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ABSTRACT

ELECTRO-DEFORMATION OF A MOVING BOUNDARY:
A DROP INTERFACE AND A LIPID BILAYER MEMBRANE

by
Herve Nganguia

This dissertation focuses on the deformation of a viscous drop and a vesicle immersed

in a (leaky) dielectric fluid under an electric field. A number of mathematical tools,

both analytical and numerical, are developed for these investigations. The dissertation

is divided into three parts. First, a large-deformation model is developed to capture

the equilibrium deformation of a viscous spheroidal drop covered with non-diffusing

insoluble surfactant under a uniform direct current (DC) electric field. The large-

deformation model predicts the dependence of equilibrium spheroidal drop shape

on the permittivity ratio, conductivity ratio, surfactant coverage, and the elasticity

number. Results from the model are carefully compared against the small-deformation

(quasispherical) analysis, experimental data and numerical simulation results in the

literature. Moreover, surfactant effects, such as tip stretching and surface dilution

effects, are greatly amplified at large surfactant coverage and high electric capillary

number. These effects are well captured by the spheroidal model, but cannot be

described in the second-order small-deformation theory.

The large-deformation spheroidal model is then extended to study the equilibrium

deformation of a giant unilamellar vesicle (GUV) under an alternating current (AC)

electric field. The vesicle membrane is modeled as a thin capacitive spheroidal shell

and the equilibrium vesicle shape is computed from balancing the mechanical forces

between the fluid, the membrane and the imposed electric field. Detailed comparison

against both experiments and small-deformation theory shows that the spheroidal

model gives better agreement with experiments in terms of the dependence on fluid

conductivity ratio, electric field strength and frequency, and vesicle size. Asymptotic



analysis is conducted to compute the crossover frequency where a prolate vesicle

crosses over to an oblate shape, and comparisons show the spheroidal model gives

better agreement with experimental observations.

Finally, a numerical scheme based on immersed interface method for two-phase

fluids is developed to simulate the time-dependent dynamics of an axisymmetric drop

in an electric field. The second-order immersed interface method is applied to solving

both the fluid velocity field and the electric field. To date this has not been done

before in the literature. Detailed numerical studies on this new numerical scheme

shows numerical convergence and good agreement with the large-deformation model.

Dynamics of an axisymmetric viscous drop under an electric field is being simulated

using this novel numerical code.
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CHAPTER 1

INTRODUCTION

The motivation for this work was to develop a better understanding of the process

by which pores form on lipid bilayer membrane. Membrane pores are openings on

vesicles membrane caused by subjecting vesicles to an external force. This external

force can be the result of various stimuli such as osmosis [111, 145], surfactants and

lipids [69, 129], illumination [131], sound field [93].

Ohno et al. [111] conducted experiments in which pores were formed on liposomes

obtained from water-in-oil phospholipid-coated micro droplets (W/O droplets). The

solutions inside and outside the liposomes have different osmolarities. The difference

in concentration creates an osmotic flow of small particles across the membrane and

into the liposomes. As a result, the volume inside the liposomes expands, stretching

the lipid membrane, and ultimately leading to membrane ruptures. Once the pore

is opened, it was observed the liposomes responded in one of three different ways:

They broke completely and finally disappeared, they transformed and/or shrunk, or

the hole resealed and they returned to their initial spherical shape (Figure 1.1).

Figure 1.2 shows results of an experiment conducted by Sadik et al. [127].

In Figure 1.2(a), a 70µL solution containing a 28.8µm vesicle (closed lipid bilayer

membrane) is placed in a chamber consisting of two electrodes. An electric field

of strength E = 1.5 kV/cm is then applied, bringing the vesicle to deform into a

prolate spheroid. Note that the vesicle membrane may have local irregularities causing

deviations from ellipsoidal shapes, so the fitted prolate spheroid in Figure 1.2(b) is

an estimate. When the vesicle transmembrane potential exceeds a certain threshold

(of the order of 1 V), the membrane ruptures and pores are formed at the polar caps,

as shown in Figure 1.2(b). When the electric field is turned off, the vesicle relaxes

back to its original, spherical shape. Note the appreciable reduction in vesicle size

1
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Figure 1.1 Time-lapse images of liposomes showing large membrane
ruptures (shown by arrows) in response to different osmolarities. The vesicle
shows a resealing of the membrane after opening a hole.

in Figure 1.2(c): The vesicle shrank, pointing to an efflux of interior fluids. This is

further evidence that pores did in fact form as described earlier.

Figure 1.2 Images of a vesicle (a) before, (b) during, and (c) after the
application of an electric pulse. The vesicle was originally r0 = 28.8µm in
diameter. The applied field was E = 1.5 kV/cm and pointing from right to
left. The shape of the vesicle during application of the electric field is fitted
with an ellipse (black dashed line) (b). The vesicle demonstrates a large prolate
deformation with an aspect ratio a

b
= 3.57. The postpulsation image (c) shows

an appreciable reduction in vesicle size.

While the dynamics of a membrane pore has been investigated extensively [19,

71, 72, 131], the process leading to pore formation is poorly understood. This work

aims to improve scientific knowledge by introducing tools that could help better

understand the underlying dynamics leading to electrically-induced pore formation.
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This in turn has the potential to significantly improve the effective use of vesicles in a

wide range of biomedical and biotechnological applications such as cancer treatment,

wound healing, and gene therapy [46, 47, 48, 57], just to name a few. Moreover,

the application of an electric field to a deformable interface immersed in a fluid has

great relevance in many other industrial [7, 53, 70, 90, 100, 166, 167] and biological

processes [18, 63, 84, 105, 160, 161, 173].

In electrohydrodynamics (EHD), a flow is induced due to the electrostatic force

resulting from variations between the electric properties of the bulk (or exterior) fluid

and the fluid enclosed by the interface (or interior fluid). The interplay between

viscous force form the induced flow and the electric force leads to changes in the

shape of the interface.

Electrokinetic effects on the deformation of an interface become important

when electrolytes are present in the bulk fluid. In this dissertation, the interior and

exterior fluids are considered to be leaky dielectrics: Weakly conducting substances

that support electrostatic fields. Here, the theory is based on the leaky dielectric

model of Taylor [101, 132, 147]. In this model, the bulk is assumed to be electro-

neutral, while a surface charge density develops at the interface where there is a

jump in material electric properties. The electrostatic and flow fields can be solved

independently of each other because the coupling between these two fields only occurs

at the fluid interface, through the Maxwell stress. Moreover, theoretical results focus

on equilibrium deformations, and the transient dynamics are ignored. Two types

of moving boundary are investigated: (1) The deformation of a surfactant-covered

viscous drop in a DC electric field, and (2) the deformation of a vesicle in an AC

electric field.
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1.1 Surfactant-covered Viscous Drop in a DC Electric Field

Upon application of an electric field to a weakly conducting (leaky dielectric) drop

suspended in another leaky dielectric fluid, free charges accumulate at the interface

between the two fluids while the bulk remains electrically neutral [101, 147]. Studies

show that a viscous drop can deform into a prolate (oblate) ellipsoid with the long axis

aligned parallel (perpendicular) to the direction of the imposed electric field [2, 101,

132]. The flow circulation around the prolate drop is often opposite to that around

the oblate drop, depending on the mismatch in electric conductivity, permittivity,

and viscosity between the interior and exterior fluids. A brief and clear review of the

droplet electrohydrodynamics can be found in Ref. [77].

Taylor’s spherical model [147] explains how different combinations of viscosity,

permittivity, and conductivity lead to either prolate or oblate shapes. For small to

moderate electric field strengths, the balance between the surface tension, electric,

and hydrodynamic stresses results in an equilibrium drop shape [54, 142, 171]. Small-

deformation analysis provides good agreement with experiments for a slightly deformed

viscous drop under a weak DC electric field [1, 147]. When applied to large drop

deformations under a strong electric field, however, small-deformation theories give

no quantitative agreement with experiments.

Recently, Bentenitis and Krause [10] extended the leaky dielectric model for

large electro-deformation of a non-charged viscous drop in a leaky dielectric fluid.

Their large deformation analysis assumes spheroidal shapes and gives good agreement

with most experiments for the prolate drops. Zhang et al. [169] refined the spheroidal

model by projecting the stress balances onto the corresponding (unsteady) velocity

components, which is also done in the variational analysis [22] and reduced model

analyses [37, 137]. They obtained good agreement with experiments on prolate drops,

but provided no comparison for the oblate drops in Ref. [169].
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Under an even stronger electric field (beyond the critical strength), no steady

equilibrium drop shape can be found and the drop keeps elongating until the eventual

break-up into smaller droplets [24, 25, 55]. Conical points may form at the end

of the viscous drop at high capillary number [77], and small droplets may detach

from the tip as a result of the tip-streaming instability [146]. The drop may also

undergo undulation and break into several droplets of comparable sizes. The large

deformation models in [10, 169] are inadequate to capture such extreme deformation,

and numerical simulations have been conducted to investigate large electro-deformation

using the leaky dielectric model [8, 16, 17, 77, 102, 142, 143, 172].

Tip-streaming has also been observed for a surfactant-covered drop in extensional

flow [4, 15, 30]. Surfactants (surface-active agents) are often used to facilitate breakup

and deformation of fluid interface in many engineering applications [4, 26, 67, 110],

and they are known to affect the stability of a viscous drop through a combination

of reduced surface tension and the immobilizing (surface stiffening) effect of the

Marangoni stress [3, 50, 67, 103, 140, 144, 162].

The electro-deformation of a surfactant-laden viscous drop has been investigated

by Ha and Yang [51, 52] (experiments and small-deformation analysis) and later

by Teigen and Munkejord [148] (axisymmetric numerical simulations). While Ha

and Yang [51, 52] concluded that surfactant enhances deformation for a prolate

drop, Teigen and Munkejord [148] found that smaller deformation may be caused

by diffusing surfactant for a prolate drop with a circulation from the pole to the

equator (prolate B as categorized by Lac and Homsy [77]).

1.2 Vesicle in an AC Electric Field

The electro-deformation and electro-dynamics of vesicles (closed pure lipid bilayer

membranes) have been a paradigm for understanding how a biological cell behaves

under an electric field. Vesicles are known to change their shape depending on the
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frequency of the imposed alternating current (AC) electric fields and the mismatch in

fluid conductivities [6, 36, 123, 124]. Changes in vesicle orientation, dielectrophoresis

and electrorotation have also been observed. Under DC electric fields, both vesicles

and biological cells tend to undergo large deformations with aspect ratios reaching ten.

The permeabilization of vesicles membranes using electric fields has also generated

a lot of practical and modeling interest, especially in the biotechnology industry.

Electroporation, the process of perforating the membrane by applying an (often DC)

electric field, has been proposed as a method for delivering molecules into living

organisms [23, 75, 106, 107, 138, 141, 149, 120, 174]. Most recently, electroporation

has been used for measurements of various properties of the cell membranes [120, 130].

The earliest theories of vesicle electro-deformation were based on minimizing the

total energy consisting of the membrane energy (tension and bending) and electrical

energy (Maxwell stresses) [56, 163]. These models focus on conductivity ratio ≈ 1,

and as a result the models were only able to predict prolate shape. Extension of

these models allow for large conductivity mismatch [116, 164] and are thus able to

predict the various shapes observed experimentally [6], even though poor quantitative

agreement with the experiments is found. Hyuga et al.[64, 65] proposed the first

theory (to the author’s knowledge) beyond the minimum energy approach. Sadik et

al. [128] modified this approach to model the deformation of spheroidal vesicles under

strong electric fields.

Vlahovska et al. [157] proposed a perturbative method to study the dynamics

and deformation of a nearly-spherical vesicle subject to weak AC electric fields.

Assuming small asphericity, they used the transmembrane potential for a dielectric

spherical shell in AC fields in the analyses. The small-deformation results are in

qualitative agreement with experiments in terms of shape elongation and the transition

frequency between prolate and oblate vesicle. Yet the small-deformation theory

does not apply to vesicles subjected to moderate and strong electric fields, where
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deformations are well beyond the nearly spherical shape [123]. Zhang et al. [170]

proposed a spheroidal model to study the transient dynamics of highly deformed

vesicles under strong DC electric fields. Assuming that vesicles remain spheroidal

under a slowly varying DC electric field, which is well supported by experimental

findings in [76, 123, 128], their spheroidal results are in quantitative agreement with

experimental data [170] in terms of the vesicle aspect ratio and its response to an

electric pulse.

1.3 The Immersed Interface Method (IIM) for

Electrodeformation of a Viscous Drop

A numerical code based on the immersed interface method (IIM) is developed to

simulate the time-dependent dynamics of a viscous drop. The IIM is a fixed Cartesian

grid method for solving equations whose solutions are discontinuous across an interface.

The discontinuity can be due to a singular force on the interface or discontinuous

coefficients. The main idea is to incorporate the jumps in the solution or its derivatives

into the finite difference scheme, leading to a modified finite difference scheme that is

second-order accurate at all points on the grid. The method was first developed by

Leveque and Li [82], and applied to elliptic equations. It has since been extended to

a wide-range of applications. For a somewhat comprehensive review, see the book by

Li and Ito [89]. Note that the original motivation in developing the IIM was to obtain

a second-order accurate version of Peskin’s immersed boundary method (IBM) [114].

The IBM is a very robust algorithm for solving the incompressible Navier-Stokes

equations with moving boundaries. Originally developed for the problem of blood flow

in a beating heart [114, 115], it has since been extended to several other problems [12,

40, 151], including for the simulation of a viscous drop under a DC electric field and in

shear flow [61]. In the IBM, the singular forcing term at the boundary is approximated

by a set of discrete delta functions that spread the force from the boundary to the



8

Cartesian grid points. However, this approach appears to limit the accuracy of the

IBM to first-order in solving the Navier-Stokes equations.

For a two-phase fluid problem with a moving boundary under an electric field,

two separate sets of equations need to be solved: One for the electric potential, and

the other for the fluid velocity. In most previous numerical studies hybrid methods

were developed: The IIM only applied to solving the electric potential, and the fluid

velocity is computed using methods that are generally first-order accurate [61, 112].

To the author’s knowledge, the present numerical code is the first using the IIM to

solve for both the electric potential and the fluid velocity in three-dimensional axial

symmetric cylindrical coordinates.

This dissertation is organized as follows. In Chapter 2, the electrohdrodynamic

equations are introduced in the leaky dielectric framework, and the general approach

to obtaining analytical solutions of the equations is presented. The effects of different

types of electric field are then investigated: Chapter 3 presents results of a surfactant-

covered viscous drop under a DC electric field, while the morphological changes of a

vesicle membrane under an AC electric field are presented in Chapter 4. In Chapter 5,

a novel numerical code is presented to simulate the deformation of a surfactant-free

viscous drop under DC electric field. All the results are summarized in Chapter 6,

while extensions and future direction are discussed in Chapter 7.



CHAPTER 2

MATHEMATICAL FORMULATION

Electrohydrodynamics is concerned with the interaction between electric and flow

fields, both of which are coupled at a fluid interface through the Maxwell stress

tensor. In this chapter, the general equations of electrohydrodynamics are presented

for an interface in an electric field (see Figure 2.1).

Figure 2.1 Sketch of the physical problem. The interface (Γ) separates the
domain into two regions: The interior (i) and exterior (e). The regions have
distinct material properties: Permittivity (ε), conductivity (σ), and viscosity
(µ). In the presence of an electric field E0, oriented along the axis of symmetry,
the interface deforms into a prolate (ξ0) or an oblate (λ0) shape.

The fluid properties are piecewise constant on either side of the interface.

Moreover, the leaky dielectric model [101, 132] is used, in which bulk charges neutralize

instantly and the electromechanical coupling occurs only at the interface where induced

charge, resulting form the sharp change in material properties, produces electric

stresses. These considerations make the problem more amenable to analytical studies.

9
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2.1 Governing Equations

Noting that the electrostatic field is solenoidal,

∇×E = 0, (2.1)

the electric field can be expressed in terms of the electric potential, E = −∇φ.

Moreover, the electric field E obeys Gauss’s law

∇ · (εE) = ρe. (2.2)

where ε and ρe are the permittivity and free charge density, respectively. Boundary

conditions at the interface are obtained by integrating (2.2) across the interface, using

the divergence theorem. The result shows that the normal component ofE has a jump

equal to the surface charge density qs,

qs = JεEK · n, (2.3)

JfK ≡ fe − fi denotes the difference between exterior and interior, b is the outward

normal vector.

In the absence of a diffusive current (see [21, 121] and references therein), ρe is

further related to the current, i, by the charge conservation equation,

∂ρe
∂t

+∇ · i =
∂ρe
∂t

+∇ · (ρeu+ σE) = 0, (2.4)

where σ is conductivity and u is the fluid velocity. Integrating (2.4) across the

interface gives the boundary condition,

∂qs
∂t

+∇s · (qsu) = −n · JσEK (2.5)

In general, variations in the conductivity σ can be important when electrolytes

are present in the bulk fluid. Here σ is assumed piecewise constant on either side of
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the interface, and the bulk has no net charge density so that ρe = 0. In the leaky

dielectric framework the electric potential problem satisfies

∇ · (ε∇φ) = 0. (2.6)

The flow is governed by the Navier-Stokes equations, which are non-linear.

However, considering the size of the immersed boundary and the high viscosity nature

of the leaky dielectric fluids, inertial terms can be ignored and the flow field reduces to

the incompressible Stokes equation: The governing equations for the leaky dielectric

model are

−∇p+ µ∇2u+ F = 0, (2.7)

∇ · u = 0, (2.8)

where p, ρ and µ are the the pressure, the density and the viscosity of the fluid,

respectively. The sharp change in material electric properties at the interface generates

a singular force

F (x, t) =

∫
Γ

f(s, t)δ(x−X(s, t))ds, (2.9)

where X(s, t) is the location of the interface, s is the arc-length, x is spatial position,

f(s, t) is the force strength, and δ(x) is the Dirac delta function. With the exception

of the empirical no-slip boundary condition, jump conditions for the fluid velocity

can be obtained as was done for the electric problem, by integrating the governing
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equations across the interface [132]. The boundary conditions at the interface become

JφK = 0, (2.10)

n · JεEK = qs, (2.11)

∂qs
∂t

+∇s · (qsu) = −n · JσEK, (2.12)

JuK = 0, (2.13)

dX

dt
= (u · n)n, (2.14)

J(T + S) · nK = f · n, (2.15)

where s denotes surface quantities, qs is the surface charge density, and ∇s = (I −

nn) · ∇ is the surface gradient operator, with I the identity tensor. The viscous

(hydrodynamic) and Maxwell (electric) stress tensors are

T = −pI + µ
(

(∇u)T +∇u
)
,

and

S = εEE − ε

2
(E ·E) I,

respectively.

2.2 General Solutions in Spheroidal Coordinates

Assuming that the problem is three-dimensional axisymmetric, analytical solutions

are derived using the spheroidal coordinates (χ, η) that are related to the cylindrical

coordinates (r, z) as

z = cχη, r =
√

(χ2 ± 1)(1− η2), (2.16)

where χ = ξ for prolate spheroids and χ = λ for oblate spheroids, and c =
√
a2 − b2

is the semi-focal length. Spheroids are obtained from surfaces of constant χ, while



13

hyperboloids are given by surfaces of constant η ∈ [−1, 1]. For prolate spheroids,

ξ ∈ [1,∞), while λ ∈ [0,∞) for oblate spheroids.

Note that the oblate spheroidal coordinates can be obtained from the the prolate

spheroidal coordinates by substituting ξ → iλ, c → −ic̄, with i =
√
−1. In the

following derivations, the prolate spheroidal coordinates are used to outline the steps

leading to the analytical solutions. Detailed derivations for the case of an oblate-

deforming viscous drop in DC electric field are presented in Appendix C.

