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ABSTRACT 

FIELD METHODS FOR RAPIDLY CHARACTERIZING CONTAMINANT 
 MOBILITY IN PAINT WASTE DURING BRIDGE REHABILITATION 

by  
Zhan Shu 

Currently, the New York State Department of Transportation (NYSDOT) uses a 

conservative approach of classifying all paint waste as hazardous from bridges 

undergoing rehabilitation which were constructed before 1989. This practice stems from 

the fact that there is no approved reliable, fast, and efficient method for classifying paint 

waste in-situ as non-hazardous. The main objective of this study was to develop a model 

that can predict the leachability of trace metals in paint waste generated during bridge 

rehabilitation. A statistically significant number of bridge sites were sampled based on 

hypothesis testing. Samples were then evaluated for total concentration of Resource 

Conservation and Recovery Act (RCRA) metals (i.e., Ag, As, Ba, Cd, Cr, Hg, Pb, and 

Se), iron as well as zinc. Leaching studies included the U.S. Environmental Protection 

Agency (U.S. EPA) toxicity characteristic leaching procedure (TCLP) and the multiple 

extraction procedure (MEP). Interestingly, although elevated Pb (5 to 168,090 mg kg-1) 

and other metal concentrations were observed in the paint samples, leaching results 

revealed only up to 22.6 mg L-1 for Pb and 9.52 mg L-1 for Cr. The relatively low 

concentrations observed are attributed to the use of iron-based abrasives (steel grit) in the 

paint removal process. In New York State, steel grit is typically applied as an abrasive 

material to remove paint during bridge rehabilitation. Although magnetic separation is 

applied to collect and reuse the steel grit, the fraction remaining in the paint waste ranges 

from 5 to 80% by weight. Using the suite of analyses, ferrihyidrite was observed to be an 

http://en.wikipedia.org/wiki/Toxicity_characteristic_leaching_procedure


important mineral surface on the steel grit; spherical particle aggregates ranged from 20 

to 200 nm in diameter. In addition, sequential extraction revealed trace metal sorption to 

the iron oxide surface may be the dominant mechanism responsible for the reduced 

leaching observed. The sorption process was further modeled using the diffuse layer 

model. Based on an understanding of mechanistic processes along with a demonstrated 

analysis of variables through principal component analysis (PCA), statistically-based 

models for leaching from paint waste were developed. Results of this work assist in better 

understanding and predicting the mobility of trace metals as well as in addressing 

disposal and management of paint waste during bridge rehabilitation. 
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CHAPTER 1 

INTRODUCTION 

 

The general practice for protecting steel bridges from corrosion involves applying paint 

coatings (Boxall and Von Fraunhofer, 1980; Gooch, 1993; Strivens and Lambourne, 

1999). Between 1950 and 1980, these paint coatings used a number of metals including 

lead and chromium for corrosion protection. However, concerns stemming from human 

health impacts of lead-based paint (LBP) prompted its ban in 1978 from most 

applications in the United States (Davis et al., 1993; Hall, 1972; Jacobs et al., 2002). 

Lead release from LBP has been associated with health effects including damage to the 

brain and central nervous system in children, reproductive problems, and high blood 

pressure (Gidlow, 2004; Landrigan, 1989; Todd et al., 1996). In response to these 

concerns, the Department of Housing and Urban Development (HUD) and Consumer 

Product Safety Commission (CPSC) have prohibited residential use of LBP since 1978 

(CPSC, 1977; National Institute for Occupational Safety and Health (NIOSH), 1992). In 

New York State, LBP has been prohibited from commercial use since 1989 (NYSDOT, 

1988).  

However, although rehabilitation and subsequent repainting were conducted more 

than once since 1989, LBP may not be entirely removed. The degree to which paint 

remains on the bridge is based on surface preparation methods applied in the paint 

removal procedure (NYSDOT, 2008). One of the more effective approaches for 

removing paint and rust from steel bridges is through abrasive blasting (Appleman, 1992), 

where abrasive particles are propelled against the surface using a concentrated stream of 
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compressed air. Dust, abrasive, and paint debris are vacuumed simultaneously in the 

blasting operation. Debris is separated for disposal and the abrasive particles are returned 

for reuse. Paint waste remains a pervasive problem in U.S. cities (Axe et al., 2009; 

Caravanos et al., 2006; Mielke and Gonzales, 2008; Mielke et al., 2001; Townsend et al., 

2004a), and an increasing problem in the developing world where it is still manufactured 

and used (Adebamowo et al., 2007; Clark et al., 2006; Nduka et al., 2008). Furthermore, 

during maintenance, reconstruction, and demolition of bridges and other steel structures, 

solid waste (Townsend et al., 2004a) and paint wash-water (Davis and Burns, 1999; 

Hopwood et al., 2003) are generated on-site.  

At this time, a number of transportation agencies (i.e., NYSDOT, 2008) apply a 

conservative approach by assuming all the paint waste generated from bridges as 

hazardous material (Axe et al., 2009). This practice stems from the fact that there is no 

approved reliable, fast, and efficient method for classifying paint waste in-situ as non-

hazardous. This conservative practice eliminates the need for extensive testing, but also 

results in greater expense and increased regulatory burdens than are likely required. With 

the advent of more accurate and sophisticated analytical equipment for in-situ field 

measurements, state DOTs will benefit from research focused on the reliability of such 

field equipment for waste characterization. Therefore, the purpose of this study is to 

understand the mechanism responsible for metal leaching and to develop a model that can 

predict the metal leachability in paint waste generated during bridge rehabilitation. 

Between October 2010 and November 2011, 117 samples of paint waste were 

obtained from 24 bridges under rehabilitation in New York State. Studies were conducted 

to evaluate Resource Conservation and Recovery Act (RCRA) metals (i.e., Ag, As, Ba, 
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Cd, Cr, Hg, Pb, Se), zinc as well as iron concentrations in the paint waste. Leachable and 

extracted metal concentrations were obtained from the toxicity characteristic leaching 

procedure (TCLP), multiple extraction procedure (MEP), and sequential extraction (SE). 

In addition, to understand the mechanism responsible for metal leaching, a suite of 

analyses was conducted on the paint waste samples. Mechanistic modeling (surface 

complexation along with precipitation/dissolution modeling) was applied to support 

principal component analysis (PCA) of data obtained with field portable x-ray 

fluorescence (FP-XRF). As a result, statistically-based models for leaching from paint 

waste were developed. Results of this work assist in better understanding and predicting 

the mobility of trace metals as well as in addressing disposal and management of paint 

waste during bridge rehabilitation. 

The following chapters include Chapter 2, a literature review of metal distribution 

in paints, paint removal methods, techniques applied for analyzing paint waste and bridge 

wash water on site, leaching studies and waste classification, and modeling applied for 

depicting metal mobility; Chapter 3, the objectives and hypotheses for this research; 

Chapter 4, Sampling Approach; Chapter 5, Experimental Methods; Chapter 6, Metal 

Concentrations and Distribution in Paint Waste Generated During Bridge Rehabilitation 

in New York State; Chapter 7, Metal Leaching from the Paint Waste in the Presence of 

Steel Grit; Chapter 8, Trace Metal Leaching Mechanisms from Bridge Paint Waste in the 

Presence of Steel Grit; Chapter 9, Statistical Model Development to Predict Metal 

Leaching from the Paint Waste; and, Chapter 10, Conclusions and Future Work. 
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CHAPTER 2 

LITERATURE REVIEW 

 

In this chapter, studies on metal distribution in paints are first introduced, and then a 

review of literature is presented in terms of paint removal methods and contaminant 

release into the environment during bridge rehabilitation, and techniques applied for 

analyzing paint waste and wash water generated on site. The chapter continues with 

leaching studies and waste classification. Modeling applied for metal leaching follows. 

The chapter concludes with a summary of key points and questions raised based on the 

literature.  

 

2.1 Metal Distribution in Paints 

Prior to the 1960’s (National Paint & Coatings Association [NPCA], 1992), paints 

generally contained pigments using lead and/or chromium compounds as corrosion 

inhibitors. LBP functioned well and was used in practically all painting applications, 

from bridges to sign trusses, from light poles to fire hydrants. The primary lead 

compound used in paints was lead carbonate (white lead 2PbCO3·Pb(OH)2) with 

concentrations as great as 40% dry paint. Lead chromate (chrome yellow) was used in 

(colored) paint at 5 to 7%, while lead tetraoxide (red lead Pb3O4, Pb2O4, PbO2·2PbO) was 

also a component of paints (Gooch, 1993) (Table 2.1). Because lead is poisonous and a 

carcinogen, in the early 1970's it became apparent there were worker health and safety 

problems associated with LBP. In 1977, the Consumer Product Safety Commission 

(CPSC) banned residential use of paint containing greater than 0.06% lead (U.S. CPSC, 

1977). At the same time (1978), the Department of  
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Table 2.1  Lead Compound Used in Paintsa,b 

 

 

Source: a Weast, 1978 

                    bGooch, 1993 
                    cCrown,1968 
                    dAlphen, M., 1998 

Pigment Color Chemical Formula Dates Usedc,d 

Lead acetate White Pb(CH3COO)2 1900’s – 1960’s 

Dry white lead, basic 

carbonate 
White 2PbCO3⋅Pb(OH)2 1900’s – 1970’s 

Dry white lead, basic 

sulfate 
White PbSO4⋅PbO 

Widely used as a primer and in 

building finishes. First introduced 

between 1855 and 1866, leaded 

zinc oxide form introduced in 

1896. 

Litharge (lead oxides) 

Yellow PbO – yellow 

1940’s – 1970’s Black Pb2O (sub-oxide) 

Red Pb2O4 – red 

Lead tetraoxide (red lead) Orange Pb3O4 (PbO2⋅2PbO) Primer coating 

Lead chromate/oxide Orange PbCrO4⋅PbO 1935 – 1970’s 

Basic lead chromate Red Pb2(OH)2CrO4 Discovered 1809 

Lead chromate Yellow PbCrO4 1910’s – 1970’s 
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Housing and Urban Development (HUD) banned the use of paint with greater than 5,000 

ppm or 1.0 mg/cm2 lead concentrations (HUD, 1978). As a result, LBP has been phased-

out of residential use (Gooch, 1993). In New York state, lead-based paint has been 

prohibited for commercial use since 1989 (NYSDOT, 1988). 

As the application of lead paint declined, substantial quantities of zinc based paint 

were used in bridge paint. Mixtures of zinc oxide and lead sulfate based paint grew in the 

market between 1920’s and 1970’s. Beginning about the same time, lithophone (a 

mixture of 30% zinc sulfide and 70% barium sulfate) exceeded the use of lead in interior 

paint as the primary pigment. However, lithophone lacked durability and therefore its use 

declined. During the time between the mid and late 1970's, zinc chromate was used in 

primers along with a vinyl topcoat; in the late 1980’s (International Agency for Research 

on Cancer [IARC], (Tomatis, 1987) this compound was found to be toxic and was phased 

out. Beginning in the late 1970's zinc silicate was applied as a primer for shop and field 

paint; experience suggests resulting wastes are not hazardous. Other metal based 

compounds were used as well including rutile, a titanium dioxide, which was more 

effective and less costly than other pigments (NPCA, 1992; Ferlauto, 1994). Titanium 

dioxide continues to be used today for bridge paint.  

In addition to the metals discussed above, other compounds of arsenic, barium, 

cadmium, chromium, mercury, selenium, and silver, were used in paint as pigments and 

preservatives as well (Table 2.2). Since the 1950’s, arsenic was applied as a pigment; 

however, because of the risk of poisoning, the actual use of the associated compounds 

was for the most part restricted to that of insecticides (Alphen, 1998). Barium was also 

included as a pigment and a corrosion inhibitor (NPCA, 1992) from the 1950’s, as was. 
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Table 2.2  Typical Pigments and Associated Compounds in Paintsa  

White  Protective  

Titanium dioxide [TiO2] 15-20% 
Basic lead silichromate  

[4(PbCrO4·PbO) + 12(SiO2·PbO)] 
25-35% 

Zinc oxide [ZnO] 15-20% Basic lead sulfate [PbO·PbSO4] 15-20% 

Antimony oxide [Sb2O3] 15-20% Calcium plumbate [Ca2PbO4] 30-40% 

White lead [2PbCO3·Pb(OH)2] 15-20% Red lead [Pb3O4] 30-35% 

  Zinc phosphate [Zn3(PO4)2] 25-30% 

  Zinc tetroxychromate [ZnCrO4·4Zn(OH)2] 20-25% 

  Zinc chromate [ZnCrO4] 30-40% 

 

Green 
 

 

Blue 
 

Chromium oxide [Cr2O3] 10-15% Prussian blueb [MFeFe(CN)6·H2O] 5-10% 

Lead chrome green [PbCrO4] 10-15% Ultramarine blue [Na6.9Al5.6Si6.4O24S4.2] 10-15% 

 

Black 
 

 

Metallic 
 

Black iron oxide [Fe2O3 +MnO2] 10-15% Zinc 60-70% 

Carbon black 1-5% Lead 40-50% 

 

Yellow 
   

Lead chromates [Pb(Cr,S)O4] 10-15%   

Zinc chromates [ZnCrO4] 10-15%   

Cadmium sulfide [CdS] 5-10%   

 

Source: a: Boxall and von Frauhoffer (1980) , Alphen et al. (1998).  
              b: M could include K, Na or CH3 
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cadmium (after 1920’s) which is a pigment that produces bright colors in paint. Zinc 

chromate was used for a short period of time and because of its toxicity it was an 

effective barrier to microorganisms. Prior to 1992, the mercury compound 

phenylmercuric acetate (PMA) was added to some latex paints as a preservative to 

control bacteria, mildew, and other fungi (U.S. EPA, 1990; 2000). Selenium and silver 

were rarely used in paint (Alphen, 1998). 

As a consequence of their application, RCRA metals along with Zn are now found 

in paints on older buildings and surface structures (Table 2.3) (Boxall and von 

Frauhoffer, 1980; Crown, 1968). With aging and weathering, paints tend to chalk, chip, 

flake, and otherwise deteriorate, resulting in an accumulation of pigment material on and 

within soils or surface water surrounding painted structures. Subsequently, the impact 

from exposure poses a threat when dust and fumes are inhaled and when contaminants 

are ingested via contaminated hands, food, water, cigarettes, and clothing (National 

Institute for Occupational Safety and Health [NIOSH], 1998). For example, once in the 

bloodstream, lead replaces other useful elements (e.g., calcium, iron) and adversely 

affects oxygen transport to a number of organs including the liver, kidneys, reproductive 

system, and the brain (Tong et al., 2000). Lead is also a carcinogen. The effects of lead 

are the same whether it enters the body through inhalation or ingestion, and can affect 

almost every organ and system in the body. Exposure to high lead levels can damage the 

nervous system especially in young children, cause disorders in the blood and brain 

systems, and ultimately result in death. Long-term exposure to lead or its salts (especially 

soluble salts or the strong oxidant PbO2) can cause nephropathy, and colic-like abdominal 

pains. For other metals such as hexavalent chromium, inhalation can cause damage to the 
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Table 2.3  Metal Concentrations in Paint Used on Surface Structures 

 

Sources Concentration of Metals in paint by dry weight (mg/kg) Reference 

Pb Hg As Cd Cr Se Ag Ba Zn  

Exterior house paint 

 

464 – 317,151 0.8–
214.0 

– – – – – – – 

Mielke and 
Gonzales (2008) Interior house paint 

 

24 – 63,313 0.03–
39.2 

– – – – – – – 

New Orleans houses 112 – 256,797 – – 7 - 439 2 - 417 – – – 52 – 98,056 Mielke et al. 
(2001) 

Exterior paint from a 
military barrack 

 

35,700 – 96,600         Wadanambi et al. 
(2008) 

Interior latex paint – 930-955 – – – – – – – U.S. EPA (1990) 

Solvent-based paint 15,680 ± 
11,780.00 

– 100 ± 20.00 ND ND – – – 30,460 ±10,580.00 

Huanga et al. 
(2010) Water-based paint 57.46 ± 22.42 – 20.65 ± 

6.11 
ND ND – – – 1,660 ± 1,260 

ND not detected 

– Not measured 
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nose, throat, and lungs (respiratory tract); it also can lead to lung cancer and death. 

Chronic exposure to mercury can cause disruption of the nervous system, damage to 

deoxyribonucleic acid (DNA) and the chromosomal system, as well as result in allergic 

reactions (Clarkson, 1988). Mercury is a carcinogen. Long-term exposure to mercury can 

lead to damage of the brain, kidney, and lungs. Damaged brain functions may result in 

learning disabilities, personality changes, tremors, vision changes, and deafness. Dermal 

exposure may also result in skin rashes, tiredness, and headaches (U.S. EPA, 2009). 

Mercury poisoning can result in several diseases, including acrodynia (pink disease), 

Hunter-Rusell syndrome, and Minamata disease.  

In response to these health concerns, the federal government has promulgated a 

series of regulations to reduce exposure to these metals. In 1977, CPSC banned 

residential use of paint containing greater than 0.06% lead (U.S. CPSC, 1977) (Table 

2.4). HUD (1978) set up the regulation that banned the use of paint with greater than 

5,000 ppm or 1.0 mg/cm2 lead concentrations. In 1993, Occupational Safety and Health 

Administration (OSHA) reduced permissible exposure limit (PEL) for workers to 50 

μg/dL of blood (OSHA, 1993). In 1996, U.S. EPA and HUD together enacted 

requirements for disclosure of known LBP used in housing (CFR 61(45), 1996). In 2001, 

the U.S. EPA (CFR 66(4), 2001) announced the final rule for lead levels in dust on floors, 

windowsills, and play areas as potentials hazards. The U.S. EPA (CFR 66(4), 2001) has 

established 400 ppm of lead in bare soil as the maximum allowable level for children's 

play areas and an average of 1,200 ppm as the maximum concentration allowed in a 

residential yard. In 2009, regulated lead concentrations in paint for residential 

applications were lowered to 90 ppm (Consumer Product Safety Improvement Act  
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Table 2.4  Regulations Related to Metals in Paint 

Date Hazardous Materials Used in Paint References 

1972 
The Lead Based Paint Poisoning Prevention Act established the level 
of 0.5% in house paints. 

U.S. CPSC 
(1972) 
 

1972 
Mercury compounds were banned by the U.S. EPA from use in 
marine paint. 

U.S. EPA (1972) 

1977-1978 

The final 1977 LBP Poisoning Prevention Act regulation set the 
maximum allowable level at 0.06% became effective by U.S. CPSC, 
and it is 1.0 mg/cm2 or 5,000 ppm set by HUD (1978), as such 
greater concentrations were banned from consumer paints.   

U.S. CPSC 
(1977) 
HUD (1978) 

1990 
Mercury in interior latex paint was banned by the U.S. EPA. Most 
buildings constructed before 1990 contain mercury in their paint. 

U.S. EPA (1990) 

1992 
Mercury in interior paint was banned although its use had been 
reduced.  

U.S. EPA (1992) 

1993 
A CPSC study of consumer paint samples found that lead in paints on 
the market meet the standard and are actually below the 0.06 % level. 

U.S. CPSC 
(1993) 

1996 
Lead was not banned from gasoline used in transportation until 
December 1995. U.S. EPA and HUD together enacted requirements 
for disclosure of known LBP used in housing (CFR 61(45), 1996). 

HUD, FR 61(45), 
(1996) 

2001 

The U.S. EPA has established 400 ppm of lead in bare soil as the 
maximum allowable level for children's play areas and an average of 
1,200 ppm as the maximum concentration allowed in a residential 
yard.  

U.S. EPA (2001) 

2006 
Work practice standards proposed to reduce lead exposure during 
residential renovation activities in 40 CFR Part 745 

TSCA, 40 CFR 
Part 745, revised 
in April 22, 2009 

2008 
EPA finalized Toxic Substances Control Act (TSCA) regulations in 
40 CFR Part 745. The rule addressed LBP hazards during residential 
renovation, repair, and painting activities.  

2009 

The lead concentration in paint was lowered to 90 ppm, it applied to 
(i) paint and other similar surface coatings; (ii) toys and other articles 
intended for use by children; and (iii) certain furniture articles that 
are not otherwise exempt under our regulations.  

CPSIA (2008),  
effective in 
August 14, 2009 
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[CPSIA], (Flaherty, 2009)). However, auto exhaust from leaded gasoline used as an 

octane-booster and anti-knock compound has been another source of lead in the 

environment. Between 1940 and 1989, twice as much lead in the form of lead oxide and 

tetraethyl lead was used in leaded gasoline as compared to that used in lead based paints 

(Weaver, 1989). Seventy-five percent of lead associated with auto exhaust mobilized into 

the environment and settled in soil and on structures (Ferlauto, 1994). Other metals also 

pose potential risk from release. For example, because of exposure concerns regarding 

mercury in interior paints, limits were placed on PMA additives in 1990 (U.S. EPA, 

1990); subsequently these were banned in 1991 (Flaherty, 1999).  

 

2.2 Paint Removal Method and Metal Release in the Environment 

The majority of steel bridges in the interstate system were constructed between 1950 and 

1980. As infrastructure ages, undergoes weathering, and paint coatings degrade, a large 

percentage of the existing steel bridges are reaching a critical level of deterioration, and 

release of metal contaminants into the environment becomes an issue. In this section, the 

paint removal process is presented, and metal release into surrounding soils and surface 

water along with infiltration into groundwater are discussed. Furthermore, during 

rehabilitation, particles can be dispersed as aerosols as well, and released into soils and 

surface water; this mode of transport is also reviewed in this section. 

 

2.2.1 Paint Removal Method 

Prior to paint removal, high pressure water (about 3000 psi) is applied to remove salt, 

bird droppings, and other associated debris from bridge structures (NYSDOT, 2008). The 
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most effective and productive method for removing paint and rust from steel has been 

abrasive blasting (Appleman, 1992). In this method, abrasive particles are propelled 

against the surface using a concentrated stream of compressed air. Dust, abrasive, and 

paint debris are vacuumed simultaneously with the blasting operation. Debris is separated 

for disposal and the abrasive is returned for reuse. Typically, hard metallic abrasives are 

used in these systems, where for example, magnetic particles can be easily separated 

(Appleman, 1992). This approach can effectively remove paint from crevices and other 

hard-to-reach areas. In New York State, a complete containment (which is negative 

pressure in a vacuum system) is constructed around the work area to control emissions of 

dust and debris (NYSDOT, 2008). Cast steel grit is used as abrasive blasting material on 

all the bridges in New York State because of the availability and the hardness. The 

abrasive agent is recycled during the separation procedure; however, the steel grit is not 

entirely removed. The percent remaining with the waste is reported to be the smallest size 

fraction. To qualify the degree to which steel grit remains with waste, this research will 

include a statistical analysis of the 117 samples collected.  

Another commonly used method is power tool cleaning (Appleman, 1992), where 

electric and/or air operated impact grinding or brushing tools are applied and include 

power chippers, needle guns, descalers, power wire brushes, and grinding wheels. Power 

tool cleaning produces dust and can generate airborne debris. In contrast to using abrasive 

particles, power tool cleaning does not require a medium. As a result, essentially the only 

debris generated is the material being removed (paint, rust, mill scale, and other surface 

debris). Often the power tool is surrounded with its own shroud that is equipped with a 

vacuum. This method creates a miniature containment around the tool for collecting 
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waste as it is generated, transporting it from the work area through hoses. During the 

removal process, the potential for release to the environment exists along with releases 

from aging infrastructure.  

 

2.2.2 Metals Found in the Soil and Surface Water 

Because lead concentrations in paint far exceed that of other metals (Boxall and 

Fraunhofer, 1977; Boxall and Fraunhofer, 1980), the following discussion is focused on 

lead. The elevated concentrations of lead observed in the environment that originate from 

deteriorating exterior LBP (Davis and Burns, 1999; Binstock et al., 2009) results in 

leaching through soil around the foundation of a bridge or building and into groundwater 

(Binstock et al., 2009) as well as transport into surface waters (Davis and Burns, 1999).  

Decades of peeling exterior paint along with remodeling and renovation activities, 

give rise to dust and debris that contribute to further dispersal of elevated lead 

concentrations in soil (U.S. EPA 1996; 1999). Once lead as well as other metals are 

released from painted structures, they can be attenuated via interactions with surrounding 

soil. Studies (Francek, 1992) indicate lead sorption and attenuation in soils can be 

significant, residing in systems potentially for several thousand years. For example, lead 

concentrations in soil surrounding buildings constructed after 1978 revealed background 

levels, whereas prior to 1978 concentrations greater than 1,000 ppm were found (Francek, 

1992; Francek et al., 1994). Binstock et al. (2009) observed lead concentrations as great 

as 2,540 ppm during an evaluation of soil around housing with LBP applied to exterior 

surfaces. Caravanos et al. (2006) studied deposition of lead in ambient dust for the 

boroughs of New York City from 2003 - 2004 and observed concentrations ranging from 
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175 µg/ft2 to 730 µg/ft2. When compared to the HUD/EPA dust standard of 40 µg/ft2 

(U.S. EPA/HUD, 2003), they reported that in Manhattan and Queens areas, renovations 

at bridges and other construction/demolition activities are potential lead sources and may 

in part explain the lead deposited in this area. 

In paved areas, dissolved lead and lead contaminated paint particulates are 

transported either directly or indirectly to surface water through storm drains. Specifically, 

metals may be mobilized through rainfall, and urban stormwater runoff is considered to 

be a major source of metals to surface waters. Lead contaminated paint particles will 

continue to dissolve as they are being transported, releasing lead into solution. The 

dissolution rate can be enhanced by complexing ligands commonly found in natural 

waters, such as humic acid and chloride (Davis and Barnes, 1999). The mobility of 

metals in the environment is a function of their speciation. While metals in general prefer 

to be bound to surfaces, cations desorb as the pH decreases and anions are released as the 

pH increases. Actually, a number of factors affect metal behavior including sorbents 

present in the subsurface, pH, ionic strength, complexing ligands, reduction oxidation 

potential, competing ions, and time.  

In addition, as mentioned earlier, LBP removal projects may generate wastewater 

from cleaning painted surfaces, wet abrasive blasting, or decontamination of personnel or 

equipment. Although wastewater containing lead or paint solids must be collected, 

properly treated, and discharged to a permitted location to prevent water pollution, some 

may inadvertently flow into the surface water sources. Lead distribution in the rain water 

and wash water from paint has been investigated (Table 2.5). Many of these studies 

reveal concentrations greater than the U.S. EPA fresh water chronic and acute criteria of 
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Table 2.5  Lead Concentrations Observed in Wastewater and Rain Water 

Sample type 

 

Total lead 

(mg/L) 

Reference 

Wastewater obtained by high 
pressure wash 

2.3 – 130 (without filtration) 

2.0 – 220 (with filtration) 
Hopwood et al. (2003) 

Runoff obtained from synthetic rain 
water 

Block 0 - 0.59 

Wood 0 - 1.9 

Brick 0 - 28 

Davis and Burns (1999) 

Storm water runoff 140 Granier et al. (1990) 

Storm water runoff from residential 
areas 

9 – 72 (composite) 

0 – 62 (grab) 
Maryland Department of 
Environmental Resources 
(1993) 

Storm water runoff from commercial 
land use areas 

14 ± 39 (composite) 

54 ± 230 (grab) 
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2.5 and 65 µg/L, respectively (U.S. EPA, 2009) (Table 2.6). Hopwood et al. (2003) 

attempted to apply geotextile fabric to filter wastewater from bridges undergoing 

maintenance prior to its release. Lead concentrations both dissolved and total generated 

by high pressure (3,000 to 10,000 psi) washing ranged from 0 – 5.5 mg/l and 2.3 – 130 

mg/l, respectively; after filtration, concentrations were 0 – 4.1 mg/l and 2.0 – 220 mg/l, 

respectively. These results demonstrated that the filter was ineffective in removing 

suspended fines or dissolved metals ions. One possible explanation for the inefficiency 

may be attributed to the pore size of the filter. Hopwood et al. also analyzed the water 

pressure, nozzle type, as well as paint parameters (thickness, adhesion, and lead content). 

No significant correlations were observed between the lead concentration in wash water 

and the factors associated with the high pressure washing. Davis and Burns (1999) found 

that concentrations in the runoff were a function of the intensity (flow rate/spray area) of 

the synthetic rain water applied, the greater the ratio the greater the concentration. To 

assess the effect of acid rain on LBP structures, Davis and Burns (1999) used synthetic 

rain water with a pH range of 4.2 to 4.4 and composed of 23 mM NaCl, 18 mM HNO3, 

and 18 mM H2SO4. Results revealed that the total lead concentrations (Table 2.5) in the 

runoff were a function of paint age (> 10 y) > (5-10 y) > (0-5 y); the older the structure 

the greater the concentration observed. Additionally, the authors found the structure type 

was important where concentrations followed the trend of wood > brick > block. Yet, 69 

– 84% of lead was associated with particulates. Concentrations in the runoff were 

dependent on the intensity (flow rate/spray area) of the synthetic rain water applied, the 

greater the ratio the greater the concentration. The first flush of the painted structures 

revealed greater lead concentrations than the wash water generated during subsequent 
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Table 2.6  Water Quality Criteria for the Protection of Aquatic Life and Human Health in 
Surface Water 

Contaminant 

Freshwater 
 

Saltwater 
 

Human Health for the 
consumption of 

 

CMC 

(acute) 

(µg/L) 

CCC 

(chronic) 

(µg/L) 

CMC 

(acute) 

(µg/L) 

CCC 

(chronic) 

(µg/L) 

Water + 

Organism 

(µg/L) 

Organism 

Only 

(µg/L) 

Arsenic 340 150 69 36 0.018 0.14 

Barium NA NA NA NA 1,000 NA 

Cadmium 2 0.25 40 8.8 A NA 

Chromium (III) 570 74 NA NA 

A 

NA 

Chromium (VI) 16 11 1,100 50 NA 

Lead 65 2.5 210 8.1 NA NA 

Mercury 1.4 0.77 1.8 0.94 NA 0.3 mg/kg 

Selenium NA 5 290 71 170A 4,200 

Silver 3.2 NA 1.9 NA NA NA 

Zinc 120 120 90 81 7,400 26,000 

 

Source: National Recommended Water Quality Criteria, United States Environmental Protection Agency, 
Office of Water Office of Science and Technology, (4304T) 2006. 
NA: Not Applicable 
A: A more stringent MCL has been issued by U.S. EPA. Refer to drinking water regulations (40 CFR 141) 
or Safe Drinking Water Hotline (1-800-426-4791) for values. 
CMC: The Criteria Maximum Concentration (CMC) is an estimate of the highest concentration of a 
material in surface water to which an aquatic community can be exposed briefly without resulting in an 
unacceptable effect.  
CCC: The Criterion Continuous Concentration (CCC) is an estimate of the highest concentration of a 
material in surface water to which an aquatic community can be exposed indefinitely without resulting in 
an unacceptable effect.  
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contact. As the lead concentration in the peeling paint chips increased, concentrations in 

the runoff increased as well. Similarly, air contamination may result from aerosolized 

paint particles during rehabilitation. 

 

2.2.3 Metals Released into Air 

Lead contaminated particles are aerosolized during abatement, and as a result pose a 

potential health hazard. NIOSH (1992) evaluated eight bridge construction sites where 

abrasive blasting occurred and showed airborne lead concentrations ranged from 2 to 

29,400 µg/m3. Furthermore, worker blood levels ranged from 51 to 160 µg/dL (NIOSH, 

1992). OSHA (1993) promulgated an interim final rule for lead exposure in construction 

(29 CFR 1926.62); the standard reduced the permissible exposure limit (PEL) from 200 

µg/m3 of air as an eight-hour time weighted average (TWA) to 50 µg/m3 of air (Table 

2.7). This regulation also set air action levels for workers without respirators to 30 µg 

lead/m3 of air (Table 2.7) (OSHA, 1993). Sullivan et al. (1996) studied whether 

concentrations of lead, cadmium, and chromium in air during abrasive blasting exceeded 

the OSHA standards. Airborne lead and cadmium concentrations measured at several 

locations inside the containment structure as well as near the workers’ breathing zones 

did exceeded OSHA PEL (Table 2.8) by factors of 219 and 3.1, respectively. Because 

metal contaminants are present in subsurface paint layers during bridge rehabilitation, 

there is a dire need to identify rapid cost effective methods for lead detection in-situ. 
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Table 2.7  Lead Exposure Limits 

Environment Lead limits Reference 

Paint 

 

600 ppm U.S. CPSC (1977) 

1.0 mg/cm2 or 5,000 ppm 
 
 

HUD (1978) 

 

Dust 

 

40 µg /ft2– clearance for floors U.S. EPA / HUD 
(2003) 

250 µg /ft2 –clearance for window sills 

400 µg /ft2 –clearance for window wells 
 
 

Dust lead hazard 
screens only 

 

25 µg /ft2 – floors U.S. EPA / HUD 
(2003) 

125 µg /ft2 –window sills 
 
 

Soil 

 

 

500-1,000 ppm- superfund limit U.S. EPA (2001) 

400 ppm– high contact play areas (communicate) 

1,200 ppm – other residential yard areas (average) 

5,000 ppm – require permanent abatement 

Background or < 400ppm –replacement soil 
 
 

Air 

 

1.5 µg /m3 - EPA national air quality standard 
(quarterly) 

OSHA (1993) 

30 µg /m3 – OSHA action level[1] 

50 µg /m3 – OSHA permit exposure limit (PEL) (8 hour 
average) 
 
 

Blood 10 µg /dl (CDC) level of concern for children OSHA (1993) 

40 µg /dl permissible blood lead level 

50 µg /dl worker removal – lead level 

[1] Action level: means employee exposure, without regard to the use of respirators, to an airborne 
concentration of lead of 30 micrograms per cubic meter of air (30 µg /m3) averaged over an 8-hour period. 
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Table 2.8  Permissible Exposure Limits (PEL)  

Metal Permissible exposure 
limit (PEL) (μg/m3) Reference 

As 10.0 CFR 29, 1910.1018 

Ba 
Soluble compounds 
Barium sulfate 
   Total dust  
   Respirable fraction  

 
0.5 

 
15.0 

5.0 

 
 
CFR 29, 1910.1000 Table Z-1[1] 

Cd 5.0 CFR 29, 1910.1027 
Cr 
Chromic acid and chromates (as CrO3) 
Chromium (II) compounds           
Chromium (III) compounds           
Chromium metal and insoluble salts  
Chromium (VI) compounds 
  

2.0 
0.5 
0.5 
5.0 
1.0 

CFR 29, 1910.1000 Table Z-1 
 
CFR 29, 1910.1026 

Pb 50.0 CFR 29, 1910.1025 

Hg 
Aryl and inorganic  
Organo alkyl compounds  
Vapor 

 
 

2.0 
2.0 
2.0 

CFR 29, 1910.1000 Table Z-1 

Se  
Selenium compounds      
Selenium hexafluoride   

 
0.2 
0.4 

CFR 29, 1910.1000 Table Z-1 

Ag 0.01 CFR 29, 1910.1000 Table Z-1 

Zn 
Zinc chloride fume 
Zinc oxide fume 
Zinc oxide 
    Total dust 
    Respirable fraction 
Zinc stearate 
     Total dust 
     Respirable fraction 

 
1.0 
5.0 

 
15.0 

5.0 
 

15.0 
5.0 

 
CFR 29, 1910.1000 Table Z-1 

 

[1] http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=9992 
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2.3 Techniques Applied for Analyzing Paint Waste and  
Wastewater Generated On Site 

 
Solid waste and paint wash-water are generated on-site whenever LBP is disturbed during 

maintenance, reconstruction, and demolition of bridges and other steel structures. FP-

XRF meters and portable spectrophotometers are field tools used in providing lead and 

metal concentrations present in bridge paint waste and wash water. While these 

measurements have been found to be reliable, their effectiveness in classifying a waste or 

wash water as hazardous or not requires investigation. 

