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ABSTRACT

DATA ANALYSIS AND SIMULATION FOR WARRANTIES AND
GOLF HANDICAPS

by
Sonia Bandha

In this dissertation, we discuss the application of data analysis and numerical

simulation in order to gain insight into problems related to warranty cost management

and the effectiveness of the golf handicap system. Despite the commonalities of the

approaches, we will discuss these problems in turn.

For many moderately high value items with a substantial sales volume (such

as automobiles), a warranty is used as an important element of marketing products

as a better warranty typically signals higher product quality to customers. Much

recent research on modeling and optimization of servicing costs for Non-Renewing

Free Replacement Warranties (NR-FRW) assumes that the consumers’ usage profile

is known. Such an assumption is unrealistic for many consumer durables. In such

cases, it would be pragmatic to assume that the usage rate should be modeled by

a probability distribution. This research seeks to model and minimize the expected

costs of servicing strategies for NR-FRW; this is accomplished using a numerical

technique known as simulated annealing while considering a variety of usage rate

distributions. The relationship between the usage rate distribution and product

life-length is modeled using the Accelerated Failure Time (AFT) formulation. We

use a copula based approach to capture the adverse impact of increasing product

usage rate on its time-to-failure. We obtain a unique copula based on the marginal

distributions of both the usage rate and the product life-length, which we call the AFT

Copula. The underlying dependency of our copula is evaluated using non-parametric

measures of association. The Mean Time to First Failure (MTTF) indicates which

usage rate distributions most likely correspond to highly reliable products. We



found that certain warranty servicing strategies were more cost efficient than other

commonly used approaches. We use data analysis techniques on a traction motor

data set to study the practicality of our approach. The results obtained from this

data are in qualitative agreement with our previous results.

The ability of a golfer is measured by a player’s handicap which is an estimate

of his/her potential based on previously played games. The handicap system is

administered by the United States Golf Association (USGA); it is designed to enable

players of differing abilities to compete against each other on an equitable basis.

Most previous studies in golf have focused on analyzing golf scores. The goal of this

research is to study the effectiveness of the current handicapping system. We use the

AT&T Golf Tournament League data set for our study; this data set contains scores

and handicaps of golfers from almost 100 different tournaments. In this study, we

use data analysis methods including filtering to remove outliers and goodness of fit

tests to determine the most appropriate distribution for the golf scores. Because each

handicap requires a separate fit, we develop a technique of minimizing the average

ranks of the candidate distributions in order to obtain the single best distribution

for all handicaps. For this data set, the generalized extreme value distribution is the

most appropriate. In order to investigate the effectiveness of the handicap system, we

conduct simulations of competitions between golfers with varying handicaps based on

the empirical and fitted data for golf scores. These simulations indicate that a player

with a lower handicap has an advantage over a player with a higher handicap.
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CHAPTER 1

INTRODUCTION

Data analysis includes many techniques that help describe facts, detect patterns,

develop explanations, and test hypotheses. Simulation involves the use of the

computer to shed insight into problems for which analytic solutions are unavailable.

Both of these modes of inquiry are applicable in many areas. In this dissertation,

these approaches are used to study warranties and golf handicaps; despite the great

differences in these applications, many of the approaches used are common. The first

five chapters are related to warranties and last five are related to golf handicaps.

In Chapter 2, we briefly introduce the concept of warranties, present an overview

of the classification of warranties, discuss the types of repairs that a manufacturer

may use to remedy failures, and give a literature review about previous research on

warranties. Chapter 3 deals with the development of the repair strategy and the

formulation of the two-dimensional cost model. This chapter also highlights how the

warranty cost is sensitive to the usage rate with the help of copulas and the Mean

Time to First Failure (MTTF). Chapter 4 summarizes the simulation techniques.

The results are obtained for different servicing scenarios with an overall objective of

minimizing the warranty cost. Chapter 5 involves the use of data analysis to study

the traction motor data set to verify the practicality of our cost model. Chapter 6

provides the summary of the results and describes future work in optimizing warranty

costs.

In Chapter 7, we begin the portion of the dissertation on the golf handicap

system with a discussion of the golf handicap system along with the basic

terminologies used to calculate the handicap of a golfer. This chapter also includes a

discussion on application of order statistics to calculate the handicap index. Chapter 8
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uses the AT&T Golf Tournament League data set to analyze the golf scores. Chapter

9 describes a validation of the simulation approach based upon the data to observe

the behavior of the handicap indices. In Chapter 10, we conduct simulations of

competitions between golfers of differing handicaps based on the empirical and the

fitted data. Chapter 11 includes the summary of the simulations and describes future

work in analyzing golf handicaps.



CHAPTER 2

AN OVERVIEW OF WARRANTIES

In the automotive industry, modern manufacturing techniques and fierce competition

in the market have posed serious challenges to the manufacturer in terms of

differentiating its product from the competition. As a result, a warranty is used

as a tool to attract consumers in order to increase sales and revenue. Offering a

warranty results in additional costs to the manufacturer from the servicing of the

claims made by the consumers. In order to understand the concept of warranty,

this chapter highlights the importance of warranty from the viewpoint of both the

manufacturer and consumer. Along with this, different kinds of warranties and a brief

literature overview of strategies for servicing warranties will be discussed.

2.1 Introduction to Warranties

A warranty is a contractual obligation that serves as a manufacturer’s assurance to a

buyer of adequate product performance by requiring the manufacturer to rectify the

failures that may occur while the warranty coverage is in effect [1]. An item is said

to have failed if the item is not functioning satisfactorily during the given period of

time of the contract. In broad terms, the purpose of a warranty is to establish the

liability of the manufacturer that the product will perform the intended function for

a specified period of time. Consumers benefit by receiving assurance that any kind

of failure will be rectified [2]. Manufactures gain an effective promotional tool to sell

their product; they can differentiate their product by offering longer warranties versus

competitor selling a nearly identical product [2]. The warranty policy can provide

information regarding the product quality and reliability.

3
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2.1.1 Role of a Warranty

Warranties serve as an integral part of nearly all commercial and government

transactions involving purchase of products [1]. Rapidly developing new technologies,

fierce competition and exposure to a global marketplace are the characteristics of

modern manufacturing and sales, together with savvy and demanding consumers. A

consumer (customer/buyer) typically views a product in terms of its attributes, which

represents ‘a complex cluster of value satisfactions’ [2], which are not always easy to

quantify. From a producer’s (manufacturer/seller) viewpoint, offering a warranty

has cost implications that are additional to the costs of manufacturing, promotion,

marketing and other related costs that are accepted as standard business practices.

Since the costs of a base warranty are typically factored into the sale price as part

of the initial transaction; the manufacturer, for obvious reasons, has an incentive to

keep the costs of servicing warranties down.