The electrostatic force generated by the electric field is computed from the

electrostatic problem with piecewise homogeneous electric properties. Because no net

charges exist in the bulk, the electric potential in each subdomain satisfies Laplace’s

equation,

∇ · (εj∇φ) = 0, (2.17)

with appropriate boundary conditions. εj is the permittivity of the fluid j, and

j = i, e denotes the fluid inside and outside the interface, respectively. Since the

conductivity is constant on either side of the interface, (2.17) reduces to ∇2φ = 0 in

each subdomain. In the spheroidal coordinates, the Laplacian operator

∆ =
1

c2(ξ2 − η2)

{
∂

∂ξ

[
(ξ2 − 1)

∂

∂ξ

]
+

∂

∂η

[
(1− η2)

∂

∂η

]}
. (2.18)

Equation (2.17) is separable, and the general solution of the potential, φ is given by

the truncated form

φj = (αjξ + βjQ1(ξ)) η, j = i, e, (2.19)

where Q1(ξ) is the Legendre polynomial of the second kind. The coefficients αj, βj

are obtained from boundary and interface conditions. Boundary conditions in the

far-field and inside the interface immediately yield αe = −c and βi = 0. The electric
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potential inside and outside are

φe = (−cE0ξ + αQ1(ξ))η, (2.20)

φi = βξη. (2.21)

The remaining coefficients, α, β are determined from interface conditions, and depend

on the model for the surface and on the type of electric field (DC or AC). More

generally,

J−∇φ · tK = w, Jσ∇φ · nK = v, (2.22)

where w = 0 for a drop interface (Chapter 3), and w is equal to the transmembrane

potential for a lipid bilayer membrane (Chapter 4). The surface function v = dqs
dt

.

The incompressible Stokes equations governing the flow,

∇pj = µ∇2uj, (2.23)

∇ · uj = 0, (2.24)

where the singular force F (s, t) in (2.7) is absorbed into the stress balance at the

interface. Because the problem is axisymmetric, one can solve for the stream function,

ψ instead

(E2)2ψ = 0, (2.25)

where

E2 =
1

c2(ξ2 − η2)

[
(ξ2 − 1)

∂2

∂ξ2
+ (1− η2)

∂2

∂η2

]
. (2.26)

In terms of the stream function, the velocity field is given by: uj = − 1
hξhζ

∂ψj
∂ξ

and

vj = 1
hηhζ

∂ψj
∂η

, where u and v are the components of velocity in the tangential (η)

and normal (ξ) directions, respectively. hξ = c
√

ξ2−η2
ξ2−1

, hξ = c
√

ξ2−η2
1−η2 , and hζ =

c
√

(ξ2 − 1)(1− η2), are scale factors in the prolate spheroidal coordinates.
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The general solution of (2.25) can be calculated by the semi decomposition

method [28], in which the stream function is expressed as an infinite sum of products

of Gegenbauer functions. The products are constructed from the eigenfunctions and

generalized eigenfunctions of the operator E2. Omitting the detailed derivations, the

eigenfunctions, Θ
(i)
n ,

Θ(1) =Gn(ξ)Gn(η), (2.27)

Θ(2) =Gn(ξ)Hn(η), (2.28)

Θ(3) =Hn(ξ)Gn(η), (2.29)

Θ(4) =Hn(ξ)Hn(η), (2.30)

(2.31)

where Gn are the Gegenbauer functions of the first kind, and Hn are the Gegenbauer

functions of the second kind. The generalized eigenfunctions, Ω
(i)
n are given in [28] or

Appendix A. Then, the stream function ψ can be represented as

ψ(ξ, η) =
∞∑
n=0

4∑
i=1

[
AinΘ(i)

n (ξ, η) +Bi
nΩ(i)

n (ξ, η)
]
, (2.32)

where Ain and Bi
n are coefficients to be determined from boundary conditions. With

the expressions for Θ
(i)
n (ξ, η) and Ω

(i)
n (ξ, η), and rearranging the terms in (2.32), ψ

can be written in the semi-separable form

ψ(ξ, η) = g0(ξ)G0(η) + g1(ξ)G1(η) +
∞∑
n=2

[gn(ξ)Gn(η) + hn(ξ)Hn(η)] , (2.33)

where gn and hn are linear combinations of the Gegenbauer functions. For more

details on the method, interested readers are referred to [27, 28]. Note however that

on the axis of symmetry, Gn(η) are regular, while Hn(η) are singular. Furthermore,

Gn(ξ) are regular in the interior of the spheroid, and Hn(ξ) are regular every where

else, except on the segment ξ = 1.
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Applying the far-field boundary condition, u = 0 as ξ → ∞, and considering

that the flow remains finite at the center line ξ = 1, the stream function simplifies to

ψe =
∞∑
n=1

[
A2n−1

2n+1H2n−1(ξ) + A2n+1
2n+1H2n+1(ξ) + A2n+3

2n+1H2n+3(ξ)
]
G2n+1(η), (2.34)

ψi =
∞∑
n=1

[
B2n−1

2n+1G2n−1(ξ) +B2n+1
2n+1G2n+1(ξ) +B2n+3

2n+1G2n+3(ξ)
]
G2n+1(η). (2.35)

In general, the full solution is obtained from the entire infinite series. Here, the stream

functions are truncated at n = 1, and

ψe =
[
A1

3H1(ξ) + A3
3H3(ξ)

]
G3(η), (2.36)

ψi =
[
B3

3G3(ξ) +B5
3G5(ξ)

]
G3(η). (2.37)

The choice of truncating the solution at the first mode n = 1 is based on the

assumption that boundary shapes are spheroid. Moreover, the speed of a point (ξ, η, c)

on the boundary is given by

v(ξ0) =
dx

dt
· eξ =

r0(1− ξ−2)−5/6(1− 3η2)

3ξ2
√
ξ2 − η2

dξ

dt
, (2.38)

where r0 is the initial radius of the interface. Because G3(η) = 1
2
(η−η3) and G′3(η) =

1
2
(1 − 3η2), it becomes clear that v(ξ0) ∝ G′3(η)/

√
ξ2 − η2. This further suggests

that truncating the solution at the first mode provides a good approximation for the

stream function.

The coefficientsA1
3, A3

3, B3
3 andB5

3 are obtained using the continuity of velocities,

the kinematic condition, and stress balances at the interface. In addition to these

coefficients, the rate of change of the interface shape, dξ0(t)/dt is also obtained as

part of the solution. The exact form of dξ0(t)/dt depends on the structure of the

interface (drop or vesicle), and the type of electric field (DC or AC).



CHAPTER 3

ELECTRO-DEFORMATION OF A SURFACTANT-LADEN DROP

3.1 Introduction

Two different modes of drop breakup are observed in Ha and Yang’s experiments [52]

depending on the surfactant coverage. When the interface is clean or contaminated

by a very small amount of surfactant, the drop bursts into several small droplets after

forming bulbous ends. For a range of small surfactant concentration, tip-streaming is

a prevalent drop breakup mode. If the surfactant concentration exceeds this range, the

breakup mode goes back to fragmentation with bulbous end formation. This indicates

that, although not pronounced in the small-deformation limit, non- uniformity of the

surfactant concentration is a decisive factor for the breakup mechanism of a prolate

viscous drop in a DC field.

It is not clear how the two drop breakup modes are related to surfactant effects.

To investigate the origin of the two modes of breakup, the work in this chapter

attempts to capture the large deformation of the surfactant-laden drop prior to

breakup. In addition, a quantitative description of surfactant transport/ redistribution

is essential to accurately elucidate surfactant effects. For example, how does surfactant

alter the stability of an equilibrium drop shape? How does surfactant coverage affect

the equilibrium drop deformation? How important is the Marangoni stress at different

values of the electric capillary number?

To answer these questions, the electro-deformation of a surfactant-laden viscous

drop is studied in the leaky dielectric EHD framework. The approaches in [170] are

extended to include the surfactant effects, and the focus is put on how insoluble

surfactant affects the existence of a spheroidal drop and its deformation at equilibrium.

Furthermore, quantification of surfactant effects on a viscous drop in a DC electric

field is sought.

17
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This chapter is organized as follows. The problem is formulated in the leaky

dielectric framework, and the governing equations are derived in Section 3.2. In

Section 3.3 the validation of the spheroidal model without surfactant is presented.

The results are summarized in Section 3.4: First the dependence of the existence of

an equilibrium spheroidal drop on various parameters is examined in Section 3.4.1.

Comparison against experiments and numerical simulations of surfactant-covered

drops are presented in Section 3.4.2, where the similarity and difference between

prolate and oblate surfactant-covered drops in a DC electric field are discussed further.

In Section 3.4.3 the surfactant effects in terms of surface dilution and tip stretching

are examined using the average surface tension. Finally, findings are summarized in

Section 3.5.

3.2 Problem Formulation

Consider a viscous leaky dielectric drop immersed in another leaky dielectric fluid as

shown in Figure 3.1. Each fluid is characterized by its viscosity µ, permittivity ε, and

conductivity σ with the subscript denoting interior (i) or exterior (e). In this work,

the subscript r denotes the ratio between exterior to interior quantities. Typical leaky

dielectric fluids are very viscous, and drops are of millimeter size. Thus the fluid flow

in this system is governed by the Stokes equation (2.23) with boundary conditions

u = 0 in the far-field.

The balance of stresses at the fluid interface gives

Jτ · nK = γ(∇ · n)n−∇sγ, (3.1)

where ∇s ≡ (I− nn) · ∇ is the surface gradient projected on the drop surface, and

τ = −pI + µ
(

(∇u)T +∇u
)

+ εEE − ε

2
(E ·E) I,
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Figure 3.1 Deformation of a viscous drop covered with insoluble surfactant
(bead-rod particles) in a DC electric field E0ẑ. Starting from an initially
spherical shape (dashed line), the drop can deform to either a prolate (labeled
as ξ0) or an oblate (labeled as λ0) spheroid at equilibrium. The distances a
and b from the center to the pole and equator, respectively.
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where T = −pI + µ
(

(∇u)T +∇u
)

is the hydrodynamic stress with I the identity

tensor, and S = εEE − ε
2

(E ·E) I is the Maxwell stress. The surface tension is γ,

which depends on the surface concentration of surfactant Γ, and is described by the

Langmuir equation of state

γ = γ0

(
1 + E ln

(
1− Γ

Γ∞

))
. (3.2)

Here γ0 is the surface tension of a surfactant-free or “clean” drop, Γ∞ is the maximum

packing concentration, and E = RTΓ∞/γ0 is the elasticity number which quantifies

the sensitivity of surface tension to changes in the surfactant concentration on the

drop surface.

The surfactant transport on the deforming drop surface is described by

∂Γ

∂t
+∇s · (usΓ) + κu · nΓ = Ds∇2

sΓ, (3.3)

where κ is the mean curvature, and Ds is the surfactant diffusivity. Here the focus is

on non-diffusing surfactant, hence Ds ≈ 0.

The electric field is irrotational so that E = −∇φ, where the exterior and

interior electric potentials are given by (2.20)-(2.21). At the fluid interface the

tangential electric field is continuous, while there is a jump in the normal electric

field due to the balance of currents between the ohmic current and the rate of change

of the surface charge density qs ≡ J−ε∇φ · nK:

J−∇φ · tK = 0, Jσ∇φ · nK =
dqs
dt
, (3.4)

where us ≡ (I − nn) · u is the tangential velocity on the surface. For the fluids

considered here, typical material properties are µ ∼ 10−3Pa.s, σ ∼ 1µS/m, ε ∼

10−12F/m. Using these estimates, one can show that the charge relaxation time-scale

τC is much faster than that (τEHD) of the EHD flow: τC � τEHD. Thus dqs/dt ≈ 0,
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and (3.4) is reduced to

J−∇φ · tK = 0, Jσ∇φ · nK = 0. (3.5)

The tangential and normal stress balances are given by

JTξηK + JSξηK +∇sγ = JTξηK + JSξηK +
1

hη

∂γ

∂η
= 0, (3.6)

JTξξK + JSξξK− γ(∇ · n) = 0, (3.7)

where

Tξξ = −p+ 2µ

(
∂v

hξ∂ξ
+

u

hξhη

∂hξ
∂η

)
, Tξη = µ

(
∂(u/hη)

∂ξ

hη
hξ

+
∂(v/hξ)

∂η

hξ
hη

)
, (3.8)

Sξξ =
ε

2

(
E2
ξ − E2

η

)
, Sξη = εEξEη, (3.9)

where hξ and hη are the scale factors in the spheroidal coordinates, Eξ = −∂φ
∂ξ

and

Eη = −∂φ
∂η

are the normal and tangential electric field.

The pressure is computed using

∂p

∂η
= −µ∂ (Ξ2ψ)

∂ξ

hη
hξhζ

, (3.10a)

∂p

∂ξ
= µ

∂ (Ξ2ψ)

∂η

hξ
hηhζ

, (3.10b)

where the operator

Ξ2 ≡ 1

c2(ξ2 − η2)

[
(ξ2 − 1)

∂2ψ

∂ξ2
+ (1− η2)

∂2ψ

∂η2

]
.

The jump in pressure, J−pK can be expressed in terms of the coefficients, A’s and B’s

of the stream function, and the rate of change of the shape parameter, ξ′0.

The coefficients of the stream function in (2.36)-(2.37) are computed using the

continuity of velocities, the kinematic condition dx
dt

= (u·n)n, and the stress balances
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projected onto the corresponding velocities [37, 137]:∫
ξ=ξ0(t)

u

[
JTξηK + JSξηK +

1

hη

∂γ

∂η

]
ds = 0, (3.11)∫

ξ=ξ0(t)

v [JTξξK + JSξξK− γ(∇ · n)] ds = 0, (3.12)

where ds = hηhζdη is the surface element in prolate spheroidal coordinates. The

reason for projecting the stress balances onto the velocity field lies in the fact that the

total force on the drop interface cannot be balanced at every point in the spheroidal

framework.

For a clean drop γ is constant, and the transient dynamics toward equilibrium is

well captured by the spheroidal model. To derive an equation for equilibrium shape of

a surfactant-covered drop, a different approach is taken based on the fact that fluid

flow vanishes at equilibrium in the presence of diffusion-free, insoluble surfactant.

Consequently, A’s, B’s → 0, ξ′0 ≈ 0, and the tangential electric stress is balanced

solely by the Marangoni stress,

JSξηK +
1

hη

∂γ

∂η
= 0. (3.13)

The system is well-posed with the projected normal stress balance∫
ξ=ξo(t)

v [JSξξK− γ(∇ · n)] ds = 0. (3.14)

Integrating (3.13) and scaling the electric potential by E0r0, distance by r0, and

surface tension by γeq = γ0(1 + E ln(1 − χ)) (where χ = Γeq/Γ∞ is the surfactant

coverage), we obtain the equilibrium (dimensionless) tension profile

γ = CaEf(ξ0)
√
ξ2

0 − η2 + A, (3.15)

f(ξ0) =

√
ξ2

0 − 1

c

[
(−c+ αQ′1)(−cξ0 + αQ1)− β2ξ0

εr

]
, (3.16)
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where Q1 ≡ Q1(ξ0) and Q′1 ≡ Q′1(ξ0). The integration constant A is determined

from conservation of the total amount of surfactant,
∫ 1

−1
Γds = χ

∫ 1

−1
ds. Using the

(dimensionless) Langmuir equation of state

γ = γ0 (1 + E ln (1− χΓ)) ,

the constant of integration reads

A =
γ0

γeq

1− E − ln

 ∫ 1

−1

√
ξ2

0 − η2dη − 2χ

c
√
ξ20−1∫ 1

−1

√
ξ2

0 − η2e
γeq
γ0
CaEf(ξo)

√
ξ20−η2dη

 . (3.17)

Substituting the equilibrium surface tension, v, Sξξ and the curvature ∇ · n

into (3.14), the corresponding drop shape ξ is obtained by solving the non-linear

equation

CaE
cξ0

[
(−c+ αQ′1)2 +

(
−c+ α

Q1

ξ0

)2

− 2β2

]
g(ξ0) =∫ 1

−1

(1− 3η2)(2ξ2
0 − 1− η2)γ√

ξ2
0 − 1(ξ2

0 − η2)3/2
dη, (3.18)

g(ξ0) =
ξ2

0

2

∫ 1

−1

(1− 3η2)(η2 − 1)

ξ2
0 − η2

dη. (3.19)

For a given CaE and (σr, εr), a solution ξ0 of (3.18) is admissible if the tension

and surfactant profiles are physical, i.e., tension is positive everywhere and surfactant

concentration never drops below zero. For an oblate drop, the derivation follows

the above formulation with some modifications: The oblate spheroidal coordinates

(λ, η) are similarly expressed in the cylindrical coordinates (r, z) as z = c̄λη, r =

c̄
√

(λ2 + 1)(1− η2), with c̄ =
√
b2 − a2 for the oblate drop. Surfaces of constant

λ ∈ [0,∞) are spheroids while surfaces of constant η ∈ [−1, 1] are hyperboloids.

The oblate spheroidal coordinates can be transformed from the prolate spheroidal

coordinates by substituting ξ → iλ with i =
√
−1.
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Figure 3.2 Equilibrium deformation for a clean drop in a DC
electric field: Spheroidal model (solid line), Taylor’s spherical
model [147] (dashed line), and Ajayi’s second-order model [1]
(dashed-dotted line). (a) Symbols are experiments from [54];
(εr, σr, µr) = (0.73, 0.1, 1.14) for the prolate drop (Deq > 0),
(εr, σr, µr) = (1.39, 6.67, 1.28) for the oblate drop (Deq < 0).
(b) Symbols are numerical results from [77]; (εr, σr, µr) =
(0.02, 0.04, 1) for the prolate drop, and (εr, σr, µr) = (0.5, 10, 1)
for the oblate drop.
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Figure 3.3 ((a) and (b)) Comparison of the current model
(solid line), Taylor’s model [147] (dashed line), and Ajayi’s
second order approximation [1] (dashed-dotted line). Symbols
are numerical results from [77]. Here (εr, σr, µr) = (25, 10, 1) for
panel (a) and (εr, σr, µr) = (0.05, 0.5, 1) for panel (b). ((c) and
(d)) Tangential flow between an oblate (εr, σr, µr) = (1.37, 10, 1)
and a prolate (εr, σr, µr) = (0.73, 0.1, 1) drop at |Deq| = 0.01.
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3.3 Model Validation: Clean Spheroidal Drop

The electro-deformation of a clean viscous drop in a DC electric field has been

investigated analytically [1, 10, 147, 169], numerically [43, 77, 102] and experimentally

[54, 55, 147, 154]. In particular, large electro-deformation has been modeled by

Bentenitis and Krause [10] and Zhang et al. [169]. The theoretical results in [10]

compare reasonably well with experimental data, though better agreement is obtained

for the prolate cases than for the oblate cases; there are no comparisons for the oblate

cases in [169]. As a validation, this work presents a spheroidal model for both prolate

and oblate spheroidal shapes (derived in Appendix C), and compares the spheroidal

results against the second-order small-deformation theory (see Appendix B). The

spheroidal model is also compared with experimental and numerical data for a clean

viscous drop.

Figure 3.2 shows the dependence of equilibrium drop deformation on the electric

capillary number CaE predicted by three models. The theories are compared to

experimental data (Figure 3.2(a)) and numerical simulation data (Figure 3.2(b)).

Results from the present spheroidal model (solid curve) agree with both experimental

data and the numerical simulations for a wide range of electric capillary number.

In addition, one notes that the spheroidal model is almost exactly the same as the

numerical simulation results for deformation |Deq| up to 0.2. Taylor’s [147] prediction

gives reasonable agreement for CaE up to 0.1 for most cases, while Ajayi’s [1] second-

order approximation is consistently between Taylor’s results and the spheroidal results

for all four cases in Figure 3.2.