 

2.3.1  Field Portable X-Ray Fluorescence (FP-XRF) 

Protocols for testing LBP with an XRF analyzer have been established by U.S. EPA (U.S. 

EPA, 2001) and HUD (HUD, 1995). Several methods such as the U.S. EPA Method 6200 

(U.S. EPA, 1998) and NIOSH Method 7702 (NIOSH, 1998) involve the use of portable 

XRF technology. During the past several years, there has been a marked improvement in 

the technology of the FP-XRF, which has resulted in increased sensitivity and allowed for 

their use in such applications as air monitoring of particles (Morley et al., 1999; Zamurs 

et al., 1998), dust samples (Zamurs et al., 1998), soil samples (Clark et al., 1999), and 

paint (Daniels et al., 2001). FP-XRF instruments use either a sealed radioisotope source 

or an X-ray tube to provide the excitation energy. Radioisotope sources for irradiating 

samples include Fe55, Co57, Cd109, Am241, and Cm244 (Table 2.9); these sources undergo 

decay described with the half-life, which can be as short as 270 days (Co57). As such, 

manufacturers of FP-XRF technology recommend source replacement at regular intervals 

based on the half-life and activity  
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Table 2.9  Commonly Used Radioisotope Source Characteristics for XRF 

 

Source 
Activity 

(mCi) 

Half Life 

(years) 

Excitation 

Energy (keV) 
Elemental Analysis Range 

Fe55 20 – 50 2.7 5.9 
Sulfur to chromium 

Molybdenum to barium 

K Lines 

L Lines 

Co57 40 0.75 121.9 and 136 
Cobalt to cerium 

Barium to lead 

K Lines 

L Lines 

Cd109 5 – 30 1.3 22.1 and 87.9 

Calcium to rhodium 

Tantalum to lead 

Barium to uranium 

K Lines 

K Lines 

L Lines 

Am241 5 – 30 432 26.4 and 59.6 
Copper to thalium 

Tungsten to uranium 

K Lines 

L Lines 

Cm244 60 – 100 17.8 14.2 
Titanium to selenium 

Lanthanum to lead 

K Lines 

L Lines 

Source: Kalnicky and Singhvi (2001). 
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 (Kalnicky and Singhvi, 2001). Table 2.10 lists representative isotope and X-ray tube 

sources for FP-XRF instrumentation. Isotope sources give off radiation at specific energy 

levels and, therefore, efficiently excite elements within a specific atomic number range (L 

line or K line or both). As a result, no single radioisotope source is sufficient for exciting 

the entire range of elements of interest in environmental analysis. Some instruments 

provide dedicated element analysis (e.g., Pb in paint), while others provide a variety of 

elemental analyses depending on source and detector configuration. These units generally 

are readily adaptable to field operations, though they may be limited by the capacity of 

the battery. Units evaluated provide a minimum of 8 h of field use with rechargeable and 

replacement batteries.  

Miniature X-ray tubes have become available since 2002 (Martin and Sackett, 

2005), allowing their incorporation into portable XRFs. An important difference between 

X-ray tubes and radioactive sources is that X-ray tubes produce a continuum of X-rays 

across a broad range of energies. This continuum is weak compared to the characteristic 

X-rays, but can provide substantial excitation since it covers a broad energy range. 

However, one issue in using an X-ray tube source is the resulting background in the 

spectrum near the analytic X-ray lines from scatter by the sample. For this reason a filter 

is often used between the X-ray tube and the sample to suppress the continuum radiation 

while passing the characteristic X-rays from the anode; these filters are incorporated into 

the XRF unit. Miniature X-ray tubes permit simultaneous analysis of 20 to 25 elements; 

they also generally provide lower detection limits as compared to isotope systems for 

most metals. Additionally, the testing time does not increase with an X-ray tube, because 

the source does not decay. Typically, the testing speed after 4 or 5 years is the same as  
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Table 2.10  Isotope and Tube Based Sources for FP–XRF 

 

Developer Technology 
Element 

range 
Excitation Source: 

Cost of the 

instrument 

Oxford   HorizonPbia  Pb Cd109 20 mCi Only available in 

France 

Niton Xli/p 300 Pb Cd109 40 mCi $17,000b 

Oxford XMET 5000/5100 S–U Ag anode, ≤ 45 keV $30,000-40,000c 

Niton Niton XL3t 600 K–U Au anode, ≤ 50 keV $37,000b 

Innov-X Systems, 

Inc 
LBP4000 Pb Ag anode, 10-25 keV $23, 220d 

Spectro  SPECTRO xSORT S–U W anode, ≤ 40 keV $34,536e 

 

a: Only available in France 
b The quotation from Niton 
c The quotation from Oxford 
d The quotation from Innov-X Systems, Inc 
e The quotation from Spectro 
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when the analyzer's tube was new. While, in addition to the loss in analytic capabilities, 

radioisotope based units must eventually be replaced for sources. However, with a 

maximum output of 50 keV (Table 2.10), none of the handheld X-ray tube instruments 

found for this work can produce X-rays with sufficient energy to excite the K shell X-

rays of lead. This K shell excitation is needed for lead-based paint buried beneath more 

recent coatings (Martin and Sackett, 2005). Because of the inconclusive range of X-ray 

tube-based XRF analyzers at and around the lead concentration of 1.0 mg cm-2 – the 

Federal standard for residential or occupied properties (U.S. EPA, 2003) – users run the 

risk of obtaining an inconclusive lead concentration in lead-based paint. With the ability 

to measure both L and K shell fluorescent lead X-rays, a radioisotope-based instrument 

can reliably test the lead even in the densest substrates and deeply buried or shielded 

paint. Given HUD’s determination (HUD, 2003) that X-ray tube-based instruments 

provide inconclusive results as often as 16% of all samples and that these instruments can 

provide results with a false-positive rate of 2.5% and a false-negative rate of 1.9%, 

radioisotope-based instruments are needed to accurately identify and quantify lead in 

lead-based paint.  

With the exception of Pb, X-ray tube sources are appropriate for all Resource 

Conservation and Recovery Act (RCRA) metals and Zn, as these have the capability of 

providing faster results in detecting a wider range of metals in the sample. On the other 

hand, a radioisotope-based instrument can provide deeper and multilayer detection for Pb. 

Isotope based FP-XRF has been used by a number of researchers for determining 

Pb in paint. A study was conducted by Daniels et al. (2001) to demonstrate the 

effectiveness of a wet abrasive blasting technology to remove lead-based paint from 
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exterior wood siding and brick substrates as well as to evaluate the effectiveness of two 

waste stabilization technologies to treat the resulting blast media (coal slag and mineral 

sand) paint debris. The technology efficacy was determined by the use of an XRF 

analyzer with the capability of both L - and K-shell excitation for Pb using a radioisotope 

source. To detect the relationship between lead levels on painted surfaces and percent 

lead in the particles aerosolized during lead abatement, Choe et al. (2002) used a FP-XRF 

instrument (NITON-700, NITON Inc., Bedford, MA) to measure lead levels. 

Experiments were performed in the University of Cincinnati Environmental Test 

Chamber using wood doors painted with lead-based paint. While a good relationship (r2 = 

0.83) was found between the XRF readings and the percent lead in the particles 

aerosolized during dry scraping, no significant relationship was found for wet scraping (r2 

= 0.09) or dry machine sanding (r2 = 0.002). Clark et al. (2005) used FP-XRF to 

determine environmental lead concentrations and distribution in the environment by 

studying Pb concentrations in paint, dust, air, soil, and other bulk samples near several 

industries that used lead and in the residential environments of children with very high 

blood lead levels. 

Field investigations have benefited from the XRF instrument in various modes 

from safety monitoring to site screening. Kilbride and Poole (2006) detected total 

concentrations of Cu, Pb, As, Cd, Zn, Fe, Ni, and Mn for 81 soil samples using two types 

of FP-XRF systems: isotope (Niton Xli with sources Cd109 and Am241) and an X-ray tube 

source (Niton XLt 700 series). Metal concentrations were statistically compared with 

analytical results from aqua regia digestion followed by inductively coupled plasma 

optical emission spectrometry (ICP-OES) analysis. The ability of each FP-XRF 
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instrument to produce comparable analytical results was assessed by linear regression, 

where a strong relationship was found for Fe analysis (r2>0.89) with the X-ray tube 

instrument and for Fe, Cu, Pb, Zn, Cd, and Mn (r2>0.88) with the isotope source-based 

instrument. Particle size did not influence the FP-XRF analyzer performance. Radu and 

Diamond (2009) used the XLp 703 Cd109 source analyzer and the XLt 793 miniaturized 

X-ray tube for thin sample and bulk homogenized (soil) sample analysis. A good 

correlation between total metals from digested samples analyzed by flame atomic 

absorption spectroscopy (AAS) and the tube-based XRF technique was achieved (r2 

values for Pb, As, Cu, and Zn were 0.995, 0.991, 0.959, and 0.843, respectively).  

Markey et al. (2008) found that lead concentrations in soil obtained by FP-XRF 

protocol Method 6200 (U.S. EPA, 1998) are highly correlated (r2 = 0.9764 – 0.992) with 

laboratory results using digestion followed by AAS (Table 2.11). One reason strong 

correlations were observed was that samples were homogenous, fine-grained, and dry; 

good correlations are generally observed for such samples (Kirtay et al., 1998; Clark et 

al., 1999). Binstock et al. (2009) evaluated the lead concentrations in soil with FP-XRF 

and digested samples followed by ICP-AES around housing where LBP was applied to 

exterior surfaces. Statistical analysis (i.e., sign test, Wilcoxon signed rank test, and paired 

t-test) indicated no difference (r2 = 0.98 – 1.00) between the measurements. The results 

indicate that both the isotope and the X-ray tube FP-XRF instruments are effective tools 

for rapid, quantitative assessment of soil metal contamination and for monitoring the 

efficacy of remediation strategies. 

Air quality monitoring has involved traditional high-volume air sampling for 

particulates and volatilized lead when studying LBP removal from bridges with abrasive  
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Table 2.11  Correlation between Metal Concentrations in Soil Measured by FP-XRF and that Found through Digestion Followed by 
AA and ICP 

Sample Type 
Metal concentration by XRF (ppm) 

 
Metal concentration by AA or ICP (ppm) 

 
r2 value Reference 

Pb As Zn Cd Pb As Zn Cd   

Marine sediment 0.70 – 0.87 – – – – – – 
Kirtay et al. 

(1998) 

Soil 750 - 882 – – – 
920 – 

1,124 
– – – 

0.9764 – 

0.992 

Markey et al. 

(2008) 

Soil 5,300 ± 300 370 ± 30 1,040 ± 60 – 
5,000 ± 

300 
860 ± 60 930 ± 60 – 0.843 – 0.996 

Radu and 

Diamond 

( 2009 ) 

Soil in the industrial 

land 
2 – 74,356 2 – 3,920 

35 – 

60,820 
12 - 613 

5 – 

40,398 
2 – 5,646 3 – 25,389 

0 - 

447 
0.26 – 0.93 

Kilbride et al. 

(2006) 

–  not measured  
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blasting. To determine the airborne lead concentration in a worker’s breathing zone at a 

lead abatement site, Morley et al. (1997) used closed-faced, 37-mm cassettes with pre-

loaded 0.8 micron pore size filters to sample aerosolized particles during blasting. FP-

XRF was used for analysis and compared with that of digested samples measured with 

the graphite furnace AAS. No significant difference was reported between the lead 

concentrations obtained by the two methods (p-value 0.72). As a result, NIOSH (1998) 

developed Method 7702 for the FP-XRF analysis of air samples on filters. In another 

similar study, Zamurs et al. (1998) compared results of traditional laboratory filter 

analysis for lead by using ICP versus FP-XRF; results indicated that the latter effectively 

measured concentrations. In fact, a linear relationship between XRF and ICP 

measurements of digested samples was developed for air samples and the results showed 

a strong correlation (r2 = 0.95). Such a relationship can be used to compare lead 

concentrations determined by FP-XRF analysis with lead limits established for workers 

in bridge-cleaning activities.  

Overall, XRF has been widely applied in such applications as air monitoring of 

particles (Morley et al., 1997; Zamurs et al., 1998), dust samples (Zamurs et al., 1998), 

soil samples (Clark et al., 1999), and paint (Daniels et al., 2001). XRF has been proven 

effective in on site analysis as demonstrated by correlations between field and laboratory 

results. However, based on the literature, studies to date have not been conducted on 

correlating field results to lab analyses based on the U.S. EPA TCLP (U.S. EPA, 1992). 
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2.3.2  Field Portable Spectrophotometer  

UV-visible spectrophotometry is commonly used for lead Pb(II) analysis because of its 

simplicity, precision, accuracy, low cost, and sensitivity. The Standard Method (SM) 

3500-Pb D (Eaton et al., 2005) is a dithizone (C13H12N4S) method initially developed for 

wastewater analysis using a spectrophotometer. Specifically, the dithizone method is 

designed for determining lead in water and wastewater. The DithiVer Metals Reagent is a 

stable powder form of dithizone. Lead ions in a basic solution react with dithizone is used 

to form a pink to red lead-dithizonate complex, which is extracted with chloroform. 

Extracted samples are then measured in the spectrophotometer at 515 nm. While a 

number of companies manufacture spectrophotometers for lead analyses, the Hach DR 

2800 is the only field portable instrument that meets the U.S. EPA approved Method 

8033 (Eaton et al., 2005) (which is equivalent to the SM 3500-Pb D). As a result, field 

detection of lead concentrations in wash water or wastewater is possible. Hach DR 2800 

can detect lead concentrations as low as 3 to 300 μg L-1. 

The Hach portable spectrophotometer has been used for on-site applications as a 

field portable tool. Kucukbay et al. (2007) investigated chemical and physical parameters 

of the water and sediment samples taken from Karakaya Dam Lake during the four 

seasons. Constituents measured included Fe, Cu, Pb, Mn, Cd, Ca, NO2
--N, NH3-N, PO4

3-, 

organic substances, and total filterable residues using standard reagents kits for the 

HACH DR 2010 spectrophotometer.  

In addition to the in-situ analysis, leaching studies are effective methods to 

investigate contaminant mobility in the paint waste.  
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2.4 Leaching Studies and Waste Classification 

While understanding metal distribution and techniques applied for the paint waste 

analysis are important, most critical is the metal mobility, which affects the waste 

classification and disposal. Toxicity characteristic leaching procedure (U.S. EPA, 1992) 

and multiple extraction procedure (U. S. EPA, 1986; 2004) are short-term and long-term 

leaching studies that simulate landfill conditions for waste classification. Sequential 

extraction (SE) focuses on resolving phases trace metals are associated within the waste, 

which supports modeling efforts. 

 

2.4.1 Paint Waste Classification with TCLP 

LBP is technically defined as having a minimum of 0.5% (5,000 ppm) by weight lead or 

when assessing surfaces, greater than 1.0 mg/cm2 Pb (HUD, 2003; U.S. EPA, 1995). For 

non-residential LPB waste, the U.S. EPA TCLP (U.S. EPA, 1992) must be conducted on 

a representative sample to determine if the wastes are characteristically hazardous (Table 

2.12). Specifically, wastes with a TCLP concentration less than the lead toxicity 

characteristic (TC) limit of 5 mg/L may be disposed at a Class I or II Municipal Solid 

Waste Landfill (MSWLF) or a construction and demolition (C&D) landfill. On the other 

hand, wastes with TC lead concentrations greater than 5 mg/L (Table 2.13) must be 

managed as a hazardous waste and disposed at an U.S. EPA RCRA permitted treatment, 

storage, and disposal (TSD) facility (U.S. EPA, 1998).  

In 2004, the Minnesota Department of Transportation (Mn/DOT, 2004) designed 

guidelines and procedures to comply with Minnesota Air Quality and Waste Management 

regulations for the removal of paint on steel bridge structures. Specifically,  
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Table 2.12  Types of Landfillsa 

 

Types of 
landfill 

Description of landfill Acceptable waste Determination 
of lead level 

C&D 

Construction, 
demolition, and land-
clearing debris landfill; 
least protective landfill: 
no liners, and no 
groundwater monitoring 

Residential LBP waste 

Analyze paint using 
digestion for total 

lead analysis or by 
XRF 

 

MSWLF 

(Subtitle D) 

Municipal solid waste 
landfill: synthetic liner 
and leachate collection 
system 

Residential LBP waste. 
Hazardous wastes from 
“conditionally exempt small 
quantity generators” if 
acceptable under their 
special waste plan. 

TCLP 

 

Subtitle Cb 

Hazardous waste  

landfill 

Paint residue with toxicity 
concentration >5.0 mg/l for 
Lead (Table 2.13) 

TCLP 

 

a: U.S. EPA, (2003) Disposal of Residential Lead-Based Paint Waste, Final Rule 
http://www.epa.gov/wastes/nonhaz/municipal/landfill/pb-paint.htm 

b: Disposal in a Subtitle C landfill does not apply to waste generated by construction or 
demolition activities conducted on a household or residence.  
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Table 2.13  Characterization Limits of the RCRA Metals and Zinc in Waste 

 

Metal Waste code MCL[1] 
(μg/l) TC[2] (mg/l) 

As D004 10 5 

Ba D005 2000 100 

Cd D006 5 1 

Cr D007 100 5 

Pb D008 
TTb Action 

Level=15 
5 

Hg D009 2 0.2 

Se D010 50 1 

Ag D011 100a 5 

Zn  5000a NA 

    

 
 
[1] MCL: Maximum Contaminant Level, the highest level of a contaminant that is allowed in drinking 
water. U. S. EPA (2009) 
http://www.epa.gov/safewater/contaminants/index.html#mcls 
 
[2] TC level: Maximum Concentration of Contaminants for the Toxicity Characteristic.  
U. S. EPA (1992), Toxicity characteristic leaching procedure (TCLP), SW-846 Method 1311Fenderal 
Register, 55(March 29), Washington, DC. 
 
a. SDWR: Secondary drinking water regulations. 
 
b. Lead and copper are regulated by a treatment technique that requires systems to control the corrosiveness 
of their water. If more than 10% of tap water samples exceed the action level, water systems must take 
additional steps. For copper, the action level is 1.3 mg/L, and for lead is 0.015 mg/L. 
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XRF was designated as an effective technique to determine the presence of lead in paint 

for steel bridge structures prior to blasting. For paint with greater than or equal to 0.5% 

(5,000 ppm) by weight or 0.5 mg/cm2, the blasting residue will be sent to a laboratory 

and analyzed with the TCLP to determine waste classification. The residue can then be 

transported to an appropriate TSD facility. Daniels et al. (2001) studied the effectiveness 

of two stabilization technologies, Blastox and PreTox 2000 fast dry, on paint waste 

generated from a wet abrasive blasting technology. Even with the stabilization 

technology, paint debris was still classified as a hazardous waste based on the TCLP test 

([Pb] > 5 mg/L). 

As discussed earlier, a number of factors affect contaminant behavior which in 

turn affects leaching. Wadanambi et al. (2008) used the TCLP and the synthetic 

precipitation leaching procedure (SPLP) to examine leaching from LBP, where samples 

were obtained from a military barrack at Fort Ord, California (LBP-A) and a can of metal 

primer that contained red lead pigment (LBP-B). Results revealed that leached 

concentrations were dependent on pH as using the TCLP (pH ≤ 5.51) they were 5 - 25 

times greater than those observed using the SPLP (pH ≥ 5.65). In addition, the substrate 

impacted the degree to which leaching occurred: drywall > wood > steel > concrete. Yet, 

the average lead concentration leached for all substrate conditions except concrete 

exceeded the TC limit for Pb (5 mg/L); the most significant factor was that of pH. 

With TCLP, wastes are classified as hazardous or non-hazardous. However, this 

procedure requires collecting representative samples in the field, conducting the TCLP 

study in the lab, and analyzing samples with either inductively coupled plasma mass 

spectrometry (ICP-MS) or AAS. Therefore this method requires lengthy periods of time 
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and effort. Should an onsite classification method be feasible, significant time and costs 

may be saved. 

 

2.4.2 Correlations Observed between XRF Results and TCLP or SPLP Analysis 

A number of studies have found correlations between the TCLP test results and total 

concentrations of lead (Cao et al., 2003; Sun et al., 2006; Isaacs, 2007). Cao et al. (2003) 

found a linear relationship between total Pb (from digestion) and TCLP-Pb when 

studying the weathering of lead bullets and their environmental effect at outdoor shooting 

ranges. To assess the toxicity of heavy metals in contaminated soils located in a lead–zinc 

mine, Sun et al. (2006) measured concentrations of Cu, Zn, Pb, and Cd in soils. The 

resulting correlation between extractable Pb by TCLP test and total Pb measured by ICP-

MS on digested samples was statistically significant (r2 > 0.96). Isaacs (2007) studied 

lead leaching from soils and observed a significant correlation between TCLP results and 

total lead measured by ICP-MS on digested soil samples less than 75 μm (r2 = 0.82, P << 

0.001, n = 13). 

NJDEP (2008) provided guidance for the use of the SPLP procedure to develop 

site-specific impact to ground water soil remediation standards (Figure 2.1). A linear 

regression was developed between contaminant concentrations in soil and leachate. 

Similarly, Florida Department of Environmental Protection (FDEP) (2009) provided 

guidance intended to address application of SPLP results in establishing site-specific 

regulatory limits for lead in soil. Specifically, paired results for total soil contaminant 

concentrations versus SPLP for each sampling location were obtained. To ensure lead 

concentrations would be below the groundwater cleanup target level (GCTL)  
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Figure 2.1  Relationship between contaminant concentration in soil and in leachate. 
Source: (NJDEP, 2008) 
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(drinking water standard), which is 15 μg/L in Florida, the estimated threshold based on 

the set of soil sampling data was approximately 250 mg/kg (Figure 2.2). This limit has 

since (FDEP, 2009) been recommended to guide remedial actions or design a risk-based 

approach to prevent groundwater contamination above drinking water standards. Clearly, 

because reliable correlations have been found between the total and leachable metal 

concentrations, the potential to perform direct, in situ hazardous waste classification of 

paint waste exists. As such, leaching studies may not be necessary and use of the FP-XRF 

instruments may be further advanced. In this work, a correlation between concentrations 

measured with FP-XRF and TCLP was investigated to achieve in situ hazardous waste 

classification. 

However, a number of studies found that the presence of iron greatly reduced 

metal leaching from paint (Appleman, 1992; Bernecki et al., 1995; Smith, 1993) and 

other wastes (Cornelis et al., 2008; Kendall, 2003; Komárek et al., 2013). Smith (Smith, 

1993) reported TCLP (U. S. EPA, 1992) results from LBP where leached concentrations 

of Pb averaged 70 mg L-1. After the use of steel grit in removing paint, concentrations 

decreased to less than 5 mg L-1 (U. S. EPA, 1992). Bernecki et al. (Bernecki et al., 1995) 

hypothesized that iron reduced the lead in the paint waste to the less soluble metallic 

form. Yet the study did not include analyses to evaluate lead speciation. Other 

mechanisms may be more plausible such as sorption of Pb to iron oxides formed on the 

steel surfaces (Cornelis et al., 2008; Komárek et al., 2013; Zhou and Haynes, 2010). Iron 

oxide coatings are important interfaces affecting the fate of the trace metals because of 

their high surface area, strong affinity for metals, and the large sorption capacity (Cornell 

and Schwertmann, 1996). Cornelis et al. (Cornelis et al., 2008) reviewed the leaching  
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Figure 2.2  Relationship between the SPLP lead and total lead in the soil. 
Source: (FDEP, 2009). 
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mechanism of metal species in alkaline solid wastes including incinerator bottom ash, fly 

ash, and metallurgical slags. They found that adsorption to amorphous Fe and Al oxides 

is significant in weathered wastes and consequently reduced metal concentrations in the 

leachate. Nonetheless, because steel grit is used as abrasive blasting material during 

bridge rehabilitation, lead and other metals will be sequestered during the leaching 

procedure. Therefore, the long term mobility of the paint waste is investigated in this 

research using multiple extraction procedure (Esakku et al., 2008; Townsend et al., 2004) 

and the phases metals are associated with are addressed with sequential extraction 

(Davranche and. Bollinger, 2000; Pagnanelli et al., 2004).  

 

2.4.3 Methods Used to Address the Long-term Metal Mobility of Trace Metals 

MEP (U.S. EPA, 1986) was designed to simulate leaching of waste from repetitive events 

of acid rain in a landfill. The method is intended to simulate 1,000 years of freeze and 

thaw cycles and prolonged exposure to a leaching medium. This method involves an 

initial extraction with an acetic acid (CH3COOH) solution (the pH of the solution 

maintained less than 5 through addition of 0.5 N CH3COOH) (Method 1310B) (U. S. 

EPA, 2004) and then at least nine successive extractions with a synthetic acid rain 

solution (sulfuric/nitric acid [H2SO4/HNO3] adjusted to an initial pH 3). Each extraction 

is conducted for 24 hours under completely mixed conditions. The repetitive extractions 

reveal the leachable concentrations in a simulated natural environment. One advantage of 

the MEP over the TCLP is that the MEP gradually removes excess alkalinity in the waste. 

Therefore, the leaching behavior of metal contaminants can be evaluated as a function of 

decreasing pH, which increases the solubility and mobility of metal cations.  



 

41 

A limitation of the MEP method is the lack of the mechanistic information on 

how the metal contaminant is associated with the solid. In a number of studies, the MEP 

test has been applied to investigate the long-term mobility of the waste. Esakku et al. 

(2008) assessed the leaching potential of select metals comparing total acid digestion 

(AD) with the MEP, TCLP, and a Canadian equilibrium leach test (ELT) (Environmental 

Canada and Alberta Environmental Centre [ECAEC], 1986). Results from the MEP 

approach revealed that leaching increased one to two orders of magnitude as compared to 

the TCLP. In addition, the extraction efficiency decreased in the following order: MEP > 

TCLP > ELT. To assess the toxicity and long-term stability, Shanmugamathan et al. 

(2008) conducted the TCLP and MEP on copper slag samples from an Indian copper 

plant. Results revealed that although the leachable metal concentrations (Pb and Zn) from 

the MEP test are greater than those from TCLP, the leached concentrations over the nine 

extraction cycles did not exceed the TC levels for the target metals. Based on these 

results, Shanmugamathan et al. concluded that the metals in the slag are not labile and 

would not be expected to leach under acid rain conditions.  

While TCLP and MEP simulate leaching under landfill conditions, SEP subjects a 

sample to an extractant where a phase is dissolved. This extraction provides an estimate 

of the potential phases metals may be associated within the system (Tessier et al., 1979; 

Quevauviller, 1998; Filgueiras et al., 2002). SEP was developed in the 1970s for studying 

metal behavior (Gibbs, 1973; Shuman, 1979; Stover et al., 1976; Tessier et al., 1979). 

The number of steps and operationally defined phases in SEP schemes vary between 

three (Quevauviller et al., 1994; Rauret et al., 1999; Silviera and Sommers, 1977) and 

nine (Krishnamurti and Naidu, 2000, 2002; Miller et al., 1986b; Heron et al., 1994) 
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according to preferences and purpose. One of the more commonly used procedures 

(Tessier et al., 1979) isolates how the metal is associated with mineral, organic, and 

residual phases. Five fractions of increasing stability are isolated in the procedure: ion 

exchangeable, carbonates, adsorbed to iron and manganese oxides, bound to organic 

matter, and residuals, with estimated uncertainties up to 10%. Another procedure is the 

BCR which was developed by the Standards, Measurements, and Testing (SM&T) 

programme (Rauret et al., 1999). The procedure isolates three metal fractions, acid 

extractable (exchangeable and bound to carbonates), reducible (bound to iron and 

manganese oxides), and oxidizable (bound to sulfides and organics) (Rauret et al., 1999; 

Kartal et al., 2006). Sutherland and Tack (2002) found uncertainty in an optimized BCR 

procedure is typically 15%. The main difference between Tessier and BCR is that the 

former was designed to extract elements from specific phases, including exchangeable, 

carbonates, oxides, and sulfides/organic matter. The BCR method was not designed to 

attack specific phases, but rather to examine the potential for trace metal release under 

environmental conditions (ion exchange, reduction, and oxidation).  

 

2.5 Modeling Applied for Metal Mobility 

Because steel grit is used as abrasive blasting material during bridge rehabilitation, lead 

and other metals will be sequestered during the leaching procedure. Therefore, a more 

complex model is needed to address this condition. Modeling metal leaching and 

mobility have traditionally involved mechanistic models, such as the diffuse layer model 

(DLM) (Dzombak and Morel, 1990) applied when iron oxides are significant. Other 

theoretical and empirical models have also been invoked in a number of studies. Because 
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of the need to use field-based data in addressing waste classification, a statistical 

modeling is introduced and reviewed with principal components analysis (PCA). 

Metal leaching from waste occurs primarily by two mechanisms (a) surface 

reactions (adsorption/desorption and/or surface precipitation) from the associated matrix, 

and (b) precipitation/dissolution. A number of researchers have demonstrated that the 

metal sorption to the Fe and Mn oxides is the rate limiting step for metal leaching from 

soil and cement-based solidified wastes (e.g., Tiruta-Barna et al., 2001; Karamalids and 

Voudrias, 2008; Dijkastra et al., 2009). Surface complexation models have successfully 

described metal leaching from the heterogeneous iron oxide surface, such as soil 

(Vithanage et al. 2013; Jing et al., 2006), steel slag (Apul et al. 2005), and weathered 

waste (Meima and Comans, 1997; 1998; Kendall, 2003). Kendall (2003) applied diffuse 

layer model (DLM) to investigate the potential leachability of Pb, Cu, and Zn from the 

foundry sand wastes. Comparing precipitation and sorption modeling with experimental 

data, Kendall further demonstrated that sorption is a more significant factor over the pH 

range of 3 to 8. Furthermore, by using DLM, Vithanage et al. (2013) successfully 

modeled Sb(V) adsorption on the heterogeneous iron-oxide-rich red earth soils. In 

addition to adsorption/desorption, Meima and Comans (1997; 1998) and Apul et al. (2005) 

found that surface coprecipitaion may also play an important role in metal leaching. 

Mechanistic models (such as DLM) provide a mathematical form of the equilibrium 

reaction based on mass balances of the species present and surface charge effects (Bradl, 

2004). However, because this approach requires water chemistry conditions and species 

present, mechanistic models in general are more complex. Therefore, both mechanistic 

and empirical modeling are considered when addressing experimental data (e.g., Sauvé et 
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al., 2000; Lofts et al., 2004).  

The empirical model is a posteriori form observed from adsorption data. For 

determining a good fit of experimental data a mathematical form is chosen that is as 

simple as possible and the number of adjustable parameters is kept at a minimum. Simple 

empirical models may be extended by considering additional mechanisms such as 

competition for sorption sites or heterogeneity of solid phase (Bradl, 2004). A number of 

researchers have used the theoretically-based Langmuir (e.g., Pierce and Moore, 1980; 

Padmanabham, 1983; Jackson and Inch, 1989; Kooner, 1993; Kanungo, 1994; Lee et al., 

1996; 1998; Sauvé et al., 2000) and empirical Freundlich models (e.g., Dzombak and 

Morel, 1986; Mishra and Tiwary, 1995; 1998; Mishra et al., 1997; Christophi and Axe, 

2000; Vaishya and Gupta, 2004) to describe equilibrium adsorption (Figure 2.3).  

Because of the heterogeneity of the paint waste, one approach considered is based 

on the Freundlich isotherm (Eq. (1)):  

(adsorbed metal) = K (dissolved metal)n                                                                                              (1) 

where K is a function of adsorption energy and temperature and is a measure of 

adsorptive capacity; n determines intensity of adsorption. Several studies (Mcbridge et al, 

1997; Sauve et al., 2000; Lofts et al., 2004) have introduced multivariate regression 

equations to predict Freundlich parameters K and dissolved concentrations from bulk soil 

properties. Buchter et al. (1989) measured Freundlich parameters (K and n) for 11 

different soils and 15 trace elements. They also explored the correlation of Freundlich 

parameters with select soil properties and found that pH, cation-exchange capacity (CEC), 

and iron/aluminum oxide concentrations were the most important factors that correlated 
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Figure 2.3  Classification of adsorption isotherms, adopted from Bradl and Hubbard 
(2002).
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with K. Sauve et al. (2000) modeled the dissolved concentration of Cd, Cu, Ni, Pb, and 

Zn in soil solutions from a variety of contaminated soils. They found that K was 

dependent on pH, total metal concentrations (for Zn and Pb) (Eq. (2)), and soil organic 

material (for Cd, Cu, and Ni) (Eq. (3)). They further developed the model (Eq. (4)) for 

system studied. However, in these models, Sauve et al. (2000) did not include the specific 

oxides or clays in the soil.  