The costs associated with offering a warranty are influenced by several factors

such as design reliability, the actual terms of the warranty, the usage intensity of

the item by the consumer, operating environment of the item and the logistics of

servicing the item; of these factors, only the design reliability of the product is

exclusively controlled by the manufacturer [3]. The reliability of a product depends on

decisions made during design and production phases, operating environment, usage

mode and intensity, and so forth [2, 3]. Statistically, it is defined as the probability

that the product is in function for a specified time period when operating under stated

conditions. Due to variations in the manufacturing, inherent and design reliability

can differ. For example, defective bearings in a washing machine can result in early

failure. Since the occurrence of failures is uncertain, it is critical to build up a model

to solve the problem of predicting failures over time. The kind of mathematical

formulation to be used depends on the system characterization and type of approach
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used. Therefore, modeling product failures requires probability distribution functions

to model time to first failure and counting processes to model subsequent processes.

2.1.2 Standard Nomenclature Used in a Warranty

When the performance of a product fails below the specified level, it is then considered

to have failed. The actions taken to rectify failures include either a replacement or

various types of repairs. Some of the commonly used terminologies in the warranty

research are discussed below.

Replacement/Perfect Repair : Under this strategy [2], the failed product is

replaced by an identical product from manufacturer’s stock of new products. This

type of rectification action has the advantage of restoring the product to its initial

stage. The corresponding rate of degradation of the product resulting from a

replacement is the same as for a new product.

Minimal Repair : Under this strategy [2], the condition of a product is restored

to its corresponding condition just prior to failure. Such repairs are often called “bad

- as - old”, while replacements are called “good - as - new” repairs.

Imperfect Repair : Under this strategy [2], a failed equipment is restored to a

condition intermediate between that achieved by a minimal repair and a replacement.

2.1.3 Classification of Warranties

We will discuss list of some standard classifications that are used in the warranty

literature.

One-Dimensional (1-D) and Two-Dimensional Warranties (2-D)

One-dimensional warranties [2] are characterized by an interval defined in terms of a

single variable which is most typically time or age. Two-dimensional warranties [2]

are categorized by time or age and usage.
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Renewing and Non-Renewing Warranties

A warranty is renewing [2] if the warranty begins again when a failed item is replaced

or otherwise repaired. A warranty is non-renewing [2] if repairs or replacement have

no impact on the warranty period. A warranty cycle for a renewing warranty starts

from the time of sale and is a random variable whose value depends on the warranty

period, the total number of failures under the warranty, and the actual failure times.

The majority of warranties are non-renewable in which the warranty cycle, which is

the same as the warranty period, is not random, but predetermined since the warranty

obligation will be terminated as soon as warranty period of time passes after the sale.

Free-Replacement Warranties (FRW)

Under free-replacement warranty, the manufacturer provides all repairs or

replacements at no charge. These sorts of warranties are usually combined with

renewing and non-renewing warranties in 1-D or 2-D. For instance, under a

Non-Renewing Free-Replacement Warranties (NR-FRW) [2] the manufacturer agrees

to repair or provide replacements for failed items free of charge up to the end of

the original warranty period. In comparison, under Renewing Free-Replacements

warranties, the manufacturer agrees to repair or provide a replacement free of charge

along with a new warranty under original terms and conditions.

Pro-Rated Warranties (PRW)

Pro-rated warranties [4, 5] refer to warranty policies in which the cost of servicing of

failed items under warranty is shared between the manufacturer and the consumer.

Such warranty policies charge a fixed percentage of warranty costs to the consumers

and the remaining percentage is incurred by the warranty provider. Pro-rated

warranties are therefore relatively more ‘manufacturer friendly’.

Group/Fleet Warranties

These refer to warranties that cover a group of similar items as a whole, which

are typically large commercial/governmental transactions (e.g., purchase of a fleet



7

of vehicles or aircraft) [4, 5]. A buyer’s preference for these warranties is based on the

convenience of having the entire fleet covered as a single unit. For the same reason,

a manufacturer may expect fewer claims since long lasting units in the group can

offset the cost of early failures. Group warranties can be thought of as extensions

of non-renewing FRW and PRW warranties covering multiple items with umbrella

coverage of all items in the group.

Extended Warranties

These are service contracts entered into between a buyer and a seller, with coverage

beginning when the base warranty expires [4, 5]. Such a contract is effective until a

later time than the original expiration time of the warranty, can be of any specified

duration, and is purchased separately from the item. Here are many variations for

the terms offered in practice by an extended warranty; extended warranties can be

identical to the base warranty or may contain other provisions (e.g. exclusions of

labor costs, cost sharing for parts etc.). Nowadays extended warranties are offered on

a wide range of products, including automobiles, electronics, appliances, and many

other items.

Reliability Improvement Warranties (RIW)

These extend a base warranty to include guarantees on product reliability as an

additional component of the corresponding contract [4, 5]. Such warranties are

meaningful for complex repairable systems intended for repeated or relatively long

period of use, or for systems which are mission critical where safety is paramount

(e.g., space shuttles). A RIW contract often includes a guaranteed and demonstrated

“mean time to failure” requirement with the contractors’ fees based on their ability

to deliver the corresponding reliability.
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2.2 Literature Review

The goal of our research is to model warranty costs from the manufacture’s point of

view. The costs associated with the warranty servicing are unpredictable since claims

and the cost to rectify the failed items are uncertain. Different types of warranty

policies are in common use for effective management of product warranty. A variety

of mathematical models have been developed and discussed in the literature to study

various aspects of warranties.

2.2.1 Literature Review of Warranty Servicing Cost

The first definitive reference handbook covering a variety of warranty policies and

mathematical models of various related engineering and management issues, was

published by Blischke and Murthy [5]. Blischke [6] provided a survey of cost models

which were proposed for different warranty situations. Blischke and Murthy presented

a three part paper review as a taxonomy for warranty policies ([7], [8] and [9]). The

first paper [7] proposed a taxonomy for warranty to assist the manager responsible

for product warranty in choosing appropriate alternatives for evaluation before a

final choice is made. The second review paper [8] presented an alternate forms of

system characterization for the study of warranties from three different perspectives,

those of the consumer, the manufacturer and the public policy decision-maker.

The third review paper [9] carried out a comprehensive review of these models by

classifying them into three categories based on consumer, manufacturer and public

policy decision maker perspectives. Murthy and Djamaludin [1] provided the next

comprehensive literature review of warranties and highlighted issues of interest to

manufacturers in the context of managing new products from an overall business

perspective. Historically the works and reviews referenced above are useful in a

practical sense; however, much of these have been recently supplemented by the work

of Blischke, Karim and Murthy [2] on warranty data collection and analysis. The
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warranty data collections book [2] covers additional topics such as product reliability

assessment methods as well as warranty claims data collection and their statistical

analysis and is more encyclopedic in scope relative to our research. Accordingly, the

rest of the literature review will focus on research literature on controlling expected

warranty servicing costs from the manufacturer’s point of view.