Figure 3.3(a) shows two more examples of comparison of equilibrium drop

deformation between models and results from the boundary integral simulations of

Lac and Homsy [77] with parameters that allow an equilibrium spheroidal drop for

all values of the capillary number for both prolate (panel (a)) and oblate (panel

(b)) drops. For the prolate case we see that the spheroidal model is far superior
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Figure 3.4 Comparison of equilibrium drop shape and
circulation for Case A in Ref. [148] where (εr, σr, µr) =
(1, 0.33, 1). CaE = 0.2 for panel (a) and CaE = 0.8 for panel
(b). Clean drop with circulation is on the left of each panel. On
the right the drop is covered with χ = 0.7 and the circulation is
completely suppressed by the non-diffusing surfactant.
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dynamics (b) for the clean viscous drop of Case A in [148] where
(εr, σr, µr) = (1, 0.33, 1). The electric capillary number is CaE =
0.8. The dashed curve denotes the initial drop shape.
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than Taylor’s or Ajayi’s results, and good agreement is obtained for deformation up

to Deq ≈ 0.5. For the oblate case the spheroidal model gives the best agreement

again, yet it begins to deviate significantly from the axial-symmetric results around

|Deq| >≈ 0.3. Figures 3.3(c) and 3.3(d) show a comparison of tangential flow between

prolate and oblate. At a given CaE, the prolate deformation is larger than the oblate

deformation. For a given deformation, say Deq = 0.01 (circles in Figure 3.3(c)),

the fluid flow is larger for the prolate drop than for the oblate drop. Based on

these findings it is concluded that an initially uniform surfactant concentration will

be much more redistributed in the oblate case before an equilibrium is reached and

the Marangoni stress is established. Finally, Figure 3.4 shows the comparison of

equilibrium drop shape and circulation between clean and surfactant-covered drops

from the spheroidal model with χ = 0.7 and parameters for Case A in Ref. [148]. On

the left is a clean drop with circulation, and on the right is a surfactant-covered drop at

equilibrium, depleted of any flow due to the immobilized fluid interface covered with

non-diffusing surfactant. Figure 3.5(a) shows the corresponding electric potential

lines for CaE = 0.8; the corresponding time-dependent deformation of the drop is

shown in Figure 3.5(b).

3.4 Results

For a clean viscous drop, the spheroidal model can capture the equilibrium deformation

up to Deq ≈ 0.2 for both prolate and oblate drops. Consequently, the focus is put

on equilibrium drop deformation |Deq| ≤ 0.2 in the following results and discussion.

In addition, the range of elasticity number is fixed 0.03 ≤ E ≤ 0.3 (for a detailed

discussion on the realistic ranges of E see Refs. [113, 38]). In the absence of surfactant,

there are two prolate shapes: Prolate A with circulation from the equator to the pole,

and prolate B with circulation from the pole to the equator (the same as in the oblate

drop). As non-diffusing surfactant completely suppresses fluid flow at equilibrium
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(Figure 3.4), there is no distinction (in terms of flow around the drop) between the

two prolate modes. The complete suppression of flow due to the Marangoni stress also

implies that the equilibrium drop deformation does not depend on viscosity mismatch.

3.4.1 Existence of Spheroidal Equilibrium

Taylor’s spherical model for a clean viscous drop in a DC electric field gives the

boundary (dashed line in Figure 3.6(a) with µr = 1) between prolate and oblate drops

in the (σr, εr)-plane. A prolate A drop is found for εr > σr (above the dashed-dotted

line), while a prolate B drop is found for εr < σr. More details on a clean viscous drop

in a DC field can be found in Lac and Homsy [77]. For a viscous drop covered with

non-diffusing surfactant in a DC electric field, the second- order small-deformation

predicts a spherical shape when DL = 0, which gives the solid lines in Figure 3.6(a).

It is not possible to derive such a discriminating condition analytically from

the spheroidal model. Instead the spheroidicity of the equilibrium shape around

DL = 0 is checked numerically, and the transition between prolate and oblate across

DL = 0 boundary is verified. In addition, the spheroidal model can provide the

existence of admissible equilibrium spheroidal shapes in the (σr, εr)-plane. Using the

Langmuir equation of state, the equilibrium surface tension and drop shape from

Equations (3.15) and (3.18) are calculated for a given set of (σr, εr). The existence of

an equilibrium spheroidal drop is established if both the surface tension and surfactant

distribution are physical: γ > 0 from (3.15) and 0 ≤ χΓ < 1 from the equation of

state. Figure 3.6(a) shows the existence of equilibrium for a spheroidal drop with

(E,χ) = (0.1, 0.1) and three values of CaE denoted by three types of symbols (see

legend). Overall one observes that almost all (except one) equilibrium spheroidal

solutions are prolate for (E,χ) = (0.1, 0.1), and the region of existence for spheroidal

equilibrium gets smaller as CaE increases. Figure 3.6(b) shows the boundaries for

the existence of spheroidal equilibrium at CaE = 0.2 for four combinations of E and
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Figure 3.6 Shape and equilibrium boundaries on the (σr, εr)-
diagram. (a) Symbols denote that a spheroidal equilibrium
can be found at those points with (E,χ) = (0.1, 0.1), CaE =
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equilibrium is found below the boundary.
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χ. For points on the boundaries, the value of εr is the lower bound for a spheroidal

equilibrium at that value of σr : No equilibrium can be found below this point.

The lack of existence of a spheroidal equilibrium implies that the spheroidal shape

is not stable for these parameters. It is possible that non-spheroidal axisymmetric

equilibrium drop shape would be stable as in the case of clean drop [77]. A larger

region of spheroidal equilibrium is found for larger χ and/or larger E.

3.4.2 Comparison against Experiments and Numerical Simulations

Ha and Yang [51, 52] used soluble surfactant to investigate the electro-deformation of

a surfactant-covered viscous drop in a DC electric field. The normalized surfactant

coverage χ on the drop surface can be computed from C∞, the soluble surfactant

concentration, as χ = C∞
C∞+δ

assuming that (1) surfactant exchange between the bulk

and the drop surface is in equilibrium and (2) the soluble surfactant concentration

is homogeneous and remains constant. The parameter δ is an equilibrium coefficient

related to the adsorption/desorption rate coefficients [4]. One can estimate E and δ

by fitting the surface tension isotherm (Figure 9 of Ha and Yang [52]) to the formula

γC = γ0 +RTΓ∞ ln

(
1− C∞

C∞ + δ

)
, (3.20)

where γC is the surface tension in the presence of soluble surfactant. We find that

(1) for experiments 1-6, E ≈ 0.06, δ ≈ 6.46 × 10−7M , and 0.13 < χ < 0.99, (2)

for experiments 7-12, E ≈ 0.08, δ ≈ 6.00 × 10−7M , and 0.14 < χ < 0.99, (3) for

experiments 13-17, E ≈ 0.04, δ ≈ 7.74 × 10−8M , and 0.5 < χ < 0.99, and (4) for

experiments 18-21, E ≈ 0.04, δ ≈ 4.0× 10−5M , and 0.65 < χ < 0.97. Due to limited

data points for experiments 18-21 (three points for fitting in Figure 9 of Ref. [52]),

the error of these estimates is quite large. There are no data for experiments 22-27

where the interior/exterior combination is silicone oil/castor oil, which is opposite to

experiments 18-21.
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The equilibrium drop deformation as a function of electric capillary number

is calculated with the above estimates for (E, δ) and χ at a given C∞. Figure 3.7

shows the comparison of Deq versus CaE (or Weber number in Ha and Yang [52])

between experiments (symbols), second-order small- deformation (dashed-dotted line)

and spheroidal model (solid line). Note that in the small deformation theory the

equilibrium drop deformation Deq does not depend on µr, and its dependence on the

elasticity number is implicit through the equilibrium surface tension in the electric

capillary number CaE (see [109] or Appendix B). Panel (a) is the comparison for

a prolate drop (experiments 6 and 8 from Figure 4 of Ref. [52]), and panel (b)

is the comparison for an oblate drop (experiment 25 from Figure 6 of Ref. [52]).

Experiment 25 is used to represent the data set of experiments 22-25. Because (E, δ)

for experiments 22-25 cannot be estimated from the data, the same value of (E, δ)

from experiment 21 (panel (c)) is used, which is representative of experiments 18-21

(see Figure 5 of Ref. [52]).

The equilibrium drop deformation from the small-deformation analysis does not

dependent on (E,χ), and agrees with the spheroidal model and the experiments for

CaE ≤ 0.1. The spheroidal model results, on the other hand, depend on (E,χ)

and agree well with the experiments for large CaE. From the prolate comparison in

Figures 3.7(a) and 3.7(c), one can conclude that the small-deformation results are

reliable for Deq up to 0.1, while the spheroidal model agrees with the experimental

data up to Deq ≈ 0.2. For the oblate deformation in Figure 3.7(b), small-deformation

results agree well with spheroidal results, yet both are very different from experiments.

In the inset of Figure 3.7(b), the experimental capillary number is multiplied by

2.7. The result shows excellent agreement between the theories and the experiment,

suggesting that the measurements of the electric properties of the fluids may be

erroneous.
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Figure 3.7 Equilibrium deformation from
experiments [52] (symbols), predictions from
small-deformation (dashed-dotted lines),
and spheroidal results (solid lines). (a)
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Figure 3.8 Comparison of the equilibrium
drop deformation. Simulations from [148] (see
legend), or models from the second-order small-
deformation (dashed-dotted lines), and spheroidal
theories (see legend). (a) Case A. (b) Case B.
(c) Case C. See text for values of electric and
surfactant parameters.
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Figure 3.9 Distribution of surfactant
concentration χΓ and Marangoni stress for
Figure 3.8. (a) Case A in Ref. [148] with
CaE = 0.46. (b) Case B in Ref. [148] with
CaE = 1.6. (c) Case C in Ref. [148] with
CaE = 0.9.
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Figure 3.10 Distribution of normal electric
stresses Sξξ, tangential electric stresses Sξη, and
surface charge q for Figure 3.8. (a) Case A in
Ref. [148] with CaE = 0.46. (b) Case B in
Ref. [148] with CaE = 1.6. (c) Case C in Ref. [148]
with CaE = 0.9.
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Teigen and Munkejord [148] numerically investigated the deformation of a drop

covered with diffusing insoluble surfactant with a small Peclet number (10). They

studied three special cases: A prolate A drop, a prolate B drop, and an oblate drop.

Their axisymmetric simulation results showed that the fluid flow at equilibrium is not

completely suppressed by the diffusing surfactant. They also reported that surfactant

increases the equilibrium drop deformation for prolate A and oblate drops, while for

prolate B the deformation is reduced by surfactant.

Figure 3.8 shows the comparison of Deq for these three cases. For small CaE, one

can note that the spheroidal results agree with both the simulation results [148] and

the small-deformation results in all three cases. This finding enhances the credibility

of our oblate results in Figure 3.7(b), and implies that the oblate experimental data

(experiments 22-25 and 27 from Figures 6 and 7 in Ref. [52]) may be erroneous.

Furthermore, it is found that surfactant indeed increases |Deq| for small CaE. For

large CaE, close inspection in Figure 3.8 shows a non-monotonic dependence on the

surfactant coverage. Such behavior is explained in terms of surface dilution and tip

stretching in Section 3.4.3.

Figure 3.9 shows the distribution of surfactant concentration and Marangoni

stress and Figure 3.10 shows electric stresses and surface charge distribution for the

parameters in Figure 3.8. Comparing Figure 3.9(a) with Figures 9 and 10 in Ref. [148]

(arc length s = 3 in their results corresponds to η = 0), one can observe similar

surfactant concentration and Marangoni stress distributions, even though Marangoni

stress from the spheroidal model is quite insensitive to χ. The electric stresses and

induced surface charge in Figure 3.10 are also insensitive to χ. One further notes

that, even though the non-diffusing surfactant completely suppresses the fluid flow,

the spheroidal results for the prolate B parameters (Case B) are more similar to

results for the oblate parameters (Case C) in terms of distributions of Marangoni

stress, tangential electric stress and the induced surface charge.
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3.4.3 Surface Dilution versus Tip Stretching

A measure to quantify the surfactant effect is the average surface tension defined

as [113]

γavg ≡

∫
ξ=ξ0(t)

γds∫
ξ=ξ0(t)

ds
. (3.21)

At high surfactant coverage, drop deformation dilutes the surfactant concentration

and increases the average surface tension γavg > 1, leading to smaller drop deformation

than the uniform tension (clean drop) case at a given CaE. On the other hand, if

the surfactant coverage is small, larger surfactant concentration gradient is easily

realized when surfactant accumulates at the drop tips, leading to higher curvature by

stretching out to the exterior (and hence larger drop deformation) [113]. The latter

mechanism is called tip stretching for γavg < 1, while the former mechanism is called

surface dilution for γavg > 1.

Adding more surfactant in the tip-stretching dominant regime leads to larger

drop deformation [38, 113]. Another signature of tip stretching is the large surfactant

concentration gradient, and hence the Marangoni stress. However, when surface

dilution takes over, surfactant leads to less drop deformation and smaller surfactant

concentration gradient (Marangoni stress) is expected [113].

Figure 3.11 shows the average surface tension for the three cases in Figure 3.8.

As the surfactant coverage increases, one can see that the dominant mechanism goes

from tip stretching to surface dilution in all three cases. Significant decrease in drop

deformation with increasing surfactant coverage is observed for both prolate A (Case

A, Figure 3.8(a)) and oblate (Case C, Figure 3.8(c)), while very little change in Deq

is found for prolate B.

To further illustrate that the average surface tension is a good indicator for

the underlying physical mechanisms involving surfactant, the equilibrium drop shape

is computed using the same parameters for Figure 19 in Lac and Homsy [77] with
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Figure 3.11 Average surface tension for the
three cases in Ref. [148]. Panels (a), (b), and (c)
correspond to Cases A, B, and C, respectively.
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different values of surfactant coverage χ. Figure 3.12(a) shows Deq versus CaE at four

values of surfactant coverage, and Figure 3.12(b) shows the corresponding equilibrium

surfactant concentration distribution (top) and Marangoni stress (bottom). The

results show that surfactant-laden drop has larger Deq for 0 < χ ≤ 0.7. For χ = 0.9

the large surfactant coverage leads to smaller Deq compared to the clean drop for

CaE > 0.03. The Marangoni stress distribution (panel (b)) is almost identical for all

surfactant coverages, while the average surface tension in panel (c) clearly indicates

that surface dilution is much more dominant at χ = 0.9, and thus smaller drop

deformation for χ = 0.9 in panel (a). Similar behavior is also reported for the

surfactant effects on the deformation of a viscous drop in an extensional flow [38, 113].

Such non-monotonic surfactant dependence of the equilibrium drop deformation is not

captured by the second-order small-deformation theory.

3.5 Conclusion

In this work, the effect of surfactant on equilibrium drop deformation was investigated

theoretically. Small deviations from sphericity were analyzed by a second-order

small-deformation theory. Large deformations were described by a spheroidal model

based on [169]. In contrast to the approach in [169], the tangential electric stress was

balanced by the Marangoni stress at equilibrium in the presence of non-diffusing

surfactant. As a result, the equilibrium surface tension was obtained from the

tangential electric stress, and the corresponding equilibrium shape for a given equation

of state was solved numerically. The range of validity of both spheroidal model and the

small-deformation model was determined by comparing against experiments [52] and

numerical simulations [148], using exactly the same values for physical parameters.

For small CaE one could always find perfect agreement between small-deformation

results and spheroidal results. Between the two models and experiments, the spheroidal

model gave better agreement with the experiments over a wider range of CaE. Detailed
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Figure 3.12 Surfactant effects on drop
deformation for (εr, σr, µr) = (0.05, 0.5, 1), where
an equilibrium oblate clean drop is found for all
values of CaE. (a) Deq versus CaE at different
χ. (b) Surfactant concentration χΓ (top) and
Marangoni stress (bottom). (c) γavg versus CaE.
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comparison with numerical simulations for Case A in [148] showed good quantitative

agreement in the distribution of surfactant concentration and Marangoni stress.

As non-diffusing surfactant suppressed the fluid flow by immobilizing the interface

via the Marangoni stress at equilibrium, adding non-diffusing surfactant eliminated

the distinction between prolate A and prolate B drops in terms of fluid flow around the

viscous drop. However, one still observed different features of tangential electric stress

and surface charge distribution between these two parameter regimes in the presence

of surfactant: For parameters in the prolate B clean drop regime, the Marangoni

stress, tangential electric stress Sξη and surface charge q are similar to those in the

oblate clean drop regime. To the author’s knowledge, this has not been reported in

the literature.

Furthermore, the spheroidal model captured the surfactant effects at large

electric capillary number. In the tip stretching regime the drop deformation was

increased by a small amount of surfactant while in the surface dilution regime the

drop deformation was decreased by increasing surfactant coverage. More pronounced

surface dilution effect were found at large CaE. Also investigated was how the

existence of an equilibrium spheroidal shape depends on the electric capillary number,

elasticity number, and the surfactant coverage. At low surfactant coverage, equilibrium

was reached mostly for prolate shape, and increasing the electric capillary number

diminished the existence of equilibrium shape. At high surfactant coverage, surface

dilution took over and stabilized the equilibrium spheroidal drop at high CaE.



CHAPTER 4

ELECTRO-DEFORMATION OF A VESICLE

IN AN AC ELECTRIC FIELD

4.1 Introduction

In this chapter, the spheroidal model in [170] is extended to study the equilibrium

electro-deformation of a vesicle in AC fields. Unlike the dynamical approach for

solving the transmembrane potential in [170], an equilibrium transmembrane potential

for a spheroidal dielectric shell in AC fields is developed.

The chapter is organized as follows: In Section 4.3 the problem is formulated.

In Section 4.3.1 the equilibrium transmembrane potential for a spheroidal dielectric

shell is presented, then the governing equation is derived in Section 4.3.2. The results

are summarized in Section 4.4: Initially a comparison between the spheroidal model

and the small deformation theory for a prolate vesicle is presented; in Section 4.4.1

the dependence of vesicle deformation, transmembrane potential and electric stresses

on the field frequency is considered. In Section 4.4.2, the predictions, as well as

comparison with experiment for the shape elongation and transition frequency are

discussed.

4.2 Vesicles

Vesicles are closed lipid bilayer membranes that serve as the simplest and minimal

models of biological cell membranes. At physiological temperature, lipid membranes

are fluid: The lipid molecules are free to move. This fluidity is characterized by the

diffusion coefficient, ηs that lie in the range 10−9− 5× 10−9N s m−1 [35]. The energy

required to bend lipid membrane is comparable to the thermal energy. The bending

rigidity, κ characterizes how easy it is to curve the lipid bilayer, and is typically

in the order of 20kBT , where kB is the Boltzmann constant and T is the absolute

44



45

temperature. Moreover, bilayer membranes respond to external perturbations: Weak

tensions smooth out undulations, while high tensions can lead to bilayer stretching

and change in the area per lipid molecule. Stretching is characterized by the stretching

modulus, Ka, with values in the range 200− 300mN m−1 [122].

Different time scales are involved in the dynamic response of a vesicle in an

electric field. Free charges accumulate at the membranes and the vesicles become

polarized. The time scale involved in this process is the Maxwell-Wagner time scale,

tMW . For a spherical vesicle,

tMW =
εin + 2εex
σin + 2σex

, (4.1)

where εj and σj are the dielectric constants, and conductivities, respectively, of the

interior and exterior fluids. Moreover, the lipid bilayer is impermeable to ions and

acts as a capacitor that charges on a time scale

tc = r0Cm

(
1

σin
+

1

2σex

)
, (4.2)

where r0 is the radius of the vesicle, and Cm is the membrane capacitance.

The charging time tc is usually much longer than the Maxwell-Wagner time

tMW . Estimates for experiments on vesicles in 1mM NaCl (εin ∼ εex = 80ε0, σin ∼

σex ∼ 10 mS/m, Cm ∼ 0.01 F/m2, and r0 ∼ 10µm) give tc ∼ 10µs and tMW ∼ 0.01µs.

Undertsanding the interplay between these time scales will be key to understanding

the dynamic response of vesicles to an AC electric field.

4.3 Problem Formulation

Consider a spheroidal vesicle enclosing an interior dielectric fluid (µi, εi, σi) suspended

in an exterior dielectric fluid with (µe, εe, σe), see Figure 4.1. µ, ε and σ are the

fluid viscosity, dielectric permittivity and conductivity, respectively. The subscript
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denotes interior (i) or exterior (e) fluids. In the following subscript ‘r’ denotes the

ratio between interior to exterior quantities.

ξ = ξi

ξ = ξe

~E = ~E0e
iωt

Km

Ke

Ki

µe, εe, σe

µi, εi, σi

b

a

d

z

r

+
+

+
+
+

−
−
−
−
−
−
−

+

Figure 4.1 Schematic representation of a vesicle suspended in
a leaky dielectric fluid.

