normal Hearing animals. Redrawn from the 

fitted psychometric curves derived in this study.  
Source: Developmental Conductive Hearing Loss Reduces Modulation Masking release, Antje Ihlefeld, Yi 

Wen Chen, Dan H. Sanes. (2016). 
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Figure 2.2 Threshold for Normal Hearing at both masker condition at d’=1. 
Source: Plotted from data derived in Developmental Conductive Hearing Loss Reduces Modulation Masking 

release, Antje Ihlefeld, Yi Wen Chen, Dan H. Sanes. (2016). 

 

On plotting the psychometric function, a TMR value corresponding to d’=1 are the 

TMR threshold values for their respective masker type (Figure 2.1 and Figure 2.3). The 

difference in the TMR threshold values of modulated and unmodulated noise is called the 

masking release. 

The above study for NH gerbils showed that at d’=1 the TMR threshold for 

Modulated on-target noise (M4) is -18.7 dB TMR and for Unmodulated on-target noise 

(M2) is +2.8 dB TMR (Figure 2.2). The masking release i.e. the difference in the 

Modulated and Unmodulated masker threshold is called the Modulation Masking Release 

(MMR) which is 21 dB TMR. Similarly, for HI Gerbils their TMR threshold in tone 

detection during Modulated masker is at 0.11 dB TMR and during Unmodulated masker is 

+3.8 dB TMR (Figure 2.4). The MMR for HI is 3.7 dB TMR which is very less than the 
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NH Gerbil. When comparing the TMR threshold during Modulated masker for NH and HI, 

it shows that the TMR threshold level for HI decreases by 18.5 dB, which indicates that 

sound deprivation can reduce the ability to listen in the dips of a fluctuating background 

noise (Modulated Masker). The goal of the current study is to look whether the neural 

correlates of MMR responds according to the above psychometric functions. 

  
Figure 2.3 Sketch of psychometric curves for Hearing Impaired animals. Redrawn from 

the fitted psychometric curves derived in this study.  
Source: Developmental Conductive Hearing Loss Reduces Modulation Masking release, Antje Ihlefeld, Yi 

Wen Chen, Dan H. Sanes. (2016). 
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Figure 2.4 Threshold for Hearing Impaired at both masker condition at d’=1. 
Source: Plotted from data derived in Developmental Conductive Hearing Loss Reduces Modulation Masking 

release, Antje Ihlefeld, Yi Wen Chen, Dan H. Sanes. (2016).   

 

 

2.2 Receiver Operating Characteristics 

Signal detection theory provides a precise language and graphic notation for analyzing 

decision making in the presence of uncertainty. To simplify the decision making outcomes 

across all possible criteria, the receiver operating characteristic (ROC) curve is used. The 

ROC curve is a graphical plot of how often false positive (x-axis) occur versus how often 

true positive (y-axis) occur for different criterion level. The advantage of ROC curves is 

that they can fully characterize both sensitivity and bias of a decision algorithm in one 

graph. 

ROC curves can also be used to compare the performance of two or more 

algorithms. The ROC curve is a fundamental tool of signal detection theory for evaluating 

the performance of classifiers. Figure 2.5 shows the probability density distributions of two 

populations, one population with contaminated trials, and the other population with 

uncontaminated trials.  These events are classified as either spike or artefact. As in the 
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example, where the two probability distribution overlap, a perfect separation between the 

two groups rarely occurs. However, an ideal and unbiased decision making strategy places 

criterion at the intersection between the probability densities (Wickens, 2001).  

There are two main components to the decision-making process: information acquisition 

and criterion selection. 

 

 

2.1.1 Criterion Selection (Predicted Condition) 

The criterion on the probability distribution graph divides the graph into four sections that 

correspond to: True positive (TP), False positive (FP), False negative (FN) and True 

negative (TN). 

For every changing criterion to discriminate between the two populations, there 

will be some cases in which the contaminated trials are correctly identified by the classifier 

as artefact. These trials are called True Positive. However, other trials where artefacts were 

present but which the classifier labels non-contaminated trials are termed as False 

Negative. Those uncontaminated trials that the classifier correctly identified are called True 

Negative. Trials that the classifier labels as artefacts even though only neural events were 

present are referred to as False Positive as shown in Figures 2.5 and 2.6.  
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Figure 2.5 Distribution for ROC analysis. The contaminated trial distribution on the right 

and uncontaminated trial distribution on the left. Moving the criterion value (yellow line) 

(In our study the standard deviation for AR and number of channels for IEC) step by step 

will give a point of perfect separation (least possible overlap) between these distributions. 

TN: True Negative. FN: False Negative. FP: False Positive. TP: True Positive. 

 
Figure 2.6 ROC Comparison matrix. 



  

12 

 

True positive and true negative are good, false positive and false negative are bad 

for the performance of the classifier. Using these four outcomes, the true positive rate and 

false positive rate is derived. 

 

False Positive Rate =
False Positive 

False Positive + True Negative
     (2.1) 

 

 

True Positive Rate =
True Positive

True Positive + False Negative
 

 

 

(2.2) 

 
 

 

2.1.2 Information Acquisition(True Condition)  

An important component in describing a classification algorithm is the acquisition of 

ground truth data. Ground truth is reliable information about trial being contaminated or 

not. Here, an experienced reseacher derived the ground truth by visually inpecting every 

trial of the datasets. The researcher marked all the trials as “contaminated trials” which 

appeared to have common noise due to characteristic temporal patterns commonly 

associated with animal movement which would be seen in all the channels or whose signal 

amplitude was unusually high compared to median amplitude of the recordings 

This truth condition decision is made on the basis of common noise present in all 

of the channels. One of the example, in which there is a pressence of common noise, is 

shown in the  Figure 2.7 where it is termed as contaminated trial.    
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Figure 2.7 Contaminated trial in a session. The trial on the left is an uncontaminated trial. 

In the second trial, there is a presence of common noise through all the channels (red 

circled) and termed as contaminated trial. 

 

2.1.3 ROC Plotting  

Receiver-operating characteristics can be deployed to examine the performance of a 

classifier. The following example illustrates the principle of ROC analysis. Moving the 

criterion on the probability distribution, we get the False positive rate and True positive 

rate at every level (Figure 2.8). These rates are plotted on the curve for every criterion value 

with True positive rate on the y-axis and False positive rate on the x-axis. 
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Figure 2.8 Effect of moving criterion on the probability distribution. 

 

With increasing criterion level from left to right i.e. , from C1 to Cn, the false 

positive and true positive rate goes on decreasing as shown in Figure 2.9(A) and Figure 

2.9(B). The rate of decrease for the false positive and true positive rate depends on the 

overlapping between the two distributions. Combining the amplitude information across 

multiple electrodes it is possible to obtain a sharpened distribution of potential artefacts 

and spike events, which will have minimum distribution overlap (Gockel et al., 2010). 
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Figure 2.9 Probability Distribution and ROC curve. The decision criteria moves from left 

to right in the distribution(left), giving out false positive rate and true positive rate which 

is plotted on the ROC curve(right) corresponding to the criterion level. The ROC curve 

varies with their distribution overlapping (gray). 
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2.3 ROC Comparison 

To decide the optimal denosing algorithms between the two (IEC and AR), both their 

ROC’s are compared with the area under the curve (AUC) . The accuracy of the classifier 

is measured by the area under the ROC curve (AUC) which is is calculated by trapezoidal 

rule. The area under the ROC curve (AUC) is a measure of how well the classifier can 

distinguish between two groups (common noise and normal). An area (AUC) of 1 

represents a perfect test; an area of 0.5 represents an uninformative test. The classifier 

which derives the ROC curve with AUC=1 is considered an ideal classifier. Figure 2.5(B) 

shows that when there minimal distribution overlapping, the ROC curve has AUC ≈1. 