Biedenweg [10] proved that for non-renewing free replacement 1-D warranties

with rectification options as minimal repair or replacement, the optimal strategy

replaces a failed product with a new item for all failures occurring up to a certain

clock-time measured from the time of initial purchase, and rectifies all subsequent

failures by appropriate repair until the warranty expires. This idea of partitioning the

warranty period into two intervals corresponding to replacement period and a repair

period respectively was then fruitfully exploited and generalized by adding a third

interval to the partition (Nguyen and Murthy [11]) in which failures occurring in the

middle interval are rectified using a stock of used items. The three-interval partition

idea was also used by the same authors (Nguyen and Murthy [12]) to extend the

original two-interval model of Biedenweg by adding a third interval (middle interval)

where failed units are either replaced or minimally repaired and a new warranty is

given after every such repair (a variation of renewing warranty). In a subsequent

paper, Jack and Van der Schouten [13], conjectured the structure of the optimal (i.e.,

expected total cost minimizing) warranty servicing strategy under the set up first

proposed by Nguyen and Murthy (ibid.). Their conjecture was indeed proved several

years later by Jiang, Jardine and Lugitigheid [14].

Jack and Murthy [15] further pursued the cost implications of a strategy where

only minimal repairs are carried out for failures in the initial and terminal intervals,

with at most one replacement in the middle interval. It may be noted here that

while the optimal 1-D strategy as shown by Jiang et al.(ibid.) requires continuous

monitoring and is not easy to implement in practice; Jack and Murthy’s idea of
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pursuing the three interval strategy without a requirement of continuous monitoring

of the working unit is a pragmatic option. Its objective is to optimize the choice

of how and where to locate the boundaries of the middle interval. Although the

resulting cost minimizing policy is, strictly speaking, theoretically sub-optimal among

all possible warranty strategies; it may be nearly optimal under suitable configurations

of repair costs, warranty length, and life length parameters - a possibility that has

not been sufficiently explored. In any case, the corresponding three interval warranty

servicing strategy is well understood by the producers due to its simplicity and is

also easily explained to buyers; features that go a long way to earn acceptability

by both producers and consumers. Indeed, as recent literature suggests; by virtue

of its pragmatism and simplicity, the modeling and analysis of cost implications of

three-interval based strategies have become a benchmark for measuring the cost-

effectiveness of such strategies with different possible repair options.

An article by Iskander et al. [17] illustrated a new warranty servicing strategy

for items sold with two-dimensional warranty where the failed item is replaced by

a new one when it fails for the first time in a specified region of the warranty and

all other failures are repaired minimally. Jack et al. [18] provided a repair-replace

strategy for the manufacturer of a product sold with a two-dimensional warranty.

The strategy is based on a specified region of the warranty defined in terms of age

and usage with the first failure in the region rectified by replacement and all other

failures being minimally repaired. Yun et al. [19] investigated a corresponding model

for 1-D warranties which are sensitive to the usage rate via a strategy that allows

for various ‘degrees of repair’ including minimal repair and replacement as the two

extremes for rectifying the first failure in the middle interval. A distinguishing feature

of their approach is to allow the cost of an ‘imperfect repair’ to depend on the degree

of repair undertaken.
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The majority of research literature on modeling and optimization of warranty

servicing costs for non-renewing free warranties (NR - FRW) assume a constant and

known usage rate of the product by a customer. Such an assumption is unrealistic

for many moderately high-value products with substantial sales volumes (such as new

automobiles) where a customer’s use profile of the product may at best be statistically

known in terms of a usage rate distribution. Relatively little attention appears to have

been paid to investigate the cost of warranties from this aspect, with few exceptions

to the best of our knowledge. Jack et al. [18] mentions such a modeling possibility as

a passing remark without pursuing it any further. Chukova and Johnston [20] have

considered this modeling approach more explicitly, with the usage rate constant for

each customer. Chukova and Varnosafaderani [21] modeled warranty costs with a

probabilistically specified usage rate.

2.2.2 Warranty Cost Analysis

The first step in analyzing the cost of a warranty to a manufacturer is to model

product failures and associated costs either at component or product level [1]. In

1-D warranties, failures are modeled via a probability distribution which depends

on the nature of rectification action. For failures rectified with replacements, the

formulation follows a renewal process with replacement times being negligible. If all

failures are minimally repaired with repair times negligible then the formulation is

a non-stationary Poisson process with specified intensity function. In comparison

to the 1-D case, 2-D warranties have received less attention in terms of modeling

failures. In this case, failures are points in a plane with age plotted against usage.

One approach in 2-D uses a two-dimensional distribution function to model failures;

see Iskandar [22] and Murthy et al. [23]. Another approach involves modeling usage

as a function of time so that failures are effectively modeled by one-dimensional point
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process formulation [1]. Iskandar [22] used such an approach by suggesting a linear

model relating age and time.

In this dissertation, we have considered an alternative formulation for modeling

and analysis of warranty servicing costs: a consumer’s usage rate is assumed to be

constant, but unknown to the producer/seller of the product except via its marginal

distribution. For any specific consumer, the assumption of a constant usage rate is not

unrealistic at least up to a first approximation. Although the manufacturer may not

know and possibly can not ascertain a perspective consumer’s usage rate, sufficient

past data on warranty claims can enable the manufacturers to construct statistically

valid models of the product’s usage rate and times to failure.

2.3 Concluding Remarks

Reducing warranty costs is an issue of great interest to the manufacturers. In this

chapter, we have discussed the overview of warranties along with strategies adopted

previously to address the claims to rectify the failures. Next, we will discuss the

strategy adopted in this dissertation and evaluate the warranty servicing cost model

as a result of rectification of failures.



CHAPTER 3

WARRANTY MODEL FORMULATION

When a repairable item fails under warranty, the manufacturer has the option of

repairing it or replacing it with a new one. This chapter focusses on an approach to

model failures for the case of products sold with 2-D non-renewable free replacement

warranty (NR-FRW), given that usage rate of the customer is unknown to the

manufacturer. The failure pattern is influenced by the design of the product, the

manufacturing process, the intensity of usage by the consumer, as well as several other

uncontrollable factors. Since the failure patterns can not be determined precisely,

we will construct an appropriate probability model. Using this new approach to

model failures and claims under warranty, the overall expected warranty cost model

is evaluated.

3.1 Modeling Failures

For 2-D warranties, the effects of both age and usage play an important role in the

costs associated with the product degradation and failure. The usage can be the

output of the device (e.g., number of pages printed by photocopier), distance traveled

(e.g., miles covered by an automobile), or the amount of time the product has been

used (e.g., the number of hours vacuum cleaner has been used). We confine our

research to a two-dimensional warranty which expires when the item reaches an age

W or reaches a usage level, U whichever comes first. For example, the warranty offered

by an automobile manufacturer for a new automobile is typically 3 years and 36,000

miles. The two-dimensional (2-D) warranty offered at the time of sale is defined by

the rectangular warranty region [2] given by

Ω = [0,W )× [0, U) (3.1)
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Failures in two-dimensional warranties are random points scattered over the

defined warranty region. Hence, the cost analysis of these failures involves intricate

calculations. For a customer with a constant usage rate y, the effective warranty

period, is

W e = min(W,U/y) (3.2)

Figure 3.1 depicts two common cases for warranties expiration. A consumer with

a low usage rate has warranty expiring at the end of the warranties specified time

period W . On the other hand, a consumer with a relative high usage rate has warranty

expiration at U/Y < W [18].
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Figure 3.1 Effective warranty region for a given usage rate y.