Typical values of the fluid viscosity (larger than 10−3 Pa s) and vesicle size

(several µm’s) indicate that the fluid inertia are negligible. Consequently, the flow

velocity in both interior and exterior fluids is governed by the incompressible Stokes

equations (2.23). The stream function inside and outside the vesicle is given by (2.36)-

(2.37), where the coefficients A1
3, A3

3, B3
3 and B5

3 are obtained using the continuity of

velocity, kinematic condition u = dx
dt

, and stress balance on the vesicle membrane,

with x denoting the vesicle membrane location. The balance of stresses on the

membrane gives

n · JT + SK = τmem, (4.3)

where JfK ≡ fe − fi denotes the difference between exterior and interior and n is the

outward normal unit vector on the membrane. T = −pI + µ
(

(∇u)T +∇u
)

is the

hydrodynamic stress with I the identity tensor, and S = εEE − ε
2

(E ·E) I is the
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Maxwell stress. The membrane traction (force density) consists of membrane tension

and bending forces,

τmem = 2σhHn− κ
(
4H3 − 4KH + 2∇2

sH
)
n, (4.4)

where σh, κ, H and K are the membrane tension, bending rigidity, mean curvature

and Gaussian curvature, respectively. The (homogenous) membrane tension is related

to the excess area ∆ ≡ A
4πr20
− 1 as

σh = s0 exp

[
8πκ∆

kBT

]
, (4.5)

where s0 = σ0/(κ/r
2
0) is the dimensionless membrane tension.

The electric field is harmonic (E = E0e
iωt) and irrotational, which implies that

E = −∇φ with φ the electric potential that satisfies (2.17) both inside and outside the

vesicle. The potentials inside and outside the vesicle are given by (2.20)-(2.21), where

the coefficients βe and αi need be computed using the interfacial jump conditions.

At the interface, the electric potential has a jump

φi − φe = ∆φ, (4.6)

due to the capacitive nature of the membrane. The induced charges at the interface

cause a discontinuity in the displacement vector

JεE · nK = Q(ω, t), (4.7)

where Q is the induced charge density. If we neglect the effects of charge convection

along the membrane, the electric current conservation at the interface gives

JσE · nK = −dQ
dt
. (4.8)

Substituting (4.7) into (4.8) yields the continuity condition

J−K∇φ · nK = 0, (4.9)
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where the dielectric properties are characterized by the complex conductivity Kj =

σj + iωεj. σj, εj and ω are the conductivity, permittivity and electric field frequency,

respectively. For the vesicle’s membrane, Km = Gmd+ iCmd, where Gm and Cm are

the membrane conductance and capacitance.

The governing equations are non-dimensionalized by scaling length to r0, time

to the charging time tc = εe/σe, the electric potential to E0r0, bending force and

membrane tension to κ/r2
0 and electric stresses to εeE

2
0 . For example, the resultant

dimensionless complex conductivities are given by

Ke =
1

x
+ i

ω

x
, Ki =

σr
x

+ i
ωεr
x
, Km =

σm
σex

+ iω
εm
εex

(4.10)

where the conductivity and permittivity ratios are defined as σr = σi
σe

and εr = εi
εe

.

x = d
r0

is the dimensionless thickness. σm and εm are the membrane conductivity and

permittivity, respectively.

4.3.1 Transmembrane Potential

In the leaky dielectric model the bulk charges neutralize instantaneously, leaving

induced charges on the interface between fluids of mismatched dielectric constant.

Because the membrane is impermeable, the charges accumulate on either side of the

vesicle, inducing a potential. The membrane potential depends on the geometry of

the vesicle; even small deviations from an initial shape can induce noticeable changes

in the potential. In spite of the evidence, studies of vesicles subjected to AC electric

fields [94, 157] often use the transmembrane potential derived for spherical shells [49,

150].

There are relatively few analytical studies [20, 66] on the induced membrane

potential for spheroidal vesicles. The main reason is that solving Laplace equations

in spheroidal coordinates introduces an unrealistic non-uniform membrane thickness,

which results from the alignment of cell boundaries with coordinate surfaces . To
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resolve the issue, Klee and Plonsey [73] used numerical simulations, while Gimsa et

al. [45, 95, 96] devised a resistor-capacitor (RC) approach to determine the induced

transmembrane potential. Later, their skepticism proved unfounded as Konik [74]

showed that small variations in the membrane thickness of spheroidal cells have no

effects on the transmembrane potential.

Herein, a model of the induced transmembrane potential for a spheroidal shell

in an AC electric field is developed.
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Figure 4.2 Transmembrane potential calculated from Eq. 4.12
for various aspect ratios. The thick (thin) dash-dotted lines are
prolate, σr = 1.5 (oblate, σr = 0.5) predictions. The dashed line
is the spherical shell potential.

Figure 4.1 shows a sketch of the system. The vesicle consists of three sub-

compartments: interior (i), exterior (e), and the membrane (m) (see inset). The

transmembrane potential is obtained by solving Laplace equations in all three domains.

The potential in each domain takes the truncated form:

φj = (αjξ + βjQ1(ξ)) η, j = i, e,m, (4.11)
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Boundary conditions in the far-field and inside the vesicle immediately yield αe = −c

and βi = 0. The remaining coefficients βe, αm, βm, αi are determined from boundary

conditions at the membrane interfaces (see Appendix E). Substituting the coefficients

in (4.11) we get :

∆φ = φi(ξi)− φe(ξe) ≡ Vmη, (4.12)

where Vm = cF (ω)/D(ω) is the ‘amplitude’ of the potential, D(ω) is given by (E.7),

and

F (ω) = −Ke(Q1(ξe)− ξeQ′1(ξe)) ((Ki −Km)ξiQ1(ξe) (4.13)

+(−Kiξe +Kmξi)Q1(ξi) +Km(ξe − ξi)ξiQ′1(ξi)) . (4.14)

Figure 4.2 provides a comparison of the transmembrane potential magnitude

Vm between the spherical and spheroidal models. At low frequencies, the spherical

shell potential reaches the maximum value Vm = 3/2 while the spheroidal model

plateaus to a maximum that depends on the shape aspect ratio: the larger the shape

elongation a/b, the larger the maximum transmembrane potential, in agreement with

earlier findings about the dependence of the potential on shape [96]. One can note that

by solving the Laplace equation in each dielectric spheroidal shell, the η dependence

in the spheroidal shell is the same as that in the spherical shell, while Gimsa et al.’s

model cannot capture the η dependence.

4.3.2 Electrohydrodynamic Deformation

With the transmembrane potential for the spheroidal shell in (4.12), the electric

coefficients are calculated as part of the potential solutions in (2.19):

φe = (−cξ + αQ1(ξ)) ηeiωt, (4.15)

φi = βξηeiωt, (4.16)
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where α and β are obtained by matching the boundary conditions in (4.6) and (4.9):

α =
cξo (Kr − 1)−KrVm

KrQ1 − ξoQ′1
, β =

c (ξoQ
′
1 −Q1)− VmQ′1

KrQ1 − ξoQ′1
, (4.17)

with Kr = Ki
Ke

. The electric field E can be written as the real part of E as E =

<(E) = 1
2

(E + E∗) (where ∗ denotes complex conjugation) and substitute it into the

Maxwell stress [159]:

S(ω) =
ε

4

(
EE∗ + E∗E − |E|2 I

)
+
ε

4

(
EE + E∗E∗ − 1

2
[E · E + E∗ · E∗] I

)
, (4.18)

where the first group on the right hand side is the time-averaged Maxwell stress

tensor, and the second group is the time-dependent (harmonic) terms. The present

work is concerned with only the first group for equilibrium vesicle shapes.

Because the fluid velocity field is axisymmetric, the stream function ψ for both

inside and outside the vesicle is given by (2.36)-(2.37). The four coefficients A’s and

B’s, along with the shape function (ξ for prolate or λ for oblate), can be completely

determined from the kinematic continuity condition, velocity boundary conditions

and the stress balance (4.3) on the membrane. Following the procedures in [170], one

projects the stress balance onto the corresponding velocities [22] to close the system:∫
ξ=ξo(t)

u [JTξηK + JSξηK] ds = 0, (4.19)∫
ξ=ξo(t)

v [JTξξK + JSξξK− τmem] ds = 0. (4.20)

In prolate spheroidal coordinates,

Tξξ = −p+ 2µ

(
∂v

hξ∂ξ
+

u

hξhη

∂hξ
∂η

)
, Tξη = µ

(
∂(u/hη)

∂ξ

hη
hξ

+
∂(v/hξ)

∂η

hξ
hη

)
, (4.21)

Sξξ =
ε

4

(
EξE∗ξ − EηE∗η

)
, Sξη =

ε

4

(
EξE∗η + EηE∗ξ

)
, (4.22)

where hξ and hη are the scale factors in the spheroidal coordinates, Eξ = −∂φ
∂ξ

and

Eη = −∂φ
∂η

are the normal and tangential electric field. The excess area in (4.5) can
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be expressed in terms of ξ0 as

∆ =
1

2

(
1− ξ−2

o

)−2/3
[
1− ξ−2

o +
√
ξ2
o − 1 arcsin

(
ξ−1
o

)]
− 1. (4.23)

The formulation for the oblate case follows in a similar fashion: The oblate

spheroidal coordinates (λ, η) is related to the cylindrical coordinates (r, z) as z =

c̄λη, r =
√

(λ2 + 1)(1− η2), with c̄ ≡
√
b2 − a2 for λ ∈ [0,∞) and η ∈ [−1, 1].

Surfaces of constant λ are oblate spheroids while surfaces of constant η are hyperboloids.

The oblate spheroidal coordinates can be obtained through transforming the prolate

spheroidal coordinates: ξ → iλ and c→ −ic̄ with i the imaginary unit. For example,

the operator

E2 =
1

c2 (λ2 + η2)

[
(λ2 + 1)

∂2

∂λ2
+ (1− η2)

∂2

∂η2

]
,

the electric potential coefficients and excess area take the form

α =
c̄λo (Kr − 1)−KrVm

KrQ1 − λoQ′1
, β = i

[c̄Q1 + (Vm − cλo)Q′1]

KrQ1 − λoQ′1
, (4.24)

∆ =
1

2

(
1 + λ−2

o

)−2/3
[√

λ−2
o + λ−4

o + tanh−1
((
λ2
o + 1

)−1/2
)]
− 1. (4.25)

If χ designates the generic shape function, with χ = ξo for prolate and χ = λo

for oblate, then the dimensionless governing equation is

dχ

dt
=
δ
[
QNf21 +QT f11(µrf22+f23)

µrf14+f15
− Ca−1

E (σhf24 + fκ)
]

2
3

(µrf25 + f26)
, (4.26)

QN = ± 1

2c2

[
2c2 − 2cτ3

(
Q′1 +

Q1

χ

)
+
(
τ 2

3 + τ 2
4

) (
Q′21 + (Q1/χ)2

)
−2

(τ 2
1 + τ 2

2 )

εr

]
, (4.27)

QT =
1

2c2

[
c2χ+

(
τ 2

3 + τ 2
4

)
Q1Q

′
1 − cτ3 (Q1 + χQ′1)−

(
τ 2

1 + τ 2
2

)
χ/εr

]
, (4.28)

where the symbols ± designate the prolate (+) or oblate (−). CaE =
εer30E

2
0

κ
is

the electric capillary number. δ = tc
tEHD

, where tEHD = µi
εeE2

0
is the timescale
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characterizing the electrohydrodynamics flow (EHD). The functions f11 − f26, fκ

are given by (D.1)-(D.11) for the prolate shape, and (D.13)-(D.23) for the oblate

shape. Setting dχ
dt

= 0 the steady-state equilibrium shape is obtained by solving the

non-linear equation:

QNf21 +QT
f11 (µrf22 + f23)

µrf14 + f15

= Ca−1
E (σhf24 + fκ) . (4.29)

Equation (4.29) shows that an equilibrium shape is achieved when the electric forces

(on the left) are balanced by the tension and bending forces (on the right).

4.4 Results

4.4.1 Comparison with Small-Deformation Theory
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Figure 4.3 Comparison of equilibrium deformation for a
prolate vesicle from the spheroidal model (solid curve) and small
deformation (dashed curve) for σr = 1.5; CaE = 6837 and
s0 = 1. (a) Equilibrium deformation as a function of frequency
ω. (b) Transmembrane potential. (c) Normal (thin curve) and
tangential (thick curve) electric stresses from (4.27) and (4.28).

Figure 4.3(a) shows the equilibrium shape elongation from the spheroidal model

(solid lines) and the small-deformation theory (dashed lines) [157] for σr = 1.5, CaE =
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6837 and s0 = 1. The shape elongation a/b = ξ0/
√
ξ2

0 − 1 for prolate while a/b =

λ0/
√
λ2

0 + 1 for oblate. It is found that, for the same membrane tension s0, the

spheroidal model predicts larger deformation than the small deformation theory at a

given frequency. The corresponding transmembrane potential magnitude Vm and the

electric stresses are shown in figure 4.3(b) and (c). As expected from Section 4.3.1,

the membrane potential from the spheroidal model is higher at low frequencies. The

decrease in membrane potential at ω ≈ 5× 10−3 in (b) coincides with an increase in

the tangential electric stress, and a decrease in the electric pressure in (c).

4.4.2 Comparison with Experiment

The equilibrium vesicle shape is spherical at high frequencies when the transmembrane

potential vanishes. At low frequency (ω < 102) experiments show that the equilibrium

vesicle shape can be prolate if σr > 1 or oblate if σr < 1. In particular, the equilibrium

oblate vesicle for σr < 1 crosses over to the prolate equilibrium shape for even smaller

frequency ω < 10−2. These experimental findings [6] are summarized (symbols) in

Figure 4.4 and Figure 4.5, where the comparison between the spheroidal model (solid

lines) and the small-deformation model [157] (broken lines) is also shown. Following

the approach in [157] s0 is used as a fitting parameter (see Table 4.1) and fix the

bending stiffness κ = 10kBT . s0 used in the spheroidal model is at least an order of

magnitude larger than in small deformation. Nevertheless, they are comparable to

values reported in previous work [76].

Figure 4.4(a) is for σr > 1 (‘transition’ (1) in [6]) where the equilibrium vesicle

shape elongation is always greater (prolate) or equal (spherical) to one. There is

better agreement from the spheroidal model for σr = 1.7, while for σr = 4.3 the

spheroidal results are in better agreement except for ω > 10. Figure 4.4(b) is for

σr < 1 (‘transition’ (4) in [6]) where the equilibrium vesicle shape can cross over

from spherical at high frequencies ω > 20 to oblate at intermediate frequencies ∼



55

10
−2

10
0

10
2

1

1.05

1.1

1.15

1.2

ω

S
h
a
p
e
 e

lo
n
g
a
ti
o
n

 

 

Spheroidal model
Small Deformation
Spheroidal model
Small Deformation

(a)

10
−4

10
−2

10
0

10
2

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

ω

S
h
a
p
e
 e

lo
n
g
a
ti
o
n

 

 

Spheroidal model
Small Deformation
Spheroidal model
Small Deformation

(b)

Figure 4.4 Comparison between the experimental data of
Aranda et al. [6] (symbols), the small deformation theory
(dashed curves), and the current model (solid curves). (a)
σr > 1; (b) σr < 1.
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Figure 4.5 (a) Comparison between the experimental data
(symbols) of Aranda et al. [6], small deformation theory (dashed
curves), and the current model (solid curve). The conductivity
ratio σr ≈ 1. (b) Comparison between the experimental data of
Aranda et al. [6] (symbols), small deformation theory (dashed
curves), and the current model (solid curves). The conductivity
ratio, σr = 4.5.
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Table 4.1 Fitted Values of s0 = σ̄0r
2
0/κ for the Experimental Data in [6]

with εr = 1, µr = 1, κ = 10kBT , and E0 = 0.2kV/cm

Experiment s0 used in spheroidal
model

s0 used in small-
deformation model

σr = 4.3, r0 = 21.6µm 43 000 3000

σr = 1.7, r0 = 27.5µm 80 000 20 000

σr ≈ 1 (Pr), r0 = 27.5µm 1000 1

σr ≈ 1 (Ob), r0 = 37.5µm 10−6 10−7

σr = 0.5, r0 = 12.8µm 1000 100

σr = 0.4, r0 = 27.2µm 70 1

3 × 10−3 ≤ ω ≤∼ 1, and to prolate at low frequencies 10−4 ≤ ω ≤∼ 3 × 10−3. In

this case neither model agrees with the experiments for 1 > ω > 0.5, where the

equilibrium vesicle shape crosses over from oblate to spherical as ω increases.

In ‘transition’ (3) of [6] where σr is close to unity, the value of σr determines

the shape of the vesicles: Prolate for σr > 1 and oblate for σr < 1. Figure 4.5(a)

shows the comparison between models and experiments for σr ≈ 1.

The effect of bending rigidity on the equilibrium vesicle shape is investigated

next. For experiments in [6], the bending stiffness varies between 4×10−20 J [76] and

2.3 × 10−19 J [136]. In addition, recent measurements on SOPC bilayer membranes

yielded a bending stiffness as low as 7×10−21 J [118]. Figure 4.5(b) shows a comparison

between theories and experiments for σr = 4.5 and with various values of the bending

stiffness. Both theories are very sensitive to changes in the bending stiffness: There is

good agreement with experiments up to κ = 4×10−20 J for the spheroidal model, and
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up to κ = 10−20 J for the small deformation. Beyond these values, the two models

overestimate the deformation.

Vesicles morph into various shapes at different frequencies and conductivity

ratios. To elucidate the extent and range of these variations, Aranda et al. [6]

constructed a morphological diagram: They performed a series of experiments using

over 60 vesicles ranging 4− 50µm in size. Fixing the conductivity inside the vesicles

and varying the conductivity of the external phase, the authors then subjected the

vesicles to an AC field of frequencies ranging between ≈ 2 kHz− 20 MHz.

Figure 4.6 shows the shape variations in the σr−ω plane. The experimental data

points indicate the value at which the vesicle changes shape as frequency increases.

Figure 4.6 also compares the predictions from the spheroidal model, the theory based

on small deformation, and the result using the energy minimization approach [116].

The spheroidal and small deformation models give agreements with experiments:

The prolate-to-oblate and prolate-to-sphere frequencies increase with σr, while the

oblate-to-sphere frequencies decrease with increasing σr. The model in [116] only

shows qualitative agreements.

The frequency at which the equilibrium vesicle shape crosses over from prolate

to oblate depends on the conductivity ratio and vesicles size [5, 6, 104, 116, 117].

In a recent experiment Peterlin [116] put vesicles of different sizes under a sequence

of step-wise frequency changes, ranging from hundreds to a thousand hertz for a

duration of ≈ 3 secs with the frequency increasing or decreasing around the crossover

frequency, see the symbols in figure 4.7(a).

At the crossover frequency (from prolate to oblate, for example), the equilibrium

vesicle shape is spherical, which corresponds to the limit ξ → ∞, ∆ ≈ 0, and Vm

reduces to spherical shell potential. An asymptotic analysis is performed on the

equilibrium vesicle shape elongation near the crossover frequency, where all functions

of ξ are expanded in terms of 1/ε2. For example, the Legendre polynomial Q1(ξ)
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and its derivative take the form Q1 ∼
1

3ξ2
+

1

5ξ4
+ O

(
1

ξ6

)
, Q′1 ∼ −

2

3ξ3
− 4

5ξ5
+

O
(

1

ξ7

)
. The semi-focal length c ∼ 1

ξ
+ O

(
1

ξ3

)
, and similarly for all the other

functions in Appendix D. Substituting these expansions in (4.17), (4.27)-(4.29), leads

to an expansion
∑
n=0

anξ
−2n
0 = 0, where the coefficients an are functions of fluid and

membrane properties. Keeping all the leading-order terms at O(1/ξ2
0) one obtains an

equation for ξ2
0 , which gives the solution

ξ0(ω) =

√
2

35

√
−CaEABC

G
(4.30)

where coefficients A, B, C and G are given in Appendix G.

The leading-order shape elongation for a prolate vesicle near the crossover

frequency is
a

b
∼ 1 +

1

2ξ2
0

+ O
(

1

ξ4
0

)
. Similarly for the crossover from oblate to

prolate, the leading order shape elongation would be
a

b
∼ 1− 1

2λ2
0

+O
(

1

λ4
0

)
.