Indeed, this high probability distribution with minimal overlap permits the application of 

an ideal classifier for further processing. Previous work by Hanley and McNeil [Radiology 

1982 143 29-36] suggests that even if the AUCs for both algorithms are similar, this does 

not necessarily mean that the curves are the same. Here, to decide whether the curves are 

different bivariate statistical analysis was performed. Standard error of the difference 

between the two areas was calculated followed by p-value (one-tailed). In this study, the 

AUC is used as a parameter to compare ROC and eventually the accuracy of different 

algorithms.  

𝑆𝐸 = √(
𝐴(1 − 𝐴) + (Nc − 1)(𝑄1 − 𝐴2) + (𝑁𝑛 − 1)(𝑄2 − 𝐴2)

𝑁𝑐 × 𝑁𝑛
) (2.3) 

 

Q1 =
𝐴

(2 − 𝐴)
 

 

(2.4) 
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Q2 =
𝐴2

(1 + 𝐴)
 (2.5) 

 

SE (A1-A2) = √𝑆𝐸2(A1) +  𝑆𝐸2(A2) 

 

(2.6) 

 

p − value =
𝐴1 − 𝐴2

𝑆𝐸(𝐴1 − 𝐴2)
 

(2.7) 

 

Nc: Number of contaminated trials. 

Nn: Number of uncontaminated trials. 

A: Area under the ROC curve. 

SE: Standard Error. 

 

2.4 Kneepoint 

In a ROC curve, the true positive rate is plotted as a function of the false positive rate for 

different criteria values of a parameter. For the specific recordings analyzed here, most 

ROC curve revealed a knee point beyond which the false positive rate was no longer 

affected by the criterion choice. Thus, the knee point reveals the criterion for which the 

false positive rate is close to minimal and the true positive rate close to maximal.  

The knee point on the ROC curve was determined by walking through each pair of 

consecutive points of the ROC curve, fitting two lines, one to the left and other to the right 

of each pair of points. The point which minimized the sum of errors for the two fits was 

judged as the knee point. Figure 2.9 shows an example kneepoint (Ck) where the false 

positive was minimal and at the same time true positive area was maximal. 
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In this study, there are three classifiers which are used independently as well as in 

combinations.  This ROC analysis evaluated the effectiveness of these algorithms in 

discarding common noise. These ROC curves were then compared with each other with 

AUC as the parameter. 

 

2.5 Spike Rate 

ROC compared the accuracy of common noise reduction from all the above mentioned 

algorithms. The algorithm with highest AUC was considered as the optimal solution in 

denoising the electrophysiological data. The noise reduced spikes were obtained from a 

time window from all the electrodes. The spike rate, i.e. the number of spikes in a time 

window, was calculated for every trial and averaged across the trials with same sound 

intensity level for every electrode  

 

𝑆𝑝𝑖𝑘𝑒 𝑟𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑝𝑖𝑘𝑒𝑠

𝑇𝑖𝑚𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 
 (2.8) 

 

To illustrate the neuronal firing patterns, Spike rate was normalized through z-

score, which was calculated by subtracting the spike rate across same sound intensity levels 

from the overall firing rate, and then divided by the standard deviation of the overall firing 

rate.  

𝑧 − 𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑀𝑅 𝑆𝑝𝑖𝑘𝑒 𝑟𝑎𝑡𝑒 − 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑠𝑝𝑖𝑘𝑒 𝑟𝑎𝑡𝑒

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑜𝑛(𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑠𝑝𝑖𝑘𝑒 𝑟𝑎𝑡𝑒)
 (2.9) 

  



  

19 

CHAPTER 3 

METHODS 

 

3.1 Experiment 

Animals (3 Normal Hearing and 1 Hearing impaired) were trained and tested on a target 

detection task using a Go/NoGo paradigm, as described previously (Buran et al., 2014). 

The animals were freely placed in the cage with recording electrodes implanted in the left 

auditory cortex( Figure 3.1) with ground contralaterally placed and voltage traces were 

recorded while animals passively listen to the stimuli(see stimuli section) delivered through 

an overhead speaker (Buran, von Trapp, & Sanes, 2014) (Figure 3.2). Neural recordings 

were obtained using a multichannel acquisition system at a sampling frequency of 24.4 

kHz with a 16-channel (15-electrodes and 1-ground electrodes) wireless headstage and 

receiver was used in conjunction with a preamplifier and analog-to-digital converter 

(Figure 3.3). The electromagnetic setup induces noise (non-neural activity) in low-

amplitude electrophysiological signal along with the neural activity (Gagnon-Turcotte et 

al., 2015).  

 

 

Figure 3.1 Location of electrode placement. 
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Some implanted electrodes in the auditory cortex do not transmit any signal due to 

broken contact during the surgery or device malfunctioning. These electrodes are termed 

as “broken electrodes”. These electrodes are rejected in the analysis. 

 

Figure 3.2 Experimental Setup. 
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Figure 3.3 Array of micro-electrodes. 

 

 

3.1.1 Stimuli 

In the study, each target on a Go trial consisted of a 1 -kHz tone of 1 second duration. On 

NoGo trials, no stimulus was presented. The target tone was presented with noise envelopes 

either unmodulated or modulated with a 10-Hz rectangular waveform. 

These maskers had an additional flanker component, centered at 3 kHz which were 

constructed with identical frequency and phase (Ihlefeld et al., 2016). These Stimuli were 

randomly presented in six different Target-to-masker ratio (TMR) dB SPL (decibel, Sound 

pressure level) to explore the spike rate at different intensities. TMR is expressed as the 
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difference in level between the target and each masker. Thus, if the target level is 50 dB 

SPL and each masker is also 50 dB SPL, the TMR is 0 dB. 

Specifically, two types of stimuli were used in this study:  

1) Unmodulated on-target noise (M2).  

2) Modulated on-target noise (M4). 

In this study these two types of stimuli are termed as M2 for Unmodulated on-target noise 

and M4 for Modulated on-target noise. 

These stimuli type varied randomly from session to session, and stayed fixed 

throughout each session for both NH and HI animals. 52 recordings were collected out of 

which 42 were of NH (M2=21 and M4=21) and rest of 10 were of HI (M2=5 and M4=5). 

