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ABSTRACT 

COMPUTATIONAL METHODS FOR THE ANALYSIS OF NEXT 

GENERATION SEQUENCING DATA 

 

by 

Wei Wang 

Recently, next generation sequencing (NGS) technology has emerged as a powerful 

approach and dramatically transformed biomedical research in an unprecedented scale. 

NGS is expected to replace the traditional hybridization-based microarray technology 

because of its affordable cost and high digital resolution. Although NGS has significantly 

extended the ability to study the human genome and to better understand the biology of 

genomes, the new technology has required profound changes to the data analysis. There 

is a substantial need for computational methods that allow a convenient analysis of these 

overwhelmingly high-throughput data sets and address an increasing number of 

compelling biological questions which are now approachable by NGS technology.  

 This dissertation focuses on the development of computational methods for NGS 

data analyses. First, two methods are developed and implemented for detecting variants 

in analysis of individual or pooled DNA sequencing data. SNVer formulates variant 

calling as a hypothesis testing problem and employs a binomial-binomial model to test 

the significance of observed allele frequency by taking account of sequencing error. 

SNVerGUI is a GUI-based desktop tool that is built upon the SNVer model to facilitate 

the main users of NGS data, such as biologists, geneticists and clinicians who often lack 

of the programming expertise. Second, collapsing singletons strategy is explored for 

associating rare variants in a DNA sequencing study. Specifically, a gene-based genome-

wide scan based on singleton collapsing is performed to analyze a whole genome 



sequencing data set, suggesting that collapsing singletons may boost signals for 

association studies of rare variants in sequencing study. Third, two approaches are 

proposed to address the 3’UTR switching problem. PolyASeeker is a novel 

bioinformatics pipeline for identifying polyadenylation cleavage sites from RNA 

sequencing data, which helps to enhance the knowledge of alternative polyadenylation 

mechanisms and their roles in gene regulation. A change-point model based on a 

likelihood ratio test is also proposed to solve such problem in analysis of RNA 

sequencing data. To date, this is the first method for detecting 3’UTR switching without 

relying on any prior knowledge of polyadenylation cleavage sites.  
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  CHAPTER 1

INTRODUCTION 

 

The past few years have seen a dramatic development in sequencing technology, which has 

made the per-base cost of DNA sequencing plummet by ~100,000-fold over the past 

decade, far outpacing Moore’s law of technological advance in the semiconductor industry 

(Lander, 2011). Because of affordable cost and high digital resolution, the new or “next 

generation” sequencing (NGS) technology is replacing the traditional hybridization-based 

microarray technology. And this new engine has been ‘turbo-charged’ by several orders of 

magnitude compared to its predecessor (Figure 1.1) since the basic mechanisms for data 

generation have been changed radically, producing far more sequence reads per instrument 

run and at a significantly lower expense (Mardis, 2011).   

 
Figure 1.1  Changes in instrument capacity over the past decade.  
Source: (Mardis, 2011) 
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  Table 1.1  Sequencing Platform Comparison 

   Source: (Mardis, 2011) 

 

Several platforms have been developed using the so called “massively parallel” 

sequencing technology. Although each instrument is distinctly different in its specifics, as 

showed in Table 1.1 (Mardis, 2011), all massively parallel devices share certain attributes: 

First, the initial preparatory steps are fewer and simpler to perform than for Sanger 

sequencing. Instead of a bacterial cloning step followed by DNA isolation, massively 
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parallel sequencing begins with the production of a library formed by ligating 

platform-specific synthetic DNAs (adapters) onto the ends of the fragment population to be 

sequenced. Second, all platforms require the library fragments to be amplified on a solid 

surface (either a glass slide or a microbead) by a polymerase-mediated reaction that 

produces many copies of each single library fragment. Amplification is needed so that the 

ensuing sequencing reactions produce sufficient signal for detection by the instrument's 

optical system. However, this step also provides a source of sequencing error that is 

perpetuated through the downstream processes, because polymerases are never 100% 

accurate. Third, these instruments perform sequencing reactions as an orchestrated series 

of repeating steps that are performed and detected automatically. The specifics of the DNA 

sequencing reaction are different for each platform, emphasizing the amazing range of 

innovation in chemistry, molecular biology and engineering required to produce sequence 

information from hundreds of thousands to hundreds of millions of DNA molecules 

simultaneously. For example, the Roche/454 instrument detects each 

polymerase-catalysed nucleotide incorporation event by a downstream series of reactions 

that produce light (‘pyrosequencing’), initiated by the pyrophosphate molecules released 

on nucleotide incorporation. The Life Technologies SOLiD uses a unique DNA 

ligase-mediated process that, through multiple rounds of template-directed ligation, 

sequences each nucleotide twice. The Illumina sequencer incorporates fluorescently 

labelled nucleotides that are chemically blocked such that only one nucleotide 

incorporation event occurs per fragment population per sequencing cycle. Regardless of 

the details, massively parallel sequencing reactions are distinguished by the fact that they 

occur in a nucleotide-by-nucleotide stepwise fashion, rather than by discrete separation and 
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detection (in a 96-at-a-time fashion) of already produced Sanger sequencing reaction 

products on a capillary instrument. The fourth shared feature of these systems is the ability 

to obtain sequence information from both the ends of the DNA fragments comprising the 

sequencing library. Depending on the instrument system and the library construction 

approach used, one can either sequence at both ends of linear fragments (‘paired end 

sequencing’) or from both ends of previously circularized fragments (‘mate pair 

sequencing’). 

There are many applications have been conducted by taking the unprecedented 

advantages of NGS. According to (Lander, 2011), an early application of massively 

parallel sequencing was to create ‘epigenomic maps’, showing the locations of specific 

DNA modifications, chromatin modifications and protein-binding events across the human 

genome. Chromatin modification and protein binding can be mapped by chromatin 

immunoprecipitation-sequencing (ChIP-Seq)  (Barski, et al., 2007; Mikkelsen, et al., 

2007), and the sites of DNA methylation can be found by sequencing DNA in which the 

methylated cytosines have been chemically modified (Methyl-Seq) (Meissner, et al., 

2008). Next, as the technology has improved, the focus has turned to re-sequencing human 

samples to study inherited variation or somatic mutations. One can re-sequence the whole 

genome (Bentley, et al., 2008) to varying degrees of coverage or use hybridization-capture 

techniques (Okou, et al., 2007) to re-sequence a targeted subset, such as the protein-coding 

sequences (referred to as the ‘exome’). Furthermore, sequencing is also being extensively 

applied to RNA transcripts (RNA-Seq), to count their abundance, identify novel splice 

forms or spot mutations (Mortazavi, et al., 2008). These applications have great impact on 

genomics research and allow to not only understand the structure of genomes and the 
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biology of genomes, but also further understand the biology of disease, advance the science 

of medicine in the near future, in addition to improve the effectiveness of healthcare 

ultimately (Green and Guyer, 2011), which is represented in Figure 1.2. 

 
Figure 1.2  Schematic representations of accomplishments across five domains of 

genomics research.  
Source: (Green and Guyer, 2011) 

 

Although next generation sequencing have significantly extended the ability to 

study the human genome and to better understand the biology of genomes, the new 

technology has required profound changes to the data analysis pipelines than those of 

previous technology. For example, how to handle the huge amount of data, how to deal 

with the error profiles of the sequencing platforms and how to model the significant 

decrease in the read length become more challenging. These challenges have resulted in a 
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revitalization of the bioinformatics-based pursuit for the analysis of next generation 

sequencing data at all levels, in order to address an increasing number of compelling 

biological questions that are now approachable by NGS technology.  

This dissertation focuses on the development of computational methods for next 

generation sequencing analysis. First, two methods are developed and implemented for 

detecting variants in analysis of individual or pooled NGS data.  SNVer formulates variant 

calling as a hypothesis testing problem and employs a binomial-binomial model to test the 

significance of observed allele frequency by taking account of sequencing error in NGS. 

SNVerGUI is a GUI-based desktop tool that is built upon the SNVer model in order to 

facilitate the main users of NGS data, such as biologists, geneticists and clinicians who 

often lack of the programming expertise.  Second, collapsing singletons strategy is 

explored for associating rare variants in a NGS study. Specifically, a gene-based 

genome-wide scan based on singleton collapsing is performed to analyze a whole genome 

sequencing data, suggesting that collapsing singletons may boost signals for association 

studies in sequencing data. Third, two approaches are proposed to solve the problem of 

identification of 3’UTR length changes in RNA-Seq data. On one hand, PolyASeeker, is a 

novel bioinformatics pipeline for identifying polyadenylation cleavage sites from 

RNA-Seq data. Followed by the conventional method using Fisher’s exact test, the 3’UTR 

switching can be detected. On the other hand, a change-point model based on a likelihood 

ratio test has been proposed, which is the first available method to allow alternative 

cleavage and polyadenylation (APA) analysis without relying on any PolyA information 

and hence is more powerful and accurate in the APA studies than the traditional method. 
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This dissertation is organized in the following manner. Chapter 2 discusses the 

background and related work of variant calling and association study in DNA-Seq analysis, 

together with the identification of 3’UTR length changes from RNA-Seq data. Chapters 3 

and 4 introduce two proposed methods, SNVer and SNVerGUI, for variant detection in 

analysis of individual or pooled sequencing data. Chapter 5 demonstrates that collapsing 

singletons may boost signal for associating rare variants in sequencing study. Chapters 6 

and 7 propose two methods, PolyASeeker and a change-point model-based approach, for 

identifying 3’UTR length changes in RNA-Seq studies. Finally, Chapter 8 summarizes the 

contribution of this dissertation and discusses future directions for research.  
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  CHAPTER 2

BACKGROUD 

2.1 Variant Detection by DNA-Seq 

For genetics studies, NGS holds the promise to revolutionize genome-wide association 

studies (GWAS). The recently completed phase of GWAS mainly addresses common 

SNPs with minor allele frequency > 5%, based upon the common disease/common variant 

(CD/CV) hypothesis (Manolio, et al., 2009). However, the identified common variants 

explain only a small proportion of heritability (Hindorff, et al., 2009).  Rare variants 

therefore have been hypothesized to account for the missing heritability (Dickson, et al., 

2010; Wang, et al., 2010). To identify rare variants, a direct and more powerful approach is 

to sequence a large number of individuals (Li and Leal, 2009). This line of thought also 

implicitly motivates the recent 1000 Genomes Project, which will sequence the genomes of 

1,200 individuals of various ethnicities by NGS (Hayden, 2008). It is expected to extend 

the catalogue of known human variants down to a frequency near 1%. 

Although the cost of whole-genome or exome sequencing of all enrolled subjects is 

prohibitively high now, such studies will eventually be carried out in a manner similar to 

GWAS with very large sample sizes (Cirulli and Goldstein, 2010). While the cost is being 

brought down to as low as $1000 for sequencing a whole genome (Service, 2006), in the 

interim, a cost-effective strategy has to be taken in order to take the full advantage of NGS. 

Such issues with cost and labor are not new as similar problems were confronted in the 

early expensive stage of GWAS and were circumvented by focusing on small candidate 

regions and the use of pooling of genomic DNAs (Norton, et al., 2004; Sham, et al., 2002). 

Borrowing the same idea, many targeted re-sequencing applications utilizing pooling have 
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been seen in the past few years (Calvo, et al., 2010; Momozawa, et al., 2011; Nejentsev, et 

al., 2009; Out, et al., 2009).   

The first-step analysis of NGS data for genetics study is often to identify genomic 

variants among sequenced samples. Quite a few SNP calling tools have been implemented 

to identify SNPs from sequencing of individual genomes. SNP calling is a relatively 

straightforward problem in analysis of sequencing data of individual genomes, because the 

frequency of a candidate allele can be only 0 (non-variant), 0.5 (heterozygous) or 1 

(alternate homozygous) for a diploid genome. Despite (high) sequencing error of NGS, a 

reliable call can be easily made given a high depth of coverage, say 20X to 30X. 

Consequently, statistical models for SNP calling have been developed and integrated as 

one simple functional module in many NGS short reads analysis tools such as SAMtools 

(Li, et al., 2009) , MAQ (Li, et al., 2008) and VarScan (Koboldt, et al., 2009). SAMtools 

and MAQ use a Bayesian statistical model to compute the posterior probabilities of the 

three possible genotypes. Specifically, for the likelihood part, they employ a binomial 

distribution to characterize sampling of the two haplotypes, and the prior probability, like 

other Bayesian approaches, is pre-specified. SAMtools and MAQ empirically set the prior 

probability of observing a heterozygote to be 0.001 for the discovery of new SNPs, and 0.2 

for inferring genotypes at known SNP sites. Such Bayesian approaches may not be ideal 

for multiplicity control because of the subjectivity of assigning the prior probability. 

VarScan implements a heuristic/statistical method. For each candidate site, it applies 

several heuristic filters such as having a minimum number of supporting reads and allele 

frequency reaching a minimum threshold.  It also conducts a Fisher's exact test for testing 

the deviation of the read counts supporting variant alleles from being generated because of 
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sequencing error. Those heuristic filters overlap with the Fisher’s exact test in terms of 

reducing false positives. When not systematically considered, they may distort the 

statistics distribution under null and thus void the resultant p values for multiplicity 

control.  