Figure 4.7(a) shows the comparison between the asymptotic analysis on the

spheroidal model (solid line), calculation from the small deformation model (dashed

line) and experiments (symbols). First, one can observe a small difference in the

crossover frequency (value of ω∗ when shape elongation is unity) between the solid

and the dashed lines: This small difference is attributed to the different treatment of

the stress balance on the membrane. Second, one can observe a significant difference

in the slope at the crossover frequency between the two curves, with the spheroidal

model in better agreement with the experimental data. Attempts to adjust s0 to fit the

small-deformation model to experimental data with the same slope at the crossover

frequency have proven unsuccessful. The crossover frequency also depends on the

initial spherical size of vesicles. Figure 4.7(b) shows the comparison results of the

experiment in [116], where the spheroidal results (solid curves), the small-deformation

results (dashed curves) and the energy-minimization results (starred solid curves)
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are all plotted against the initial spherical radius r0. All three theories show good

agreement with the experimental data.

4.5 Conclusion

In this chapter, a spheroidal model was developed to study the equilibrium deformation

of a vesicle in AC electric fields within the leaky dielectric framework. Such an

approach has been shown to capture large equilibrium electro-deformation of a viscous

surfactant-covered drop [109] and the transient dynamics of a vesicle in a DC field

[170]. In the spheroidal model, the vesicle membrane was modeled as a non-conducting

capacitive elastic membrane with a homogeneous tension that depends on the excess

area. A spheroidal shell model was constructed to compute the potential across the

vesicle membrane. By adjusting the membrane tension coefficient s0, good agreement

was found with the experiments in terms of the dependence of the vesicle shape

elongation on the frequency ω, conductivity ratio σr, and the initial spherical radius

of the vesicle. The effects of bending rigidity on the shape elongation were also

explored. Furthermore, an asymptotic analysis on the spheroidal model around the

prolate-oblate crossover frequency was conducted, and very good agreement with the

experiments was found in terms of both the value of crossover frequency and the rate

of change of shape elongation with respect to frequency.

This work did not consider effects of membrane conductance, which is found

to destabilize a planar membrane under electric fields [133, 135]. The focus was on

the equilibrium deformation and the time-dependent harmonic stresses were ignored.

Consequently, the dynamic transient and oscillation around the averaged equilibria

was not considered, yet the spheroidal model can easily incorporate the time-dependent

stresses and this is now part of an ongoing work. In addition the vesicle area was not

held constant in the model. Furthermore, the spheroidal model is applicable only to
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spheroidal deformation, and cannot describe the dynamics and equilibrium shapes of

an axisymmetric non-spheroidal vesicle.



CHAPTER 5

NUMERICAL SIMULATIONS OF A VISCOUS DROP

5.1 Introduction

Numerical studies have bee conducted to investigate the effects of electric fields

on the dynamics of a single viscous drop [37, 43, 77, 119, 142], particle-particle

interactions [11, 58], and various other systems [148], just to name a few. These

studies can be classified based on the representation of the immersed boundary [13,

44, 62, 91, 92, 165, 168].

The immersed boundary method, originally developed by Peskin [114] to study

blood flow through a beating heart, has recently been extended to investigate drop

dynamic under an electric field. In the immersed boundary the equations governing

the fluids are solved in a fixed Cartesian grid, and the drop is represented by Lagrangian

markers, at which boundary forces are computed. The forces are then interpolated

between the Eulerian grid and the Lagrangian markers using smoothed delta functions.

However, regularizing the singular force leads to a method that is only first order.

The immersed interface method of Leveque and Li [82] offers a more accurate method.

The idea is to capture the jump conditions at the interface in a sharp manner, where

the jumps are incorporated into a new finite difference scheme.

In this chapter, a numerical code based on the immersed interface method is

developed to simulate the transient electro-deformation of an axisymmetric drop.

Unlike previous works, the electric force is only defined at the boundary in such a

way that applying the divergence operator to the Maxwell stress tensor is avoided

altogether. This approach was only recently used in [11, 61]. The major differences

between the present work and [61] is threefold: First, the present system is three-

dimensional. Second, the one-sided interpolation in the present study is second-

order. Third, the fluid equations are solved using a second-order method, resulting in

64
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solutions with higher resolution than is generally achieved by the immersed boundary

method.

This chapter is organized as follows: The governing equations are presented

in Section 5.2. The numerical methods are described in Section 5.3: The immersed

interface method to solve the the electric potential in axisymmetric coordinates is

developed in Section 5.3.1, and the implementation of the immersed interface method

for the flow field presented in Section 5.3.2. Finally, the convergence analysis and

comparison against the spheroidal model of Chapter 1 are discussed in Section 5.4.

5.2 Governing Equations

The problem of an initially spherical viscous drop immersed in a fluid in a DC electric

field, E0 in three-dimensional axisymmetric coordinates is considered. The equations

governing the system consists of the incompressible Stokes equations with surface

tension and electric force. The bulk fluid and the drop have different permittivity

(εj) and conductivity (σj), where the superscript j denotes the bulk (+) and the

interior of the drop (−), respectively. The drop interface Γ is given in parametric

form X(s, t) = (R(s, t), Z(s, t)) with 0 ≤ s ≤ 2π. The ratios of permittivities and

conductivities are defined as

εr =
ε−

ε+
, σr =

σ+

σ−
. (5.1)

In the leaky dielectric framework, bulk charges neutralize instantaneously, and

the conservation of free charge density reduces to the Laplace equation governing the

electric potential, φ:

∇ · (ε∇φ) = 0, (5.2)

with interface conditions

JφK = 0, Jσ∇φ · nK =
dqs
dt

(5.3)
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at the drop interface. n is the unit outward normal, qs = Jε∇φ · nK represents

the surface charge density, and J·K denotes the jump between outside and inside

quantities. The charging time scale, tc is much faster than the time scale tEHD of the

electrohydrodyanimc flow. Consequently, and omitting charge convection, the jump

condition on the normal electric field reduces to Jσ∇φ · nK = 0. In the far-field, the

electric potential satisfies ∇φ+ = −E0ẑ.

The stress induced in the dielectric medium is the result of the Maxwell stress

tensor,

M = ε

(
EE − 1

2
E2I

)
, (5.4)

where I is the identity tensor. Because the electric properties of the bulk and drop

are piecewise constants, it is evident that the electric force F E = ∇ ·M affects the

flow only near the drop interface. Therefore, the electric effects can be treated as an

interfacial force given by the jump in Maxwell stress in the normal direction, as done

in the boundary integral method [99]. The interfacial electric force is

fE = JM · nK, (5.5)

where n is the unit outward normal, and the electric body force

F E =

∫
fE(s, t)δ(x−X(s, t))ds, (5.6)

where the axisymmetric coordinates x = (r, z).

The flow field is governed by the incompressible Navier-Stokes equation,

∂u

∂t
+ u · ∇u = −∇p+ µ∇2u+ F , (5.7)

∇ · u = 0, (5.8)

(5.9)
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where

F =

∫ 2π

0

f(s, t)δ2 (x−X(s, t)) ds.

The singularly supported force f consists of the surface tension [41, 79] and

electric force, and is defined by

f = f γ + fE = γ

(
RsZss −RssZs
|Xs|3

+
Zs
R

)
n+ JM · nK, (5.10)

where |Xs| =
√
R2
s + Z2

s , and the subscript denotes partial derivatives with respect

to s.

5.3 Numerical Methods

Let ∆t be the time step and tn = n∆t the nth time-level with n = 0, 1, 2, . . .. The set

of Lagrangian markers X = (Rn
k , Z

n
k ) for k = 0, 1, 2, . . . , NB represents the position

of the drop at time tn. Assuming that the drop is a simple closed curve, (Rn
0 , Z

n
0 ) =

(Rn
NB
, Zn

NB
). The drop is immersed in the domain Ω = [−L,L]× [−L,L], discretized

as ri = ih and zj = jh along the r- and z-axis, respectively, with i, j = −N,−N +

1, . . . , 0, . . . , N − 1, N and the mesh width h = L/N .

In cylindrical coordinates, the solutions are obtained in the half-plane r ≥ 0, and

solutions in the left half-plane r < 0 are obtained by symmetry thereafter. Figure 5.1

shows the computational domain, along with boundary conditions. For the electric

potential, Dirichlet boundary conditions are imposed at the capacitor plates,

φ+ = −EL
2

on z = L and φ+ = E
L

2
on z = −L. (5.11)

In addition, Neumann boundary condition for the electric field is applied along the

axis of symmetry and the rightmost boundary,

∇φ · n = 0 on r = 0 and r = L. (5.12)
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Figure 5.1 The computational domain and imposed boundary
conditions.
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For the flow field, Neumann boundary conditions for pressure and velocity are

applied in the z-direction,

∂p

∂r
= 0,

∂w

∂r
= 0 at r = 0, (5.13)

and

u = 0 at r = 0, (5.14)

in the r-direction. The other three sides of the domain have Dirichlet boundary

conditions for p, u, and w determined from boundary integrals,

p =

∫ ∫
− 1

4π
f · ∇

(
1

r

)
dS, (5.15)

u =

∫ ∫
1

8πµ

(
δij
r

+
x′ix
′
j

r3

)
fjdS(x′). (5.16)

In the immersed interface method, grid points are classified as regular or irregular

based on their proximity to the interface. A point (i, j) is irregular if its stencil

consists of neighbors on either side of the interface, while a regular grid point has its

four neighbors on the same side of the interface (see Figure 5.2).

5.3.1 Electric Potential and Fields

The elliptic equation (5.2) governing the electric potential is solved by extending the

immersed interface method [82] to three-dimensional axisymmetric coordinates. At

regular grid points, the equation is discretized using the standard five-point, second-

order finite difference scheme,(
1 +

h

2ri

)
φi+1,j +

(
1− h

2ri

)
φi−1,j + φi,j+1 + φi,j−1 − 4φi,j = 0, (5.17)

where φi,j = φ(ri, zj) and Cij is a correction term resulting from the jump discontinuities

across the interface. For irregular grid points, a new finite difference scheme that

incorporates the jump conditions at the interface needs to be derived. The scheme
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Figure 5.2 The geometry at an irregular grid point (i, j),
from [82].

takes the form ∑
k

γkφi+ik,j+jk = Cij, (5.18)

where coefficients γk, and the correction term Cij needs to de determined. Because

the interface conditions in (5.3) are homogeneous, the correction term Cij = 0, and

the jump in conductivities across the drop surface is accounted for in the coefficients

γk in (5.18).

Computing the coefficients γk consists of the following steps:

• Select a point (r∗, z∗) ∈ Γ.

• Apply a local coordinate transformation in directions normal and tangential to

the interface at point (r∗, z∗).

• Derive the jump conditions relating (+) and (−) values in the local coordinates.

• Choose an additional point to form a six-point stencil.



71

• Solve a linear system of equations for γk.

Figure 5.3 Local coordinates at the fluids interface.

The local coordinate transformation (see Figure 5.3) is

ξ = (r − r∗) cos θ + (z − z∗) sin θ, (5.19)

η = −(r − r∗) sin θ + (z − z∗) cos θ, (5.20)

where θ is the angle between the r-axis and the normal direction, pointing outward

to the (+) side. In the neighborhood of (r∗, z∗), the interface lies in the η-direction,

and thus is parameterized by ξ = χ(η). Note that χ(0) = 0 and χ′(0) = 0,

provided the boundary is smooth. The interface conditions are derived based on

the new coordinates, and after expanding the potential on either side of the interface

about (r∗, z∗), one obtains a linear system of equations for the γk (see Appendix H).
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Provided a solution exists, the system

a1 + a2 =0, (5.21)

a3 + ρa4 + (a10 − a8)(1− ρ)χ′′ =σ−
cos θ

r
, (5.22)

a5 + a6 + a12(1− ρ)χ′′ + a8(1− ρ)
sin θ

r
=− σ− sin θ

r
, (5.23)

a7 + ρa8 =σ−, (5.24)

a9 + a10 + a8(ρ− 1) =σ−, (5.25)

a11 + ρa12 =0, (5.26)

gives the coefficients γk of the finite difference scheme at irregular grid points. The

ak’s are defined as

a1 =
∑
~x∈Ω−

γij, a2 =
∑
~x∈Ω+

γij

a3 =
∑
~x∈Ω−

γijξi, a4 =
∑
~x∈Ω+

γijξi

a5 =
∑
~x∈Ω−

γijηj, a6 =
∑
~x∈Ω+

γijηj

a7 =
∑
~x∈Ω−

γij
ξ2
i

2
, a8 =

∑
~x∈Ω+

γij
ξ2
i

2

a9 =
∑
~x∈Ω−

γij
η2
j

2
, a10 =

∑
~x∈Ω+

γij
η2
j

2

a11 =
∑
~x∈Ω−

γijξiηj, a12 =
∑
~x∈Ω+

γijξiηj.

The discretization of (5.2) at all grid points form a linear system of equations,

∆hφ
n = gn, (5.27)

whose solution is the electric potential φn at the current time tn; gn is a vector that

includes the boundary condition. Equation (5.27) is solved using the Generalized

Minimal RESidual (GMRES) implementation from the NETLIB repository. As a

stand-alone method, convergence can be slow depending on the structure and size of
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∆h. Preconditioning the system is needed to achieve faster convergence. In this work,

Successive Over-Relaxation (SOR) is used as the preconditioner to GMRES [31, 32,

33, 68, 125, 126]. Instead of (5.27), one solves the (left) preconditioned system

M−1∆hφ
n = M−1gn, (5.28)

where M is a full matrix, obtained from a few iterations, kp of SOR.

GMRES with SOR-preconditioner is referred as SOR(kp)-GMRES [32, 33], and

it has been used successfully to solve the sea-ice momentum equation [81]. Note

that the number of SOR iterations, kp, is distinct from the number of GMRES

iterations. Moreover, GMRES and SOR are matrix-free methods: They do not

require the explicit knowledge of the coefficient matrix, and only need the result of a

matrix-vector operation. This is a considerable advantage in terms of computational

cost and memory, especially when the grid number N becomes large (> 100).

The rate of convergence of SOR, and therefore of SOR-GMRES, depends on

the relaxation parameter ω. For faster convergence, 1 < ω < 2. Figure 5.4(a) shows

the number of iterations to converge with a tolerance of 10−10 for the SOR-GMRES

and SOR methods as a function of the relaxation parameter, ω. In Figure 5.4(b), the

corresponding time it took to achieve the aforementioned tolerance is shown, again

as a function of ω. The solid (SOR-GMRES) and dashed (SOR) curves represent

different values of the grid number, N = 64, 128, 256. Also, note that the optimal ω

is not necessary the same in both methods. When N = 128, SOR-GMRES produced

converging solutions up to ω = 1.65, while SOR failed to converge for ω ≥ 1.6.

Once the potential is known at every grid point, the jump in the maxwell stress

at the interface can be computed. One-sided least square interpolation [87, 158] is

used to calculate the interfacial potential and electrostatic field. A system of m(≥ 6)
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Figure 5.4 Number of iterations (a) and time to convergence
(b) for SOR-GMRES (solid) and SOR (dashed) as a function of
the relaxation parameter, ω.
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equations is derived from the second-order Taylor expansion near the interface

φ(r, z)m =A1 + A2(r −Rk)m + A3(z − Zk)m + A4(r −Rk)
2
m + A5(z − Zk)2

m

+ A6(r −Rk)m(z − Zk)m, (5.29)

from the m(≥ 6) grid points used for the extrapolation. The over-determined problem

is re-written in matrix form,

ζA = Y , (5.30)

where A = [A1, A2, . . . , A6]T , Y = φ(r, z)l, and ζ is the coefficient matrix of relative

distances.

Least square minimization method is used to solve for the coefficients A. The

matrix ζ is replaced by its Singular Value Decomposition (SVD),

ζ = UΣV ∗, (5.31)

where Um×m and V ∗6×6 are unitary matrices, and

Σ =



Σ1,1 0 . . . 0

0 Σ2,2 . . . 0

...
...

. . .
...

0 0 . . . Σ6,6

...
...

...

0 0 . . . 0


(5.32)

consists of the 6 singular values of ζ. Then (5.30) can be recast as

UΣV ∗A = Y , (5.33)

and one can obtain the solution

A = V Σ−1U∗Y . (5.34)
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From this calculation, the electric potential and field at (Rk, Zk) are immediately

obtained:

φ(Rk, Zk) ≈ A1, (5.35)

φr(Rk, Zk) ≈ A2, (5.36)

φz(Rk, Zk) ≈ A3. (5.37)

5.3.2 Flow Field

The incompressible Navier-Stokes (5.7)-(5.8) are solved using the velocity decomposition

approach of Beale and Layton [9]. Though this chapter focuses on Stokes flow

dynamics, the numerical algorithm for the full Navier-Stokes equations is described

for completeness. The fluid velocity and pressure are expressed as the sum of a Stokes

part (marked with the subscript ‘s’) and a continuous part (denoted ‘c’):

u = us + uc, p = ps + pc. (5.38)

The Stokes part satisfies

−∇ps + µ∆us + F = 0, (5.39)

∇ · us = 0, (5.40)

including the boundary force. Solutions of (5.39)-(5.40) are obtained using the

approach proposed by Leveque and Li [83]: The equations are reduced to a sequence of

three Poisson problems for the pressure, ps and the components of velocity, us and vs.

In this dissertation, the code developed by Li [85, 86] is used. The implementation is

based on Mayo’s method [97], and is valid for geometries in axisymmetric cylindrical

coordinates. Both the immersed interface method and Mayo’s method differ only

in the way the jumps are computed: Along directions normal and tangential to the

interface for the immersed interface method, or along the coordinate lines in Mayo’s

technique (see Appendix H). The basic idea of incorporating the jumps into the finite
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difference scheme at irregular grid points remains the same in both methods. Due

to this fundamental similarity, here Mayo’s technique is also referred as immersed

interface method.

Taking the divergence of (5.39) and applying (5.40) leads to

∇2ps = ∇ · F , JpK = fn, J∂p/∂nK =
1

r

∂

∂s
(fsr), (5.41)

where fn and fs are the components of the boundary force normal and tangential to

the interface, respectively. In practice, the singular source term is eliminated from

the right-hand side, and instead the pressure satisfies Laplace equation,

∇2ps = 0, (5.42)

with specified jump conditions. Using the standard second-order finite difference

discretization gives

1

h2
(pi+1,j + pi−1,j + pi,j+1 + pi,j−1 − 4pi,j) +

1

2hri
(pi+1,j − pi−1,j) = Cp

i,j, (5.43)

where the correction term Cp
i,j is determined using the same methodology as in [82]

(also, see Appendix H). The resulting system of discretized equations for ps is solved

using fast Fourier transforms (FFT). Note that Ci,j is non-zero only at irregular grid

points.

Next, the velocity field us = (us, vs) is computed. Using the pressure ps, the

equation for the velocity field with its jump conditions is

1

µ
∇ps = µ∇2us, JusK = 0, µJ∂us/∂nK = fs sin θ, µJ∂vs/∂nK = −fs cos θ.

(5.44)

Discretizing the r-component of velocity gives

1

h2
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j)+

1

2hri
(ui+1,j − ui−1,j) = πi,j+C

u
i,j, (5.45)
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where πi,j = (pi+1,j − pi−1,j) /(2hµ). A similar discretization is obtained for the z-

component of us. As in the case of ps, solutions for the velocity are obtained by

FFT.

The solutions of the continuous part are computed by taking the difference

between (5.7) and (5.39):

∂uc
∂t

+ u · ∇uc = −∇pc + µ∇2uc + F b, (5.46)

∇ · uc = 0, (5.47)

where

F b = −∂us
∂t
− u · ∇us.

Note that F b is not only defined on the boundary. It is a continuous function on

the whole domain because us and its material derivative are continuous across the

interface. Moreover, one can deduce that the jump conditions for pc and uc are

zero, since the jumps for ps,us are the same as those for p,u. This, along with the

continuity of F b, suggests pc,uc can be solved on a regular grid, without corrections

at the interface.

Equation (5.46) is discretized using a second-order backward difference formula.