Log K = a + b∙pH + c∙log(total metal)                                                                          (2) 

or Log K= a + b∙pH + c∙log(soil organic material)                                                      (3) 

Log (dissolved metal) = a + b∙pH + c∙log(total metal) + d∙log(soil organic material) (4) 

Necessary variables in such regressions are the soil pH and the geochemically active 

species, which involves exchange with the soil solution and hence controls the dissolved 

concentration. The following general expression highlights important conditions: 

Log (dissolved metal) = a + b∙pH + c∙log(total metal) + d∙log(binding sites)        (4) 

The objective of this study is to use metal concentrations obtained with the FP-

XRF to predict metal leaching and namely waste classification for the paint waste. From 

the preliminary results (Chapter 6), iron oxides in the paint waste were observed to be 

important surfaces for controlling the degree of metal leaching from the paint waste. 

Therefore, total Fe is applied and reflects the presence of iron oxides in the model. A 

fraction of metal was also observed to be associated with carbonates in the paint waste, 

which may be due to the application of calcite (CaCO3) (12% by wt in the paint waste; 

Chapter 6) as an extender (supplementary pigments) in the paint. In fact, the dissolution 

of calcite (CaCO3) will also affect the pH of the system during the leaching procedure. 

Consequently, total Ca is expected to be an important variable in the model. Other groups 



 

47 

of metals such as Zn and Ti present at elevated concentrations in the paint waste may be 

important variables in the model accounting for their potential influence on metal 

leaching in competitive adsorption and their function as binding site. 

Based on the above discussion, metal leaching (the release of trace metal cations 

or anions into the aqueous phase) is expected to depend on a number of variables 

including (a) total metal concentration; (b) CaCO3; (c) Fe concentration; and, (d) other 

groups of metals such as Zn and Ti present at elevated concentrations. The modeling 

approach to predict trace metal leaching in paint waste involved a statistical analysis as 

follows: 

(i) Multivariate regression is tested in the first step of modeling. 

Leached metal = a + b∙(total Ca) + c∙(total Fe) + d∙(metali,total) + e∙(metali+1, total) 

+… + n∙(metaln, total)    

(ii) Box-Cox transformation (Kutner et al., 2005) is applied according to the residual 

analysis if necessary, where leached metal y is transformed to yλ: 

(Leached metal)λ = a + b∙(total Ca) + c∙(total Fe) + d∙(metali,total) + e∙(metali+1, total) 

+… + n∙(metaln, total)    

(iii)Transformed models: 

Log (leached metal) = a + b∙log(total Ca) + c∙log(total Fe) + d log(metali,total) + 

e∙log(metali+1, total) +… + n∙log(metaln, total)                                                    

where leached metal is in mg L-1, a-n are coefficients determined using regression with 

appropriate data sets, and total metal is in mg kg-1 based on FP-XRF. The adsorption 

capacity is a function of iron oxides in the paint waste, which is represented by total Fe in 

the equation. Total Ca represents the calcite (CaCO3) applied in the paint, which may also 
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affect the pH (and alkalinity) during leaching, and Mei,total represents the other groups of 

metals in the paint waste that may affect the metal leaching. 

However, if all the potential variables are considered, there will be more than ten 

variables in the model. Therefore, it is necessary to sort the samples based on the factors 

that affect the metal leaching significantly. In this study, PCA was applied to identify the 

important factors and the potential variables in the model. PCA is a classical technique 

based on linear algebra. The analysis involves a mathematical procedure that transforms a 

number of possible correlated variables into a smaller number of uncorrelated variables 

called principal components (PCs) (Torrecilla et al., 2009), which are linear combinations 

of the original variables. The principal components account for as much of the variability 

in the data as possible, and each succeeding component accounts for as much of the 

remaining variability as possible. PCA is mainly used for key factors that explain the 

majority of variation within the data.  

 

2.6  Summary of Literature 

Studies of paints on bridges, buildings, and houses indicate that: 1. Lead in paint surface 

or subsurface layers exceed 5,000 ppm (mg/kg); 2. Zinc has been observed at elevated 

concentrations; 3. Cadmium is not routinely observed at detectable concentrations; and, 4. 

Selenium and silver were not generally used. During aging and weathering, paints tend to 

chalk, chip, flake, and otherwise deteriorate, resulting in an accumulation of lead and 

other contaminants in soils or surface water surrounding painted structures. Furthermore, 

during maintenance, reconstruction, rehabilitation, and demolition of bridges and other 

steel structures, solid waste and wash water are generated on-site. FP-XRF and portable 
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spectrophotometers maybe effective tools for assessing metal concentrations and 

characterizing waste as well as wash water. In addition, based on the literature review, 

reliable correlations have been found between the total and leachable metal 

concentrations in soil; the potential to perform direct, in situ hazardous classification of 

paint wastes exists. As such, leaching studies may not be necessary and use of the FP-

XRF instruments may be further advanced. However, because steel grit is used as 

abrasive blasting material during bridge rehabilitation, lead and other metals will likely 

be sequestered during the leaching procedure. Therefore, the long term mobility of the 

paint waste is investigated in this research using MEP and sequential extraction 

procedure. Furthermore, modeling metal leaching and mobility have traditionally 

involved mechanistic models, such as the equilibrium DLM applied when iron oxides are 

significant. Other theoretical and empirical models have also been invoked in a number 

of studies. Because of the need to use field-based data in addressing waste classification, 

a statistical model using data from the FP-XRF is introduced with PCA. In the next 

section, the methodology is presented and followed by the associated results and 

discussion. 
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CHAPTER 3 

OBJECTIVE AND HYPOTHESES 

 

Based on the literature review, reliable correlations have been found between the total 

and leachable metal concentrations, the potential to perform direct, in situ hazardous 

classification of paint wastes exists. As such, leaching studies may not be necessary and 

use of the FP-XRF instruments may be further advanced. However, because steel grit is 

used as abrasive blasting material during bridge rehabilitation, lead and other metals will 

be sequestered during the leaching procedure. Therefore, a more complex model is 

needed to address this condition, where pH, iron concentrations, and metal concentrations 

will be addressed. Therefore, the objectives of this research are to: 

• Evaluate the effectiveness of the FP-XRF to reliably characterize the hazardous 

nature of the paint waste. 

• Quantify the degree to which steel grit remains with waste, which affects metal 

leachability. 

• Investigate the short-term and long-term mobility of the trace metals from the 

waste by using TCLP, MEP, and SE. 

• Evaluate the mechanisms responsible of metal leaching from the paint waste in 

the presence of steel grit during bridge rehabilitation. 

• Develop a model that can predict the leachability of lead and other trace metals in 

paint waste from bridge rehabilitation using field portable techniques.  

The following hypotheses are proposed:  
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• FP-XRF provides accurate concentrations for measuring the total metal and 

metalloid concentrations (RCRA metals as well as zinc and Fe) in paint waste; it 

can be used for more than screening. 

• Because steel grit is used for blasting bridges to remove paint, metals such as Pb 

and Cr in the paint waste are sequestered by steel grit. Specifically, lead and other 

metals are sorbed to iron oxides formed on the steel grit surface.  

• A model can be developed to predict the classification of a paint waste based on 

correlating data from laboratory studies and field portable analyses.  

In the following chapters, methods to achieve the objectives and corresponding results 

are presented. 
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CHAPTER 4 

SAMPLING APPROACH 

 

In this chapter, quality assurance and quality control procedures (QA/QC) are reviewed 

first. Identification of the study sites is then reviewed in term of statistical number of 

representative bridges sampled and the representative number of samples from each 

bridge. Non-invasive analytical methodology is discussed and the NITON XLp-300 FP-

XRF analyzer is involved. Lastly, the field sampling protocol is reviewed in terms of 

selecting representative samples of the paint and wash water from each bridge.  

Based on sample size estimation and the project budget for travel, 24 bridges were 

randomly chosen from those have been repainted after 1989 (Figure 4.1). A total of four 

wash water samples, two filtered and two unfiltered, were collected from two random 

locations for each bridge site selected. Duplicate paint waste samples were collected from 

five random locations (or drums) for each bridge under rehabilitation and evaluated in 

this project. 

 

4.1 Quality Assurance and Quality Control (QA/QC) Procedures 

QA/QC procedures were based on Standard Methods for the Examination of Water and 

Wastewater (Eaton et al., 2005) as well as on the American Society for Testing and 

Materials (ASTM, 1990) methods. Milli-Q Type Π de-ionized water was employed in all 

experiments. All reagents were of certified analytical grade or trace metal quality. 

Glassware, plastic-ware, and associated materials were washed initially with a detergent, 

rinsed with tap water, and then with deionized water. For metals analysis, containers were  
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Figure 4.1  24 bridges under rehabilitation were selected between 2010 to 2011 from Regions 1, 2, 3, 5, 7, 10, and 11, where NYS are 
divided into 11 regions. All bridges in the study had been repainted at least once since 1989, when NYS prohibited the commercial use 
of LBP. 
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soaked in a 10% HNO3 solution for 2 days when using glassware and 1 day for high 

density polyethylene (HDPE). Subsequently, all materials were rinsed in de-ionized water 

and stored in a particle-free environment. Paint samples were collected from bridge 

locations determined in the field. Tools were cleaned following QA/QC procedures. For 

each sample, new powder-free latex gloves (acid resistant) were worn to prevent cross 

contamination. Samples were stored in coolers maintained at a temperature of 4°C.   

 

4.2 Sample Sites Estimation 

Approximately 4,500 bridges are in need of rehabilitation in the New York. To obtain a 

statistically representative number of samples for the study, statistical methods were used 

for the approach using sample size estimation and a representative number of samples 

from each bridge was determined. 

 

4.2.1 Sampling Theory 

Sample size determination is an important step in planning a statistical study. One of the 

most popular approaches to sample-size determination involves applying hypothesis 

testing (Mathews, 2010; Ryan, 2013). The approach includes the following elements 

(Figure 4.2): 

 Type I Error (α): Probability of rejecting the null hypothesis (H0) when it is true. 

A Type I Error is the probability of alpha (α) in rejecting a true null hypothesis.  

 Type II Error (β): Probability of not rejecting the null hypothesis (H0) when it is 

false. 

 Power = 1 - β: Probability of rejecting the null hypothesis when it is false.
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 Hypothesis 

Decision 

 H0 H1 

H0 Correct acceptance Type II Error β 

H1 Type Ι Error α Correct rejection 

 

                                        H0: µ ≤ µ0                                      H1: µ>µ0        

 

   

                                                                                µ0 

Figure 4.2  Type I Error (α), Type II Error (β) and sample size n.  
(adopted from Belle, 2008)
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 σ0 and σ1: Variances under the null and alternative hypotheses (may be the same). 

 µ0: Mean under the null and alternative hypotheses. 

 µ1: Mean under the expected data. 

 n: Sample size. 

A Correct Decision I occurs when we fail to reject a true null hypothesis; it has a 

probability of 1- α. A Correct Decision II occurs when we reject a false null hypothesis. 

The purpose of the experiment is to provide the occasion for this type of decision. The 

probability of this situation is 1- β and is known as the power of the statistical test. In 

other words, the ability of a test to reject null hypothesis when it is false (Figure 4.2). 

For continuous measurements, the normal distribution is the default model, the 

hypotheses and expected data distributions are both normal and only differ by a shift in 

the mean. Specifically, 

                                       

2

0( , )x N
n
σµ∝

                                                                           (5) 

                                      

2

1( , )x N
n
σµ∝

                                                                              (6) 

For a given test, α is assigned by the investigator in advance of performing the test. This 

value is a measure of the risk acceptable in rejecting a true null hypothesis. On the other 

hand, β may assume one of many values. Suppose we test the null hypothesis that some 

population parameter is less than or equal to some specified value, if H0 is false and we 

fail to reject it, we commit a Type II Error. If the hypothesized value of the parameter is 

not the true value, the value of β (the probability of committing a Type II Error) depends 

on several factors (Mathews, 2010; Ryan, 2013): (1) the true value of the parameter of 
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interest, (2) the hypothesized value of the parameter, (3) the value of α, and (4) the 

sample size, n.  

For a given hypothesis test we need to understand how well the test controls Type 

II Errors. If H0 is in fact false, we would like to know the probability that we will reject it. 

The power of a test, designated 1- β is the probability that we will reject a false null 

hypothesis; it may be computed for any alternative value of the parameter about which 

we are testing a hypothesis. Therefore, 1- β is the probability that we will take the correct 

action when H0 is false because the true parameter value is equal to the one for which we 

computed 1- β. For a given test we may specify any number of possible values of the 

parameter of interest and for each the value of 1- β is computed. The result is called the 

power function. 

 

4.2.2 Sample Size  

For a fixed Type I error (α), the goal of constructing and testing a hypothesis is to 

maximize power. Anderson-Cook and Dorai-Raj (2003) show how α, β, and power are 

related: 

Power = P (rejecting H0│H0 is false)                         
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Power is affected by the following: 

 Δ is the difference in means between the null and alternative distributions. 

 n is the sample size. 

 α is the probability (Type I error). 

Based on the literature review developed earlier for this NYSDOT project (Chapter 2), 

most bridges built before 1978 applied lead based paint (Montgomery and Mathee, 2005; 

Falk et al., 2005; Kyger et al., 1999; Choe et al., 2002). Although the majority of the steel 

bridges in the New York State were constructed between 1950 and 1980, approximately 

53% of these bridges have been rehabilitated and subsequently repainted after 1989 

(Appendix A). As a result, lead concentrations in the paint waste are expected to be 

reduced. For wastes originating from abatement of non-residential structures, the U. S. 

EPA (1992) TCLP is used to determine waste TC concentrations (U. S. EPA, 1992). 

Based on resulting correlations, an objective of the project is predicting waste 

classification from the field data. For the purpose of determining a sample size, 

hypothesis testing is applied and the following assumption is used:   

Bridges repainted after 1989 are tested with a one-sided test of H0: μ0 < 5 mg/L 

versus H1: μ0 ≥ 5 mg/L (the mean of TCLP results is less than 5 mg/L versus greater 

than or equal to 5 mg/L). The hypothesis of interest will be the right-tailed hysteresis, 

which indicates that to reject null hypothesis, a sufficiently large sample size is 

needed to control the probability (power) 1- β that we will take the correct action 
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when H0 is false. The purpose is to determine how large a sample (n) we need in 

order to realize that H0 is false. The parameters include:  

 N is 4,500 × 53% = 2,385 bridges (based on the data from NYSDOT, 53% of the 

bridges have been rehabilitated and subsequently repainted after 1989), large 

enough for continuous measurements in a Gaussian distribution (Navidi, 2006). 

 Confidence intervals are typically stated at the 95% confidence level in applied 

practice (Zar, 1984). However, when presented graphically, confidence intervals 

can be shown at several confidence levels, for example 50%, 95% and 99%. In 

related statistical studies (Zhou et al., 2008; Lenth, 2001), the confidence level is 

generally targeted for 95%, which is therefore applied in this project. 

 Type I Error is α, where α = 1- confidence level, which is 0.05 resulting in tn,1 - α 

= tn,0.95. 

 To evaluate the lead-based paint removal waste stabilization technology, Daniels 

et al. (2001) apply the TCLP to assess the effectiveness of the technologies. In 

the study, the lead concentrations in the paint were greatly reduced by the 

stabilization technology: the TCLP the lead concentrations for the stabilized paint 

residue ranged from 0.2 – 52 mg/L. In our project, most bridges have been 

rehabilitated and subsequently repainted after 1989 (Appendix A), as such lead 

concentrations in the paint waste are expected to be reduced. Because of the 

similar work in this project, we assume a sample mean equivalent to that of the 

Daniels et al. study (2001), µ1 = 13 mg/L.  

 The studies (Daniels et al., 2001; Wadanambi et al., 2008) have shown standard 

deviations (SD) in the TCLP concentration ranging from 2.1 – 17.6. The average 
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standard deviations (SD) of the each series of data were calculated as 8.6 and 

13.4 mg/L, respectively. In this project, 13.4 mg/L is assumed as the SD.  

 For a given test we may specify any number of possible values of the parameter 

of interest (e.g.α) and for each the value of 1- β is computed. Lenth (2001) 

applied a range of β values to obtain a series of sample sizes. In this report, 

sample values of β are proposed to be 1%, 2.5%, 5%, 10%, and 20% resulting in 

powers, 1-β, of 80%, 90%, 95%, 97.5%, and 99%.   

Because Δ = µ1 - μ0, which is determined by the data (for the null hypothesis μ0 < 5 mg/L, 

we assume μ0 = 4 mg/L; µ1 = 13 mg/L) obtained from the previous assumption and α is 

fixed at 0.05, sample size n is obtained based on the following equation. 

Power = P (rejecting H0│H0 is false)       
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Therefore, applying α = 0.05, with varying Power = 1 - β, we generate a series of 

required sample sizes for bridges repainted after 1989 (Table 4.1). The larger the power, 

the more likely we will take the correct action when H0 is false. Based on sample size 

estimation and the project budget for travel, 24 bridges were randomly chosen from those 

that have been repainted after 1989 (Table 4.1; Figure 4.1). 

 

4.2.3 Representative Number of Samples from Each Bridge 

Based on the above discussion, 24 bridges under rehabilitation which includes repainting 
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were sampled for wash water and paint waste. U.S. EPA (2003) recommends collecting 

two (potentially contaminated) samples to characterize threats and incidents to drinking 

water supplies. Therefore, in this protocol, considering the dissolved and total lead 

concentrations in wash water, a total of four samples, two filtered and two unfiltered, 

were collected from two random locations for each bridge site selected (Appendix A).  

To achieve the objective of the sampling program in determining classification of 

waste as hazardous, the U.S. EPA (1990) has deemed that a single representative sample 

is sufficient. The regulations (U. S. EPA, 1990) do not directly specify what constitutes a 

sufficient number of samples to classify a solid waste as nonhazardous. However, for a 

petition to reclassify (delist) a listed hazardous waste, which includes a determination that 

the listed hazardous waste is not a characteristic hazardous waste (a “nonhazardous” 

classification), the regulations (U.S. EPA, 2006) require that at least four representative 

samples sufficient to represent variability or uniformity of the waste must be tested. 

Because the hazardous nature is not identified for the bridges that have undergone 

rehabilitation after 1989, at least four representative samples are needed conservatively. 

Therefore, duplicate paint waste samples were collected from five random 

locations (or drums) for each bridge under rehabilitation and evaluated in this project, 

which reflects the paint waste from the bridges rehabilitated after 1989 ( Appendix A). 
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Table 4.1  Sample Size for Bridges Repainted after 1989 (one-sided alternative 
hypothesis, Type I Error, α = 0.05) 
 

Type II Error β Power = 1 – β Numerator for sample size 

0.5 0.5 8 

0.2 0.8 15 

0.15 0.85 17 

0.1 0.9 20 

0.075 0.925 22 

0.05 0.95 24 
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4.3 Bridge Sampling  

Protective gloves and clothes were worn during sampling and the general safety plan 

(NYSDOT, 2008) was adhered to at all times. 

 

4.3.1 Wash Water Sampling Procedure 

For each bridge site selected, a total of four wash water samples, two filtered and two 

unfiltered, were collected from two different locations. The water samples were obtained 

by immersion of the Nalgene® HDPE containers (1 L) into the wash water where water 

was allowed to run slowly into the bottle until almost full (≥ 0.75 L). The pH 

measurement in the field was determined with the Hach sensION 1 portable pH meter 

and adjustment to a pH less than 2 was accomplished using 0.1 N nitric acid (HNO3) 

(Eaton et al., 2005). For dissolved lead analysis, filtration was conducted with sterilized 

disposable syringe filters (0.45 μm nylon membrane filters) before acid adjustment. 

Samples were subsequently sealed and stored for transport to the NJIT Metals Lab as 

described below in Section 4.3.3. 

 

4.3.2 Paint Waste Sampling 

Samples were collected in situ as well as brought back to the NJIT Metals Lab for further 

analysis. Duplicate paint waste samples were collected from five random locations/drums 

for each bridge site selected. The paint samples were obtained by using trowels where the 

sampled material was stored in HDPE containers that preserved the integrity of the 

sample. All sample bottles were labeled with the bridge bin number, the date, region, 

location, and bridge ID (e.g., Bin 106666C / 10/29/2010 / Region 11 / Bruckner 

Expressway / 11-1a).  
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4.3.3 Sample Preservation and Sample Storage 

All sample bottle caps were sealed tightly then taped and placed into zip lock bags. For 

purposes of returning samples to the NJIT Metals Lab, samples were temporarily 

preserved in a cooler maintained at 4°C immediately upon collection. At NJIT, samples 

were stored in a refrigerator; preserved samples were stored up to 6 months at 

approximately 4 °C (U.S. EPA, 2007).  
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CHAPTER 5 

LAB METHODOLOGY 

 

In this section, methods used for investigating metal concentrations and distribution, 

characterization, metal mobility, and modeling are presented. Laboratory quality 

assurance and quality control procedures (QA/QC) were based on the American Society 

for Testing and Materials methods (American Society for Testing and Materials, 1990) 

Standard Methods for the Examination of Water and Wastewater (Eaton et al., 2005). All 

reagents were of certified analytical grade or trace metal quality. Containers were soaked 

in a 10% HNO3 solution for 48 hours when using glassware and 24 hours for Nalgene® 

high-density polyethylene (HDPE) containers, then rinsed in Millipore-Q water, dried, 

and stored in a particle-free environment before use.  

 

5.1  Total Metal Concentrations in Paint Waste and Wash Water 

In the past few decades, the durability of paint applied on steel substrates has improved 

with the increasing usage of zinc-rich primer (Del Amo et al., 2003; Nishimura et al., 

2000) and an epoxy topcoat (Borst et al., 2004; Edavan and Kopinski, 2009; Marchebois 

et al., 2004). Organic binders such as silicone resin (Borst et al., 2004) have also been 

used to reinforce corrosion resistance. Paint applied on steel surfaces has demonstrated 

long term corrosion resistance at approximately 22 years (half-life 11.4 years (Borst et al., 

2004)). Based on the historical records (Appendix A; Table A2), bridge rehabilitation 

projects occur at a frequency ranging as great as 20 years reinforcing the corrosion 

resistance of paint coatings. Therefore the longevity of a paint formulation was not of 
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focus for this research. To investigate the metal concentrations and distribution in the 

paint waste, the application of the NITON XLp-300 series and NITON XL3t-600 series 

FP-XRF is presented for quantifying RCRA metals (i.e., As, Ba, Cr, Cd, Pb, Hg, Se, and 

Ag) along with iron and zinc in paint waste samples.  

 

5.1.1  Analysis with NITON XLp-300 Series FP-XRF 

The in situ analysis of bridge paint was conducted with a NITON XLp-300 FP-XRF 

analyzer, where rapid analysis was accomplished for lead assessment in units of mg/cm2. 

Briefly, after self-calibration, the Pb paint mode with K-shell and L-shell detection was 

selected on the analyzer. When the screening results were stable, the instrument provided 

the lead concentrations in units of mg/cm2. This analyzer has a 40 mCi cadmium-109 

radioisotope source, which excites characteristic X-rays of the test sample. X-ray 

emission from a 109Cd source occurs at approximately 22.5 and 88.1 keV (Table 5.1), 

which therefore excites the K shell fluorescent X-rays of lead. Because the excitation 

energy is approximately four times greater than the lower energy L shell, the resulting 

penetration through overlying paint layers is much greater, which enables measurement 

of lead in subsurface paint layers. Using an algorithm that combines both the L-shell and 

K-shell readings provides accuracy and precision for measuring Pb in surface or 

subsurface paint layers.  

 

5.1.2  Analysis with Niton XL3t 600 FP-XRF 

To investigate the metal distribution in the paint waste, RCRA metals (i.e., As, Ba, Cr, 

Cd, Pb, Hg, Se, and Ag) along with iron and zinc were analyzed with the 
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Table 5.1  Parameter for Two Types of FP-XRF 

 

Type of XRF 
Isotope-based FP-XRF 

XLp 300A 

X-ray tube-based FP-XRF 

XL3t 600 

Metals detected Pb in paint mode 

P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, 

Ni, Cu, Zn, As, Se, Rb, Sr, Zr, Mo, Ag, 

Cd, Sn, Sb, I, Ba, Hg, Tl, Pb, Th, U* 

Excitation energy 22.5 keV and 88.1 keV ≤ 50 keV 

Excitated shell Both L and K shells L shell only 

Incorrect result  20.4% for lead 

Source 109Cd (22.5 KeV, 88.1 KeV） 50 keV Miniature Au Anode X-ray tube 

Precision  False negative result for Pb 

Limits of detection   See Tables 5.2 and 5.3 

Cost of the instrument 
17,000.00 37,000.00 

41,000.00 (bundled price) 

 

* – the elements are listed in order of increasing atomic number.  

Source: Thermo Fisher Scientific, The Importance of excitation sources for X-ray fluorescence (XRF) 

analyzers in lead paint measurement. 
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NITON XL3t-600 series FP-XRF following EPA Method 6200 (U. S. EPA, 1998) using 

either Soil Mode (metal concentrations < 2% by wt) (Table 5.2) or Mining Mode (metal 

concentrations ≥ 2% by wt) (Table 5.3). The paint samples were loaded into 12 ml 

sample holders (SC-4331) and covered with transparent membranes. Sample analysis 

was carried out for 180 s. The XL3t-600 FP-XRF frame was used to support the analyzer 

during the detection procedure for continuous analysis. The instrument combines 

advanced electronics and a 50 keV X-ray tube. It is important to note that both Soil 

Mode and Mining Mode combine fundamental parameters (FP) mode with compton 

normalization (for background matrix automatic correction), which provides improved 

accuracy for samples ranging from less than 2% by wt to greater than 2% by wt. 

membranes. After the self – calibration, sample analysis was carried out for 180 s 

(Appendix B). The XL3t-600 FP-XRF frame was used to hold the analyzer during the 

detection procedure. The X-ray tube-based instruments provided however inconclusive 

results for Pb as often as 16% of all samples (HUD, 2003). False-positives hve been 

documented at 2.5% and false-negatives at 1.9% of all samples (HUD, 2003). Therefore 

for Pb analysis, radioisotope-based instruments that can excite both the K-shell and L-

shell electrons penetrating further into the paint sample were needed to accurately 

identify and quantify lead in lead-based paint. For this purpose as described above, the 

NITON XLp-300 series lead-in-paint FP-XRF analyzer was used (Table 5.2). 
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Table 5.2  NITON XRF- XL3t 600 Limits of Detection for Contaminants using Soil 
Mode (mg/kg) 

Metal 

SiO2
a 

(interference free) 

(mg/kg) 

SRMa 

(typical soil matrix) 

(mg/kg) 

Arsenic 9 11 

Barium 90 100 

Cadmium 10 12 

Chromium 65 85 

Lead 8 13 

Mercury 7 10 

Selenium 6 20 

Silver 10 10 

Zinc 15 25 

 

aThe chart above details the sensitivity, or limits of detection (LOD) of Soil Mode for the XL3t 600 Series 

analyzer, specified for both SiO2 matrix and a typical Standard Reference Material (SRM). The unit has a 

50 keV miniature X-ray tube and multiple primary filters. 

bDetection limits are specified following the U.S. EPA protocol of 99.7% confidence level. Individual 

limits of detection (LOD) improve as a function of the square root of the testing time. The LODs are 

averages of those obtained using bulk analysis mode on NITON XL3t 600 analyzers at testing times of 60 

seconds per sample.
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Table 5.3  NITON XRF- XL3t 600 Limits of Detection for Contaminants using Mining 
Mode (mg/kg) 

Time 
 

60s filter 
 

Matrixa Al-based matrix Ti-based matrix Fe-based matrix Cu-based 
matrix 

Chromium 200 500 110 100 

Iron 75 300 N/A 75 

Pb 20 20 75 50 

Selenium N/A 20 20 25 

Silver N/A N/A N/A N/A 

Zinc 30 40 60 300 
 
 

N/A = Not applicable 

aThe chart above details the sensitivity, or limits of detection (LOD) of Mining Mode for the XL3t 600 

Series analyzer, specified Al-based matrix, Ti-based matrix, Fe-based matrix, and Cu-based matrix. The 

unit has a 50 keV miniature X-ray tube and multiple primary filters.  

bDetection limits are specified following the U.S. EPA protocol of 99.7% confidence level. Individual 

limits of detection (LOD) improve as a function of the square root of the testing time. The LODs are 

averages of those obtained using bulk analysis mode on NITON XL3t 600 analyzers at testing times of 60 

seconds per sample.  
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5.1.3 Wash Water Analysis  

For the dissolved lead analysis, because the sample had been filtered through the 0.45 μm 

glass fiber filters before acid adjustment, the subsequent analysis was conducted directly 

using the Hach field spectrophotometer. Briefly, the DithiVer metals reagent (a stable 

powder form of dithizone, C13H12N4S) reacted with lead ions in an alkaline solution to 

form a pink to red lead-dithizonate complex, which was extracted with chloroform. 

Extracted samples were then measured in the spectrophotometer at 515 nm. For total lead 

analysis, the samples were digested using EPA SW-846 digestion Method 3010A (U.S. 

EPA, 2004). Specifically, 100 ml water samples were treated with repeated addition of 

nitric acid and then heated until the sample was light in color or stabilized. After cooling 

to room temperature, 10 ml of hydrochloric acid (1:1) was added and the solution was 

then filtered through a 0.45 µm glass fiber filters, diluted to 100 ml with de-ionized water, 

and prepared for Pb analysis. 

 

5.2  Characterization of the Paint Waste 

Toxicity of metals strongly depends on their speciation in the paint waste. In this study, 

analysis was conducted using x-ray diffraction (XRD) and field emission scanning 

electron microscopy (FE-SEM) with energy dispersive x-ray spectroscopy (EDX) to 

investigate metal mineral forms, association, and surface morphology. The results from 

this study provide fundamental knowledge on the characterization of paint waste and 

valuable information for subsequent leaching studies. 
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5.2.1 X-Ray Diffraction (XRD) Analysis 

Toxicity of metals strongly depends on their speciation in the paint waste. To investigate 

the metal forms, mineralogy was assessed using PANalytical Empyrean XRD system 

with a detection limit of approximately 1% by wt (Quinn, 2013). The paint waste samples 

were loaded in the sample holder with the back filling technique. Diffraction data were 

obtained by step-scans using Cu K-α radiation generated at 45 kV and 40 mA scanning 

from 10° to 100° 2θ. The (hkl) planes corresponding to peaks were calculated and 

compared with the standard powder diffraction file (PDF) (JCPDS, 1998). Primary 

minerals in the paint waste were evaluated in this analysis. To assess minerals of Pb, Cr, 

and iron oxides present and formed on the steel grit surface, PANalytical Empyrean x-ray 

diffraction (XRD) system was applied on the samples with the greatest concentrations of 

Pb, Cr, and Fe. In the interest of assessing iron oxide minerals formed on the steel grit 

surface, samples with the greatest concentrations of Fe were applied. Steel grit was 

separated from the paint waste using a magnetic bar. Fe oxide minerals were selected 

based on thermodynamic stability in the paint waste. Further identification was conducted 

by the comparing each of the diffractograms to the powder diffraction database. To 

isolate iron oxides formed on the steel grit surface, background subtraction (i.e., SiO2 

(silica), Zn (spelter), and Fe (martensite)) and normalization was conducted. Based on the 

peak and area analysis, semi-quantitative results were obtained on the composition of 

iron oxide. 

 

 
 
 



 

73 

5.2.2  Field Emission Scanning Electron Microscopy (FE-SEM) along with Energy 
Dispersive X-ray Micro Analyzer (EDX) Analysis 
 
The structure of the iron oxides on the steel grit surface was investigated by FE-SEM (a 

resolution of 2.5 nm at 5 kV, 1.2 nm at 20 kV; and 3 nm at 1 kV). The LEO 1530 FE-

SEM equipped with EDX (Inca series 200) was utilized to investigate the surface 

morphology and metal association with the iron oxide surface in the paint waste. For the 

FE-SEM, samples were coated under high vacuum with a layer of carbon using an 

Edward’s 12E6/1266 coating unit. To avoid the effect of carbon coating, uncoated 

samples were prepared for EDX analysis for evaluating the surface composition of the 

steel grit such as Fe, and O. 

 

5.3  Metal Mobility Studies 

To investigate the leaching behavior of trace metals (such as Pb and Cr) from bridge 

paint waste, short-term (TCLP) and long-term leaching (MEP) studies were applied. 

Furthermore, sequential extraction (SE) procedure was conducted to evaluate the phases 

trace metals are associated with in paint waste. 

 

5.3.1  Leaching with the TCLP 

To investigate the hazardous nature of the paint waste, samples from 24 bridges were 

studied using the U. S. EPA Standard Method TCLP (U. S. EPA, 1992). This procedure 

is applied to simulate landfill conditions where the pH is lowered and volatile fatty acids 

(acetic acid, propionic acid, and butyric acid) are generated (Martel et al., 1997). In NYS, 

steel grit is blasted onto the bridge in a closed system to remove paint. As a result, the 

particle size of the paint waste is less than 9.5 mm and neither crushing nor grinding is 
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needed for the TCLP study. The procedure was performed in triplicate following U. S. 

EPA Standard Method 1311 (U. S. EPA, 1992) (Figure 5.1). Extractions were carried out 

with 20:1 extraction fluid to solid ratio in 2 L HDPE bottles at 30 ± 2 rpm for 18 hr. The 

pH was measured, and the extract was filtered, acidified, and analyzed with ICP-MS for 

the eight RCRA metals along with Fe and Zn (U. S. EPA, 2007).  

 

5.3.2 Leaching with the MEP 

MEP (U.S. EPA, 1986) was applied to address the long-term mobility of trace metals and 

associated metalloids in the paint wastes. This method was applied to simulate leaching 

of waste from repetitive events of acid rain in a landfill. In the interest of identifying the 

most significant impact from the five paint samples collected from each bridge, the 

sample with the greatest lead concentration was used. The procedure (Figure 5.2) was 

conducted on duplicate samples from the 24 bridges with an extraction period of 10 days 

where samples were collected once every 24 hours resulting in 480 samples. This method 

involves an initial extraction with an acetic acid (CH3COOH) solution (the pH of the 

solution was maintained less than 5 through addition of 0.5 N CH3COOH) (Method 

1310B) (U. S. EPA, 2004) and then at least nine successive extractions with a synthetic 

acid rain solution (sulfuric/nitric acid [H2SO4/HNO3] adjusted to an initial pH 3.0 ± 0.2). 