Identifying SNPs from pooled NGS data is more challenging in that pooled DNA 

are sampled from a number of individuals, which consequently will give rise to variant 

allele frequencies other than simply 0, 0.5 or 1. Driven by the need for analysis of 

increasing amount of pooled NGS data, several programs/methods for the detection of 

variants from the pooled data have been developed. SNPSeeker employs the large 

deviation theory for SNP detection (Druley, et al., 2009). It compares observed allele 

frequencies against the distribution of sequencing errors as measured by the Kullback 

Leibler (KL) distance (Kullback and Leibler, 1951). One limitation of this approach is that 

its error model has to be estimated from negative control data. SNPSeeker was recently 

extended to SPLINTER with two main improvements (Vallania, et al., 2010). First, it is 

capable of detecting rare short indels. Second, it provides a good cutoff after ranking all 

candidate variants to balance power and type I error rate, which, however, requires an 

additional positive control data. CRISP (Bansal, 2010) models the number of reads of the 

reference and alternate alleles at a particular position across all pools as a contingency 

table, which is then tested by the Fisher’s exact test. Its working hypothesis is that, due to 

rareness, presence of rare variants in all pools will be sporadic and then results in an excess 

of reads with the alternate allele as compared with the other pools, which is expected to be 

captured by the Fisher’s exact test. CRISP then conducts a complementary test for the 

overabundance of alternate alleles within each pool against the sequencing error rate. 
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Although it is shown that CRISP outperforms SNPSeeker, MAQ, and VarScan (Bansal, 

2010), it has the following limitations. First, its working hypothesis does not hold well for 

common variants. When the minor allele frequency is large and/or the number of 

individuals in each pool is large, sporadic presence will disappear and result in no 

prominent excess of reads that can be captured by the Fisher’s exact test. Second, their 

method is not applicable for single pool data. Third, rareness and overabundance of 

alternate alleles are related but are captured separately using two different models, which 

may not be an efficient approach. In addition, these two separate tests make it hard to 

obtain an overall multiplicity control. Finally, its computational efficiency makes 

scalability an issue and may prevent its application in analysis of whole-exome or genome 

sequencing data. The main bottleneck comes from computing the p-value of a large 

number of contingency tables in the Fisher’s exact test. 

In addition to the above direct SNP calling programs, there are also other relevant 

studies for analysis of pooled NGS data, including estimating allele frequencies from 

pooled sequencing (Ingman and Gyllensten, 2009), evaluating the ability to detect rare 

SNPs (Out, et al., 2009), and investigating the power of variant detection in pooled DNA 

for NGS and the optimal pooling designs (Lee, et al., 2011), among others.  

2.2 Association Studies for Rare Variants  

The limitations of genome-wide association (GWA) studies that focus on the phenotypic 

influence of common genetic variants have motivated human geneticists to consider the 

contribution of rare variants to phenotypic expression. Recent advances in next-generation 

sequencing (NGS) technology have made it technically and economically feasible to 

capture the full spectrum of genomic variation. NGS provides a powerful tool for 
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systematic exploration of common and rare variants in the entire genome, even in large 

population-scale studies (1000 Genomes Project Consortium, 2010). However, 

pinpointing causal variants remains a major challenge, particularly for associating rare 

variants with complex traits (Cooper and Shendure, 2011).  

An illustration of scenarios in DNA-Seq studies in Figure 2.1, where the blue lines 

indicate genomic regions and red boxes indicate variants. A) Variants at a single locus with 

common alleles are more frequent in cases then controls. B) Multiple rare variations 

contribute to the phenotype such that the collective frequency of these variations is greater 

in cases. This would create a greater diversity of haplotypes or DNA sequences among the 

cases. C) Multiple rare variations contribute to the phenotype but act in a synergistic 

fashion, such that cases are likely to have more similar DNA sequences compared to 

controls. D) Multiple rare variations contribute to a phenotype but the variations 

contributing to the phenotype reside in specific genomic regions. This situation would 

create greater sequence diversity among the cases, as in part b, but only in the relevant 

genomic regions. 

There is a substantial need for computational methods that allow for efficient 

association analysis of rare variants. Several powerful approaches tailored for rare-variant 

association studies have been proposed recently (Daye, et al., 2012; Li and Leal, 2008; 

Neale, et al., 2011; Wu, et al., 2011). Although these tests offer the powerful tool to 

investigate rare variants in the entire genome, resulted from the increasing availability of 

high-throughput sequencing technologies, these methods may not be sufficient for their 

success as appropriate analytical methods are also needed (Bansal, et al., 2010). 
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Figure 2.1  Scenarios in which DNA sequence variants distinguish cases and controls. 
Source: (Bansal, et al., 2010) 
 

2.3 Identification of 3’UTR Switching from RNA-Seq 

For transcriptome study, the introduction of RNA-Seq technology along with new analytic 

methods makes it possible to address an increasing number of compelling biological 

questions that may not be possible using microarray technology. In particular, alternative 

RNA splicing and processing, common phenomena in eukaryotes, play so critical a role in 
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gene function regulation that they receive much attention in RNA-Seq analysis (Keren, et 

al., 2010) and motivate quite a few methodological developments. For example, MISO 

employs a probabilistic mixture model to quantify alternative splicing and processing, then 

test the equality of transcript isoform ratios between samples (Katz, et al., 2010); MATS by 

using a Bayesian statistical framework offers the flexibility to identify differential 

alternative splicing and processing events that match a given user-defined pattern (Shen, et 

al., 2012); DEXSeq employs generalized linear models to test for differential usage of 

exons and provides reliable control of false discoveries by taking biological variation into 

account (Anders, et al., 2012); other developments include (Griffith, et al., 2010; Rogers, et 

al., 2012; Trapnell, et al., 2013). Despite the success of these methods, detecting 3’ 

untranslated regions (3’UTR) switching remains challenging. Very few, if any, methods 

and tools are available for directly analyzing this special alternative RNA processing event.  

3’ end processing plays a crucial role in eukaryotic mRNA maturation (Colgan and 

Manley, 1997). Through cis elements in the 3’ translated regions (3’UTR) of mRNAs, 

post-transcriptional gene regulation frequently occurs and determines the stability, 

localization and translation of mRNA (Martin and Ephrussi, 2009; Moore, 2005). These 

roles are mediated by interactions with RNA-binding proteins (RBPs) and microRNAs 

(miRNAs) (Licatalosi and Darnell, 2010). Over half of mammalian genes contain 

alternative cleavage and polyadenylation sites, which lead to various mRNA isoforms 

differing in their 3’UTRs (Zhang, et al., 2005). The analysis of alternative cleavage and 

polyadenylation in 3’UTR, including shortening and lengthening, has recently been 

appreciated as a global phenomenon under different cell conditions (Flavell, et al., 2008; Ji, 

et al., 2009; Mayr and Bartel, 2009; Sandberg, et al., 2008) and different species 
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(Sherstnev, et al., 2012; Smibert, et al., 2012; Ulitsky, et al., 2012). And this phenomenon 

has received particular attention in cancer studies (Fu, et al., 2011; Lembo, et al., 2012; 

Lin, et al., 2012; Mayr and Bartel, 2009).  

In contrast with the increasingly recognized importance of APA, computational 

methods and tools for the APA analysis using RNA-Seq are underdeveloped. In unraveling 

APA regulation, Ji and colleagues scored relative expressions by taking the ratio of short 

reads density in extended and common regions, as defined by distal and proximal PolyA 

sites, respectively (Ji, et al., 2011). A higher score, therefore, indicated higher abundance 

of long 3’UTR isoform. A similar approach was taken in a recent tandem 3’UTR analysis, 

where the statistical significance was assessed by Fisher’s exact test for the switch-score 

under different conditions (Wang, et al., 2008). The same group further improved the 

approach and implemented a new computational tool, MISO (Katz, et al., 2010). 

Specifically, tandem 3’UTR was treated as special alternative processing, and thus the 

quantification of expression level for each isoform can be estimated by computing PSI 

(Percent Spliced Isoform). These existing methods, however, have one critical drawback; 

namely, they rely on prior knowledge of annotated PolyA sites. For example, MISO 

constructs 3’UTR isoform based on PolyA sites information collected from the PolyA site 

database (Lee, et al., 2007; Zhang, et al., 2005). It is noted that the PolyA sites from the 

current database are computationally inferred from cDNA/EST sequences. It is far from 

complete and may also contain false positives. Therefore, these approaches that depend on 

PolyA information may not be precise or powerful due to incomplete information of all 

potential cleavage sites on 3’UTR. 
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This motivates the analysis of 3’UTR switching without relying on any PolyA 

annotations, one major limitation of existing methods. In addition, existing tools also have 

the same limitations, such as not capable of handling sample replicates, not supporting 

multiple isoforms and no confidence interval estimates for the change-point. These 

limitations warrant development of new bioinformatics methods. 
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  CHAPTER 3

SNVER: A STATISTICAL TOOL FOR VARIANT CALLING 

3.1 Introduction 

This chapter proposes a statistical tool, SNVer (Single Nucleotide Variant caller/seeker), 

for calling common and rare variants in analysis of pooled or individual next-generation 

sequencing (NGS) data. It formulates variant calling as a hypothesis testing problem and 

employs a binomial-binomial model to test the significance of observed allele frequency 

against sequencing error. SNVer reports one single overall p-value for evaluating the 

significance of a candidate locus being a variant, based on which multiplicity control can 

be obtained. This is particularly desirable because tens of thousands loci are 

simultaneously examined in typical NGS experiments. Each user can choose the false 

positive error rate threshold he or she considers appropriate, instead of just the 

dichotomous decisions of whether to “accept or reject the candidates” provided by most 

existing methods. Both simulated data and real data demonstrate the superior performance 

of the program in comparison with existing methods. SNVer runs very fast and can 

complete testing 300K loci within an hour. This excellent scalability makes it feasible for 

analysis of whole-exome sequencing data, or even whole-genome sequencing data using 

high performance computing cluster. 
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3.2 Methods 

3.2.1 Statistical Models for Single Pool Data 

For a genomic locus, let θ be its minor allele frequency (MAF) in a population. If θ is larger 

than a threshold θ0 (θ > θ0), then it is a single nucleotide polymorphism (SNP). Suppose 

that sample N individuals (haploids) from this population for pooled sequencing. It can be 

assumed that the number of individuals (n) carrying the minor allele follows a binomial 

distribution b(N, θ), namely, 
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Re-sequence this genomic region and suppose that K short reads cover this locus. If 

no sequencing error, given n individuals carrying the minor allele, the number of minor 

alleles X that observed from the K short sequence reads follows also a binomial distribution 

b(K, n/N), namely,  
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Now assume sequencing error rate to be , under which the minor allele will be 

flipped to one of the other three alternate alleles, and vice versa. So the observed X follows 

a binomial distribution  (  
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Since n is not observable, sum it out and obtain the statistical model for X as 
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Now consider the hypothesis test of whether this locus is a (rare) variant (θ > θ0) 

 

 

                       

 

Its significance p value will be 
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3.2.2 Partial Conjunction Test for Multiple Pool Data 

The above statistical model is for testing a locus in one single pool data. If M pools, the test 

is performed in each pool separately. Therefore a set of M hypotheses for each candidate 

variant can be obtained. The problem of making a variant call at one specific locus involves 

the simultaneous testing of hypotheses at the set level. Typical questions considered in the 

multiple-testing framework include: (i) Are all M hypotheses in the set true? (ii) Are all M 

hypotheses in the set false? (iii) Are at least u out of M hypotheses in the set false? These 

questions are referred to as conjunction test, disjunction test and partial conjunction test, 

respectively (Benjamini and Heller, 2008). Testing whether a locus is a variant based on 

multiple pool data is equivalent to the partial conjunction test that at least u =1 out of the M 

hypotheses for that locus is false. Let  ( )  ( )    ( ) be the ordered p-values obtained 

from each single pool test. Following (Benjamini and Heller, 2008), the Simes method is 

employed to calculate the pooled p-value for the partial conjunction test as 

 

        {
 

 
 ( )        } 

 

If the set of M null p-values at the tested locus are independent, Benjamini and 

Heller show that p
1/M

 is a valid p-value for testing the partial conjunction null (Benjamini 

and Heller, 2008). The Benjamini Hochberg (BH) procedure (Benjamini and Hochberg, 

1995) and other multiple-test adjustments can then be applied to the pooled Simes’ 

p-values for multiplicity control when testing a large number of loci. It has been shown that 

this Simes-BH procedure controls the false discovery rate (FDR) at the pre-specified 

nominal level (Benjamini and Heller, 2008). 
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3.3 Data Sets 

3.3.1 Simulated Data 

This section simulates synthetic data to investigate the numerical performances of the 

proposed approach. For the single pool scenario, a total of 10,000 datasets are generated 

under each combination of several conditions: 

 Sequencing coverage: low (10X) and high (30X) 

 Sequencing error: low (0.01) and high (0.05) 

 Minor allele frequency (MAF): rare variants with θ ~ U(0.001, 0.01), less common 

variants with θ ~ U(0.01, 0.05), and very common variants θ ~ U(0.05, 0.5) 

 The number of sequenced individuals from low to high with N = 10, 20, 50, 100, 

200, 500, 1000, 1500, 2000 

 

For each MAF setting θ ~ U(θmin, θmax), the power of the proposed approach is 

computed for detecting variants by testing the null hypothesis H0: θ < θmin. Meanwhile, it is 

demonstrated that type I error is controlled at the nominal level by the proposed test, by 

simulating θ ~ U(0, θmin) and evaluating how likely the same null hypothesis H0: θ < θmin 

will be rejected by mistake. For both power and type I error evaluations, a variant is called 

at the nominal level 0.05. 

For the multiple-pool scenario, the simulation follows the above single pool 

simulation settings except that simulates five pools with the same number of individuals in 

each pool and the total N = 10, 20, 50, 100, 200, 500, 1000, 1500, 2000.  