The equation becomes

3un+1
c − 4ũnc + ũn−1

c

2∆t
+∇pnc = µ∇2un+1

c + F n+1
b , (5.48)

where

ũnc =uc(x
n, tn), (5.49)

ũn−1
c =uc(x

n−1, tn−1). (5.50)

ũnc and ũnc are obtained by solving an initial value problem for the particle x(t). See

Ref. [9] for more details.
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A second-order projection method is used to solve (5.48). First, the intermediate

velocity u∗c is obtained from

3u∗c − 4ũnc + ũn−1
c

2∆t
+∇pnc = µ∇2u∗c + F n+1

b . (5.51)

Rewriting it as,(
3

2∆t
− µ∇2

)
u∗c = F n+1

b − 1

2∆t
(−4ũnc + ũn−1

c )−∇pnc , (5.52)

this equation is discretized using standard second-order finite difference operators,

then solved by fast Fourier transforms. Next, un+1
c is found by projecting u∗c onto

the subspace of divergence-free vector fields. This is accomplished by defining un+1
c

as

un+1
c = u∗c −∆t∇Φ. (5.53)

Taking the divergence of the above equation, Φ emerges as the solution of the Poisson

equation

∆t∇2Φ = ∇ · u∗c . (5.54)

Once is Φ is known, the pressure is updated,

∇pn+1
c = ∇pnc +

3

2
∇Φ− µ∆t∇3Φ, (5.55)

and one finally arrives at the equation,

3un+1
c − 4ũnc + ũn−1

c

2∆t
+∇pn+1

c = µ∇2un+1
c + F n+1

b . (5.56)

To update the position of the boundary, the Eulerian velocity, u is interpolated

on the interface using a second-order interpolation scheme that incorporates the jumps

across the boundary [83]. Considering the r component us of velocity, one first chooses
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the three closest points, (ri1, zj1), (ri2, zj2), and (ri3, zj3) to the point (Rk, Zk) on the

interface. Then, the interpolated velocity U is

U = γ1ui1,j1 + γ2ui2,j2 + γ3ui3,j3 − C, (5.57)

where the coefficients γk need to be determined using the methodology in Section 5.3.1.

The coefficients can be calculated explicitly,

γ2 =
(zj1 − Zk)(ri3 − ri1)− (ri1 −Rk)(zj3 − zj1)

(ri2 − ri1)(zj3 − zj1)− (ri3 − ri2)(zj2 − zj1)
, (5.58)

γ3 =
(zj3 − zj1)(ri1 −Rk)− (ri2 − ri1)(zj1 − Zk)
(ri2 − ri1)(zj3 − zj1)− (ri3 − ri2)(zj2 − zj1)

, (5.59)

γ1 =− (γ2 + γ3), (5.60)

and the correction term

C = −(a2JuK + a4JurK + a6JuzK), (5.61)

where ai are linear combinations of the γk. The markers are then advanced using the

second-order Adams-Bashforth method

Xn+1 = Xn + ∆t

(
3

2
Un − 1

2
Un−1

)
. (5.62)

5.3.3 Numerical Algorithm

Prior to solving the governing equations, the system is non-dimensionalized using the

following scale: x = r0x
∗, p =

γ

r0

p∗, and u = Uu∗. Here r0 is the initial radius of the

drop. The dimensionless governing equations become (after dropping the ∗)

−∇p+ Ca∆u+

∫ 2π

0

(
f γ + CaEfE

)
δ2 (x−X(s, t)) ds = 0, (5.63)

∇ · u = 0, (5.64)

∇ · (ε∇φ) = 0, JφK = 0, JσφnK = 0, (5.65)

E = −∇φ, M = ε

(
EE − 1

2
E2I

)
,FE = JMK · n. (5.66)



81

The problem depends on the capillary number Ca = µU/γ, the electric capillary

number CaE = ε+E2
0r0/γ, and the parameters εr, σr. The capillary number represents

the ratio of viscous force to surface tension; and the electric capillary number reflects

the strength of the electric field.

Given the position of the boundary at time tn, the numerical implementation

of the equations proceeds as follows:

1. Determine the interfacial electric field from (5.36) and (5.37), and calculate the

electric force.

2. Compute the interfacial tension force.

3. Solve the sequence of three Poisson problems for the pressure and velocity

components at time tn+1.

4. Interpolate the fluid velocity to the boundary markers, and update the position

of the boundary Xn+1.

As noted in [43], a boundary located between two parallel plate capacitor would

move along the axis of symmetry and toward one of the plates indefinitely, in the

event the boundary deviates even slightly from its equilibrium position. In numerical

simulations, boundaries are discretized such that their centroid rarely lie exactly at

the center of the computational domain, and one needs to resolve the issue of drifting.

Various approaches have been used: In some instances [42, 43], the center of mass

of the drop is maintained at the coordinate origin by applying additional constraint

to the system. Others [112] take advantage of the symmetry with respect to the

equatorial plane to reduce the computational domain by half. In this work, the drop

centroid is computed at every time step and moved back to the coordinate origin.
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5.4 Results

A series of tests is performed to assess the convergence of the numerical methods

for the electric potential, the interfacial electric force and the fluid variables. The

computational domain is the half-plane [0, 3] × [−3, 3] and the mesh width h = 3
N

,

where N is the grid number. The capillary number Ca in (5.63) is set to unity. No

exact solution exists for this problem, so the rate of convergence is measured using

the ratio

ratio = log2

(
‖PN − PN/2‖∞
‖P2N − PN‖∞

)
, (5.67)

where P is the variable being measured.

5.4.1 Convergence Test for the Interfacial Electric Force

In this section, the convergence of the electric potential and the interfacial electric

force are investigated. The conductivity and permittivity ratios are set to σr = 3 and

εr = 2, and the grid number, N takes values N = 64, 128, 256, 512. The number of

boundary markers scales with the grid number, NB = N , and the drop shape is an

ellipsoid with major axis a = 1.1 and minor axis b = 0.9.

Table 5.1 Mesh Refinement Results for the Electric Potential at Grid
Points, φ, and for the Interpolated Potential at the Interface. Results are
shown separately for the Interfacial Interior (φ−) and Exterior (φ+) Potential

N ‖φ2N − φN‖∞ ratio ‖φ−2N − φ
−
N‖∞ ratio ‖φ+

2N − φ
+
N‖∞ ratio

32 3.8276× 10−2 - 1.6066× 10−3 - 1.1716× 10−2 -

64 6.2882× 10−3 2.6057 3.5428× 10−4 2.181 1.1632× 10−3 3.3322

128 1.0205× 10−3 2.6234 7.1949× 10−5 2.2998 1.63× 10−4 2.8352

256 3.3777× 10−4 1.5952 1.8199× 10−5 1.9831 2.7578× 10−5 2.5633



83

Table 5.1 shows the convergence results for the electric potential and for the

interfacial potential, interpolated from the interior (−) and exterior (+). One can see

that the convergence of the maximum errors is essentially second-order. The r and

z-components of the interfacial electric force are plotted in Figure 5.5 for different

NB. The figure shows that the interfacial force converges with increased number of

markers. Table 5.2 shows the refinement results for the component of the interfacial
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Figure 5.5 The interfacial electric force in the r and z-
directions for boundary markers N = 64, 128, 256, 512.
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electric force, further illustrating convergence of the force.

Table 5.2 Mesh Refinement Results for the Components of the Interfacial
Electric Force FE = (FE,r, FE,z)

N ‖(FE,r)2N − (FE,r)N‖∞ ratio ‖(FE,z)2N − (FE,z)N‖∞ ratio

64 2.4846× 10−2 - 3.181× 10−2 -

128 7.4899× 10−3 1.73 8.77× 10−3 1.8588

256 1.7042× 10−3 2.1358 2.2003× 10−3 1.9949

The successive error, defined as ‖(F E))2N − (F E)N‖∞, is shown in Figure 5.6.
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Figure 5.6 The successive error of the interfacial electric force.
The rate of convergence is second-order.

5.4.2 Convergence Test for the Fluid Variables

In this section, the dynamics of a deforming drop is simulated to establish the spatial

convergence of the fluid variables. Initially, the drop has a spherical shape, and the

fluid is at rest. The conductivity ratio σr = 1
10

, and the permittivity ratio εr = 0.04.
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The time step is chosen as ∆t = h/50. Simulations are computed up to T ∼ 0.1 for

electric capillary number CaE = 0.01, corresponding to the limit of small deformation.

Table 5.3 shows the mesh refinement results for the fluid velocity. One can see

that the convergence of the maximum errors is also second-order.

Table 5.3 Mesh Refinement Results for the Velocity Components u and v

N ‖u2N − uN‖∞ ratio ‖v2N − vN‖∞ ratio

32 8.4826× 10−4 - 3.6661× 10−3 -

64 1.9202× 10−4 2.1432 7.8144× 10−4 2.23

128 5.8371× 10−5 1.718 1.9147× 10−4 2.0291

5.4.3 Comparison with the Spheroidal Model

In this section, the time-dependent deformation of a drop in a DC electric field is

simulated, and compared against the spheroidal model of Chapter 3. The deformation

is quantified by the deformation number,

D =
a− b
a+ b

, (5.68)

where a and b represent the elongation along the major and minor axes, respectively.

Additionally, the circulatory patterns predicted by the seminal work of Taylor are

investigated for the prolate shape. According to [147], the flow pattern in the first

quadrant is always clockwise for the prolate B, while it is counterclockwise for prolate

A. The distinction depends on the parameters σr and εr: Clockwise circulation for

σr > εr, and otherwise for σr < εr.

For the following results, the grid size N = 128, and simulations are run

until the drop reaches steady-state. The simulation parameters are the same as
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in [77]: (σr, εr) = (10, 0.04) for Prolate A, and (σr, εr) = (100, 0.1) for Prolate B.

Figure 5.7 shows a comparison of the deformation between the spheroidal model

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

Time

D

Figure 5.7 Numerical (solid) and analytical (dashed)
predicted drop deformation.

and the numerical simulations. At steady-state (T ∼ 15), the difference in the

deformations predicted by the analytical and numerical results is 4.4 × 10−7 for the

Prolate A, and 1.277× 10−5 for Prolate B shapes.

Figure 5.8 and Figure 5.9 show the velocity field at different times for the

parameters in Figure 5.7. One can note the flow patterns in each of the first quadrant:

The induced flows are clockwise for Prolate B, and counter-clockwise for Prolate A.

These results are in good agreement with those in [147].

5.5 Conclusion

In this chapter, a numerical code based on the immersed interface method was

developed to simulate the electro-deformation of a leaky dielectric, viscous drop in

Stokes flow. For the solution of the electric potential, the immersed interface method

in [82] was extended to three-dimensional axi-symmetric cylindrical coordinates. To
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Figure 5.8 Time-dependent velocity field for
the Prolate A shape. Here, (σr, εr) = (10, 0.04).
The electric capillary number is CaE = 0.01.
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the author’s knowledge, this had not been reported in the literature before. Using

one-sided least-squares interpolation, the electric potential and electric field were

obtained on either side of the drop surface, and the electric force was treated as an

interfacial force, as in [61]. Mesh refinement results showed that the convergence of

the maximum errors was (nearly) second order for the potential, the electric force

and the fluid variables.

The code was used to obtain the time-dependent deformation of the drop for

the two prolate modes: Prolate A and Prolate B. The simulation results compared

well with predictions from the spheroidal model of Chapter 3 in terms of the drop

deformation. Moreover, circulatory patterns in both cases also agreed with results in

the literature.



CHAPTER 6

CONCLUSION

A set of analytical and numerical tools have been developed to investigate the steady

and time-dependent dynamics of a deformable interface in an electric field. In Chapter 3,

a spheroidal model was constructed to capture the equilibrium deformation of a

surfactant-laden viscous drop in a DC electric field. Based on the electric properties

of the fluids, the deformation was found to be either prolate or oblate. In addition,

the prolate shape was further differentiated into prolate A or prolate B based on the

circulatory patterns inside the drop. Surfactant effects on drop deformation were also

studied. Depending on the elasticity number and surfactant coverage, surfactants

were found to enhance deformation in some cases (tip stretching), while reducing

deformation in others (surface dilution). Comparisons between the spheroidal model

and experiments showed very good agreement, compared to the small-deformation

theory. Furthermore, good agreement in the limit of large deformation was also

found between the spheroidal model and numerical studies in the literature.

In Chapter 4, the spheroidal model was extended to study the electro-deformation

of a vesicle in an AC electric field. The vesicle membrane was modeled as a spheroidal

shell, and an expression for the transmembrane potential was derived. Equilibrium

shapes were computed by balancing forces between the fluid, the membrane and the

electric field. Comparisons between the small-deformation theory and the spheroidal

results were drawn. The results showed that the spheroidal model gave better agreement

with the experiments in the literature. The observation also held at the prolate-to-

oblate crossover frequency, at which the spheroidal model was able to capture the

rate of change of vesicle shape more accurately.

Finally, Chapter 5 presented a novel numerical code for the simulation of a

viscous drop under DC electric field. The code is entirely based on the second-order

90
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immersed interface. To the author’s knowledge, this had not been reported in the

literature. Numerical studies on the scheme shows numerical convergence and very

good agreement with the analytical results of Chapter 3 for a surfactant-free drop.

Moreover, the circulatory patterns inside the drop were also in agreement with those

in the literature.



CHAPTER 7

ONGOING AND FUTURE WORK

The tools developed in this dissertation provide a range of options for further investigations.

In this chapter, ongoing investigations are described, and future work is discussed.

7.1 Near-Contact Motion of Surfactant-covered Spheroidal Drops:

Ionic Surfactant

The model is Chapter 3 can be modified to investigate the motion of spheroidal drops

in the presence of insoluble ionic surfactant. The equation of state (3.2) can be

substituted with [14]:

γ(Γ)− γ(0) = −kBTΓ

[
1 +

2ν

ZΓ̄

(√
(ZΓ̄)2 + 1− 1

)]
, (7.1)

Here, T is temperature, kB is the Boltzmann’s constant, and ν = zs
z

denotes the

ratio of the charge valence of the surfactant molecules to the ions’ charge valence.

The dimensionless surfactant concentration is Γ̄ = Γ/Γ0, and the surface potential

parameter

Z =
e2zzsΓ0

2εκkBT
,

where e is an electron charge, and κ−1 is the Debye length. This change gives new

equations for the equilibrium surfactant distribution, and for the equilibrium shape

of the drop. More importantly, an analysis similar the the one presented in [14] for

spherical drops can be extended to spheroidal drops. The goal is to determine how

large deformations predicted by the spheroidal model would affect the results in [14].

7.2 Bilayer Lipid Membrane Structure

In Chapter 4, the vesicle membrane was approximated by a single layer. This

approximation is valid assuming that the motion of the two membrane leaflets is
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identical. In other word, the intermonolayer friction is large. This assumption can be

relaxed, and the spheroidal approach can be extended to include the bilayer structure

(two leaflets).

For the bilayer structure, the boundary conditions at the vesicle membrane still

include the continuity of velocity, but only for the normal component:

ue · n = ui · n =
dx

dt
· eξ. (7.2)

The stress balance (4.19)-(4.20) are replaced with∫
ξ=ξ0(t)

u · JTξη + SξηK = 0, (7.3)∫
ξ=ξ0(t)

u ·
[
T+
ξη + T−ξη + S+

ξη + S−ξη − 2b̃ (ue − ui) · t
]

= 0, (7.4)∫
ξ=ξ0(t)

v · [J−p+ Tξξ + SξξK− γ (∇ · n̂)] = 0, (7.5)

where b̃ [Pa · s · m−1] is the coefficient of friction. As before, (e) or (i) subscripts

designate the exterior or interior of the vesicle, respectively.

Following the outline in Appendix I, one can derive the dimensional governing

equation for the shape parameter in the prolate spheroidal coordinates:

dξ0

dt
=
QNf31 + χ

(
Q∆
T ,QΣ

T

)
− σhf36

2
3
µiD

. (7.6)

The terms QNf31 and σhf36 corresponds to QNf21 and σhf24, resp. in Zhang et al.

Moreover, the tangential component,

χ
(
Q∆
T ,QΣ

T

)
=
εe
c2

Q∆
T f11f32

f17

− εe
c2T1

(
f15f32

f17

+ f35

)(
b̃cQ∆

T f11f26

µiµrf17

+
Q∆
T f11f21

f17

−QΣ
Tf11

)
,

and

D = µrf33 + f34 +

(
f15f32

f17

+ f35

)
T2

T1

− [(µr − 1)f12 − f13] f32

f17

.
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Equation (7.6) is being used to investigate the effects of intermonolayer friction on

the deformation of a vesicle. Predictions from the model will be validated against

available experimental data [34].

7.3 Numerical Simulation of a Viscous Drop

The axisymmetric numerical code presented in Chapter 5 is currently being used

to investigate the time-dependent dynamics of a viscous drop in the limit of large

deformation, where spheroidal shapes may not exist. As the electric capillary number

CaE is increased, the boundary becomes stiff due to the increasing electric force.

Immersed boundary methods are known to require prohibitively small time steps [139]

for stiff problems. To alleviate this short-coming, there’s been much effort devoted to

developing (semi-)implicit time-marching schemes, to allow for larger time steps [9,

80, 98, 108]. However, the implementation of these implicit methods often require a

high degree of complexity, as the boundary force needs to also be treated implicitly.

Alternatively, computation time can be reduced by employing fast methods to solve

for the electric potential and the flow field. In Chapter H, the flow field is obtained

using a fast solver and so the efficiency is already optimized. The use of SOR-GMRES

to solve for the electric potential in Figure 5.7 requires about ten (10) seconds per

time step iteration with N = 128, and an optimal SOR relaxation parameter. Much

of that time is spent computing the preconditioner matrix, which is obtained for

the entire computational domain. Two different methods, the multigrid approach of

de Zeeuw [29, 88], and the augmented immersed interface method [87], are currently

being tested to substitute for SOR-GMRES.

7.4 Electrokinetic Effects

Electrokinetic effects on the present results will be explored in the future. Hsu et

al. [59] reported strong dependence of the electrokinetic behaviors of ellipsoidal polyelectrolyte

(PE) on its shape. They incorporated the charged ions effects by assuming that the
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electric field, E was much weaker than the field established by the PE. The spheroidal

model in this dissertation could be extended in a similar fashion, by having the

electric potential satisfy the Poisson-Nerst-Plank (PNP) equations, which account

for the transport of various charged species in the fluids. The modified, electrokinetic

equations could provide valuable insight into the dependence of equilibrium shape on

the electric double layer thickness (Debye layer), which results from bulk electrolytes.

Relaxing the assumption in [59] will require numerical computations. The

numerical code in this dissertation can be readily adapted to include electrokinetic

effects. In the case of the drop, it will be interesting to see how ionic surfactant

diffusion and solubility may modify equilibrium results reported in this work. In some

time-dependent calculations it was found that, in some cases, non- diffusing surfactant

cannot immobilize the drop surface to prevent the surfactant concentration from

reaching the maximum packing. In reality surfactant diffusion is a weak effect, and is

unlikely to greatly change the conclusion on the spheroidal equilibrium. However,

the lack of a spheroidal equilibrium may be an indication that a non-spheroidal

equilibrium shape is favored instead. The numerical code could help shed some light

in understanding how the surfactant distribution and circulation may contribute to

non-spheroidal drop deformation and different modes of drop breakup.

7.5 Numerical Simulation of Vesicles in an Electric Field

The various projects covered in this dissertation, and the projects that would follow

have a specific goal in common: To investigate the dynamic process leading to the

formation of pores on vesicles membranes. The literature abound with numerical

studies of vesicles subjected to an imposed flow [152, 153, 60], but there exist few

numerical studies of vesicle electrohydrodynamics. Kolahdouz and Salac developed a

numerical approach to the electric field around a stationary vesicle in a DC electric

field in three-dimensional cartesian coordinates. They are in the early development
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of a numerical model for the dynamics of a vesicle in an electric field, based on the

three-dimensional immersed interface method. The axisymmetric numerical code in

this dissertation will be extended to simulate vesicles in DC or AC electric fields.

Initially, the focus will be on electro-neutral bulk fluid using the leaky dielectric

framework. Later on, electrokinetics effects will also be considered.

Solvents are known to destabilize lipid membrane in a DC electric field [78]. It

is reasonable to expect more complex dynamics and equilibrium shapes for a vesicle

immersed in electrolytes in an AC field. For example, a vesicle under an electric field

may have very different morphology that depends on the net charges in the bulk.

Numerical investigations will be conducted to determine how the morphological phase

diagram in Figure 4.6 may be altered by solvent electrokinetics.

After determining the effects of electrolytes on vesicles dynamics, the logical

next step will be to study the combined effects of an imposed flow and an electric

field on vesicles dynamics, which is a more realistic scenario for vesicles in experiments.