Each extraction was conducted for 24 hours under completely mixed conditions.  
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Figure 5.1  Flow Chart of TCLP Test Procedure (Method1311) (U. S. EPA, 1992). 
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Figure 5.2  Flow Chart of the MEP Test Procedure (Method1320) (U. S. EPA, 1986). 
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The pH was measured, and the extract was filtered, acidified, and analyzed for metals and 

metalloids using ICP-MS (U. S. EPA, 2007). Remaining solids collected on the filter 

were used for successive extractions that simulate acid rain conditions (Method 1320) 

(U.S. EPA, 1986). The repetitive extractions reveal the leachable concentrations in a 

simulated landfill. One advantage of MEP over the TCLP is that it gradually removes 

excess alkalinity in the waste. Therefore, the leaching behavior of potential contaminants 

can be evaluated as a function of decreasing pH, which increases the solubility and 

mobility of metal cations. A limitation of batch and semibatch experiments including the 

MEP method is the lack of the mechanistic information on how the contaminant is 

associated with the paint waste. 

 

5.3.3  Sequential Extraction Procedure (SEP) 

While MEP and TCLP simulate leaching under landfill conditions, SE provides an 

estimate of the potential phases metals may be associated within the system (Filgueiras et 

al., 2002; Quevauviller, 1998; Tessier et al., 1979). To compare the results with other 

similar studies (i.e. (Davranche and Bollinger, 2000; Pagnanelli et al., 2004), extractions 

were conducted with the Tessier’s five step procedure (Tessier et al., 1979). SE was 

carried out in duplicate on three samples collected from Regions 3, 10, and 11, where 

elevated trace metals were observed. Specifically, extractions were performed in 40 ml 

Sorvall® polypropylene centrifuge tubes using an end-over-end shaker rotated at 30 rpm. 

Between successive extractions, separation of extract from residue was carried out by 

centrifugation at 3,000g for 20 min. The supernatant was decanted into Naglene® HDPE 

bottles, acidified to pH less than 2, and refrigerated until analysis with ICP-MS. The 
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residues were washed with deionized water, centrifuged for 20 min, and the supernatant 

discarded. In Step 1, extraction for the exchangeable fraction in paint waste involved 1 M 

magnesium chloride (MgCl2, pH 7.0) with continuous agitation; this contribution is not 

expected to be significant with paint waste. In the second step, carbonates were extracted 

with 1 M sodium acetate (CH3COONa) adjusted to pH 5.0 with acetic acid (CH3COOH). 

Continuous agitation was maintained. In Step 3, a 0.04 M hydroxylammonium chloride 

(NH2OH•HCl) in 25% (v/v) acetic acid (CH3COOH) solution was used to extract the 

fraction adsorbed to iron and manganese oxide phases from remaining residue. This step 

was performed at 96 ± 3°C with agitation for 6 h to reinforce the complete dissolution of 

the iron oxides. The hypothesis in this study is that metals in the paint waste interact with 

the iron oxides on the steel grit surface. Thus, this phase is expected to be significant. In 

Step 4, residue from Step 3 was treated at 85 ± 2 °C for 2h with 0.02 M HNO3 and 30% 

H2O2 (adjusted to pH 2 with HNO3). A second 3 ml aliquot of 30% H2O2 (pH 2 with 

HNO3) was added with another 3 h of heating. After cooling, samples were diluted with 

3.2 M ammonium acetate (CH3COONH4) solution in 20% (v/v) HNO3. This step in the 

extraction is used for isolating the organic fraction. The concentration associated with the 

residue from Step 5 was calculated using a mass balance along with concentrations found 

in Steps 1, 2, 3, and 4 along with the initial total concentration from FP-XRF. The 

residual is assumed to represent the metals associated with minerals in the paint more 

difficult to digest including SiO2 and TiO2 (Barnes and Davis, 1996). 
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5.4  Modeling for the Metal Leaching 

5.4.1  Surface Complexation Model 

Based on the results from sequential extraction along with leaching studies, 

adsorption/desorption and dissolution/precipitation models were applied to consider 

plausible processes. Because ferrihydrite is a dominant sorbent (discussed in Chapter 7) 

and because of its significant adsorbent characteristics including a large surface area and 

high affinity for metal ions, this oxide surface was used in modeling sorption (Apul et al., 

2005; Kendall, 2003). The hydrous ferric oxide (HFO) surface has low-affinity and high-

affinity sites (Dzombak and Morel, 1990), represented as FeWOH and FeSOH, 

respectively. The weak-affinity site density of 0.2 mol/mol Fe and the high-affinity site 

density of 0.005 mol/mol Fe were used in this study (Apul et al., 2005; Dzombak and 

Morel, 1990; Meima and Comans, 1998). Dominant surface complexes with ferrihydrite 

have been shown to include FeOPb+, FeOCrOH+, FeOHBa2+, and FeOZn+,  (Dzombak 

and Morel, 1990; Jing et al., 2006; Kendall, 2003). 

In this study, two models were trialed to describe the metal leaching over the pH of 4.5 to 

7. Sorption onto the ferrihydrite surface was considered using the surface complexation 

diffuse layer model (DLM) coupled with 2-pK formalism. Surface acid - base reactions 

and equilibrium constants used in the DLM are from the compilation of studies reviewed 

in Dzombak and Morel (1990). Inputs such as background analyte, adsorbate, and sorbent 

concentrations were based on the TCLP leaching experiments, XRF analyse, and 

sequential extraction results (details in Chapter 7). An ionic strength of 0.1 was applied in 

the calculations to simulate the leaching condition considered. The second modeling 

approach involved precipitation/dissolution. Barnes and Davis (1996) demonstrated 
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PbCO3 (cerrusite) (pH < 8) and Pb3(OH)2(CO3)2 (hydrocerussite) (pH ≥ 8) as the 

dominant Pb minerals in lead-based paint. In fact, the primary lead compound used in 

paints was white lead (2PbCO3·Pb(OH)2) with concentrations as great as 40% by wt of 

dry paint (Gooch, 1993). Lead chromate (chrome yellow PbCrO4) was used in (colored) 

paint at 5 to 7% (Clark, 1976), while lead tetraoxide (red lead Pb3O4, Pb2O4, PbO2·2PbO) 

was also a component of paints (Clark, 1976; Gooch, 1993). Boy et al. (1995) found 

Cr(OH)3 (chrome oxide green) as the dominant phase when they investigated chromium 

stabilization in paint waste with Portland cement and blast furnace slag. Jing et al. (2006) 

further demonstrated that Cr(OH)3 and Ca2Cr2O5 were the dominant phases when they 

evaluated Cr leaching behavior in the solidified soil. In this research, the solubility of the 

following minerals was considered: PbCrO4 (lead chromate), Pb3O4 (red lead), PbCO3 

(cerrusite), Pb(OH)2, Pb3(OH)2(CO3)2 (hydrocerussite), PbO (litharge), Cr(OH)3 (or Cr2O3 

chrome oxide green), Barite (BaSO4), witherite (BaCO3), ZnCO3, and ZnO. Based on 

their use in paint formulations and thermodynamic stability (Baes and Mesmer, 1976; 

Ball and Nordstrom, 1991; Marani et al., 1995; Schecher and McAvoy, 1992; Stumm and 

Morgan, 1996), the following minerals were applied in this study: PbCO3 (pKso = 13.13) 

(Benjamin, 2002), Pb3(OH)2(CO3)2 (pKso = 45.46) (Benjamin, 2002), Cr(OH)3 (or Cr2O3) 

(pKso = 33.13) (Benjamin, 2002), BaSO4 (pKS0 = 8.29) (Benjamin, 2002), and ZnO (pKso 

= 6.12) (Benjamin, 2002) (Appendix D). 

 

5.4.2 Principal Component Analysis (PCA)  

PCA is used to identify and reduce the dimensionality of data, from which a model is 

developed to predict metal leaching and therefore classification of the paint waste. The 
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analysis involves a mathematical procedure that transforms a number of potentially 

correlated variables into a smaller number of uncorrelated variables (principal 

components (PCs)) (Torrecilla et al., 2009), which are linear combinations of the original 

variables. The eigenvalues are used to determine the percentage as well as cumulative 

percentage of variances, where PCs with eigenvalues greater than 1 are selected (Kaiser, 

1960). The eigenvalues reflect the quality of the projection from the N-dimensional initial 

table to a lower number of dimensions. The PC with the greatest eigenvalue is considered 

the most significant. The eigenvalues and the corresponding factors are sorted by 

descending order to the degree to which the initial variability is represented (converted 

to %). In this study, correlation-based PCA (Torrecilla et al., 2009) was applied to 

understand variables (i.e., As, Ba, Cr, Cd, Fe, Pb, Hg, Ag, Se, Zn, Ti, and Ca) that play a 

significant role in addressing total variances in the statistical model. 

 

5.4.3 Statistical Modeling for Field Characterization of Waste Classification 

Based on the PCA analysis, leaching data were subjected to multivariate statistical 

analyses to evaluate the effect of statistically significant variables on metal leaching. 

Multivariate statistical approaches such as multiple linear regression analysis (MLRA) 

were used to determine the significance of specific parameters among the datasets. The 

total metal concentrations from FP-XRF analysis were applied as inputs in the leaching 

models. The coefficients a-n in the model were determined by the significance of the p-

value for each coefficient. 
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5.5 Summary 

In summary, a suite of analyses were applied in this research. Metal concentrations in 

paint waste and wash water were evaluated by FP-XRF and field spectrophotometer. 

XRD and FE-SEM analyses were applied to investigate the mineralogy and morphology 

of the paint waste. Leachable and extracted metal concentrations were obtained by TCLP, 

MEP, and SE. In addition, to understand the mechanism responsible for metal leaching, 

mechanistic modeling (surface complexation DLM along with precipitation/dissolution 

modeling) was applied to support PCA of data obtained with FP-XRF. As a result, 

multiple linear regression analysis was employed to model the metal leaching from 

bridge paint waste in the presence of steel grit. 
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CHAPTER 6 

METAL CONCENTRATIONS AND DISTRIBUTION IN PAINT WASTE 
GENERATED DURING BRIDGE REHABILITATION IN NEW YORK STATE 

 

In this section, results are presented for the metal concentration, distribution, and 

association in the bridge paint waste. Pb concentrations in bridge wash water are 

reviewed as well. The results from this section provide fundamental knowledge on the 

characterization of paint waste and valuable information for subsequent leaching studies. 

 

6.1  Metal Distribution in the Paint Waste (XRF Analysis) 

The variability charts reflect the significant variability in metal concentrations across a 

single bridge (Appendix E). For example at Bridge 2-1, Pb variability ranged from 43% 

to 127% by wt, while Zn varied from 0.2 to 10% by wt. For the 24 bridges studied 

throughout NYS, one sample per bridge cannot adequately describe metal concentrations. 

In addition, the t-test was applied on the samples that are sorted by region . No significant 

difference was observed for metal concentrations between the regions studied (Region 2 

and 5; Region 1, 3, 7, 10, and 11). This result indicated metal concentrations were not 

distributed as function as a region. Concentrations of most metals in paint ranged over 

several orders of magnitude (Table 6.1): 5 to 168,090 mg kg-1 for Pb, 49,367 to 799,210 

mg kg-1 for Fe, and 27 to 425,510 mg kg-1 for Zn. Other elemental compound of As, Ba, 

Cr, Cd, Se, and Ag were also detected (Table 6.1): less than 11 (detection limit) to 12,678 

mg kg-1 for As, less than 100 (detection limit) to  
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Table 6.1  Quartile Distribution of Trace Metals in Paint Waste from NYS (n = 117) 
 
Metal 

 

Metal concentrations (mg kg-1) 
 

As Ba Cr Cd Fe Pb Hg Se Ag Zn 

Mean 2,906 6,431 3,018 53 244,929 46,060 73 18 28 85,530 

Minimum BDL BDL 21 BDL 49,367 5 BDL BDL BDL 27 

25th percentile 541 2,797 490 6 133,125 9,058 BDL BDL BDL 32,233 

Median 1,866 5,785 2,455 49 245,820 45,870 BDL BDL 29 51,467 

75th percentile 5,280 9,410 5,268 88 329,765 73,693 BDL 20 48 85,458 

Maximum 12,678 16,319 10,192 248 799,210 168,093 528 195 133 425,507 

 
BDL refers to below detection limit. 
Detection limits (mg kg-1) for this study: As = 11, Ba = 100, Cd = 12, Cr = 85, Pb = 13, Se = 20, Ag = 10, Fe = 75, Zn = 25, Hg = 10. 
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16,319 mg kg-1for Ba, 21 to 10,192 mg kg-1 for Cr, less than 12 (detection limit) to 248 mg kg-1 

for Cd, less than 20 (detection limit) to 195 mg kg-1 for Se, and less than 10 (detection limit) to 

133 mg kg-1 for Ag. Although used before 1992 as a preservative to control bacteria, mildew, 

and other fungi (U. S. EPA, 1990; 2000), Hg was only observed in three bridges up to 528 mg 

kg-1. The observed Pb concentrations (Figure 6.1) are a consequence of its wide application as a 

corrosion inhibitor in paint before the 1980s (Gooch, 1993; Strivens and Lambourne, 1999). 

Even though rehabilitation and subsequent repainting were conducted more than once since 1989 

for bridges studied in NYS, 94 out of 117 paint samples exhibited lead concentrations greater 

than 5,000 mg kg-1, which is the an action limit from HUD (NIOSH, 1992). The elevated Fe 

found in samples is from a number of sources: 10 - 15% by wt of black iron oxide (Fe2O3 

[synthetic]+ MnO2 [pyrolusite]) is used in the paint (Boxall and Von Fraunhofer, 1980), rust 

forms on the bridge as well, and the most significant source appears to be the steel grit blasting 

abrasive (Appleman, 1992; 1997). Although contractors use a magnetic separation process to 

remove steel grit from paint waste, the blasting abrasive agent is not entirely removed. Typically 

steel (cast steel) grit is comprised by wt of Fe (> 96%), C (< 1.2%), Mn (< 1.3%), Si (< 1.2%), 

Cr (< 0.25%), Cu (< 0.25%), and Ni (< 0.2%) (Dunkerley et al., 1978). In New York, steel grit is 

typically used as the blasting abrasive (NYSDOT, 2008). Other abrasives used throughout the 

country include black beauty (a mixture of Fe oxide, Al oxide, Ca oxide, and silicon dioxide), 

boiler slag, sand, furnace slag, aluminum oxide, and garnet (Iowa Department of Transportation 

(IADOT), 2006; Minnesota Department of Transportation (MnDOT), 2004; U.S. EPA, 1997). 

The observed Zn reflects the increasing usage of Zn primer on the bridges (Strivens and 

Lambourne, 1999; Turner and Sogo, 2012).  
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             Bridge ID 
                    Five samples: a        b        c        d         e 

--- LBP is defined as paint with Pb concentrations greater than 0.5 % by wt (5000 mg kg -1) (HUD, 2003). 

Figure 6.1  Total concentrations of Cr, Pb, As, Cd, and Ag in paint are shown as a 
function of the five locations for bridges in Regions 1, 2, 3, 5, 7, 10, and 11 using NITON 
XL3t-600 series FP-XRF. Mode was used for sample with metal concentrations greater 
than 2 % by wt, while Soil Mode was applied for samples with concentrations less than 2 % 
by wt. Bridge ID represents the region number and bridge sampled in this region. All 
bridges sampled were rehabilitated after 1989. Blasting standard SSPC SP 10 was applied 
for bridges in Regions 2 and 5, while SSPC SP 6 were used for bridges in Regions 1, 3, 7, 
10, and 11.  
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Overall, concentrations of Pb and Zn are consistent with the similar studies (Table 6.2) 

(Bernecki et al., 1995; Brumis et al., 2001; Mielke and Gonzales, 2008; Mielke et al., 

2001), whereas Fe concentrations obtained in this study are greater than that observed by 

Bernecki et al. (1995) and Turner and Sogo (2012) (Table 6.2). The results are attributed 

to the elevated steel grit concentrations remaining in the paint waste, which to some 

extent dilutes the presence of other metals (such as Pb and Zn) in the paint. As, Cr, and 

Cd are consistent with or greater than the concentrations in the residential paint (Brumis 

et al., 2001; Mielke et al., 2001; Turner and Sogo, 2012). Because most work has focused 

on Pb, an analysis of Ba, Se, Ag, and Hg concentrations in paint waste has seldom been 

reported (Conroy et al., 1996; Mielke et al., 2001)  

Interestingly, concentrations of Pb, As, Cd, Cr, and Ag in the paint waste samples 

follow a similar trend, while Zn, Hg, and Se appear to follow a consistent trend (Figures 

6.1 and 6.2). Furthermore, greater Pb, As, Cd, Cr, and Ag were observed in waste from 

bridges in Regions 1, 3, 7, 10, and 11, and lower concentrations of these metals were 

detected in Regions 2 and 5. These results may be attributed to the paint formulation that 

includes pigments and extenders as well as the surface preparation methods applied on 

the bridges (discussed below in Section 6.2).  

 

6.2 Statistical Analysis of the Metal Distribution and Association 

To further investigate the metal distribution and association, correlations were evaluated 

between metals in the paint waste. Pearson’s correlation matrix (Table 6.3) indicated that 

Pb correlated with As (R2 = 0.78), Cr (R2 = 0.73), Cd (R2 = 0.88), and Ag (R2 = 0.67) 

(Table 6.3). Trends with strong correlation coefficients were observed between Cd and 
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Table 6.2  Metal Concentrations in Paint Used on Surface Structures  
 

Sources Concentration of Metals in paint by dry weight (ppm) Reference 

Pb Hg As Cd Cr Se Ag Ba Zn Fe 
1 µm  bridge paint 
particle 

895,000 – – – – – – – – 21,000 Bernecki et al., 
(1995) 

55 µm bridge paint 
particle  

28,000 –  – – – –  – –  868,000 30,000 

270 µm bridge paint 
particle 

331,000 –  – – – –  – –  50,000 44,000 

Western span of the 
San Francisco-Oakland 
Bay Bridge. 

42,000 – < 500 < 2.0 < 1,900 – – –  – Brumis et al. 
(2001) 

New Orleans houses 112 – 
256,797 

– – 7 - 439 2 - 417 – – – 52 – 98,056 – Mielke et al. 
(2001)  

Exterior house paint 464 – 
317,151 

0.8–
214.0 

– –  –  – – – – – Mielke and 
Gonzales 
(2008) 

Interior house paint 24 – 
63,313  

0.03–
39.2 

– – – – – – – – 

Exterior urban paints 4.5 - 
36,900  

– BDL - 
3.26 

BDL –
1.00 

1.9 - 775 – – – 39 - 23,500 196 – 
54,500 

Turner and 
Sogo (2012) 

Paint waste  5 – 
168,090 

BDL – 
527 

BDL – 
12,678 

BDL–
248 

21 – 
10,192 

BDL – 
195 

BDL – 
132 

BDL – 
16,319 

27 – 
425,510 

– This study 

BDL refers to below detection limit 
Detection limits (mg kg-1) for this study: As = 11, Ba = 100, Cd = 12, Cr = 85, Pb = 13, Se = 20, Ag = 10, Fe = 75, Zn = 25, Hg = 10. 
– refers to not reported
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       Bridge ID 

                    Five samples: a        b        c        d         e 
 
Figure 6.2  Total concentrations of Se, Hg, Zn, Ba, and Fe in paint are shown as a 
function of the five locations for bridges in Regions 1, 2, 3, 5, 7, 10, and 11 using NITON 
XL3t-600 series FP-XRF. Mining Mode was used for sample with metal concentrations 
greater than 2 % by wt, while Soil Mode was applied for samples with concentrations less 
than 2 % by wt. Bridge ID represents the region number and bridge sampled in this 
region. All bridges sampled were rehabilitated after 1989. Blasting standard SSPC SP 10 
was applied for bridges in Regions 2 and 5, while SSPC SP 6 were used for bridges in 
Regions 1, 3, 7, 10, and 11. 
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Ag (R2 = 0.95) as well as As and Cd (R2 = 0.72) (Table 6.3). Furthermore, correlations 

were observed between Hg and Se (R2= 0.99), Hg and Zn (R2= 0.94), and Se and Zn (R2= 

0.76). Similar results have been reported by Bhuiyan et al. (2011), where they observed 

correlations between Pb and Cd (R2 = 0.64); As and Cr (R2 = 0.63); and, Pb and Cr (R2 = 

0.51). As a result of their findings, Bhuiyan et al. (2011) hypothesized that the paint 

industry may be one of the sources of contamination in the water distribution system in 

Dhaka, Bangladesh. In our study, the paint applied in NYS has a similar composition to 

that found by Turner and Sogo (2012), where As, Cr, Cd, Pb, Fe, and Znwere observed in 

the exterior urban paints in UK. On the other hand, correlations were not observed 

between Pb, Fe, and Zn concentrations (R2 < 0.11, Table 6.3) suggesting unique sources 

in the paint waste. The composition of paint waste is complex and heterogeneous because 

of the historical application of the pigments and subsequent incomplete paint removal. To 

identify possible factors that affect the distribution of trace elements in the paint waste, 

PCA was applied. 

PCA showed essentially two main constituent axes with eigenvalues greater than 

1 (Table 6.4), together explaining 77.4% of the data variance. The first eigenvalue of 6.63 

represents 55.3% of the total variability. This result demonstrates that if the data were 

illustrated with one axis, 55.3% of the total variability in the data can be explained. 

Correlations greater than 0.70 (Table 6.4) are considered to demonstrate significant 

influence. The first PC (axis) revealed strong relationships with the associated total 

concentration present in the waste (e.g., As, Cr, Cd, Pb, and Ag) (Table 6.4). These 

results are attributed to the paint formulation and the surface preparation standard applied 

to the bridges. The Society for Protective Coatings (SSPC) surface preparation standard  
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Table 6.3  Coefficient Determination (R2) for RCRA Metals, as well as Iron and Zinc. 
 

 Pb Ba Cr Cd Ag Hg Se As Fe Zn 

Pb 1.0          

Ba 0.17 1.0         

Cr 0.73* 0.17 1.0        

Cd 0.68 0.02 0.33 1.0       

Ag 0.67 0.03 0.31 0.95 1.0      

Hg 0.11 0.60 0.07 0.0 0.0 1.0     

Se 0.33 0.40 0.30 0.10 0.085 0.99 1.0    

As 0.78 0.10 0.56 0.72 0.72 0.28 0.17 1.0   

Fe 0.056 0.0004 0.091 0.063 0.033 0.82 0.29 0.024 1.0  

Zn 0.14 0.10 0.18 0.011 0.0082 0.94 0.76 0.11 0.086 1.0 

 

* – R2 greater than 0.65 is highlighted as significant number. 
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Table 6.4  Principal Component Loadings of Total Metals and pH in the Paint Waste 
Samples 
 
Variable PC 1 PC 2 

As 0.829 -0.433 

Ba 0.658 0.429 

Ca 0.655 -0.165 

Cd 0.877 -0.342 

Cr 0.854 -0.432 

Fe 0.375 0.705 

Pb 0.863 -0.448 

Hg -0.698 -0.477 

Ag 0.886 -0.358 

Se -0.787 -0.518 

Ti 0.297 0.665 

Zn -0.851 -0.418 

Eigenvalue 6.63 2.64 

Proportion 0.553 0.22 

Cumulative 0.553 0.773 

 

Correlation value greater than 0.70 are highlighted 
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SP-6 (Commercial Blast Cleaning) (NYSDOT, 2008) has been applied on bridges in New 

York State prior to 2006, where paint and rust from steel were removed to a remaining 

residual of 33% of the total removal area. After 2006, SSPC SP-10 (Near White Blast 

Cleaning) has been required in the blasting procedure (NYSDOT, 2008) for all regions in 

NY SP-10 restricts the visible residue remaining on the bridge surface to 5% of the total 

removal area (The surface preparation methods mentioned here refer to the ones applied 

in the previous rehabilitation, which determined the residual waste remaining on the 

bridge). Consequently, for the 24 bridges studied, 99% of the paint samples from the 

bridges blasted to SSPC SP-6 (Regions 1, 3, 7, 10, and 11) revealed Pb concentrations 

greater than the HUD limit of 5,000 mg kg-1 (NIOSH, 1992), while 37% of the paint 

samples from the bridges blasted with SSPC SP-10 (Regions 2 and 5) exhibited Pb 

concentrations greater than 5,000 mg kg-1 (Figure 6.1; Table 6.1). The second PC (axis) 

(Table 6.4) in PCA revealed the influence of Fe in the paint waste demonstrating that it is 

an important factor impacting metal distribution. Because of the varying concentration of 

steel grit remaining in sample, 5% to 80% by weight, RCRA metals in the paint waste 

vary as well  

While understanding the total metal distribution and its association in the paint 

waste are important, most critical is the metal form which affects its potential mobility 

upon disposal. Toxicity of metals is dependent on the chemical form in the paint waste. 

 

6.3  Mineralogy of Paint Waste (XRD Analysis) 

XRD results revealed the presence of pigment minerals used before 1989 when lead-

based paint was prohibited in NYS (NYSDOT, 1988) (Figure 6.3). Pb and Cr occurred 

with similar trends in the paint waste (Figure 6.3). Specifically, Pb was speciated as lead
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Fe – Fe               SiO2 – SiO2                    Ti – TiO2               Ca – CaCO3              Al - Al      
Pb – Pb3O4          L – PbCrO4⋅PbO           Cr – Cr2O3             M – magnetite [Fe3O4]               
H – hematite [Fe2O3]                                F – ferrihydrite [5Fe2O3 9H2O]             G – 
goethite [FeO(OH)] 
 

Figure 6.3  XRD analysis of the primary minerals, Pb, Cr, and iron oxides in paint waste 
samples from Regions 3, 5, and 11.  
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tetraoxide (Pb3O4) and in association with Cr(VI) as crocoite (PbCrO4). These results are 

expected as lead tetraoxide (or red lead Pb3O4, Pb2O4, PbO2·2PbO) and lead chromate 

(PbCrO4⋅PbO) are reported to be the most widely used corrosion-inhibiting pigments on 

metal structures painted before the 1980s (Gooch, 1993; Strivens and Lambourne, 1999) 

(Table 2.2). Lead chromate (PbCrO4) was the dominate Cr mineral applied for bridge 

paint (Winchester, 1988) although Cr has also been applied as Cr2O3 (Figure 6.3). The 

presence of Cr2O3 is partly attributed to the application of chromium oxide green (Cr2O3) 

in paint providing a green pigment (Strivens and Lambourne, 1999). Degradation 

(reduction) of the pigment itself is another important explanation (Monico et al., 2011). 

Reduction of PbCrO4⋅PbO to the trivalent state (Cr2O3) in paint has been studied by 

others (Erkens et al., 2001; Monico et al., 2011; Somme-Dubru et al., 1981). The redox 

process is induced by heat, UV-visible light, contaminants, and SO2 (Erkens et al., 2001; 

Somme-Dubru et al., 1981). Monico et al. (2011) reported approximately two-thirds of 

chromate yellow pigment (PbCrO4⋅PbO) in paintings from the 1910s was reduced to 

Cr(III) compounds such as Cr2O32H2O, in some cases correlated to the presence of Ba 

(sulfate) and/or to that of aluminum silicate compounds. Nonetheless, the presence of Pb 

was consistent with Cr (Figure 6.3). 

Iron oxides observed in the paint waste included ferrihydrite (5Fe2O39H2O or 

Fe5HO84H2O), magnetite (Fe3O4), goethite (α-FeO(OH)), and hematite (Fe2O3) (Figure 

6.3). These oxidation products are formed on the steel grit surface (Hartley and Lepp, 

2008; Jambor and Dutrizac, 1998; Müller and Pluquet, 1998). Iron oxides (11% by wt) 

(Table 6.5) have been studied extensively on the steel surfaces (Cornelis et al., 2008; 

Komárek et al., 2013; Zhou and Haynes, 2010) because of its role in metal sequestration 
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Table 6.5  Primary Component of the Paint Waste Samples from XRD Analysis. 

Bridge 
Sample 

ID 

Major minerals in paint waste  
(% by wt) Total 

3-2 e Al (32) Fe(23) Magnetite (Fe3O4) (23) 
Quartz (SiO2) 

(15) 
CaCO3 (7 )   100 

5-2 d Fe (26) Quartz (SiO2) (27) Rutile (TiO2) (16) CaCO3 (12) 
Hemetite (Fe2O3) 

(11) 
Zn (8)  100 

11-2 a 
Quartz (SiO2) 

(70) 
Phoenicochroite 
(Pb2OCrO4) (11) 

Rutile (TiO2) (10) Cr2O3 (9)    100 

11-2 e 
Quartz (SiO2) 

(37.6) 
Al (25.7) Fe (14.9) 

Rutile (TiO2) 
(8.9) 

Phoenicochroite 
(Pb2OCrO4) (5) 

Calcite 5 Zn (3) 100 

 

Detection limit of XRD system is approximately 1% by wt (Quinn, 2013). 
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in soils. Iron oxides particularly the amorphous metastable mineral ferrihydrite is an 

important sorbent in the environment because of its high surface area, strong affinity for 

metals, and an abundance of binding sites. Consequently, the presence of iron oxides may 

have a significant effect on contaminant mobility from the paint waste.  

In addition to the Pb, Cr, and Fe minerals, the paint waste throughout NYS 

revealed SiO2 (silica), Fe (martensite) (Society of Automotive Engineers (SAE) 2006), 

TiO2 (rutile), Al (bauxite), CaCO3 (calcite), and Zn (spelter)/ZnO (zincite) (Figure 6.3, 

Tables 6.5 and 6.6). Generally, the composition of a paint can be described as the carrier 

(continuous phase) and pigment (discontinuous phase) (Lambourne and Strivens, 1999). 

The former includes binders (i.e., polymer chains such as long chain carboxylic acids and 

alkyd resins) and solvents (e.g., ether [-C-O-C]), while the latter is composed of 

extenders (or supplementary pigment, i.e., TiO2 and CaCO3), primary pigments (fine 

particle organic or inorganic, i.e., lithopone [ZnS mixed with BaSO4]), and additives 

(minor components) (Bentley, 1998; Clark, 1976).  

 

6.4  Morphology of Paint Waste (FE-SEM Analysis) 

Morphologically the paint particles exhibit an irregular topography ranging from 0.05 to 

1 mm (Figure 6.4) and angular shape steel grit residue (Figure 6.4) with diameters of 0.3 

to 1 mm (Figure 6.4). In this study, EDX observations of Si, Ti, Ca, and Al correlated 

with Pb and Cr (Figure 6.4) (Table 6.5), which is consistent with the findings from other 

studies (Franquelo et al., 2012; Turner and Sogo, 2012). Minerals such as CaCO3 and 

SiO2 may affect the metal mobility. For example, Andra et al. (2011) found that Ca was 

an important factor in the mobilization of Pb from alkaline soils in San Antonio, TX. The  
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Figure 6.4  FE-SEM images and EDX mapping on the paint waste sample. (a) FE-SEM image; (b) Blue particles represent the steel 
grit; green particles present the paint in the waste sample; (c) EDX mapping on paint waste sample from Region 7 (color images in 
mapping represent the corresponding elements).  
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Table 6.6  Summarized XRF and XRD Results 
 

Identified matrix phases 

from XRD 

Metal - bearing phases in paint waste 

XRF elements 
Miner minerals measured 

from XRD* 

Quartz (SiO2), Pb Lead tetroxide [Pb3O4] 

Rutile (TiO2)  Pb2(CrO4)O 

Calcite (CaCO3) Cr Cr2O3 

Al (bauxite) Zn Zinc oxide [ZnO] 

Fe (martensite)  Zinc chromates [ZnCr2O4] 

Zn (spelter) Fe Magnetite [Fe3O4) 

  Geothite [FeO(OH)] 

  Hematite [Fe2O3] 

  Ferrihydrite (5Fe2O3 9H2O) 

 Ba BaSO4, 

  [(Ba,Pb)SO4], 

 

* Metals (such as As, Cd, and Ag) at levels less than 1 % by wt were not detectable by 
XRD. 
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release of the CaCO3 from paint waste does not directly affect the metal mobility. 

However, its dissolution results in an increase in pH. Therefore, although elevated metals 

were observed, the presence of a number of minerals in the paint waste, including iron 

oxide (ferrihydrite (5Fe2O39H2O or Fe5HO84H2O), magnetite (Fe3O4), goethite (α-

FeO(OH)), and hematite (Fe2O3)), calcite (CaCO3), and (SiO2) silica, affect the potential 

mobility of metals in the paint waste.  

 

6.5 Lead Concentrations in Bridge Wash Water 

Dissolved Pb concentrations ranged from 2.5 µg/L to 410 µg/L (Figure 6.5), while total 

Pb concentrations were observed from 33 to 5,700 µg/L (Figure 6.6). Variability in 

dissolved Pb and total Pb was observed throughout the regions (Figures 6.5 and 6.6), and 

can be attributed to a number of factors including high pressure wash intensity and 

duration of application. The total lead concentrations are as great as 10 times the 

dissolved lead concentrations. On average, 84% of total lead concentrations in bridge 

wash water are in the particulate form. In general, Pb concentrations in the wash water 

samples from Region 5 were less than those from Regions 3 and 10 (Figures 6.5 and 6.6). 

The results are consistent with trends found from analyzing metal concentrations in the 

paint waste. Because surface preparation standard SSPC SP-6 (Commercial Blast 

Cleaning) (NYSDOT, 2008) was applied to the bridges, as great as 33% of paint 

remained on the bridge (NYSDOT, 2008). During high-pressure wash, the water 

impinges on the existing paint and exposed steel surfaces, removing weakly held material, 

which is carried off by the wash water. Therefore, the wash water generated is  
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Figure 6.5  Dissolved Pb concentrations are shown as a function of the two locations for the 14 bridges sampled using the Hach field 
spectrophotometer.  One sampling location was available for Bridges 3-1 and 3-2. All bridges sampled were rehabilitated after 1989. 
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Two sampling locations for each bridge:  a    b 
Figure 6.6  Total Pb concentrations are shown as a function of the two locations sampled for the 14 bridges using the Hach field 
spectrophotometer.  One sampling location was available for Bridges 3-1 and 3-2. All bridges sampled were rehabilitated after 1989. 
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contaminated with lead paint debris. The wash water concentrations are lower than those 

observed by Hopwood et al. (2003), where they attempted to apply a geotextile fabric to 

filter wash water from bridges undergoing maintenance prior to its release. Hopwood et 

al. reported dissolved lead concentrations ranged from less than detection to 5,500 µg/L 

while total lead concentrations were observed from 2,300 to 130,000 µg/L during high 

pressure (3,000 to 10,000 psi) washing. After filtration, dissolved lead concentrations 

were reduced to less than detection to 4,100 µg/L, while total lead concentrations ranged 

from 2,000 to 22,000 µg/L. On the other hand, results from this study are comparable 

with those obtained by Davis and Burns (1999) where the effect of acid rain on LBP 

structures was investigated. Results revealed that the total lead concentrations in the 

runoff from structures followed the order of wood 2.6 - 380 µg/L, brick 3.3 - 240 µg/L, 

and cement 2.0 - 110 µg/L. The lead concentrations depended on the age of the paint and 

condition of deterioration. In our study, Bridge 10-1 (Figure 6.5) exhibited the greatest 

dissolved lead concentration of 410 µg/L and total lead concentration of 5,700 µg/L. 