3.3.2 Real Data 

This section assesses the performance of the proposed method in analysis of two pooled 

and one individual real NGS datasets as summarized in Table 3.1. The first one is an 

in-house Autism dataset generated using ABI SOLiD platform from sequencing three 
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genomic regions, denoted as Core, CDH9 and CDH10, of size 187Kb, 158Kb and 158Kb, 

respectively, on chromosome 5 of the human genome. 24 pools with six individuals in each 

were made, totaling 144 samples. There are 12 pools for Autism case samples and the other 

half 12 pools for control samples. One case pool experiment failed and therefore 23 pools 

left in total for analysis. Short sequence reads were aligned by the Bioscope software from 

ABI SOLiD with default parameters. The mapped short sequence reads covered >96% of 

the three target regions with average 90X depth of coverage per individual. Meanwhile, 

individual genotyping data was collected for each sample, which were generated from 

Illumina HumanHap550v3 SNP arrays with ~550,000 markers. With individual 

genotyping data, the concordance of identified variants was calculated between pooled 

sequencing data and individual genotyping data for evaluating variant call quality. 

 

Table 3.1  Summary of T1D and Autism Pooled Sequencing and ADHD Individual 

Sequencing Datasets 

Disease Platform 
Total 

Reads 

Reads 

Length 

#Pool #Individual 

per pool 
Region 

Coverage 

per 

individual Case Ctrl 

Autism SOLiD ~402M 50bp 11 12 6 ~502 Kb ~90X 

T1D 454 ~9.4M ~250bp 10 10 48 ~31 Kb ~80X 

ADHD Illumina ~57M 76bp x 2 3 individuals ~38 Mb ~20X 

 

The second dataset was collected in a recent study of causative Type 1 Diabetes 

(T1D) variants (Nejentsev, et al., 2009). Exons and splice sites of 10 candidate genes were 

resequenced by the 454 sequencing system. Ten pooled samples each comprising equal 

amounts of DNA from 48 T1D patients and ten pooled samples each comprising equal 
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amounts of DNA from 48 healthy controls were made, totaling 480 T1D patients and 480 

healthy controls from Great Britain. For each of the 20 pooled DNA samples, the numbers 

of produced short reads range from 281,270 to 579,102, with average length of 250 bases 

and 9,416,365 reads in total. These reads were mapped by BWA-SW (Li and Durbin, 

2010) with default parameters and the average depth of coverage is 80X per individual. 

The third one was an in-house individual sequencing dataset. Paired-end exome 

sequencing was performed on three members affected with attention deficit/hyperactivity 

disorder (ADHD) in a pedigree, using the Illumina Genome Analyzer IIx platform with 

read lengths of 76 base pairs. It targets all human exonic regions totaling approximately 38 

Mb. The short reads were aligned by BWA with default parameters and removed 

duplicates by PICARD (http://sourceforge.net/projects/picard/). These mapped and 

cleaned short reads were then re-aligned locally by the GATK IndelRealigner tool 

(DePristo, et al., 2011). The average depth of coverage is about 20X for each patient. 

Meanwhile, the genotyping data were collected of these three patients, generated from the 

Illumina Human610-Quad version 1 SNP arrays with ~610,000 markers (including 

~20,000 non-polymorphic markers). 

For pooled sequencing data, CRISP has been shown to outperform other existing 

methods (Bansal, 2010), the comparison between SNVer and CRISP was performed for 

evaluation. SAMtools was also included for comparison although it was not designed for 

pooled sequencing data. For the ADHD individual data, SNVer was compared with 

SAMtools and GATK. Variant positions were called and filtered by SAMtools with all 

default settings plus using awk ‘($3 = = “*” &$6> = 50) || ($3! =“*” &$6> = 20) ’, as 

suggested by the SAMtools website. For the ADHD data, SAMtools with the suggested 

http://sourceforge.net/projects/picard/
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setting returned so many variants that SAMtools results were reported with an additional 

filtering -d20 to remove variant calls with sequencing coverage less than 20, for getting 

comparable numbers of variant calls as SNVer. Variants were also called using the GATK 

UnifiedGenotyper, followed by further filtering based on the latest recommendations from 

the GATK. CRISP has its own pileup procedure integrated in its analysis pipeline. To 

make a fair comparison, following CRISP (Bansal, 2010) similar quality control was 

performed and set the same processing parameters such as mapping quality and base 

quality filtering thresholds.  

3.4 Results 

3.4.1 Power and Type I Error Evaluations 

The single pool results are shown in Figure 3.1. It can be seen that the proposed method can 

control type I error rate at the nominal level 0.05 in all settings. The number of sampled 

individuals (sample size) and the depth of coverage are both shown to be helpful in 

improving power. The largest improvement of ~10% attributed to depth of coverage (from 

10X to 30X) is observed in the rare variants and high sequencing error (up-right panel). 

The improvement contributed by larger sample size keeps increasing at a decreasing rate 

until saturated. These power improvement curves would be helpful for pooling experiment 

design and provide guidance as to how to balance sample size (cost) and desired power. As 

expected, rare variants are much harder to be detected than common variants. A large 

sample is required for achieving high power to detect them. Finally, higher sequencing 

error (0.05 vs 0.01) puts a small dent to power. 
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Figure 3.1  Power (PW) and Type I error rate (Err) of SNVer using single pool data at low 

(10X) and high (30X) coverage. 
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Figure 3.2  Power (PW) and Type I error rate (Err) of SNVer using multiple pool data at 

low (10X) and high (30X) coverage. 
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Figure 3.2 shows similar results for the multiple-pool scenario. Again, type I error 

rate is controlled at the nominal level 0.05. It is also observed that given the same number 

of sequenced individuals, single pool design yields a bit higher power with lower type I 

error rate in comparison with multiple pool design, for example, 1000 individuals using 

one single pool vs five pools with 200 individuals in each. CRISP selects candidate SNPs 

by the Fisher’s exact test, which is then followed by additional filtering steps. In the 

multiple-pool scenario, it is shown that the rankings of candidates SNPs by the proposed 

test is superior to those by the Fisher’s exact test employed by CRISP. To compare the 

efficiencies of these two rankings, the 10,000 positives with θ ~ U(θmin, θmax) and 10,000 

negatives with θ ~ U(0, θmin) are divided into 100 groups, each with 100 positives and 100 

negatives. These 200 loci are then ranked by their significance levels of testing the null H0: 

θ < θmin using the statistical models. Rankings based the Fisher’s exact test are also 

generated. The area under the curve (AUC) score averaged over 100 groups is used to 

evaluate these two rankings as shown in Figure 3.3 for the typical scenario of 30X 

coverage and 0.05 sequencing error. It can be seen that the Fisher’s exact test is very 

inefficient for detecting common and less common variants. CRISP therefore has to rely on 

additional sequencing error models to complement the Fisher’s exact test for detecting 

common variants. The BH procedure is applied to control FDR at the nominal level of 0.1 

and 0.05. The number of sequenced individuals is modeled in the test and is shown to be 

helpful. This information is not explicitly utilized by CRISP in its Fisher’s exact test and 

therefore contributes very little for detecting common and less common variants, although 

CRISP models it at the later filtering step.  
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Figure 3.3  Ranking efficiency of the binomial models employed by SNVer vs the Fisher’s 

exact test employed by CRISP. 
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Figure 3.4  Correlation between the minor allele frequencies and its estimates in pooled 

sequencing. 

 

The accuracy of allele frequency estimation has an impact on variant call, and is 

more critical for establishing association in genetics studies. Therefore the estimated minor 
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allele frequency (MAF) against the actual MAF when  = 0.01 is plotted in Figure 3.4. For 

a moderate sample size of 250,  good concordance are observed with correlation 

coefficients r
2
=0.9828 and r

2
=0.9318 for the single-pool design and the multiple-pool 

design, respectively. When the sample size increases to 1000, the concordance improves to 

r
2
=0.9955 and r

2
=0.9769 for the single-pool design and the multiple-pool design, 

respectively. The lower concordance of the multiple-design may be attributed to its 

additional between-pool variance. It also explains why single pool analysis yields fewer 

false positives than the multiple pools design for the same set of samples.  

3.4.2 Better Performance 

The user of SNVer only needs to set the sequencing error rate  and the variant threshold 

θ0. SNVer will then report the significance p values of the tested loci of how likely their 

MAF θ < θ0. Assume  = 0.01 for all real datasets. CRISP calls both rare and common 

variants, so θ0=0 is set for SNVer to compare their performance in calling variants. CRISP 

will output the variants it calls, while SNVer will report overall significance p values for 

each locus, based on which the user can choose a threshold he/she feels appropriate and 

make variant calls. To make a comparison, loci are ranked by their p values output by 

SNVer and the significance threshold is taken that gives the same number of variants called 

by CRISP. The loci identified as variants by these two programs are then annotated by 

SeattleSeq (http://gvs.gs.washington.edu/SeattleSeqAnnotation/), and count how many of 

them have been confirmed as variants in dbSNP. Following (DePristo, et al., 2011), variant 

call quality is evaluated by examining dbSNP rate, transition/transversion (Ti/Tv) ratio and 

concordance of sequencing and  individual genotyping calls. A higher Ti/Tv ratio generally 

indicates a higher accuracy; this metrics is particularly helpful for assessing novel single 

http://gvs.gs.washington.edu/SeattleSeqAnnotation/
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nucleotide variant calls (DePristo, et al., 2011). The variant call results are summarized in 

Table 3.2. For the Autism and T1D pooled sequencing datasets, SNVer has the higher 

dbSNP rates, the higher overall Ti/Tv ratios, and the higher Ti/Tv ratios for new sites, in 

comparison with CRISP. It indicates the better quality of the call sets SNVer produced. In 

contrast, SAMtools made much fewer SNP calls which led to much lower sensitivities, 

despite its higher Ti/Tv ratios. Out of the 110 SNPs that have been genotyped by SNP 

arrays in the Autism dataset, SAMtools identified only 16 SNPs with 100% genotyping 

concordance, while both SNVer and CRISP called about 100 SNPs with 100% genotyping 

concordance. This confirms that SAMtools may not be appropriate for pooled sequencing 

data. The correlation between alternate allele frequencies in individually genotyped DNA 

samples and frequency estimates in the sequenced DNA pools is plotted in Figure 3.5, with 

r
2
=0.92 and r

2
=0.94 for the Autism case and control, respectively. The achieved 100% 

genotype concordance with less perfect frequency estimates is not surprising because 

accurate estimate of allele frequency θ is only critical for rare variants when testing θ>0.  

As shown in Table 3.2 , for the ADHD individual sequencing data, under 

family-wise error rate 0.05 level, SNVer also obtained the variant call sets with good 

quality. This is evidenced by the ~97% dbSNP rates, the ~2.9 overall Ti/Tv ratios, the 2.22 

to 2.73 Ti/Tv ratios for novel sites, and the 99% genotype concordance. SAMtools with 

suggested parameters/filters made 2+ times more variant calls than SNVer (e.g. ~49K vs 

~18K). The lower Ti/Tv ratios and genotype concordance suggest poorer quality for these 

larger call sets made by SAMtools. When applied with an additional filtering of 

sequencing depth >=20X, SAMtools identified fewer SNPs than SNVer. But it still has 

lower quality as indicated by the lower Ti/Tv ratios and genotype concordance. Compared 
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with GATK, SNVer has similar performance, while with the higher Ti/Tv ratios for novel 

variants in all three individuals. 

Table 3.2  Comparison of SNP Calling by CRISP, SAMtools, GATK and SNVer  

&: Transition and transversion ratio for the identified variants. When the number of variants is small it just 

reports the numbers but not calculate the ratio, e.g., 10/4 for all variants in T1D case by SAMtools means 10 

transitions and 4 transversions.   

+: genotype concordance. P represents the number of variants called by each program and also genotyped. TP 

represents the number of variant calls concordant between sequencing data and individual genotyping data.  

20X: Additional filtering of sequencing depth >=20 is applied. 

 

It is noted that the Ti/Tv ratios for the pooled sequencing data are low for both 

programs. This suggests that they may not perform well if estimating the false positive 

Data Method 
No. of SNP  Ti/Tv

&
  Concord.