To the author’s knowledge, this problem has only been investigated analytically by

Schwalbe [134]. Numerical simulations have yet to be extended to this problem,

which is a critical step toward greater understanding of electrically-induced membrane

poration.



APPENDIX A

GENERALIZED EIGENFUNCTIONS

IN SPHEROIDAL COORDINATES

The generalized functions of E2 used to express the stream function in spheroidal

coordinates are

Ω
(1)
0 =−G0(ξ)G2(η)−G2(ξ)G0(η), (A.1)

Ω
(2)
0 =

1

3
G0(ξ)G3(η)−G2(ξ)G1(η), (A.2)

Ω
(3)
0 =

1

3
G3(ξ)G0(η)−G1(ξ)G2(η), (A.3)

Ω
(4)
0 =

1

3
G1(ξ)G3(η) +

1

3
G3(ξ)G1(η), (A.4)

Ω
(1)
1 =Ω

(4)
0 , (A.5)

Ω
(2)
1 =− Ω

(3)
0 , (A.6)

Ω
(3)
1 =− Ω

(2)
0 , (A.7)

Ω
(4)
1 =Ω

(1)
0 , (A.8)

Ω
(1)
2 =

2

25
G2(ξ)G4(η) +

2

25
G4(ξ)G2(η), (A.9)

Ω
(2)
2 =

2

25
G2(ξ)H4(η) +

2

25
G4(ξ)H2(η) +

1

6
G2(ξ)G1(η), (A.10)

Ω
(3)
2 =

2

25
H2(ξ)G4(η) +

2

25
H4(ξ)G2(η) +

1

6
G1(ξ)G2(η), (A.11)

Ω
(4)
2 =

2

25
H2(ξ)H4(η) +

2

25
H4(ξ)H2(η) +

1

6
G1(ξ)H2(η) +

1

6
H2(ξ)G1(η), (A.12)

Ω
(1)
3 =

2

49
G3(ξ)G5(η) +

2

49
G5(ξ)G3(η), (A.13)

Ω
(2)
3 =

2

49
G3(ξ)H5(η) +

2

49
G5(ξ)H3(η)− 1

90
G3(ξ)G0(η), (A.14)

Ω
(3)
3 =

2

49
H3(ξ)G5(η) +

2

49
H5(ξ)G3(η)− 1

90
G0(ξ)G3(η), (A.15)

Ω
(4)
3 =

2

49
H3(ξ)H5(η) +

2

49
H5(ξ)H3(η)− 1

90
G0(ξ)H3(η)− 1

90
H3(ξ)G0(η), (A.16)
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and for n = 4, 5, . . .

Ω(1)
n =

αn
2(2n− 3)

[Gn−2(ξ)Gn(η) +Gn(ξ)Gn−2(η)]

+
βn

2(2n+ 1)
[Gn+2(ξ)Gn(η) +Gn(ξ)Gn+2(η)] , (A.17)

Ω(2)
n =− αn

2(2n− 3)
[Gn−2(ξ)Hn(η) +Gn(ξ)Hn−2(η)]

+
βn

2(2n+ 1)
[Gn+2(ξ)Hn(η) +Gn(ξ)Hn+2(η)] , (A.18)

Ω(3)
n =− αn

2(2n− 3)
[Hn−2(ξ)Gn(η) +Hn(ξ)Gn−2(η)]

+
βn

2(2n+ 1)
[Hn+2(ξ)Gn(η) +Hn(ξ)Gn+2(η)] , (A.19)

Ω(4)
n =− αn

2(2n− 3)
[Hn−2(ξ)Hn(η) +Hn(ξ)Hn−2(η)]

+
βn

2(2n+ 1)
[Hn+2(ξ)Hn(η) +Hn(ξ)Hn+2(η)] . (A.20)

The coefficients αn and βn are given by

αn =
(n− 3)(n− 2)

(2n− 3)(2n− 1)
, n ≥ 4, (A.21)

βn =
(n+ 1)(n+ 2)

(2n− 1)(2n+ 1)
, n ≥ 4. (A.22)



APPENDIX B

SECOND-ORDER SMALL-DEFORMATION ANALYSIS

FOR A SPHERICAL DROP

Consider a leading-order perturbative solution around a sphere in the form

E = E∞ + E(0) + . . . , u = u(0) + u(1)(f, g) + . . . . (B.1)

The leading-order velocity field, u(0), described the flow about a spherical drop

generated by the imposed electric field, where f and g denote the drop deformation

and surfactant distribution, respectively. The term u(1) describes the flow driven by

capillary and Marangoni stresses, i.e., relaxation of the deformed drop and surfactant

back to the equilibrium spherical shape/uniform distribution. For the electric field

applied in the z-direction, the shape function rs and surfactant distribution are

expressed as

rs = r0

(
1 + f20

(
−1

3
+ cos2 θ

))
, Γ = Γeq

(
1 + g20

(
−1

3
+ cos2 θ

))
, (B.2)

where f20 and g20 are the leading-order coefficients of scalar spherical harmonics

(corresponding to j = 2 and m = 0 mode).

In the small-deformation analysis both the drop deformation and the deviation

of Γ from the uniform distribution are assumed to be small [156] therefore we use the

linear equation of state for the surface tension

γ(Γ) = 1 + Ẽ(1− Γ), (B.3)

where Ẽ ≡ (γ0 − γeq)/γeq. The relation between the capillary number based on the

clean drop surface tension and the capillary number based on the equilibrium surface

tension of the surfactant-covered drop is Ca0 = CaE(1 + Ẽ)−1, and the Marangoni

number Ma = ẼCa−1. The solution for E(0) and u(0) can be found in Refs. [155]
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and [133], and for u(1) in Refs. [156] and [133]. Combining these solutions one obtains

the evolution equation for the shape and surfactant:

df20

dt
=c202 + Ca−1

0 Cc(µr)f20 +Ma [Cmf (µr)f20 + Cmg(µr)g20] , (B.4)

dg20

dt
=c222 + Ca−1

0 Mc(µr)f20 +Ma [Mmf (µr)f20 +Mmg(µr)g20] . (B.5)

In the absence of surfactant, Ma = 0, and the evolution equations reduce to the Taylor

solution for a clean drop. In (B.4) and (B.5), the inhomogeneous term represents the

distortion of the drop shape and surfactant distribution by the straining EHD flow:

c202 =
9(5 + (6 + 5/σr)/σr + (5 + (9 + 5/σr)/σr − 19/εr)/µr − 16/εr)

(19/µr + 16)(2/µr + 3)(2 + 1/σr)2
, (B.6)

c222 =
27((3 + (13 + 3/σr)/σr − 19/εr)/µr + 2(1 + (6 + σr)/σr − 8/εr))

(19/µr + 16)(2/µr + 3)(2 + 1/σr)2
. (B.7)

The terms proportional to Ca−1
0 describe relaxation of the drop shape and surfactant

distribution driven by capillary stresses:

Cc(µr) = − 40µr(1 + µr)

(19 + 16µr)(2 + 3µr)
, Mc(µr) = − 24µr(3 + 2µr)

(19 + 16µr)(2 + 3µr)
. (B.8)

The terms proportional to Ma describe relaxation of the drop shape and surfactant

distribution driven by Marangoni stresses:

Cmf (µr) =
12µr(3 + 2µr)

((19 + 16µr)(2 + 3µr)
, Cmg(µr) =

2µr(1 + 4µr)

(19 + 16µr)(2 + 3µr)
, (B.9)

Mmf (µr) =
6µr(26 + 24µr)

((19 + 16µr)(2 + 3µr)
, Mmg(µr) = − µr(7 + 8µr)

(19 + 16µr)(2 + 3µr)
. (B.10)

One obtains the discriminating function from (B.4) and (B.5)

DL =
9((1 + 1/σr)

2 − 4/εr)

16(2 + 1/σr)2
, (B.11)
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where DL = 0 gives the boundary between prolate and oblate shapes on the (σr, εr)-

plane. Continuing on to the second order terms (omitted here), one obtains the

equilibrium drop deformation Deq ≡ a−b
a+b

as

Deq = DLCaE

[
1 +

1/σr(1/σr(139/σr + 264)− 696/εr + 111) + 336/εr − 154

80(1/σr + 2)3

]
.

(B.12)



APPENDIX C

DERIVATION OF THE GOVERNING EQUATION

FOR THE OBLATE SHAPE FUNCTION

The derivation of the governing equation for the shape function for prolate drop

subjected to a dc electric field was done by Zhang et al. However the authors did not

treat the case of oblate shapes. In the next few lines, the general governing equation

for the shape function is derived using the oblate spheroidal coordinates described

earlier.

Given the point, ~x = (x1(λ, η, φ), x2(λ, η, φ), x3(λ, η, φ)) in oblate spheroidal

coordinates, the scale factors are computed as hi =
∣∣∣ ∂~x∂qi ∣∣∣. The scale factors in oblate

spheroidal coordinates are

hλ = c

√
λ2 + η2

λ2 + 1
, hη = c

√
λ2 + η2

1− η2
, hζ = c

√
(λ2 + 1) (1− η2). (C.1)

The velocity at every point x = x(λ, η, c) on the droplet surface is

dx

dt
= hλ

dλ

dt
eλ + hη

dη

dt
eη +

x

dc

dc

dt
, (C.2)

where ei = 1
hi

∂x
∂qi

. If we only consider the normal velocity component, which is in the

direction of eλ, we obtain

vλ =
r0

3
√
λ2
o + 1(λ3

o + λo)1/3

3η2 − 1√
λ2
o + η2

dλo
dt
. (C.3)

The equation of a spheroid is given by
x2

1 + x2
2

b2
+
x2

3

a2
=

r2

b2
+
z2

a2
= 1, where

r = c
√

(λ2 + 1)(1− η2) and z = cλη. The principal radii of curvature for a figure of

revolution [39] are

R1 = (z′′)−1
[
1 + (z′)

2
]3/2

, R2 = r(z′)−1
[
1 + (z′)2

]1/2
, (C.4)

102



103

where the rotation is about the z axis and the derivatives z(i) ≡ diz
dri

. Solving for z,

then carrying out the differentiations and substituting into (C.4), one obtains

R1 =
c(λ2

o + η2)3/2

λo(λ2
o + 1)1/2

, R2 =
c(λ2

o + 1)1/2(λ2
o + η2)1/2

λo
, (C.5)

and the curvature of the oblate spheroid is

κ =
1

R1

+
1

R2

=
λo (2λ2

o + 1 + η2)

c(λ2
o + 1)1/2(λ2

o + η2)3/2
. (C.6)

Using the continuity of velocities and the kinematic equation, the coefficients

A1
3, B3

3 and B5
3 can be written in terms of A3

3 and λo:

A1
3 = A3

3H3 +Mλ′o, (C.7)

B3
3 =

−A3
3G5H

′
3 −MG′5λ

′
o

N
, (C.8)

B5
3 =

A3
3G3H

′
3 +MG′3λ

′
o

N
, (C.9)

where M = 2
3
c3 and N = G3G

′
5 −G′3G5.

We can eliminate A3
3 as an unknown by substituting the expressions of A1

3, B3
3 ,

and B5
3 above into the tangential stress balance,

1∫
−1

u · (JTξηK + JSξηK)hηhζdη = 0,

to get

A3
3 =
−εic [εr(−cE0 + αQ′1)(−cE0λo + αQ1) + λoβ

2
1 ] f11 + µi [(µr − 1) f12 + f13]Mλ′o

µi (µrf14 + f15)
.

(C.10)
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These expressions are then substituted into the normal stress balance to obtain

an ODE for the shape function

dλo
dt

=
QNf21 +QT λof11(µrf22+f23)

µrf14+f15
− γ0f24

2µi
3

(µrf25 + f26)
, (C.11)

QN =
εi
c2

[
−εr(−cE0 + αQ′1)2 − εr

(
−cE0 + α

Q1

λo

)2

− 2β2
1

]
, (C.12)

QT =
εi
c2

[
εr(−cE0 + αQ′1)

(
−cE0 + α

Q1

λo

)
+ b2

1

]
. (C.13)

In dimensionless form, the equation reads

dλo
dt

=
QNf21 +QT λof11(µrf22+f23)

µrf14+f15
− f24

2
3

(µrf25 + f26)
, (C.14a)

QN =
CaE
c2

[
−(−c+ αQ′1)2 −

(
−c+ α

Q1

λo

)2

− 2β2/εr

]
, (C.14b)

QT =
CaE
c2

[
(−c+ αQ′1)

(
−c+ α

Q1

λo

)
+ β2/εr

]
, (C.14c)

where the electric capillary number is CaE =
εer0E2

0

γ0
.



APPENDIX D

INTEGRALS IN THE SPHEROIDAL VESICLE MODEL

The functions f11(ξo)− f15(ξo) are given by

f11 =

∫
ηG3(η)

ξ2
o − η2

dη, (D.1)

f12 =
1

ξ2
o − 1

∫
G3(η)

(
2ηG′3(η)

(ξ2
o − η2)2

+
G′′3(η)

ξ2
o − η2

)
dη, (D.2)

f13 =
G′3G

′′
5 −G′5G′′3
2N

f11, (D.3)

f14 = −ξoH ′3
∫

ηG3(η)

(ξ2
o − η2)2

dη +
H ′′3
2
f11, (D.4)

f15 = ξoH
′
3

∫
ηG3(η)

(ξ2
o − η2)2

dη − (G3G
′′
5 −G5G

′′
3)H ′3

2N
f11, (D.5)

where N ≡ G3(ξo)G
′
5(ξo)−G′3(ξo)G5(ξo).

Furthermore, the functions f21(ξo)− f26(ξo) are given by

f21 =
ξ2
o

2

∫
(3η2 − 1)(η2 − 1)

ξ2
o − η2

dη, (D.6)

f22 = −H ′3
∫

(1− 3η2)(2η4 + ξ2
o − 3ξ2

oη
2)

(ξ2
o − η2)2

dη + 3H3ξo

∫
1− 3η2

ξ2
o − η2

dη, (D.7)

f23 = − 49

30N
G3H

′
3(1− 3ξ2

o) +H ′3

∫
(1− 3η2)(2η4 + ξ2

o − 3ξ2
oη

2)

(ξ2
o − η2)2

dη, (D.8)

f24 =
1

c

[
ξo(ξ

2
o − 1)1/2

∫
(3η2 − 1)

(ξ2
o − η2)3/2

dη +
ξo

(ξ2
o − 1)1/2

∫
(3η2 − 1)

(ξ2
o − η2)1/2

dη

]
, (D.9)

f25 = − ξo
ξ2
o − 1

∫
(1− 3η2)(2ξ2

o − η2 − 1)G′3(η)

(ξ2
o − η2)2

dη + 3ξo

∫
1− 3η2

ξ2
o − η2

dη

− (µr − 1)f12 + f13

µrf14 + f15

f22, (D.10)

f26 =
ξo

ξ2
o − 1

∫
(1− 3η2)(2ξ2

o − η2 − 1)G′3(η)

(ξ2
o − η2)2

dη − 49

30N
(1− 3ξ2

o)G
′
3

− (µr − 1)f12 + f13

µrf14 + f15

f22, (D.11)

fκ =
−72 + 106ξ2

o − 225ξ4
o + 135ξ6

o + 45ξ4
o (4− 3ξ2

o)
√
ξ2
o − 1 csc−1(ξo)

15c3ξ3
o(ξ

2
o − 1)2

. (D.12)
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The functions f11(λo)− f15(λo) in are given by

f11 =

∫
ηG3(η)

λ2
o + η2

dη, (D.13)

f12 =
1

λ2
o + 1

∫
G3(η)

(
−2ηG′3(η)

(λ2
o + η2)2

+
G′′3(η)

λ2
o + η2

)
dη, (D.14)

f13 =
G′3G

′′
5 −G′5G′′3
2N

f11, (D.15)

f14 = λoH
′
3

∫
ηG3(η)

(λ2
o + η2)2

dη − H ′′3
2
f11, (D.16)

f15 = −λoH ′3
∫

ηG3(η)

(λ2
o + η2)2

dη +
(G3G

′′
5 −G5G

′′
3)H ′3

2N
f11, (D.17)

where N ≡ G3(λo)G
′
5(λo)−G′3(λo)G5(λo).

Furthermore, the functions f21(λo)− f26(λo) are given by

f21 =
λ2
o

2

∫
(3η2 − 1)(η2 − 1)

λ2
o + η2

dη, (D.18)

f22 = H ′3

∫
(3η2 − 1)(λ2

o − 3λ2
oη

2 − 2η4)

(λ2
o + η2)2

dη + 3λoH3

∫
3η2 − 1

λ2
o + η2

dη (D.19)

f23 = −H ′3
∫

(3η2 − 1)(λ2
o − 3λ2

oη
2 − 2η4)

(λ2
o + η2)2

dη +
49

30N
(1 + 3λ2

o)g3H
′
3, (D.20)

f24 =
1

c

[
λo(λ

2
o + 1)1/2

∫
(1− 3η2)

(λ2
o + η2)3/2

dη +
λo

(λ2
o + 1)1/2

∫
(1− 3η2)

(λ2
o + η2)1/2

dη

]
, (D.21)

f25 =
λo

λ2
o + 1

∫
(3η2 − 1)(2λ2

o + η2 + 1)G′3(η)

(λ2
o + η2)2

dη + 3λo

∫
3η2 − 1

λ2
o + η2

dη

+
(µr − 1)f12 + f13

µrf14 + f15

f22, (D.22)

f26 = − λo
λ2
o + 1

∫
(3η2 − 1)(2λ2

o + η2 + 1)G′3(η)

(λ2
o + η2)2

dη +
49

30N
(1 + 3λ2

o)g
′
3

+
(µr − 1)f12 + f13

µrf14 + f15

f23, (D.23)

fκ =
72 + 106λ2

o + 225λ4
o + 135λ6

o − 45λ4
o (4 + 3λ2

o)
√
λ2
o + 1 coth−1(

√
λ2
o + 1)

15c3λ3
o(λ

2
o + 1)2

.

(D.24)



APPENDIX E

TRANSMEMBRANE POTENTIAL

The electric potential coefficients βe, αm, βm, αi are obtained from the boundary

conditions at ξ = ξe and ξ = ξi (see Figure 4.1):

1. Continuity of the potential:

φe(ξe) = φm(ξe), φm(ξi) = φi(ξi), (E.1)

2. Continuity of the normal component of the complex current density (4.9):

−Ke

hξ

∂φe
∂ξ

∣∣∣∣
ξe

= −Km

hξ

∂φm
∂ξ

∣∣∣∣
ξe

, −Km

hξ

∂φm
∂ξ

∣∣∣∣
ξi

= −Ki

hξ

∂φi
∂ξ

∣∣∣∣
ξi

. (E.2)

Condition 1 is justified because the normal component of the electric field must be

bounded [65, 49]. The remaining electric potential coefficients are given by:

αi =
cKeKm (ξiQ

′
i −Qi) (Qe − ξeQ′e)
D(ω)

, (E.3)

αm =
cKe (ξeQ

′
e −Qe) (KiQi −KmξiQ

′
i)

D(ω)
, (E.4)

βm =
cξiKe (Ki −Km) (Qe − ξeQ′e)

D(ω)
, (E.5)

βe =
cξiKe (Ki −Km)Qe

D(ω)

+
cξe (Ki(Km −Ke)Qi +Kmξi((Km −Ki)Q

′
e + (Ke −Km)Q′i))

D(ω)
, (E.6)

where

D(ω) = KeξeQ
′
e (−KiQi +KmξiQ

′
i)

+Qe

(
KiKmQi + (Ke −Km)(Ki −Km)ξiQ

′
e − ξiQ′iK2

m

)
, (E.7)

and Qe ≡ Q1(ξe), Qi ≡ Q1(ξi), Q
′
e ≡ Q′1(ξe), Q

′
i ≡ Q′1(ξi).
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APPENDIX F

MAXWELL STRESSES

To compute the Maxwell stress for a vesicle in an AC electric field (Chapter 4), note

that the coefficients in Equation (4.17) (prolate) or Equation (4.24) (oblate) of the

electric potential are complex valued. Substituting Eξ = −∂φ
∂ξ

, E∗ξ = −∂φ∗

∂ξ
, Eη = −∂φ

∂η
,

and E∗η = −∂φ∗

∂η
into 4.22, and calculating the jump, one obtains

JSξξK =
1

4c2

{
η2 (ξ2

o − 1)

ξ2
o − η2

(
c2 − 2cτ3Q

′
1 +

(
τ 2

3 + τ 2
4

)
(Q′1)

2
)

+
ξ2
o (η2 − 1)

ξ2
o − η2

(
c2 − 2cτ3Q1

ξo
+
(
τ 2

3 + τ 2
4

)(Q1

ξo

)2
)

−(τ 2
1 + τ 2

2 )

εr

(
η2 (ξ2

o − 1)

ξ2
o − η2

+
ξ2
o (η2 − 1)

ξ2
o − η2

)}
, (F.1)

and

JSξηK =
η

2c2

√
(ξ2
o − 1) (1− η2)

ξ2
o − η2

{(
c2ξo − c(Q1 + ξoQ

′
1)τ3 +

(
τ 2

3 + τ 2
4

)
Q1Q

′
1

)
−
(
τ 2

1 + τ 2
2

)
ξo/εr

}
, (F.2)

where τ1 = <[β], τ2 = =[β], τ3 = <[α], and τ4 = =[α]. <[ ] and =[ ] denote the real

and imaginary parts.