 

3.2 Pre-Processing 

 

52 datasets were recorded, each consisting of one session of voltage trace recordings from 

implanted microelectrode arrays in gerbil’s auditory cortex. Sessions varied in the number 

of trials. All processing and analysis were carried out using custom developed scripts in 

MATLAB. Using 4th order Butterworth filters with zero-phase, each dataset was initially 

bandpass filtered between 300Hz - 6 kHz using the command ‘filtfilt’ in MATLAB. Using 

visual inspection, each trial in all of the recorded datasets was then classified as either 

uncontaminated or contaminated by non-neural noise. This classification serves as 

benchmark for all subsequent analysis. Specifically, subjective assessment of common 

noise was performed by an experienced researcher in electrophysiology to help determine 

the contaminated trials. The researcher marked all the trials as “contaminated trials” which 

appeared to have common noise due to characteristic temporal patterns commonly 
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associated with animal movement which would be seen in all the channels or whose signal 

amplitude was unusually high compared to median amplitude of the recordings. The user 

indirectly determines the uncontaminated trials (true condition positive) and contaminated 

trials (true condition negative). Each of the 52 datasets had common noise in at least one 

trial (Duda et al., 2012). Following this pre-processing, three different classifiers were 

applied for detecting the common noise present across multiple electrodes and thus 

improving spike detection, as described below. 

 

 3.3 Amplitude Threshold 

The amplitude threshold method detects events as follows. When the voltage exceeds a 

threshold value, the 2.1 ms (milliseconds) of the voltage trace surrounding threshold are 

classified as “event” (Quiroga, 2007). As a result, each event’s waveform segment has 51 

sample points, 27 sample points preceding local minima and 24 sample points following 

the local minima (Figure 3.4). In intra-cellular recording, the phenomenon of neuron-burst 

leads to multiple neuronal firing in small amount of time (<3ms), which leads to multiple 

spike detection within one event. In order to avoid one event triggering multiple threshold 

crossings, there is a short period of time, which turns off detection (1ms) after every 

threshold crossing, the so-called “censoring” (Hill, Mehta, & Kleinfeld, 2011). 
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Figure 3.4 Detected spike waveform of duration 2.1 ms and 51 sample points. 

 

If the value of the threshold is too small, noisy activity will lead to false positive 

events, if it is too large, low-amplitude spikes will be missed. Thus, there is a need to 

determine the range of amplitude thresholds that lead to the low false positive rate and high 

percent true positive.  In addition, artefacts from animal movements and interference due 

to wireless headstage cause addition of large-amplitude signal that typically exceed the 

maximal amplitude of a neural spike event (Gagnon-Turcotte et al., 2015). One solution 

proposed in the literature is to use a value based on the standard deviation of the signal of 

respective channel.  
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Figure 3.5 Spike event detection above 3.9 * SD (Standard Deviation) of the respective 

channel. 

 

To determine the optimal value for amplitude threshold, the events were classified 

as a spike if they fell within a range of amplitudes between 3.9 and 7 times the SD of their 

respective channel (Figure 3.5). 7 times SD is the knee point of the ROC (Receiver 

Operative Characteristics) for Amplitude Rejection algorithm (discussed further). For each 

channel, all the detected spike events are saved as waveforms. 

 

3.4 Amplitude Rejection 

 

In Amplitude Rejection (AR), the spike signal which exceeds a certain threshold would be 

rejected from being considered as spikes. The basic idea of Amplitude rejection (AR) is to 

estimate the common noise floor for each channel and eventually throughout the whole 

dataset. Signal detection theory gives an estimate of the amplitude threshold for discarding 

the spikes events.  
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In AR, at every decrementing steps of 1 standard deviation starting from the mean 

to the minimum of the trial data of all electrodes (Figure 3.6), the trial is counted as 

predicted condition positive and if this particular trial is one of the true condition positive, 

then it is a true positive. So at every 1 standard deviation step, the true positive rate and 

false positive rate is calculated i.e. by moving the decision criterion from mean to minimun. 

Using these rates the ROC is plotted. Such ROC curve is plotted for every channel, as every 

channel has different noise floor.  

Using the knee point of the ROC, a criterion threshold in units of standard deviation 

of the median recorded voltage is then estimated to classify trials contaminated by common 

noise. With decreasing threshold, the false positive rate and true positive rate both increase 

(Figures A1 and A2).  

The standard deviation at the knee point of this curve is considered here as the 

threshold for spike event rejection of that channel. The detected spikes events are discarded 

if the spike exceeds this threshold of respective channels. 
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Figure 3.6 Contaminated trial and decrementing SD. The above signal is 1second data 

from a contaminated trial of one of the electrode. The black line is the mean, and the red 

lines are the decrementing standard deviation till it reaches the minimum of the signal. For 

every decrement in the standard deviation as the threshold, it is checked with the 

contaminated trial data (true condition) to derive the detection rate. For example; at SD= -

1, which is near the common noise floor, every trial would be detected as true positive and 

false positive thus the detection rate would be 1. Whereas at SD= -7 the trial would be true 

positive (in this case), since it exceeds the threshold and it is a contaminated trial. 

 

3.5 Inter-Electrode Correlation 

Common noise is generally present on all recording electrodes. Presence of common noise 

will trigger spike events simultaneously across all the electrodes. In the implementation of 

IEC algorithm, detected spike events are stored as waveforms in the matrix of respective 

channels. Each candidate spike identified on the test electrode is compared with the 

concurrent spike events which lie in 5 ms window of other electrodes. The correlation 

coefficient is then computed between the candidate spike waveform and the spikes on the 

rest of 15 electrodes in the 5 ms window. Upon exceeding the correlation coefficient above 

the predetermined threshold of 75%, the spike events on the respective electrodes were 
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marked and the electrodes are termed as “spike-correlated electrodes” (Paralikar et al., 

2009) (Figures 3.7, 3.8 and 3.9).  

 
Figure 3.7 Waveform comparison between two spike events in different electrodes. The 

above figure shows the spike event waveform which occurs at the same time (or window 

of 5ms) in two electrodes. The correlation between these waveforms is computed, and 

these events are discarded if the correlation coefficient exceeds above the 75%, indicating 

the presence of common noise. This process is done on all channels. 

 

The number of spike-correlated electrodes after spike correlation depends on the 

presence of common noise. Spike-correlated electrodes may vary from 2 to 16 electrodes, 

as two electrodes suggests a lower possibility of common noise as neurons nearing different 

electrodes location may respond simultaneously, whereas 16 electrodes clearly suggest the 

spike events as a common noise or non-neuronal activity. Multiple neurons may 

simultaneously respond to the acoustic stimulation also leading to concurrently activated 

electrodes. There is a need to decide a number of spike-correlated electrodes between 2 
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and 16. Signal detection theory was used to decide number as the threshold. If the 

concurrent spike events are common in more than this threshold, then the spike event is 

rejected as common noise. 

The number of spike-correlated electrodes after IEC analysis in a trial is 

proportional to the presence of common noise, the trials with more than two spike-

correlated electrodes (further incremented, i.e., from 2 to 16 electodes) is counted as 

predicted condition positive and if these trials are the same trial as the true condition 

positive, then it is a true positive. Further its true positive rate and false positive rate is 

determined for incrementing spike-correlated electrodes. Similarly, true positive rate and 

the false positive rate is determined for all spike-correlated electrodes by moving the 

decision criterion from lower number of electrodes to higher number. To analyze the 

performance of this algorithm and to get an discrimination threhold, ROC curve is plotted 

using true positive and false positive rates for all the electrodes. On comparing the true 

condition and the predicted condition for the incrementing (i.e., from 2 to 16 electrodes) 

spike-correlated electrodes, the false positive rate decreses at a higher rate than the true 

positive rate as shown in Figure 2.12. The point (electrode number) where the true positive 

rate is comparatively high and false positive rate is low is considered as a kneepoint.  