+
 

All Known Novel dbSNP%  All Known Novel  TP/P (%) 

A
u

ti
sm

 (
P

o
o
le

d
) 

C
as

e 

CRISP 2182 1791 391 82.1  1.68 1.79 1.26  101/101 (100%) 

SNVer 2182 1795 387 82.3  1.71 1.81 1.35  102/102 (100%) 

SAMtools 261 260 1 99.6  2.26 2.29 0/1  16/16 (100%) 

C
o
n
tr

o
l CRISP 2063 1610 453 78.0  1.68 1.83 1.27  96/96 (100%) 

SNVer 2063 1617 446 78.4  1.78 1.89 1.45  95/95 (100%) 

SAMtools 239 238 1 99.6  2.06 2.05 1/0  16/16 (100%) 

T
1
D

 (
P

o
o
le

d
) 

C
as

e 

CRISP 306 93 213 30.3  0.95 2.58 0.63  

N/A 

SNVer 306 126 180 41.2  1.71 2.15 1.47  

SAMtools 14 9 5 64.3  10/4 8/1 2/3  

C
o
n
tr

o
l CRISP 167 110 57 65.9  1.49 2.93 0.46  

SNVer 167 120 47 71.9  2.34 3.00 1.35  

SAMtools 18 12 6 66.7  14/4 11/1 3/3  

A
D

H
D

 (
In

d
iv

id
u

a
l)

 8
4
0
6
0
 SNVer 18001 17535 466 97.4  2.89 2.89 2.73  4158/4183 (99%) 

   SAMtools 48988 47513 1475 97.0  2.66 2.68 2.16  4437/8116 (55%) 

SAMtools
20X

 15038 14538 500 96.7  2.70 2.72 2.11  2034/3158 (64%) 

GATK 19655 19713 482 97.6  2.91 2.94 2.15  4649/4657(100%) 

8
4
6
1
5
 SNVer 17436 16914 522 97.0  2.85 2.87 2.22  4032/4063 (99%) 

   SAMtools 46037 44489 1548 96.6  2.64 2.67 1.94  4173/7643 (54%) 

SAMtools
20X

 15510 14942 568 96.3  2.74 2.77 2.02  2062/3247 (64%) 

GATK 18892 18419 473 97.5  2.89 2.92 2.03  4537/4566(99%) 

9
2
1
5
7

 SNVer 18676 18208 468 97.5  2.90 2.92 2.37  4192/4224 (99%) 

   SAMtools 49729 47693 2036 95.9  2.69 2.73 2.03  4251/7996 (53%) 

SAMtools
20X

 15881 15370 511 96.8  2.80 2.83 1.99  2028/3259 (62%) 

GATK 20100 19631 469 97.7  2.98 3.00 2.35  4700/4710(100%) 
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rates using the Ti/Tv ratios (DePristo, et al., 2011) and confirms that variant calling is more 

challenging for pooled sequencing. Meanwhile, estimating false positive rates using this 

summary statistic should be cautious for pooled sequencing. First, Ti/Tv estimate for 

pooled samples is not as accurate as for individual samples. Second, targeted resequencing 

regions are usually small, e.g., 31 Kb for the T1D data and 500Kb for the Autism data, and 

therefore will exhibit higher genomic and statistical variances. For example, the ADHD 

individual 84060 has an exome-wide Ti/Tv ratio of 2.89 for all variants; if calculating 

Ti/Tv ratios based on only 500Kb regions, then the smallest Ti/Tv ratio obtained is 1.31, 

and the largest 7.00 with SD=1.53 (consider only 500Kb regions with at least 30 variants 

for having stable Ti/Tv ratio estimates).  

 

 
 

Figure 3.5  Correlation between alternate allele frequencies in individually genotyped 

DNA samples and its estimates in the sequenced DNA pools for the Autism dataset. 

Different symbols represent different depth of coverage ranges as shown in the legend. 
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3.4.3 Better Scalability 

SNVer and SAMtools exhibit similar efficiency in terms of running time. The running time 

of SNVer and CRISP in analysis of the T1D and Autism datasets is given in Figure 3.6. 

The main bottleneck of CRISP comes from computing the p-value of a large number of 

contingency tables in the Fisher’s exact test. Therefore, in additional to the number of tests, 

its time efficiency is also largely dependent on the number of pools and the depth of 

coverage. In contrast, these two factors have little impact on SNVer and its running time is 

roughly linear with the region size (the number of tests). For example, SNVer spends 0.1 hr 

on 31Kb and 1.5 hr on 502Kb for the two datasets, respectively. SNVer is much faster than 

CRISP. Taking the T1D case for example, SNVer is about 500-fold faster than CRISP and 

achieves 300Kb/hr. Such efficiency makes feasible the application of SNVer to analysis of 

whole-exome sequencing data, or even whole-genome sequencing data using high 

performance computing cluster, both of which, however, will take prohibitively longer 

time for CRISP. 

 
 

Figure 3.6  Comparison of running time of SNVer and CRISP for testing the T1D ~30Kb 

region and the Autism ~500Kb region. Running time of SNVer is mainly determined by 

the region size (the number of tests), while larger pool numbers and sequencing depth will 

take additional time for CRISP. 
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3.4.4 Informative Ranking and Multiplicity Control 

SNVer reports one single overall significance p-value for each locus, based on which the 

rankings of all tested loci can be produced. Such rankings are more informative and 

accurate than the dichotomous decision of whether to “accept or reject the candidate as a 

variant” provided by CRISP and most other existing methods. For example, four rare 

variants have been found to be associated with T1D based on the T1D dataset by 

comparing the estimated MAF in cases and controls (Nejentsev, et al., 2009). If use SNVer 

to call these four variants by testing the null hypothesis     =0.01, the rankings of them 

by SNVer can be obained in Table 3.3, as well as the dichotomous decisions made by 

CRISP. For SNVer, very significant ranking changes of these four SNPs can be observed, 

which are consistent with their MAFs (relative to the threshold 0.01) and the MAF 

differences. CRISP identifies three of them, rs35337543, ss107794688 and ss107794687, 

as variants in both cases and controls, exhibiting no informative differential changes. It 

should be noted that the ranking difference may only reflect frequency difference. Large 

frequency difference between case and control of those variants may suggest their potential 

association with the phenotype, but their functional importance to the phenotype is yet to 

be assessed by further experiments. 

In addition to ranking, valid p values given by SNVer also make multiplicity 

control possible.  Tens of thousands or millions loci are usually simultaneously examined 

in typical NGS experiments. It is particularly desirable to have multiplicity control, which 

gives the user an idea of the chance of making any errors and/or the proportion of false 

positives among the variant calls they make. Each user can choose the type I error rate 
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threshold he or she considers appropriate, instead of just the dichotomous decisions of 

whether to “accept or reject the candidates” provided by most existing methods. 

 

Table 3.3  Informative Rankings of Four Rare Variants with the Null Hypothesis   
  =0.01 

 T1D Case T1D Control 

SNP Estimated 

MAF 

SNVer 

Ranking 

CRISP 

CALL 

Estimated 

MAF 

SNVer 

Ranking 

CRISP 

CALL 

rs35337543 0.36% 17557 Y 2.51% 45 Y 

rs35667974 0.72% 17557 N 2.42% 59 Y 

ss107794688 0.50% 17557 Y 1.79% 56 Y 

ss107794687 1.07% 145 Y 2.45% 51 Y 

 

3.5 Conclusion and Discussion 

This chapter has developed a novel statistical tool SNVer for calling SNPs in analysis of 

pooled NGS data. Different from the previous models employed by CRISP, it analyzes 

common and rare variants in one integrated model, which considers and models all 

relevant factors including variant distribution and sequencing errors simultaneously. As a 

result, the user does not need to specify several filter cutoffs as required by CRISP. Some 

variant calling methods simply discard loci with low depth of coverage to achieve reliable 

variant calls. The statistical model does not discriminate against poorly covered loci. Loci 

with any (low) coverage can be tested and depth of coverage will be quantitatively factored 

into the final significance calculation. SNVer reports one single overall significance 

p-value for evaluating the significance of a candidate being a variant. An advantage of 
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reporting results on a more continuous scale, instead of just the dichotomous decision of 

whether to “accept or reject the candidate as a variant” as most existing methods do, is that 

the user can choose the alpha threshold he or she considers appropriate. In this chapter, 

both simulated data and real data are used to demonstrate the superior performance of the 

program in comparison with pre-existing methods. Although SNVer is motivated by the 

need for analysis of pooled NGS data, it can also be applied to individual NGS data as a 

special case (N=2 for diploid species), as shown in the ADHD dataset. 

The current program can be improved and extended in several ways. First, small 

indels are not supported. Indels impose a great challenge for NGS including DNA 

amplification and reads mapping which are under fast development. When those 

techniques become mature in handling indels, it is worth investigation of their distribution 

and work out a proper calling strategy. Second, sequencing quality scores can be utilized to 

estimate site-specific sequencing error. Third, the majority loci of sequenced segments are 

known to carry no variants. The density of SNP is estimated to be around 1 out of 1000 

bases. Such prior percentage of non-nulls information may help obtain more precise 

multiplicity control. Fourth, the dependency among tests will also be informative in 

increasing testing efficiency. It has shown that the LD dependency information is very 

informative in increasing the efficiency of conducting genome-wide association tests in 

analysis of GWAS data (Wei, et al., 2009). It is also found recently that dependency 

information is helpful for increasing the efficiency of testing hypotheses at the set level 

(Sun and Wei, 2011). For NGS data, one non-null (variant) is expected from every 1000 

consecutive genomic bases. Such dependency patterns, if appropriately modeled, may help 

further improve testing efficiency. Finally, the current program focuses on calling variants, 
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namely, testing whether θ is larger than a threshold. Under the same framework, the 

models can be naturally extended for case-control association studies by testing whether 

θcase= θcontrol.  
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  CHAPTER 4

SNVERGUI: A DESKTOP TOOL FOR VARIANT ANALYSIS 

4.1 Introduction 

Advances in next-generation sequencing (NGS) technology have made it possible to 

comprehensively interrogate genome-wide genetic variations. However, most existing 

tools for variation detection are based on command-line interface, which discourages the 

main end users of NGS data, such as biologists, geneticists and clinicians, from utilizing 

the software. This chapter develops the SNVerGUI, a graphical user interface (GUI)-based 

tool for variant detection and analysis. Compared with other methods for variant calling, 

the proposed approach is unique in that it is applicable to both individual and pooled 

sequencing data. With friendly GUI, end users can easily adjust running parameters to 

optimize variant calling for their specific needs. SNVerGUI supports commonly used input 

and output file formats that allows SNVerGUI to be seamlessly integrated into common 

NGS data analysis pipelines. SNVerGUI is implemented in Java, which is 

platform-independent and therefore easy to install and run on the commonly used 

operating systems, such as Linux, Mac, and Windows. 

4.2 Results 

Most existing NGS variant calling tools (Bansal, 2010; DePristo, et al., 2011) provide only 

command-line interfaces. Typically, users must execute these tools and sometimes apply 

additional filters from the command line. This may discourage biologists, geneticists, 

clinicians, and other end users who often lack the programming expertise to allow them to 

easily apply non-GUI tools. Quite a few GUI-based variant calling softwares have been 
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developed for addressing this concern (Bao, et al., 2009; Hou, et al., 2010; Qi, et al., 2010). 

However, they are not adapted to detecting variants from pooled sequencing data, which 

account for a sizable proportion of current NGS studies (Calvo, et al., 2010; Nejentsev, et 

al., 2009; Out, et al., 2009). This is the motivation of the SNVerGUI, a graphical user 

interface (GUI)-based desktop environment, in order to exploit the unique merits of the 

recently developed statistical tool SNVer (Wei, et al., 2011) for detecting SNVs and indels 

from both pooled and individual NGS data. The pipeline of SNVerGUI is illustrated in 

Figure 4.1. Its new and key merits are highlighted as follows.  

 

 
Figure 4.1.  Pipeline of SNVerGUI. SNVerGUI employs PICARD-API and SAM-JDK for 

processing alignments, and utilizes SNVerPool and SNVerIndividual for calling variants 

(both SNV and indel) in analysis of pooled or individual NGS data.  

 

First, compared with its previous command-line version (Wei, et al., 2011), 

SNVerGUI adds three new features. 1) It can estimate locus-specific sequencing error from 

data, and thus users don’t need to specify this critical parameter. 2) SNVerGUI can call 

indel variants. 3) Variant outputs in VCF can be directed to the user-friendly web version 
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of the popular annotation tool wANNOVAR (Chang and Wang, 2012) for delineating their 

functional consequences. 

Second, SNVerGUI is applicable to both individual and pooled NGS data by using 

a unified binomial-binomial statistical model. It can handle single-pool NGS data, which 

cannot be processed by most, if not all, existing state-of-the-art tools. Its computational 

efficiency makes it feasible to analyze whole-exome or whole-genome NGS data. 

Third, SNVerGUI supports widely used input and output file formats. SNVerGUI 

accepts aligned read data and reference sequence data in popular file formats, such as 

.fasta, .sam and .bam files. Variant detection results are outputted in the CSV format that 

can be directly opened by Excel. They are also outputted in the standard VCF (Variant Call 

Format) (Danecek, et al., 2011) that can be accepted by other powerful tools as input, e.g., 

VarSifter (Teer, et al., 2011) for filtering and ANNOVAR (Wang, et al., 2010) for 

annotation.  

Fourth, SNVerGUI provides flexible interactive post-call processing. Analysis 

results are displayed in easy-to-analyze table views that support sorting variants by 

p-value, sequencing depth, allele frequency, etc. Users can easily customize the output 

according to their needs, based on their experience and/or desired multiplicity control by 

setting different cutoffs. 

Finally, SNVerGUI is platform-independent. As a Java-based software, 

SNVerGUI inherits Java’s trademark property to allow to “write once, run anywhere”. The 

program is wrapped in “one-click” easy-to-install package and runs on the commonly used 

operating systems, such as Linux, Mac, and Windows. 
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The superiority of the statistical model for variant detection, including accuracy, 

sensitivity, and computational efficiency, has been extensively documented in (Wei, et al., 

2011). Table 4.1 briefly describes how to apply the GUI tool to analyze two real datasets in 

order to illustrate the analysis pipeline. Specifically, one pooled targeted resequencing 

Type 1 Diabetes (T1D) (Nejentsev, et al., 2009) dataset and one individual exome 

sequencing attention deficit/hyperactivity disorder (ADHD) data (Lyon, et al., 2011) were 

analyzed. The reads of the two datasets were mapped using BWA-SW(Li and Durbin, 

2010) and BWA(Li and Durbin, 2009), respectively, with default parameters. Then 

mapping results were outputted in BAM format. 

The two data sets were tested on Windows 7 Professional 64-bit OS, with Intel(R) 

Core(TM) i7 3.07GHz processor and 12.0 GB installed memory (RAM). The aligned 

BAM files, together with target regions, reference genome, and dbSNP file, were specified 

in SNVerGUI’s graphical user interface. Variant calling was then executed using default 

parameters. It took SNVerGUI ~1.45h to analyze the T1D pooled data and ~1.75h to 

analyze the ADHD individual data (Table 4.1). This efficiency demonstrates that 

SNVerGUI is capable of analyzing high volume NGS data within very reasonable time. 