These results were consistent with the elevated lead concentrations observed using FP-

XRF on the paint waste samples from Bridge 10-1. 

Generally, wash water is filtered before discharged into a sewer or through runoff 

if determined hazardous (Appleman, 1997). States set their own standard for determining 

whether wash water is hazardous. Pennsylvania DOT requires a series of handling and 

disposal conditions for wash water including water collection, filtration of paint chips or 

particles, and water characterization; Massachusetts Turnpike set 100 ppm Pb as the 

criterion for wash water. In NYS, special collection requirements exist for washing a 

structure over a public water supply, where wash water over a body of water is required 
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to be collected and diverted to the adjoining land mass (NYSDOT, 2008). In this study, 

all samples revealed dissolved lead concentrations less than 1,000 µg/L; 89% of the 

samples were observed from non-detectable to 90 µg/L. Four of the samples showed total 

lead concentrations greater than 1,000 µg/L; 85% of the samples ranged from non-

detectable to 750 µg/L. Dissolved lead and lead contaminated paint particulates in wash 

water are transported either directly or indirectly to surface water through storm drains. 

Lead contaminated paint particles will continue to dissolve as they are being transported, 

releasing lead into solution. The dissolution rate can be enhanced by complexing ligands 

commonly found in natural waters, such as humic acid (Guy and Chakrabarth, 1976) and 

chloride (Davis and Barnes, 1996). The mobility of metals in the environment is a 

function of their speciation. In addition to the wash water, metals may be mobilized 

through rainfall, and urban stormwater runoff is considered to be a major source of 

metals to surface waters. Therefore, although lead concentrations were investigated in the 

bridge wash water during high pressure wash, the results suggest potential for rainwater 

contamination from the bridge paint surface as well.  

The surface water quality standard in New York State is 50 µg L-1 for Pb, where 

the surface water used as drinking water source; as low as 8 µg/L is applied for the saline 

surface water where there is fish, shellfish, and wildlife propagation and survival 

(NYSDEC, 1999). Ground water quality standard in NYS is 25 µg L-1 for Pb (NYSDEC, 

1999). 35% of the samples revealed dissolved lead concentrations greater than the surface 

water quality standard 50 µg L-1, while 96% of the samples were observed total lead in 

wash water greater than 50 µg L-1. These results suggest that bridge wash water 
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containing lead or paint solids may be collected, properly treated, and discharged to a 

permitted location to prevent surface water or ground water pollution. 

 

6.6  Summary 

XRF results indicate that although the 24 bridges studied to date have been repainted 

after 1989, lead-based paint was not entirely removed. Eighty percent of paint waste 

samples exhibited lead concentrations greater than 5,000 mg kg-1. The elevated iron 

concentrations are present from the application of steel grit used to remove paint. Other 

compounds of As, Ba, Cd, Hg, Se, and Ag were observed in paint as pigments and 

preservatives as well. Pb concentrations were observed to correlate with As (R2 = 0.78), 

Cd (R2 = 0.73), Cr (R2 = 0.88), and Ag (R2 = 0.67), while other relationships were 

observed between Hg and Se (R2= 0.99), Hg and Zn (R2= 0.94), and Se and Zn (R2= 

0.76). The trends were found across all the regions in NYS indicating consistent 

application of these metals as pigments and extenders in paint composition. XRD results 

further revealed pigments used before 1989 such as Pb3O4, PbCrO4⋅PbO, and Cr2O3. 

Primary minerals in the paint waste are SiO2 (silica), Fe (martensite), TiO2 (rutile), Al 

(bauxite), CaCO3 (calcite), and Zn (spelter)/ZnO (zincite). FE-SEM/EDX results further 

demonstrated that Si, Ti, Ca, and Al are associated with Pb and Cr. Despite the elevated 

metal concentrations observed, the presence of a number of minerals in the paint waste, 

such as iron oxides, CaCO3, and SiO2 may play important roles in reducing metal 

mobility from the waste.  

Dissolved Pb concentrations in bridge wash waster ranged from 2.5 µg L-1 to 410 

µg L-1, while total Pb concentrations were observed from 33 to 5,700 µg L-1. The total 
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lead concentrations were as great as 10 times the dissolved lead concentrations. In 

general, Pb concentrations in wash water samples from Region 5 were less than those 

from Regions 3 and 10. The results were consistent with trends found from analyzing 

metal concentrations in the paint waste. Results revealed dissolved lead concentrations 

less than 1,000 µg L-1; 89% of the samples were observed from non-detectable to 90 µg 

L-1. Four of the samples revealed total lead concentrations greater than 1,000 µg L-1; 85% 

of the samples ranged from non-detectable to 750 µg L-1. Based on the surface water 

quality standards, results in this study suggest that bridge wash water containing lead or 

paint solids may require collection, treatment, and discharge to a permitted location to 

prevent surface water or ground water pollution. 
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CHAPTER 7 

METAL LEACHING FROM THE BRIDGE PAINT WASTE  
IN THE PRESENCE OF STEEL GRIT 

 

In this section, short-term and long-term leaching studies were conducted to investigate 

the leaching behavior of trace metals (such as Pb and Cr) from bridge paint waste. 

Coupled with sequential extraction (SE), this section focuses on resolving phases trace 

metals are associated with in paint waste. The oxide mineralogy in the paint waste and 

results obtained may be used in developing predictive models for metal leaching as well 

as in addressing disposal and management of paint waste. 

 

7.1  Short-term Leaching (TCLP) 

The TCLP results (Figure 7.1; Appendix C) revealed that leached metal concentrations in 

the extracts ranged from less than 0.0005 (detection limit) to 1.46 mg L-1 for Pb, less than 

0.0007 (detection limit) to 9.52 mg L-1 for Cr, and less than 0.0004 (detection limit) to 

9.60 mg L-1 for Ba. Concentrations observed were less than the TC levels (for Pb 5 mg L-

1, Cr 5 mg L-1, and Ba 100 mg L-1), with the exception of three samples exhibiting Cr 

concentrations greater than the TC of 5 mg L-1 (U. S. EPA, 1992). These results were one 

to two orders of magnitude lower than the other similar studies (Table 7.1), where 

leaching was observed as great as 587 mg L-1 for Pb and up to 44.7 mg L-1 for Cr (Boy et 

al., 1995; Halim et al., 2003; Martel et al., 1997; U.S. EPA, 1998; Wadanambi et al., 

2008)  
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Figure 7.1  Leaching results from TCLP for Pb, Cr, and Ba as a function of pH after 18 
hours with 0.05 M ionic strength. Samples are extracted using Fluid #1 (0.1 N 
CH3COOH, which has been adjusted with NaOH to an initial pH of 4.93 ± 0.05) or Fluid 
#2 (0.1 N CH3COOH, which has an initial pH of 2.88 ± 0.05) based on the alkalinity of 
the waste material. TC: Toxicity characteristics. 
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Table 7.1  TCLP (mg L-1) Results from Lead-Based Paint (LBP) or Other Waste Studies. 

Sample Ba Cr Pb Zn Fe References 

Paint wastes associated with  
plastic media 

0.55 – 0.74 16.32 – 44.73 <0.066 – – 
Boy et al. (Boy et al., 
1995) 

LBP – – 28.3 – 36.7 – – 
Martel et al. (Martel et 
al., 1997) 

LBP debris    0.05 – 72.8   
U.S. EPA (U.S. EPA, 
1998) 

LBP – – 205 – 587 – – 
Wadanambi et al. 
(Wadanambi et al., 
2008) 

Paint waste with stabilizer    0.2 – 52   
Daniels et al. (Daniels et 
al., 2001) 

Waste foundry sand associated 
with hydrous ferric oxide 
(HFO) 

  0.4 – 9.0 132 – 141 BDL –213 Kendall (Kendall, 2003) 

Paint waste associated with  
steel grit* 

BDL – 9.6 BDL – 9.52 BDL – 1.46 BDL – 1307 BDL – 3275 This study 

BDL refers to below detection limit 
– refers to not reported 
*Detection limits (mg L-1) for this study:  Ba = 0.0004, Cr = 0.0007, Pb = 0.0005, Fe = 0.0025, Zn = 0.001. 
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(Table 7.1). The leaching results for Pb, Cr, and Ba (Figure 1) showed trends as a 

function of pH, where the leached metal concentrations decreased as the pH increased 

from 4.5 to 7. Similar results have been reported by many researchers (Boy et al., 1995; 

Kendall, 2003; Martel et al., 1997), where metal leaching was observed to be pH 

dependent. 

From earlier studies (Chapter 6), elevated metal concentrations were observed in 

the waste. For example, Pb was detected ranging from 5 to 168,090 mg kg-1, Cr from 21 

to 10,192 mg kg-1, and Ba from less than detection limit (100 mg kg-1) to 16,319 mg kg-1 

(Chapter 6). Yet the leached metal concentrations were less than the TC levels (Figure 1). 

One explanation for the leached concentrations observed can be attributed to the use of 

iron-based abrasives in the paint removal process. The typical steel (cast steel) grit 

applied is composed by wt of Fe (> 96%), C (< 1.2%), Mn (< 1.3%), Si (< 1.2%), Cr (< 

0.25%), Cu (< 0.25%), and Ni (< 0.2%) (Dunkerley et al., 1978). Earlier studies (Chapter 

6) demonstrated that as great as 80% by wt of the paint waste is comprised of steel grit. 

Therefore, surface interactions between metals and the steel grit surface likely play an 

important role in metal mobility and leaching. These interactions involve potentially a 

number of mechanisms: Iron oxides form on the steel grit surface (Apul et al., 2005; 

Jambor and Dutrizac, 1998; Stipp et al., 2002). The surface charge on the iron oxides 

arises from deprotonation and protonation of potential determining MOH2
0.5+ and 

MOH0.5− groups (Haynes, 1982; Zhou and Haynes, 2010) (Figure 7.2). This surface 

becomes increasingly negatively charged as the hydroxide ion activity (and pH) increases 

and becomes more positively charged as pH decreases; the surface charge is developed 

with respect to the oxide zero point of charge (ZPC)  
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Figure 7.2 Schematic diagram of the pH-dependent charge on an amphoteric metal oxide 
surface (Haynes, 1982; Zhou and Haynes, 2010). 
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(i.e., pHZPC = 7.8 − 8.8 for ferrihydrite, pHZPC = 6.5 - 7.9 for magnetite (Cornell and 

Schwertmann, 1996; Illés and Tombácz, 2003)). Cations desorb as the pH decreases and 

anions are released as the pH increases. The trend observed in this study is consistent 

with cation sorption (Pb2+, Cr(OH)2+, Ba2+) to the iron oxides formed on the steel grit 

surface, where a fraction of sorbed metals desorb during leaching (Strawn and Sparks, 

1999; Swift et al., 1991). Given the potentially significant surface interactions between 

trace metals and the iron oxide surface, reduced concentrations observed in leaching are 

likely due to the presence of iron oxides. Therefore, we hypothesize that iron oxides form 

on the steel grit surface. Metals in the paint waste interact with the iron oxide surface 

through sorption/desorption and/or dissolution/precipitation processes at the aqueous-

solid interface. 

Cr is a RCRA metal where the hexavalent form is of significant toxicity (Boy et 

al., 1995). Cr is introduced in paint as Cr2O3 and CrO4
2- (Doroszkowski et al., 1999). 

Reduction of Cr(VI) to Cr(III) has been observed under acidic conditions (pH < 7) (Weng 

et al., 2001; Weng et al., 1996) as well as with reducing agents Fe(II) or zero valent iron 

(Du et al., 2012; Peterson et al., 1996; Peterson et al., 1997). Hexavalent chromium may 

be reduced to trivalent chromium in the presence of ferrous iron (magnetite) or zero-

valent (steel grit) iron under acidic conditions. Therefore, Cr(III) is expected to be the 

dominant speciation in the leaching procedure. 

Although the metal mobility and speciation were investigated by TCLP 

(Appendix C), the 18-h leaching procedure is likely insufficient for evaluating the long-

term behavior of paint waste. Therefore, to understand the long-term stability of paint 

waste and address its disposal, MEP was applied in this study. 
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7.2  Long-term Leaching (MEP) 

Concentrations measured in extracts from the MEP experiments where either greater than 

or equal to that observed in the TCLP (Appendix C). In the first day of extraction, the 

greatest concentrations of metals leached were observed (Figure 7.3; Appendix C). From 

the second to fourth day of extraction, leached concentrations decreased as function of 

extraction time (Figure 7.3). The leached metal increased from the fourth to eighth day 

and decreased again from eighth to tenth day. Specifically, the first day of extraction 

resulted in leached concentrations as great as 22.6 mg L-1 for Pb, 0.064 mg L-1 for Cr, and 

up to 6.6 mg L-1 for Ba (Figure 7.3). From the second to fourth day of extraction, leached 

concentrations were observed from below detection level (BDL) (< 0.0005) to 2.04 mg L-

1 for Pb, BDL (< 0.0007) to 0.04 mg L-1 for Cr, and 0.03 to 0.3 mg L-1 for Ba (Figure 7.3; 

Appendix C); the reduced leaching was observed with increasing time. These results are 

attributed to the continuum of sorption reactions between specific adsorption and surface 

precipitation/coprecipitation: 

2
2 2S OH Me H O S O MeOH H+ + +− + + ↔ − − +    (Bradl, 2004; Dzombak and Morel, 1990) 

2
2 2 2 2( )( ) 2sS O MeOH Me H O S O MeOH Me OH H+ + + +− − + + ↔ − − + +             (Bradl, 2004)  

The adsorption process may be followed by surface precipitation reactions (Zhou and 

Haynes, 2010). Initial surface precipitates may exhibit a disordered lattice (amorphous) 

and therefore are metastable. Over time, the solid slowly converts to the more stable, less 

reactive, crystalline form, which has a lower solubility.  
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Time of extraction (days) 

Metals in Region 3        Metals in Region 10        Metals in Region 11 
pH in Region 3        pH in Region 10              pH in Region 11 

 

Figure 7.3. Leaching concentrations of Pb, Cr, and Ba from MEP are shown as a 
function of 10 days of extractions. The first extraction is performed with a pH of 5.0 
followed by the subsequent nine successive extractions using the initial pH of 3.0 ± 0.2 
that simulate acid rain conditions.  
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Interestingly, MEP results revealed increased Pb, Cr, and Ba concentrations in the 

leachate for pH greater than 7 as compared to second and third day of extraction. 

Increased Pb concentrations were observed over pH 7.0 to 7.5; Cr leaching increased 

over pH 6.5 to 8.5, and increased Ba concentrations were observed over pH 6.8 to 9.5. 

These results are consistent with that observed by Townsend et al. (Townsend et al., 

2004b), where they applied MEP to evaluate the leaching of arsenic, chromium, and 

copper from chromated copper arsenate (CCA)-treated wood. Results may be explained 

in part by metal complexation with organic ligands dissolving from the paint. Trace 

metals such as Pb and Cr complex with both low molecular weight organic ligands (i.e., 

citrate, acetate, and formate) and high molecular weight organic ligands (i.e., long chain 

carboxylic acids). At higher pH conditions, these organics dissolve along with the bound 

metals such as Pb and Cr(III) (Halim et al., 2004). Aqueous complexation increased trace 

metal mobility in the leachate for pH greater than 7 (Bradl, 2004).  

Although increased leaching was observed in long-term studies, 19 of 24 samples 

revealed that the TC level was not exceeded. A significant fraction of the trace metals is 

still associated with the solid phase. To investigate the forms metals are associated within 

the paint waste and further address the long-term mobility, sequential extraction was 

conducted.  

 

7.3  Metal Association with Paint Waste (SE) 

In the first and second steps of sequential extraction, the exchangeable and carbonate 

fractions (Figure 7.4) showed by wt 5.25 to 6.84% Pb (% refers to the extracted 

concentration over the total concentration), 4.27 to 4.73% Cr, 0.47 to 0.63% Ba, and 4.99 
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Figure 7.4  Mass balances of selective sequential extraction fractions for Pb, Cr, Ba, and 
Fe. 
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to 5.07% Fe. This phase represents metals and metalloids that are exchangeable and 

weakly bound (i.e., PbO pKSO =12.72 at 25°(Baes and Mesmer, 1976); ion-exchangeable 

Fe(II) (Heron et al., 1994)) as well as dissolution of carbonate minerals (i.e., 

Pb3(OH)2(CO3)2 pKS0 = 45.46 (Baes and Mesmer, 1976)); Pb3CO3 pKS0 = 13.13(Baes and 

Mesmer, 1976); and CaCO3 pKS0 = 8.36 (Benjamin, 2002), where Pb and Cr are 

associated with CaCO3). During the leaching experiments, these forms are expected to be 

released in the aqueous phase. The relatively low concentrations of Pb, Cr, Ba, and Fe 

observed are consistent with other studies (Funatsuki et al., 2012; Pueyo et al., 2003).  

In the third step of the extraction (pH 3 and 0.04 M NH2OH•HCl in 25% [v/v] 

CH3COOHa), metals associated with iron and manganese oxides phases are extracted and 

resulted in 6.48 to 11.82% Pb, 5.87 to 14.84% Cr, 0.09 to 0.20% Ba, and 7.84% to 14.22% 

Fe (12.46 to 22.61% as iron oxides) (Figure 7.4). This fraction relates to metal (Pb, Cr, 

and Ba) complexation with iron oxides (Davranche and Bollinger, 2000), which was 

observed at 11 % by wt with XRD (discussed below in Section 3.4). The elevated iron 

oxide minerals phase (11 % by wt) (Figure 7.4) are important surfaces for trace metal 

sorption of, for example, Pb and Cr. The degree of metal affinity for iron oxides observed 

in this extraction followed the trend of Pb ≈ Cr > Zn > Ba> As. Again, the presence of 

iron oxides formed on the steel grit provided a sink for the Pb and other metals in paint 

waste. The leached concentrations are consistent with the exchangeable, carbonates, and 

sorbed fractions found through sequential extraction (Figure 7.4). One limitation in this 

step is that NH2OH∙HCl extraction efficiency for well-crystallized (or synthetic) iron 

oxides is reported at less than a 30% recovery (La Force and Fendorf, 2000). Thus, 

amorphous iron oxide was extracted in this step. Metals extracted from this phase may re-
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adsorb to unextracted materials (Hass and Fine, 2010; Howard and Shu, 1996). For 

example, metal released from iron oxides may be re-adsorbed by organics that have not 

yet been extracted (Howard and Shu, 1996). Therefore, the extracted metals in this step 

may underestimate the importance of this phase. 

The fourth extraction step using nitric acid (0.02 M HNO3) and hydrogen 

peroxide (30% H2O2) followed by ammonium acetate (NH4Ac) (pH 2) resulted in 

leaching of Pb 4.01 to 5.39%, Cr 0.12 to 1.65%, Ba 0.05 to 0.17%, and Fe 3.86 to 6.13% 

(Figure 7.4). This fraction reflects metals organically bound. Because the paint 

composition (Doroszkowski et al., 1999), this phase is expected. In the paint formulation, 

greater than 60% by wt is composed of organic solvents, while approximately 10% 

pigments and additives are applied (Clark, 1976). The inorganic pigment in paint is 

primarily made up of compounds such as Pb3O4, Cr2O3, and Fe2O3 (Doroszkowski et al., 

1999), along with polymer to produce a homogenous viscous fluid.  

The remaining or residual fraction involves for example metals substituted into a 

mineral lattice structure. This fraction is not expected to be mobilized in the environment 

or under landfill conditions. In this study, sequential extraction helps to better understand 

the phases where metals such as Pb and Cr may be associated with in the waste. Using a 

mass balance, approximately 80% of Pb, 85% of Cr, 99% of Ba, and 80% of Fe (Figure 

7.4) are associated with the residual phase. A number of phases play roles in trace metal 

interactions and behavior: minerals in the paint (i.e., SiO2), iron oxide coatings on the 

steel grit surface, and other pigment matrices (such as TiO2), which are more difficult to 

digest (Barnes and Davis, 1996). These results are similar to other studies, where Pb 

overall exhibited the greatest mobility as compared to other trace metals (La Force and 
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Fendorf, 2000). The degree of mobilization in this extraction followed the trend of Pb > 

Cr > Ba. Steel grit, comprised of approximately 96% iron, undergoes corrosion/oxidation 

resulting in iron oxide coatings (Hartley and Lepp, 2008; Jambor and Dutrizac, 1998; 

Müller and Pluquet, 1998). Ferrihydrite is one of the most widespread form of iron oxides 

(Jambor and Dutrizac, 1998; Komárek et al., 2013) and can be characterized by the 

number of X-ray diffraction lines: typically two-line ferrihydrite exhibits little 

crystallinity while six-line ferrihydrite is more crystalline. Specifically, two-line 

ferrihydrite (bulk composition 5Fe2O3·9H2O) is a poorly crystalline Fe(III) oxyhydroxide 

occurring as small (2-4 nm) spherical particles that aggregate in the environment (Jambor 

and Dutrizac, 1998). This form of iron oxides was shown to effectively reduce 

bioavailability of metal contaminants (Hartley and Lepp, 2008) and immobilize metals in 

sediment (Müller and Pluquet, 1998). Given the importance of iron oxides coated steel, 

further characterization was applied.  

 

7.4  Iron Oxide Minerals 

The accumulation and leaching behavior of trace metals at the interface of Fe-based 

surfaces is strongly influenced by the iron oxide mineralogy. In the interest of assessing 

minerals of Fe in the paint waste, samples with the greatest concentrations were applied. 

Diffractograms revealed 2θ peaks at 44.7, 65.0, 82.3, and 99.1 (Figure 7.5), which 

correspond to (110), (200), (211), and (220) crystal planes for Fe. Several minor peaks 

(Figure 4) reflected the presence of amorphous iron oxides, which is due in large part to 

the steel grit. The broad peaks between 2θ values of 33.1 to 36.2 indicate the presence of 

ferrihydrite, which will crystallize over time to other thermodynamically stable Fe(III) 
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Fe – Fe,                                                                    F – ferrihydrite (5Fe2O3 9H2O)  
M – magnetite [Fe3O4]                                             G – goethite FeO(OH)  
H – hematite [Fe2O3] 

 
Figure 7.5  XRD patterns of iron and iron oxides in paint waste samples from Region 5.
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oxides, goethite (α-FeO(OH); Ksp = 10-41 (Das et al., 2011)) and hematite (α-Fe2O3; Ksp = 

10-43 (Das et al., 2011)) at neutral pH (Jambor and Dutrizac, 1998) (Figure 7.5). In this 

study, steel grit particles were observed to be present at diameters less than 1 mm 

(Chapter 6). Fe (as martensite(Sae Specification, 2006)) was observed as great as 45% by 

wt using XRD. Given their significant surface area, iron oxide concentrations were as 

great as 11% by wt in the paint waste samples based on the peak area in the diffractogram 

(Figure 7.5). These oxide coatings provide an important sink for the trace metals 

attenuation.  

 

7.5  Future Implication of the Paint Waste Management 

The presence of the iron oxides formed on the steel grit in the paint waste may have an 

environmental advantage in reducing contaminant mobility. When the waste materials are 

landfilled, surface interactions between trace metals (such as Pb and Cr) and iron oxide 

coatings can drastically reduce leachate concentrations. A number of transportation 

agencies (i.e., NYSDOT, (NYSDOT, 2008); Minnesota Department of Transportation 

(MnDOT), (Minnesota Department of Transportation (MnDOT), 2004) apply a 

conservative approach by assuming all waste generated from bridges rehabilitated before 

1988 or with lead concentrations greater than 5,000 ppm as hazardous material. The 

findings in this study indicate that the paint waste from bridges may be characterized as 

non-hazardous material and disposed at a municipal solid waste (MSW) landfill or a 

construction and demolition (C&D) landfill. Consequently, the associated costs will be 

reduced.  
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7.6 Summary 

In summary, although elevated metals were observed in the paint waste, 48 out of 51 

samples passed the TCLP test. In MEP studies addressing long-term leaching behavior, 

19 out of 24 samples revealed concentrations less than the TC level. These observations 

suggest that metals are sequestered through interactions with the steel grit surface, 

resulting in reduced leachable concentrations (less than the TC limit). Sequential 

extraction revealed that trace metals were found at lower fractions in exchangeable and 

carbonate forms, while greater contributions of these metals were associated with iron 

oxides. Yet, the largest fraction, greater than 80%, was associated with the residual phase. 

XRD analysis corroborated that iron oxides formed on the steel grit surface providing an 

important interface for trace metals. The presence of the iron oxides in the paint waste 

may have an environmental advantage in considering contaminant mobility. 
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CHAPTER 8 

TRACE METAL LEACHING MECHANISMS FROM BRIDGE PAINT WASTE 
IN THE PRESENCE OF STEEL GRIT. 

 

Iron oxide was observed to be an important surface for the cations and anions in the paint 

waste. In this chapter, we investigated the structure of the iron oxide coating formed on 

the steel grit surface and the potential bonding structure of metals. Furthermore, modeling 

of the ions in aqueous, sorbed, and precipitated phases was used to consider whether 

surface complexation or precipitation controls metal leaching. 

 

8.1 The Structure of the Iron Oxides Formed on the Steel Grit Surface 

XRD results indicated the presence of ferrihydrite (60% by wt) (5Fe2O39H2O or 

Fe5HO84H2O), magnetite (7.1%) (Fe3O4), goethite (22%) (α-FeO(OH)), and hematite 

(11%) (Fe2O3) on the steel grit surface (Appendix E) (Chapter 6). In this study, FE-SEM 

was applied to evaluate the morphology and surface composition of the steel grit 

particles. Spherical particle aggregates were observed (Figure 8.1) consistent of 

ferrihydrite (5Fe2O39H2O or Fe5HO84H2O) (Das et al., 2011; Equeenuddin et al., 2010; 

Stipp et al., 2002). These aggregates ranged from 20 to 200 nm in diameter (Figure 8.1). 

In addition, Pb (0.09%) and Cr (0.08%) were associated with Fe (70.91% by wt) and O 

(23.79%) on the steel grit surface (Figure 8.1) indicating metal association with the iron 

oxide surface.  

The formation of the iron oxide coatings has been observed by many researchers 

(De La Fuente et al., 2011; Kelly et al., 2007; Lu et al., 2011; Stipp et al., 2002).  
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Figure 8.1  FE-SEM images on the steel grit surface of the paint waste sample.  
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Si  1.46 
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Mn  0.67 
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S 0.31 
Pb  0.09 
Cr  0.08 
Ba 0.08 
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Ferrihydrite and lepidocrocite are typical morphological structures on steel 

surfaces after exposure in the atmospheric (De La Fuente et al., 2011; El Hajj et al., 2013; 

Monnier et al., 2010).  Lu et al. (Lu et al., 2011) hypothesized that Pb2+ was first 

adsorbed onto the nanometer-sized, metastable, iron oxyhydroxide polymers of 2-line 

ferrihydrite. As these nano-particles assembled into larger particles, Pb2+ was trapped in 

the iron oxyhydroxide structure and re-arranged on the iron oxide surface. On the other 

hand, ferrihydrite may gradually convert to the more crystalline and stable Fe(III) oxides 

goethite (α-FeO(OH); KSO = 10-41) (Das et al., 2011), hematite (α-Fe2O3; KSO = 10-43) 

(Das et al., 2011),  and lepidocrocite (γ-FeOOH; KSO = 10-39) (Lu et al., 2011) at neutral 

pH (Jambor and Dutrizac, 1998),(Shaw et al., 2004). Nonetheless, ferrihydrite formed on 

the steel grit surface is not only metastable for long periods(Das et al., 2011; Lu et al., 

2011) (e.g., Axe and Anderson (Axe and Anderson, 1995) observed the transformation of 

ferrihydrite to goethite and hematite in 14 weeks; 19% by wt of the initial ferrihydrite 

remained at room temperature and pH 6 after 970 days (Schwertmann and Murad, 

1983)), it also provides an abundance of binding sites for trace metals in paint waste 

(Dzombak and Morel, 1990).  

Based on the discussion in Section 7.3, greater contributions of metals (Pb, Cr, 

and Ba) were found with iron oxides, while less than 6.8% of Pb, Cr, and Ba were 

associated with the exchangeable and carbonate forms. The largest fraction, however, 

greater than 80%, was associated with the residual phase comprised of minerals in the 

paint including SiO2 and TiO2. Overall, the greatest fraction of mobilized metals (as great 

as 15% by wt) was associated with the iron oxide phase. Wadanambi et al. (2008) found 

that paint waste generated without the application of steel grit, resulted in Pb leaching as 
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great as 587 mg/L (27% by wt in the paint waste) (Wadanambi et al., 2008). In this study, 

because of the presence iron oxide in the paint waste, redistribution of metals occurs from 

exchange sites to specific sorption sites, resulting in greater fraction of mobilized metals 

associated with the iron oxide phase. Therefore, leaching of the trace metals from the 

paint waste may be controlled by the iron oxide surface. Sorption is an important process 

that is responsible for metal leaching.  

In general, metal adsorption on iron oxides is a two-step process - a fast initial 

uptake followed by a slower sorption process that has been attributed to processes 

including surface precipitation (or coprecipitation) (Lu et al., 2011; Vithanage et al., 2013) 

and surface diffusion along pore surfaces (Fan et al., 2005; Xu et al., 2006). X-ray 

absorption near edge structure (XANES) and x-ray absorption fine-structure (XAFS) 

analyses of Pb(II) - sorbed to amorphous iron oxide surfaces revealed that Pb(II) ions 

form mononuclear bidentate edge sharing surface complexes on FeO6 octahedra with two 

Fe atoms located at approximately 3.34 Å (pH > 4.5) (Dyer et al., 2003), Pb–O distance 

of 2.25–2.35 Å, and Pb–Fe distances of 3.29–3.36 (3.65–3.76) Å (Dyer et al., 2003; Xu et 

al., 2006). The adsorption of a Cr(III) atom onto goethite or HFO occurs via the 

formation of inner-sphere surface complexes (Manceau et al., 1992; Peterson et al., 1997). 

Cr(III) atoms are surrounded by three metal (Fe or Cr) shells at 3.00–3.05, 3.40–3.46, and 

3.94–4.03 Å, consistent with a mixed α- and γ-MeOOH (coprecipitation for Cr) local 

structure (Me represents Fe or Cr) (Manceau et al., 1992; Peterson et al., 1997). 

To better understand the metal behavior and the adsorption effect in the paint 

waste, adsorption and desorption edges for Pb and Cr were investigated. 
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8.2 Leaching and Desorption Process 

In this study, greater than 99.95% of Pb is associated with paint waste, while 96% of Cr 

is sequestered in the leaching procedure (Figure 8.2). Paint waste with elevated Fe 

concentrations (and consequent iron oxides) revealed lower metal leaching (Figure 8.2) 

suggesting metal sorption to iron oxides is a dominant mechanism responsible for metal 

leaching. For example, bridge paint samples in Region 5, where Fe was observed as great 

as 80% by wt, revealed less than 0.004% by wt of Pb and 0.07% by wt of Cr 

released/leached. 

In addition, adsorption and desorption results for Pb and Cr (Figure 8.2) showed 

trends as a function of pH, where the released/leached metal concentrations decreased as 

the pH increased from 4.5 to 7. Similar results have been reported by many researchers 

(Boy et al., 1995; Kendall, 2003; Martel et al., 1997), where metal leaching was observed 

to be pH dependent. The surface charge of iron oxides is a function of pH, with an 

increasingly net negative charge as the pH increases above the zero point of charge. The 

trend observed in this study is consistent with cation sorption (Pb2+ and Cr(OH)2+) to the 

iron oxide formed on the steel grit surface, where a fraction of sorbed metals desorb 

during leaching (Strawn and Sparks, 1999; Swift et al., 1991). To further investigate 

plausible processes, adsorption/desorption and precipitation/dissolution modeling were 

applied. 

 

8.3 Mechanistic Modeling of Metal Leaching 

Based on the above discussion, bidentate surface complexes are assumed in this study, 

where FeOH0 represents a surface hydroxyl group and the surface reaction for either  
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Figure 8.2  Adsorption edges for Pb and Cr from the paint waste are shown after 18 hours of equilibration with 50g L-1 paint waste in 
Fluid #1 (0.1 N CH3COOH, which has been adjusted with NaOH to an initial pH of 4.93 ± 0.05) or Fluid #2 (0.1 N CH3COOH, which 
has an initial pH of 2.88 ± 0.05) based on the alkalinity of the waste material. Ionic strength = 0.1 M. 
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Pb2+, Cr(OH)2+, Ba2+, or Zn2+ (Me) on HFO is the following: 

0 2Fe OH Me Fe OMe H+ + +≡ − + =≡ − +                log MeK (Dzombak and Morel, 1990) 

In our study, non-detectable to 0.048% by wt of the total Pb leached from the 

paint waste for the pH range of 4.5 to 7 (Table 8.1; Figure 8.3). Although XRD analysis 

reveals the presence of PbCrO4 and Pb3O4 in the paint waste (Chapter 6), these forms of 

Pb are associated with residual phase. Based on lead solubility (Appendix D), PbCO3 

(cerrusite) is considered as the dominant solid for pH less than 8, while Pb3(OH)2(CO3)2 

(hydrocerussite) controls the solubility for pH greater than or equal to 8. This result is 

consistent with that found by Barnes and Davis (Barnes and Davis, 1996). However, the 

precipitation simulation did not capture the leaching data from TCLP procedure and 

overestimated the dissolved lead in the solution. The diffuse layer model (log KMe = 4.65 

for Pb) (Dzombak and Morel, 1990) captured 90% of the data within the 95% confidence 

level, suggesting that sorption to the iron oxides plays an important role in Pb leaching. 