The knee point is calculated with the same method explained previously. The 

channel number at the knee point is considered here as the minimum number of spike-

correlated electrodes required for rejecting the event as a common noise. The similar spikes 

(correlation coefficient >0.75) occurring at the same time in multiple electrodes is 

discarded if they are present in more than number of electrodes decided by the knee point 

analysis derived from the ROC curve.



  

 

 

 
Figure 3.8 Inter-electrode correlation on a snippet of a signal between all the channels in a contaminated trial. The above figure 

shows the implementation of IEC algorithm on a contaminated trial. After the spike detection (*), the candidate spike is compared 

with the spike events concurrently in the window of 5ms in the rest of the electrodes. The spike events are discarded if the 

compared spike waveforms exceed the correlation coefficient of 0.75. Discarded events are marked as *. In the above trial, the 

same spike event across all the electrodes exceeds the coefficient at the same time, which clearly affirms the presence of common 

noise.
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Figure 3.9 Inter-electrode correlation on a snippet of a signal between 3 channels in a contaminated trial. After the spike detection 

(*) at 3.9 standard deviation of the respective channel, the candidate spike is compared with the spike events concurrently in the 

window of 5ms in the rest of the electrodes. The spike events are discarded if the compared spike waveforms exceed the 

correlation coefficient of 0.75. Discarded events are marked as *. In the above trial, the same spike event across all the electrodes 

exceeds the coefficient at the same time, which clearly affirms the presence of common noise. 
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3.6 Virtual Reference 

In Virtual reference (VR), the grand mean of the signal from all the electrodes is subtracted 

from the electrode of interest (Paralikar et al., 2009). The use of VR reduces common noise 

floor in all the electrodes, which reduces the number of false alarm rate of spike detection. 

This technique helps lower the overall noise floor of the recorded signal, but it may also 

result in undesired cancellation of correlated neural activity. To examine the potential use 

of VR for the current data set, both the AR and IEC algorithms were implemented in two 

parts, 1) with VR 2) without VR and then compared. These two algorithms are 

implemented independently and will have two independent results but to check their 

dependency, the IEC is implemented after AR and their results are compared (Figure 3.10). 

 

 

Figure 3.10 Flow of analysis for further comparison. 
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3.7 Receiver Operating Characteristics 

In this study, the ROC analysis evaluates the effectiveness of Amplitude Rejection (AR) 

and Inter-electrode correlation (IEC) algorithms in discarding common noise which are 

detected as spikes. It also validates the use of Virtual referencing for common noise 

reduction through the dataset.  

The ROC curves plotted for the algorithms are compared with each other with area 

under the curve as the parameter (discussed in Background section). The knee point of 

these curve is considered as the decision threshold for the respective algorithm. Using the 

algorithm which has the maximum AUC and the kneepoint as its threshold, the spike rate 

is derived.    

 

3.8 Spike Rate and its Analysis 

Using the best suitable algorithm the noise reduced spikes are obtained from 1 second time 

window of tone presence from all the electrodes. Spike rate is calculated (as mentioned in 

Background) for every trial and averaged across the trials with same TMR for every 

electrode (Figure 3.11). Broken electrodes are rejected for further analysis as they show no 

spike patterns.  

To illustrate the neuronal firing patterns, spike rate is normalized to z-score for 

different TMR. z-score is calculated across all the unbroken electrodes for every TMR in 

a session. Similarly, z-score is averaged across all the sessions from a similar group of 

datasets. The group average of the z-score is compared within two group of animals. 



  

34 

 
Figure 3.11 Spike Rate averaged over the trials with same TMR for one session.  

 

To find out the effect of MMR between NH and HI animals, a comparison is carried 

out where the normalized spike rate data were analyzed with repeated measures analysis 

of variance (rANOVA). In this study, repeated measure of ANOVA (rANOVA) is used to 

study the interaction and correlation of spike rate between Modulated on-target noise and 

unmodulated on-target noise within Normal hearing and Hearing Impaired animals. 

At normalized spike rate plots, TMR thresholds were extracted at z-score=1 for 

average across each animal for both the maskers (3 NH animal and 1 HI animal). For HI 

animal only three sessions are considered in rANOVA analysis (sessions which had the 

maximum above z-score=0.5). The rANOVA scripted in MATLAB 2016 gives a p-value 

(one-tailed), if p<0.05 then we reject the null hypothesis (Null Hypothesis: The spike rate 

between the groups are same). 
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CHAPTER 4 

RESULTS 

 

4.1 Denoising Algorithms Performance 

To assess which noise rejection method results in optimal performance, the AR, VR and 

IEC algorithms were implemented in Matlab and tested in different combinations. Table 

4.1 lists all tested variations. For each combination of classifiers, ROC curve were 

computed for each data set and subsequently average across all data sets. 

 

Table 4.1 List of Variation of Algorithm in Order to Find Out Best Combination of 

Algorithm in order to get Optimal Performance in Noise Rejection 

 

List of Algorithms 

1 ARVR Amplitude rejection algorithm with Virtual Referencing 

2 ARNoVR  Amplitude rejection algorithm without Virtual Referencing 

3 IECVR Inter-Electrode correlation algorithm without Virtual 

Referencing 

4 IECNoVR Inter-Electrode correlation algorithm without Virtual 

Referencing 

5 ARVR + IECVR Amplitude Rejection and Inter-Electrode correlation with 

Virtual Referencing 

6 ARNoVR+IECNoVR  Amplitude Rejection and Inter-Electrode correlation without 

Virtual Referencing 

 

4.1.1 Amplitude Rejection 

After the implementation of AR algorithm on all individual datasets the ROC curve derived 

for each session. An average ROC curve is derived across all the 52 datasets for both ARVR 

and ARNoV. To compare the effectiveness of VR in AR algorithm, ROC curves of ARVR 

and ARNoVR are compared, with AUC as the parameter (AUC for ARVR = 0.753 and AUC 

for ARNoVR = 0.748). The AUC is similar in both the cases (ponetailed=0.483, level of 
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significance (α) =0.05). Figure 4.1 shows the ROC plot for ARVR and ARNoVR are almost 

similar and they both have 6 standard deviation as the kneepoint.  

 
Figure 4.1 ROC comparison between ARNoVR and ARVR. The ROC curve averaged over 

all the datasets, for AR algorithm with VR and without VR. The red dashed (--) is the ROC 

curve for ARVR which is same as the ROC curve of ARNoVR (Black dashed --) The AUC 

for the both the curve is same. The kneepoint for both the curve is the same as 6 standard 

deviation. 

