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ABSTRACT

INVESTIGATION OF NEW FEATURE DESCRIPTORS
FOR IMAGE SEARCH AND CLASSIFICATION

by
Atreyee Sinha

Content-based image search, classification and retrieval is an active and important research

area due to its broad applications as well as the complexity of the problem. Understand-

ing the semantics and contents of images for recognition remains one of the most difficult

and prevailing problems in the machine intelligence and computer vision community. With

large variations in size, pose, illumination and occlusions, image classification is a very

challenging task. A good classification framework should address the key issues of dis-

criminatory feature extraction as well as efficient and accurate classification. Towards that

end, this dissertation focuses on exploring new image descriptors by incorporating cues

from the human visual system, and integrating local, texture, shape as well as color infor-

mation to construct robust and effective feature representations for advancing content-based

image search and classification.

Based on the Gabor wavelet transformation, whose kernels are similar to the 2D

receptive field profiles of the mammalian cortical simple cells, a series of new image de-

scriptors is developed. Specifically, first, a new color Gabor-HOG (GHOG) descriptor

is introduced by concatenating the Histograms of Oriented Gradients (HOG) of the com-

ponent images produced by applying Gabor filters in multiple scales and orientations to

encode shape information. Second, the GHOG descriptor is analyzed in six different color

spaces and grayscale to propose different color GHOG descriptors, which are further com-

bined to present a new Fused Color GHOG (FC-GHOG) descriptor. Third, a novel Gabor-

PHOG (GPHOG) descriptor is proposed which improves upon the Pyramid Histograms

of Oriented Gradients (PHOG) descriptor, and subsequently a new FC-GPHOG descrip-

tor is constructed by combining the multiple color GPHOG descriptors and employing the



Principal Component Analysis (PCA). Next, the Gabor-LBP (GLBP) is derived by accu-

mulating the Local Binary Patterns (LBP) histograms of the local Gabor filtered images

to encode texture and local information of an image. Furthermore, a novel Gabor-LBP-

PHOG (GLP) image descriptor is proposed which integrates the GLBP and the GPHOG

descriptors as a feature set and an innovative Fused Color Gabor-LBP-PHOG (FC-GLP) is

constructed by fusing the GLP from multiple color spaces. Subsequently, The GLBP and

the GHOG descriptors are then combined to produce the Gabor-LBP-HOG (GLH) feature

vector which performs well on different object and scene image categories. The six color

GLH vectors are further concatenated to form the Fused Color GLH (FC-GLH) descriptor.

Finally, the Wigner based Local Binary Patterns (WLBP) descriptor is proposed that com-

bines multi-neighborhood LBP, Pseudo-Wigner distribution of images and the popular bag

of words model to effectively classify scene images.

To assess the feasibility of the proposed new image descriptors, two classification

methods are used: one method applies the PCA and the Enhanced Fisher Model (EFM) for

feature extraction and the nearest neighbor rule for classification, while the other method

employs the Support Vector Machine (SVM). The classification performance of the pro-

posed descriptors is tested on several publicly available popular image datasets. The ex-

perimental results show that the proposed new image descriptors achieve image search and

classification results better than or at par with other popular image descriptors, such as

the Scale Invariant Feature Transform (SIFT), the Pyramid Histograms of visual Words

(PHOW), the Pyramid Histograms of Oriented Gradients (PHOG), the Spatial Envelope

(SE), the Color SIFT four Concentric Circles (C4CC), the Object Bank (OB), the Con-

text Aware Topic Model (CA-TM), the Hierarchical Matching Pursuit (HMP), the Kernel

Spatial Pyramid Matching (KSPM), the SIFT Sparse-coded Spatial Pyramid Matching (Sc-

SPM), the Kernel Codebook (KC) and the LBP.
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CHAPTER 1

INTRODUCTION

The area of content-based image classification, search and retrieval is a rapidly-expanding

research area. Due to the easy availability of cheap data storage, inexpensive cameras,

fast computing power and increasing data transfer rates, enormous volumes of images are

uploaded and shared over the Internet these days, which necessitates the development of a

framework that can classify images into different categories automatically, and also identify

the contents on providing a query image to perform efficient search and retrieval.

Understanding the semantics and contents of images for recognition remains one of

the most difficult and prevailing problems in the machine intelligence and computer vision

community (Li et al. 2010). With high variations in pose, angles, illumination and occlu-

sions, object and scene classification is a very challenging task (Li et al. 2010; Torralba

et al. 2003; Murphy et al. 2003; Lazebnik et al. 2006, 2004). A key step towards building

a good classification framework includes discriminatory feature extraction. To this end,

this dissertation attempts to develop new image descriptors. As the human visual system is

much more efficient and accurate than any machine-based image classification approach, a

representation that is modeled on the human visual cortex is much more likely to be better

than other image representations for classification tasks. This motivates to propose inno-

vative image descriptors by incorporating cues from the human visual system. In addition,

local, texture, shape as well as color information are also integrated to construct robust and

effective feature representations that are suitable for content-based image classification.

The Gabor wavelets, whose kernels are similar to the 2D receptive field profiles

of the mammalian cortical simple cells (Marcelja 1980) exhibit desirable characteristics

of spatial locality and orientation selectivity (Liu and Wechsler 2002; Liu 2004b). As

the Gabor wavelet representation captures the local information corresponding to spatial

frequency (scale), spatial localization, and orientation selectivity, it encodes images in a

1
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manner so as to facilitate object and scene image classification.

Shape and texture are other cues based on which human beings visually distinguish

between object and scene categories, and hence they contribute significantly to object and

scene image classification. A popular technique for describing the local object appearance

and shape within an image is calculating the Histograms of Oriented Gradients (HOG) that

stores distribution of edge orientations within an image (Bosch et al. 2007b; Ludwig et al.

2009). The Pyramid Histograms of Oriented Gradients (PHOG) descriptor is a well-known

shape descriptor that is inspired from the HOG and the spatial pyramid representation pro-

posed by (Lazebnik et al. 2006). Recent works employing local texture features such as

Local Binary Patterns (LBP) (Ojala et al. 1994; Zhu et al. 2010; Crosier and Griffin 2008),

for example, have shown promising results for recognition and classification of texture and

scene images (Banerji et al. 2011). In texture recognition, a Gabor filter-based approach has

been successfully used (Manjunath and Ma 1996). Some researchers have also employed

the LBP histogram sequences of the Gabor wavelets for face image recognition (Lee et al.

2010; Zhang et al. 2005). Fusion of local patterns of Gabor magnitude and phase for face

recognition was found to be effective in (Xie et al. 2010).

In addition, color also provides powerful discriminating information as humans can

distinguish thousands of colors, compared to about only two dozen shades of gray (Gonza-

lez and Woods 2001), and color images have been shown to perform better than grayscale

images for image classification tasks (Liu and Mago 2012; Banerji et al. 2011; Liu 2011;

Liu and Yang 2009; Liu 2007, 2004a; Shih and Liu 2005; Verma et al. 2010). Notable

contributions on color based image classification appear in (Verma et al. 2010; Liu 2008,

2006; Liu and Mago 2012) that propose several new color spaces and methods for face,

object and scene image classification. Global color features such as the color histograms

and local invariant features provide varying degrees of success against image variations

such as rotation, viewpoint and lighting changes, clutter and occlusions (Burghouts and

Geusebroek 2009). Some desirable properties of the descriptors defined in different color
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spaces include relative stability over changes in photographic conditions such as varying

illumination. It has been shown that fusion of color features achieve higher classification

performance in the works of (Banerji et al. 2011; Verma and Liu 2011; Stokman and Gevers

2007).

This dissertation explores several novel image descriptors based on texture, shape,

color and local features from an image. Specifically, first, a new color Gabor-HOG (GHOG)

descriptor is introduced by concatenating the Histograms of Oriented Gradients (HOG) of

the component images produced by applying Gabor filters in multiple scales and orien-

tations to encode shape information. Second, the GHOG descriptor is analyzed in six

different color spaces and grayscale to propose different color GHOG descriptors, which

are further combined to present a new Fused Color GHOG (FC-GHOG) descriptor. Third,

a novel Gabor-PHOG (GPHOG) descriptor is proposed which improves upon the Pyra-

mid Histograms of Oriented Gradients (PHOG) descriptor, and subsequently a new FC-

GPHOG descriptor is constructed by combining the multiple color GPHOG descriptors

and employing the Principal Component Analysis (PCA). Next, the Gabor-LBP (GLBP)

is derived by accumulating the Local Binary Patterns (LBP) histograms of the local Gabor

filtered images to encode texture and local information of an image. Furthermore, a novel

Gabor-LBP-PHOG (GLP) image descriptor is proposed which integrates the GLBP and

the GPHOG descriptors as a feature set. The GLBP and the GHOG descriptors are then

combined to produce the Gabor-LBP-HOG (GLH) feature vector which performs well on

different object and scene image categories. The six color GLH vectors are further concate-

nated to form the Fused Color GLH (FC-GLH) descriptor. Finally, the Wigner based Local

Binary Patterns (WLBP) descriptor is proposed that combines multi-neighborhood LBP,

Pseudo-Wigner distribution of images and the popular bag of words model to effectively

classify scene images.

The classification performance of the proposed image descriptors is evaluated using

two frameworks. In the first one, the new image descriptors are subjected to dimensionality
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reduction by PCA and feature extraction using Enhanced Fisher Model (EFM). Then a

nearest neighbor classifier is used to test their performance on several widely used and

publicly available image datasets. In the other method, a Support Vector Machine (SVM)

classifier is used for reporting the performance. The descriptors are shown to achieve a

better classification performance than other popular image descriptors, such as the Scale

Invariant Feature Transform (SIFT), the Pyramid Histograms of visual Words (PHOW),

the Pyramid Histograms of Oriented Gradients (PHOG), Spatial Envelope (SE), Color SIFT

four Concentric Circles (C4CC), Object Bank (OB), the Context Aware Topic Model (CA-

TM), the Hierarchical Matching Pursuit (HMP) as well as LBP and a few others.

This dissertation is organized in the following manner. Chapter 2 discusses the

related work by other researchers that have been used in this dissertation. Chapter 3 dis-

cusses object and scene image classification by introducing the Gabor-HOG (GHOG) and

the FC-GHOG descriptors. Chapter 4 presents the novel GPHOG descriptor and evaluates

its classification performance which improves upon the popular PHOG descriptor. Chap-

ter 5 proposes two novel descriptors, the GLP and the FC-GLP descriptor, that incorporate

color, shape, texture and local information from an image. Chapter 6 presents the GLH and

the FC-GLH feature vectors that outperform both GLBP and GHOG. Chapter 7 proposes

a part based image representation method by utilizing the Pseudo-Wigner distribution of

images, the LBP, DCT smoothing, bag of words model and spatial pyramid representa-

tion techniques. Chapters 3, 4, 5, 6 and 7 also show the results of experiments done on

various image datasets. Chapter 4 also provides a more detailed discussion of the exper-

imental results to further evaluate the performance of the GPHOG descriptor on different

categories of various image datasets. Finally, Chapter 8 summarizes the contributions of

this dissertation and discusses future directions for research.



CHAPTER 2

BACKGROUND

A digital image is stored as a matrix of values and can be represented by a two-dimensional

function f (x,y) defined over the spatial domain where the value of the function at some

particular x and y gives the image intensity at that point. Each of these discrete intensity

values of the matrix is known as a picture element, or "pixel". A color image is defined

by a function of two spatial variables and one spectral variable. Color images thus contain

three such intensity matrices and can reproduce colors by storing three intensity values for

each pixel of an image.

Color images contain more discriminative information than grayscale images and

the color cue has been applied to facilitate image retrieval (Liu and Mago 2012; Liu 2011;

Liu and Yang 2009; Liu 2006) and object, texture and scene search (Verma et al. 2010;

Banerji et al. 2011). However, using the complete color information for feature extrac-

tion requires high computing power as well as more memory since color images contain at

least three times the information contained in grayscale images. Discriminative informa-

tion can be captured from color images by means of color features such as color invariants,

color histogram and color texture. Some of the early methods for image classification were

mainly based on the global descriptors such as the color and texture histograms (Niblack

et al. 1993; Pontil and Verri 1998; Schiele and Crowley 2000). One such representative

method is the color indexing system designed by Swain and Ballard, which used the color

histogram for image retrieval from a large image database (Swain and Ballard 1991). More

recently, the work of (Verma et al. 2010; Liu and Mago 2012; Liu 2008) on color based im-

age classification propose several new color spaces and methods for face, object and scene

classification. The HSV color space is used for scene category recognition in (Bosch et al.

2008), and the evaluation of local color invariant descriptors is performed in (Burghouts

and Geusebroek 2009). The discriminating color space has been discussed in (Liu 2008).

5
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Six popular color spaces and grayscale has been used in this dissertation for constructing

discriminatory feature vectors, suitable for classification and search. These color spaces

are discussed in detail in Section 2.1.

Efficient retrieval requires a robust feature extraction method that is able to extract

meaningful low-dimensional patterns from very high dimensional data (Liu 2003). Low-

dimensional representation is also important for achieving efficiency in computation. Prin-

cipal Component analysis (PCA) has been a popular method for performing dimensionality

reduction in image indexing and retrieval systems (Liu and Wechsler 2000). Section 2.2

discusses this technique. The Enhanced Fisher Model (EFM) feature extraction method has

achieved good success for the task of image representation and retrieval (Liu and Wechsler

2000). This dissertation uses two classification frameworks. One technique performs EFM

feature extraction followed by the Nearest Neighbor (NN) classification method for assign-

ing class labels to test images. This combination, called the EFM-NN classifier henceforth,

is explained in Section 2.3. The second classification framework uses a Support Vector

Machine classifier (Vapnik 1995) which is discussed in Section 2.4.

2.1 Color Spaces

This section briefly reviews the six color spaces and grayscale used to define the proposed

descriptors. Perception of color by the human visual system is made possible by specialized

retinal cells called cone cells that contain pigments with different spectral sensitivities.

The presence of three types of cones in the human eye sensitive to three different spectra

results in trichromatic color vision. This is why, any system for representing the full visible

color spectrum requires three variables which form a three-dimensional color space. Each

color image, therefore, can be split up into three intensity images that are known as color

component images or color planes.

The RGB color space, whose three component images represent the red, green, and

blue primary colors, is the common tristimulus space for color image representation on a
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Figure 2.1 A color image, its grayscale image, and the color component images in the
RGB, oRGB, HSV, YIQ, YCbCr and DCS color spaces, respectively.

computer. Other color spaces are usually derived from the RGB color space using either

linear or nonlinear transformations.

The HSV (hue, saturation, and value) color space, however, is derived nonlinearly

from the RGB color space (Smith 1978):

H =


60(G−B

δ ) if MAX = R

60(B−R
δ +2) if MAX = G

60(R−G
δ +4) if MAX = B

S =

 δ/MAX if MAX ̸= 0

0 if MAX = 0

V = MAX

(2.1)

where MAX = max(R,G,B), MIN = min(R,G,B), and δ = MAX −MIN.

The remaining four color spaces used in this dissertation are, again, transformed

from the RGB color space using linear transformations.
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The YCbCr color space is defined as follows (Gonzalez and Woods 2008):


Y

Cb

Cr

=


16

128

128

+


65.481 128.553 24.966

−37.797 −74.203 112.000

112.000 −93.786 −18.214




R

G

B

 (2.2)

The YIQ color space is defined as given below (Shih and Liu 2005):


Y

I

Q

=


0.2990 0.5870 0.1140

0.5957 −0.2745 −0.3213

0.2115 −0.5226 0.3111




R

G

B

 (2.3)

The three component images L, C1, and C2 of the oRGB color space are defined as

follows (Bratkova et al. 2009):


L

C1

C2

=


0.2990 0.5870 0.1140

0.5000 0.5000 −1.0000

0.8660 −0.8660 0.0000




R

G

B

 (2.4)

The Discriminating Color Space (DCS) (Liu 2008) is derived from the RGB color

space by means of discriminant analysis (Fukunaga 1990). The DCS defines discriminating

component images via a linear transformation WD ∈ R3×3 from the RGB color space


D1

D2

D3

=WD


R

G

B

 (2.5)

where D1, D2, and D3 are the values of the discriminating component images in the DCS

color space. The transformation matrix WD ∈ R3×3 may be derived through a procedure of

discriminant analysis (Fukunaga 1990). Let Sw and Sb be the within-class and the between
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class scatter matrices of the 3-D pattern vector X , respectively where Sw,Sb ∈ R3x3. The

discriminant analysis procedure derives a projection matrix WD by maximizing the criterion

J1 = tr(S−1
w Sb) (Fukunaga 1990). This criterion is maximized when W t

D consists of the

eigenvectors of the matrix S−1
w Sb (Fukunaga 1990)

S−1
w SbW t

D =W t
D∆ (2.6)

where W t
D, ∆ are the eigenvector and eigenvalue matrices of S−1

w Sb, respectively. Figure 2.1

shows a color image, its grayscale image, and its color component images in the RGB,

oRGB, HSV, YIQ, YCbCr and DCS color spaces, respectively. The grayscale image here

is an intensity image generated from the RGB image by forming a weighted sum of the R,

G, and B components:

Gray = 0.2990R+0.5870G+0.1140B (2.7)

Note that these are the same weights used to compute the Y component of the YIQ color

space.