3.1.1 Statistical Functions to Model Failures

We now introduce some of the statistical functions needed to model failures [2]. Let

T be a continuous random variable denoting the time to failure of an item with
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corresponding distribution function F (t), which is the probability that the item fails

before time t. f(t) = F ′(t) is the failure probability density function. The survival (or

reliability) function F̄ (t) (F̄ (t) = 1−F (t)) is used to evaluate the probability that the

item survives at least a given period of time t. The hazard function h(t) = f(t)/F̄ (t)

characterizes the effect of age on item failure more explicitly than F (t) or f(t). At

last, H(t) =
∫ t

0
h(t′) dt′ is the cumulative hazard function, also known as cumulative

failure rate function.

The approach to modeling failures assumes that the usage rate, denoted by Y ,

varies from customer to customer, is unknown, but is constant for a given customer.

Therefore, Y is a random variable that can be modeled using a probability density

function. Let g(y) denote the density function of usage rate. For a given usage rate

Y = y, the total usage of an item with an age x is given by u. The total usage is

then expressed as

u = yx, 0 ≤ u <∞ (3.3)

The conditional hazard function h(x|y) is the function of the time to first failure

for given the usage rate. The failures over time are modeled via a counting process

[2, 18] which is characterized via a conditional intensity function λy(x) which is a

non-decreasing function of x and y. For minimal repairs, λy(x) = h(x|y) [2, 18]. If

failed items are replaced by new ones, then this counting process is a renewal process

associated with conditional distribution F (x|y).

3.1.2 Modeling Product Failures

The usage intensity of a product varies across the consumer population. During the

design stage of the product, decisions are made about component reliabilities in order

to ensure that the product has the desired reliability at some nominal usage rate [18].

When the actual usage rate differs from this nominal value, the reliabilities of the
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components are affected which in turn affects the overall product reliability. With an

increase in usage rate, the rate of product degradation increases which accelerates the

time to failure. Consequently, an increase in usage rate leads to decrease in product

reliability.

The Accelerated Failure Time (AFT) model (Lawless et al. [24]) can be used

to model the effect of usage rate on reliability. Let y0 be the nominal usage rate

associated with time to first failure T0. As the usage rate changes to y, the time

to first failure becomes Ty. The following expression links the relationship between

product life length and usage rate:

Ty
T0

=

(
y0

y

)γ
(3.4)

where γ is an acceleration parameter such that γ ≥ 1.

The associated probability functions are now obtained. For initial time to failure

T0 and scale parameter α0, the associated conditional cumulative distribution function

is given by F0(x|α0). Effectively, for time to failure Ty, the scale parameter α(y) and

associated F (x|α(y)) are expressed as:

α(y) =

(
y0

y

)γ
α0 (3.5)

and

F (x|α(y)) = F0

((
y0

y

)γ
x

∣∣∣∣α0

)
. (3.6)

For the warranty cost model formulation (Jack et al. [18]) we will choose the

values: y0 = 1, α0 = 1 and γ = 2. Using the AFT formulation, (3.4) depicts the

existence of an inverse relationship between time to failure and usage rate. In order to

numerically compute the association between the two, we will use a Copula approach

[25] that links the relationship between usage rate and effective life length through

a probabilistic approach and non-parametric measures of association. An advantage
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of using this approach is that it allows the dependence relationship to be studied by

separating the marginal effects.

3.2 Copula Formulation

From the manufacturer’s viewpoint, for the case of an unknown usage rate of

customers, the warranty servicing cost must be averaged over the usage rate profile

of the target group of customers. It is here that copulas play a significant role in

capturing the impact of usage rate on the product life length for modeling warranty

costs. Below, we briefly summarize those salient facts and basic results for bivariate

copulas that will be required.

3.2.1 Introduction to Copulas

Copulas provide a convenient way to express joint distributions of two or more

random variables. The joint distribution can be separated into two contributions:

the marginal distributions of each variable by itself, and the copula that combines

these into a joint distribution. As per Nelsen [25], copulas are usually defined on the

unit square I2, where I = [0, 1].

Definition A two-dimensional function C from I2 to I is called a copula [25] if it

satisfies following properties:

1. For every u, v ε I,

C(u, 0) = C(0, v) = 0; C(u, 1) = u and C(1, v) = v

2. For every u1, u2, v1, v2 ε I such that u1 ≤ u2 and v1 ≤ v2,

C(u2,v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0

The next theorem plays the main role in the theory of copulas that describes the

relationship between the joint distribution function and the corresponding copula.
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Theorem 3.2.1. (Sklar’s Theorem) Let S be a joint distribution function with

margins F and G. Then, there exists a copula C such that for all x, y,

S(x, y) = C(F (x), G(y)) (3.7)

If F and G are continuous, then C is unique. Otherwise, the copula C is

uniquely determined on Range(F ) × Range(G). Conversely, if C is a copula and

F and G are distribution functions, then the function S defined above, is a joint

distribution function with margins F and G.

In virtue of Sklar’s theorem [25], (3.7) can be replicated for the product life

length X and usage rate Y with marginal distributions FX(x) and GY (y). The joint

distribution S of x and y, is expressed as

S(x, y) = C(FX(x), GY (y)) (3.8)

3.2.2 Copulas and Association

Dependence properties and measures of association are interrelated. The latter

numerically quantify the extent of dependence between the components of a random

vector. Since the copula corresponding to a joint distribution describes its dependence

structure, it might be appropriate to use measures of dependence which are

copula-based, so called measures of concordance. Among the most widely known

scale-invariant measures of association for copulas are the population versions of

Kendall’s tau (τ) and Spearman’s rho (%) that measure concordance [25, 26].

“Kendall’s tau” (τXY ) [25, 26] is the difference between the probabilities of

concordance and discordance for two independent and identically distributed pairs

(X1, Y1) and (X2, Y2) each with a common joint distribution S, i.e.,

τXY = P{(X1 −X2)(Y1 − Y2) > 0} − P{(X1 −X2)(Y1 − Y2) < 0}
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These probabilities can be evaluated by integrating over the distribution of (X2, Y2).

If C is the copula uniquely determined by (X, Y ), then one can show (see Nelsen [25])

that Kendall’s tau for (X, Y ) is given as:

τC = 4

[∫ 1

0

∫ 1

0

C(u, v) dC(u, v)

]
− 1 (3.9)

“Spearman’s rho” (%XY ) [25, 26] coefficient is associated with a pair (X, Y )

defined as

%XY = P{(X1 −X2)(Y1 − Y3) > 0} − P{(X1 −X2)(Y1 − Y3) < 0},

where (X1, Y1), (X2, Y2) and (X3, Y3) are three independent random vectors with

a common joint distribution function S. Hence %XY is the difference between the

probabilities of concordance and discordance of the random vectors (X1, Y1), (X2, Y3).