Interestingly, leaching from pH 4.5 to 5.5 resulted in less desorption than that obtained 

from adsorption modeling with DLM. This result is likely attributed to the continuum of 

sorption reactions between specific adsorption and surface precipitation/coprecipitation 

of the Pb mineral occurring on the steel grit surface, which is in agreement with previous 

studies of weathered steel slag by Apul et al (Apul et al., 2005). 

2
2 2S OH Me H O S O MeOH H+ + +− + + ↔ − − +    (Bradl, 2004; Dzombak and Morel, 1990) 

2
2 2 2 2( )( ) 2sS O MeOH Me H O S O MeOH Me OH H+ + + +− − + + ↔ − − + +           (Bradl, 2004)  

Initial surface precipitates may exhibit a disordered lattice (amorphous) and therefore are 

metastable. Over time, as these nano-particles assemble into larger particles, metals are
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Table 8.1  Total Concentration, Boundary Conditions, and Leached Concentrations Used in Surface Complexation Modeling 

 Pb 

 

Cr 

 

Ba 

 

Zn 

 
 mean mini max mean min max mean min max mean min max 

Total Concentrations in 

the paint (mg/kg)a 
4.6×104 5 1.7×105 3,018 21 1×104 6,600 228 1.6×104 1.3×105 1.3×104 1.1×106 

Leached concentrations 

over TCLP  procedure 

(M or mol/L) 

1.4×10-6 BDLb 1.0×10-5 1.5×10-5 BDL 1.8×10-4 1.0×10-5 BDL 7.1×10-5 0.0066 3.1×10-4 0.02 

Desorbed metal 

concentrations over 

TCLP procedure (% of 

total metal) 

0.011 BDL 0.048 0.62 BDL 3.7 0.55 BDL 2.1 11.72 0.41 53.5 

 

a: The values are based on results from XRF. 

b: BDL refers to below detection limit. 
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Figure 8.3  Desorbed Pb (A) and Cr (B) in the presence of steel grit associated with paint 
waste as a function of pH after 18 hours using the TCLP. CrT = 1.8×10-4 M, PbT = 
1.0×10-5 M, FeT = 0.07 M, ionic strength = 0.1 M, surface area = 600 m2/g, KMePb = 
104.65(Dzombak and Morel, 1990), KMeCr = 102.11(Dzombak and Morel, 1990), KsoPbCO3 = 
10-13.13 (Benjamin, 2002), Kso Pb3(OH)2(CO3)2 = 10-45.46 (Benjamin, 2002), and KsoCr2O3 = 10-

33.13 (Benjamin, 2002). 
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trapped in the iron oxide structure and re-arranged on the steel grit surface (Lu et al., 

2011). The oxides slowly converts to the more stable, less reactive, crystalline form, 

which has a lower solubility. These results are consistent with that observed by Apul et al. 

(Apul et al., 2005) and Meima and Comans (Meima and Comans, 1998) where they 

found both adsorption and coprecipitation are important processes that affect Pb leaching 

from the incinerator bottom ash and steel slag.  

Similar with the Pb work, precipitation modeling of the TCLP results 

overestimated the dissolved concentrations in the system. Although the chromium 

hydroxide Cr(OH)3 (or Cr2O3) was observed in paint waste (Chapter 6) based on its 

solubility (Appendix D), Cr(OH)3 may influence metal leaching for pH greater than 6.8 

(Figure 8.3). The desorbed Cr decreased as pH increased from 4.5 to 7 and the adsorption 

simulation captured 90% of the desorption data within the 95% confidence interval. The 

DLM model adequately predicted the observed leaching (Figure 8.3) in the paint waste 

suggesting sorption/desorption from the iron oxide surface as the dominant process. This 

result is similar to that found by Jing et al. (Jing et al., 2006) where leaching behavior of 

Cr was mainly controlled by the adsorption on iron oxides in the solidified soil. In 

addition, the trend is consistent with the trivalent Cr leaching (i.e., cation 

adsorption/desorption). In this study, Cr(III) is expected to be the dominant species, 

although a small fraction of Cr(VI) maybe exist in the leachate. Cr is introduced in paint 

as Cr2O3 and CrO4
2- (Doroszkowski et al., 1999). Reduction of Cr(VI) to Cr(III) has been 

observed under acidic conditions (pH < 7) (Chowdhury et al., 2012) as well as with 

reducing agents Fe(II) or zero valent iron (Chowdhury et al., 2012; Du et al., 2012; Stipp 

et al., 2002). Hexavalent chromium may be reduced to trivalent chromium in the presence 
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of ferrous iron (magnetite) (Cr6+ +3Fe2+   Cr3+ +3Fe3+) or zero-valent (steel grit) iron 

under acidic conditions. Therefore, Cr(III) is expected to be the dominant speciation in 

the system. Compared to Pb, Cr (as great as 9.52 mg/L or 3.7% by wt) leached to a 

greater degree than lead (0.048% by wt for Pb). Because of the difference between Pb 

and Cr surface complexation constants KMePb = 104.65 > KMeCr(III) = 102.11 (intrinsic constant) 

(Dzombak and Morel, 1990) these results are expected. 

Several possible mechanisms described the Ba leaching in the system. Although 

adsorption occurs on the steel grit iron oxide surface, precipitation of Ba as BaSO4 occurs 

in the system. Ba has been and is currently used as an extender (Strivens and Lambourne, 

1999) in paint. BaSO4 is the primary form applied in paint and XRD results demonstrated 

that barite (BaSO4) was the dominant form in the system (Chapter 6). In addition, Ba may 

coprecipite with Sr in the system. Sr is used as pigment in paint (such as strontium 

aluminate) and is observed from non-detectable to 2,137 mg/kg in this study. A number 

of researchers (e g., Cravotta, 2008; Mudd et al., 2004) have reported that coprecipitation 

between Ba and Sr affect Ba leaching from the weathered solid waste. In this study, both 

sorption and precipitation modeling captured a portion of the leaching data (Figures 8.4 

and 8.5). Because of the heterogeneity of solid phase in paint sample, both sorption 

(including adsorption and coprecipitation Ba-Sr) and precipitation are important 

processes that affect Ba leaching from the waste. These results are in agreement with 

previous modeling studies of the leaching behavior of Ba in soils (Dijkstra et al., 2009) 

and coal ash (Mudd et al., 2004). 

Although sorption of Zn may also occur on the steel grit iron oxide surface, 

coprecipitation has been observed for Zn and HFO  
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Figure 8.4  Desorbed Ba (A) and Zn (B) in the presence of steel grit associated with paint 
waste as a function of pH 0 to 14 after 18 hours using the TCLP. BaT = 3.2×10-5, ZnT = 
0.02, FeT = 0.07 M, ionic strength = 0.1 M, surface area = 600 m2/g, KMeBa = 105.46 
(Dzombak and Morel, 1990), KMeZn = 103.49 (Dzombak and Morel, 1990), KsoBaSO4 = 10-

9.86 (Benjamin, 2002), and KsoZnO = 10-16.12 (Benjamin, 2002). 
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pH 

 

Figure 8.5  Desorbed Ba (A, B) and Zn (C) in the presence of steel grit associated with 
paint waste as a function of pH 4.5 to 7 after 18 hours using the TCLP. BaT = 3.2×10-5, 
ZnT = 0.02, FeT = 0.07 M, ionic strength = 0.1 M, surface area = 600 m2/g, KMeBa = 105.46 
(Dzombak and Morel, 1990), KMeZn = 103.49 (Dzombak and Morel, 1990), KsoBaSO4 = 10-

9.86 (Benjamin, 2002), and KsoZnO = 10-16.12 (Benjamin, 2002). The dash line represents the 
95% prediction interval. 
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(Crawford et al., 1997; Trivedi et al., 2001). In addition, ZnO, observed with XRD 

(Chapter 7), is the precipitated in the paint waste. In addition to ZnO, other zinc minerals, 

such as ZnCrO4 and ZnS applied in paint, may limit the dissolution of Zn and 

subsequently control the upper limit of Zn concentrations in the system. In this study, Zn 

leaching was observed as great as 50% of the total Zn in the paint waste (Table 8.1). 

Sorption modeling underestimated the Zn leaching, while precipitation modeling 

overestimated the dissolved Zn from paint. Therefore, both sorption (including adsorption 

and coprecipitation Zn/HFO) and precipitation are important processes that affect Zn 

leaching from the waste. 

 

8.4  Summary 

Overall, the DLM described leaching of Pb and Cr in the presence of the steel grit. 

Adsorption/desorption is likely the main mechanism responsible for the Pb and Cr 

leaching. For Ba and Zn, both sorption and precipitation are important processes 

supporting predictive mechanistic leaching from the waste. Nonetheless, ferrihydrite, the 

dominant phase on the steel grit surface, provides abundant binding sites for trace metals. 

Surface sorption and co-precipitation may lead to structural incorporation of sorbed 

metals. Consequently, removal of metals (such as Pb) by iron oxides in the environment 

may be permanent. The findings in this study may have positive implications for DOT 

agencies in addressing disposal and management of paint waste during bridge 

rehabilitation.  

In fact, in addition to iron oxide, other minerals and phases in paint waste may 

also affect leaching, such as TiO2. Therefore, a number of factors may affect metal 



 

137 

leaching behavior including total metal concentrations in the paint waste, dominant 

sorbents present, competing metal ions, and the pH of the system. To develop a practical 

model that can be used for in-situ characterization, Fe along with other minerals (metals) 

present at elevated concentration in the paint waste samples are expected to play 

important roles in the statistical model accounting for their potential influence on metal 

leaching. In the next chapter, PCA is invoked to address and support the analysis of 

significant variables. Consequently, statistically-based models for leaching from paint 

waste are developed.  
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CHAPTER 9  
 

STATISTICAL MODEL DEVELOPMENT FOR METAL LEACHING FROM 
BRIDGE PAINT WASTE IN THE PRESENCE OF STEEL GRIT. 

 
Mechanistic models provide a mathematical form of the equilibrium reaction based on 

mass balances of the species present and surface charge effects (Bradl, 2004). However, 

because this approach requires water chemistry conditions and species present, 

mechanistic models in general are more complex. Given that field data will be used to 

classify waste, statistical modeling is introduced into this study. Mechanistic modeling is 

used to support PCA of data obtained with FP-XRF. The statistical models formulated in 

this work are based exclusively on data collected from bridges undergoing rehabilitation 

where steel grit was used as the blasting material. 

 

9.1 Principal Component Analysis (PCA) 

In this study, applying PCA to the raw data showed essentially three main constituent 

axes with eigenvalues greater than 1 (Table 9.1), together explaining 85% of the data 

variance. The first PC represents 55.3% of the total variability and strong relationships 

with the associated total concentration present in the samples. The positive weights (i.e. 

As, Cr, Cd, Pb, and Ag) are associated with the bridge blasted with SSPC 6, while the 

negative weights (i.e. Hg, Se, and Zn) were related with the bridges applied with SSPC 

10 during bridge rehabilitation. Surface preparation standard SSPC (The Society for 

Protective Coatings) SP-6 (Commercial Blast Cleaning) (NYSDOT, 2008) has been 

applied to bridges in New York State before 2006, where paint and rust from steel were 

removed to a remaining residual  
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Table 9.1  Principal Component Loadings of Total Metals in the Paint Waste Samples 

Variable PC 1 PC 2 PC 3 

As 0.829 -0.433 -0.22 

Ba 0.658 0.429 0.19 

Ca 0.655 -0.165 0.672 

Cd 0.877 -0.342 -0.243 

Cr 0.854 -0.432 0.004 

Fe 0.375 0.705 -0.437 

Pb 0.863 -0.448 -0.027 

Hg -0.698 -0.477 -0.191 

Ag 0.886 -0.358 -0.228 

Se -0.787 -0.518 -0.127 

Ti 0.297 0.665 -0.156 

Zn -0.851 -0.418 -0.034 

Eigenvalue 6.63 2.64 1.00 

Proportion 0.553 0.22 0.076 

Cumulative 0.553 0.773 0.849 

 

Correlation value greater than 0.66 are highlighted 
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of 33% of the total removal area. After 2006, SSPC SP-10 (Near White Blast Cleaning) 

was required in the blasting procedure (NYSDOT, 2008) for all regions in NY. SP-10 

restricts the visible residues remaining on the bridge surface to 5% of the total removal 

area. In this study, elevated total concentrations of As, Cd, Cr, Pb, and Ag were observed 

from bridges in Regions 1, 3, 7, 10, and 11, where the SSPC SP-6 blasting standard was 

applied. Greater concentrations of total Hg, Se, and Zn were related with the bridges in 

Regions 2 and 5, which were blasted with surface preparation standard SSPC SP-10 

(Margrey, 2012) during rehabilitation. With the first PC, fifty-five percent of the total 

variability can be explained. 

The second PC in PCA revealed the influence of Fe in the paint waste 

demonstrating that Fe is an important factor impacting model variability in paint waste. 

This result is attributed to the iron oxides formed on the steel grit surface, which provides 

a highly reactive surface for metal sorption in the system and further controls the degree 

of metal leaching from the paint waste. In addition to Fe, Ti was also observed to be an 

important factor in the paint waste based on PC2 (Table 9.1). This result is somewhat 

attributed to the application of TiO2 as extenders in paint, which may provide sorption 

surface for trace metals as well. The third PC exhibited the effect of Ca in the paint waste. 

The observed behavior of Ca is consistent with Andra et al. (2011), where Ca was an 

important factor in the mobilization of Pb from alkaline soils in San Antonio, TX. The 

observed Ca is attributed to the application of calcite (CaCO3) (12% by wt in paint waste, 

Chapter 6) as an extender (supplementary pigments) in the paint (Lambourne and 

Strivens, 1999). The release of the CaCO3 from paint waste does not directly affect the 

metal leaching. However, the dissolution of the CaCO3 results in an increase in pH during 
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the leaching procedure. Because metal leaching is a function of pH, dissolution of the 

CaCO3 reflects this pH change and hence metal leaching. Therefore, CaCO3 is expected 

to be an important factor in the leaching model.  

Using PCA analysis, the most important factors accounting for total variability are 

the surface preparation standard (reflected in Table 9.1 (PC1)) and steel grit (iron) 

remaining in the paint waste (reflected in Table 9.1 (PC2)). Other factors such as Ti and 

Ca (reflected in Table 9.1 (PC2 and PC3)) also impact the variability in paint waste. 

These results are consistent with the correlations presented earlier in Chapter 6.2 and 

mechanistic processes identified in Chapter 8. Therefore, metal leaching (the release of 

trace metal cation or anion to the water phase) depends on (a) total metal concentrations; 

(b) CaCO3 affecting the pH and alkalinity; (c) Fe oxides providing a highly reactive 

surface for metal sorption; and, (d) other groups of metals such as Zn and Ti in the paint 

waste. 

To address the best-fit model of experimental data, the mathematical form should 

be chosen to be as simple as possible with the number of adjustable parameters at a 

minimum. Therefore, multiple regression analysis was applied in this study. 

 

9.2 Statistical Modeling for Field Characterization of Waste Classification 

Given an understanding of mechanistic processes along with a demonstrated analysis of 

variables through PCA, statistically-based models for leaching from paint waste are 

developed. In this study, MLRA was applied to establish a single correlation between a 

dependent and several independent variables. Metal leaching is the dependent variable 

and the metal concentrations from PCA are independent variables. The primary objective 
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of this analysis was to use independent variables capable of predicting the dependent 

variable leached metal concentration. Results from leaching studies (TCLP and MEP) 

(Chapter 7) were used to assess predicted values. Because the surface preparation 

standard was observed to be an important factor in PCA analysis, leaching results were 

sorted into groups with respect to the two methods: SSPC 6 and SSPC 10 (Table 9.2). 

The surface preparation methods mentioned here refer to the ones applied in the previous 

rehabilitation, which determined the residual waste remaining on the bridge. 

Visually, the threshold in Fe concentrations is estimated from 17% to 24% by 

weight (Figure 9.1). Therefore, a range of threshold values at 1% intervals were tested to 

examine the significance of regression. Comparing the mean square errors (MSE) 

(regime 1 and regime 2) obtained from each threshold considered, the breakpoint (regime 

1 and regime 2) with the smallest MSE was determined as the select threshold for this 

study. Consequently, two regime regressions were obtained with Fe concentrations (≤ 20% 

or > 20% by wt) in the paint waste. A series of residual plots revealed the reasonableness 

of the two regime models (Appendix F). In addition, the Chow test (F test on extra sum 

of squares) (Chow, 1960) indicated that two regime models were more adequate 

compared to a simpler model (single regime) (Appendix F).  

Based on the two regime models developed, one formulation with an indicator 

variable is presented as follows: 

(iv) Y = y1*(1 - λ) + y2* λ                  Fe ≤ 20% λ = 0 

                                                    Fe > 20% λ = 1” 

λ is an indicator variable in the two regimes; y1 and y2 represent the two regime models 

derived from statistical analysis as follows: 
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Table 9.2  Sample Sorted with Respected to Surface Preparation Standard and Fe 
Concentrations 

Region Bridges SSPC 6 

 

SSPC 10 

 
Fe ≤ 20% Fe > 20% 7 ≤ Fe ≤ 80% 

Region 1` 1-1  √  

Region 2 2-1   √ 

 2-2   √ 

Region 3 3-1  √  

 3-2 √ √  

 3-3* √ √  

Region 5 5-1   √ 

 5-2   √ 

 5-3   √ 

 5-4   √ 

 5-5   √ 

Region 7 7-1* √ √  

 7-2 √   

Region 10 10-1* √ √  

 10-2  √  

 10-3 √   

 10-4  √  

 10-5 √   

 10-6  √  

 10-7 √   

 10-8  √  

 10-9 √   

Region 11 11-1* √ √  

 11-2* √ √  

 

* Great variability of Fe concentrations were observed in different sampling locations. 
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TCLP samples:  
MEP samples:  

 

 

Figure 9.1  Leached Pb concentrations are shown as a function of total Fe (% by wt) 
concentrations in paint waste. The dash lines represent the threshold range observed in 
this study. 
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(v) Multivariate regression is tested in the first step of modeling. 

Leached metal = a + b∙(total Ca) + c∙(total Fe) + d∙(metali,total) + e∙(metali+1, 

total) +… + n∙(metaln, total)    

(vi) Box-Cox transformation (Kutner et al., 2005) is applied according to the 

residual analysis if necessary, where leached metal y is transformed to yλ: 

(Leached metal)λ = a + b∙(total Ca) + c∙(total Fe) + d∙(metali,total) + e∙(metali+1, 

total) +… + n∙(metaln, total)   

(vii) Transformed models:  

Log (leached metal) = a + b∙log(total Ca) + c∙log(total Fe) + d log(metali,total) 

+ e∙log(metali+1, total) +… + n∙log(metaln, total)                                                    

where leached metal concentrations are in mg L-1, a-n are coefficients determined using 

regression with appropriate data sets (Appendix F), and total metal is in mg kg-1 based on 

FP-XRF. The adsorption capacity is a function of iron oxides in the paint waste, which is 

represented by total Fe in the equation. Total Ca represents the calcite (CaCO3) applied in 

the paint, which may also affect the pH (and alkalinity) during leaching. Mei,total 

represents other total metals in the paint waste that may affect the metal leaching. This 

last variable may be an artifact of the waste composition where a number of metals were 

observed to be present.  

Specifically, for each model, the F-test (ANOVA), goodness of fit, and t-test were 

applied to evaluate the significance of regression, individual coefficients, and subset of 

coefficients (F-test) (Appendix F). Based on the PCA analysis, highly correlated metals 

were removed from the model to reduce the number of variables. The significance of a 
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restricted model was assessed using a partial F-test. Furthermore, a series of residual 

plots were applied to investigate the reasonableness of the restricted model (Appendix F).  

The coefficient of determination, R2 (Tables 9.3 and 9.4), is an estimate of the 

model fit in predicting observed leaching. The % variation of the data is explained by the 

best fit.  

       R2 = sum of squares (regression) / sum of squares (total) 

A P value of 5% or less is generally accepted as the point at which there is a 5% chance 

that the results would have been observed in a random distribution. In other words, the 

model is specified correctly with a 95% probability. 

The statistical models developed for metal leaching demonstrated 96 percent of 

the data fall within the 95% confidence level for Pb (R2 0.6 – 0.9, p ≤ 0.04), Ba (R2 0.5 – 

0.7, p ≤ 0.1), and Zn (R2 0.6 – 0.7, p ≤ 0.08) (Tables 9.3 and 9.4) (Figures 9.2 to 9.5). 

However, the regression model obtained for Cr leaching was not significant (R2 0.3 – 0.5, 

p ≤ 0.75) (Table 9.3) as the p value was observed as great as 0.75, suggesting the 

regression is not significant for Cr. Good correlations were observed between predicted 

and observed metal leaching for bridge samples blasted with SSPC 10 preparation (R2 = 

0.84 for Pb, R2 = 0.70 for Ba, and R2 = 0.71 for Zn) (Figures 9.2 to 9.5).  

Compared to the bridges cleaned with SSPC 6, the bridges blasted using SSPC 10 

revealed less leached metal concentrations. For example, leached Pb concentrations 

varied from less than 0.0005 (detection limit) to 0.83 mg L-1, which are less than TC level 

of 5 mg L-1. Similarly, these samples revealed less than 0.0007 (detection limit) to 0.98 

mg L-1 for Cr, and less than 0.0004 (detection limit) to 1.06 mg L-1 for Ba; these fall 

below the TC level of 5 mg L-1 for Cr and 100 mg L-1 for Ba. Results indicate that the 
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Table 9.3  Statistical Analysis Results from Multivariate Regression of the Leached Metal Concentrations for Pb and Cr (mg L-1) 
 

Metal Surface 
preparation Model used for prediction Threshold R2 Number of 

Samples 
Number of 

Observationsa 
Statistical 

Significance 

Pb SSPC 6  

Pb leaching (mg L-1) = 10 ^ [ - 69.2 + 51.1λ - (5.9 - 6.5 λ) 
log (Fe mg/kg-1) – (5.2 - 4.3 λ) log Cr (mg Kg-1) + (15.4 - 
11.2 λ) log Pb (mg Kg-1) + (4.9 - 4.6 λ) log Ca (mg Kg-1) + 
(4.9 - 4.2 λ) log Ti (mg Kg-1) - (20.1-23.1 λ) log Ag (mg 
Kg-1) + (16.4 - 20.7 λ) log Cd (mg Kg-1) 

Fe ≤ 20% 
λ = 0 0.7 23 20 P = 0.04 

Fe > 20% 
λ = 1 0.6 32 28 P = 0.003 

 SSPC 10 Pb leaching (mg L-1) = exp [ -5.1 + 0.00038 Pb (mg Kg-1) + 
0.000056 Ca (mg Kg-1) – 0.000078 Ti (mg Kg-1)] 

 

0.8 20 11 P = 0.004 

Cr SSPC 6 

Cr leaching (mg L-1) = 10 ^ (-5.8 + 33.1 λ + (0.91- 5.63 λ) 
log (Fe mg Kg-1) – (3.77 + 2.34 λ) log (Cr mg Kg-1) + (1.52 
– 2.32 λ) log (Zn mg Kg-1) - (3.89 – 4.17 λ) log (Ca mg Kg-

1) + (2.37+2.60 λ) log (Ti mg Kg-1) –(8.24-8.24 λ) log (Cd 
mg Kg-1) + (8.24-9.53 λ) log (As mg Kg-1) - 0.80 λ log (Zn 
mg Kg-1) +1.8 λ log (Pb mg Kg-1) +1.3 λ log (Ag mg Kg-1)) 
 

Fe ≤ 20% 
λ = 0 0.5 23 21 P = 0.19 

Fe > 20% 
λ = 1 0.3 32 20 P = 0.26 

 SSPC 10 

Cr leaching (mg L-1) = 12.4 - 0.000022 Zn (mg Kg-1) - 
0.000032 Fe (mg Kg-1) + 0.0077 Cr (mg Kg-1) + 0.000053 
Pb (mg Kg-1) - 0.00020 Ca (mg Kg-1) - 0.000038 Ti (mg 
Kg-1) 
 

 

0.5 20 8 P = 0.75 

a: The number reflects the samples above the detection limit 
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Table 9.4  Statistical Analysis Results from Multivariate Regression of the Leached Metal Concentrations for Ba and Zn (mg L-1) 
 

Metal Surface 
preparation Model used for prediction Threshold R2 Number of 

Samples 
Number of 

Observationsa 
Statistical 

Significance 

Ba SSPC 6 

Ba leaching (mg L-1) = 11.9 - 10.3λ - (0.00046 - 0.00046 
λ) Ba (mg Kg-1) - (0.0000091 - 0.000010λ) Fe (mg Kg-1) + 
(0.00047-0.00059 λ) Cr (mg Kg-1) - (0.000038-0.000038λ) 
Pb (mg Kg-1) – (0.00018 - 0.00015 λ) Ca (mg Kg-1) + 
(0.00012-0.00015λ) Ti (mg Kg-1) – (0.021-0.039 λ) Cd 
(mg Kg-1) - 0.018 λ Ag (mg Kg-1) 

Fe ≤ 20% 
λ = 0 0.5 23 22 P = 0.1 

Fe > 20% 
λ = 1 0.5 32 27 P = 0.02 

 SSPC10 

Ba leaching (mg L-1) =[ -0.66 - 2.1810-5 Ba (mg Kg-1) + 
2.6310-6 Zn (mg Kg-1) + 3.3710-6 Fe (mg Kg-1) + 
0.00011 Pb (mg Kg-1) - 1.1410-5 Ca (mg Kg-1) - 0.0014 
As (mg Kg-1)]0.5 

 0.7 20 19 P = 0.01 

Zn SSPC 6 

Zn leaching (mg L-1) = 416 - 300 λ + (0.0019 + 0.0021λ) 
Zn (mg Kg-1) – (0.017 - 0.014 λ) Pb (mg Kg-1) – (0.061 - 
0.0038 λ) Cr (mg Kg-1) +  
(0.0068 - 0.011 λ) Ca (mg Kg-1) + (0.025 - 0.016 λ) Ti 
(mg Kg-1) + (5.0 -10.5 λ) Cd (mg Kg-1) + (0.095-0.095 λ) 
As (mg Kg-1) + (19.7 λ) Ag (mg Kg-1)  

Fe ≤ 20% 
λ = 0 0.7 23 22 P < 0.003 

Fe > 20% 
λ = 1 0.6 32 29 P < 0.008 

 SSPC 10 
Zn leaching (mg L-1) = [0.40 - 0.00050 Ba (mg Kg-1) + 
5.2710-5 Zn (mg Kg-1) + 4.79 Ag (mg Kg-1)  - 0.015 As 
(mg Kg-1)]2 

 0.7 20 19 P = 0.001 
 

a: The number reflects the samples above the detection limit 
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TCLP samples:  
MEP samples:  
 

Figure 9.2  Comparison of the results from predicted and observed leached Pb 
concentrations. The samples represent the TCLP and first day of the MEP extraction 
conducted on the paint waste samples. Bridges were blasted to (A) surface preparation 
SSPC 6 with total Fe concentration less than or equal to 20% (% by wt), number of 
observations N = 20; (B) SSPC 6 with total Fe concentration greater than 20% (% by wt). 
N = 28; and (C) SSPC 10 N = 11. TC level for Pb is 5 mg L-1. The dash line represents 
the 95% prediction interval. 
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TCLP samples:  
MEP samples:  

 

Figure 9.3  Comparison of the results from predicted and observed leached Ba 
concentrations. The samples represent the TCLP and first day of the MEP extraction 
conducted on the paint waste samples. Bridges were blasted to (A) surface preparation 
SSPC 6 with total Fe concentration less than or equal to 20% (% by wt), number of 
observations N = 22; (B) SSPC 6 with total Fe concentration greater than 20% (% by wt). 
N = 27; and (C) SSPC 10 N = 19. TC level for Ba is 100 mg L-1. The dash line represents 
the 95% prediction interval. 
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TCLP samples:  
MEP samples:  
 

Figure 9.4  Comparison of the results from predicted and observed leached Cr 
concentrations. The samples represent the TCLP and first day of the MEP extraction 
conducted on the paint waste samples. Bridges were blasted to (A) surface preparation 
SSPC 6 with total Fe concentration less than or equal to 20% (% by wt), number of 
observations N = 21; (B) SSPC 6 with total Fe concentration greater than 20% (% by wt). 
N = 20; and (C) SSPC 10 N = 8. TC level for Cr is 5 mg L-1. The dash line represents the 
95% prediction interval. 
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TCLP samples:  
MEP samples:  
 

Figure 9.5  Comparison of the results from predicted and observed leached Zn 
concentrations. The samples represent the TCLP and first day of the MEP extraction 
conducted on the paint waste samples. Bridges were blasted to (A) surface preparation 
SSPC 6 with total Fe concentration less than or equal to 20% (% by wt), number of 
observations N = 22; (B) SSPC 6 with total Fe concentration greater than 20% (% by wt). 
N = 29; and (C) SSPC 10 N = 19. The dash line represents the 95% prediction interval. 

 

Pr
ed

ic
te

d 
le

ac
he

d 
co

nc
en

tr
at

io
n 

(m
g 

L-1
)

 
 

 
 

 
 

 
 

 

A B

C

0

300

600

900

1200

1500

0 300 600 900 1200 1500

 Zn      Total Fe > 20%     SSPC 6
y = 1.0 x - 0.0008     R² = 0.53

0

300

600

900

1200

1500

0 300 600 900 1200 1500

 Zn     Total Fe < =20%      SSPC6
y = 1.0 x + 0.002    R² = 0.70

0

500

1000

1500

2000

0 500 1000 1500 2000

 Zn    SSPC 10

Observed Leached Zn (mg L-1) 

y = 1.0 x + 0.0006  R² = 0.71

  

Reigon 1 Region 2 Region 3 Region 5 Region 7 Region 10 Region 11

     

 
 

      

  

 
 

 

 
 

 
  

 

 

 

 

  
  

   

    

 

  

 

 

   Region 1 Region 2 Region 3 Region 5 Region 7 Region 10 Region 11

 
 

 
 

 

     

         

   



 

153 

paint waste from bridges cleaned with SSPC 10 is classified as non-hazardous material. 

For bridges cleaned with SSPC 6, 9% of the samples exhibited leached Pb concentrations 

greater than TC level of 5 mg L-1 (Figure 9.2), while 5% of the samples revealed leached 

Cr concentrations greater than TC level of 5 mg L-1 (Figure 9.4). Overall, 14% of the 

samples revealed metal leaching greater than TC levels, suggesting the hazardous nature 

for these samples. Most of the leaching data can be described adequately over a wide 

range of total metal concentrations. In contrast to the metals discussed above (Pb, Cr, and 

Ba), the bridge samples blasted using SSPC 10 revealed greater leached Zn 

concentrations (from 216 mg L-1 to 1405 mg L-1) than the samples cleaned with SSPC 6 

(129 mg L-1 to 1163 mg L-1). These results are consistent with the increasing usage of 

zinc primer (ZnO, Zn3(PO4)2⋅2H2O, and epoxy zinc rich primer) (80% zinc content dry) 

in bridges blasted using SSPC 10. 

On the other hand, metal leaching is affected by total Fe concentrations in the 

paint waste, where iron oxides forms on the steel grit surface providing a reactive surface 

for metal sorption. In this study, metal leaching increased with decreasing Fe (≤ 20% by 

wt) compared to that observed with relatively greater Fe concentrations (> 20%). This 

effect is supported by the model developed as well. A negative correlation was obtained 

between metal leaching (including Pb and Ba) and total Fe concentrations in the paint: 

metal leaching decreased as total Fe concentration increased in the samples (Tables 9.3 

and 9.4). These results are consistent with the well-recognized importance of iron oxide 

in surface complexation with trace metals.  
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9.3 Summary 

In this chapter, a statistically - based model was developed based on an understanding of 

mechanistic processes along with a demonstrated analysis of variables through PCA. 

These statistical models developed demonstrated 96 percent of the data falling within the 

95% confidence level for Pb (R2 0.6 – 0.9, p ≤ 0.04), Ba (R2 0.5 – 0.7, p ≤ 0.1), and Zn 

(R2 0.6 – 0.7, p ≤ 0.08). However, the regression model obtained for Cr leaching is not 

significant (R2 0.3 – 0.5, p ≤ 0.75). The results in this study indicated that the paint waste 

from bridges cleaned with SSPC 10 may be for the most part classified as non-hazardous 

material, while 14% of the sample set would be classified as hazardous for the bridges 

blasted using SSPC 6. A practical advantage in applying models developed is the ability 

to estimate contaminant leaching from paint waste without additional laboratory studies 

including TCLP. Therefore, results of this work may assist in better understanding and 

predicting the mobility of trace metals as well as in addressing disposal and management 

of paint waste during bridge rehabilitation.  
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CHAPTER 10 

CONCLUSION AND FUTURE WORK 

 

XRF results indicated that although the 24 bridges studied to date have been repainted 

after 1989, LBP was not entirely removed. Eighty percent of paint waste samples 

exhibited lead concentrations greater than 5,000 mg kg-1. The elevated iron 

concentrations are present from the application of steel grit used to remove paint. Other 

compounds of As, Ba, Cd, Hg, Se, and Ag were observed in paint as pigments and 

preservatives as well. Pb concentrations were observed to correlate with As (R2 = 0.78), 

Cd (R2 = 0.73), Cr (R2 = 0.88), and Ag (R2 = 0.67), while other relationships were 

observed between Hg and Se (R2= 0.99), Hg and Zn (R2 = 0.94), and Se and Zn (R2= 

0.76). The trends were found across all the regions in NYS indicating consistent 

application of these metals as pigments and extenders in paint composition.  

However, although elevated metals were observed in the paint waste, leaching 

results from TCLP and MEP revealed only up to 22.6 mg L-1 for Pb and 9.52 mg L-1 for 

Cr. The relatively low concentrations observed are attributed to the use of iron-based 

abrasives (steel grit) in the paint removal process. Because steel grit is used for blasting 

bridges in NY to remove paint, metals such as Pb in the paint waste are sequestered by 

the elevated iron concentrations, which ranged from 5 - 80% by wt. As a result, metal 

concentrations in the leachate are less than the TC level. Sequential extraction 

demonstrated that less than 6.8% of Pb, Cr, and Ba were associated with the 

exchangeable and carbonate forms, while greater contributions were found with iron 

oxides. The largest fraction, however, greater than 80%, was associated with the residual 

phase comprised of minerals in the paint including SiO2 and TiO2. XRD analysis 
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corroborated that iron oxides formed on the steel grit surface provided an important 

interface for trace metals. The presence of the iron oxides in the paint waste may have an 

environmental advantage in considering contaminant mobility.  