2.2 Principal Component Analysis (PCA)

Principal component analysis, or PCA, which is the optimal feature extraction method in

the sense of the mean-square-error, derives the most expressive features for signal and

image representation. Specifically, let X ∈ RN be a random vector whose covariance

matrix is defined as follows (Fukunaga 1990):

S = E {[X −E (X )][X −E (X )]t} (2.8)

where E (·) represents expectation and t the transpose operation. The covariance matrix S

is factorized as follows (Fukunaga 1990):

S = ΦΛΦt (2.9)
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where Φ = [ϕ1ϕ2 · · ·ϕN ] is an orthogonal eigenvector matrix and Λ = diag{λ1,λ2, . . . ,λN},

a diagonal eigenvalue matrix with diagonal elements in decreasing order.

Decorrelation is an important property of PCA, i.e. the components of the trans-

formed data, X ′ = ΦtX , are decorrelated since the covariance matrix of X ′ is diagonal,

ΣX ′ = Λ, and the diagonal elements are the variances of the corresponding components.

A second important property of PCA is its optimal signal reconstruction with respect to

minimum Mean Square Error (MSE) when just a subset of the principal components is

used to represent the original signal. A popular application of this second property is the

extraction of the most expressive features of X . Towards that end, a new vector Y is

defined: Y = PtX , where P = [ϕ1ϕ2 · · ·ϕK], and K < N. The most expressive features of

X thus define the new vector Y ∈ RK , which consists of the most significant principal

components.

2.3 The Enhanced Fisher Model and the Nearest Neighbor Classification Rule

Object and scene image classification using the new descriptors introduced in this disser-

tation is implemented using the Enhanced Fisher Model (EFM) for feature extraction (Liu

and Wechsler 2000) and the Nearest Neighbor (NN) to the mean classification rule for clas-

sification. This EFM feature extraction and NN classification procedure is referred to as

the EFM-NN classifier throughout this dissertation.

In pattern recognition, a popular method, Fisher’s Linear Discriminant (FLD), ap-

plies first PCA for dimensionality reduction and then discriminant analysis for feature ex-

traction. PCA is discussed in the previous section, and discriminant analysis often opti-

mizes a criterion defined on the within-class and between-class scatter matrices Sw and Sb,

which are defined as follows (Fukunaga 1990):

Sw =
L

∑
i=1

P(ωi)E {(Y −Mi)(Y −Mi)
t |ωi} (2.10)
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Sb =
L

∑
i=1

P(ωi)(Mi −M)(Mi −M)t (2.11)

where P(ωi) is a priori probability, ωi represent the classes, and Mi and M are the means

of the classes and the grand mean, respectively. One discriminant analysis criterion is J1:

J1 = tr(S−1
w Sb), and J1 is maximized when Ψ contains the eigenvectors of the matrix S−1

w Sb

(Fukunaga 1990):

S−1
w SbΨ = Ψ∆ (2.12)

where Ψ,∆ are the eigenvector and eigenvalue matrices of S−1
w Sb, respectively. The dis-

criminating features are defined by projecting the pattern vector Y onto the eigenvectors

of Ψ:

Z = ΨtY (2.13)

Z thus contains the discriminating features for image classification.

The FLD method, however, often leads to overfitting when implemented in an in-

appropriate PCA space. To improve the generalization performance of the FLD method, a

proper balance between two criteria should be maintained: the energy criterion for adequate

image representation and the magnitude criterion for eliminating the small-valued trailing

eigenvalues of the within-class scatter matrix (Liu and Wechsler 2000). As a result, the En-

hanced Fisher Model (EFM) is developed to improve upon the generalization performance

of the FLD method (Liu and Wechsler 2000). Specifically, the EFM method improves the

generalization capability of the FLD method by decomposing the FLD procedure into a

simultaneous diagonalization of the within-class and between-class scatter matrices (Liu

and Wechsler 2000). The simultaneous diagonalization reveals that during whitening the

eigenvalues of the within-class scatter matrix appear in the denominator. Since the small

eigenvalues tend to encode noise (Liu and Wechsler 2000), they cause the whitening step

to fit for misleading variations, and this leads to poor generalization performance. To en-

hance performance, the EFM method preserves a proper balance between the need that the
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selected eigenvalues account for most of the spectral energy of the raw data (for representa-

tional adequacy), and the requirement that the eigenvalues of the within-class scatter matrix

(in the reduced PCA space) are not too small (for better generalization performance) (Liu

and Wechsler 2000).

2.4 Support Vector Machine

The Support Vector Machine (SVM) is a particular realization of statistical learning the-

ory. The approach described by SVM, known as structural risk minimization, minimizes

the risk functional in terms of both the empirical risk and the confidence interval (Vap-

nik 1995). SVM is built from two ideas: (i) a nonlinear mapping of the input space to a

high-dimensional feature space, and (ii) designing the optimal hyperplane in terms of the

maximal margin between the patterns of the two classes in the feature space. SVM is very

popular and has been applied extensively for pattern classification, regression, and density

estimation since it displays a good generalization performance.

Let (x1,y1),(x2,y2), . . . ,(xk,yk),xi ∈ RN , and yi ∈ {+1,−1} be k training samples

in the input space, where yi indicates the class membership of xi. Let ϕ be a nonlinear

mapping between the input space and the feature space, ϕ : RN → F , i.e., x → ϕ(x). The

optimal hyperplane in the feature space is defined as follows:

w0 ·ϕ(x)+b0 = 0 (2.14)

It can be proven (Vapnik 1995) that the weight vector w0 is a linear combination of

the support vectors, which are the vectors xi that satisfy yi(w0 ·ϕ(xi)+b0) = 1:

w0 = ∑
supportvectors

yiαiϕ(xi) (2.15)

where αi’s are determined by maximizing the following functional:
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L(α) =
k

∑
i=1

αi −
1
2

k

∑
i, j=1

αiα jyiy jϕ(xi) ·ϕ(x j) (2.16)

subject to the following constraints:

k

∑
i=1

αiyi = 0,αi ≥ 0, i = 1,2, . . . ,k (2.17)

From Eqs. 2.14 and 2.15, the linear decision function in the feature space can be

derived

f (x) = sign( ∑
supportvectors

yiαiϕ(xi) ·ϕ(x)+b0) (2.18)

It should be noted that the decision function (see Eq. 2.18) is defined by the dot

products in the high dimensional feature space, where computation might be prohibitively

expensive. SVM, however, manages to compute the dot products by means of a kernel

function (Vapnik 1995)

K(xi,x j) = ϕ(xi) ·ϕ(x j) (2.19)

Three classes of kernel functions widely used in kernel classifiers, neural networks,

and SVMs are polynomial kernels, Gaussian kernels, and sigmoid kernels (Vapnik 1995):

K(xi,x j) = (xi ·x j)
d, (2.20)

K(xi,x j) = exp(
−(∥xi −x j∥)2

2σ2 ), (2.21)

K(xi,x j) = tanh(k(xi ·x j)+ v), (2.22)

where d ∈ N, σ > 0, k > 0, and v < 0.
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The SVM implementation used for the experiments presented in this dissertation

is the one that is distributed with the VLFeat package (Vedaldi and Fulkerson 2010). The

parameters of the support vector machine are tuned empirically using only the training data,

and the parameters that yield the best average precision on the training data are used for

classification of the test data. In particular, the cost parameter C has been empirically set to

1 for the best classification performance in the experiments described here.



CHAPTER 3

THE NOVEL COLOR GABOR-HOG (GHOG) IMAGE DESCRIPTORS

This chapter introduces a novel set of color image descriptors based on shape and Gabor

wavelets for object and scene image classification. Specifically, first, a new Gabor-HOG

(GHOG) descriptor is proposed for image feature extraction by concatenating the His-

tograms of Oriented Gradients (HOG) of the component images produced by applying

Gabor filters in multiple scales and orientations to encode shape information of an image.

Second, a comparative assessment of the classification performance of the GHOG descrip-

tor is made in six different color spaces as well as in grayscale. Finally, a new Fused Color

GHOG (FC-GHOG) descriptor is proposed for object and scene image classification by

integrating the GHOG descriptors in the six different color spaces to further incorporate

color information. Feature extraction for the proposed descriptors employ Principal Com-

ponent Analysis (PCA) and Enhanced Fisher Model (EFM), and the nearest neighborhood

is exploited for final classification. Experimental results using three benchmark datasets,

the Caltech 256 object categories dataset, the MIT Scene dataset, and the UIUC Sports

Event dataset show that the proposed new image descriptors achieve better image clas-

sification performance than other popular image descriptors, such as the Scale Invariant

Feature Transform (SIFT), the Pyramid Histograms of Oriented Gradients (PHOG), Spa-

tial Envelope (SE), the Color SIFT four Concentric Circles (C4CC), Object Bank (OB),

Context Aware Topic Model (CA-TM), as well as LBP.

3.1 Gabor-Based New Image Descriptors

This section briefly reviews the Gabor wavelet representation, and then discusses the gen-

eration of the proposed new image descriptors based on Gabor wavelets, shape, color and

local information for object and scene image classification. In particular, first, a new Gabor-

15
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HOG (GHOG) descriptor is introduced for encoding both local and shape information of an

image. Finally, a novel FC-GHOG descriptor is proposed that fuses the GHOG descriptors

in the six different color spaces to further incorporate color information.

3.1.1 Gabor Wavelet Representation

This section discusses the Gabor wavelets and how images are represented by Gabor wavelet

features. First a brief background of the Gabor wavelets is given. Then, a description of

how the Gabor wavelet representations have been used in this research is made to derive

new image descriptors for object and scene image classification.

The Gabor wavelet is considered to be a good model for human visual receptive

fields and hence the Gabor wavelet-based approach has been successfully used in image

analysis (Marcelja 1980; Jones and Palmer 1987; Daugman 1985, 1988). The kernels of

the Gabor wavelets are similar to the 2-D receptive field profiles of the mammalian cortical

simple cells (Marcelja 1980). The Gabor kernels or filters can be generated from one kernel

or mother wavelet by dilation and rotation and hence they are all self-similar. Each kernel

is a product of a Gaussian envelope and a complex plane wave. The Gabor wavelets exhibit

desirable characteristics of spatial locality and orientation selectivity and capture the local

structure corresponding to spatial frequency (scale), spatial localization, and orientation

selectivity. The 2-D Gabor wavelets were first introduced by Daugman (Daugman 1993)

for human iris recognition. Promising results in face recognition have been achieved using

the Gabor wavelets by (Liu 2004b; Liu and Wechsler 2001, 2003, 2002; Xie et al. 2010;

Lee et al. 2010; Zhang et al. 2005).

A Gabor filter (kernel, wavelet) is obtained by modulating a sinusoid with a Gaus-

sian distribution. In a 2-D scenario such as images, a Gabor filter is defined as:

Gν ,θ ,α,σ ,γ(x,y) = exp(−x′2 + γ2y′2

2σ2 )exp(i(2πνx′+α)) (3.1)
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where x′ = xcosθ + ysinθ , y′ = −xsinθ + ycosθ , and ν , θ , α , σ , γ denote the spatial

frequency of the sinusoidal factor, orientation of the normal to the parallel stripes of a

Gabor function, phase offset, standard deviation of the Gaussian kernel and the spatial

aspect ratio specifying the ellipticity of the support of the Gabor function, respectively.

The Gabor wavelet representation of an image is obtained by the convolution of the image

with a family of Gabor kernels as defined by Eq. (3.1). The convolution of an image I and

a Gabor kernel G is defined as:

O(x,y) = I(x,y)∗G (x,y) (3.2)

The response O(x,y) to each Gabor kernel is a complex function with a real part Re{O(x,y)}

and an imaginary part Im{O(x,y)} which is expressed as:

O(x,y) = Re{O(x,y)}+ i Im{O(x,y)}

The magnitude response ∥O(x,y)∥ is as follows:

∥O(x,y)∥=
√

Re{O(x,y)}2 + Im{O(x,y)}2 (3.3)

In this work, even symmetric Gabor filters (Jain et al. 2000; Barbu 2009) have been

used. For an even symmetric Gabor filter, the Eq. (3.1) can be reduced to have the following

general form in the spatial domain:

Gν ,θ ,σ ,γ(x,y) = exp(−x′2 + γ2y′2

2σ2 )cos(2πνx′) (3.4)
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where x′ = xcosθ + ysinθ , y′ = −xsinθ + ycosθ , and ν , θ , σ , γ denote the spatial fre-

quency of the sinusoidal factor, orientation of the normal to the parallel stripes of a Gabor

function, standard deviation of the Gaussian kernel and the spatial aspect ratio specifying

the ellipticity of the support of the Gabor function, respectively. In this work, the magnitude

responses of the Gabor wavelet representations have been used for subsequent construction

of the novel descriptors. Going forward, the phrase Gabor filtered images is used to refer

to the magnitude responses of the Gabor wavelet representations of images. For all the

experiments in this chapter, the chosen parameter values are σ = 8, γ = 1, ν = [1/8, 1/16],

and θ = [0, π/6, π/3, π/2, 2π/3, 5π/6].

3.1.2 The Gabor-HOG (GHOG) Descriptor

The Gabor wavelet representation captures local structure corresponding to spatial fre-

quency (scale), spatial localization, and orientation selectivity (Schiele and Crowley 2000;

Liu and Wechsler 2002) and hence multi-resolution and multi-orientation Gabor filtering

has been used for extraction of the new feature vector. To further encode local and shape

information from the Gabor feature representations, the novel Gabor-HOG (GHOG) de-

scriptor is introduced by extracting the HOG features from the set of Gabor filtered images.

The Histograms of Oriented Gradients (HOG) (Dalal and Triggs 2005) method is

inspired from the Scale Invariant Feature Transform (SIFT) (Lowe 2004; Chen and Liu

2012) and was first applied for human detection (Dalal and Triggs 2005). The idea of HOG

rests on the observation that local object appearance and shape can often be characterized

well by the distribution of local intensity gradients or edge directions (Dalal and Triggs

2005). HOG features are derived based on a series of well-normalized local histograms

of image gradient orientations in a dense grid (Dalal and Triggs 2005). In particular, the

image window is first divided into small cells. For each cell, a local histogram of the gra-

dient directions or the edge orientations is accumulated over the pixels of the cell. All the

histograms within a block of cells are then normalized to reduce the effect of illumination
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Figure 3.1 A color image, its three color component images, the orientation gradients
of the different cells from every color component image, the histograms of orientation
gradients formed from each of the cells of the color component images, the three HOG
descriptors for the three color component images, and the concatenated HOG descriptor
for the whole color image.

variations. The blocks can be overlapped with each other for performance improvement.

The final HOG features are formed by concatenating all the normalized histograms into a

single vector. For a color image, this process is repeated separately for the three component

images and then the histograms are concatenated to form the color HOG descriptor. Fig-

ure 3.1 shows how the HOG descriptor is formed by the gradient histograms from a color

image. Specifically, it shows a color image in the leftmost column. The three images in the

second column are the three color component images of the original color image. The third

column displays the gradient orientations of the color component images in the second col-

umn. Note that in this work, 3×3 cells have been used for deriving the orientation gradients

from the images. Each of the three images in the fourth column shows the histograms of

the orientation gradients for each cell. In this example, each of the histograms contains

nine bins. The fifth column shows the HOG descriptors for the three color component im-

ages formed by concatenating the histograms of oriented gradients of the small cells, and

finally the rightmost image shows the generation of the color HOG descriptor produced by

concatenating the three HOG features corresponding to the three color component images.