Note that, X1 and Y1 have a joint distribution S with an associated copula C whereas

X2 and Y3 are independent and identically distributed uniform (0, 1). In terms of a

copula C, Spearman’s rho(%C) is :

%C = 12

[∫ 1

0

∫ 1

0

(C(u, v)− uv) du dv

]
(3.10)

3.2.3 AFT Copula Family

Using the AFT-model formulation in combination with copula, we will now obtain a

unique copula, which we will refer to as the “family of AFT Copulas”. Such copulas

are of interest since they allow flexibility in the underlying dependency structure,

which can be particular summarized by Kendall’s τ and Spearman’s %. The effect of

usage rate on the product life length can be explained with the help of the copula.

The measures of association can be evaluated once the AFT copula is obtained.

As an illustration, we will derive the AFT copula assuming a uniform distribution

of the usage rate and Weibull AFT lifetimes conditional on rate of use y. Similar

AFT copulas can be obtained for different choices of distributions for usage rate
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such as gamma, normal, and Weibull distributions. Let x follow the Weibull failure

time distribution conditional on usage rate y with β as the shape parameter. The

corresponding distribution functions are:

F (x|y) = exp(−(x(yγ))β),

f(x|y) = −dF
dx

(x|y) = βyγβxβ−1 exp(−(x(yγ))β).

Hence, the joint probability density (of time to failure X and usage rate Y ) is:

s(x, y) = g(y)f(x|y)

= βyγβxβ−1 exp(−(x(yγ))β) g(y) x > 0, y > 0 (3.11)

The joint cumulative distribution function of (X, Y ) is then evaluated as:

S(x, y) =

∫ x

0

∫ y

0

s(t, r) dr dt

= β

∫ x

0

tβ−1

{∫ y

0

exp(−(t(rγ))β)rγβg(r) dr

}
dt, (3.12)

with marginal cumulative distribution function of time to failure X, given by

F (x) = P (X ≤ x, Y <∞) = S(x,∞).

Hence, the copula that uniquely corresponds to S(x, y) using Sklar’s theorem is

C(u, v) = S(F−1(u), G−1(v)) (3.13)

In particular, for uniform distribution on (a, b) for the usage rate, we get

C(u, v) = S(F−1(u), a+ (b− a)v),
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where x = F−1(u), 0 < u < 1, is the unique solution of u = S(x, b), such that

u =
β

b− a

∫ x

0

tβ−1

∫ b

a

exp(−(t(rγ))β)rγβ dr dt

=
1

b− a

∫ b

a

∫ x

0

tβ−1 exp(−(t(rγ))β) dt rγβ dr

=
1

b− a

∫ b

a

∫ (x(rγ))β

0

exp(−z) dz dr (setting (x(rγ))β = z)

=
1

b− a

∫ b

a

(1− exp(−(x(rγ))β)) dr (3.14)

The final form of the AFT copula is

C(u, v) =
β

b− a

∫ x

0

∫ a+(b−a)v

a

exp(−(t(rγ))β)tβ−1rγβ dr dt (3.15)

where x = F−1(u). Clearly, both F−1(u) and C(u, v) can be evaluated using numerical

methods, which will be discussed in later.

3.3 Warranty Servicing Strategy

The statistical functions and formula shown in Sections 3.1 and 3.2 are now used

to form the cost model. Modeling of expected costs in servicing warranties and

later minimizing these costs has been the main focus of research from manufacturer’s

perspective. While the problem of optimizing expected warranty costs can be

formulated as a finite horizon dynamic programming problem in continuous time;

typically the path to finding an optimal strategy exploits the specific features of the

problem at hand. In the warranty context, reasonably realistic models of product

failures and repair options typically make exact analytical answers unobtainable

and thus dictate the need for computational solutions in a discretized search

space. In this process, we must deal with the so called ‘curse of dimensionality’

in dynamic programming that refers to increasing computational complexity which
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grows exponentially with the dimension of the state variable, the number of available

(repair) options, and the relatively coarseness of the grid.

3.3.1 2-D Warranty Servicing Strategy

When a repairable product fails under warranty, the manufacturer has the option of

either repairing the failed item or replacing it by a new one. The first option costs

less than the second but the repaired item has a greater probability of failing during

the remainder of the warranty period. Therefore, it is important for the manufacturer

to choose an appropriate servicing strategy in order to minimize the expected cost of

servicing the warranty for each product sold.

The repair-replace strategy used here is similar to that used by Jack et al. [18]

which was initially introduced by Jack and Murthy [15]. According to this strategy,

the total effective duration of warranty period is split into three disjoint intervals

[0, K), [K,L), [L,W e) starting from the time of initial purchase, where 0 < K < L <

W e, with W e denoting the clock-time indicating the expiry of warranty.

The intuitive justification of the three-interval based strategy can be graphically

shown in Figure 3.2. The initial time interval [0, K) can be thought of as the time

period when a product is relatively young and relatively less prone to fail. Hence

choosing the costliest option of a new replacement for failures in this interval when

the product is “young” may not be justifiable. Similarly, for a product with degrading

profile of performance, a functioning product during the terminal interval [L,W e) is

“old” and has a high likelihood of failure; however, the end of the warranty period is

also rather soon, there is a lack of justification for fixes that are costlier than minimal

repairs. If the only failure remedies are replacements or minimal repairs, the case for

undertaking minimal repairs only during [0, K) and [L,W e) is quite clear. However,

the time interval [K,L) in the middle can be interpreted as time period when the

product is neither too young nor too old. In the previous studies, a replacement
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Figure 3.2 Graphical representation of warranty servicing strategy by splitting
the warranty into three disjoint intervals.

in [K,L) has been restricted to the first failure there in, if any. This choice seems

reasonable because (i) there is no obvious criterion to decide how many replacements

in [K,L) should we undertake and, (ii) the fact that number of replacements beyond

a critical threshold will make the warranty too expensive for the manufacturer.

3.3.2 Warranty Servicing Cost

For given usage rate y, the warranty of a product according to (3.2) will expire after

time W e as graphically demonstrated in Figure 3.1. The expected warranty servicing

cost under the repair-replace strategy can be obtained by calculating the conditional

servicing cost in each of the three intervals and then combining the results [18].
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Since the first and subsequent failures during the interval [0, K) are rectified via

minimal repairs, so the expected repair cost for this period is

cm

∫ K

0

h(x|y) dx = cmH(K|y) (3.16)

where cm is the cost of a minimal repair.

The expected warranty servicing cost for the middle interval [K,L) depends

on the occurrence of the first failure after time K. The first failure in the region is

rectified by replacement and all the subsequent failures being minimally repaired. If

X denotes the time at which the first failure occurs after time K while still lying in

the interval [K,L), then the expected warranty servicing cost conditional on X = x

is given by

cr + cm

∫ W e

x

h ((t− x) | y) dt = cr + cmH ((W e − x) | y) (3.17)

since the first failure results in the replacement by a new item. Here, cr is the cost of

the replacement; it is assumed that cm < cr.