Notably, the analyses were performed using a fixed memory of only 1GB, which shows 

that SNVerGUI is so memory-efficient that it can be used as a desktop tool to analyze even 

whole-genome NGS data. Moreover, one can increase the Java Virtual Machine heap size 

by simply modifying the configuration file before launching SNVerGUI. The running time 

for analyzing such data sets would be shortened with larger memory, which highlights the 

flexibility of SNVerGUI in the aspect of memory management. Therefore, as a desktop 
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tool, it is feasible to analyze a myriad of NGS data at different scales if enough memory 

and CPU are provided. 

 

Table 4.1  Summary and Performance on T1D Pooled Sequencing and ADHD Individual 

Sequencing Data 

 

4.3 Summary 

In summary, this chapter has developed the SNVerGUI, a user-friendly desktop tool to call 

variants for the analysis of pooled sequencing and individual sequencing data. Using this 

software, users can perform sophisticated variant detection by simply configuring several 

parameters in a friendly graphical user interface and annotate variants in wANNOVAR 

(Chang and Wang, 2012) conveniently. Using two real datasets, it has been shown that 

SNVerGUI tool is capable of analyzing very high volume NGS data in feasible time. 

Hence, SNVerGUI is a fast and easy GUI tool for identification of genomic variants. As a 

desktop tool, it has demonstrated the feasibility of conducting variant detection analysis on 

personal computers. It makes bioinformatic analysis as simple and effortless as possible, as 

needed for clinical genetics and personalized medicine. It should be expected its popularity 

among geneticists, clinicians, and biologists, as well as small labs which cannot afford 

costly bioinformatics personnel and infrastructure as is currently required for analyzing 

NGS datasets (Sboner, et al., 2011). With the advent of desktop sequencers (Loman, et al., 

2012), such a desktop bioinformatics tool would become much demanded for NGS data 

analysis. 

Data Platform Total 

reads 

Read 

Length 

#pool Pool 

Size 

Target 

Region 

Coverage Time 

T1D 454 ~4.9M ~250bp 10 48 ~31kb ~80X ~1.45h 

ADHD Illumina ~19M 76bp PE - - ~38Mb ~20X ~1.75h 
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  CHAPTER 5

COLLAPSING SINGLETONS FOR ASSOCIATION STUDY 

5.1 Introduction 

Advances in next-generation sequencing (NGS) technology have made it possible to 

comprehensively interrogate the entire spectrum of genomic variations including rare 

variants. They may help capture the remaining genetic heritability which has not been fully 

explained by previous genome-wide association studies (GWAS). This chapter performs a 

gene-based genome-wide scan to identify hypertension susceptibility loci in analysis of a 

whole genome sequencing cohort of 103 unrelated individuals. It has found that collapsing 

singletons may boost signals for associating rare variants and identified SETX statistically 

significant by a genome-wide gene-based threshold (P value < 5.0×10
-6

). The function of 

SETX in hypertension may be worthy of further investigation. 

5.2 Data 

The Genetic Analysis Workshop 18 (GAW18) provided a whole genome sequencing 

dataset for a hypertension cohort of 483 individuals. These samples were sequenced by 

Complete Genomics with ~60x coverage, and odd numbered autosomes data were made 

available for analysis. After quality control, 464 individuals and 24 million SNPs 

remained. Of those SNPs, over 51% had MAFs < 1%, which was the focus of the analysis 

in this chapter. The longitudinal hypertension phenotypes were provided for up to four 

time points. Since the analysis was focused on binary traits, it treated individuals diagnosed 

with hypertension in any of the four times as cases. 103 genetically unrelated individuals 
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were extracted with both phenotype data and sequencing data, where 39 unaffected 

controls and 64 cases affected by hypertension were found. 

5.3 Methods 

The variants were stored in VCF files. The pre-processing includes the following. 1) 

Filtered out SNPs that were present in dbSNP132 or MAFs > 1%, for getting rare variants. 

2) Filtered out SNPs with genotype missing rate > 5%. 3) The remaining missing 

genotypes were resampled from non-missing individuals. 4) Collapsed singletons, a 

variant being observed only once among all the samples, as one indicator variable by 

 

   { 
                      

                          
. 

 

The rationale was that the distribution of singletons as a group may reflect the association 

between target region and phenotype. 5) Grouped variants into sets based on RefSeq gene 

annotations (Pruitt, et al.), requiring SNPs lie between the RefSeq transcript start site (TSS) 

and transcript end site (TES). SNPs outside gene boundary were not analyzed. In total, 

10,148 genes from odd numbered chromosomes were used.  

This chapter employed three recently published rare association tests, qMSAT 

(Daye, et al.), C-alpha (Neale, et al., 2011) and CMC (Li and Leal). The qMSAT was a 

quality-weighted multivariate score association test that can utilize genotype quality 

information. However, genotype quality score information was not available in the 

GAW18 raw VCF files. Without utilizing quality information, the qMSAT test was 

equivalent to the linear SKAT (Wu, et al.), SSU (Pan, 2009) and C-alpha. The C-alpha test 
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compared the assumed binomial distribution of rare variants in cases versus controls via a 

homogeneity test. CMC, a combined Multivariate and Collapsing Method, collapsed 

variants in subgroups according to allele frequencies and combines these subgroups using 

Hotelling's T
2
 test. For all these three tests, permutations were used to evaluate association 

significance. Because permutation was computationally expensive, a two-step strategy in 

searching and testing candidate loci was used. Specifically, it first used 1000 permutations, 

from which it can identify candidates with estimated P value < 0.001. Then for these 

candidates it conducted 10
6
 permutations so as to know if any loci were significant at a 

genome-wide gene-based threshold (0.05/10000=5.0×10
-6

) using a Bonferroni assumption. 

 

Table 5.1  Genes with P < 0.001 from at Least One Method Using 10
3
 Permutations 

Chr Gene #Variants(Singletons) qMSAT C-alpha CMC 

chr1 NUP210L 674(221) Y   

chr1 USP1 51(19) Y Y  

chr7 CUL1 348(114) Y   

chr9 RAB14 88(32) Y   

chr9 SETX 380(135) Y Y Y 

chr11 FLJ39051 44(11) Y   

chr11 GDPD5 338(104) Y   

chr19 GRIN3B 24(8) Y   

chr19 LOC100505495 249(78) Y Y  

chr19 PSG5 111(26) Y  Y 

chr5 CXXC5 96(35)  Y  

chr15 RCCD1 32(13)  Y  

chr17 WSCD1 183(70)  Y  

chr17 MLLT6 92(33)   Y 

chr1 ATF6 576(173)   Y 

chr7 ZNF775 69(21)   Y 

chr19 LOC100128252 45(13)   Y 

chr5 LOC728342 495(146)   Y 
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5.4 Results 

After the pre-processing step, it obtained ~2.2 million rare variants, which were assigned to 

10148 genes for testing.  Then the three tests were performed, qMAST, C-alpha and CMC, 

using R (www.r-project.org). The qMSAT, C-alpha and CMC identified 10, 6 and 7 genes 

with estimated P value < 0.001, respectively (Table 5.1). Only SETX revealed significance 

for all of the three methods. Using 10
6
 permutations, qMSAT, C-alpha and CMC yielded 

more precise p-values of 2.0×10
-6

, 1.0×10
-6

, and 6.0×10
-6

, respectively, for SETX (Table 

2). The CMC p-value was slightly higher than the genome-wide gene-based threshold, 

which was possibly due to its lower power compared to qMSAT and C-alpha (Daye, et al.). 

SETX locates in chr9:135,136,827-135,230,372 and is a relatively large gene 

among all the human genes. The length of SETX (93,545bp) is far greater than the median 

number (17,970bp) of all the genes (P-value<2.2×10
-16

, one-sided Wilcoxon signed rank 

test). Although it contains 26 exons, the total length of coding regions is only 8,034, 

suggesting that SETX includes large intronic regions. In order to pinpoint causal regions, 

the 380 variants of SETX into three groups were divided based on its functional 

annotations. Specifically, ANNOVAR was applied (Wang, et al.) to annotate the variants 

of SETX and grouped them into coding sequence regions (CDS), untranslated regions 

(UTR) and intronic regions (INTRON) (Table 5.2). It is observed that majority of rare 

variants were, indeed, from intronic region. These three regions were tested using the same 

tests with 10
6
 permutations. The UTR group and the CDS group were far from being 

significant, suggesting that they may be irrelevant. Another possible reason may be that 

there are very few variants in these categories. Due to the fact that the INTRON group 

became more significant than the whole gene-based tests after excluding the variants from 

http://www.r-project.org/
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these two groups, and therefore it may be concluded that causal variants were located in the 

intronic region of SETX. 

The next was to elucidate why and where the signal came from. To this end, several 

in-depth analyses for SETX were performed. First, the Fisher’s Exact test was conducted 

on the super feature created by collapsing singletons. It has been found that, by collapsing 

all the 135 singletons on SETX, it achieved a very significant p-value (3.7×10
-6

), together 

with OR=8.8 and 95% CI = [3.12, 27.43] (Table 5.2). This explained why SETX could be 

detectable under such a small sample size. It obtained more significance when testing the 

super feature with only singletons within the intronic regions (P-value=8.8×10
-7

, OR=9.5 

and 95% CI=[3.43,28.70]), which was consistent with the results from three rare variant 

association tests. Second, each rare variant and singleton were checked individually by 

performing the same test. It turned out that none of them were significant, where the 

minimum p-value was merely 0.14. This demonstrated that the significance of SETX was 

very unlikely due to technical artifact, such as systematic sequencing error or imputation 

bias, because the new feature was a combination of hundreds of singletons. It also 

highlighted that collapsing singletons may increase power when studying association of 

rare variants using a relatively small sample size. Third, a closer examination was took for 

allele frequencies of the 380 rare variants located in SETX. 92 of them could be found in 

1000 Genomes Project (2012 Feb release, http://www.1000genomes.org/). It can be seen 

that their allele frequencies in general population were extremely low (mean 

frequency=0.0004 for 92 rare variants), indicating that these variants were so rare that they 

may collectively have a composite effect of OR=8.8 while missed in previous studies.  
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Table 5.2  Functional Annotation and Test of the Rare Variants in SETX 

       P-value | OR | 95%CI P-value* 

Regions 
#Variants 

(Singletons) 

Fisher’s Exact Test on 

Super Variant
&

 
qMSAT C-alpha CMC 

SETX 
(GENE) 

380(135) 3.7×10
-6

 8.8 [3.12,27.43]   2.0×10
-6

   1.0×10
-6

   6.0×10
-6

 

CDS 14(8) 1.000 1.0 [0.18, 6.94] 1.000 0.544 0.837 

UTR 6(4) 0.632 0.6 [0.04, 8.60] 1.000 0.662 0.990 

INTRON 360(123) 8.8×10
-7

 9.5 [3.43,28.70] <1.0×10
-6

 <1.0×10
-6

 <1.0×10
-6

 

*: P-values were calculated using 10
6
 permutations. 

&: Super variant was defined by collapsing all the singletons. 

 

Finally, to further remove possible cofounding effect of population stratification, a 

principle component analysis (PCA) was performed on a set of randomly selected 100k 

common variants with no missing value and MAF>0.1. Logistic regression test was then 

conducted on the created super feature for SETX, together with the first ten principle 

components as covariates. It can be found that the super feature remained significant with a 

P-value=6.7×10
-5

 while the ten principle components were not.  

The protein encoded by SETX contains a DNA/RNA helicase domain at its 

C-terminal, suggesting its involvement in both DNA and RNA processing. Mutations in 

SETX have been reported to be associated with ataxia-ocular apraxia-2 (AOA2) (Arning, 

et al., 2008) and an autosomal dominant form of juvenile amyotrophic lateral sclerosis 

(ALS4) (Chen, et al., 2004; Pruitt, et al.). However, the function of SETX and its role in 

hypertension remains unclear and may be worthy of further investigation. 
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5.5 Summary 

This chapter performs three rare-variant association tests for the analysis of a whole 

genome sequencing dataset to identify susceptibility genes in hypertension. It groups and 

collapsed rare variants in a gene-based manner for two reasons: 1) the deleteriousness of 

variants could come from protein-coding sequence changes or non-coding intronic regions 

that contain regulatory elements. 2) Based on the previous simulation study (Daye, et al.), 

the power of the analysis could be as low as 0.2 (sample size<200). By collapsing 

singletons, one may benefit from increasing power. This idea is essentially similar as those 

burden tests for rare CNV in GWAS and de novo mutations in sequencing study. Indeed, 

the signal is identified mainly from the intronic regions of SETX in a collective manner of 

those singletons.  
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  CHAPTER 6

POLYASEEKER: A PIPELINE FOR IDENTIFYING POLYA SITES 

6.1 Introduction 

Alternative polyadenylation (APA) of mRNA plays a crucial role in post-transcriptional 

gene regulation. To date, however, no bioinformatics tools exist for identifying 

polyadenylation cleavage sites from increasingly popular RNA-Seq data. This chapter 

proposes a bioinformatics pipeline, PolyASeeker, to fill this void. The novelties of this 

work include a probabilistic scoring scheme that takes sequencing quality into account to 

select polyA containing reads, and utilizing the mating information in paired-end reads. 

Simulation studies and applications to real data demonstrate that the proposed tool can 

efficiently and precisely identify PolyA sites for the analysis of RNA sequencing data. It 

may be expected that the knowledge of APA mechanisms and their roles in gene regulation 

will be greatly enhanced with the aid of the tool as increasingly more RNA-Seq data 

become available. 