 

4.1.2 Inter Electrode Correlation 

The ROC curve is derived for each session after implementation of each IEC algorithm 

with and without VR. The ROCs across all 52 datasets is averaged for both IECVR and 

IECNoVR, These two averaged ROCs are compared to check the potency of VR to reduce 

the common noise. The ROC curve of IECVR and IECNoVR were compared with AUC as 

the parameter (AUC for IECVR = 0.902 and AUC for IECNoVR=0.852). The AUC of IECVR 

is greater than IECNoVR (ponetailed=0.271, level of significance (α) =0.05). The p-values 

suggests that there is no statistical significance in the two methods. In Figure 4.2, the ROC 
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curve for IECVR is much closer to the ideal ROC than IECNoVR and there is a significant 

change in the kneepoint. The IECVR (Kp=6) kneepoint is at lower channel number as 

compared to IECNoVR (Kp=9). The reduction in the kneepoint shows that the ability of VR 

in reduction of common noise which indicates lower probability distribution overlap.  

 
Figure 4.2 ROC comparison between IECNoVR and IECVR. The figure shows the ROC 

curve of IEC implementation with and without VR. The ROC curve for IECVR is red solid 

line (__) has more AUC when compared with ROC of IECNoVR black solid (__). The 

kneepoint of IECVR curve is 6-number of channels with common noise and for IECNoVR is 

10 number of channels. 

 

4.1.3 Combination of Amplitude Rejection and Inter Electrode Correlation 

The filtered datasets with and without VR goes through spike detection and the AR 

algorithm is implemented. The kneepoint from the ROC curve of AR is considered as the 

amplitude threshold for rejecting the spike events. After discarding the spike events, IEC 

algorithm is implemented. ROC curve is derived for each sessions to decide a number of 

marked electrodes as the threshold for rejecting the spike event as the common noise. The 
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ROC curve is averaged over all the datasets. The averaged ROC curve for ARVR+IECVR 

and ARNoVR + IECNoVR are compared with AUC as the parameter (AUC for ARVR+IECVR= 

0.897 and AUC for ARNoVR + IECNoVR= 0.844). The Figure 4.3 shows that the area is 

greater when the combination of algorithm is when implemented with VR (ponetailed=0.263, 

level of significance (α) =0.05).The kneepoint lowers with the use of VR. 

 
Figure 4.3 The ROC curves computed after implementing both AR and IEC with and 

without VR showed the difference in AUC. ARVR+IECVR (-*-) has 6th channel as the 

kneepoint and ARNoVR+IECNoVR (-*-) has 9th channel as the kneepoint. 

 

4.1.4 Comparison between the algorithms 

To compare the efficacy between two algorithms using VR in reducing the common noise, 

the ROC curve of AR and IEC were averaged over 52 datasets and compared. Comparing 

the two algorithms with AUC as the parameter, it shows a significant difference in the 

AUC between IECVR and ARVR (AUC for IECVR=0.902 and AUC for ARVR=0.748).There 
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is a statistical significance noted between these algorithms (ponetailed=0.0454, level of 

significance (α) =0.05).  

The similar comparison was done without VR on these two algorithms which show 

a comparatively difference in the AUC (AUC for IECNoVR=0.852 and AUC for 

ARNoVR=0.753), but it is not statistically significant (ponetailed=0.150, level of significance 

(α) =0.05) (Figures 4.4 and 4.5). 

 
Figure 4.4 The ROC of AR and IEC are compared to test the result of both algorithms. 

There is a greater difference in the AUC of both. The p-value is 0.045 which is less than 

the level of significance.   
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Figure 4.5 ROC comparison between all the combinations. Shows the ROC curve for 

different algorithms and their combination averaged over 100 dataset. The curves in red 

are when used with VR and black are when VR is not used. The solid line (--) is when IEC 

is used, dashed line when AR is used and (-*-) line when the combination of AR and IEC 

is used.  

 

 

The performance of all the algorithms is ranked according to its AUC. Table 4.2 

lists the AUC of all the algorithms, which shows that IECVR has the highest AUC and 

followed by ARVR + IECVR which are almost similar in terms of the AUC value as well as 

ROC curve in Figure 4.5. 
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Table 4.2 List of Algorithm and their Respective Area under their ROC curve. The 

Algorithm with Higher AUC is considered as an Optimal Performance in Common Noise 

Rejection. 

 

Algorithm Performance with AUC 

       Algorithm Area under the 

curve(AUC) 

1 ARVR 0.753 

2 ARNoVR 0.748 

3 IECVR 0.902 

4 IECNoVR 0.852 

5 ARVR + IECVR 0.897 

6 ARNoVR + IECNoVR 0.844 

 

 

4.2 Neurometric Results 

IEC and AR algorithms are compared with each other with and without the presence of 

VR, the algorithm with highest AUC derived from their ROC curve is used for spike rate 

calculation. The spike rate is calculated for every trial and averaged across the trials with 

same TMR for every electrode. Spike rate across one session is normalized through z-score 

for every electrode. These z-scores for unmodulated on-target noise (M2) and Modulated 

on-target noise (M4) are averaged across all the sessions for NH and HI animals.  

 

4.2.1 Normal Hearing 

The z-score (normalized spike rate) for both M2 and M4 shows an overall increase. The z-

score for M2 stimuli increases slowly from -30 dB SPL to 0 dB SPL, but after that there is 

a steep increase after +10 dB SPL. The z-score for M4 stimuli show a constant increase in 



  

42 

the spike rate from -30 dB SPL to +30 dB SPL the rate of increase is low from -30 dB SPL 

till 0 dB SPL, but after that the z-score increases at much higher rate (Figure 4.6).  

 

Figure 4.6 Normalized spike rate (z-score) for NH animals. 

 

A threshold on the normalized spike rate of M2 and M4 were detected at z-

score=0.5 for each NH animals averaged across sessions. The thresholds of each animal 

for both masker type is listed in Table 4.3 and their normalized spike rates is plotted in 

Appendix B. The results shows that thresholds for modulated masker are lower than 

unmodulated masker. To determine whether the modulated masker enhances the spike rate 

during target detection as compared to unmodulated masker, thresholds for both masker 

conditions were analyzed with rANOVA. The analysis found [F (1, 4) =0.49, p=0.55] that 
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the modulated masker when compared to unmodulated masker does not have statistical 

significance as p=0.55, rejecting the null hypothesis. The average MMR, defined here as 

the difference between the thresholds during total average of M4 and M2 in NH animals is 

5.4 dB (M4 threshold= -18.2 dB, M2 threshold= -12.8 dB) shown in Figure 4.7. 

 
Figure 4.7 Average thresholds for M2 and M4 stimuli in NH animals. 

 

 

Table 4.3 Lists the Threshold for all NH Animals at z-score=0.5 

 

List of Thresholds for NH animals 

 

Stimuli type 

TMR thresholds detected in dB for NH hearing 

Animal 1 Animal 2 Animal 3 

Modulated on-target 

noise (M4) 
-17.8 dB -20.5 dB -6.7 dB 

Unmodulated on-

target noise (M2) 
+24.0 dB +4.0 dB +19.3 dB 
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4.2.2 Hearing Impaired 

The z-score for both M2 and M4 shows a slight increase with increasing TMR. The z-score 

for M2 stimuli is seems almost the same, as the rate of increase with increasing TMR is 

very less. The z-score for M4 stimuli show a constant increase in the spike rate, but the rate 

of increase is very less when compared to z-score for M4 in NH (Figure 4.8). When 

compared between M2 and M4, the z-score for M4 is very slightly greater through all level 

of TMR’s. 