The idea of the new Gabor-HOG (GHOG) descriptor is mainly based on the Gabor
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Figure 3.2 A color image, its Gabor filtered color images, the HOG descriptors obtained
from the Gabor filtered color images, and the new GHOG descriptor derived from the
concatenation and subsequent normalization of the color HOG descriptors of the Gabor
filtered color images.

wavelet representations of an image and the HOG features. Specifically, first the Gabor fil-

ters defined in Eq. (3.4) are applied in two scales and six different orientations as discussed

previously to encode local information corresponding to spatial frequency (scale), spatial

localization, and orientation selectivity. For a color image, the Gabor filters are applied to

the three color component images. Then the HOG features are derived from each color

component of the Gabor filtered images that are obtained as a result of applying twelve

different Gabor filters to the color image.

To compute the HOG features from the Gabor filtered images, 3×3 cells are used

for deriving the orientation gradients from the images, where the histograms for each cell

contain nine bins. The HOG features of each of the color components of all the Gabor-

filtered images are then concatenated and finally normalized to zero mean and unit standard

deviation to generate the novel GHOG descriptor. Figure 3.2 shows a color image, its Gabor

filtered color images, the HOG descriptors obtained from the Gabor filtered color images,

and the new GHOG descriptor derived by normalizing the concatenation of the color HOG

descriptors of the Gabor filtered color images.



21

Figure 3.3 Some sample images from the Caltech 256 dataset.

3.1.3 The Fused Color GHOG (FC-GHOG) Image Descriptor

The color cue is often applied by the human visual system for recognizing images. Indeed,

color provides powerful distinguishing information for pattern recognition in general and

for object and scene image classification in particular (Liu and Mago 2012; Banerji et al.

2011; Liu 2011; Verma et al. 2010; Liu and Yang 2009; Liu 2008, 2007, 2006, 2004a). The

motivation of the next descriptor is to further incorporate color information. In this section,

an innovative Fused Color GHOG (FC-GHOG) descriptor is presented that fuses the most

expressive features of the GHOG descriptors in six different color spaces, namely the RGB,

oRGB, HSV, YIQ, DCS, and YCbCr color spaces (Liu 2008). The most expressive features

of the GHOG descriptors are extracted by means of Principal Component Analysis (PCA).

The proposed FC-GHOG descriptor is derived by first computing the GHOG de-

scriptors in the six different color spaces. Then the most expressive features from the six

color GHOG descriptors are extracted using PCA and concatenated to create the novel

FC-GHOG image descriptor.

3.2 Classifier Used

The proposed new descriptors presented in the preceding section are tested for classification

by applying the Enhanced Fisher Model (EFM) for feature extraction (Liu and Wechsler
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Figure 3.4 Some sample images from the MIT Scene dataset.

2000) and implementing the Nearest Neighbor (NN) to the mean classification rule for

classification. This EFM-NN classifier has been described in detail in Section 2.3.

3.3 Experiments

This section briefly describes the datasets used and then reveals the experimental results.

3.3.1 Datasets

This section briefly discusses the three fairly challenging and popular datasets, namely: the

Caltech 256 dataset, the MIT Scene dataset and the UIUC Sports Event dataset, on which

the proposed descriptors are tested for performance evaluation.

Figure 3.5 Some sample images from the UIUC Sports Event dataset.



23

The Caltech 256 Dataset: The Caltech 256 dataset (Griffin et al. 2007) holds

30,607 images divided into 256 object categories and a clutter class. Each category con-

tains a minimum of 80 images and a maximum of 827 images. The mean number of images

per category is 119. The images represent a diverse set of lighting conditions, poses, back-

grounds, and sizes (Griffin et al. 2007) and have high intra-class variability and high object

location variability (Griffin et al. 2007). Most of the images are in color, in JPEG format

with only a small percentage in grayscale. The average size of each image is 351× 351

pixels. Some sample images from this dataset are shown in Figure 3.3.

The MIT Scene Dataset: The MIT Scene dataset (Oliva and Torralba 2001) (also

known as the OT Scenes) has 2,688 images classified as eight scene categories: 360 coast,

328 forest, 260 highway, 308 inside of cities, 374 mountain, 410 open country, 292 streets,

and 356 tall buildings. All of the images are in color, in JPEG format, and the size of

each image is 256× 256 pixels (Oliva and Torralba 2001). There is a large variation in

light, content and angles, along with a high intra-class variation (Oliva and Torralba 2001).

Figure 3.4 displays some sample images from this dataset.

The UIUC Sports Event Dataset: The UIUC Sports Event dataset (Li and Fei-Fei

2007) contains eight sports event categories: badminton (200 images), bocce (137 im-

ages), croquet (236 images), polo (182 images), rock climbing (194 images), rowing (250

images), sailing (190 images), and snowboarding (190 images). The mean image size is

845× 1077 pixels. Most of the images are color jpeg images, with a small percentage in

grayscale. A few sample images from this dataset are shown in Figure 3.5.

3.3.2 Comparison of the GHOG Descriptor in Different Color Spaces

In this section, a comparative assessment of the GHOG descriptor is made in six differ-

ent color spaces – RGB, HSV, oRGB, YCbCr, DCS, and YIQ color spaces, as well as in

grayscale, using the three datasets described earlier to evaluate classification performance.

Towards that end, first the GHOG descriptor is derived from each image in the different
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Figure 3.6 The average classification performance of the proposed GHOG descriptor in
the YIQ, YCbCr, oRGB, RGB, DCS and HSV color spaces and also in grayscale using the
EFM-NN classifier on the Caltech 256 dataset.

color spaces. Note that some large-scale images are resized in such a way that their largest

dimension does not exceed 400 pixels. Each input image is converted into grayscale as

well as transformed into images in the six color spaces. Each image in a single color space

first undergoes Gabor filtering in six orientations and two scales to produce twelve different

Gabor-filtered images. The HOG descriptor is further computed from these Gabor filtered

images and concatenated which are normalized to zero mean and unit standard deviation

to finally derive the GHOG feature, respectively. The EFM is applied for feature extraction

and the nearest neighbor rule is finally used for image classification, where similarity score

between a train and test vector is computed using the cosine similarity measure.

On the Caltech 256 dataset, experiments are conducted using a protocol defined
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Figure 3.7 The average classification performance of the proposed GHOG descriptor in
the YCbCr, YIQ, DCS, oRGB, RGB and HSV color spaces and also in grayscale using the
EFM-NN classifier on the MIT Scene dataset.

in (Griffin et al. 2007). For each class, 50 images are used for training and 25 images for

testing, and five runs of experiments are performed using the data splits that are provided on

the Caltech website (Griffin et al. 2007). Figure 3.6 reveals the comparative classification

performance of the proposed GHOG descriptor in six different color spaces and also in

grayscale. The horizontal axis indicates the average classification performance, which is

the percentage of correctly classified images averaged across the 256 classes and the five

runs of the experiments, and the vertical axis shows the seven different GHOG descriptors

in the six color spaces and grayscale. It shows that GHOG descriptor in YIQ color space

performs best with 31.6% classification performance, followed by the GHOG descriptors in

YCbCr, oRGB, RGB, DCS, HSV and grayscale with 31.3%, 30.7%, 29.9%, 29.7%, 28.9%
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Figure 3.8 The average classification performance of the proposed GHOG descriptor in
the DCS, YIQ, YCbCr, oRGB, HSV and RGB color spaces and also in grayscale using the
EFM-NN classifier on the UIUC Sports Event dataset.

and 26.8% classification performances, respectively.

For the MIT Scene dataset, 100 images are used from each class for training and the

rest of the images for testing. All experiments are performed for five random splits of the

data to achieve more reliability. Figure 3.7 shows the detailed classification performance of

the GHOG descriptor in six different color spaces and also in grayscale using the EFM-NN

classifier. Here, the GHOG descriptor in YCbCr color space performs best with 85.8%

classification performance, followed by the GHOG descriptors in YIQ, DCS, oRGB, RGB,

HSV and grayscale with 85.7%, 85.5%, 85.5%, 85.5%, 84.6%, and 81.9% classification

rates, respectively.

For the UIUC Sports Event dataset, a protocol defined in (Li and Fei-Fei 2007) is
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used, which specifies that for each class in this dataset, 70 images are used for training

and 60 images for testing. To achieve more reliable performance, the experiments are re-

peated five times using random splits of the data, and no overlapping occurs between the

training and the testing sets of the same split. Figure 3.8 shows the detailed classification

performance of the GHOG descriptor in grayscale and in six different color spaces using

the EFM-NN classifier. Here also, the horizontal and vertical axes show the average clas-

sification performance and different descriptors in the six color spaces and in grayscale,

respectively. It can be seen from this figure that the GHOG descriptor in DCS color space

performs best with 80.0% classification performance, followed by the GHOG descriptors in

YIQ, YCbCr, oRGB, HSV, RGB and grayscale with 79.3%, 78.6%, 78.4%, 78.0%, 77.6%,

and 73.7% classification rates, respectively.

3.3.3 Comparison of the FC-GHOG Descriptor and Some Other Methods

Now, the performance of the proposed FC-GHOG descriptor is evaluated in the three

datasets, and also compared with some popular descriptors. In particular, the FC-GHOG

descriptor is first compared with the popular and robust SIFT-based Pyramid Histograms of

visual Words (PHOW) descriptor (Bosch et al. 2007a) on all three datasets. For fair com-

parison, both descriptors apply the EFM-NN classifier for image classification. Then, the

classification performance achieved by the FC-GHOG descriptor coupled with the EFM-

NN classifier is compared to the image classification performance of some other state-of-

the-art descriptors and classification approaches as reported in published papers.

To make a comparative assessment of the FC-GHOG descriptor with a popular

SIFT-based descriptor, the Pyramid Histograms of visual Words (PHOW) feature vector

(Bosch et al. 2007a) is generated using the software package VLFeat (Vedaldi and Fulker-

son 2010). Here feature extraction is a three-step process. First, SIFT features are extracted

from images using a fast SIFT process. In this algorithm, SIFT descriptors are computed

at points on a dense regular grid instead of the SIFT-generated interest points (Lazebnik
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Table 3.1 Comparison of the Classification Performance (%) of the FC-GHOG Descriptor
with Other Popular Methods on the Caltech 256 Dataset

Descriptor Performance (%)
oRGB-SIFT (Verma et al. 2010) 23.9
gray-PHOW 25.9
color-PHOW 29.9
CSF (Verma et al. 2010) 30.1
FC-GHOG (Proposed) 34.7

et al. 2006; Bosch et al. 2007a). Second, the SIFT features are subjected to K-means clus-

tering with K=1000 to form a visual vocabulary. Finally, the images are spatially tiled into

2× 2 parts and the histograms of visual words are computed for the SIFT features from

each part. These four histograms are concatenated to generate the final PHOW feature vec-

tor. For a color image, the same process is repeated for the three color component images

and the feature vectors are concatenated. To compare the classification performance of the

proposed descriptor, gray PHOW as well as the color PHOW feature vectors are used.

Table 3.1 shows the comparison of the classification performance of the proposed

FC-GHOG descriptor with that of other popular descriptors. In particular, on the Caltech

256 dataset, the FC-GHOG descriptor achieves the average classification performance of

34.7%, compared to the color-PHOW and the gray-PHOW descriptors with the average

classification rates of 29.9% and 25.9%, respectively. It also outperforms the classifica-

tion success achieved by oRGB-SIFT and Color Sift Fusion (CSF) descriptors which yield

23.9% and 30.1% classification rates, respectively. It should be noted here that all these

descriptors apply the same EFM-NN classifier to achieve the classification performances

as reported in Table 3.1.

On the MIT Scene dataset, FC-GHOG performance is evaluated by comparing it

with both the gray and color PHOW features, and also to some other popular descriptor

performances as reported in the published papers. Table 3.2 gives a detailed result of the

classification performances obtained by the different descriptors on this dataset. Specif-
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Table 3.2 Comparison of the Classification Performance (%) of the FC-GHOG Descriptor
with Other Popular Methods on the MIT Scene Dataset

Descriptor Performance (%)
CLF (Banerji et al. 2011) 79.3
CGLF (Banerji et al. 2011) 80.0
gray-PHOW 82.5
SE (Oliva and Torralba 2001) 83.7
color-PHOW 84.3
CGLF+PHOG (Banerji et al. 2011) 84.3
C4CC (Bosch et al. 2006) 86.7
FC-GHOG (Proposed) 87.6

ically, using 100 training images and rest of them for testing, the FC-GHOG correctly

classifies 87.6% of the images, whereas the color and the gray PHOW descriptors achieve

84.3% and 82.5% classification success. It also lists a comparison of the classification

performance of the FC-GHOG descriptor with some popular descriptors used by other re-

searchers on the MIT Scene dataset. Please note that the classification results of the popular

descriptors achieved by other researchers are reported directly from their published work.

With 100 training images per class, the FC-GHOG descriptor again gives the best classifi-

cation performance of 87.6%, as compared to Color SIFT four Concentric Circles (C4CC)

(Bosch et al. 2006) with a classification performance of 86.7%, to CGLF+PHOG (Banerji

et al. 2011) with a classification performance of 84.3%, to Spatial Envelope (SE) with

a classification performance of 83.7%, to Color LBP Fusion (CLF) (Banerji et al. 2011)

with a classification performance of 79.3%, and to Color Grayscale LBP Fusion (CGLF)

(Banerji et al. 2011) with a classification performance of 80.0%.

Table 3.3 reports the comparison of the classification performance of the proposed

FC-GHOG descriptor and other popular image descriptors on the UIUC Sports Event

dataset. Here too, the FC-GHOG descriptor performs the best with 84.0% average classifi-

cation accuracy, whereas the color and gray PHOW descriptors coupled with the EFM-NN

classifier achieve 79.0% and 76.4% success rates, respectively. The FC-GHOG descriptor
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Table 3.3 Comparison of the Classification Performance (%) of the FC-GHOG Descriptor
with Other Popular Methods on the UIUC Sports Event Dataset

Descriptor Performance (%)
SIFT+GGM (Li and Fei-Fei 2007) 73.4
OB (Li et al. 2010) 76.3
gray-PHOW 76.4
CA-TM (Niu et al. 2012) 78.0
color-PHOW 79.0
FC-GHOG (Proposed) 84.0

also performs better compared to the SIFT+GGM (Li and Fei-Fei 2007) method with clas-

sification performance of 73.4%, to Object Bank (OB) (Li et al. 2010) with classification

performance of 76.3%, and to Context Aware Topic Model (CA-TM) (Niu et al. 2012) with

classification performance of 78.0%.

3.4 Summary

The main contributions of this chapter are in the generation of novel image descriptors for

object and scene image classification based on color, shape and Gabor wavelet transforma-

tion. In particular, a new Gabor-HOG (GHOG) descriptor is introduced to encode shape

information of an image. Then a comparative assessment the classification performance of

the new GHOG descriptor in six different color spaces – the RGB, the HSV, the YCbCr, the

oRGB, the DCS and the YIQ – as well as in grayscale is made. Finally, a new FC-GHOG

descriptor is presented for object and scene image classification by integrating the GHOG

descriptors in the six different color spaces to further incorporate color information. Ex-

perimental results using three grand challenge datasets, the Caltech 256 object categories

dataset, the MIT Scene dataset, and the UIUC Sports Event dataset show that the proposed

new image descriptors achieve better image classification performance than other popu-

lar image descriptors, such as the Scale Invariant Feature Transform (SIFT), the Pyramid

Histograms of Oriented Gradients (PHOG), Spatial Envelope (SE), the Color SIFT four



31

Concentric Circles (C4CC), Object Bank (OB), Context Aware Topic Model (CA-TM), as

well as the Local Binary Patterns (LBP).