6.2 Methods 

6.2.1 Score PolyA Reads by Incorporating Sequencing Quality 

This section proposes a novel scoring method that takes sequencing quality into account to 

select PolyA containing reads. For a sequence, different weights are given to the bases of 

A, T, C and G as follows: 

 (    )  {
            

            ̅
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When considering sequencing error  , the expected score for each base is computed as: 

 

 ( )  (   )   ( )  
 

 
  ( ̅)     

 ( ̅)  (   )   ( ̅)  
 

 
  ( )    

 

where   can be obtained from the Phred-scaled base quality score, Q, in FASTQ file, i.e., 

 

    (     ). 

 

Each aligned read is scored by evaluating its unmapped region. Specifically, let L be the 

length of the unmapped region, and then compute the summation of the expected score of 

each base in the unmapped region as follows: 

 

      ∑     ( )  (    )    ( ̅)

 

   

    

 

where    is an indicator of whether a base is A or not, 

 

   {
            

           ̅
 . 
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6.2.2 Novel Method for Filtering Internal Priming 

This section develops a novel method for filtering internal priming. It extends 20 bp from 

each side of a candidate cleavage site, and examine this 40-bp genomic region in the 

reference genome. If this region is A-rich then it suggests internal priming. The above 

scoring scheme for evaluating PolyA reads can be similarly applied by setting    . Now 

let   {           } be a one-dimensional array with     being the expected score of the 

i
th

 base in the sequence. It formulates the problem of seeking an A-rich segment in the 

40-bp sequence as solving the maximum-subarray problem, namely, to find a nonempty 

and contiguous subarray of X whose values give the largest sum (Bentley, 1984). It scores 

the internal priming for each alignment in terms of the sum of its maximum-subarray.  

 

 
Figure 6.1  Illustration of PolyASeeker. A) Pipeline: PolyASeeker supports widely used 

input and output file formats and integrates four steps from mapping to clustering, making 

the tool easy to use. B) Filter contribution: the performances of leaving one filter out 

(dashed lines) are worse than that of using all three filters (solid line), suggesting the 

individual contribution to the improvement of PolyA site predictions made by each filter. 
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6.2.3 Pipeline of Identifying PolyA Sites from RNA-Seq 

The PolyASeeker pipeline is shown in Figure 6.1. PolyASeeker accepts raw reads and a 

reference genome in their popular formats, fastq and fasta, respectively, as input. The short 

reads are first mapped using Bowtie2 (Langmead and Salzberg, 2012) local model, which 

does not require reads to align end-to-end. This feature is particularly suitable for aligning 

PolyA containing reads. Next, for each alignment, PolyASeeker scores its unmapped 

region by taking into account sequencing quality and selects candidate reads above a 

pre-specified threshold (7.8 as default). The genomic loci with screened mapped reads are 

considered as PolyA site candidates. For these candidate loci, PolyASeeker removes 

potential false positives by applying the following three filters. (1) Read length filter: It 

requires the length of the mapped region for a PolyA containing read be greater than a 

threshold, to ensure the mapping accuracy. (2) A novel internal priming filter to reduce 

false positives introduced by A-rich regions in the genome. (3) Supportive reads filter: 

PolyASeeker counts how many PolyA reads support a PolyA site candidate and filters out 

low confident ones. All these filters contribute to enhance PolyA site prediction 

performance as shown in Figure 6.1. Finally, PolyASeeker clusters PolyA sites within a 

24nt window by utilizing the snowball method (Tian, et al., 2005) and outputs a BED file.  

PolyASeeker has several key merits. First, it is easy and convenient to use. 

PolyASeeker integrates all necessary PolyA site analysis steps from mapping to clustering, 

and provides a convenient one-stop solution. Users just need to provide raw sequencing 

reads, supporting both pair-end and single-end libraries, and a reference genome to 

perform the entire process for PolyA site predictions. The output file can be directly 

uploaded to UCSC genome browser (http://genome.ucsc.edu/) or IGV (Robinson, et al., 

http://genome.ucsc.edu/
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2011) for visualization. Second, PolyASeeker is accurate and powerful, and demonstrates 

the state-of-the-art performance, as shown in the simulation studies and real data analyses. 

Third, PolyASeeker takes full advantage of existing powerful NGS tools, for example, 

Bowtie2 (Langmead and Salzberg, 2012) and BEDTools (Quinlan and Hall, 2010), making 

the pipeline so efficient that it can process large scale data feasibly. 

 
Figure 6.2  Performance of PolyASeeker and the 8A-stretch method for simulated data. 

With comparable Recall, PolyASeeker outperforms the 8A-stretch method in terms of 

significantly improved Precision in all the simulation settings. 
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6.3 Results 

6.3.1 Simulation Studies 

The simulation covered various RNA-Seq experiments using FluxSimulator (Griebel, et 

al., 2012) to assess the performance of PolyASeeker. It considered four scenarios: 100bp 

paired-end, 75bp paired-end, 100bp single-end and 75bp single-end. To simulate more 

realistic error models, instead of using the default one in FluxSimulator, a custom error 

model was created from an in-house RNA-Seq dataset from Illumina platform. The model 

of the polyadenylation process in FluxSimulator was generated by a 

Weibull-approximation of the normal distribution with shape=2 and scale=300 to sample 

random lengths of polyA tails of human. The Poly-dT priming RNA-Seq procedure was 

performed and sequenced different reads depths, from 1M to 200M for all the four 

scenarios.  

The simulation considered only expressed transcripts (molecule>0), which 

generated ~13,600 out of all the 34,102 transcripts in each simulated dataset. It defined the 

ends of these expressed transcripts to be true PolyA sites. If a PolyA site prediction fell into 

+/-5bp of a true site, the prediction was considered as a true positive (TP), and a false 

positive (FP) otherwise. If a true site was not covered by any prediction correctly, it was 

considered as a false negative (FN). The performance was evaluated by Precision, Recall 

and F-score, defined as follows:  

          
  

(     )
, 

       
  

(     )
, 
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The simulation compared the performance of PolyASeeker to a simple 8A-stretch 

method. It found that PolyASeeker achieved comparable recall but much higher precision 

among all the settings (Figure 6.2). It also found that the best mapping strategy in the 

proposed pipeline performed better than the uniquely mapping strategy that was commonly 

used in previous studies (Fu, et al., 2011; Ji, et al., 2011; Pickrell, et al., 2010) (Figure 6.3).  

 
Figure 6.3  The best mapping strategy performs better than the uniquely mapping strategy, 

especially for single-end data. 
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Table 6.1  Summaries and Results of Five Real RNA-Seq Datasets 

Data 
Human Body  

Map 2.0 
Breast Cancer 

Arabidopsis  

Thaliana 

Saccharomyces 

Cerevisiae 

Sordaria 

Macrospora 

Library 
2x50  

paired-end 

75  

single-end 

2x101  

paired-end 

2x76  

paired-end 

101 

single-end 

#Samples 16 3 6 2 8 

Total reads 1,278,682,935 31,026,769 69,695,338 23,742,737 465,385,168 

PolyA reads 174,418 16,139,436 14,626 118,562 577,897 

PolyA sites 12,432 89,475 885 4,991 42,542 

Known sites 6,492(52.22%) 56,148(62.75%) 179(20.23%) 497(9.96%) - 

Novel sites 5,940(47.78%) 33,327(37.25%) 706(79.77%) 4,494(90.04%) - 

FDR 5.5% 5.6% 13.5% 13.6% 15.2% 

Running time ~118.5h ~4.1h ~9.9h ~3.5h ~47h 

 

6.3.2 Applications to Real NGS Data 

PolyASeeker was applied to analyze five RNA sequencing datasets that cover different 

representative RNA-Seq settings and species for demonstrating its performance: (1) 

regular paired-end human tissue data, from the Illumina Human Body Map 2.0 project 

(NCBI GEO: GSE30611), which profiled 16 different human tissues using 2x50 

paired-end sequencing; (2) single-end breast cancer data, generated following a special 

protocol by using modified oligo-d(T) tagged with sequencing primers to sequence polyA 

containing reads (Fu, et al., 2011); (3) Plant data, using 2x101 paired-end sequencing, from 

a recent Arabidopsis study (Ren, et al., 2012); (4) Yeast data from expression profiling of 

Saccharomyces cerevisiae by 2x76 paired-end high throughput sequencing (Levin, et al., 

2010); and (5) 101 bp single-end RNA-Seq data for transcriptional landscape of fungal 

development (Teichert, et al., 2012). The data summaries and analysis results are given in 

Table 6.1. About 37%, 80% and 90% of the polyA sites identified by the proposed pipeline 

are novel for human, plant and yeast, respectively, compared to the ones that have been 

catalogued in the existing public PolyA databases (Human: PolyA-Seq (Derti, et al., 2012) 

from UCSC genome browser, Arabidopsis: http://www.arabidopsis.org/ and Yeast: 

PACdb, http://harlequin.jax.org/pacdb/). The high fraction of novel sites in plant and yeast, 

http://www.arabidopsis.org/
http://harlequin.jax.org/pacdb/
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compared to human, is mainly due to the fact that the public PolyA databases for plant and 

yeast are EST-based and have not been enriched by high throughput studies yet. This 

highlights that the knowledge of PolyA sites among different species can be greatly 

enhanced by applying the proposed tool to plentifully available RNA-Seq data. It also 

estimated their false discovery rates (FDRs) following (Pickrell, et al., 2010). PolyASeeker 

achieved a comparable FDR in the three non-human datasets and much lower FDRs in the 

two human datasets than the one obtained in (Pickrell, et al., 2010).  

The next was to compare the predicted polyA sites with those found by the simple 

8A-stretch method (Tian, et al., 2005). To this end, the 8A-stretch method was applied to 

the same five real datasets. Comparable results were achieved for yeast and fungi data, and 

much better results for human and plant data in terms of the number of identified PolyA 

sites and the number of recovered alternative polyadenylated genes (Figure 6.4). It has 

been found that, for the 2x50 paired-end Human Body Map 2.0 project, ~30% APA genes 

were recovered by PolyASeeker whereas only ~13% APA genes were identified by the 

rudimentary 8A-stretch method. The results also show that the sequencing depth of PolyA 

containing reads would affect the number of identified APA genes. The breast cancer 

dataset has about 10-fold more PolyA containing reads than the Human Body dataset 

(Table 6.1). As shown in Figure 6.4, the breast cancer dataset reveals ~75% of genes that 

produce alternative polyadenylated mRNAs, which is ~2.3 fold more than that of the 

Human Body dataset. Taken together, these observations indicate that the analysis of 

relative usages of sites in APA genes could be largely affected if employing different 

sequencing protocols (leading to different numbers of PolyA containing reads) and 

choosing different bioinformatics tools.    
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Figure 6.4  Bar plot showing the number of genes with different numbers of PolyA sites 

detected by PolyASeeker and the simple 8A-stretch method from five real datasets. 
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Figure 6.5  The nucleotide composition surrounding polyadenlyation cleavage locations 

identified by PolyASeeker in five real datasets. 

 

Figure 6.5 shows the nucleotide composition surrounding polyadenylation 

cleavage locations in each dataset, which is similar to previous studies (Jan, et al., 2011; 

Ozsolak, et al., 2010; Sherstnev, et al., 2012). These summary statistics and results suggest 

that the proposed pipeline can be applied to analyze RNA sequencing data accurately and 
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efficiently. It will facilitate fully exploiting RNA-Seq data for gaining a better 

understanding of alternative polyadenylation mechanisms.  

6.4 Summary 

In conclusion, this chapter has developed a useful bioinformatics pipeline, PolyASeeker, to 

identify PolyA sites from RNA sequencing data. It is the first NGS bioinformatics tool to 

detect PolyA sites. It may be expected that the knowledge of APA mechanisms and their 

roles in gene regulation will be greatly enhanced with the aid of the proposed tool as 

increasingly more RNA-Seq data become available. 
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  CHAPTER 7

A CHANGE-POINT MODEL FOR IDENTIFYING 3’UTR SWITCHING 

7.1 Introduction 

Next-generation RNA sequencing offers an opportunity to investigate transcriptome in an 

unprecedented scale. Recent studies have revealed widespread alternative polyadenalytion 

(APA) in eukaryotes, leading to various mRNA isoforms differing in their 3’UTR, through 

which, the stability, localization and translation of mRNA can be regulated. However, very 

few, if any, methods and tools are available for directly analyzing this special alternative 

RNA processing event. Conventional methods rely on annotation of polyadenylation sites; 

yet, such knowledge remains incomplete, and identification of PolyA sites is still 

challenging. The goal of this chapter is to develop methods for detecting 3’UTR switching 

without any prior knowledge of PolyA annotations. 

This chapter proposes using a change-point model for identifying 3’UTR 

switching, which is the first available method that allows investigators to directly analyze 

3’UTR length changes without being dependent on PolyA site information. To determine 

whether a 3’UTR is shortening or lengthening to a certain extent, it further develops an 

additional testing procedure to make directional decisions. It has been shown that this 

directional procedure can control the mixed directional FDR (mdFDR) at a pre-specified 

nominal level. Simulation studies in various settings and applications to two real NGS data 

sets have demonstrated that the proposed change-point model and the testing framework 

are powerful and accurate. This tool will allow investigators to analyze next-generation 

RNA sequencing data in an effective and efficient way.  
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7.2 Methods 

7.2.1 Change-point Model for 3’UTR Switching  

The 3’UTR switching problem and the change-point model are illustrated via a toy 

example in Figure 7.1. Assume there are two 3’UTR isoforms, isoform 1 and isoform 2, 

ending with a distal and proximal PolyA site, respectively. These two PolyA sites define 

the common and extended regions. The expression ratio of the two isoforms across two 

conditions, treatment and control, can be quantified by the percentage of read counts from 

the treatment condition (Figure 7.1(C)). It is expected a constant ratio throughout the whole 

3’UTR (pi = C, for i=1,..,T), if the usage of isoforms under these two conditions is 

identical. A ratio change at a certain position   implies a ratio change between two 

isoforms, which is so-called 3’UTR switching. The goal is to test the null hypothesis H0 

that the ratio pi is constant against the alternative hypothesis that, for some point   in the 

3’UTR, the ratio changes from p0 to   , 

 
 

      {
                
           

 

 

 

When the change-point location   is known, e.g., based on isoform knowledge if 

available, detecting the change is straightforward. However,   ,   , and, most importantly, 

 , are unknown in this problem.  