For all failures after the time L, yet before W e, then the expected warranty cost

for rectifying these failures in the remainder of the warranty period is

cm

∫ W e

L

h(x|y) dx = cm[H (W e | y)−H (L | y)] (3.18)

Finally, the total expected warranty cost is given by I(K,L) which is the sum

of the conditional costs from the equations (3.16)-(3.18), each integrated over the

density function of usage rate g(y):

I(K,L) =

∫ ∞
0

{cmH(K|y)}g(y) dy (3.19)

+

∫ ∞
0

{
cm

F (K|y)

(∫ L

K

[ρ+H((W e − x)|y)]f(x|y) dx

)}
g(y) dy

+

∫ ∞
0

{
cm[H(W e|y)−H(L|y)]

F (L|y)

F (K|y)

}
g(y) dy
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The cost obtained in (3.19) is sensitive to the type of usage rate distribution

used and the association between product life-length and usage rate. Based on Mean

Time To First Failure (MTTF) [27], the most reliable usage rate distribution is

selected. Since the consumer’s usage rate is known via a probability distribution,

non-parametric measures of association such as Kendall’s tau and Spearman’s rho

are beneficial to depict the effect of usage rate on product life-length.

MTTF [27] is a reliability term based on methods and procedures for lifecycle

predictions for a product. MTTF is sometimes misunderstood to be the life of the

product instead of the expected values of the times to failure. Based on this value, it

is easy to judge the reliability of each of the distribution in addition to the resulting

lowered optimal warranty costs.

Reliability of an item can be defined as the probability that an item will perform

a defined function without failure under stated conditions for a stated period of time.

For an item at a given time x, reliability is described as

R(x) = P (X > x) (3.20)

In general, MTTF is calculated as

MTTF =

∫ ∞
0

R(x) dx (3.21)

Mean time to first failure in the context of warranties is redefined as

MTTF =

∫ ymax

ymin

∫ ∞
0

R(x | y)g(y) dx dy (3.22)

In (3.22), R(x|y) is the reliability function at time x for given usage rate

y and g(y) is the probability density function of the usage rate. Using this

expression, MTTF values for several common usage rate distributions are computed
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and compared to select the most reliable distribution. These distributions were all

selected to have same mean and variance.

Table 3.1 Mean Time to First Failure for the Usage Rate Distributions

Usage Rate Distribution Mean Time to First Failure

Uniform Distribution 1.7725

Normal Distribution 0.3356

Gamma Distribution 0.1705

Weibull Distribution 3.1953

From Table 3.1, it is observed that gamma distribution has the lowest value of

MTTF and Weibull distribution has the highest value of MTTF. This implies that if

the usage rate follows the gamma distribution, the warranty costs to service claims

will be highest in comparison to other distributions. In order to track and improve

the reliability of their products, manufacturing organizations must utilize an accurate

and concise method to specify and measure the reliability. The distribution of the

usage rate will clearly play an important role in warranty servicing costs.

We are unaware of the prior use of copulas to observe the effect of usage rate on

time to failure. Hence, the choice to use the copula here is novel. In the Section 3.2 of

Copula Formulation, we introduced non-parametric measures of association in context

of copulas. Using equations (3.7), (3.11) and (3.12) we can obtain the copula for each

of the usage rate distributions considered above. To verify our assumption about the

inverse relationship between usage rate and product life-length as expressed in (3.4),

we will compute the measures of association for each selected usage rate distributions.

Since Kendall’s tau and Spearman’s rho provide alternative measures of the same

association, we have included only the results for Kendall’s tau in Table 3.2. It

is observed that for each distribution, there is a higher negative value of Kendall’s
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tau indicating negative correlation between usage rate and product life-length. This

analysis is similar to that shown in the AFT formulation (3.4).

Table 3.2 Measure of Association Using Copula

Usage Rate Distribution Kendall’s Tau

Uniform Distribution -0.9938

Normal Distribution -0.8636

Gamma Distribution -0.7626

Weibull Distribution -0.8044

3.4 Concluding Remarks

In this chapter, we have discussed the servicing strategy adopted to obtain the

expression for expected warranty cost (3.19). Also, we have observed and evaluated

the factors affecting the cost function. Based on mean time to first failure, the usage

rate distribution which is most reliable can be determined. In addition, the correlation

between usage rate and product life-length is evaluated and a negative value is an

indicator of inverse relationship between the two. It is clear that in general the

optimal choice of K and L are not amenable to an analytic solution, but must be

obtained numerically, which is the topic of the next chapter.



CHAPTER 4

SIMULATION OF OPTIMAL WARRANTY COST

Optimizing warranty policies from the perspective of manufacturers is an area of

considerable managerial interest. Under a 2D warranty, policy we observed that the

expected warranty cost incurred in following the strategy adopted to rectify failures

depends on the parameters of the system and of the warranty itself. In this chapter,

we will discuss the numerical methods used to obtain optimal values at which the

cost can be minimized under the repair-replace strategy.

4.1 Numerical Procedures

Optimization of the warranty cost is performed using the numerical technique

known as simulated annealing [28]. Simulated annealing is a method for solving

unconstrained and bound - constrained optimization problems. This method, which

is based Markov Chain Monte Carlo techniques, mimics the physical process of heating

a solid material and then slowly cooling it by lowering its temperature to decrease

defects, thus minimizing the system energy which corresponds to ground state of

solid [28]. At each iteration of the simulated annealing algorithm, a new point as a

candidate solution is randomly generated. The distance of the new point from the

current point is based on a probability distribution with a scale proportional to the

temperature. The algorithm accepts all new points that lower the objective, but

also, with a certain probability, points that raise the objective. By accepting points

that raise the objective, the algorithm avoids being trapped in local minima in early

iterations and is able to explore globally for better solutions. Following this technique,

the cost function I(K,L) will be minimized at the optimal values K∗ and L∗ with

respect to K and L, respectively.

28
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Simulated annealing requires that after the integral expressions of cost in (3.19)

be evaluated. Since it is impossible to find an antiderivative for each of the integrals as

evaluated in equations (3.16) - (3.18), we have used a numerical integration technique

known as Romberg Integration to obtain an approximate solution [29]. The Romberg

numerical method is based on a Newton-Cotes formula that estimates the integral of

a function over a given interval by dividing the interval into 2k subregions estimating

the integral within each subregion, then summing the estimates [29]. Additionally to

evaluate the AFT copula function (3.15) and corresponding Kendall’s tau (3.9) and

Spearman’s rho (3.10), a quadrature numerical method based on recursive adaptive

Simpson rule is applied to approximate those integrals [31].

The analysis presented by Jack et al. [18] introduced the repair-replace strategy

and summarized the optimal warranty cost under the assumption of known usage

rate. Since such an assumption is unrealistic, we have extended the analysis with the

assumption that the usage profile of customers is known via probability distribution.

Our simulations proceed as follow: We begin by simulating a usage rate. The

optimization routine uses the numerical integration method to evaluate the cost in

(3.19) at each step as it finds the minimum cost. This process is repeated for various

usage rates and the results are averaged to obtain the mean cost.