CHAPTER 4

THE NEW COLOR GABOR-PHOG (GPHOG) DESCRIPTORS

Chapter 3 discusses the HOG descriptor and introduces a Gabor-based new GHOG de-

scriptor to encode the shape information of an image. The Pyramid Histograms of Oriented

Gradients (PHOG) is a shape descriptor that is inspired from HOG and also captures spatial

locality of an image. Gabor wavelets are known to selectively enhance high frequency local

information in different orientations. This chapter presents a novel set of image descriptors

that encode information from color, shape, spatial and local features of an image to improve

upon the popular Pyramid of Histograms of Oriented Gradients (PHOG) descriptor for ob-

ject and scene image classification. In particular, a new Gabor-PHOG (GPHOG) image

descriptor created by enhancing the local features of an image using multiple Gabor filters

is first introduced for feature extraction. A comparative assessment of the classification

performance of the GPHOG descriptor is then made in grayscale and six different color

spaces to further propose two novel color GPHOG descriptors that perform well on differ-

ent object and scene image categories. An innovative Fused Color GPHOG (FC-GPHOG)

descriptor is finally presented by integrating the Principal Component Analysis (PCA) fea-

tures of the GPHOG descriptors in the six color spaces to combine color, shape and local

feature information.

As the human visual system is much more efficient and accurate than any machine-

based image classification approach, a representation that is modeled on the human visual

cortex is likely to be better than other image representations for classification tasks. The

Gabor wavelets, whose kernels are similar to the two-dimensional (2-D) receptive field pro-

files of the mammalian cortical simple cells (Marcelja 1980) exhibit desirable characteris-

tics of spatial locality and orientation selectivity (Liu 2004b). The Gabor wavelets can be

used in a variety of applications (Mao et al. 2012), and as it captures the local information

corresponding to spatial frequency (scale), spatial localization, and orientation selectivity,

32
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Figure 4.1 A color image, the Gabor filters (kernels) in one scale and six different ori-
entations, and the magnitude responses of the Gabor wavelet representations of the color
image on application of Gabor filters in different orientations. Each image labeled (θ , 1/ν)
corresponds to the Gabor-filtered image which is obtained by applying Gabor filter to the
original color image with the specified orientation (θ ) and scale (ν). Please note that the
Gabor filters are enlarged for ease of display.

it encodes images in a manner so as to facilitate object and scene image classification. Ga-

bor filtering has also been effectively used a pre-processing step before calculating other

image descriptors such as the Local Binary Patterns (LBP) for face recognition (Lee et al.

2010).

The PHOG descriptor (Bosch et al. 2007b) represents local image shape and its

spatial layout, together with a spatial pyramid kernel, by taking the histograms of the pixel

gradients at different levels. Gabor wavelets, on the other hand, are known to capture local

image information corresponding to spatial frequency (scale), spatial localization, and ori-

entation selectivity. One of the motivations of this work is to improve the performance of

the popular PHOG descriptor by preprocessing the image using a series of Gabor wavelet

transformations, whose kernels are similar to the 2-D receptive field profiles of the mam-

malian cortical simple cells (Marcelja 1980).
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Figure 4.2 A color image, its Gabor filtered color images, the PHOG descriptors obtained
from the Gabor filtered color images, and the new GPHOG descriptor derived from the
concatenation and subsequent normalization of the color PHOG descriptors of the Gabor
filtered color images.

4.1 New Image Descriptors Based on Color, Shape, and Wavelets

In this section, new image descriptors based on Gabor wavelets, color and shape are pre-

sented for object and scene image classification. In particular, first, a new Gabor-PHOG

(GPHOG) descriptor is proposed for encoding local features, shape and the spatial layout

of the shape within an image. Then a novel Fused Color GPHOG (FC-GPHOG) descriptor

is constructed that integrates the PCA features of the GPHOG descriptors in six different

color spaces to further incorporate color information.

4.1.1 The Gabor-PHOG (GPHOG) Descriptor

This section introduces a new Gabor-PHOG (GPHOG) descriptor that integrates the Gabor

wavelet representation and the Pyramid of Histograms of Oriented Gradients (PHOG) to

encode color, shape and local information from an image.
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The Gabor wavelet is considered to be a good model for human visual receptive

fields and hence the Gabor wavelet-based approach has been successfully used in image

analysis (Marcelja 1980; Jones and Palmer 1987; Daugman 1988). The Gabor kernels or

filters can be generated from one kernel or mother wavelet and it has been reviewed in

Section 3.1.1. Even symmetric Gabor filters with the parameter values as σ = 8, γ = 1, ν

= 1/16, and θ = [0, π/6, π/3, π/2, 2π/3, 5π/6] are used in this work. Figure 4.1 shows a

color image, the Gabor filters (kernels) in one scale and six different orientations, and the

magnitude responses of the Gabor wavelet representations of the original color image by

applying six combinations of Gabor filters in multiple orientations as discussed above. The

Gabor filtered images displayed in the figure are produced on application of Gabor filters

with the specific (θ , 1/ν) parameter values as labeled in the figure. Please note that the

size of Gabor filters used is 17 × 17, and those shown in the figure are enlarged for ease

of display. It can be seen from the bottom row of Figure 4.1 that each of the magnitude

responses of the six Gabor filters have the edges of one particular orientation enhanced.

The orientation of the enhanced edges corresponds to the orientation of the Gabor filter

that generated that response. This fact provides the motivation for the choice of the next

step towards calculating the proposed feature vector.

To encode local features and shape information from the Gabor filtered images with

enhanced edges, their Pyramid of Histograms of Oriented Gradients (PHOG) descriptors

are computed. The PHOG (Bosch et al. 2007b) descriptor represents local image shape

and its spatial layout and is inspired from the Histograms of Oriented Gradients (HOG)

(Dalal and Triggs 2005) and the image pyramid representation of Lazebnik et al. (Lazebnik

et al. 2006). Since PHOG encodes shape based on gradients around high frequency local

features, it is logically a suitable descriptor to compute after the Gabor filtering operation.

The presence of enhanced edges in the filtered images improves the information extracted

by PHOG.

The PHOG descriptor adds spatial information to the HOG features following the
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Figure 4.3 A color image, corresponding color images in the six color spaces, the GPHOG
descriptors in the six color spaces, the PCA and the concatenation process, and the FC-
GPHOG descriptor.

scheme based on spatial pyramid matching proposed by Lazebnik et al. (Lazebnik et al.

2006). To derive the PHOG features, each image is first divided into a sequence of in-

creasingly finer spatial grids by repeatedly doubling the number of divisions in each axis

direction (Bosch et al. 2007b). This is known as a pyramid representation as the number

of points in a cell at one level is simply the sum over those contained in the four cells it is

divided into at the next level (Bosch et al. 2007b). A HOG feature vector is computed for

each grid cell at each pyramid resolution level. The final PHOG descriptor for the image

is generated by concatenating all the HOG vectors obtained at each level. Thus, the PHOG

encodes local shape by the distribution over edge orientations within a region, and the spa-

tial layout is captured by tiling the image into regions at multiple resolutions. The distance

between two PHOG image descriptors then reflects the extent to which the images con-

tain similar shapes and correspond in their spatial layout (Bosch et al. 2007b). The PHOG
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descriptor reduces to the HOG vector, which is a global edge or orientation histogram, if

only the coarsest level is used for deriving the feature. It can enforce correspondence for

tiles (spatial bins) over the image only if the finer levels are used. In this work, the PHOG

descriptor is computed with only two levels. Again, for a color image, the entire process is

repeated separately for the three component images and then the three PHOG features are

concatenated to form the color PHOG descriptor.

The idea of the new GPHOG descriptor is based on the Gabor wavelet represen-

tations of an image and the PHOG features. The main motivation of the GPHOG is to

enhance the PHOG features by applying a series of Gabor filters on the image before the

computation of PHOG. Specifically, first the Gabor filters defined in Eq. (3.4) are applied in

one scale and six different orientations as discussed previously to encode local information

corresponding to spatial frequency (scale), spatial localization, and orientation selectivity.

For a color image, the Gabor filters are applied to the three color component images. Then

the PHOG features are derived from each color component of the Gabor filtered images ob-

tained as a result of applying six different Gabor filters to the color image. To compute the

PHOG features from the Gabor filtered images, a pyramid representation with two levels is

used. The PHOG features of each of the color components of all the Gabor-filtered images

are then concatenated and finally normalized to zero mean and unit standard deviation to

generate the novel GPHOG descriptor. Figure 4.2 shows a color image, its Gabor filtered

color images, the PHOG descriptors obtained from the Gabor filtered color images, and

the new GPHOG descriptor derived by normalizing the concatenation of the color PHOG

descriptors of the Gabor filtered color images.

4.1.2 An Innovative FC-GPHOG Descriptor

To make the GPHOG descriptor more suitable for image classification tasks, color infor-

mation is further incorporated to generate the next descriptor. In this section, therefore an

innovative Fused Color GPHOG (FC-GPHOG) descriptor is presented that fuses the most
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expressive features of the GPHOG descriptors in six different color spaces, namely the

RGB, oRGB, HSV, YIQ, YCbCr, and DCS color spaces (Liu 2008). The most expressive

features of the GPHOG descriptors are extracted by means of Principal Component Anal-

ysis (PCA) (Fukunaga 1990). Figure 2.1 shows a color image, its grayscale image, and the

color component images in the RGB, oRGB, HSV, YIQ, YCbCr, and DCS color spaces,

respectively, which have been used in this paper.

To derive the proposed FC-GPHOG descriptor, the GPHOG descriptors are com-

puted in the six different color spaces. The dimensionality of these six GPHOG descriptors

are reduced using PCA, which derives the most expressive features in terms of minimum

mean-square-error. Finally, the PCA features of the six color GPHOG descriptors are con-

catenated to create the novel FC-GPHOG image descriptor. Figure 4.3 shows a color image,

its corresponding color images in the six color spaces, the GPHOG descriptors of the color

images, the PCA process, the concatenation process, and the FC-GPHOG descriptor.

4.2 Classifier Used

After the descriptors have been generated, an efficient discriminatory feature extraction and

classification method is required to achieve good classification accuracy. Here also, the

Enhanced Fisher Model (EFM) for feature extraction is applied (Liu and Wechsler 2000)

and the Nearest Neighbor (NN) rule is implemented for classification.

4.3 Experiments

The performance of the proposed descriptors for object and scene image classification is

evaluated using two widely used and publicly available datasets – the MIT Scene dataset

(Oliva and Torralba 2001), and the Caltech 256 dataset (Griffin et al. 2007). Three sets

of experiments are done on these two datasets. The first set of experiments assesses the

classification performance of the GPHOG descriptors in six different color spaces as well



39

as in grayscale.

The second set of experiments makes a comparison of the GPHOG and the tradi-

tional PHOG features for image classification and proves that the GPHOG descriptor is

indeed better than PHOG for image classification. A five-fold cross validation of these re-

sults is made in six color spaces and grayscale. The PHOG descriptor from different color

spaces is also fused and compared to the classification performance of the FC-GPHOG

descriptor.

In the final set of experiments, the new FC-GPHOG descriptor is compared with

other popular descriptors, such as the Scale Invariant Feature Transform (SIFT) (Lowe

1999) based Pyramid Histograms of visual Words (PHOW) (Bosch et al. 2007a) descrip-

tor, the Color SIFT four Concentric Circles (C4CC) (Bosch et al. 2006), Spatial Enve-

lope (Oliva and Torralba 2001), as well as Local Binary Patterns (LBP) (Ojala et al. 1994;

Banerji et al. 2011).

Finally, the effect of different Gabor parameters on the classification performance

and effectiveness of the proposed descriptors on different object and scene image categories

of the two color image datasets are also discussed in detail.

4.3.1 Datasets

In this section, the two fairly challenging and popular datasets, namely: the MIT Scene

dataset and the Caltech 256 dataset are described, on which the descriptors are tested for

performance evaluation.

The MIT Scene Dataset: The MIT Scene dataset (Oliva and Torralba 2001) (also

known as the OT Scenes) has 2,688 images classified as eight scene categories: coast,

forest, highway, inside of cities, mountain, open country, streets, and tall buildings. A

detailed description of this dataset is provided in Section 3.3.1. Figure 3.4 displays some

sample images from this dataset.

The Caltech 256 Dataset: The Caltech 256 dataset (Griffin et al. 2007) holds



40

30,607 images divided into 256 object categories and a clutter class. Section 3.3.1 contains

detailed description of this dataset. Figure 3.3 displays some sample images from this

dataset.

4.3.2 Comparison of the GPHOG Descriptor in Different Color Spaces

In this section, a comparative assessment of the GPHOG descriptor is made in six differ-

ent color spaces – RGB, HSV, oRGB, YCbCr, DCS and YIQ color spaces, as well as in

grayscale, using the two datasets described earlier to evaluate classification performance.

Towards that end, the GPHOG descriptor from each image is computed in the different

color spaces. Note that for some large-scale images, they are resized in such a way that

their largest dimension does not exceed 256 pixels. Each input image is converted into

grayscale as well as transformed into the six color spaces. Each image in a single color

space first undergoes Gabor filtering in six orientations and a single scale to produce six

different Gabor-filtered images. The PHOG descriptors are further computed from these

Gabor filtered images and concatenated to finally derive the GPHOG features, which are

normalized to zero mean and unit standard deviation. The GPHOG descriptors are derived

in the same manner from the images in six different color spaces, and also in grayscale.

For the MIT Scene dataset, two sets of experiments are performed. In the first set

of experiments, 250 images from each class are chosen for training and the rest for testing.

The experiments are repeated using five random splits of data to achieve more reliabil-

ity. Figure 4.4 shows the detailed classification performance of the GPHOG descriptors

in grayscale and in six different color spaces using the EFM-NN classifier. Note that the

horizontal axis denotes the average classification performance, which is the percentage of

correctly classified images averaged across all the eight classes and the five runs of exper-

iments, and the vertical axis shows the different GPHOG descriptors in the six different

color spaces and in grayscale. The GPHOG descriptors in the YCbCr and the YIQ color

spaces perform the best with an average classification rate of 87.3% among all the GPHOG
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Figure 4.4 The average classification performance of the proposed GPHOG descriptor in
the YCbCr, YIQ, RGB, oRGB, DCS, and HSV color spaces as well as in grayscale using
the EFM-NN classifier on the MIT Scene dataset using 250 training images per class.

descriptors. Note that the GPHOG descriptor in grayscale performs the worst yielding an

average success rate of 82.9% only, with a decrease of more than 4% from that achieved

by the GPHOG in YCbCr and YIQ color spaces. This re-emphasizes the fact that adding

color information is particularly suitable for classifying scene images. In the next set of

experiments, 100 images from each class are used for training and the remaining images

for testing. Figure 4.5 shows the classification performance of the GPHOG descriptors us-

ing this protocol and applying the EFM-NN classifier in the MIT Scene dataset. Among all

the GPHOG descriptors, the GPHOG descriptors in the YIQ and the YCbCr color spaces

outperform all the color as well as grayscale GPHOG descriptors and achieve a success

rate of 84.0%.
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On the Caltech 256 dataset, experiments are conducted using a protocol defined in

(Griffin et al. 2007). For each class, 50 images are used for training and 25 images for

testing, and five runs of experiments are done using the data splits that are provided on

the Caltech website (Griffin et al. 2007). Figure 4.6 reveals the comparative classification

performance of the proposed GPHOG descriptors in six different color spaces and also

in grayscale. Here also, the GPHOG in the YIQ and YCbCr color spaces yield the best

average classification performance of 30.1%.

It can be observed that for all the experiments that are conducted with the GPHOG

descriptors in different color spaces on the two datasets, the GPHOG descriptors in the

YIQ and YCbCr color spaces outperform the other color GPHOG descriptors, as revealed

Figure 4.5 The average classification performance of the proposed GPHOG descriptor in
the YIQ, YCbCr, HSV, oRGB, DCS, and RGB color spaces along with grayscale using the
EFM-NN classifier on the MIT Scene dataset using 100 training images per class.
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Figure 4.6 The average classification performance of the proposed GPHOG descriptor in
the YIQ, YCbCr, RGB, oRGB, DCS, HSV color spaces and also in grayscale using the
EFM-NN classifier on the Caltech 256 dataset.

by Figures 4.4, 4.5 and 4.6. Therefore two color GPHOG representations are proposed —

the YIQ-GPHOG and the YCbCr-GPHOG — that are particularly more suitable for object

and scene image classification among other color GPHOG features.