The model starts with a setup for the sequenced reads on 3’UTR with length  . Let 

{        } be the number of reads whose first base maps to the left of base location t of a 

given 3’UTR under the treatment condition. Similarly, let {        } be the number of 

such reads under the control condition.  Denote    and    to be the total number of reads 
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in the treatment and control conditions, respectively. Let   {                 } and 

  {                 } be the event locations for processes {  } and {  }, namely, U and 

V are the mapped positions of reads from the treatment and control samples. Let   

      be the total number of reads combined from treatment and control samples, and 

then obtain combined event locations {                }. Define an indicator variable    

to denote whether an event is a realization of the treatment process or control process as: 

 
 

   {
            {                 } 

            {                  } 
 

 

 

For any short read   in the combined process, use the term “success” to refer to 

    , that is, the read is from the treatment process. Hence, following (Worsley, 1983) , 

define a change-point model on the indices {       } for read counts by the binomial 

log-likelihood function. Considering a candidate change point at    , for      , a 

generalized likelihood ratio statistic is 
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where  ̂ ,  ̂  and  ̂ are the maximum likelihood estimates of success probabilities: 
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Figure 7.1  Illustration and notations of the change-point model for 3’UTR switching 

problem. 

  

 

Note that this is an exact binomial generalized likelihood ratio statistic and can help 

to quantify the ratio change. Because the change-point location   is unknown, the statistic 

for all candidate loci  =2, …, T-1 can be computed , and find the one yielding the maximal 

change. The solution is  

 

 ̂        
 

    

 

7.2.2 General Iterative Procedure for Calculating P-value 

This section seeks to compute the significance p-value for the maximum test statistic. To 

this end, following (Worsley, 1983) it employs a general iterative procedure to calculate 
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how likely the maximum likelihood ratio statistic L would be less than   ̂, denoted as 

   (    ̂), under the null hypothesis. 

For the combined process in section 7.2.1, let    and     be the total numbers of 

successes (from the treatment process) at intervals [1, k-1] and [k, T], respectively, 

(k=2,...,T-1). The likelihood ratio test statistic    depends only on Sk and    . Given that 

        , and      is fixed, then    depends only on Sk.  

Therefore, given   ̂ and the test statistics, events of      ̂ can be expressed as 

events of the form          for suitable choices of         {         ̂ } 

and        {         ̂ }.  

For        , define   ( )    (⋂              
 
     ̂ |     ) so that the 

p-value can be derived as follows: 

1)                 ( )               .  

2)                    ( )             by 

   ( )  ∑     ( )    (   )

    

      

  

                   ∑   
   

   
            

  (   )  (
    
 
) (

  
   

)  (
  
 
)  

3) A final iteration for k=T at v=S will produce   ( ) equal to    (    ̂). 

4)                                  (    ̂)       (    ̂). 
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7.2.3 Directional Multiple Testing Procedure 

If the usage of the long isoform increases, it is called lengthening, and, if it decreases, 

shortening. Identifying shortening or lengthening events may be critical for downstream 

analysis, such as analyzing miRNA target sites. The significance computed in the previous 

section is for a two-sided test. That is to say, when the null hypothesis is rejected, it can 

only state that there is a change, either lengthening ( ̂   ̂ ) or shortening ( ̂   ̂ ). In 

practice, upon rejecting the null H0, one may often conclude that the change is either 

lengthening or shortening based on the sign of ( ̂   ̂ ). There is a chance that this decision 

strategy will make a false statement about the sign, which is termed as a directional error, 

or a type III error (Benjamini, et al., 2005). It is desirable to control this error when making 

directional conclusions, which may not be negligible when a large number of tests are 

conducted simultaneously. In the applications of this chapter, it often tests for tens of 

thousands of genes at a time. 

In the multiple-testing field, it is often argued that an exact null hypothesis is never 

true in reality; instead, more likely only significant differences matter (Benjamini, et al., 

2005; Williams, et al., 1999). Here for the 3’UTR switching problem, small change may 

happen by chance and is irrelevant to the phenotype of interest. Dramatic change may be 

more robust and easier to replicate. Therefore focusing on dramatic change is particularly 

meaningful as it often has only one or very few replicates in RNA-Seq experiments.   

This section proposes to use the odds ratio (OR) at the estimated change point  ̂ to 

measure the change direction and magnitude, reasoning that the proposed method 

essentially chooses the location that gives the strongest association in a 2×2 contingency 

table among all possible locations. Thus, it performs Fisher’s exact test at the estimated 
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change point  ̂ to make such directional decisions. It formulates this problem as controlling 

false discoveries within the multiple-testing framework. Using a similar definition as in 

(Guo, et al., 2010), denote the mixed directional FDR (mdFDR) to be a combination of two 

parts. One is the false discovery rate (FDR), resulted from the change-point testing 

procedure. The other is the pure directional FDR (dFDR), derived from Fisher’s exact test,  

 
 

                {
 

  ⋁  
}   {

 

  ⋁  
}   {

   

  ⋁  
}  

 

where C is the number of falsely rejected true null hypotheses and R is the total number of 

rejected hypotheses among H1, …, Hm. F denotes the total number of false null hypotheses 

among H1, …, Hm that are correctly rejected while at least one directional error has been 

made when deciding upon the signs of the components.  

To control mdFDR, the expected proportion of Type I and directional errors among 

all the rejections, this section proposes a directional testing procedure as follows: 

1) Apply the BH method at level α to test whether there is a significant change among 

all the m hypotheses.  

2) Let R denote the number of hypotheses rejected. 

3) For every i=1,…, R, perform one-sided Fisher’s exact test for testing OR>d (d≥1). 

4) If Fisher’s exact test has a p-value        
  

 

 
 , then reject the null hypothesis. 

It is shown that a similar BH procedure using the same two-sided p-value twice can 

control the mdFDR at level   (Benjamini, et al., 2005). The directional testing procedure 

proposed here has its novel extension in comparison with the BH procedure in (Benjamini, 

et al., 2005). Specifically, the same significance p-values are re-used in testing direction 
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and controlling directional errors in (Benjamini et al. 2005); in contrast, this procedure 

employs an additional one-sided Fisher’s exact test for detecting dramatic change and the 

rejection is based on these new p-values. It can be seen in the simulation studies that the 

new testing procedure can control mdFDR at the nominal level. It is noted that when d=1, 

the one-sided test determines the direction of 3’UTR changes. The user may set d to be 

much larger than 1 to detect genes with more dramatic 3’UTR changes.  

7.3 Simulation Studies 

This section first presents simulation results to demonstrate the performance of the 

change-point model. Assume there are two 3’UTR isoforms with different ending PolyA 

sites as shown in Figure 7.1. The gene expression level ratio before and after the change 

point (Figure 7.1(C)) will critically influence how difficult the change can be detected. So 

it generated the 3’UTR with different expression ratios under two conditions. Specifically, 

under condition 1, the entire 3’UTR has a constant expression level; whereas, under 

condition 2, the expression level was increased by K-fold in the common region and the 

extended region remained the same as in condition 1. Gene expression level was measured 

in RPKM (Reads Per Kilobase per Million mapped reads (Mortazavi, et al., 2008)). It 

simulated two constant expression levels RPKM=1 and RPKM=2 for condition 1. These 

two RPKM values are commonly used for determining expressed genes in RNA-Seq real 

data analyses (Ji, et al., 2011; Zhang, et al., 2013). It assumed that the total number of 

mapped reads was 100 million/sample and the 3’UTR length was 1000bp. It considered 

three possible change points at 250bp, 500bp and 750bp of the 3’UTR. It varied the fold 

change K in the common region from 2 to 4 with increments of 0.5. The null distribution 

was simulated by setting K=1 for estimating type I errors. It simulated 500 3’UTRs with 
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change (K>1) and 500 3’UTRs without change (K=1) to estimate the power and FDR of 

the proposed method, respectively. FDR nominal level=0.05 was set. The simulation was 

repeated 50 times, and it reported the averaged power and FDR. 

 

Figure 7.2  Power and FDR evaluation of the change-point model at the nominal level 

FDR=0.05.  
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Figure 7.3  Power and mdFDR evaluation of the directional testing procedure at the 

nominal level mdFDR=0.05.   

 

The simulation results are summarized in Figure 7.2. It can be seen that FDR was 

controlled at the nominal level=0.05 in all settings, suggesting that the proposed method is 

a valid testing procedure. Moreover, it can be found that the fold change, expression level 

and change point position all influence 3’UTR switching detection. First, the power of the 

proposed method increases with the fold change from small to large. This is expected 

because the change is more likely to be detected when the signal becomes stronger. 
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Second, the power increases when the gene expression level increases. Under the same fold 

change, the power of RPKM=2 is always higher than that of RPKM=1, suggesting that 

increasing the number of reads that are covered in the 3’UTR will also benefit change 

detection. Third, the position of the change point has an impact on the performance too. 

The change point in the middle yielded the highest power, compared to the change points 

close to the two ends.  

Next, the power and mdFDR are evaluated for the proposed two-step testing 

framework. To simulate alternative hypotheses with mixed odds ratios, it used similar 

simulations as above but with the following modifications. For the 500 3’UTRs with fold 

change, they were divided into two groups with 250 each. The fold change for the first 

group is uniformly distributed from 1 to 3, and the second group is uniformly distributed 

from 3 to 5. d=1 and d=3 to test the changes was set with OR>1 and OR>3, respectively. 

The proposed directional testing procedure at mdFDR level=0.05 was applied.   

As seen in Figure 7.3, the proposed testing framework is able to control mdFDR at 

the nominal level=0.05 for all the settings. Similarly, the power increases when the 

expression level doubles from RPKM=1 to RPKM=2, and the change point at the middle 

position is easier to detect than those closer to the two ends. It is noted that when the 

hypothesized odds ratio is changed, the results change accordingly. For example, if the 

interest is detecting the 3’UTRs with OR>3 by setting d=3, the testing procedure then 

favors the second group of 3’UTRs with OR~    (   ) and would not reject the 3’UTRs 

in the first group with OR~    (   ). When setting d=1 for testing the 3’UTR changes 

with OR>1, the 3’UTRs in the group with OR~    (   ) are easier to detect because the 

signal is relatively stronger than that of d=3. This explains the power difference between 
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testing OR>1 and OR>3 as shown in Figure 7.3. In summary, it is easier to capture the 

switching events when the OR is higher, the expression level is higher, or the change-point 

is closer to the middle. 

7.4 Real Data Applications 

7.4.1 Application to Regular RNA-Seq Data 

The proposed method has been applied to analyze regular RNA-Seq data that have been 

commonly produced to profile transcriptome changes. MYC is a notable transcriptional 

factor that has been frequently activated in many human cancers with profound cellular 

influence. Although MYC-binding sites and target genes have been documented 

extensively in the past decade, thanks to the widespread application of high-throughput 

technology, the role of MYC and MYC target genes in androgen-controlled breast cancer 

growth remains unclear. To elucidate MYC regulatory network in molecular apocrine 

breast cancers, Ni and colleagues employed RNA-Seq to profile transcriptome changes 

before and after MYC knockdown by siRNA in MDA-MB-453 breast cancer cells with 

androgen stimulation (Ni, et al., 2013). In summary, they transfected MDA-MB-453 breast 

cancer cells with control (siCtrl) or MYC siRNA (siMYC) for 48 h, followed by treatment 

with 10nM DHT (the most potent androgen) or vehicle (veh) for 6 h, resulting in three 

conditions: siCtrl-veh, siCtrl-DHT and siMYC-DHT. High-throughput 50bp single-end 

sequencing was performed on Illumina HiSeq 2000 platform for each sample, generating 

total numbers of short reads ranging from ~26 million to ~39 million. Following the 

authors, two comparisons was made, siCtrl-DHT vs siCtrl-veh and siMYC-DHT vs 
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siCtrl-DHT, but to detect 3’UTR shortening events instead of gene expression level 

changes. 

 
Figure 7.4  Examples of two MYC-dependent 3’UTR shortening events. The vertical lines 

indicate the estimated change points predicted by the proposed model.  
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The dataset was downloaded from NCBI Gene Expression Omnibus (GEO) 

(http://www.ncbi.nlm.nih.gov/geo/) under GSE45202. The raw reads were aligned to hg19 

reference genomes using a conventional RNA-Seq aligner Tophat (Trapnell, et al., 2009) 

v1.3.1 with default parameters. Coverage filter can help to reduce false positives and is a 

heuristic strategy commonly used in existing RNA sequencing tools and analyses. 