Ferrihyidrite was observed to be an important surface on the steel grit; spherical 

particle aggregates ranged from 20 to 200 nm in diameter. The DLM described leaching 

of Pb and Cr in the presence of the steel grit. Adsorption/desorption is likely the main 

mechanism responsible for the Pb and Cr leaching. For Ba and Zn, both adsorption and 

precipitation are important processes supporting predictive mechanistic leaching from the 

waste. Nonetheless, ferrihydrite, the dominant phase on the steel grit surface, provides 

abundant binding sites for trace metals. Surface sorption and co-precipitation may lead to 

structural incorporation of sorbed metals. Consequently, removal of metals (such as Pb) 

by iron oxides in the environment may be permanent. The findings in this study may have 

positive implications for DOT agencies in addressing disposal and management of paint 

waste during bridge rehabilitation.  

Based on an understanding of mechanistic processes along with a demonstrated 

analysis of variables through PCA, statistically-based models for leaching from paint 

waste were developed. The results in this study indicated that the paint waste from 

bridges cleaned with SSPC 10 may be for the most part classified as non-hazardous 

material, while 14% of the sample set would be classified as hazardous for the bridges 

blasted using SSPC 6. Therefore, results of this work may assist in better understanding 

and predicting the mobility of trace metals as well as in addressing disposal and 

management of paint waste during bridge rehabilitation.  

Future work associated with this research should include model validation in the 
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field. Because the models developed in this study are based on the collected samples 

from the 24 bridges in seven regions of NYS, bridge samples collected from other bridge 

regions or states are suggested for model validation. This research would be beneficial in 

addressing waste classification for other state DOTs working with similar structures and 

rehabilitation procedures. Additionally, addressing adsorption mechanisms on the iron 

oxide surface requires further work. The molecular interaction between trace metals and 

the iron oxide surface is not well understood yet and needs to be addressed for better 

description of natural systems. Therefore, techniques including x-ray absorption 

spectroscopy (XAS) can be applied to determine the structure of the iron oxides coating 

and the bonding structures of Pb and Cr as the representative metal contaminants in the 

paint waste. However, the composition of the paint waste is complex and heterogeneous; 

paint is mixed with the remaining steel grit during the bridge rehabilitation. Hence, 

separating the steel grit completely from the paint waste is difficult. In addition, the 

composition of organic and residual phases in the samples are various and not clear, 

therefore, XAS analysis of bonding structures of Fe and Pb in the paint waste would be 

challenging. 
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APPENDIX A 

BRIDGES SAMPLED AND SAMPLE DETAILS  

 

The detail information for bridge samples are presented below. 

Table A.1  Bridges Sampled and Sample Details 

Bridge 

number 
Region 

Bridge name and  

the location  
Bin 

Date 

rehabilitated 

Date 

sampled 

Wash 

water 

sample 

Paint 

waste 

sample 

1 11 Bruckner 

Expressway, Bronx 

106666C  10/29/2010 0 10 

2 11 Brooklyn-Queens 

Expressway(BQE) 

over Long Island 

Expressway (LIE), 

New York 

1065569  11/19/2010 0 10 

3 3 Route 5 over 

Roadway A, 

Syracuse, 

1093390 10/20/2010-

10/28/2010 

11/10/2010 2a 10 

4 3 Roadway C over 

Roadway A, 

Syracuse 

1093400 11/03/2010-

11/10/2010 

11/10/2010-  

11/12/2010 

2b 10 

5 3 Ithaca 3209900  05/20/2011 0 4c 

6 10 Rt 107 over Sea 

Cliff Ave, Sea 

Cliff 

1036889 06/13/2011-

06/22/2011 

06/14/2011-

6/22/2011 

4 10 

7 5 Virginia-Carolina 

ramp to I-190 

Southbound, 

Buffalo 

1063090 06/02/2011-

7/10/2011 

06/15/2011-

7/13/2011 

4 10 

8 5 I-190 Southbound 

ramp to Virginia-

Carolina, Buffalo 

1063100 06/02/2011-

7/10/2011 

06/15/2011-

7/13/2011 

4 10 
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Bridge 

number 
Region 

Bridge name and  

the location  
Bin  

Date 

rehabilitated 

Date 

sampled 

Wash 

water 

sample 

Paint 

waste 

sample 

9 10 Rt 495 (Wesbound) 

Service Rd over 

Nicolls Rd, Queens 

1064560 06/27/2011-

07/ 22/2011 

6/28/2011-

07/20/2011 

4 10 

10 10 Rt 495 (Easbound) 

Service Rd over 

Nicolls Rd, Queens  

1064570 06/27/2011-

07/ 22/2011 

6/28/2011-

07/20/2011 

4 10 

11 1 Route 196 over 

Town 

Rd/Champlain 

Canal, Town of 

Kingsbury, 

Washington 

County 

4039820  07/17/2011 0 10 

12 2 Mainline Thruway 

over Mohawk 

River (W. B.), 

Herkimer County 

4423081  07/21/2011

-

08/09/2011 

0 10 

13 2 Mainline Thruway 

over Mohawk 

River (E. B.), 

Herkimer County 

4423082  07/29/2011

-

08/06/2011 

0 10 

14 5 Two-mile creek 

Road over I-290, 

Tonawanda 

1044970  08/24/011-

09/07/2011 

4 10 

15 5 East park drive 

over I-290, 

Tonawanda 

1044980 08/23/2011-

09/12/2011 

8/23/2011-

09/13/2011 

4 10 

16 5 Peace bridge plaza 

ramp to I-190 

Southbound, 

Buffalo 

1063110 07/17/2011-

07/26/2011 

08/07/2011

-

08/14/2011 

4 10 

17 10 Hawkins Ave over 

Rt 495, 

Ronkonkoma   

1049509 07/25/2011-

8/02/2011 

07/30/2011

-8/04/2011 

0 10 
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Bridge 

number 
Region 

Bridge name and  

the location  
Bin  

Date 

rehabilitated 

Date 

sampled 

Wash 

water 

sample 

Paint 

waste 

sample 

18 10 Ronkonkoma 

Ave over Rt 495, 

Ronkonkoma   

1049489 07/18/2011-

07/24/2011 

07/22/2011-

07/26/2011 

0 10 

19 10 Washington Ave 

over Rt 495, 

Ronkonkoma   

1049400 08/05/2011-

08/15/2011 

08/08/2011-

08/16/2011 

4 10 

20 10 Rt 495 

(Eastbound) over 

Commack Rd, 

New York   

1049361 10/05/2011-

10/12/2011 

10/13/2011 4 10 

21 10 Rt 495 

(Westbound) 

over Commack 

Rd, New York   

1049362  10/02/2011 4 10 

22 10 Bagatelle Rd 

over Rt 495, 

Huntington 

1049320  10/02/2011 4 10 

23 7 NYS Route 3 

over Black 

River, Town of 

Rutland 

1000540 10/05/2011 10/20/2011 0 10 

24 7  NYS Route 37 

over Big Sucker 

Brook, Village 

of Waddington, 

St. 

1023860 10/05/2011 10/20/2011 0 10 

 

a, b Only one location is available for wash water sampling in the bridge working site. 
c Only two locations are available for paint waste sampling in the bridge working site. 
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Table A.2   Bridge Rehabilitation Information and Pigments Historically Used*.  

Paint waste 
collected  

Sample ID 
SSPC standard 
applied 

Year built 
Year(s) 
repainted 

Paint and pigment information 

Region 1 1-1 SP 6 1938 1990,1991 NA 

Region 2 
2-1 

2-2 
SP 10 1955 1997 

Organic zinc primer (80% zinc dry matter content), 
epoxy penetration sealer second coat, epoxy third coat, 
and  polyurethane finish coat. Manufacture was 
Carboline. 

Region 3 3-1 

3-2 SP 6 
1975 1991, 1999 

NA 

3-3 1940 1991 

Region 5 5-1 

SP 10 

1972 2002  Low-gloss to flat-finish, micaceous iron oxides (MIO) 
pigmented, one component of polyurthane top coat. 
Manufacture was Xymax Coatings. 5-2 1972 2002 

5-3 1963 1998 

NA 5-4 1963 1998 

5-5 1972 1992 

Region 7 7-1 

SP 6 

1948 1997 

NA 
7-2 1957 1998 
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Paint waste 
collected  

Sample ID 
SSPC standard 
applied 

Year built 
Year(s) 
repainted 

Paint and pigment information 

Region 10 10-1 

SP 6 

1953 1995 

NA 

10-2 1970 
1979, 1986, 
1999 

10-3 1970 
1979, 1986, 
1999 

10-4 1967 1985, 1999 

10-5 1967 1999 

10-6 1964 1986, 1989 

10-7 1963 
1978, 1989, 

1993, 1994 

10-8 1963 
1978, 1992, 

1994, 1995 

10-9 1963 1977, 1997 

Region 11 11-1 
SP 6 

1959 1996 
NA 

11-2 1969 1990 

 
SP 6 – Commercial Blast Cleaning where paint and rust from steel were removed to a remaining residual of 33% per unit area of surface. 
SP10 – Near White Blast Cleaning where paint and rust from steel were removed to a remaining residual of 5% per unit area of surface. SSPC SP-10 was 
required in NYS since 2006. However, some contractors have applied SP-10 to the bridges even before 2006. 
NA– Historical records for the bridges are not available. 
*– lead was discontinued for the bridges paint in New York State. 
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Figure A.1  Variability Charts for Pb and Fe are shown as a function of the bridges sampled in Regions 1, 2, 3, 5, 7, 10, and 11 using 
the NITON XL3t-600 series FP-XRF. The first and third quartiles are represented; the median is highlighted. The whiskers represent 
the minima and maxima. 
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Figure A.2  Variability Charts for Ba and Zn are shown as a function of the bridges sampled in Regions 1, 2, 3, 5, 7, 10, and 11 using 
the NITON XL3t-600 series FP-XRF. The first and third quartiles are represented; the median is highlighted. The whiskers represent 
the minima and maxima. 
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Figure A.3  Variability Charts for As and Cr are shown as a function of the bridges sampled in Regions 1, 2, 3, 5, 7, 10, and 11 using 
the NITON XL3t-600 series FP-XRF. The first and third quartiles are represented; the median is highlighted. The whiskers represent 
the minima and maxima. 
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Figure A.4  Variability Charts for Cd and Ag are shown as a function of the bridges sampled in Regions 1, 2, 3, 5, 7, 10, and 11 using 
the NITON XL3t-600 series FP-XRF. The first and third quartiles are represented; the median is highlighted. The whiskers represent 
the minima and maxima. 
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APPENDIX B 

PROTOCOL FOR IN SITE BRIDGE PAINT ANALYSIS USING FP-XRF 

B1. Standard Operating Procedure (SOP) for NITON XLp-300 series Analyzer 

1. Log on and calibration procedures  

1.1 Log on procedures 

(1) To turn on the instrument, depress on/off/escape button on the control panel for 

approximately 3 seconds (Figure B1), until you hear a beep.  

(2) When the Logon screen (Figure B1) present, tap anywhere on this screen to continue.  

(3) The Logon Screen will be replaced by a Warning Screen (Figure B1), advising that 

this analyzer produces radiation when the lights are flashing. This warning has to be 

acknowledged by selecting the “Yes” button before logging on (Selecting the “No” 

button will result in returning to the Logon Screen).  

(4) The Virtual Numeric Keypad becomes available to log onto the analyzer (Figure B1). 

The temporary password assigned by default is 1-2-3-4, followed by the “E” key. 

After the log on procedures are completed, the word "USER" will appear on the 

bottom of the screen, then the Main Menu (Figure B2) will appear. 

(5) After being powered on, the NITON 300 Series Analyzer will perform an internal re-

calibration before an analysis is initiated. It is recommended to let the instrument 

warm up for ten minutes after start up, before testing is begun.  

1.2 Instrument calibration 

(1) To calibrate the instrument, select the Calibrate icon from the Utilities Menu 

(Figure B2). The analyzer is programmed to calibrate for a specific, predetermined 

period in order to ensure proper operation of the Niton XLp analyzer in the field. 
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Figure B.1  Log on procedure for NITON XLp-300 series analyze
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(2) After the calibration has finished, the calibration results will be displayed. Press the 

on/off/escape button or the Return icon to return to the Main Menu. In order to 

insure good test results, it is essential to calibrate Niton XLp300 Series Lead-based-

Paint Analyzer daily. 

(3) Note the “Res” figure displayed following the detector calibration. This number, 

usually < 500eV, is an evaluation of the detector resolution and should be 

consistent with past calibration results. This data will download as a stored reading 

if the user chooses to download readings, so it can be saved for tracking the 

instrument’s performance. 

(4) During analysis and detector calibrations, it is important to ensure that the analyzer 

is not exposed to strong electromagnetic fields, including those produced by 

computer monitors, hard drives, cellular telephones, walkie-talkies, etc. Keep a 

minimum two feet (0.7 meters) distance between the analyzer and electronic 

devices. Avoid any vibration, loud noise, strong electronic fields, or other possible 

interference when the analyzer is calibrating its detector. 

2. Icon functions in the main menu                

The Main menu is divided into 6 sub-menus (Figure B2): 

 By selecting the Mode icon from the Main Menu screen, the analyzer will 

remember the last mode used on the analyzer, and will use that mode by default 

unless another mode is selected. 

 By selecting the Utilities icon from the Main Menu screen, the Utilities Menu 

enables you to view analyzer specifications; set the date and time; and auto-

calibrate the analyzer electronics and the touch screen display. 
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Figure B.2  Main menu for NITON XLp-300 series Lead-in-Paint analyzer and the 
analyzer calibration.
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 By selecting the Data icon from the Main Menu screen, the Data Menu allows 

you to view readings, and allows you to view the alloy library and stored 

signatures. 

 By selecting the Common Setup icon from the Main Menu screen, the Common 

Setup Menu allows you to turn on or off the liquid crystal display backlight, turn 

on or off the integrated bar code scan engine, to enable and configure source 

utilization, and to enable or disable the printer. 

 By selecting the Logoff icon, the Logon Screen logs you out and allows you to 

login again, preventing casual unauthorized access to your analyzer. 

3. Two modes for lead paint detection 

There are two kinds of modes can be used for lead testing: Standard Mode and K+L 

Mode (Figure B3). The Standard Mode is a qualitative analysis designed for 95% 

confidence level as to whether the sample is above or below the Action Level. This mode 

tends to give very fast readings, because it terminates the test as soon as 95% confidence 

has been achieved. The Set Action Level Screen needs to be set for Standard Mode test. 

To change the preset Action Level to match the Action Level set by specific locality, 

select the “C” key from the Virtual Numeric Keypad to clear the current Action Level 

value, select the new Action Level value using the numeric keys, then select “E” to enter 

the new Action Level value (Figure B3). The Action Level will be changed to the new 

value. Then new Set Action Level Screen will be displayed. K+L Mode is a quantitative 

analysis which allows you to determine the statistical confidence of the 
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Figure B.3  The Pb Paint Mode Menu and Set Action Level 
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reading to a 95% Confidence Level while allowing you the flexibility of continuing the 

test for as long as you wish up to the (user-definable) maximum test time. 

4. Data entry screens 

Once Standard Mode or K+L Mode is selected, a sample test can be immediately 

initiated using the proper preconditions for operation. The data information entered will 

be associated with the next sample tested. By using The Data Entry Screens (Figure B4), 

the values for various parameters can be tracked by the system along with the actual 

analysis results. The data information can be input in several different fields, or 

categories, concerning the sample, in several different ways: 

• Selecting the Menu Code Number will initiate a bar code scan to input pre-

printed bar code parameter values 

 • Selecting the Drop-Down Menu Button will access the particular Drop-

Down Menu for that parameter, allowing you to select the parameter value 

from a pre-determined list. 

 • Selecting the Keyboard button allows you to input a parameter value as 

required using the Virtual Keyboard. 

These fields are saved along with the subsequent reading, and allow you to associate 

important information about the sample directly with the reading, so that you have a full 

description of the sample tied into the reading itself. These parameters all describe the 

particular test target to be analyzed. The location of the target in the site, the type of 

target, the surface and  
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Figure B.4  Data input information
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substrate, the condition of the surface, and the inspector performing the test are some of 

the parameters tracked by the analyzer. 

5. Measurements 

Five different methods of operation are used for taking a sample measurement. The 

analyzer will be configured to use one of those methods, depending on the regulatory 

requirements of the specific locality.  

• Trigger-Only method. With the Trigger-Only method, you only need to place the 

measurement window close to the sample to be analyzed and pull the trigger for 

sample analysis to be initiated. 

• Trigger-and-Proximity-Sensor method. With the Trigger-and-Proximity-Sensor 

method, you must place the measurement window against the sample to be 

analyzed to engage the proximity sensor on the front of the instrument, then pull 

the trigger for sample analysis to be initiated. 

• Momentary-Trigger-Touch-and-Proximity-Sensor method. With the Momentary-

Trigger Touch-and-Proximity-Sensor method, you must place the measurement 

window against the surface to be analyzed to engage the proximity sensor on the 

front of the instrument, then pull the trigger. The trigger may be released and the 

reading will continue until you release the proximity button, or other criteria (such 

as Max Time) are reached. 

• Trigger-and-Interlock method. With the Trigger-and-Interlock method, you need to 

place the measurement window close to the sample to be analyzed, press and keep 

pressing the interlock button at the rear of the instrument with your free hand, 

then pull the trigger for sample analysis to be initiated. 
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• Trigger-Interlock-and-Proximity-Sensor method. With the Trigger-Interlock-and-

Proximity-Sensor method, you must place the measurement window against the 

sample to be analyzed to engage the proximity sensor on the front of the 

instrument, press and keep pressing the interlock button at the rear of the 

instrument with your free hand, then pull the trigger for sample analysis to be 

initiated. 

With any of these methods, analysis will stop if any one of the preconditions are 

violated. For example, with the Trigger-Interlock-and-Proximity-Sensor method, if the 

trigger or the Proximity Sensor or the Interlock is released, the reading will stop 

immediately, and the shutters will close. 

6. Results 

NITON Analyzer will display the Results Screen throughout the duration of each 

reading. The Results Screen is updated regularly throughout the reading. When the 

reading is complete, a final screen update will appear, and your NITON analyzer will 

display the final results of the measurement which has just been completed. 

6.1 Standard mode testing results 

Before the analyzer has reached a determination, the result will be shown 

as“Inconclusive”. The analyzer will beep twice when a result is reached then terminate 

the reading. The display will change from “Inconclusive” to show the result, either 

“Positive” for lead detected above the action level, or “Negative” for no lead or lead 

below the action level. The lead concentration is displayed in mg/cm2.  

6.2 K+L Mode testing results 
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The K+L Mode results screen will show the same basic display throughout the 

reading. The analyzer will beep twice to indicate it has reached a conclusion, and the 

result field will change from “Inconclusive” to “Positive” or “Negative”, but the reading 

will continue for as long as you the trigger continue to be hold down and the Proximity 

Sensor is depressed. The K+L results screen shows the reading results and error for both 

K and L-shell readings (Figure B5). The “Lead Detected in mg/cm2 total” field (Figure 

B5) is the result of the judgment of the analyzer as to which reading, K or L-shell, best 

represents the true condition. 

In the Standard mode / K+L Mode, the Depth Index (Figure B5) is a numerical value 

indicating the amount of non-leaded paint covering the lead (if any) detected by the 

analyzer: 

• A Depth Index of less than 1.5 indicates a reading very near the surface. 

• A Depth Index between 1.6 and 4.0 indicates a moderate depth. 

• A Depth Index of greater than 4.0 indicates a deeply buried reading. 
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Figure B.5  Testing results under the Standard Mode and K+L Mode
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B2 Standard Operating Procedure (SOP) for NITON XL3t-600 Series Analyzer 

 

 1. Log on and calibration procedures 

Log on and calibration procedures for NITON XL3t-600 series analyzer (Figure B6) 

are the same as NITON XLp-300 series analyzer (part 1).   

2.  Icon functions in the main menu 

Icon functions in the main menu for NITON XL3t-600 series analyzer (Figure B7) 

are the same as NITON XLp-300 series analyzer (part 2).   

3. Standard Soil Mode or Mining Mode for the RCRA metals and zinc detection in 

the paint 

To detect metal concentrations in the paint, simply select the Standard Soil Mode 

icon or Mining Mode Cu/Zn icon from the Bulk Analysis Menu (Figure B8). 

4. Data entry screens  

The function of the Data Entry Screens for NITON XL3t-600 series analyzer (Figure 

B9) is the same as NITON XLp-300 series analyzer (part 4).   

5. Measurements 

There are six different methods of operation for taking a sample measurement, and 

the analyzer will be configured to use one of those methods for samples, depending on 

the regulatory requirements of the specific locality. 
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Figure B.6  Log on procedure for NITON XL3t-600 series analyzer
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Figure B.7  Main menu for NITON XL3t-600 series analyze
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Figure B.8  Standard soil analysis mode
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Figure B.9  Data input information for NITON XL3t-600 series analyzer
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 Trigger-Only method. With the Trigger-Only method, you only need to place the 

measurement window close to the sample to be analyzed and pull the trigger for 

sample analysis to be initiated. 

 Trigger-and-Proximity-Sensor method. With the Trigger-and-Proximity-Sensor 

method, you must place the measurement window against the sample to be analyzed 

to engage the proximity sensor on the front of the instrument, then pull the trigger for 

sample analysis to be initiated. 

 Momentary-Trigger-Touch-and-Proximity-Sensor method. With the Momentary-

Trigger-Touch-and-Proximity-Sensor method, you must place the measurement 

window against the surface to be analyzed to engage the proximity sensor on the front 

of the instrument, then pull the trigger. The trigger may be released and the reading 

will continue until you release the proximity button, or other criteria (such as Max 

Time) are reached. 

 Trigger-and-Interlock method. With the Trigger-and-Interlock method, you need to 

place the measurement window close to the sample to be analyzed, press and keep 

pressing the  interlock button at the rear of the instrument with your free hand, then 

pull the trigger for sample analysis to be initiated.  

 Trigger-Interlock-and-Proximity-Sensor method. With the Trigger-Interlock-and-

Proximity-Sensor method, you must place the measurement window against the 

sample to be analyzed to engage the proximity sensor on the front of the instrument, 

press and keep pressing the interlock button at the rear of the instrument with your free 

hand, then pull the trigger for sample analysis to be initiated. 
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 Easy Trigger method. With the Easy trigger method, you need only place the 

measurement window against the sample area and pull the trigger once to initiate a 

sample analysis. Your analyzer will continuously sample the backscatter, using a 

complex internal algorithm, to determine if the measurement window is against a 

sample or pointing to the empty air. If it finds that there is no sample directly against 

the measurement window, the analyzer will stop directing radiation through the 

window as soon as this determination is made. 

With any of these methods, analysis will stop if any one of the preconditions are 

violated. For example, with the Trigger-Interlock-and-Proximity-Sensor method, if the 

trigger or the Proximity Sensor or the Interlock is released, the reading will stop 

immediately, and the X-ray tube will shut down. 

6. Results 

At the top are the elements detected in the sample; and underneath this, elements are 

below the detection limit (Figure B10). For an element to be detected by your analyzer in 

a given sample, the measured concentration of the sample must be at least three times the 

standard deviation of the measurement. This detection limit will depend on the 

composition of the sample. The measurement precision for each element displayed 

appears to the right of the measured concentration, under the heading “+/-“. The precision 

of each measurement is two times the standard deviation (sigma). An element is 

classified as “detected” if the measured concentration (in ppm) is at least 1.5 times the 

precision. Detected elements are displayed in ppm, followed by the measurement 

precision. Non-detected elements are shown as < the detection limit (LOD) for that 

sample. The detection limit for a given element varies depending on the other elements in 

the matrix.  
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Figure B.10  The standard bulk measurement result scree 
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APPENDIX C 

TCLP AND MEP RESULTS FOR THE 24 BRIDGES IN NEW YORK STATE



 

 
 

188 

 

 

Figure C.1  Leaching results from TCLP for Pb and Cr as a function of pH after 18 hours with 0.05 M ionic strength. Samples are 
extracted using Fluid #1 (0.1 N CH3COOH, which has been adjusted with NaOH to an initial pH of 4.93 ± 0.05) or Fluid #2 (0.1 N 
CH3COOH, which has an initial pH of 2.88 ± 0.05) based on the alkalinity of the waste material. 
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Figure C.2  Leaching results from TCLP for Ba and Zn as a function of pH after 18 hours with 0.05 M ionic strength. Samples are 
extracted using Fluid #1 (0.1 N CH3COOH, which has been adjusted with NaOH to an initial pH of 4.93 ± 0.05) or Fluid #2 (0.1 N 
CH3COOH, which has an initial pH of 2.88 ± 0.05) based on the alkalinity of the waste material. 
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Figure C.3  Leaching results from TCLP for Fe as a function of pH after 18 hours with 0.05 M ionic strength. Samples are extracted 
using Fluid #1 (0.1 N CH3COOH, which has been adjusted with NaOH to an initial pH of 4.93 ± 0.05) or Fluid #2 (0.1 N CH3COOH, 
which has an initial pH of 2.88 ± 0.05) based on the alkalinity of the waste material. 

  

Le
ac

he
d 

co
nc

en
tra

tio
n 

(m
g/

L)
 

 

 

0

1000

2000

3000

4000

4.5 5 5.5 6 6.5 7

Fe

Region 1 Region 2 Region 3 Region 5 Region 7 Region 10 Region 11

pH



 

191 

 

 

A:  10-1b 10-2b 10-3e 10-4a 10-5b 10-6a ×10-7b 10-8a 10-9b;  
B:  1-1e   3-1d   3-2c   3-3a   7-1c   7-2e;  
C:  2-1a   2-2c   5-1c   5-2c   5-3d   5-4c   ×5-5b   11-1e  11-2a. 

 
Figure C.4  pH from MEP are shown as a function of 10 days of extractions. The first 
extraction is performed with a pH of 5.0 followed by the subsequent nine successive 
extractions using the initial pH of 3.0 ± 0.2 that simulate acid rain conditions. 
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A: 10-1b 10-2b 10-3e 10-4a 10-5b 10-6a ×10-7b 10-8a 10-9b;  
B: 1-1e   3-1d   3-2c   3-3a   7-1c   7-2e;  
C: 2-1a   2-2c   5-1c    5-2c   5-3d  5-4c   ×5-5b   11-1e  11-2a.  

 

Figure C.5  Leaching concentrations of Pb from MEP are shown as a function of 10 days 
of extractions. The first extraction is performed with a pH of 5.0 followed by the 
subsequent nine successive extractions using the initial pH of 3.0 ± 0.2 that simulate acid 
rain conditions. Toxicity characteristic Pb = 5 mg L-1. 
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A:  10-1b 10-2b 10-3e 10-4a 10-5b 10-6a ×10-7b 10-8a 10-9b;  
B:  1-1e   3-1d   3-2c   3-3a   7-1c   7-2e;  
C:  2-1a   2-2c   5-1c   5-2c   5-3d   5-4c   ×5-5b   11-1e  11-2a. 
 

Figure C.6  Leaching concentrations of Cr from MEP are shown as a function of pH. The 
first extraction is performed with a pH of 5.0 followed by the subsequent nine successive 
extractions using the initial pH of 3.0 ± 0.2 that simulate acid rain conditions. Toxicity 
characteristic Cr = 5 mg L-1. 
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A:  10-1b 10-2b 10-3e 10-4a 10-5b 10-6a ×10-7b 10-8a 10-9b;  
B:  1-1e   3-1d   3-2c   3-3a   7-1c   7-2e;  
C:  2-1a   2-2c   5-1c   5-2c   5-3d   5-4c   ×5-5b   11-1e  11-2a. 

  

Figure C.7  Leaching concentrations of Cr from MEP are shown as a function of 10 days 
of extractions. The first extraction is performed with a pH of 5.0 followed by the 
subsequent nine successive extractions using the initial pH of 3.0 ± 0.2 that simulate acid 
rain conditions. Toxicity characteristic Cr = 5 mg L-1. 
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A: 10-1b 10-2b 10-3e 10-4a 10-5b 10-6a ×10-7b 10-8a 10-9b;  
B: 1-1e   3-1d   3-2c   3-3a   7-1c   7-2e;  
C: 2-1a   2-2c   5-1c    5-2c   5-3d  5-4c   ×5-5b   11-1e  11-2a.  
 

Figure C.8  Leaching concentrations of Ba from MEP are shown as a function of pH. 
The first extraction is performed with a pH of 5.0 followed by the subsequent nine 
successive extractions using the initial pH of 3.0 ± 0.2 that simulate acid rain conditions. 
Toxicity characteristic Ba = 100 mg L-1. 
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A: 10-1b 10-2b 10-3e 10-4a 10-5b 10-6a ×10-7b 10-8a 10-9b;  
B: 1-1e   3-1d   3-2c   3-3a   7-1c   7-2e;  
C: 2-1a   2-2c   5-1c    5-2c   5-3d  5-4c   ×5-5b   11-1e  11-2a.  

 

Figure C.9  Leaching concentrations of Ba from MEP are shown as a function of 10 days 
of extractions. The first extraction is performed with a pH of 5.0 followed by the 
subsequent nine successive extractions using the initial pH of 3.0 ± 0.2 that simulate acid 
rain conditions. Toxicity characteristic Ba = 100 mg L-1. 
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A: 10-1b 10-2b 10-3e 10-4a 10-5b 10-6a ×10-7b 10-8a 10-9b;  
B: 1-1e   3-1d   3-2c   3-3a   7-1c   7-2e;  
C: 2-1a   2-2c   5-1c    5-2c   5-3d  5-4c   ×5-5b   11-1e  11-2a.  

 

Figure C.10  Leaching concentrations of Zn from MEP are shown as a function of pH. 
The first extraction is performed with a pH of 5.0 followed by the subsequent nine 
successive extractions using the initial pH of 3.0 ± 0.2 that simulate acid rain conditions.  
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A: 10-1b 10-2b 10-3e 10-4a 10-5b 10-6a ×10-7b 10-8a 10-9b;  
B: 1-1e   3-1d   3-2c   3-3a   7-1c   7-2e;  
C: 2-1a   2-2c   5-1c    5-2c   5-3d  5-4c   ×5-5b   11-1e  11-2a.  

 

Figure C.11  Leaching concentrations of Zn from MEP are shown as a function of 10 
days of extractions. The first extraction is performed with a pH of 5.0 followed by the 
subsequent nine successive extractions using the initial pH of 3.0 ± 0.2 that simulate acid 
rain conditions.  
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A: 10-1b 10-2b 10-3e 10-4a 10-5b 10-6a ×10-7b 10-8a 10-9b;  
B: 1-1e   3-1d   3-2c   3-3a   7-1c   7-2e;  
C: 2-1a   2-2c   5-1c    5-2c   5-3d  5-4c   ×5-5b   11-1e  11-2a.  

 

Figure C.12  Leaching concentrations of Fe from MEP are shown as a function of pH. 
The first extraction is performed with a pH of 5.0 followed by the subsequent nine 
successive extractions using the initial pH of 3.0 ± 0.2 that simulate acid rain conditions.  
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A: 10-1b 10-2b 10-3e 10-4a 10-5b 10-6a ×10-7b 10-8a 10-9b;  
B: 1-1e   3-1d   3-2c   3-3a   7-1c   7-2e;  
C: 2-1a   2-2c   5-1c    5-2c   5-3d  5-4c   ×5-5b   11-1e  11-2a.  

 

Figure C.13  Leaching concentrations of Zn from MEP are shown as a function of 10 
days of extractions. The first extraction is performed with a pH of 5.0 followed by the 
subsequent nine successive extractions using the initial pH of 3.0 ± 0.2 that simulate acid 
rain conditions.  
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APPENDIX D 

SOLUBILITY AND SPECIATION OF RCRA METALS, FE AS WELL ZN 

 

The solubility and speciation diagrams of RCRA metals, Fe as well as Zn are presented 

below. 