4.3.3 Comparison of the PHOG and GPHOG Descriptors

One of the primary motivations of this work is to improve the popular PHOG descriptor.

In this section, the GPHOG descriptor is compared with the PHOG descriptor thereby

establishing empirically the advantage of using the Gabor filtering step in the proposed

framework, as opposed to not using it. Towards that end, the classification performance of



44

both the PHOG and GPHOG descriptors is assessed on the two datasets described earlier

in six different color spaces as well as grayscale. Note that all the descriptors apply the

same classification framework, i.e. the EFM-NN classifier. Further, the FC-GPHOG is

also compared with the FC-PHOG features. Towards that end, first the FC-PHOG vector is

created by combining the most expressive features of the six different color PHOG vectors,

and then it is compared with the proposed FC-GPHOG.

Figure 4.7 displays the results of these experiments on the MIT Scene dataset, us-

ing 250 training samples from each class and five splits of experiments. It shows that the

GPHOG clearly outperforms the PHOG in all the different color spaces and grayscale.

Here the horizontal axis denotes the descriptors in different color spaces, while the vertical

axis shows the mean average classification performance in percentage. This increase in

classification rate is most significant in grayscale, where the GPHOG outperforms PHOG

by more than 8%, followed by RGB where this difference is a little under 7%. Figure 4.8

shows similar results for the Caltech 256 dataset. Here the GPHOG again reveals a signif-

icant improvement over the PHOG descriptors in all the color spaces and grayscale. Here

also, the most improvement occurs in the RGB color space and grayscale, with over 5%

increase in the classification rates in both cases. These results clearly assert the importance

of applying Gabor filtering before extracting PHOG for the construction of the proposed

descriptors.

4.3.4 Comparison of FC-GPHOG with Other Popular Descriptors

The performance of the proposed FC-GPHOG descriptor is now evaluated on the two

datasets, and also compared with some popular descriptors. In particular, first the FC-

GPHOG descriptor is compared with the popular and robust SIFT-based Pyramid His-

tograms of visual Words (PHOW) descriptor (Bosch et al. 2007a). For fair comparison,

both descriptors apply the EFM-NN classifier for image classification. Then the classi-

fication performance achieved by the FC-GPHOG descriptor is also compared with the
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image classification performance of some other descriptors and classification approaches

as reported in published papers.

To compare the proposed FC-GPHOG descriptor with the popular SIFT-based fea-

ture, the Pyramid Histograms of visual Words (PHOW) feature vector (Bosch et al. 2007a)

is first generated using the software package VLFeat (Vedaldi and Fulkerson 2010). For

both PHOW and FC-GPHOG, PCA is used to obtain the most expressive features and

the EFM-NN classifier in order to make a fair comparison. Figure 4.9 reveals that the

FC-GPHOG descriptor performs better than both the grayscale and the color PHOW de-

scriptors on the two datasets. It also shows the average classification performance of the

Figure 4.7 A comparison of the average classification performances of the PHOG and the
proposed GPHOG descriptors in the grayscale, HSV, DCS, oRGB, RGB, YIQ and YCbCr
color spaces, as well as the fusion of these color spaces on the MIT Scene (with 250 training
images per class) dataset. Note that all these descriptors apply the EFM-NN classifier.
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descriptors in the MIT Scene dataset using two protocols as explained in the preceding

section.

A comparison of the classification performance of the FC-GPHOG descriptor is

made with some popular descriptors used by other researchers on the MIT Scene dataset.

Table 4.1 lists the classification success achieved by the proposed FC-GPHOG and some

other descriptors on this dataset for the two sets of experiments. Please note that the classi-

fication results of the popular descriptors achieved by other researchers are reported directly

from their published work. With 250 training images, the proposed FC-GPHOG descriptor

achieves 89.6% classification accuracy which is at par with CGLF+PHOG (Banerji et al.

2011) and better than CGLF (Banerji et al. 2011). With 100 training images per class,

the FC-GPHOG descriptor again gives the better classification performance of 86.0%, as

compared to CGLF+PHOG (Banerji et al. 2011) and CGLF (Banerji et al. 2011).

4.3.5 Effect of Different Gabor Orientations on FC-GPHOG Descriptor

In this section, the impact of the different Gabor parameters on the classification perfor-

mance of the FC-GPHOG descriptor is analyzed. The PHOG descriptor is first extracted

in different color spaces from the six different Gabor filtered images formed as a result

Table 4.1 Comparison of the Classification Performance (%) of the FC-GPHOG Descrip-
tor with Other Popular Methods on the MIT Scene Dataset

#train = 2000, #test = 688
FC-GPHOG Proposed Descriptor 89.6
CGLF+PHOG (Banerji et al. 2011) 89.5
CGLF (Banerji et al. 2011) 86.6

#train = 800, #test = 1888
FC-GPHOG Proposed Descriptor 86.0
C4CC (Bosch et al. 2006) 86.7
CGLF+PHOG (Banerji et al. 2011) 84.3
SE (Oliva and Torralba 2001) 83.7
CGLF (Banerji et al. 2011) 80.0
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of using each of the six Gabor filters used in this work. Figure 4.10 illustrates the re-

sults obtained in detail. In particular, the horizontal axis shows the two datasets with the

three experimental protocols as discussed earlier and the vertical axis shows the average

classification performance. The results demonstrate that each of the orientations yield a

classification performance that is significantly lower than the classification rate achieved

by the FC-GPHOG descriptor as a whole (as shown in Figure 4.9). This indicates that

each of the Gabor parameters encode non-redundant information and contribute towards

the final result.

Figure 4.8 A comparison of the average classification performances of the PHOG and the
proposed GPHOG descriptors in the grayscale, the HSV, the DCS, the oRGB, the RGB, the
YCbCr and the YIQ color spaces, as well as the fusion of these color spaces on the Caltech
256 dataset. Note that all the descriptors apply the EFM-NN classifier.



48

Figure 4.9 A comparison of the average classification performances of the grayscale-
PHOW descriptor, the color-PHOW descriptor, and the proposed FC-GPHOG descriptor
on the two image datasets – the Caltech 256, and the MIT Scene (with 100 and 250 training
images per class) datasets. Note that all the three descriptors apply the EFM-NN classifier.

4.3.6 Class-wise Classification Performance of the GPHOG Descriptors

In this section, the class-wise classification success of the proposed descriptors are dis-

cussed on different object and scene image categories of the two color image datasets.

Figure 4.11 shows three classification confusion matrices between the eight cate-

gories in the MIT scene dataset with the categories in alphabetical order. In particular,

the leftmost matrix represents classification based on the grayscale-GPHOG descriptor,

the center matrix represents classification based on the YCbCr-GPHOG descriptor and the

rightmost matrix represents classification based on the FC-GPHOG descriptor. In each

confusion matrix, the rows show assigned classes while the columns show actual classes.
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For instance, a high value at row 1, column 6 signifies that a lot of images from class 6

(open country) get assigned the class label 1 (coast). In the experiments, 250 images from

each class were used for training.

It can be seen from Figure 4.11 that the best classified categories are 2 (forest), 8

(tall building), and 1 (coast) with success rates of 96.4%, 95.3%, and 93.1%, respectively.

Category 6 (open country) is the most difficult category to classify. As the confusion matrix

shows, some of the open country scenes are classified as coast, some as forest and some

as mountain scenes. Parts (a), (b) and (c) of Figure 4.12 show some of the particularly

confusing images from the open country category that get misclassified as coast, forest and

mountain, respectively. The other three categories that are confused with each other are

Figure 4.10 A comparison of the average classification performances achieved by using
the different Gabor orientations of the FC-GPHOG descriptor on the two image datasets –
the Caltech 256, and the MIT Scene (with 100 and 250 training images per class) datasets.
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Figure 4.11 The confusion matrices between the eight categories in the MIT scene dataset
with the categories in alphabetical order. The matrices from left to right represent classi-
fication using grayscale-GPHOG, YCbCr-GPHOG and FC-GPHOG, respectively. In each
confusion matrix, the rows show assigned classes while the columns show actual classes.

Figure 4.12 Some ambiguous images from the MIT scene dataset. Parts (a), (b) and (c)
show some images from the open country category that get misclassified as coast, forest
and mountain, respectively. Parts (d), (e) and (f) show ambiguous images from the inside
city, tall building and street categories, respectively that contain similar features.

inside city, street and tall buildings. Parts (d), (e) and (f) of Figure 4.12 show two images

each from the inside city, tall building and street categories, respectively that contain similar

elements and hence cause misclassification. These results are similar to those reported by

(Oliva and Torralba 2001) which would indicate that the confusion is due to an inherent

ambiguity in the manual annotation of these particular dataset categories themselves.

Figure 4.13 displays the classification rates for all 256 categories of the Caltech
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Figure 4.13 The average classification rates using the FC-GPHOG descriptor and EFM-
NN classifier for all the categories of the Caltech 256 image dataset. Note that all category
labels are not shown here to increase readability.

256 object categories dataset in descending order of the classification performance using

the FC-GPHOG descriptor and EFM-NN classifier. In particular, it shows that the average

classification performance varies widely among the different classes of this dataset, ranging

from 0% to 100%. Please note that all categories have not been labeled in Figure 4.13 to

increase readability. This dataset is much more complex and varied in its composition of

categories and hence it is difficult to explain the classification performance on this dataset

using one-to-one category misclassifications. For instance, Figure 4.14 shows some images

from different classes that contain human figures, and it would be impossible to completely



52

Figure 4.14 Some example images from the Caltech 256 object categories dataset. Note
that none of these sample images are from the people class although all contain human
figures. The categories each image belongs to is indicated below the image.

remove this ambiguity. The point to be noted here is that although the human figures

occupy a significant part of all of these images, none of them belong to the people class.

In general, similar situations can be found in most classes where images contain objects

of another class. One possible course of action for future works could be a fuzzy class

membership for each image where typically an image is assigned multiple class labels in

order of probability. That way, a man holding a gun would be classified both as a man and

a gun which would be a more logical way to classify the images in this dataset.

4.4 Summary

The contributions of this chapter are in the generation of novel descriptors for object and

scene image classification based on color, shape, spatial and local information, and Ga-

bor wavelet transformation. In particular, a new GPHOG descriptor is created to improve

upon the popular PHOG descriptor by encoding local, shape and spatial information of

an image. Then the classification performance of the GPHOG descriptor is comparatively

assessed in grayscale and six different color spaces – RGB, HSV, YCbCr, oRGB, DCS
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and YIQ – and the robust YIQ-GPHOG and YCbCr-GPHOG features are further proposed

that are effectively suitable for object and scene image classification. Finally, a new FC-

GPHOG descriptor is presented by integrating the Principal Component Analysis (PCA)

features of the GPHOG descriptors in the six different color spaces to further combine

color, shape, local and wavelet-based features. Experimental results using two grand chal-

lenge datasets show that the proposed new FC-GPHOG descriptor outperforms the PHOG

and also achieves an image classification performance better than or comparable to other

popular image descriptors, such as the Scale Invariant Feature Transform (SIFT) based

Pyramid Histograms of visual Words (PHOW) descriptor, the Color SIFT four Concentric

Circles (C4CC), Spatial Envelope, and Local Binary Patterns (LBP).



CHAPTER 5

NOVEL COLOR GABOR-LBP-PHOG (GLP) IMAGE DESCRIPTORS

Chapter 4 introduced the GPHOG and the FC-GPHOG descriptors that improve upon the

popular Pyramid of Histograms of Oriented Gradients (PHOG) descriptor for object and

scene image classification. This chapter presents a new set of color descriptors that fur-

ther encodes texture information along with shape, color and wavelet information from an

image. To this end, first, the Gabor-LBP (GLBP) descriptor is derived by accumulating

the Local Binary Patterns (LBP) histograms of all the component images produced by ap-

plying Gabor filters. Then, by combining the GPHOG and the GLBP descriptors using an

optimal feature representation method, a novel Gabor-LBP-PHOG (GLP) image descrip-

tor is proposed which performs well on different image categories. Finally, a Fused Color

GLP (FC-GLP) feature is proposed by integrating the PCA features of the six color GLP

descriptors. The Principal Component Analysis (PCA) and the Enhanced Fisher Model

(EFM) are applied for feature extraction and the nearest neighbor classification rule is used

for classification. The effectiveness of the proposed GLP and FC-GLP feature vectors for

image classification is evaluated using three grand challenge datasets, namely the Caltech

256 dataset, the MIT Scene dataset and the UIUC Sports Event dataset.

5.1 Novel Gabor-based Color Image Descriptors

In this section, first the formation of the Gabor-LBP (GLBP) descriptor is described and

then the creation of the new GLP descriptor is explained.

5.1.1 The Gabor-LBP (GLBP) Descriptor

The Gabor-LBP (GLBP) descriptor integrates the Gabor magnitude responses of an image

and texture information by deriving their Local Binary Patterns (LBP).

54
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Figure 5.1 A grayscale image on the left, its Local Binary Patterns (LBP) image on the
right, and the illustration of the computation of the LBP code for a center pixel with gray
level 95.

The Local Binary Patterns (LBP) method derives the texture description of a grayscale

image by comparing a center pixel with its neighbors (Ojala et al. 1994, 1996, 2002). In

particular, for a 3× 3 neighborhood of a pixel p = [x,y]t , p is the center pixel used as a

threshold. The neighbors of the pixel p are defined as N(p, i) = [xi,yi]
t , i = 0,1, · · · ,7,

where i is the number used to label the neighbor. The value of the LBP code of the center

pixel p is calculated as follows:

LBP(p) =
7

∑
i=0

2iS{G[N(p, i)]−G(p)} (5.1)

where G(p) and G[N(p, i)] are the gray level of the pixel p and its neighbor N(p, i), respec-

tively. S is a threshold function that is defined below:

S(xi − xc) =

 1, if xi ≥ xc

0, otherwise
(5.2)

LBP tends to achieve grayscale invariance because only the signs of the differences

between the center pixel and its neighbors are used to define the value of the LBP code as

shown in Eq. 5.1. Figure 5.1 shows a grayscale image on the left and its LBP image on the

right. The two 3×3 matrices in the middle illustrate how the LBP code is computed for the

center pixel whose gray level is 95. In particular, the center pixel functions as a threshold,
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and after thresholding the right 3×3 matrix reveals the signs of the differences between the

center pixel and its neighbors. Note that the signs are derived from Eqs. 5.1 and 5.2, and

the threshold value is 95, as the center pixel is used as the threshold in the LBP definition.

The binary LBP code is 01011001, which corresponds to 89 in decimal.

The Gabor-LBP descriptor is an extension of the LBP method in a way such that

it incorporates not only texture information, but also wavelets and local cues from an im-

age. In particular, the images are subjected to a series of Gabor filters defined in Eq. (3.4)

in two scales and six orientations to get the magnitude responses. Then the LBP features

are computed from each color component of the Gabor filtered images and the LBP his-

tograms obtained from the Gabor filtered images are concatenated. The concatenated LBP

histogram features are then finally normalized to zero mean and unit standard deviation to

generate the GLBP descriptor. Figure 5.2 reveals the generation of the GLBP descriptor.

More specifically, the first column shows a color image. The second column shows the

Gabor filtered color images as a result of applying the series of Gabor filters to the color

image, the third column displays the LBP histograms of the corresponding Gabor filtered

images, and finally the fourth column shows the GLBP descriptor derived by normalizing

the concatenated color LBP histograms of the Gabor filtered color images.

5.1.2 The GLP and the FC-GLP Descriptors

The GPHOG descriptor, presented in the preceding chapter, and GLBP descriptor encode

local shape and texture information from Gabor wavelet responses of an image, respec-

tively. To integrate the local, shape and texture cues extracted by these descriptors, the

next descriptor is designed where the most expressive features of both the GLBP and the

GPHOG feature vectors are integrated in cascade. The most expressive features are ob-

tained by applying Principal component analysis (PCA). More specifically, the PCA fea-

tures from the GLBP and the GPHOG vectors are taken and concatenated which are then

normalized to zero mean and unit standard deviation, to form the Gabor-LBP-PHOG (GLP)
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Figure 5.2 A color image, its Gabor filtered color images, the LBP histograms of the
Gabor filtered color images, and the GLBP descriptor derived from the concatenation and
subsequent normalization of the color LBP histograms of the Gabor filtered color images.

descriptor. It should be noted that for generating the GLBP and GPHOG vectors, the Gabor

parameter values used are ϕ = 0, σ = 8, γ = 1, ν = 1/16 and θ = [0, π/6, π/3, π/2, 2π/3,

5π/6].