 

Figure 4.8 Normalized spike rate (z-score) for HI animals. 

 

A threshold on the normalized spike rate of M2 and M4 were detected at z-

score=0.5 for each session of HI animals. The thresholds of each animal for both masker 

type is listed in Table 4.4 and their normalized spike rates is plotted in Appendix B. The 
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results shows that thresholds for modulated masker are slightly lower than unmodulated 

masker. rANOVA test was conducted using the thresholds from both the maskers to test 

the whether the modulated masker have any effect on spike rate during tone detection when 

compared to unmodulated masker. The analysis found that modulated masker has better 

performance than unmodulated masker when compared to thresholds but the rANOVA 

analysis indicate that they are not statistically significant [F (1, 4) =0.04, p=0.86]. Similar to 

NH animals, the MMR of HI animals average across all the session is 4.6 dB (M4 

threshold= +3.4 dB, M2 threshold= +8 dB) shown in Figure 4.9. 

 
Figure 4.9 Average thresholds for M2 and M4 stimuli in HI animals. 

 

Table 4.4 Lists the threshold for all HI animals at z-score=0.5 

List of Thresholds for NH animals 

 

Stimuli type 

TMR thresholds detected in dB for HI hearing 

Session 1 Session 2 Session 3 

Modulated on-target 

noise (M4) 
+1.2 dB +10.2 dB +12.8 dB 

Unmodulated on-

target noise (M2) 
+3.4 dB +12.3 dB +14.7 dB 
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4.2.3 Comparison within Animals 

The effect of masker type between NH and HI animals is compared using the thresholds 

derived at z-score=0.5 for both the animals (Tables 4.3 and 4.4). For M4 stimuli, the 

thresholds for NH are much lower when compared to HI, but rANOVA finds that there is 

not much statistical significance between these two animals [F (1, 4) =10.77, p=0.0817]. 

Similarly, for M2 stimuli, the thresholds are lower when compared to HI, but there no 

statistical significance between them [F (1, 4) =4.02, p=0.18]. The MMR for both the animals 

are almost the same (MMR for NH= 5.4 and MMR for HI is 4.6) shown in Figure 4.10. 

The difference in the thresholds for M4 and M2 are almost similar for both the animals, as 

there is no statistical difference between them [F (1, 4) =0.5, p=0.5543]. 

 

 
Figure 4.10 Modulation Masking Release between NH and HI animals.  
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CHAPTER 5 

DISCUSSION 

 

The current study implemented and compared two algorithms to classify events from 

neural recordings with microelectrodes that were implanted in left auditory cortex of the 

Gerbil. In addition, using ROC analysis, the applicability of combining VR and AR and/or 

IEC was tested for canceling out the noise floor. 

The AUC for ARVR and ARNoVR is almost the same and there are no significant 

changes in the curve. Both the approaches are similar and AR is not affected by VR. The 

AUC determines the potency of the two algorithms in reducing the common noise. The 

AUC of IECVR and ARVR reveals that IECVR has more accuracy than ARVR, these two 

algorithms show a statistical significance (p<0.05). Thus the Null hypothesis can be 

rejected suggesting that these algorithms yield a different classification performance. A 

similar comparison is done on IECNoVR and ARNoVR, the AUC of IECNoVR is greater than 

AUC of ARNoVR, but it is not significant (p=0.150). While comparing within the 

algorithms, it concluded that IEC with and without VR is more accurate for noise reduction 

than AR. 

The difference in the AUC for IECVR and IECNoVR suggests that IECVR is more 

accurate than IECNoVR. Since the two approaches are not statistically different but 

implementing IEC with VR will give better results compared to IEC without VR. The 

kneepoint on the curve for IECNoVR is much greater than IECVR. Higher the kneepoint in 

IEC, more are the number of spike-correlated electrodes with common noise. This 

decrement in the kneepoint indicates that the use of VR reduces the common floor noise. 
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Similar decrease in the kneepoint is seen when the combination of AR+IEC with and 

without VR were implemented. 

The AUC comparison for AR+IEC and IEC are almost same, as the p-value is close 

to 1(p=0.944). This indicates that IEC is independently reliable in rejecting noisy spike 

events. The performance of noise reduction in implementing AR with IEC would be the 

same as implementing just IEC. The only difference is the processing time, implementing 

IEC and AR in combination takes longer time than just IEC. Combining the two methods 

will not make any difference in noise reduction. Use of IEC with VR is sufficient enough 

to reduce the common noise. 

The denoised spike rate obtained after implementing IEC along with VR, were 

normalized with in the groups. The z-score for NH and HI indicates that the neural firing 

rate at tone absence (NoGo) is same for both type of stimulus i.e. there is no difference in 

the firing rate for M2 and M4 stimuli during tone absence. The spike rate in NH and HI 

increases with increasing TMR during M2 and M4 stimuli, this reveals that neural firing 

rate correlates with behavioral performance. 

Masker performance between the animals show that, the thresholds are lower for 

NH as compared to HI for both the maskers. This results indicates that the spike rate is 

higher in NH as compared to HI for respective masker type, but spike rate do not show any 

statistically significant differences to distinguish the effect of background noise in NH and 

HI. 

The MMR derived from the spike rate thresholds for NH and HI are almost the 

same which is contrary to the previous studies (Ihlefeld et al., 2016).This shows that spike 

rate does not give information to distinguish MMR performance in NH and HI animals. 
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The threshold is slightly lower during the modulated masker as compared to 

unmodulated masker for both the animals, but the analysis show that the spike rate is not 

statistically significant. The spike rate for modulated on-target noise (M4) and 

unmodulated on-target noise (M2) are almost the same and there seems to be no significant 

difference in the neuronal activity between them thus spike rate is not suitable approach 

for predicting MMR. For both the animal groups the perceptual deficit in spike rate during 

M4 and M2 stimuli is very low and with such a low difference in the spike rate, it is difficult 

to find the effect of background noise in the auditory cortex. These results reveal that spike 

rates in the auditory cortex cannot fully account for the behaviorally observed MMR. 
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CHAPTER 5 

CONCLUSION 

 

Here, inter-electrode correlation along with Virtual referencing was the best performing 

algorithm for common noise reduction. Results suggest that neural correlates of MMR in 

auditory cortex are not solely based on firing rate. 
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APPENDIX A 

ROC CURVE FOR DIFFERENT ALGORITHMS 

 

Following are the ROC curves for all algorithms implemented in noise reduction. 

 
Figure A.1 Averaged ROC across 52 sessions for AR along with VR  

 
Figure A.2 Averaged ROC across 52 sessions for AR without VR 
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Figure A.3 Averaged ROC across 52 sessions for IEC along with VR 

 
Figure A.4 Averaged ROC across 52 sessions for IEC without VR 
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Figure A.5 Averaged ROC across 52 sessions for IEC and AR along with VR 

 
Figure A.6 Averaged ROC across 52 sessions for IEC and AR without VR 
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APPENDIX B 

NORMALIZED SPIKE RATE FOR NH AND HI ANIMALS 

 

Following are the normalized spike rate for each NH and HI animals and their thresholds 

at z-score =0.5 during M2 and M4 stimuli. 