 

 
 
Figure D.1  As (III) speciation in the leaching studies of paint waste, CH3COOH at 0.1 
M, 298 K and open to atmosphere. All the speciation was computed using MINEQL+. 
The total concentration of As leached was 8.9 × 10-6 M.  
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Figure D.2  As (VI) speciation in the leaching studies of paint waste, CH3COOH at 0.1 
M, 298 K and open to atmosphere. All the speciation was computed using MINEQL+. 
The total concentration of As leached was 8.9 × 10-6 M. 
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Figure D.3  The pE–pH diagram for As at 298 K, in an open system with total As 5.0 × 
10-8 M from Cullen and Reimer (1989). 
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Figure D.4 Ba solubility in equilibrium with BaCO5, CH3COOH at 0.1 M, 298 K and 
open to atmosphere. All the speciation was computed using MINEQL+. 
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Figure D.5 Cd solubility in equilibrium with CdCO5, CH3COOH at 0.1 M, 298 K and 
open to atmosphere. All the speciation was computed using MINEQL+. 
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Figure D.6 Cd speciation in the leaching studies of paint waste, CH3COOH at 0.1 M, 298 
K and open to atmosphere. All the speciation was computed using MINEQL+. The total 
concentration of Cd leached was 1.1 × 10-6 M. 
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Figure D.7 The pE–pH diagram for Cr at 298 K, in an open system with total Cr 1.0 × 

10-6 M from Rai et al. (1989).  
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Figure D.8 Cr (III) solubility in equilibrium with Cr(OH)3, CH3COOH at 0.1 M, 298 K 
and open to atmosphere. All the speciation was computed using MINEQL+. 
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Figure D.9 Cr(III) speciation in the leaching studies of paint waste, CH3COOH at 0.1 M, 
298 K and open to atmosphere. All the speciation was computed using MINEQL+. The 
total concentration of Cr leached was 1.8 × 10-4 M. 
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Figure D.10 Potential - pH equilibrium diagram of iron or steel considering four 
concentrations of soluble species (100, 10-2, 10-4, 10-6 M), four soluble species (Fe3+, Fe2+ , 
FeO4

2-, HFeO2
-), and corrosion material ferrihydrite [Fe(OH)3] at 298 K. 
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Figure D.11 Fe2+ solubility in equilibrium with Fe(OH)2 and FeCO3, CH3COOH at 0.1 M, 
298 K and open to atmosphere. All the speciation was computed using MINEQL+.
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Figure D.12 Fe3+ solubility in equilibrium with Ferrihydrite [Fe(OH)3], CH3COOH at 0.1 
M, 298 K and open to atmosphere. All the speciation was computed using MINEQL+. 
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Figure D.13 Pb solubility in equilibrium with Pb3(OH)2(CO3)2, CH3COOH at 0.1 M, 298 
K and open to atmosphere. All the speciation was computed using MINEQL+. 
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Figure D.14 Pb speciation in the leaching studies of paint waste, CH3COOH at 0.1 M, 
298 K and open to atmosphere. All the speciation was computed using MINEQL+. The 
total concentration of Pb leached was 7.1 × 10-6 M. 
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Figure D.15 Ag solubility in equilibrium with Ag2CO3, CH3COOH at 0.1 M, 298 K and 
open to atmosphere. All the speciation was computed using MINEQL+. 
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Figure D16 The pE–pH diagram for Se at 298 K, in an open system with total Se 1.0 × 
10-6 M from Wagman et al. (1982). 
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Figure D17 Se(IV) speciation in the leaching studies of paint waste, CH3COOH at 0.1 M, 
298 K and open to atmosphere. All the speciation was computed using MINEQL+. The 
total concentration of Se leached was 2.5 × 10-6 M. 
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Figure D.18 Se(VI) speciation in the leaching studies of paint waste, CH3COOH at 0.1 
M, 298 K and open to atmosphere. All the speciation was computed using MINEQL+. 
The total concentration of Se leached was 2.5 × 10-6 M. 
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Figure D.19 Zn solubility in equilibrium with ZnCO3, CH3COOH at 0.1 M, 298 K and 
open to atmosphere. All the speciation was computed using MINEQL+.  
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Figure D.20 Zn speciation in the leaching studies of paint waste, CH3COOH at 0.1 M, 
298 K and open to atmosphere. All the speciation was computed using MINEQL+. The 
total concentration of Zn leached was 0.02 M. 
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APPENDIX E 

XRD ANALYSIS DATA  

Table E.1  Standard XRD Patterns for Minerals in the Paint Samples 
XRF 
detected 
elements 

Results 
measured in 
XRD 

Relative Intensity  
2θ (°)  

100% ~ 91% 90% ~ 81% 80% ~ 61% 60% ~ 41% 40% ~ 21% 20% ~ 10% 

Pb lead tetroxide 
[Pb3O4] 

26.4 (100%)   32.1 (45%) 
52.0(26%) 
34.0 (27%)  

Pb2(CrO4)O 26.3 (99.9%) 29.9 (87.3%)   31.5 (34.5%) 
31.0 (22.2%) 

48.7 (19.7%) 
44.0 (20.0%) 

Cr Cr2O3 33.6 (99.9%) 36.2 (82.3%) 54.9 (63.1%) 24.5 (56.2%) 65.2 (28.0%) 
50.3 (33.7%) 

 

Zn Zinc [Zn] 43.2 (99.9%)    39.0 (23.4%) 
36.3 (38.9%) 

70.1 (15.6%) 

Zinc oxide 
[ZnO] 

36.6 (99.9%)   31.8 (57.7%) 
34.4 (44.6%) 

56.6 (30.9%) 
62.9 (25.6%) 
47.6 (22.6%) 
68.0 (22.2%) 

 

Fe Fe 44.7 (99.9%)     82.3 (17.9%) 
65.0 (11.7%) 

Ferrihydrite 36.2 (99.9%)  34.3 (79%) 
26.1 (77%) 
36.0 (76%) 

62.4 (57%) 
62.3 (55%) 
56.1 (42%) 

19.5 (36%) 
40.2 (36%) 

 

Magnetite 
[Fe3O4) 

35.4 (99.9%) 35.5 (81.8%)  62.6 (41.6%) 57.0 (21.7%) 
43.1 (34.1%) 
30.1 (35.7%) 

 

geothite 
[FeO(OH)] 

21.3 (99.9%)    36.6 (36.8%) 
33.3 (26.7%) 

53.3 (18.0%) 
34.6 (14.5%) 

hematite 
[Fe2O3] 

33.1 (100%)  35.6 (70%)  54.0 (36%) 
49.4 (31%) 
24.1 (33%) 

 
 

NA Al 38.4 (99.9%)   44.6 (45.6%) 65.0 (23.8%) 
78.1 (23.5%) 

 

NA Silica [SiO2] 26.6 (99.9%)    20.8 (21%) 50.1 (10.7%) 

Ti Rutile [TiO2] 27.4 (99.9%)   36.0 (44.3%) 
54.2 (47.2%) 

41.2 (17.1%) 
56.5 (13.9%) 
68.8 (14.7%) 

 

Ca CaCO3 29.3 (99.9%)    48.4 (20.5%) 35.9 (13.9%) 
39.3 (19.5%) 
43.1 (14.5%) 
47.4 (18.8%) 

NA: not applicable
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Table E.2  Possible Minerals in Paint Samples Measured by XRD 

XRF 
elements 

Results from 
XRD 2-1b 2-2 e 3-2 e 5-1 b 5-1 c 5-2 a 5-2 d 5-4 c 5-5 c 5-5 d 10-7b 10-9b 11-2 a 11-2 e 

Pb 

lead tetroxide 
[Pb3O4] 
 

  √            

Pb2(CrO4)O           √ √ √ √ 

Cr Cr2O3             √ √ 

Zn 
Zinc [Zn] √ √     √ √ √ √ √    

Zinc oxide 
[ZnO] √              

Fe 

Fe √ √ √ √ √ √ √ √ √ √    √ 

Magnetite 
[Fe3O4) 

  √  √ √ √ √ √ √     

geothite 
[FeO(OH)]          √     

hematite 
[Fe2O3] 

   √   √        

NA Al 
√ √ √ √ √ √ √ √ √ √ √ √  √ 

NA Silica [SiO2] √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

Ti Rutile [TiO2] √ √     √   √ √ √ √  

Ca CaCO3 √ √ √ √ √ √  √ √   √  √ 
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Table E.3  XRD Analysis of Iron and Iron Oxides in Paint Waste Samples 
 

Paint 
sample 
ID 

Results measured in XRD 

Fe Magnetite [Fe3O4] Geothite [FeO(OH)] Hematite [Fe2O3] 

2θ (°) Relative 
Intensity  

hkl 
planes 

FWHM
 °2θ  2θ (°) RI  hkl 

planes 
FWHM
 °2θ  

2θ 
(°) RI  hkl 

planes 
FWHM
 °2θ  2θ (°) RI  hkl 

planes 
FWHM
 °2θ  

5-1 b 
44.5 
64.9 
82.3 

100.00 
11.20 
1.61 

110 
200 
211 

0.1535 
0.1023 
0.4093 

        

24.1 
33.1 
35.6 
54.0 

4.39 
13.88 
8.50 
5.11 

012 
104 
110 
116 

0.1535 
0.1535 
0.2047 
0.0936 

5-2 d 

44.6 
65.0 
82.2 
99.1 

100.00 
23.67 
4.29 
4.60 

110 
200 
211 
220 

0.1535 
0.1023 
0.6140 
0.5117 

35.6 
43.2 

11.90 
55.26 

103 
004 

0.1535 
0.0624     

33.1 
41.0 
54.3 

18.69 
3.63 
16.16 

104 
113 
116 

0.1023 
0.6140 
0.0768 

5-4 c 

44.5 
64.9 
82.2 
99.1 

82.14 
26.10 
5.36 
3.09 

110 
200 
211 
220 

0.2047 
0.1279 
0.4093 
0.6140 

30.1 
35.5 
43.2 

6.55 
19.95 
81.71 

220 
311 
400 

0.2558 
0.2558 
0.0512 

        

5-5 d 

44.6 
64.9 
82.2 
98.9 

100.00 
31.47 
7.73 
4.54 

110 
200 
211 
220 

0.2047 
0.1023 
0.5117 
0.8187 

35.3 
43.2 

12.11 
77.22 

103 
004 

0.4093 
0.0768 

21.2 
26.6 
36.3 
39.0 
54.3 

10.06 
46.07 
35.39 
18.22 
14.69 

101 
201 
111 
002 
402 

0.6140 
0.1023 
0.1023 
0.1279 
0.0768 

    

 
RI: Relative Intensity 
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Table E.4  XRD Analysis of Pb and Cr in Paint Waste Samples  
 

Paint 
sample ID 

Results measured in XRD 

lead tetroxide [Pb3O4] Pb2(CrO4)O Cr2O3 

2θ (°) Relative 
Intensity  hkl planes FWHM °2θ  2θ (°) Relative 

Intensity hkl planes FWHM °2
θ  2θ (°) Relative 

Intensity hkl planes FWHM °2θ  

3-2 e 

26.3480 
30.8516 
33.1330 
47.4525 

11.47 
2.67 
1.88 
2.53 

211 
112 
310 
213 

0.1279 
0.3070 
0.3070 
0.4093 

        

10-7b     
26.2 
29.8 
31.4 

29.23 
23.16 
8.71 

310 
-112 
020 

0.1279 
0.1535 
0.1791 

    

10-9b     
26.2 
29.9 
31.4 

11.41 
7.59 
3.50 

310 
-112 
020 

0.1279 
0.1535 
0.1535 

    

11-2 a     

26.3 
29.9 
31.5 
 

36.01 
23.21 
9.91 
 

310 
-112 
020 
 

0.1279 
0.1535 
0.1791 
 

33.7 
36.3 
50.2 
54.9 

4.42 
10.99 
11.18 
7.50 

104 
110 
024 
116 

0.1023 
0.2047 
0.0768 
0.1023 

11-2 e     

26.2 
27.4 
29.9 
31.4 

26.67 
20.05 
18.18 
6.21 

310 
002 
-112 
020 

0.1279 
0.1279 
0.1791 
0.1535 

33.6 
36.3 
50.1 
54.8 
64.9 

3.27 
10.69 
9.91 
4.79 
17.61 

104 
110 
024 
116 
300 

0.1535 
0.1535 
0.0768 
0.1023 
0.1279 
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APPENDIX F 

MODELING RESULTS FOR METAL LEACHING 

 
Fe=17% LogFe=5.23 

Source DF Sum of Squares Mean Square F Value Approx 
Pr > F 

Model 15 25.6441 1.7096 4.04 0.0004 

Error 32 13.5294 0.4228     

Corrected Total 47 39.1735       
 

Fe=19% LogFe=5.28 

Source DF Sum of Squares Mean Square F Value Approx 
Pr > F 

Model 15 25.6441 1.7096 4.04 0.0004 

Error 32 13.5294 0.4228     

Corrected Total 47 39.1735       
 

Same MSE are obtained for Fe = 20%, 21%, 22%, and 23% 
 

Source DF Sum of Squares Mean Square F Value Approx 
Pr > F 

Model 15 25.8883 1.7259 4.16 0.0003 

Error 32 13.2852 0.4152     

Corrected Total 47 39.1735       
 

Fe=24% LogFe=5.38 

Source DF Sum of Squares Mean Square F Value Approx 
Pr > F 

Model 15 22.3640 1.4909 2.84 0.0065 

Error 32 16.8095 0.5253     

Corrected Total 47 39.1735       
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SSPC 6 
Fe<=20% LogFe=5.30 

Number of Observations Read 23 

Number of Observations Used 20 

Number of Observations with Missing Values 3 
 
 

Root MSE 0.63746 R-Square 0.6552 

Dependent Mean -0.07695 Adj R-Sq 0.4540 

Coeff Var -828.39228     
 

Parameter Estimates 

Variable Label DF Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| 

Intercept Intercept 1 -69.15753 29.21301 -2.37 0.0356 

log_Fe_mg_Kg log Fe mg/Kg 1 -5.93902 2.13020 -2.79 0.0164 

log_Cr_XRF_mean log Cr XRF mean 1 -5.17710 1.55181 -3.34 0.0059 

log_mining_and_Soil_mode_Pb_mea log mining and Soil mode Pb mea 1 15.38537 6.48355 2.37 0.0352 

log_Ca_meban log Ca mean 1 4.87680 2.56465 1.90 0.0815 

log_Ti log Ti 1 4.88315 1.57765 3.10 0.0093 

log_Ag log Ag 1 -20.11114 6.44002 -3.12 0.0088 

log_Cd log Cd 1 16.41169 5.87066 2.80 0.0162 
 

Analysis of Variance 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr > F 

Model 7 9.26512 1.32359 3.26 0.0351 

Error 12 4.87631 0.40636     

Corrected Total 19 14.14142       
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The SAS System 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: log_Pb_TCLP_mean log Pb TCLP mean 
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Fe>20% LogFe=5.30 

Number of Observations Read 32 

Number of Observations Used 28 

Number of Observations with Missing Values 4 
 

Analysis of Variance 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr > F 

Model 7 13.75489 1.96498 4.67 0.0031 

Error 20 8.40891 0.42045     

Corrected Total 27 22.16381       
 

Parameter Estimates 

Variable Label DF Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| 

Intercept Intercept 1 -20.79269 11.49152 -1.81 0.0854 

log_Fe_mg_Kg log Fe mg/Kg 1 0.51414 1.36480 0.38 0.7104 

log_Cr_XRF_mean log Cr XRF mean 1 -0.90087 0.49284 -1.83 0.0825 

log_mining_and_Soil_mode_Pb_mea log mining and Soil mode Pb mea 1 4.14940 1.37129 3.03 0.0067 

log_Ca_mean log Ca mean 1 0.29854 0.71621 0.42 0.6812 

log_Ti log Ti 1 0.67605 0.55979 1.21 0.2413 

log_Ag log Ag 1 2.97630 1.56079 1.91 0.0710 

log_Cd log Cd 1 -4.28602 1.91712 -2.24 0.0369 

Root MSE 0.64842 R-Square 0.6206 

Dependent Mean -0.57279 Adj R-Sq 0.4878 

Coeff Var -113.20419     
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The SAS System 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: log_Pb_TCLP_mean log Pb TCLP mean 
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Breakpoint 
 
 

The SAS System 
 

The NLIN Procedure 
Dependent Variable log_Pb_TCLP_mean 

Method: Marquardt 
 

Source DF Sum of Squares Mean Square F Value Approx 
Pr > F 

Model 15 25.8883 1.7259 4.16 0.0003 

Error 32 13.2852 0.4152     

Corrected Total 47 39.1735       
 

Parameter Estimate Approx 
Std Error 

Approximate 95% Confidence 
Limits 

a1 -69.1575 29.5278 -129.3 -9.0114 

a2 -18.0677 6.9834 -32.2924 -3.8430 

b1 -5.9390 2.1532 -10.3249 -1.5532 

b2 0.5141 1.3562 -2.2483 3.2766 

c 5.3000 . . . 

c1 -5.1771 1.5685 -8.3721 -1.9821 

c2 -0.9009 0.4897 -1.8984 0.0967 

d1 15.3854 6.5534 2.0365 28.7342 

d2 4.1494 1.3626 1.3738 6.9250 

e1 4.8768 2.5923 -0.4035 10.1571 

e2 0.2985 0.7117 -1.1511 1.7482 

f1 4.8831 1.5946 1.6350 8.1313 

f2 0.6761 0.5563 -0.4570 1.8091 

g1 -20.1111 6.5094 -33.3704 -6.8519 

g2 2.9763 1.5510 -0.1829 6.1355 

h1 16.4117 5.9339 4.3247 28.4987 

h2 -4.2860 1.9050 -8.1665 -0.4056 
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Ba_TCLP Ba TCLP Fe<=20% 
Number of Observations Read 23 

Number of Observations Used 22 

Number of Observations with Missing Values 1 
 
 

Root MSE 1.89637 R-Square 0.5010 

Dependent Mean 1.86727 Adj R-Sq 0.2515 

Coeff Var 101.55857     
 

Parameter Estimates 

Variable Label DF Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| 

Intercept Intercept 1 11.91855 6.34880 1.88 0.0815 

Ba_XRF Ba XRF 1 -0.00046243 0.00031811 -1.45 0.1681 

Fe_mg_kg Fe mg/kg 1 -0.00000912 0.00001297 -0.70 0.4933 

Cr_XRF_mean Cr XRF mean 1 0.00046681 0.00047298 0.99 0.3404 

mining_and_Soil_mode_Pb_mean_pp mining and Soil mode Pb mean pp 1 -0.00003793 0.00006857 -0.55 0.5889 

Ca_mean Ca mean 1 -0.00018381 0.00008683 -2.12 0.0527 

Ti_mean Ti mean 1 0.00012499 0.00008882 1.41 0.1812 

Cd Cd 1 -0.02083 0.02627 -0.79 0.4412 
 

Analysis of Variance 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr > F 

Model 7 50.54675 7.22096 2.01 0.1265 

Error 14 50.34707 3.59622     

Corrected Total 21 100.89382       
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The SAS System 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: Ba_TCLP Ba TCLP 
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Ba TCLP Fe>20% 
The REG Procedure 

Model: MODEL1 
Dependent Variable: Ba_TCLP Ba TCLP 

Number of Observations Read 32 

Number of Observations Used 27 

Number of Observations with Missing Values 5 
 

Analysis of Variance 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr > F 

Model 6 5.79397 0.96566 3.10 0.0258 

Error 20 6.22097 0.31105     

Corrected Total 26 12.01495       
 

Root MSE 0.55772 R-Square 0.4822 

Dependent Mean 1.07568 Adj R-Sq 0.3269 

Coeff Var 51.84768     
 

Parameter Estimates 

Variable Label DF Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| 

Intercept Intercept 1 1.65037 0.77147 2.14 0.0449 

Fe_mg_kg Fe mg/kg 1 0.00000129 0.00000153 0.84 0.4093 

Cr_XRF_mean Cr XRF mean 1 -0.00012012 0.00007226 -1.66 0.1120 

Ca_mean Ca mean 1 -0.00002905 0.00001028 -2.83 0.0104 

Ti_mean Ti mean 1 -0.00002056 0.00001616 -1.27 0.2178 

Cd Cd 1 0.01854 0.01990 0.93 0.3626 

Ag Ag 1 -0.01817 0.03504 -0.52 0.6099 
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The SAS System 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: Ba_TCLP Ba TCLP 
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Number of Observations Read 23 

Number of Observations Used 22 

Number of Observations with Missing Values 1 
 

Analysis of Variance 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr > F 

Model 7 1450931 207276 5.55 0.0032 

Error 14 522681 37334     

Corrected Total 21 1973612       
 

Parameter Estimates 

Variable Label DF Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| 

Intercept Intercept 1 415.90648 286.32989 1.45 0.1684 

Soil___mining_Zn__ppm Soil & mining Zn ppm 1 0.00195 0.00201 0.97 0.3494 

mining_and_Soil_mode_Pb_mean_pp mining and Soil mode Pb mean pp 1 -0.01676 0.00570 -2.94 0.0107 

Cr_XRF_mean Cr XRF mean 1 -0.06104 0.04923 -1.24 0.2354 

Ca_mean Ca mean 1 0.00676 0.00593 1.14 0.2735 

Ti_mean Ti mean 1 0.02477 0.01218 2.03 0.0614 

Cd Cd 1 4.98343 3.47707 1.43 0.1737 

As As 1 0.09522 0.09840 0.97 0.3496 

Zn SSPC 6<20% 

Root MSE 193.22100 R-Square 0.7352 

Dependent Mean 341.17938 Adj R-Sq 0.6027 

Coeff Var 56.63326     
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The SAS System 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: Zn_TCLP Zn TCLP 
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Zn SSPC 6 Fe>20% 
The SAS System 

 
Number of Observations Read 32 

Number of Observations Used 29 

Number of Observations with Missing Values 3 
 
 

Root MSE 190.77140 R-Square 0.5589 

Dependent Mean 385.12725 Adj R-Sq 0.4118 

Coeff Var 49.53464     
 

Parameter Estimates 

Variable Label DF Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| 

Intercept Intercept 1 115.34611 252.96410 0.46 0.6531 

Soil___mining_Zn__ppm Soil & mining Zn ppm 1 0.00406 0.00132 3.07 0.0057 

mining_and_Soil_mode_Pb_mean_pp mining and Soil mode Pb mean pp 1 -0.00313 0.00291 -1.07 0.2950 

Cr_XRF_mean Cr XRF mean 1 -0.05728 0.02550 -2.25 0.0355 

Ca_mean Ca mean 1 -0.00418 0.00430 -0.97 0.3430 

Ti_mean Ti mean 1 0.00904 0.00545 1.66 0.1122 

Cd Cd 1 -5.55271 5.69407 -0.98 0.3406 

Ag Ag 1 19.68523 9.59007 2.05 0.0528 

Analysis of Variance 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr > F 

Model 7 968313 138330 3.80 0.0081 

Error 21 764268 36394     

Corrected Total 28 1732582       
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The REG Procedure 

Model: MODEL1 
Dependent Variable: Zn_TCLP Zn TCLP 
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log Cr TCLP Fe<=20% 

Number of Observations Read 23 

Number of Observations Used 21 

Number of Observations with Missing Values 2 
 
 

Root MSE 1.09500 R-Square 0.4795 

Dependent Mean -1.17620 Adj R-Sq 0.1324 

Coeff Var -93.09620     
 

Parameter Estimates 

Variable Label DF Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| 

Intercept Intercept 1 -7.70322 22.34821 -0.34 0.7363 

log_Fe_mg_Kg log Fe mg/Kg 1 0.81362 2.76136 0.29 0.7733 

log_Cr_XRF_mean log Cr XRF mean 1 -3.92307 2.91001 -1.35 0.2025 

log_mining_and_Soil_mode_Pb_mea log mining and Soil mode Pb mea 1 1.05774 8.45756 0.13 0.9025 

log_Soil___mining_Zn__ppm log Soil & mining Zn ppm 1 1.68966 2.29364 0.74 0.4755 

log_Ca_mean log Ca mean 1 -4.14279 3.67663 -1.13 0.2819 

log_Ti log Ti 1 2.07326 3.78394 0.55 0.5938 

log_Cd log Cd 1 -8.83677 6.41314 -1.38 0.1934 

log_As log As 1 8.36765 6.21948 1.35 0.2034 

Analysis of Variance 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr > F 

Model 8 13.25249 1.65656 1.38 0.2960 

Error 12 14.38824 1.19902     

Corrected Total 20 27.64073       
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The SAS System 
 

 

Number of Observations Read 23 

Number of Observations Used 21 

Number of Observations with Missing Values 2 
 

Analysis of Variance 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr > F 

Model 7 13.23374 1.89053 1.71 0.1925 

Error 13 14.40699 1.10823     

Corrected Total 20 27.64073       
 

Root MSE 1.05273 R-Square 0.4788 

Dependent Mean -1.17620 Adj R-Sq 0.1981 

Coeff Var -89.50221     
 

Parameter Estimates 

Variable Label DF Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| 

Intercept Intercept 1 -5.84227 16.03047 -0.36 0.7214 

log_Fe_mg_Kg log Fe mg/Kg 1 0.91473 2.53842 0.36 0.7244 

log_Cr_XRF_mean log Cr XRF mean 1 -3.76782 2.53035 -1.49 0.1603 

log_Soil___mining_Zn__ppm log Soil & mining 
Zn ppm 

1 1.51911 1.77300 0.86 0.4071 

log_Ca_mean log Ca mean 1 -3.89170 2.96114 -1.31 0.2115 

log_Ti log Ti 1 2.37127 2.82590 0.84 0.4166 

log_Cd log Cd 1 -8.23881 4.10921 -2.00 0.0662 

log_As log As 1 8.24011 5.89845 1.40 0.1858 
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The SAS System 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: log_Cr_TCLP log Cr TCLP 
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log Cr TCLP Fe<=20% 

 

Analysis of Variance 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr > F 

Model 8 6.84141 0.85518 0.47 0.8513 

Error 11 19.88840 1.80804     

Corrected Total 19 26.72981       
 

Parameter Estimates 

Variable Label DF Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| 

Intercept Intercept 1 27.27264 29.42342 0.93 0.3739 

log_Fe_mg_Kg log Fe mg/Kg 1 -4.71685 3.43898 -1.37 0.1975 

log_Cr_XRF_mean log Cr XRF mean 1 -1.42506 2.62016 -0.54 0.5974 

log_mining_and_Soil_mode_Pb_mea log mining and Soil mode Pb mea 1 1.80886 3.98198 0.45 0.6585 

log_Soil___mining_Zn__ppm log Soil & mining Zn ppm 1 -0.80484 1.40241 -0.57 0.5776 

log_Ca_mean log Ca mean 1 0.28277 2.11367 0.13 0.8960 

log_Ti log Ti 1 -0.22555 1.40102 -0.16 0.8750 

log_Ag log Ag 1 1.33259 3.28425 0.41 0.6927 

log_As log As 1 -1.29270 2.11217 -0.61 0.5530 

Number of Observations Read 32 

Number of Observations Used 20 

Number of Observations with Missing Values 12 

Root MSE 1.34463 R-Square 0.2559 

Dependent Mean -0.76257 Adj R-Sq -0.2852 

Coeff Var -176.32977     
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The SAS System 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: log_Cr_TCLP log Cr TCLP 
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Chow test 
 

The AUTOREG Procedure 

Dependent Variable log_Pb_TCLP_mean 

The AUTOREG Procedure 
 

Structural Change Test 

Test Break Point Num DF Den DF F Value Pr > F 

Chow 23 8 32 2.28 0.0467 
 
 
 

The AUTOREG Procedure 
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The AUTOREG Procedure 

Dependent Variable Ba_TCLP 
 

 

Structural Change Test 

Test Break Point Num DF Den DF F Value Pr > F 

Chow 23 10 29 1.33 0.2608 
 

The AUTOREG Procedure 
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The AUTOREG Procedure 

Dependent Variable Zn_TCLP 
 

The AUTOREG Procedure 
 

Structural Change Test 

Test Break Point Num DF Den DF F Value Pr > F 

Chow 23 9 33 2.45 0.0294 
 
 
 

The AUTOREG Procedure 
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The AUTOREG Procedure 

Dependent Variable Cr_TCLP 
The AUTOREG Procedure 

 

Structural Change Test 

Test Break Point Num DF Den DF F Value Pr > F 

Chow 23 9 23 1.39 0.2479 
 
 
 

The AUTOREG Procedure 
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Pb, SSPC 10 
 
Box-Cox transformation of the response with estimated lambda = -0.0992415 
The 95% CI for lambda is (-0.413742, 0.359258) 
Rounded lambda = 0 used in the regression analysis 
 
Regression Equation 
 
ln(Pb TCLP mean)  =  -5.09777 + 0.000384073 Pb mean pp + 5.5838e-005 Ca mean - 
                     7.7842e-005 Ti mean 
 
 
Coefficients 
 
Term            Coef  SE Coef         T      P 
Constant    -5.09777  1.01226  -5.03601  0.002 
Pb mean pp   0.00038  0.00007   5.21958  0.001 
Ca mean      0.00006  0.00003   2.17327  0.066 
Ti mean     -0.00008  0.00002  -3.49596  0.010 
 
 
Summary of Model 
 
S = 0.776296     R-Sq = 85.39%        R-Sq(adj) = 79.13% 
PRESS = 11.4196  R-Sq(pred) = 60.46% 
 
 
Analysis of Variance 
 
Source         DF   Seq SS   Adj SS   Adj MS        F         P 
Regression      3  24.6596  24.6596   8.2199  13.6399  0.002611 
  Pb mean pp    1  15.7580  16.4182  16.4182  27.2440  0.001226 
  Ca mean       1   1.5364   2.8463   2.8463   4.7231  0.066297 
  Ti mean       1   7.3652   7.3652   7.3652  12.2217  0.010048 
Error           7   4.2185   4.2185   0.6026 
  Lack-of-Fit   5   1.6446   1.6446   0.3289   0.2556  0.905100 
  Pure Error    2   2.5739   2.5739   1.2869 
Total          10  28.8781 
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Partial F test: 

( ) ( ) ( )3.27 2.65 / 5 4 /
F 4 variables  1.17

2.65 / (11 5 1)
− −

= =
− −

 

F(0.05,1,5) = 6.61>1.17. Hence, the coefficient removed from the model is not significant. 
Numbers of variables in the model were reduced from five to four. 

( ) ( ) ( )4.22 3.27 / 4 3 /
F 3 variables  1.74

3.27 / (11 4 1)
− −

= =
− −

. 

F(0.05,1,6) = 5.99>1.74. Hence, the coefficient removed from the model is not significant. 
Numbers of variables in the model were reduced from four to three. 

( ) ( ) ( )7.064 4.22 / 3 2 /
F 2 variables  4.72

4.22 / (11 3 1)
− −

= =
− −

 

F(0.05,176) = 5.59>4.72. However, since these two numbers are so close, we will not 
remove the third variables. 
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Cr, SSPC 10  
 
The regression equation is 
Cr TCLP = 12.4 - 0.000022 Soil & mining Zn  ppm - 0.000032 Fe mg/kg + 0.0077 Cr 
XRF mean + 0.000053 mining and Soil mode Pb mean pp - 0.000198 Ca mean - 
0.000038 Ti mean 
 
8 cases used, 12 cases contain missing values 
 
Predictor                               Coef     SE Coef      T      P 
Constant                               12.38       19.46   0.64  0.639 
Soil & mining Zn  ppm            -0.00002232  0.00003736  -0.60  0.657 
Fe mg/kg                         -0.00003236  0.00005264  -0.61  0.649 
Cr XRF mean                          0.00771     0.01276   0.60  0.654 
mining and Soil mode Pb mean pp    0.0000529   0.0001667   0.32  0.804 
Ca mean                           -0.0001983   0.0003084  -0.64  0.636 
Ti mean                          -0.00003833  0.00007606  -0.50  0.703 
 
S = 0.694055   R-Sq = 44.9%   R-Sq(adj) = 0.0% 
 
Analysis of Variance 
 
Source          DF      SS      MS     F      P 
Regression       6  0.3929  0.0655  0.14  0.75 
Residual Error   1  0.4817  0.4817 
Total            7  0.8746 
 
Source                           DF  Seq SS 
Soil & mining Zn  ppm             1  0.0900 
Fe mg/kg                          1  0.0003 
Cr XRF mean                       1  0.0387 
mining and Soil mode Pb mean pp   1  0.0425 
Ca mean                           1  0.0991 
Ti mean                           1  0.1223 
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Ba, SSPC 10 
 
Box-Cox transformation of the response with rounded lambda = 0.5 
The 95% CI for lambda is (-0.075, 1.015) 
 
Regression Equation 
 
Ba TCLP^0.5  =  -0.662387 - 2.17667e-005 Ba XRF + 2.62614e-006 Soil & mining Zn 
                ppm + 3.36626e-006 Fe mg/kg + 0.000111838 mining and Soil mode 
                Pb mean pp - 1.14467e-005 Ca mean - 0.00140021 As 
 
19 cases used, 1 cases contain missing values 
 
Coefficients 
 
Term                                  Coef   SE Coef         T      P 
Constant                         -0.662387  0.510234  -1.29820  0.219 
Ba XRF                           -0.000022  0.000010  -2.11097  0.056 
Soil & mining Zn  ppm             0.000003  0.000001   1.84907  0.089 
Fe mg/kg                          0.000003  0.000001   2.90043  0.013 
mining and Soil mode Pb mean pp   0.000112  0.000028   4.02088  0.002 
Ca mean                          -0.000011  0.000005  -2.15883  0.052 
As                               -0.001400  0.000561  -2.49721  0.028 
 
Summary of Model 
 
S = 0.151198      R-Sq = 69.72%        R-Sq(adj) = 54.58% 
PRESS = 0.737005  R-Sq(pred) = 18.65% 
 
Analysis of Variance 
 
Source                             DF    Seq SS    Adj SS    Adj MS        F 
Regression                          6  0.631592  0.631592  0.105265   4.6046 
  Ba XRF                            1  0.024745  0.101872  0.101872   4.4562 
  Soil & mining Zn  ppm             1  0.009376  0.078163  0.078163   3.4191 
  Fe mg/kg                          1  0.010538  0.192317  0.192317   8.4125 
  mining and Soil mode Pb mean pp   1  0.419774  0.369603  0.369603  16.1675 
  Ca mean                           1  0.024597  0.106544  0.106544   4.6606 
  As                                1  0.142562  0.142562  0.142562   6.2360 
Error                              12  0.274331  0.274331  0.022861 
  Lack-of-Fit                       6  0.127487  0.127487  0.021248   0.8682 
  Pure Error                        6  0.146844  0.146844  0.024474 
Total                              18  0.905923 
 
Source                                    P 
Regression                         0.011867 
  Ba XRF                           0.056434 
  Soil & mining Zn  ppm            0.089222 
  Fe mg/kg                         0.013316 
  mining and Soil mode Pb mean pp  0.001697 
  Ca mean                          0.051819 
  As                               0.028059 
Error 
  Lack-of-Fit                      0.565933 
  Pure Error 
Total 
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Zn, SSPC 10  
 
Box-Cox transformation of the response with rounded lambda = 0.5 
The 95% CI for lambda is (-0.125, 1.325) 
 
 
Regression Equation 
 
Zn TCLP^0.5  =  0.396622 - 0.00049622 Ba XRF + 5.25726e-005 Soil & mining Zn 
                ppm + 4.79214 Ag - 0.0145836 As 
 
 
19 cases used, 1 cases contain missing values 
 
 
Coefficients 
 
Term                       Coef  SE Coef         T      P 
Constant                0.39662  7.75561   0.05114  0.960 
Ba XRF                 -0.00050  0.00034  -1.46689  0.165 
Soil & mining Zn  ppm   0.00005  0.00001   4.16802  0.001 
Ag                      4.79214  1.82091   2.63173  0.020 
As                     -0.01458  0.00667  -2.18574  0.046 
 
 
Summary of Model 
 
S = 3.71799      R-Sq = 69.60%        R-Sq(adj) = 60.91% 
PRESS = 340.591  R-Sq(pred) = 46.50% 
 
 
Analysis of Variance 
 
Source                   DF   Seq SS   Adj SS   Adj MS        F         P 
Regression                4  443.077  443.077  110.769   8.0131  0.001409 
  Ba XRF                  1   12.650   29.745   29.745   2.1518  0.164507 
  Soil & mining Zn  ppm   1  331.923  240.147  240.147  17.3724  0.000948 
  Ag                      1   32.463   95.741   95.741   6.9260  0.019720 
  As                      1   66.041   66.041   66.041   4.7775  0.046321 
Error                    14  193.528  193.528   13.823 
  Lack-of-Fit             8  138.422  138.422   17.303   1.8839  0.227975 
  Pure Error              6   55.107   55.107    9.184 
Total                    18  636.606 
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