The equivalent equations in the oblate coordinates are

JSλλK =
1

4c2

{
η2 (λ2

o + 1)

λ2
o + η2

(
c2 − 2cτ3Q

′
1 +

(
τ 2

3 + τ 2
4

)
(Q′1)

2
)

+
λ2
o (η2 − 1)

λ2
o + η2

(
c2 − 2cτ3Q1

λo
+
(
τ 2

3 + τ 2
4

)(Q1

λo

)2
)

−(τ 2
1 + τ 2

2 )

εr

(
η2 (λ2

o + 1)

λ2
o + η2

+
λ2
o (η2 − 1)

λ2
o + η2

)}
, (F.3)
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and

JSληK =
η

2c2

√
(λ2

o + 1) (1− η2)

λ2
o + η2

{(
c2λo − c(Q1 + λoQ

′
1)τ3 +

(
τ 2

3 + τ 2
4

)
Q1Q

′
1

)
−
(
τ 2

1 + τ 2
2

)
λo/εr

}
. (F.4)



APPENDIX G

ASYMPTOTIC ANALYSIS

The coefficients in Equation (4.30) are as follows:

A = (2 + σr)
2 + 9ω2, (G.1)

B = 2σ2
r(2 + σr)

2 +
(
18σ2

r + C2
m(σr − 1)(2 + σr)

2(5 + 2σr)

+2Cmσr(σr + σ2
r − 2)

)
ω2, (G.2)

C = −2σ2
r(2 + σr)

3 (9CaE(19 + 13σr) + 560(2 + σr)(4 + s0))− 71680C2
mω

2

+(9CaE(2 + σr)
(
−6σ2

r(121 + 71σr) + Cm(σr − 1)σr(2 + σr)(130 + 107σr)

+C2
m(60 + 23σr)(σr + σ2

r − 2)2
)

+ 280
(
−72σ2

r(2 + σr)
2(4 + s0)

+C2
m (−64s0 − σr(4 + σr)(4 + σr(2 + σr))(12 + σr(6 + σr))(4 + s0))

)
)ω2

−9(−711CaECmσr(σr + σ2
r − 2) + 288σ2

r (6CaE + 35(4 + s0))

+5C2
m(2 + σr)

2(9CaE(σr − 1)2 + 112(2 + σr)
2(4 + s0)))ω4

−22680C2
m(2 + σr)

2(4 + s0)ω6, (G.3)

G = 3CaE
(
(2 + σr)

2 + 9ω2
) (

2σ2
r(2 + σr)

2 +
(
18σ2

r + C2
m(σr − 1)(2 + σr)

2(5 + 2σr)

+2Cmσr(σr + σ2
r − 2)

)
ω2
)
. (G.4)
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APPENDIX H

IMMERSED INTERFACE CONDITIONS

Here, the interface conditions needed for an immersed boundary in three-dimensional

axisymmetric coordinates are derived. Recall the local coordinates,

ξ = (r − r∗) cos θ + (z − z∗) sin θ, (H.1)

η = −(r − r∗) sin θ + (z − z∗) cos θ, (H.2)

and the parametric form of the interface ξ = χ(η).

One can differentiate the continuity of potential at the interface

φ+ = φ− (H.3)

with respect to η to obtain φ+
ξ χ
′ + φ+

η = φ−ξ χ
′ + φ−η , or

JφξKχ′ + JφηK = 0. (H.4)

Differentiating again with respect to η yields,

JφξξK(χ′)2 + 2JφξηKχ′ + JφξKχ′′ + JφηηK = 0. (H.5)

Evaluating (H.4) and (H.5) at η = 0 gives

JφηK = 0, (H.6)

JφξKχ′′ + JφηηK = 0. (H.7)

At a point (χ(η), η) of the interface, the unit normal vector n = (1,−χ′) and the

normal derivative of the potential ∂φ
∂n

=
φξ−φηχ′√

1+(χ′)2
. The jump in the normal derivative

of the potential becomes

σ+
(
φ+
ξ − φ

+
η χ
′) = σ−

(
φ−ξ − φ

−
η χ
′) . (H.8)
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Differentiating with respect to η gives

Jσ
(
φξξχ

′ + φξη − φηχ′′ − φξη(χ′)2 − φηηχ′
)
K = 0. (H.9)

Evaluating (H.8) and (H.9) gives

JσφξK = 0, (H.10)

Jσ (φξη − φηχ′′)K = 0. (H.11)

Summarizing the interface conditions, one gets

φ+ =φ−, (H.12)

φ+
ξ =ρφ−ξ , (H.13)

φ+
η =φ−η , (H.14)

φ+
ξξ =ρφ−ξξ − (1− ρ)χ′′φ−ξ + (ρ− 1)φ−ηη + (1− ρ)

sin θ

r
φ−η , (H.15)

φ+
ηη =φ−ηη + (1− ρ)χ′′φ−ξ , (H.16)

φ+
ξη =ρφ−ξη + (1− ρ)φ−η χ

′′, (H.17)

where ρ = 1
σr

. Equation (H.15) is derived from the differential equation. Denoting

∂x ≡ ∂
∂x

, one can write

∂r = cos θ∂ξ − sin θ∂η,

∂z = sin θ∂ξ + cos θ∂η,

∂rr = cos2 θ∂ξξ − 2 sin θ cos θ∂ξη + sin2 θ∂ηη,

∂zz = sin2 θ∂ξξ + 2 sin θ cos θ∂ξη + cos2 θ∂ηη,

and the governing PDE for the potential becomes

φξξ +
cos θφξ − sin θφη

r
+ φηη = 0. (H.18)
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Using (H.18), and expressing the potential φ+
ξξ in terms of φ−ξξ gives (H.15).

The local truncation error Tij of the finite difference in (5.18) is

Tij =γ1φ(ξ1, η1) + γ2φ(ξ2, η2) + γ3φ(ξ3, η3) + γ4φ(ξ4, η4) + γ5φ(ξ5, η5)

+ γ6φ(ξ6, η6)− Cij. (H.19)

Expanding all terms φ(ξk, ηk) about (0, 0) yields

φ(ξk, ηk) = φ± + ξkφ
±
ξ + ηkφ

±
η +

1

2
ξ2
kφ
±
ξξ + ξkηkφ

±
ξη +

1

2
η2
kφ
±
ηη +O(h3). (H.20)

Substituting (H.20) into Tij gives

Tij =a1φ
− + a2φ

+ + a3φ
−
ξ + a4φ

+
ξ + a5φ

−
η + a6φ

+
η + a7φ

−
ξξ + a8φ

+
ξξ

+ a9φ
−
ηη + a10φ

+
ηη + a11φ

−
ξη + a12φ

+
ξη, (H.21)

where

a1 =
∑
~x∈Ω−

γij, a2 =
∑
~x∈Ω+

γij

a3 =
∑
~x∈Ω−

γijξi, a4 =
∑
~x∈Ω+

γijξi

a5 =
∑
~x∈Ω−

γijηj, a6 =
∑
~x∈Ω+

γijηj

a7 =
∑
~x∈Ω−

γij
ξ2
i

2
, a8 =

∑
~x∈Ω+

γij
ξ2
i

2

a9 =
∑
~x∈Ω−

γij
η2
j

2
, a10 =

∑
~x∈Ω+

γij
η2
j

2

a11 =
∑
~x∈Ω−

γijξiηj, a12 =
∑
~x∈Ω+

γijξiηj.

Substituting (H.12)-(H.17) into (H.21), then requiring that the coefficients of

the terms φ−, φ−ξ , φ
−
η , φ

−
ξξ, φ

−
ηη, φ

−
ξη, all vanish one obtains the system of linear

equations for γk.
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For the more general case, w 6= 0 v 6= 0, the interface conditions read

φ+ = φ− + w, (H.22)

φ+
ξ = ρφ−ξ +

v

β+
, (H.23)

φ+
η = φ−η + w′, (H.24)

φ+
ξξ = ρφ−ξξ − (1− ρ)χ′′φ−ξ + (ρ− 1)φ−ηη + (1− ρ)

sin θ

x
φ−η (H.25)

+
vχ′′

β+
− w′′ − v cos θ

x
+
w′ sin θ

x
, (H.26)

φ+
ηη = φ−ηη + (1− ρ)χ′′φ−ξ + w′′, (H.27)

φ+
ξη = ρφ−ξη + (1− ρ)φ−η χ

′′ +
v′

β+
, (H.28)

Substituting the interface conditions above into the truncation error (H.21), one

obtains

T =(a1 + a2)φ− + [a3 + ρa4 + a10(1− ρ)χ′′ − a8(1− ρ)χ′′]φ−ξ (H.29)

+

[
a5 + a6 + a12(1− ρ)χ′′ + a8(1− ρ)

sin θ

x

]
φ−η (H.30)

+ [a7 + ρa8]φ−ξξ + [a9 + a10 + a8(ρ− 1)]φ−ηη + [a11 + ρa12]φ−ξη (H.31)

− Cij + T̂ij, (H.32)

where the correction term Cij = T̂ij and

T̂ij = a2w +

[
a6 + a12χ

′′ + a8
sin θ

x

]
w′ + [a10 − a8]w′′

+

[
a4

β+
+ (a8 − a10)

χ′′

β+
− a8

cos θ

β+x

]
v + a12

v′

β+
, (H.33)

The corresponding system of equations for the coefficients γk becomes is the

same as in the case of natural interface conditions (w = 0, v = 0).

Note that it is not necessary to use local coordinates with directions normal and

tangential to the interface. Alternatively, one could use Mayo’s technique, where the

jumps are found along the grid lines (see Figure H.1).
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Figure H.1 Computation of the jumps using Mayo’s technique [97] (left) or
the local coordinates [82] (right).



APPENDIX I

DERIVATION OF THE GOVERNING EQUATION FOR THE

PROLATE SHAPE FUNCTION WITH BILAYER STRUCTURE

Recall the stream function solutions,

ψe =
[
A1

3H1(ξ) + A3
3H3(ξ)

]
G3(η), (I.1)

ψi =
[
B3

3G3(ξ) +B5
3G5(ξ)

]
G3(η), (I.2)

where the coefficients A1
3−B5

3 are determined from the interfacial boundary conditions

at ξ = ξ0. Additionally, the governing equation for the vesicle shape, dξ0
dt

must also

be determined.

There are five unknowns to be determined. As a result, five equations are needed

to close the system.

Eq. 7.2 yields

A1
3 = A3

3H3 −Mξ′0, (I.3)

B3
3 =

Mξ′0 −B5
3G5

G3

. (I.4)

Substituting A1
3 and B3

3 into Eq. 7.3 gives

A3
3 =
−εecQ∆

T f11 + µif15B
5
3 − µi [(µr − 1)f12 − f13]Mξ′0
µiµrf17

, (I.5)

where

f12 =
1

ξ2
0 − 1

∫ (
2ηG′3(η)G3(η)

(ξ2
0 − η2)2

+
G′′3(η)G3(η)

ξ2
0 − η2

)
dη, (I.6)

f13 =
ξ0G

′
3

G3

∫
ηG3(η)

(ξ2
0 − η2)2

dη − G′′3
2G3

f11, (I.7)

f15 =
ξ0(G3G

′
5 −G′3G5)

G3

∫
ηG3(η)

(ξ2
0 − η2)2

dη − G3G
′′
5 −G′′3G5

2G3

f11, (I.8)

f17 = ξ0H
′
3

∫
ηG3(η)

(ξ2
0 − η2)2

dη − H ′′3
2
f11, (I.9)
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and

Q∆
T = (−cE0 + αQ′1) (−cE0ξ0 + αQ1)− ξ0β

2/εr. (I.10)

Substituting (I.3)-(I.5) into (7.4) gives

B5
3 =

T2Mξ′0 + T3

T1

. (I.11)

where

T1 =

(
f15f21

f17

+ f24

)
− b̃c

µi

(
f28 −

f15f26

µrf17

)
, (I.12)

T2 =
b̃c

µi

(
f27 +

[(µr − 1)f12 − f13] f26

µrf17

)
−
(

(µr + 1)f22 + f23 −
[(µr − 1)f12 − f13] f21

f17

)
, (I.13)

T3 =
εec

µi

(
b̃cQ∆

T f11f26

µiµrf17

+
Q∆
T f11f21

f17

−QΣ
Tf11

)
, (I.14)

and

QΣ
T = (−cE0 + αQ′1) (−cE0ξ0 + αQ1) + ξ0β

2/εr. (I.15)
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The functions f21 − f28 are given by

f21 = ξ0H
′
3

∫
ηG3(η)

(ξ2
0 − η2)2

dη − H ′′3
2
f11, (I.16)

f22 = f12, (I.17)

f23 = f13, (I.18)

f24 = f15, (I.19)

f25 =

∫
ηG3(η)√
ξ2

0 − η2
dη, (I.20)

f26 =
H ′3√
ξ2

0 − 1
f25, (I.21)

f27 =
G′3

G3

√
ξ2

0 − 1
f25, (I.22)

f28 =
(G3G

′
5 −G′3G5)

G3

√
ξ2

0 − 1
f25. (I.23)

Substituting (I.3)-(I.5), (I.11) into (7.5) gives the governing equation for the

dynamics of vesicle electro-deformation with discontinuous tangential velocities (7.6).

The functions f32 − f35 are

f32 = H ′3

∫
(2η4 + ξ2

0 − 3ξ2
0η

2)(1− 3η2)

(ξ2
0 − η2)2

dη − 3ξ0H3

∫
1− 3η2

ξ2
0 − η2

dη, (I.24)

f33 = 3ξ0

∫
1− 3η2

ξ2
0 − η2

dη − ξ0

ξ2
0 − 1

∫
(2ξ2

0 − η2 − 1)(1− 3η2)G′3(η)

(ξ2
0 − η2)2

dη, (I.25)

f34 = −G
′
3

G3

∫
(2η4 + ξ2

0 − 3ξ2
0η

2)(1− 3η2)

(ξ2
0 − η2)2

dη

+
ξ0

ξ2
0 − 1

∫
(2ξ2

0 − η2 − 1)(1− 3η2)G′3(η)

(ξ2
0 − η2)2

dη, (I.26)

f35 =
49

30
(1− 3ξ2

0)− (G3G
′
5 −G′3G5)

G3

∫
(2η4 + ξ2

0 − 3ξ2
0η

2)(1− 3η2)

(ξ2
0 − η2)2

dη. (I.27)
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[157] P. M. Vlahovska, R. S. Graciá, S. Aranda-Espinoza, and R. Dimova.
Electrohydrodynamic model of vesicle deformation in alternating electric
fields. Biophys. J., 96:4789, 2009.

[158] C. Wang, J. Wang, Q. Cai, Z. Li, H.-K. Zhao, and R. Luo. Exploring accurate
Poisson-Boltzman methods for biomolecular simulations. Comput. Theor.
Chem., 1024:34–44, 2013.

[159] X. Wang, X.-B. Wang, and P. R. C. Gascoyne. General expressions for
dielectrophoretic force and electrorotational torque derived using the maxwell
stress tensor method. J. Electrostatics, 39:277, 1997.

[160] M. Washizu, O. Kurosawa, I. Arai, S. Suzuki, and N. Shimamoto. Applications of
electrostatic stretch-and-positioning of DNA. IEEE Trans. Ind. Appl., 31:447–
456, 1995.



130

[161] M. Washizu, Y. Nikaido, O. Kurosawa, and H. Kabata. Stretching yeast chromosomes
using electroosmotic flow. J. Electrostatics, 57:395–405, 2003.

[162] E. D. Wilkes, S. D. Phillips, and O. A. Basaran. Computational and experimental
analysis of dynamics of drop formation. Phys. Fluids, 11:3577–3598, 1999.

[163] M. Winterhalter and W. Helfrich. Deformation of spherical vesicles by electric fields.
J. Coll. Int. Sci., 122:583–586, 1988.

[164] T. Yamamoto, S. Aranda-Espinoza, R. Dimova, and R. Lipowsky. Stability of
spherical vesicles in electric fields. Langmuir, 26:12390–12407, 2010.

[165] Q. Yang, B. Q. Li, and Y. Ding. 3D phase field modeling of electrohydrodynamic
multiphase flows. Inter. J. Multiphase Flow, 57:1–9, 2013.

[166] M. Yazdani and J. Seyed-Yagoobi. Heat transfer augmentation of parallel flows by
means of electric conduction phenomenon in macro- and microscales. J. Heat
Trans., 132:062402, 2010.

[167] J. D. Zahn and V. Reddy. Two phase micromixing and analysis using
electrohydrodynamic instabilities. Microfluid Nanofluid, 2:399–415, 2006.

[168] J. Zhang and D. Y. Kwok. A 2D lattice Boltzmann study on electrohydrodynamic
drop deformation with the leaky dielectric theory. J. Comput. Phys., 206:150–
161, 2005.

[169] J. Zhang, J. Zahn, and H. Lin. Transient solution for droplet deformation under
electric fields. Phys. Rev. E, 87:043008, 2013.

[170] J. Zhang, J. D. Zahn, W. Tan, and H. Lin. A transient solution for vesicle
electrodeformation and relaxation. Phys. Fluids, 25:071903, 2013.

[171] E. K. Zholkovskij, J. H. Masliyah, and J. Czarnecki. An electrokinetic model of drop
deformation in an electric field. J. Fluid Mech., 472:1–27, 2002.

[172] C. Zhou, P. Yue, and J. J. Feng. Formation of simple and compound drops in
microfluidic devices. Phys. Fluids, 18:092105, 2006.

[173] U. Zimmermann, U. Friedrich, H. Mussauer, P. Gessner, K. Hamel, and
V. Sukhoruhov. Electromanipulation of mammalian cells: fundamentals and
application. IEEE Trans. Plasma Sci., 28:72–82, 2000.

[174] U. Zimmermann and G. A. Neil. Electromanipulation of cells. CRC Press, Boca
Raton, FL, 1996.


	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Spring 2014

	Electro-deformation of a moving boundary: a drop interface and a lipid bilayer membrane
	Herve Nganguia
	Recommended Citation


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	ACknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Mathematical Formulation
	Chapter 3: Electro-Deformation of a Surfactant-Laden Drop
	Chapter 4: Electro-Deformation of a Vesicle in an AC Electric Field
	Chapter 5: Numerical Simulations of a Viscous Drop
	Chapter 6: Conclusion
	Chapter 7: Ongoing and Future WOrk
	Appendix A: Generalized Eigenfunctions in Spheroidal Coordinates
	Appendix B: Second-Order Small-Deformation Analysis for a Spherical Drop
	Appendix C: Derivation of the Governing Equation for the Oblate Shape Function
	Appendix D: Integrals in the Spheroidal Vesicle Model
	Appendix E: Transmembrane Potential
	Appendix F: Maxwell Stresses
	Appendix G: Asymptotic Analysis
	Appendix H: Immersed Interface Conditions
	Appendix I: Derivation of the Governing Equation for the Prolate Shape Function with Bilayer Structure
	Bibliography

	List of Tables
	List of Figures (1 of 4)
	List of Figures (2 of 4)
	List of Figures (3 of 4)
	List of Figures (4 of 4)