 
Figure B.1 Normalized spike rate and thresholds for NH Animal 1 
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Figure B.2 Normalized spike rate and thresholds for NH Animal 2

 
Figure B.3 Normalized spike rate and thresholds for NH Animal 3 
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Figure B.4 Normalized spike rate and thresholds for session 1 in HI Animal. 

 
Figure B.5 Normalized spike rate and thresholds for session 2 in HI Animal. 
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Figure B.6 Normalized spike rate and thresholds for session 3 in HI Animal. 
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APPENDIX C 

MATLAB CODE 

This appendix contains custom made scripts for spike sorting, amplitude rejection(AR) 

algorithm, Inter-Electrode correlation (IEC) and spike rate determination during 

Modulated on-target noise(M4) and Unmodulated on-target noise(M4). 

 

 
% Denoising algorithm and Spike rate  

  
%% 1st Section Data Input and filtering 

  
% Acquiring data: 
%Just give the "path" of the file and its filename 'file' 
% This will read the HDF file of the data. 
actfile=[path,file]; 
info=hdf5info(actfile); 
info=info.GroupHierarchy.Groups.Name; 
data=h5read(actfile,[info,'/data/physiology/raw']); 
starttime=h5read(actfile,[info,'/data/trial_log']); 
nwfol=[file,'Results']; 
res=[path,nwfol]; 
trialn=length(starttime.start); 

  

  
% Debiasing 
mean_sum=0; 
for i=1:size(data,2) 
    mean_sum=mean_sum+mean(data(:,i)); 
end 
chmean=mean_sum/size(data,2); 
ndata=data-chmean; 

  

  
% Virtual Referencing(Grand Mean Subtraction) 
for i=1:size(ndata,2) 
    gmdata=ndata; 
    gmdata(:,i)=[]; 
    grandmean=mean(gmdata,2); 
    nndata(:,i)=ndata(:,i)-grandmean; 
end 
clear data ndata gmdata grandmean 

  

  
% Filtering 
nndata=double(nndata); 
fs=24414.0625; 
nyq=fs/2; 
[b,a]=butter(4,[300,6000]/nyq); 
for i=1:16 
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    filtered_ch1(:,i)=filtfilt(b,a,nndata(:,i)); 
end 
filtered_data=filtered_ch1; 
clear filtered_ch1 nndata 
for i=1:size(filtered_data,2) 
    cf_para(i,1)=median(abs(filtered_data(:,i))/0.6745); 
    cf_para1=5*cf_para; 
    sd(i,1)=std(filtered_data(:,i)); 
end 
arej_data1=filtered_data; 
clear filtered_data 

  

  
%% 2nd Section creating Cell array of all the trials and sample 

  
% Assigning Trails 
start=starttime.start; 
pt=0.3; % point of trial start in sec 
startnew=start+pt;% the '+' or '-' will decide the when to start the 

trial 
endtime=startnew+1;% only 1sec of tone presence 
trialtime=endtime-startnew; 

  
trials=cell(size(start,1),size(arej_data1,2)); 
for j=1:size(arej_data1,2) 
    for i=1:size(start,1) 
        

trials{i,j}=arej_data1(round(fs*(startnew(i,1))):round(fs*endtime(i,1))

,j); 
    end 
end 

  

  
% Assigning Trial Type(GO or NOGO trial) 
trialtype=double(starttime.ttype); 

  
for i=1:size(trialtype,2) 
    csum=cumsum(trialtype(:,i)); 
    if csum(end)==150 
        ttype(i,:)=1; 
    else 
        ttype(i,:)=0; 
    end 
end 
TMR=starttime.TMR; 
[uniTMR]=unique(TMR); 
clear csum 
%% ROC for Amplitude Rejection 
roc_shortcut_new 

  
%% 3rd Section spike detecting UMS 

  
% Excluding the noisy trials 
%The trials which are in Exclude_trial are assigned minimum value which 
% does not get detected in swpike sorting 
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% tv=ones (6000,1)*1e-7; 
% trials(Exclude_trial,:)={tv}; 

  
% Detecting Spikes using Ultra mega sort 
for j=1:16 
    cf=cf_para1(j,1); 
    params = ss_default_params(fs); 
    spikeums(j,1) = ss_detect(trials(:,j),params); 

     
end 

  

  
% Aligning all the spikes in each trial to its local minima 
for j=1:16 
    spikealign(j,1)=ss_align(spikeums(j,1)); 
end 

  

  
% Assigning spiketimings and spiketrials and spike waveforms 
waveforms=cell(size(spikealign,1),1); 
trialNo=cell(size(spikealign,1),1); 
spiketimes=cell(size(spikealign,1),1); 
for i=1:size(spikealign,1) 
    waveforms{i,1}=(spikealign(i).waveforms(:,:)); 
    trialNo{i,1}=(spikealign(i).trials(:,:)); 
    spiketimes{i,1}=(spikealign(i).spiketimes(:,:)); 
end 
spiketimes1=spiketimes; 

  

  
%% 4th Section: Amplitude Rejection 

  

  
% Assigning each spikes waveforms 
for i=1:size(waveforms,1) 
    for j=1:size(waveforms{i,1},1) 
        tempwave=waveforms{i,1}; 
        waves{j,i}=tempwave(j,:); 
    end 
end 

  
ww=zeros(1,size(waveforms{1},2)-1); 
ww(1,size(waveforms{1},2))=1; 

  
% Using the respective channelwise Standard Deviation as the threshold 

for 
%amplitude rejection which is found out from the ROC curve from 

averaged 
%over 100 sessions 
load('allchannel_artifact.mat'); 
reject=allchannel_artifact_rejection.*sd; 

  
for i=1:size(waves,1) 
    for j=1:size(waves,2) 
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        if any(waves{i,j}>reject(j,1)) 
            waves{i,j}=ww; 
        else 
            if any(waves{i,j}<-reject(j,1)) 
                waves{i,j}=ww; 
            end 
        end 
    end 
end 

  

  
for i=1:size(waves,1) 
    for j=1:size(waves,2) 
        if isempty(waves{i,j})==1 
            waves{i,j}=ww; 
        end 
    end 
end 

  

  
count=0; 
iec=zeros(size(waves,1),1); 
for i=1:size(waves,2) 

     
    for j=1:size(waves,1) 

         
        if waves{j,i}==ww 
            count=count+1; 
            ieccount(count,i)=j; 
            iec(j,i)=j; 
        end 
    end 
    count=0; 
end 

  

  
% Removing the spike events after artifact rejection 
for j=1:16 
    iecc=iec(1:size(spikeums(j,:).trials,2),j); 
    if isempty(iecc)==0 
        newtn{j,1}=iectn1(trialNo,iecc,j); 
        newst{j,1}=iectn1(spiketimes,iecc,j); 
        newwf{j,1}=iecwf1(waveforms,iecc,j); 

         
    else 
        newtn{j,1}=[]; 
        newst{j,1}=[]; 
        newwf{j,1}=[]; 
    end 

     
end 

  