The GLP feature vector is extended to six different color spaces, namely RGB,

HSV, oRGB, YCbCr, YIQ and DCS as well as in grayscale. PCA is used for the optimal

representation of the color GLP vectors with respect to minimum mean square error, and the

PCA features of the six normalized color GLP descriptors are further combined to form the

novel Fused Color GLP (FC-GLP) descriptor which outperforms the classification results

of the individual color GLP features.

5.1.3 Classifier Used

Learning and classification is performed using Enhanced Fisher Linear Discriminant Model

(EFM) (Liu and Wechsler 2000) and the nearest neighbor classification rule. Figure 5.3

gives an overview of multiple feature fusion methodology, the EFM feature extraction

method, and the classification stages.
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5.2 Experiments

In this section, first a brief description of the datasets that are used for the experiments

is provided, and then the classification performance of the novel color GLP and FC-GLP

descriptors is shown.

Figure 5.3 An overview of multiple features fusion methodology, the EFM feature ex-
traction method, and the classification stages.
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Figure 5.4 The mean average classification performance of the proposed color GLP and
FC-GLP descriptors on the Caltech 256 dataset.

5.2.1 Datasets

The descriptors are tested using three popular and publicly available datasets, namely: the

Caltech 256 dataset, the UIUC Sports Event dataset, and the MIT Scene dataset.

The Caltech 256 Dataset: The Caltech 256 dataset (Griffin et al. 2007) holds

30,607 images divided into 256 object categories and a clutter class. Section 3.3.1 contains

detailed description of this dataset. Figure 3.3 displays some sample images from this

dataset.

On this dataset, experiments are conducted using a protocol defined in (Griffin et al.

2007). For each class, 50 images are used for training and 25 images for testing, and five

runs of experiments are done using the data splits that are provided on the Caltech website

(Griffin et al. 2007).

The UIUC Sports Event Dataset: The UIUC Sports Event dataset (Li and Fei-
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Table 5.1 Comparison of the Classification Performance (%) with Other Methods on Cal-
tech 256 Dataset

Descriptor Performance (%)
#train = 12800, #test = 6400

oRGB-SIFT (Verma et al. 2010) 23.9
gray-PHOW 25.9
color-PHOW 29.9
CSF (Verma et al. 2010) 30.1
FC-GLP (Proposed) 35.3
CGSF (Verma et al. 2010) 35.6

Fei 2007) contains eight sports event categories: rowing (250 images), badminton (200

images), polo (182 images), bocce (137 images), snowboarding (190 images), croquet (236

images), sailing (190 images), and rock climbing (194 images). A few sample images of

this dataset can be seen in Figure 3.5.

From each class, 70 images are used for training and 60 images for testing the

classification performance of the descriptors, and this is done for five random splits. Other

researchers (Bo et al. 2011; Li et al. 2010) have also reported using the same number of

images for training and testing.

The MIT Scene Dataset: The MIT Scene dataset (Oliva and Torralba 2001) has

2,688 images classified as eight categories: 360 coast, 328 forest, 260 highway, 308 inside

of cities, 374 mountain, 410 open country, 292 streets, and 356 tall buildings. A detailed

description of this dataset is provided in Section 3.3.1. Figure 3.4 displays some sample

images from this dataset.

From each class, 250 images are used for training and the rest of the images for

testing the performance. A second set of experiments is also performed for this dataset

using 100 training images from each class and the rest of the images for testing. For each

of the experiments, a five-fold cross validation is done.
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Table 5.2 Comparison of the Classification Performance (%) with Other Methods on the
UIUC Sports Event Dataset

Descriptor Performance (%)
#train = 560, #test = 480

SIFT+GGM (Li and Fei-Fei 2007) 73.4
OB (Li et al. 2010) 76.3
gray-PHOW 76.4
CA-TM (Niu et al. 2012) 78.0
color-PHOW 79.0
SIFT+SC (Bo et al. 2011) 82.7
FC-GLP (Proposed) 84.3
HMP (Bo et al. 2011) 85.7

5.2.2 Results and Discussion

In this section, the performance of the proposed GLP and FC-GLP descriptors is evaluated

in the three datasets, and also a comparison is made with some popular descriptors. Specif-

Figure 5.5 The mean average classification performance of the proposed GLP descriptor
in individual color spaces as well as after fusing them on the UIUC Sports Event dataset.
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ically, the FC-GLP descriptor is again compared with the popular SIFT-based Pyramid His-

tograms of visual Words (PHOW) descriptor (Bosch et al. 2007a) on all three datasets. To

compare the proposed FC-GLP descriptor with the popular SIFT-based feature, the Pyra-

mid Histograms of visual Words (PHOW) feature vector (Bosch et al. 2007a) is generated

using the software package VLFeat (Vedaldi and Fulkerson 2010). For both PHOW and

FC-GLP, PCA obtains the most expressive features and the EFM-NN classifier is employed

in order to make a fair comparison. In addition, the classification performance achieved by

the FC-GLP descriptor coupled with the EFM-NN classifier is also compared to the image

classification performance of some other popular methods as reported in literature.

In the Caltech 256 dataset, YIQ-GLP performs the best among single-color de-

scriptors giving 32.1% success followed by YCbCr-GLP and oRGB-GLP with 31.8% and

31.0% classification rates, respectively. Figure 5.4 shows the success rates of the GLP de-

Figure 5.6 The mean average classification performance of the GLP descriptor in indi-
vidual color spaces as well as after fusing them on the MIT Scene dataset.
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Table 5.3 Comparison of the Classification Performance (%) with Other Methods on the
MIT Scene Dataset

Descriptor Performance (%)
#train = 800, #test = 1888

CLF (Banerji et al. 2011) 79.3
CGLF (Banerji et al. 2011) 80.0
gray-PHOW 82.5
SE (Oliva and Torralba 2001) 83.7
color-PHOW 84.3
CGLF+PHOG (Banerji et al. 2011) 84.3
C4CC (Bosch et al. 2006) 86.7
FC-GLP (Proposed) 87.5

#train = 2000, #test = 688
gray-PHOW 86.2
CLF (Banerji et al. 2011) 86.4
CGLF (Banerji et al. 2011) 86.6
color-PHOW 89.3
CGLF+PHOG (Banerji et al. 2011) 89.5
FC-GLP (Proposed) 91.3

scriptors for this dataset. The FC-GLP descriptor here achieves a success rate of 35.3%.

Table 5.1 compares the results with other methods.

In the UIUC Sports Event dataset, the YIQ-GLP is the best single-color descriptor

at 80.5% followed by DCS-GLP and YCbCr-GLP, respectively. The combined descriptor

Table 5.4 Category-wise GLP Descriptor Performance (%) on the UIUC Sports Event
Dataset. Note that the Categories are Sorted on the FC-GLP Results

Category FC YIQ DCS YCbCr HSV oRGB RGB Grayscale
rock climbing 96 94 94 93 93 94 93 90
sailing 94 94 94 94 93 92 94 92
badminton 93 88 86 88 85 87 87 87
rowing 88 87 86 85 84 86 85 82
snow boarding 88 84 83 83 83 82 81 75
polo 86 76 76 78 81 74 78 72
croquet 75 74 71 69 65 67 68 60
bocce 55 47 53 46 48 50 43 42
Mean 84.3 80.5 80.3 79.4 79.0 79.0 78.6 75.0
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Figure 5.7 The comparative mean average classification performance of the FC-GLBP,
FC-GPHOG and FC-GLP descriptors on the Caltech 256, UIUC Sports Event and MIT
Scene (with 100 and 250 training images per class) datasets.

FC-GLP gives a mean average performance of 84.3%. See Figure 5.5 for details. Ta-

ble 5.2 compares the result achieved by the proposed descriptor with that obtained by other

Table 5.5 Category-wise GLP Descriptor Performance (%) on the MIT Scene Dataset.
Note that the Categories are Sorted on the FC-GLP Results

Category FC RGB YCbCr DCS YIQ oRGB HSV Grayscale
forest 97 97 96 96 96 96 97 96
highway 94 90 88 90 88 90 90 88
tall building 94 95 93 94 94 92 93 94
street 93 92 90 94 92 90 90 89
coast 93 89 93 88 91 91 90 87
mountain 91 87 87 88 89 86 87 72
inside city 88 90 86 87 84 87 83 86
open country 80 77 76 72 73 74 69 69
Mean 91.3 89.1 88.6 88.5 88.5 88.2 87.6 86.3
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researchers. The category wise recognition performance of the GLP descriptors on this

dataset is shown in table 5.4.

For the MIT Scene dataset, using 250 training images per class, the RGB-GLP is the

best single-color descriptor at 89.1% followed closely by YCbCr-GLP and DCS-GLP. The

combined descriptor FC-GLP gives a mean average performance of 91.3%. See Figure 5.6

for details. Table 5.3 shows a comparison with that of other methods. Table 5.5 shows the

class wise classification rates for this dataset on applying the proposed GLP descriptors.

Figure 5.7 gives a comparison of the FC-GLBP, FC-GPHOG descriptors and their

fusion (FC-GLP) for image classification in the three datasets used for the experiments. It

should be noted that the generation time of the GPHOG and the GLBP features varies lin-

early with the number of pixels in the input image. It can be observed that the six color GLP

features beat the recognition performance of the Grayscale-GLP descriptor which show in-

formation contained in color images can be significantly more useful than that in grayscale

images for classification. Furthermore, the fusion of multiple color GLP descriptors (FC-

GLP) achieves significant increase in the classification performance over individual color

GLP descriptors, which implies that various color GLP descriptors are not completely re-

dundant for image classification tasks.

5.3 Summary

Two new Gabor-based local, texture, shape and color feature extraction methods, namely

the GLP and the FC-GLP are proposed that combines the GPHOG and the GLBP features

using an optimal feature representation method such as PCA. The proposed descriptors ex-

ceed or achieve comparable performance to some of the best classification performances

reported elsewhere. Experimental results carried out using three grand challenge datasets

show that the FC-GLP descriptor improves classification performance over the GLBP and

GPHOG descriptors and can be successfully applied for object and scene image classifica-

tion.



CHAPTER 6

THE INNOVATIVE GABOR-LBP-HOG (GLH) DESCRIPTOR

In Chapter 5, the GLP descriptor, formed by fusing the GPHOG and the GLBP descriptors

outperform both of them and is found to be promising for image classification tasks. Based

on the same idea, this chapter proposes a fusion descriptor by integrating the GHOG and

the GLBP descriptors and investigates its performance for image classification.

A novel set of color image descriptors is proposed in this chapter based on tex-

ture, shape and Gabor wavelets for object and scene image classification by combining the

GHOG and the GLBP descriptors as a feature set. Next, a comparative assessment of the

classification performance of the GLH descriptor is made in six different color spaces as

well as in grayscale. Finally, a new Fused Color GLH (FC-GLH) descriptor is proposed

for object and scene image classification by concatenating the GLH descriptors in the six

different color spaces to further incorporate color information. Feature extraction for the

proposed descriptors employ Principal Component Analysis (PCA) and Enhanced Fisher

Model (EFM), and the nearest neighborhood is exploited for final classification. Experi-

mental results using three benchmark datasets, the Caltech 256 object categories dataset,

the MIT Scene dataset, and the UIUC Sports Event dataset show that the proposed new im-

age descriptors achieve better image classification performance than other popular image

descriptors.

6.1 The GLH and the FC-GLH Descriptors

The GHOG and GLBP descriptors proposed earlier in this dissertation encode local shape

and texture information from Gabor wavelet responses of an image respectively. To inte-

grate the local, shape and texture cues extracted by these descriptors, the Gabor-LBP-HOG

(GLH) descriptor is designed. To derive the GHOG and GLBP descriptors, the images

66



67

Figure 6.1 A color image, its Gabor filtered color images, the GLBP and the GHOG
descriptors formed by applying LBP and HOG on the Gabor filtered color images respec-
tively, the PCA and the concatenation process, and the GLH descriptor.

are first pre-processed by applying a series of Gabor filters in two scales and six different

orientations. For all the experiments in this chapter, the chosen Gabor parameter values are

σ = 8, γ = 1, ν = [1/8, 1/16], and θ = [0, π/6, π/3, π/2, 2π/3, 5π/6]. The most expressive

features of both the GLBP and the GHOG feature vectors are then integrated in cascade,

where the most expressive features are obtained by applying Principal component analysis

(PCA). The PCA technique has been reviewed in detail in Section 2.2. More specifically,

the PCA features from the GLBP and the GHOG vectors are taken and concatenated which

are then normalized to zero mean and unit standard deviation, to form the Gabor-LBP-

HOG (GLH) descriptor. Figure 6.1 displays the generation of the GLH descriptor. It shows

a color image in the first column, a series of Gabor filtered images in the second column

produced as a result of applying twelve combinations of Gabor filters. The top and bottom

rows of the third column show the GLBP and the GHOG descriptors respectively. The PCA

and the concatenation process is revealed and then the GLH descriptor is shown in the last

column.

To further incorporate the color information, the Fused Color GLH (FC-GLH) de-

scriptor is presented by first computing the GLH in six color spaces and then concatenating
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Figure 6.2 A color image, corresponding color images in the six color spaces, the GLH
descriptors in the six color spaces, the concatenation process, and the FC-GLH descriptor.

the color GLH features. Figure 6.2 displays the creation of the FC-GLH descriptor. It

shows a color image, its corresponding color images in the six color spaces, the six GLH

descriptors of the images, the concatenation process, and the FC-GLH descriptor.

6.2 Classifier Used

The proposed new GLH and FC-GLH descriptors so formed are then tested for image

classification performance by employing the EFM-NN classifier. This EFM-NN method

has been reviewed in detail in Section 2.3. Figure 6.3 explains the process in detail.

6.3 Experiments

This section describes the datasets used and presents the experimental framework and clas-

sification results obtained by using the proposed descriptors.
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6.3.1 Datasets

The descriptors are tested using three popular and publicly available datasets, namely: the

Caltech 256 dataset, the UIUC Sports Event dataset, and the MIT Scene dataset.

The Caltech 256 Dataset: The Caltech 256 dataset (Griffin et al. 2007) holds

30,607 images divided into 256 object categories and a clutter class. Section 3.3.1 contains

detailed description of this dataset. Figure 3.3 shows some sample images from this dataset.

On this dataset, experiments are conducted using a protocol defined in (Griffin et al.

2007). For each class, 50 images are used for training and 25 images for testing, and five

runs of experiments are done using the data splits that are provided on the Caltech website

(Griffin et al. 2007).

The UIUC Sports Event Dataset: The UIUC Sports Event dataset (Li and Fei-

Fei 2007) contains eight sports event categories: rowing (250 images), badminton (200

images), polo (182 images), bocce (137 images), snowboarding (190 images), croquet (236

images), sailing (190 images), and rock climbing (194 images). Some sample images of

this dataset can be seen in Figure 3.5.

Here, from each class, 70 images are used for training and 60 images for testing the

classification performance of the GLH descriptors, and this is done for five random splits.

Figure 6.3 An overview of the formation of the grayscale GLH, the color GLH and the
multiple features fusion (FC-GLH) methodology, the EFM feature extraction method, and
the classification stages.
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Figure 6.4 The average classification performance of the proposed GLBP, GHOG and
GLH descriptors in the YIQ, the YCbCr, the oRGB, the RGB, the DCS, the HSV color
spaces and also in grayscale using the EFM-NN classifier on the Caltech 256 dataset.

Other researchers (Bo et al. 2011; Li et al. 2010) have also reported using the same number

of images for training and testing.

The MIT Scene Dataset: The MIT Scene dataset (Oliva and Torralba 2001) has

2,688 images classified as eight categories: 360 coast, 328 forest, 260 highway, 308 inside

of cities, 374 mountain, 410 open country, 292 streets, and 356 tall buildings. A detailed

description of this dataset is provided in Section 3.3.1. Figure 3.4 portrays some sample

images from this dataset.