Following MISO (Katz, et al., 2010), the analysis required that each 3’UTR should have at 

least 20 supporting reads in both samples, leading to 8052 and 7878 genes in the two 

comparisons, respectively, for further analysis. The proposed method was applied to detect 

shortening events with odds ratio>2 at an mdFDR level of 0.05. The analysis identified 947 

shortening 3’UTRs in siCtrl-DHT vs siCtrl-veh and 1524 shortening 3’UTRs in 

siMYC-DHT vs siCtrl-DHT, respectively, with 461 genes in common. The 1063 genes 

unique in the comparison of siMYC-DHT vs siCtrl-DHT but not siCtrl-DHT vs siCtrl-veh 

may be associated with MYC knockdown given the DHT treatment. Figure 7.4 shows two 

examples of significant MYC-dependent shortening events, LDHA and OGDH, on the 

UCSC genome browser, demonstrating that the proposed method worked well in detecting 

such 3’UTR switching without relying on any PolyA annotations. It can be observed that a 

highly non-uniform distribution of data in the 3’UTR, a common phenomenon in 

RNA-Seq data which may be caused by PolyA mRNA selection bias (Wang, et al., 2009). 

The PolyA track in the genome browser was included, which showed the annotated PolyA 

sites from the PolyA_DB. It can be seen that dramatic changes before and after the 

predicted change-points. Clearly, the two genes LDHA and OGDH tend to use the 

proximal PolyA site instead of the distal site in siMYC-DHT. These change-points are also 

consistent and supported by the PolyA sites annotated in the PolyA_DB. Together, these 

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45202


 

77 

 

results suggest that the proposed method works well to detect 3’UTR switching without 

relying on any PolyA annotations. 

LDHA catalyzes the conversion of L-lactate and NAD to pyruvate and NADH in 

the final step of anaerobic glycolysis. It has been shown to be highly correlated with breast 

cancer growth (Wang, et al., 2012). OGDH encodes one subunit of the 2-oxoglutarate 

dehydrogenase complex that catalyzes the overall conversion of 2-oxoglutarate 

(alpha-ketoglutarate) to succinyl-CoA and CO(2) during the Krebs cycle. It also plays an 

important role in breast cancer cells (Qattan, et al., 2012). These shortening genes may be 

worthwhile for further biological study, because, the loss of distal region, if containing 

miRNA target sites, may help escape degradation destiny or translational repression.  

 A gene set enrichment analysis (GSEA) of these 1063 MYC-dependent shortening 

genes was conducted using a hypergeometric test. The canonical pathways definitions 

were downloaded from the Molecular Signatures Database 

(http://www.broadinstitute.org/gsea/msigdb/index.jsp). The results are summarized in 

Table 7.1. It has been suggested that MYC plays a crucial role in several aspects of cellular 

function, such as metabolism, growth, replication, differentiation and apoptosis (Ni, et al., 

2013). These pathway results suggest very interesting transcription relevant functions of 

these 1063 MYC-dependent shortening genes, such as splicing, intron processing and 

transcript elongation. These genes are primarily associated with mRNA processing and 

gene expression, which are critical in cancer development (David and Manley, 2010; 

Sotiriou, et al., 2006). The original studies (Ni, et al., 2013) focused on conventional 

differential expression analysis. Capturing 3’UTR switching from the same RNA-Seq data 
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set using the proposed method would shed additional light on cancer transcriptome 

regulations and suggest new roles of MYC.  

 

Table 7.1  Significantly Enriched Canonical Pathways in Analysis of the Breast Cancer 

Dataset of (Ni, et al., 2013) at FDR=0.05  

Canonical Pathway P Value 

REACTOME_MRNA_SPLICING 3.74E-05 

REACTOME_GENE_EXPRESSION 4.99E-05 

REACTOME_PROCESSING_OF_CAPPED_INTRONCONTAINI

NG_PRE_MRNA 

7.74E-05 

BIOCARTA_PROTEASOME_PATHWAY 1.06E-04 

REACTOME_FORMATION_AND_MATURATION_OF_MRNA

_TRANSCRIPT 

1.32E-04 

REACTOME_METABOLISM_OF_PROTEINS 2.51E-04 

REACTOME_ELONGATION_AND_PROCESSING_OF_CAPPE

D_TRANSCRIPTS 

2.55E-04 

KEGG_OXIDATIVE_PHOSPHORYLATION 3.35E-04 

REACTOME_TRANSLATION 6.15E-04 

KEGG_CARDIAC_MUSCLE_CONTRACTION 7.68E-04 

REACTOME_INFLUENZA_LIFE_CYCLE 9.18E-04 

 

To compare to existing methods applicable for the 3’UTR switching analysis but 

relying on PolyA annotations, MISO was also run (Katz, et al., 2010) (version 0.4.1 with 

default parameters) to analyze this RNA-Seq dataset for identifying 3’UTR shortening 

events. It filtered tandem 3’UTR events following the MISO manual as follows: (a) at least 

1 inclusion read, (b) 1 exclusion read, such that (c) the sum of inclusion and exclusion 
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reads is at least 10, and (d) the Δ Ψ is at least 0.2 and (e) the Bayes factor is at least 10, and 

(a)-(e) are true in one of the two samples. MISO didn’t output any tandem 3’UTR events, 

although it did report other alternative splicing events, such as skipped exons, intron 

retentions, etc. This shows that methods depending on PolyA annotations may suffer from 

low power in 3’UTR switching analysis. The capability of the method for detecting 3’UTR 

switching will fill a void among current alternative splicing and processing analysis tools. 

 

 
Figure 7.5  Examples of two shortening events that were identified by the method but 

missed by the linear trend test. The vertical lines indicate the change-points predicted by 

the proposed model.  
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7.4.2 Application to Special RNA-Seq Data 

Another breast cancer dataset (Fu, et al., 2011) was analyzed to highlight the flexibility of 

the proposed method to handle special RNA sequencing data. To improve efficiency of 

capturing APA sites, Fu and colleagues developed a novel strategy to sequence only reads 

with Poly(A) tails followed by a linear trend test method for analyzing APA site switching 

(Fu, et al., 2011). Specifically, they modified oligo-d(T) tagged with sequencing primers 

after PCR to sequence polyadenylated reads. They performed the SAPAS method to 

profile APA sites of human breast cancer lines and compared with normal cell lines, 

generating in total ~31 million short reads with 75bp length from the Illumina platform. 

The dataset was downloaded from the NCBI Sequence Read Archive 

(http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi) (accession number SRA023826). PolyA 

containing reads cannot be mapped to the genome directly. Therefore, Bowtie2 (Langmead 

and Salzberg, 2012) was used by local model to align those PolyA containing reads, 

because this model does not require end-to-end mapping. The proposed method was 

applied to identify 3’UTR shortening events. The authors reported their results at FDR 

level=0.01. To make a comparison, shortening events at the same mdFDR level of 0.01 for 

OR>1 were reported. It has been identified 972 shortening events in the breast cancer cell 

line (MCF_7) in comparison with the control sample (MCF_10A). Their linear trend test 

method was conservative according to the authors, and detected only 428 shortened 

3’UTRs (Fu, et al., 2011). It has been found that 85% of their shortening genes were also 

detected as shortening by the proposed method. The larger numbers of 3’UTR shortening 

events it identified under the same significance level suggest the higher power of the 

proposed method.  

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi
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Table 7.2  Significantly Enriched Canonical Pathways in Analysis of the Breast Cancer 

Dataset of (Fu, et al., 2011) at FDR=0.05 

CANONICAL PATHWAY P Value 

REACTOME_MRNA_SPLICING 3.83E-05 

REACTOME_ELONGATION_AND_PROCESSING_OF_CAPPED_T

RANSCRIPTS 

1.78E-04 

KEGG_CELL_ADHESION_MOLECULES_CAMS 1.88E-04 

KEGG_SPLICEOSOME 2.11E-04 

REACTOME_DIABETES_PATHWAYS 2.25E-04 

BIOCARTA_EIF_PATHWAY 4.07E-04 

REACTOME_PROCESSING_OF_CAPPED_INTRON_ 

CONTAINING_PRE_MRNA 

5.36E-04 

REACTOME_FURTHER_PLATELET_RELEASATE 7.13E-04 

 

To demonstrate the accuracy of these findings, the four genes that were validated in 

their studies were examined. All the four genes, DDX5, SEC61A1, HSBP1 and 

FAM134A, were detected to be shortening in MCF_7 by the proposed method. The 

shortenings of these four genes were all experimentally confirmed (see the PCR results in 

the Supplementary of (Fu, et al., 2011)). Moreover, visualization of the identified 

shortening events highlighted the accuracy of the prediction. Figure 7.5 shows two genes 

OAZ1 and SDC1 that were missed by the linear trend method but demonstrated clear 

shortening patterns. Both genes are known to be related with cancer (Kastl, et al., 2010; 

Nikolova, et al., 2009). Finally, the GSEA for these 972 shortening genes was conducted. 

The results are summarized in Table 7.2. Interestingly, it has also found the mRNA 

splicing pathway to be the most significantly enriched in this breast cancer dataset, as in the 



 

82 

 

first breast cancer dataset that analyzed in the previous section. In particular, these genes 

are related to splicesome, a large ribonucleoprotein complex that guides pre-mRNA 

splicing in eukaryotic cells. Recent studies have demonstrated the contribution of 

splicesome as a core component in oncology (Quidville, et al., 2013) and its role in 

determining 3’UTR length (Berg, et al., 2012). Taken together, these results indicate the 

accuracy of the proposed method in capturing 3’UTR switching. Overall, this real data 

application highlights the flexibility of the proposed method for analyzing NGS data that 

are specially generated to sequence and capture polyadenlyation cleavage sites. 

 

7.5 Conclusion and Discussion 

This chapter proposes a change-point model based on a generalized likelihood ratio 

statistic for identifying 3’UTR length change in the analysis of next-generation RNA 

sequencing data. It develops a directional multiple testing procedure for identifying 

dramatic shortening or lengthening events. The numerical performances of the approach 

are investigated using both simulated and real data. The results show that the proposed 

method is powerful, accurate, and flexible for analyzing various types of next-generation 

RNA sequencing data.  

The proposed method can be improved in several ways. First, one limitation is that 

the current method cannot handle sample replicates. The extension is to compute joint 

likelihood over multiple samples, assuming the same change-point across samples but 

allowing   ̂ ,  ̂ , and  ̂ to vary for different sample comparisons. Second, assume there are 

only two isoforms with one change point. The extension can be done for multiple isoforms 

with K>1 change points. In principle, it may search similarly for the K points that yield the 
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most significance with computational complexity of O(L
K
), where L is the whole UTR 

length. It may further assume K is unknown and determine it using model selection (Shen 

and Zhang, 2012). Third, statistical inference of confidence estimates is as important as 

point estimates. For example, the confidence intervals on the estimated change points 

could provide more information as needed for some downstream analyses, such as 

determining the loss/gain of miRNA target sites. This can be obtained based on the values 

accepted by a level α of likelihood ratio test (Worsley, 1986).  
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  CHAPTER 8

CONCLUSION AND FUTURE WORK 

 

This dissertation focuses on the development of computational methods for NGS data 

analyses. The main contributions of this dissertation are as listed below: 

First, a statistical tool, SNVer, has been developed for calling common and rare 

variants in analysis of pooled or individual DNA-Seq data. It formulates variant calling as a 

hypothesis testing problem and employ a binomial-binomial model to test the significance 

of observed allele frequency against sequencing error. The reported p-values for candidate 

loci are particular desirable for multiplicity control. SNVer runs very fast, making it 

feasible for analyzing high-throughput NGS data.  

Second, a graphical user interface(GUI)-based tool, SNVerGUI, has been 

implemented based upon SNVer model. Compared with other current methods for variant 

calling, SNVerGUI is unique in that it is applicable to both individual and pooled DNA 

sequencing data. It allows users who do not have bioinformatics expertise to perform 

sophisticated variant detection by a simple and user-friendly desktop tool. 

Third, a gene-based genome-wide screening method based on collapsing singletons 

in a whole-genome sequencing dataset has been studied. It has been demonstrated that this 

strategy can boost signals for associating rare variants in the NGS sequencing analysis.  

Fourth, a novel bioinformatics pipeline, PolyASeeker, has been developed to fill 

the void of identifying polyadenylation cleavage sites from increasingly popular RNA-Seq 

data. The novelties include a probabilistic scoring scheme to select candidate reads and use 

the mating information in paired-end data.  
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Finally, a change-point model based on a likelihood ratio test has been proposed to 

detecting 3’UTR switching from RNA-Seq data. This is the first available method that 

allows users to directly analyze 3’UTR length changes without relying on any prior 

information of PolyA sites. It also allows user to make directional decisions and control 

mixed directional FDR (mdFDR) at a pre-specified level.  

Future work lies in the following directions: 

First, it has been shown that there remains significant discrepancy in SNV and indel 

calling between many of the currently available variant-calling pipelines under 

near-default software parameterizations (O'Rawe, et al., 2013). This, therefore, 

demonstrates that further improvement of variant calling algorithm is necessary, especially 

for indel detection.  

Second, the association study in this dissertation focuses on only genic regions 

using conventional gene annotation, which makes up little more than 1% of the genome. 

The recent annotation made by the ENCODE consortium has included more than 70,000 

“promoter” regions and nearly 400,000 “enhancer” regions that regulate expression of 

distant genes, which account for roughly 80% of the genome (Dunham, et al., 

2012)(Dunham, Kundaje et al. 2012). This new knowledge can be used in future analysis. 

Third, in addition to 3’UTR switching analysis, the proposed change-point method 

can also be extended to other applications. For example, one can merge together the 

multiple 3’UTRs of a gene, if any, to perform alternative last exon analysis. Moreover, if 

input vector is the coverage of entire exon regions of a gene, the proposed method can also 

detect premature cleavage and polyadenylation (PCPA) events, another set of interesting 

biological phenomena that has received much attention recently (Kaida, et al., 2010). 
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These phenomena can also be computationally confirmed by identifying PolyA sites using 

PolyASeeker. 
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