  
%% 5th section IEC correlation 
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for i=1:size(newwf,1) 
    for j=1:size(newwf{i,1},1) 
        tempwave=newwf{i,1}; 
        waves22{j,i}=tempwave(j,:); 
    end 
end 
ww=zeros(1,size(waveforms{1},2)-1); 
ww(1,size(waveforms{1},2))=1; 

  
for i=1:size(waves22,1) 
    for j=1:size(waves22,2) 
        if isempty(waves22{i,j})==1 
            waves22{i,j}=ww; 
        end 
    end 
end 

  
newsttemp=newst; 
waves222=waves22; 
newtntemp=newtn; 
waves22temp=waves222; 
www=ones(1,size(waveforms{1},2)-1); 
www(1,size(waveforms{1},2))=1; 

  
% Comparing the two events of spikes which are in th interval of 10msec 
window=endtime(end); 
div=0.010; 
spicou=0; 
clear spicoin spicoin1 
clear spicoint spicoin3 spicoint1 spisum 

  
for i=1:size(trials,1) 
    for j=1:16 
        newsttemp(j,:)=[]; 
        newtntemp(j,:)=[]; 
        waves22temp(:,j)=[]; 
        for m=0:(trialtime(i,1)/div) 
            a=m*div; 
            [qw]=find(newtn{j,1}==i); 
            [y]=find((newst{j}(qw)>0+a)&(newst{j}(qw)<div+a)); 
            for f=1:size(newtntemp,1) 
                [qq]=find(newtntemp{f,1}==i); 
                

[y1]=find((newsttemp{f}(qq)>0+a)&(newsttemp{f}(qq)<div+a)); 

                 
                c=length(y); 
                d=length(y1); 

                 
                for k=1:c 
                    for n=1:d 
                        

coeff=corr2(waves22{qw(y(k)),j},waves22temp{qq(y1(n)),f}); 
                        if coeff>0.60 && coeff<0.98 
                            spicou=spicou+1; 
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                            spicoint1{i}(m+1,j)=1; 
                            spicoin3(m+1,i,j)=1; 

                             
                        end 
                    end 
                end 
            end 
            spicou=0; 
        end 
        waves22temp=waves222; 
        newsttemp=newst; 
        newtntemp=newtn; 
    end 
end 

  

  
newstt=newst; 
for i=1:size(spicoin3,1) 
    for j=1:size(spicoin3,2) 
        su=sum(spicoin3(i,j,:)); 
        spisum(i,j)=su(end); 
    end 
end 

  
[a,b]=hist(spisum,unique(spisum)); 
out=[b' sum((a),2)]; 

  

  
% ROC_channelforIEC 
% correctpercentboth=correctpercent; 
% fapercentboth=fapercent; 
% ROC_compare_stats 

  

  
% Rejecting the events which are correlated in more than 6 channels. 
for k=1:16 
    for i=1:size(spisum,1) 
        for j=1:size(spisum,2) 
            if spisum(i,j)>=6 
                [qw]=find(newtn{k,1}==j); 
                for p=1:size(qw,2) 
                    waves22{qw(p),k}=www; 
                    newstt{k}(1,qw(p))=0; 
                end 
            end 
        end 
    end 
end 

  

  
count=0; 
iec=zeros(size(waves22,1),1); 
for i=1:size(waves22,2) 
    for j=1:size(waves22,1) 
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        if waves22{j,i}==ww | waves22{j,i}==www 
            count=count+1; 
            ieccount(count,i)=j; 
            iec(j,i)=j; 
        end 
    end 
    count=0; 
end 

  
% Rejecting the spike events for further plotting 
for j=1:16 
    iecc=iec(1:size(newtn{j},2),j); 
    if isempty(iecc)==0 
        newtn1{j,1}=iectn1(newtn,iecc,j); 
        newst1{j,1}=iectn1(newst,iecc,j); 
        newwf1{j,1}=iecwf1(newwf,iecc,j); 
    else 
        newwf1{j,1}=[]; 
        newst1{j,1}=[]; 
        newtn1{j,1}=[]; 
    end 
end 

 

 
%% Spike rate VS TMR 
% plotting the Spike rate for diffrent TMR. 

  
% setting up initial conditions 
newnewnewst=newst1; 
newnewnewtn=newtn1; 
TMR=starttime.TMR; 
[uniTMR]=unique(TMR); 
TMR1=TMR; 
for i=1:size(start,1) 
    trialtime(i,1)=endtime(i,1)-start(i,1); 
end 

  
trialtime1=trialtime; 
ttypsize=cumsum(ttype); 

  
%Seperating GO trials from NOGO trials 
nogo=find(0==ttype); 
TMR1(nogo)=[]; 
trialtime1(nogo)=[]; 

  
% Calculating Spike Rate for Different TMR which are GO trials 
for k=1:16 
    for i=1:size(uniTMR,1) 

         
        [ia]=find(uniTMR(i,1)==TMR1); 
        tmrty{i}=ia; 
        for j=1:size(ia,1) 
            [iatn]=find(ia(j,1)==newnewnewtn{k,1}); 

             
            sprate(j+1,i)=size(iatn,2); 
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            spratet(j+1,i)=(size(iatn,2)/trialtime1(ia(j,1))); 

             
        end 
    end 

     
    spratett(1,:)=uniTMR(:,1); 
    for i=1:size(uniTMR,1) 
        sprat=cumsum(spratet(2:end,i)); 
        spsum(i,1)=sprat(end)/size(tmrty{i},1); 
    end 
    spsumall(k,:)=spsum; 
end 

  

  
% calculating the spike rate only for NOGO trials 
for k=1:16 
    for j=1:size(nogo,1) 
        [iatn]=find(nogo(j,1)==newnewnewtn{k,1}); 
        sprateno(j,1)=((size(iatn,2)/trialtime(nogo(j,1)))); 
    end 
    spratno=cumsum(sprateno(:,1)); 

     
    spsumno(1,1)=spratno(end)/size(nogo,1); 

     
    spsumallno(k,:)=spsumno; 
end 

  
% Combinign the NOGO and other TMR and plotting 
final_spikerate=[spsumallno,spsumall]; 
uniTMR1(1,1)=-100; 
uniTMR1(2:size(uniTMR,1)+1,1)=uniTMR(:,1); 

  

  
% Averaging the Spike rate only across the good channels 
final_spikerate(exclude_channel,:)=[]; 
% spike rate for TMR across the mean of all the good channels 
for i=1:size(uniTMR,1)+1 
    sp_rate_allchannel(:,i)=mean(final_spikerate(:,i)); 
end 

  
figure, plot(sp_rate_allchannel); 

  
hold on 

  
text(1,sp_rate_allchannel(1,1),'NoGo'); 
for i=2:size(uniTMR1,1) 
    text(i,sp_rate_allchannel(1,i),num2str(uniTMR1(i,1))); 
end 
xlabel('TMR'); 
ylabel('Spike Rate') 
title('Across all Channels') 
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