From each class, 100 images are used for training and the rest of the images for

testing the performance. For each of the experiments, a five-fold cross validation is done.

6.3.2 Comparison of the GLH Descriptors in Different Color Spaces

In this section, a comparative assessment of the GLH descriptor is made in six different

color spaces – RGB, HSV, oRGB, YCbCr, DCS and YIQ color spaces and in grayscale.

The classification performance of the GLH descriptors are also compared with that of the
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Figure 6.5 The average classification performance of the proposed GLBP, GHOG and
GLH descriptors in the YIQ, YCbCr, oRGB, RGB, DCS, HSV color spaces and also in
grayscale using the EFM-NN classifier on the UIUC Sports Event dataset.

GHOG and the GLBP descriptors.

Towards that end, the GLH descriptor is derived from each image in the different

color spaces. Note that for some large-scale images, they are resized in such a way that the

largest dimension does not exceed 400 pixels. Each input image is converted into grayscale

as well as transformed into images in the six color spaces. Each image in a single color

space first undergoes Gabor filtering in six orientations and two scales to produce twelve

different Gabor-filtered images. The HOG and LBP descriptors are further computed from

these Gabor filtered images and concatenated which are normalized to zero mean and unit

standard deviation to finally derive the GHOG and GLBP features respectively. The PCA

features of the GHOG and GLBP descriptors are fused to obtain the GLH descriptor.

Figure 6.4 shows the comparative classification performance of the proposed GLBP,

GHOG and GLH descriptors in six different color spaces and also in grayscale on the Cal-

tech 256 dataset. The horizontal axis shows the proposed descriptors in the six different

color spaces and in grayscale, and the vertical axis denotes the average classification per-

formance, which is the percentage of correctly classified images averaged across all the 256
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Figure 6.6 The average classification performance of the proposed GLBP, GHOG and
GLH descriptors in the YIQ, YCbCr, oRGB, RGB, DCS, HSV color spaces and also in
grayscale using the EFM-NN classifier on the MIT Scene dataset.

classes and the five runs of experiments. It shows that GLH descriptor in YIQ color space

performs best with 34.0% classification performance. The classification performances of

the GHOG and the GLBP descriptors in different color spaces are also shown in the figure

for comparison.

For the UIUC Sports Event dataset, Figure 6.5 shows the detailed classification

performance of the GLBP, GHOG and GLH descriptors in grayscale and in six different

color spaces using the EFM-NN classifier. It can be seen from this figure that the GLH

descriptor in DCS color space performs best with 83.1% classification rate.

On the MIT Scene dataset, the GLH descriptor performs fairly as well. Figure 6.6

shows the detailed classification performance of the GLBP, GHOG and GLH descriptors

in grayscale and in six different color spaces using the EFM-NN classifier. Again, the

horizontal axis shows the different descriptors in the different color spaces and in grayscale,

and the vertical axis the average classification performance. Here, the GLH descriptor in

RGB color space performs best with 87.8% classification rate.
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Figure 6.7 A comparison of the average classification performances of the FC-GLBP de-
scriptor, the FC-GHOG descriptor, and the FC-GLH descriptor on the three image datasets.
Note that all the three descriptors apply the EFM-NN classifier.

6.3.3 Comparison of the FC-GLH Descriptor and Some Other Methods

This section further evaluates the FC-GLH performance for image classification and com-

pares it with that of some state-of-the-art descriptors.

Figure 6.7 reveals the comparison of the average classification performances of the

FC-GLBP descriptor, the FC-GHOG descriptor, and the FC-GLH descriptor on the three

image datasets. Note that the horizontal axis of this graph lists the three descriptors and

the three datasets while the vertical axis shows the average classification performance as a

percentage.

On the Caltech 256 dataset, the FC-GLH has an average classification performance

of 37.1% which is better than both the FC-GHOG and the FC-GLBP descriptors with
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34.7% and 25.8% classification success respectively. Table 6.1 shows the comparison of the

classification performance of the proposed FC-GLH descriptor with that of other popular

descriptors. In particular, on the Caltech 256 dataset, the FC-GLH descriptor achieves the

average classification performance of 37.1%, compared to the color-PHOW and the gray-

PHOW descriptors with the average classification rates of 29.9% and 25.9% respectively.

It also outperforms the classification success achieved by oRGB-SIFT, Color Sift Fusion

(CSF) and Color Grayscale Sift Fusion (CGSF) descriptors which yield 23.9%, 30.1% and

35.6% classification rates, respectively.

For the UIUC Sports Event dataset, the FC-GLH performs well achieving a clas-

sification performance of 86.0%. Table 6.2 reports the performance on this dataset. The

FC-GLH performs better than FC-GHOG, FC-GLBP and other popular descriptors such as

the PHOW, SIFT+GGM (Li and Fei-Fei 2007), Object Bank (OB) (Li et al. 2010), Con-

text Aware Topic Model (CA-TM) (Niu et al. 2012), SIFC+SC and Hierarchical Matching

Pursuit (HMP) (Bo et al. 2011) techniques.

On the MIT Scene dataset, the FC-GLH descriptor again gives the best classifica-

tion performance of 89.0%, as compared to Color SIFT four Concentric Circles (C4CC)

(Bosch et al. 2006) with a classification performance of 86.7%, to CGLF+PHOG (Banerji

et al. 2011) with a classification performance of 84.3%, to Spatial Envelope (SE) with

a classification performance of 83.7%, to Color LBP Fusion (CLF) (Banerji et al. 2011)

Table 6.1 Comparison of the Classification Performance (%) with Other Methods on Cal-
tech 256 Dataset

Descriptor Performance (%)
#train = 12800, #test = 6400

oRGB-SIFT (Verma et al. 2010) 23.9
gray-PHOW 25.9
color-PHOW 29.9
CSF (Verma et al. 2010) 30.1
CGSF (Verma et al. 2010) 35.6
FC-GLH (Proposed) 37.1
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Table 6.2 Comparison of the Classification Performance (%) with Other Methods on the
UIUC Sports Event Dataset

Descriptor Performance (%)
#train = 560, #test = 480

SIFT+GGM (Li and Fei-Fei 2007) 73.4
OB (Li et al. 2010) 76.3
gray-PHOW 76.4
CA-TM (Niu et al. 2012) 78.0
color-PHOW 79.0
SIFT+SC (Bo et al. 2011) 82.7
HMP (Bo et al. 2011) 85.7
FC-GLH (Proposed) 86.0

Table 6.3 Comparison of the Classification Performance (%) with Other Methods on the
MIT Scene Dataset

Descriptor Performance (%)
#train = 800, #test = 1888

CLF (Banerji et al. 2011) 79.3
CGLF (Banerji et al. 2011) 80.0
gray-PHOW 82.5
SE (Oliva and Torralba 2001) 83.7
color-PHOW 84.3
CGLF+PHOG (Banerji et al. 2011) 84.3
C4CC (Bosch et al. 2006) 86.7
FC-GLH (Proposed) 89.0

with a classification performance of 79.3%, and to Color Grayscale LBP Fusion (CGLF)

(Banerji et al. 2011) with a classification performance of 80.0%. It also outperforms the

PHOW, the FC-GLBP and the FC-GHOG descriptors. Table 6.3 shows the comparison on

this dataset.

6.4 Summary

The contributions of this work are in the generation of novel descriptors for object and scene

image classification based on color, texture, shape and Gabor wavelet transformation. In
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particular, a novel Gabor-LBP-HOG (GLH) image descriptor is proposed which combines

the GLBP and the GHOG descriptors to improve classification results. The GLH descriptor

is generated in six different color spaces – RGB, HSV, YCbCr, oRGB, DCS and YIQ – as

well as in grayscale. A new FC-GLH descriptor is also presented for object and scene image

classification by integrating the GLH descriptors in the six different color spaces to further

incorporate color information. Experimental results using three grand challenge datasets,

the Caltech 256 object categories dataset, the MIT Scene dataset, and the UIUC Sports

Event dataset show that the proposed new descriptors achieve better image classification

performance than other popular image descriptors.



CHAPTER 7

NEW WIGNER-BASED LOCAL BINARY PATTERNS (WLBP) DESCRIPTOR

Chapters 3, 4, 5, 6 showed that using Gabor wavelets for designing the image descriptors

achieved satisfactory classification results and enhanced performance. This chapter further

explores wavelets to construct new descriptor. Also, the descriptors proposed in this disser-

tation in the previous chapters work on whole images. A recent literature survey shows that

researchers have obtained promising results by using part-based approaches and visual bag

of words methods. Since the advent of the bag of visual words model (Sivic and Zisserman

2003), there have been notable contributions to enhance recognition performance by devel-

oping new and robust image descriptors as well as effective classification frameworks that

have resulted in reduced quantization loss and improved recall performance (Arandjelović

and Zisserman 2013).

This chapter introduces a new local feature description method to categorize scene

images. The problem of recognizing scene images is addressed by encoding local image

information that can lead to an effective classification performance. To this end, the com-

putationally efficient Local Binary Patterns (LBP) descriptor is first chosen that captures

the variation in intensity between neighboring pixels to encode texture from images (Ojala

et al. 1996, 1994). The LBP method has been found suitable for scene classification tasks

(Banerji et al. 2011) and hence has been used alone or along with other features to develop

new image descriptors (Sinha et al. 2012; Banerji et al. 2013). The Wigner distribution

has been extensively used in signal processing. Based on the pseudo-Wigner distribution

of images and the Local Binary Patterns (LBP) technique, four major contributions are

made. First, a multi-neighborhood LBP for small image blocks is defined. Second, the

multi-neighborhood LBP is combined with the pseudo-Wigner distribution of images for

feature extraction. Third, the innovative WLBP feature vector is derived by utilizing the

frequency domain smoothing, the bag-of-words model and spatial pyramid representations

77
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of an image. Finally, extensive experiments are performed to evaluate the performance

of the proposed WLBP descriptor. Specifically, the descriptor is tested for classification

performance using a Support Vector Machine (SVM) classifier on three fairly challenging

publicly available scene image datasets, namely the UIUC Sports Event dataset, the Fifteen

Scene Categories dataset and the MIT Scene dataset. Experimental results reveal that the

proposed WLBP descriptor outperforms the traditional LBP technique and yields results

better than some other popular image descriptors.

7.1 Feature Description and Classification

This section first gives a brief review of the concepts used and then discusses the method-

ology adopted for developing the WLBP image descriptor.

7.1.1 Pseudo-Wigner Distribution

The Wigner distribution, also known as Wigner-Ville distribution is a generalized time-

frequency representation proposed by Wigner (Wigner 1932) and Ville (Ville 1948) in

1932 and 1948 respectively. Although it has been extensively used in signal processing

area, its applications in image processing are limited. Jacobson and Wechsler (Jacobson

and Wechsler 1987) were the first researchers to apply the Wigner distribution to solve im-

age processing problems. A family of Wigner distributions is called the pseudo-Wigner

distribution (Vaidya and Haralick 1993).

In order to use the Wigner distribution function for image processing applications,

it needs to be extended to two-dimensional space. Thus Wigner distribution of a two di-

mensional image is a four-dimensional distribution function which has two space domain

variables and two frequency domain variables. The concept of windows is also applied

here, which allows applying a sliding window to the original function in the time domain.

In this work, the pixel-wise pseudo-Wigner distribution for grayscale images has
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been used, which is calculated with a N-pixels-one dimensional oriented square window

where N is the operational window size (Gabarda and Cristóbal 2007). To compute the

pixel-wise Wigner-distribution (W ) of an image X , the algorithm takes an array of N pixels

arranged in direction θ . For this work, the function has been chosen to be periodic which

takes the (N +1) pixel value to be equal to the value determined by the image in position

N = 1. Hence, for each pixel (i, j) of an image X, W (i, j,k) is the pseudo-Wigner distri-

bution of that pixel in the image, where 1 ≤ k ≤ N. Only the first plane of W is chosen to

design the proposed WLBP descriptor.

7.1.2 Local Binary Patterns (LBP)

The Local Binary Patterns (LBP) method encodes the texture features from a grayscale

i.e. intensity image by comparing each pixel with its neighboring pixels (Ojala et al. 1994,

1996). Specifically, for a 3×3 neighborhood of a pixel p = [x,y]t , p is the center pixel used

as a threshold. The neighbors of the pixel p are defined as N(p, i) = [xi,yi]
t , i = 0,1, · · · ,7,

where i is the number used to label the neighbor. The value of the LBP code of the center

pixel p is calculated as follows:

LBP(p) =
7

∑
i=0

2iS{G[N(p, i)]−G(p)} (7.1)

where G(p) and G[N(p, i)] are the gray levels of the pixel p and its neighbor N(p, i), re-

spectively. S is a threshold function that is defined below:

S(xi − xc) =

 1, if xi ≥ xc

0, otherwise
(7.2)

LBP has been reviewed in detail in Section 5.1.1 and explained in Figure 5.1.



80

7.1.3 Sampling and Bag of Features

In order to derive the WLBP descriptor, first the image is sampled. Popular descriptors

like SIFT (Lowe 2004) use multiscale keypoint detectors such as Laplacian of Gaussian or

Harris-affine to select regions of interest within the image. This sampling method is appro-

priate for object recognition, but it has been found that dense sampling often outperforms

the keypoint-based sampling methods (Nowak et al. 2006). This is particularly true of im-

ages with large uniform regions, where SIFT does not detect any keypoints. Scene images,

such as the ones used for this work, often have such homogeneous regions depicting the

sky or walls. For this purpose, a dense sampling approach is used in which the image is

divided into a number of equal sized overlapping square blocks or patches using a uniform

grid and each block is used as a separate region for extracting features. The scene images

are sampled using 40×40 pixel overlapping blocks, each block offset by 10 pixels from the

next. Such patches are extracted from all training images and then the patches are clustered

to form visual words. This process is explained in Figure 7.1. The image shown on the left

Figure 7.1 For the bag-of-words representation, a grayscale image is broken down into
small image patches using a regular grid. This is called dense sampling. Overlapping
patches are used for more accuracy.
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is divided into uniform image patches by the regular grid displayed overlaid on the image,

to form the image patches shown on the right. Figure 7.2 demonstrates the formation of

visual words from an image after clustering the small image patches.

7.1.4 Multi-Scale WLBP Features for Small Image Patches

Now the feature extraction of the sampled image regions is discussed. First, the pixel-wise

pseudo-Wigner distribution for each of the small image patches is computed as described in

Section 7.1.1 in three different directions. For the experiments, the parameter values N = 2,

θ = 0,π/4,π/2 are used, and only the first planes of each of the three Wigner distributions

have been retained for the image blocks for subsequent feature extraction.

The multi-neighborhood LBP features are then extracted from the image patch and

the three images produced as a result of applying the Wigner-distribution on it. Differ-

ent researchers have chosen various neighborhoods of different styles for extracting LBP

Figure 7.2 Formation of visual words from image patches using a popular clustering
method.
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features from an image (Zhu et al. 2010; Banerji et al. 2011; Gu and Liu 2013). The con-

ventional 8-neighborhood LBP mask assigns one out of 28 possible intensity values to each

pixel, resulting in a 256-bin histogram. However, since the image patches are small, 4-

pixel neighborhood LBP masks are chosen to reduce the sparseness of the features. These

LBP masks produce a dense 16-bin histogram, and eight such histograms from different

neighborhoods and four sub-images are fused to design the 128-dimensional WLBP fea-

ture vector describing each image block. Figure 7.3 depicts the two 4-pixel neighborhoods

used for generating the multi-neighborhood LBP descriptor used here.

The Discrete Cosine Transform (DCT) is a well-known technique of transforming

an image to the frequency domain for various applications like compression, smoothing,

etc. (Hafed and Levine 2001), where an image is decomposed into a combination of vari-

ous uncorrelated frequency components. Specifically, the DCT of an image with the spatial

resolution of M×N, f (x,y), where x = 0,1, · · · , M−1 and y = 0,1, · · · , N −1, transforms

the image from the spatial domain to the frequency domain (Gonzalez and Woods 2008).