4.2 Discussion of Results

In order to obtain the results, the warranty and reliability parameters are selected

suitable to the cost model and then the above numerical techniques are applied. Below

is the choice of parameters considered here.
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• Warranty Policy: W = 2 (years) and U = 2 (×104 km), so that U
W

= 1

• Design Reliability: y0 = 1(×104 km per year), α0 = 1 (year) and β = 2

• AFT Model: γ = 2

For the time to failure distribution, we used the Weibull distribution, as it

is commonly used in the literature. The distributions used for the usage rate

are uniform, normal, gamma and Weibull all having the same mean and variance

[30]. Since the usage rate must be confined to a finite interval, we have used

truncated versions of normal [31], gamma [32] and Weibull [33] distributions. The

moments of truncated normal, truncated gamma and truncated Weibull distributions

are computed using the formulae based in the article by J. W. Jawitz [30]. The

specific usage rate distributions along with their parameters are Uniform(0.1,5),

Normal(3.0656, 1.4587), Gamma(5.2477, 0.6559) and Weibull(1.1076, 2.3773).

We will divide our analysis into two parts: (a) Effect of usage rate, and (b)

Effect of cost ratio on the optimal warranty cost. The cost ratio is defined as the

ratio of cost of replacement to that of repairs ρ = cr
cm

with cm < cr. We will consider

the choice of these cost parameters as cm = 1 and cr = 2, so that ρ = 2. For a given

usage rate interval, the results in each case contain the values of K∗, L∗, I(K∗, L∗)

and W e where (∗) means the optimal value of the parameter and W e is the effective

warranty period.

For the results summarized in each of the tables, the optimal cost is obtained

using the warranty servicing strategy involving only minimal repairs and replacement.

The characterization of the optimal servicing strategy states that an upper bound to

this cost can be obtained by considering the situation when all the failures are rectified

only via minimal repairs. If Jm(y) is the expected cost for minimal repairs then
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Jm(y) =

 4y4, if y ≤ 1,

4y2, if y > 1.

The optimal cost I(K∗, L∗) is bounded above by the corresponding expected value of

minimal repair costs Jm(y) as

I(K∗, L∗) ≤
∫ ∞

0

Jm(y) dG(y). (4.1)

4.2.1 Effect of Usage Rate

In this section, we begin with the discussion of the results when the manufacturer uses

the same warranty servicing strategy regardless of the usage rate of the customer.

Table 4.1 Expected Cost of Overall Usage Interval

Distribution K∗ L∗ I(K∗,L∗) We Upper

Bound

Uniform 0.1901 0.3182 11.032 [0.4,2] 33.905

Normal 0.1885 0.3263 11.711 [0.4,2] 38.3240

Gamma 0.1883 0.3290 12.0589 [0.4,2] 39.8204

Weibull 0.1874 0.3084 5.2968 [0.4,2] 19.4096

Table 4.1 shows that how the optimal warranty servicing cost is affected by the nature

of distribution of the usage rate. In each case, the overall cost is less than the upper

bound in (4.1) as expected. Additionally, it is clearly visible that the optimal warranty

servicing cost is lowest for the Weibull distribution. This also agrees with our intuition

since the MTTF in Table 3.1 was the greatest for the Weibull distribution.

It seems quite natural for a manufacturer to use different warranty servicing

strategies for customers with differing product usage rates for a number of reasons.

A single interval places the replacement interval at very different position in the

life-length interval of a product for heavy user versus a light user. Also, heavy users
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of a product have a shorter effective warranty period. However, its is not practical

for a manufacturer to have a unique warranty servicing strategy for every customer.

Thus, it seems natural for a manufacturer to categorize customers according to usage

rate [34]. For example, in a three category system, customer could be thought of as

low, medium, or heavy users.

The optimal costs are obtained here for all the usage rate distributions for both

a three and six category system with categories determined by a regular partition of

the range of possible usage rates. In each case, the results for categorized treatment

are compared with those obtained from the overall interval. In order to compare the

overall costs varying categorizations, we have computed the overall weighted expected

cost for the case of categorized treatment.
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Case : Usage Rate: Uniform Distribution

Table 4.2 Optimal Warranty Servicing Cost for Overall Interval and
Categorized Treatment

Optimal Cost for Overall Interval

y K∗ L∗ I(K∗,L∗) We

0.1 < y < 5 0.1901 0.3182 11.032 [0.4,2]

Expected Cost for Three Equally Probable Sub-Intervals

y K∗ L∗ I(K∗,L∗) We

0.1 < y < 1.7333 0.4461 0.8829 0.6410 [1.1539,2]

1.7333 < y < 3.3667 0.2709 0.5292 3.3866 [0.5940,1.1539]

3.3667 < y < 5 0.1928 0.3403 9.1413 [0.4,0.5940]

Weighted Optimal Cost of the Sub-Intervals = 4.3905

Optimal Cost for Six Equally Probable Sub-Intervals

y K∗ L∗ I(K∗,L∗) We

0.1 < y < 0.9166 2.08E-04 2.95E-04 0.1056 2

0.9166 < y < 1.7333 0.4466 0.9317 0.5947 [1.1538,2]

1.7333 < y < 2.5500 0.3420 0.7353 1.3481 [0.7843,1.1538]

2.5500 < y < 3.3667 0.2774 0.5577 2.5176 [0.5941,0.7843]

3.3667 < y < 4.1834 0.2294 0.4649 4.1329 [0.4781,0.5941]

4.1834 < y < 5 0.1946 0.3370 6.1917 [0.4,0.4781

Weighted Optimal Cost of the Sub-Intervals = 2.4823
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Case : Usage Rate: Normal Distribution

Table 4.3 Optimal Warranty Servicing Cost for Overall Interval and
Categorized Treatment

Optimal Cost for Overall Interval

y K∗ L∗ I(K∗,L∗) We

0.1 < y < 5 0.1885 0.3263 11.711 [0.4,2]

Expected Cost for Three Sub-Intervals

y K∗ L∗ I(K∗,L∗) We

0.1 < y < 1.7333 0.4520 0.9174 0.5029 [1.1539,2]

1.7333 < y < 3.3667 0.2714 0.5248 4.8576 [0.5940,1.1539]

3.3667 < y < 5 0.192 0.389 9.0935 [0.4,0.5940]

Weighted Optimal Cost of the Sub-Intervals = 5.6309

Optimal Cost for Six Sub-Intervals

y K∗ L∗ I(K∗,L∗) We

0.1 < y < 0.9166 0.0066 0.0066 0.0462 2

0.9166 < y < 1.7333 0.4504 0.9505 0.4824 [1.1538,2]

1.7333 < y < 2.5500 0.3452 0.7243 1.7128 [0.7843,1.1538]

2.5500 < y < 3.3667 0.2776 0.5606 3.7578 [0.5941,0.7843]

3.3667 < y < 4.1834 0.2292 0.3898 5.3941 [0.4781,0.5941]

4.1834 < y < 5 0.1944 0.3362 5.2426 [0.4,0.4781]