DCT is thus able to extract the features in the frequency domain to encode different image

Figure 7.3 The two 4-neighborhood LBP masks used for computing the proposed WLBP
descriptor.
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Figure 7.4 DCT can be used for smoothing out the image. The original image is trans-
formed to the frequency domain and the lowest 1/16, 1/4 and 9/16 parts are used for re-
generating the image, respectively, resulting in three output images with various degrees of
smoothing.

details that are not directly accessible in the spatial domain. Due to these specific proper-

ties, DCT has been successfully applied to face recognition (Liu and Liu 2008; Chen et al.

2006; Hafed and Levine 2001). In the proposed method, DCT is used to eliminate higher

frequencies from an image, resulting in a form of smoothing. To achieve image smoothing

for capturing textures at different scales, the DCT technique is performed to transform the

original image to frequency domain and the lowest 6.25%, 25% and 56.25% of frequencies

are used to regenerate the image. This process is explained in Figure 7.4. The original

image and the three images thus formed undergo the same process of dense sampling and

WLBP feature extraction. All these features together form a bag of features, as shown in
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Figure 7.5, that needs to be clustered into distinct visual words to form a visual vocabu-

lary. Figure 7.6 illustrates the complete process of generating the WLBP features from a

grayscale image.

7.1.5 Quantization and Pyramid Representation

The next stage is to quantize the bag of WLBP features extracted from the training images

into a visual vocabulary with discrete visual words. For this step, the popular K-means

algorithm is used. The vocabulary size used by researchers vary from a few hundreds

(Lazebnik et al. 2006; Zhang et al. 2007) to several thousands (Sivic and Zisserman 2003;

Zhao et al. 2006). In this work, the experiments have been performed with vocabularies of

varying sizes and empirically a 1000-word vocabulary is chosen. After the creation of the

visual vocabulary, each scene image is represented by a histogram of visual words. This is

explained in Figure 7.7(a).

The image pyramid representation proposed by (Lazebnik et al. 2006) allows a

Figure 7.5 The features are computed from a large number of image patches from all
training images and form a bag of features from which a visual vocabulary can be created.
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Figure 7.6 The process of computing the proposed WLBP descriptor has been simplified
in this schematic diagram.

descriptor to represent local image features and their spatial layout. Here, at each level,

an image is tiled into its successively smaller blocks and the feature vectors are computed

for each block. These features from each pyramid level are then weighted accordingly,

which are finally concatenated to form a pyramid histogram. This technique is explained in

Figure 7.7(b). It should be noted that the histograms shown in Figure 7.7 are for illustration

purposes only. For this work, only the second level of this pyramid has been utilized

to keep the computational complexity low. Finally, a 4000 dimensional feature vector is

constructed for each image.
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7.1.6 Classifier Used

After all training and test images have been processed and the feature vectors have been

generated, an SVM classifier is used for classification. SVM has been reviewed in detail

in Section 2.4. It is a known fact in texture and other image classification that for compar-

ing histograms, using χ2 or Hellinger distance measures usually yields better results than

Euclidean distance (Arandjelović and Zisserman 2012) . The use of the Hellinger kernel

has been shown to benefit SIFT (Arandjelović and Zisserman 2012). Since the proposed

WLBP descriptor is also a histogram, intuitively it seems that it should yield better classi-

fication results with the Hellinger kernel and it is empirically seen that using the Hellinger

kernel does indeed improve the classification results greatly.

If x and y are n-vectors with unit Euclidean norm (|x|2 = 1), then the Euclidean

distance dE(x,y) between them is related to their similarity (kernel) SE(x,y) as

dE(x,y)2 = |xy|22 = |x|22 + |y|22 −2xty = 2−2SE(x,y) (7.3)

where SE(x,y) = xty, and the last step follow from |x|22 = |y|22 = 1. The Euclidean similar-

ity/kernel here needs to be replaced by the Hellinger kernel.

The Hellinger kernel, which is also known as the Bhattacharyya’s coefficient, is

defined for two L1 normalized histograms, x and y (i.e.
n
∑

i=1
xi = 1 and xi ≥ 0) as:

H(x,y) =
n

∑
i=1

√
xiyi (7.4)

Arandjelović et al. suggest a simple algebraic manipulation to compare SIFT vec-

tors by a Hellinger kernel (Arandjelović and Zisserman 2012). Since WLBP vectors are

also based on histograms of words, the same technique can be applied to the WLBP vec-

tors as well. This can be done in two steps: (i) L1 normalize the WLBP vector (originally

it has unit L2 norm); (ii) square root each element. It then follows that SE(
√

x,
√

y) =
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Figure 7.7 (a) All images are converted to histograms of visual words using the visual
vocabulary created from the training images. (b) For the spatial pyramid representation, a
full image is broken down into multiple spatial tiles. Then histograms of visual words are
computed from each tile and concatenated.

√
xt√y = H(x,y), and the resulting vectors are L2 normalized since SE(

√
x,
√

y) =
n
∑

i=1
= 1

(Arandjelović and Zisserman 2012).

The key point is that comparing the square roots of the WLBP descriptors using Eu-

clidean distance is equivalent to using the Hellinger kernel to compare the original WLBP
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vectors:

dE(
√

x,
√

y)2 = 2−2H(x,y) (7.5)

For the classification process, an SVM is trained independently for each class (one-

vs-all classification). This is repeated for each category separately and the precision rates

from all the iterations give the average precision which is the mean classification accuracy.

A similar configuration has been successfully used by other researchers like (Sanchez et al.

2012) in recent works. The SVM implementation used here is the one that is distributed

with the VLFeat package (Vedaldi and Fulkerson 2010).

7.2 Experiments

This section first introduces the three scene image datasets used for evaluating the classifi-

cation performance of the WLBP descriptor, and then makes a comparative assessment of

the classification performances of the LBP and the WLBP descriptors. Finally, the classifi-

cation performance of the WLBP descriptor is compared with that of some popular image

descriptors used by other researchers on these datasets. It should be noted that the results

of other researchers are reported directly from their published work.

7.2.1 Datasets Used

Three publicly available and widely used image datasets are used in this work for assessing

the classification performance of the proposed descriptor.

The UIUC Sports Event Dataset: The UIUC Sports Event dataset (Li and Fei-Fei

2007) contains 1,574 images from eight sports event categories: 250 rowing, 200 bad-

minton, 182 polo, 137 bocce, 190 snowboarding, 236 croquet, 190 sailing, and 194 rock

climbing. A detailed description of this dataset is provided in Section 3.3.1. Some sample

images from this dataset are displayed in Figure 3.5.

The MIT Scene Dataset: The MIT Scene dataset (also known as OT Scenes)
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Figure 7.8 Some sample images from the Fifteen Scene Categories dataset.

(Oliva and Torralba 2001) has 2,688 images classified as eight categories: 360 coast, 328

forest, 260 highway, 308 inside of cities, 374 mountain, 410 open country, 292 streets, and

356 tall buildings. Section 3.3.1 provides a detailed description of this dataset. Figure 3.4

shows a few sample images from this dataset.

The Fifteen Scene Categories Dataset: The Fifteen Scene Categories dataset

(Lazebnik et al. 2006) is composed of 15 scene categories: thirteen were provided by

(Fei-Fei and Perona 2005), eight of which were originally collected by (Oliva and Tor-

ralba 2001) as the MIT Scene dataset, and two were collected by (Lazebnik et al. 2006).

Each category has 200 to 400 images, most of which are grayscale. Figure 7.8 shows a few

images from this dataset.

7.2.2 Comparison of the LBP, WLBP and Other Popular Descriptors

The classification performance of the proposed WLBP descriptor is now evaluated by com-

paring it with the traditional LBP feature and some other popular image descriptors on the

three scene image datasets. To that end, first the WLBP feature vector is derived from each

image in the dataset. To compute the WLBP descriptor, first each color image is converted

to grayscale and then all the training images are divided into overlapping uniform image

patches. Please note that the large scale images are resized in such a way that their largest

dimension does not exceed 256 pixels. The WLBP features are extracted from all the im-
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age patches generated from the grayscale image and the three DCT-smoothed images to

generate a bag of features which is quantized using the K-means algorithm to form a visual

vocabulary with 1000 words. Next, each training and test image is represented as a pyramid

histogram of these visual words. An SVM classifier with a Hellinger kernel (Vapnik 1995;

Vedaldi and Fulkerson 2010) is used for evaluating the relative classification performances

of the LBP and the WLBP descriptors.

For the UIUC Sports Event dataset, 70 images from each class are used for training

and 60 from each class for testing both the LBP and the WLBP descriptors. The results

are obtained using five random splits of data where there is no overlap between the train-

ing and testing images of the same split. Figure 7.9 shows the relative average precisions

achieved by the LBP and the WLBP descriptors on this dataset. Note that here, the hori-

zontal axis shows the two descriptors and the three datasets, and the vertical axis shows the

classification performance measured by average precision as percentage. Here, the WLBP

descriptor outperforms the LBP by over 14%. The proposed WLBP vector also produces

better results than other SIFT-based and state-of-the-art methods on this dataset, which is

listed in Table 7.1.

Table 7.1 Comparison of the Classification Performance (%) of the Proposed Grayscale
WLBP Descriptor with Other Popular Methods on the Three Image Datasets

Method UIUC Sports MIT Scene 15 Scenes
SIFT+GGM (Li and Fei-Fei 2007) 73.4 - -
OB (Li et al. 2010) 76.3 - -
KSPM (Yang et al. 2009) - - 76.7
KC (Van Gemert et al. 2010) - - 76.7
CA-TM (Niu et al. 2012) 78.0 - -
ScSPM (Yang et al. 2009) - - 80.3
SIFT+SC (Bo et al. 2011) 82.7 - -
SE (Oliva and Torralba 2001) - 83.7 -
HMP (Bo et al. 2011) 85.7 - -
C4CC (Bosch et al. 2006) - 86.7 -
WLBP+SVM (Proposed) 86.2 92.2 85.1
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Figure 7.9 Comparison of the classification performance of the LBP and the proposed
WLBP descriptors using an SVM classifier with a Hellinger kernel on the three datasets.

For the MIT Scene dataset, the protocol defined in (Oliva and Torralba 2001) is

adopted where 100 images from each class are used for training and the remaining images

for testing the performance. Here also, the WLBP significantly improves over the LBP

feature, by a margin of 18%, and achieves an average precision of 92.17% (as shown in

Figure 7.9) which is a very good result for this dataset. Table 7.1 shows a comparative

evaluation of results obtained by other methods and by the proposed descriptor on this

dataset.

On the Fifteen Scene Categories dataset, 100 training images from each category

are chosen and rest for testing and the results are measured from five runs of experiments.

Here, the overall performance of the WLBP is 85.13% which is again, much better than

the traditional LBP as is evident from Figure 7.9. In addition, the category-wise classifica-

tion performances of the grayscale LBP and the proposed WLBP features is displayed in
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Figure 7.10 The comparative average classification performance of the LBP and the
WLBP descriptors on the 15 categories of the Fifteen Scene Categories dataset.

Figure 7.10. Here, the horizontal axis reveals the fifteen scene categories, and the vertical

axis displays the classification performance. A detailed comparison of the WLBP and other

competitive methods on this dataset is given in Table 7.1.

7.3 Summary

In this chapter, a new local image descriptor has been presented for recognizing scene im-

ages by applying the Wigner distribution and a multi-neighborhood LBP technique on im-

age patches. Combined with the DCT-based smoothing technique, the bag-of-visual words

model and the spatial pyramid image representation and coupled with the SVM classi-

fier, the new image descriptor significantly improves image classification performance over

LBP. Experimental results on three popular scene image datasets show that the WLBP de-

scriptor yields better classification performance than several recent state-of-the-art methods

used by other researchers, such as the popular nonlinear Kernel Spatial Pyramid Matching

(KSPM), SIFT Sparse-coded Spatial Pyramid Matching (ScSPM) and the Kernel Code-

book (KC).



CHAPTER 8

CONCLUSIONS AND FUTURE WORK

This dissertation focuses on the feature extraction from grayscale and color images by

proposing several new image descriptors based on wavelets, texture, color, shape and local

features. The main contributions of this dissertation are as listed below:

• A new Gabor-based HOG method, the GHOG descriptor is proposed for grayscale

and color images which enhances the HOG classification performance. The GHOG

descriptor is analyzed in six different color spaces and the color GHOG features are

then fused in an innovative way to produce the FC-GHOG descriptor that performs

well in classifying different object and scene images. Experimental results using

three grand challenge datasets, the Caltech 256 object categories dataset, the MIT

Scene dataset, and the UIUC Sports Event dataset show that the proposed new image

descriptors achieve better image classification performance than other popular im-

age descriptors, such as the Scale Invariant Feature Transform (SIFT), the Pyramid

Histograms of Oriented Gradients (PHOG), Spatial Envelope (SE), the Color SIFT

four Concentric Circles (C4CC), Object Bank (OB), Context Aware Topic Model

(CA-TM), as well as LBP.

• A new Gabor-PHOG (GPHOG) image descriptor is then created by enhancing the

local features of an image using multiple Gabor filters for feature extraction. A com-

parative assessment of the classification performance of the GPHOG descriptor is

made in grayscale and six different color spaces to further propose two novel color

GPHOG descriptors. Finally, a Fused Color GPHOG (FC-GPHOG) descriptor is

presented by integrating the Principal Component Analysis (PCA) features of the

GPHOG descriptors in the six color spaces to combine color, shape and local feature

information. Experimental results using two grand challenge datasets show that the

93
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proposed new FC-GPHOG descriptor outperforms the PHOG and also achieves an

image classification performance better than or comparable to other popular image

descriptors, such as the Scale Invariant Feature Transform (SIFT) based Pyramid His-

tograms of visual Words (PHOW) descriptor, the Color SIFT four Concentric Circles

(C4CC), Spatial Envelope, and Local Binary Patterns (LBP).

• Two new Gabor-based local, texture, shape and color feature extraction methods,

namely the GLP and the FC-GLP are proposed that combines the GPHOG and the

GLBP features using an optimal feature representation method such as PCA. The

proposed descriptors exceed or achieve comparable performance to some of the best

classification performances reported elsewhere. Experimental results carried out us-

ing three grand challenge datasets show that the FC-GLP descriptor improves classi-

fication performance over the GLBP and GPHOG descriptors and can be successfully

applied for object and scene image classification.

• A novel Gabor-LBP-HOG (GLH) image descriptor is proposed which combines the

GLBP and the GHOG descriptors to incorporate texture, shape and local informa-

tion. The GLH descriptor is generated in six different color spaces as well as in

grayscale. A new FC-GLH descriptor is also presented for object and scene image

classification by integrating the GLH descriptors in the six different color spaces to

further encode color information. Experimental results using three grand challenge

datasets, the Caltech 256 object categories dataset, the MIT Scene dataset, and the

UIUC Sports Event dataset show that the GLH and FC-GLH descriptors achieve bet-

ter image classification performance than other popular image descriptors as well as

GLBP, GHOG, GPHOG and GLP feature vectors.

• A new part based local image descriptor is presented for recognizing scene images

by applying the Wigner distribution and a multi-neighborhood LBP technique on

image patches. Combined with the DCT-based smoothing technique, the bag-of-
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visual words model and the spatial pyramid image representation and coupled with

the SVM classifier, the new image descriptor significantly improves image classi-

fication performance over LBP. Experimental results on three popular scene image

datasets show that the WLBP descriptor yields better classification performance than

several recent state-of-the-art methods used by other researchers, such as the popu-

lar nonlinear Kernel Spatial Pyramid Matching (KSPM), SIFT Sparse-coded Spatial

Pyramid Matching (ScSPM) and the Kernel Codebook (KC).

Future work lies in the following directions:

• The proposed WLBP descriptor is found to be promising for image classification

tasks. However, it is only created for grayscale images. One future direction of work

would be to extend it to color images and calculate the WLBP for different color

planes and investigate the image classification performance.

• The author would like to work on more datasets available for image search and clas-

sification.

• The descriptors proposed in this dissertation work on either whole image or small

image patches taken from the entire image. One direction of future research would

be to first detect regions of interest, and then develop a part-based image descriptor

by extracting features from the selected object regions by combining the techniques

discussed here with the part-based representation method.

• Using Gabor wavelets and Wigner distribution for designing the image descriptors

achieved satisfactory classification results and enhanced performance. The author

would like to further explore wavelets to construct new descriptors.
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