Weighted Optimal Cost of the Sub-Intervals = 3.3050
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Case : Usage Rate: Gamma Distribution

Table 4.4 Optimal Warranty Servicing Cost for Overall Interval and
Categorized Treatment

Optimal Cost for Overall Interval

y K∗ L∗ I(K∗,L∗) We

0.1 < y < 5 0.1883 0.3290 12.0589 [0.4,2]

Optimal Cost for Three Sub-Intervals

y K∗ L∗ I(K∗,L∗) We

0.1 < y < 1.7333 0.4544 0.9549 0.4707 [1.1539,2]

1.7333 < y < 3.3667 0.271 0.53 5.3464 [0.5940,1.1539]

3.3667 < y < 5 0.1921 0.3806 9.1855 [0.4,0.5940]

Weighted Optimal Cost of the Sub-Intervals = 6.1699

Optimal Cost for Six Sub-Intervals

y K∗ L∗ I(K∗,L∗) We

0.1 < y < 0.9166 0.0158 0.0158 0.0169 2

0.9166 < y < 1.7333 0.4516 0.9668 0.4632 [1.1538,2]

1.7333 < y < 2.5500 0.3453 0.7262 1.9901 [0.7843,1.1538]

2.5500 < y < 3.3667 0.2772 0.5898 4.0691 [0.5941,0.7843]

3.3667 < y < 4.1834 0.2292 0.4339 5.3798 [0.4781,0.5941]

4.1834 < y < 5 0.1945 0.3143 5.3444 [0.4,0.4781]

Weighted Optimal Cost of the Sub-Intervals = 3.6096
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Case : Usage Rate: Weibull Distribution

Table 4.5 Optimal Warranty Servicing Cost for Overall Interval and
Categorized Treatment

Optimal Cost for Overall Interval

y K∗ L∗ I(K∗,L∗) We

0.1 < y < 5 0.1874 0.3084 5.2968 [0.4,2]

Optimal Cost for Three Sub-Intervals

y K∗ L∗ I(K∗,L∗) We

0.1 < y < 1.7333 0.4499 0.8642 0.9177 [1.1539,2]

1.7333 < y < 3.3667 0.2674 0.5256 2.7503 [0.5940,1.1539]

3.3667 < y < 5 0.1921 0.3652 3.6686 [0.4,0.5940]

Weighted Optimal Cost of the Sub-Intervals = 1.8796

Optimal Cost for Six Sub-Intervals

y K∗ L∗ I(K∗,L∗) We

0.1 < y < 0.9166 0.0073 0.0073 0.1846 2

0.9166 < y < 1.7333 0.4454 0.9191 0.8373 [1.1538,2]

1.7333 < y < 2.5500 0.342 0.7265 1.3943 [0.7843,1.1538]

2.5500 < y < 3.3667 0.2767 0.5818 1.8482 [0.5941,0.7843]

3.3667 < y < 4.1834 0.2292 0.4668 2.1092 [0.4781,0.5941]

4.1834 < y < 5 0.1945 0.3779 2.1625 [0.4,0.4781]

Weighted Optimal Cost of the Sub-Intervals = 1.0552
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Tables 4.2-4.5 display the optimal costs for overall and stratified intervals. It

is noted that the optimal cost for the single usage rate interval is around double

the overall cost for the three category system and triple the overall cost for the six

category system. Thus, an increase in the sub-intervals (categories of customers)

lower the overall cost for the manufacturer. Similar to our observation in Table

4.1, it is also noted that among the usage rate distributions the overall cost for

the Weibull distribution is the lowest and for the gamma distribution is highest.

This is in agreement with our results for MTTF in Section 3.3. These results also

demonstrate how sensitive the value of optimal warranty cost is to the type of usage

rate distribution.

4.2.2 Effect of Cost Ratio

In this section, we study the impact of an increase in cost ratio on the optimized

cost. The optimization results in the previous section are evaluated using a cost

ratio of replacement to repairs of 2, i.e., ρ = 2. Next, for the sake of simplicity

we, will consider the possible choices of cost ratio as ρ = 7, 15. The results are given

below for the same usage rate distributions for overall usage interval and the stratified

sub-intervals of the usage rate interval.
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Case : Usage Rate: Uniform Distribution

Table 4.6 Optimal Warranty Servicing Cost for Observing the Effect of
Cost Ratio

(a) Optimal Warranty Servicing Cost for Overall Usage Interval

ρ K∗ L∗ I(K∗,L∗)

2 0.190 0.319 11.032

7 0.193 0.231 13.870

15 0.194 0.210 17.334

(b) Optimal Warranty Servicing Cost for Categorized Treatment

Cost Ratio ρ = 2

y K∗ L∗ I(K∗,L∗) We

0.1 < y < 1.7333 0.4461 0.8829 0.6410 [1.1539,2]

1.7333 < y < 3.3667 0.2709 0.5292 3.3866 [0.5940,1.1539]

3.3667 < y < 5 0.1928 0.3403 9.1413 [0.4,0.5940]

Cost Ratio ρ = 7

y K∗ L∗ I(K∗,L∗) We

0.1 < y < 1.7333 1.33E-04 1.90E-04 0.8502 [1.1539,2]

1.7333 < y < 3.3667 0.2782 0.3466 4.8709 [0.5940,1.1539]

3.3667 < y < 5 0.1928 0.3527 10.8079 [0.4,0.5940]

Cost Ratio ρ = 15

y K∗ L∗ I(K∗,L∗) We

0.1 < y < 1.7333 3.51E-05 7.32E-05 0.8502 [1.1539,2]

1.7333 < y < 3.3667 3.22E-05 5.09E-05 6.0049 [0.5940,1.1539]

3.3667 < y < 5 0.1931 0.2393 13.4692 [0.4,0.5940]
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Case : Usage Rate: Normal Distribution

Table 4.7 Optimal Warranty Servicing Cost for Observing the Effect of
Cost Ratio

(a) Optimal Warranty Servicing Cost for Overall Usage Interval

ρ K∗ L∗ I(K∗,L∗)

2 0.1885 0.3263 11.711

7 0.1915 0.2315 15.2059

15 0.1967 0.2101 19.1773

(b) Optimal Warranty Servicing Cost for Categorized Treatment

Cost Ratio ρ = 2

y K∗ L∗ I(K∗,L∗) We

0.1 < y < 1.7333 0.4520 0.9174 0.5029 [1.1539,2]

1.7333 < y < 3.3667 0.2714 0.5248 4.8576 [0.5940,1.1539]

3.3667 < y < 5 0.192 0.389 9.0935 [0.4,0.5940]

Cost Ratio ρ = 7

y K∗ L∗ I(K∗,L∗) We

0.1 < y < 1.7333 5.53E-05 8.17E-05 0.6962 [1.1539,2]

1.7333 < y < 3.3667 0.2772 0.3518 6.9252 [0.5940,1.1539]

3.3667 < y < 5 0.1920 0.3990 10.9311 [0.4,0.5940]

Cost Ratio ρ = 15

y K∗ L∗ I(K∗,L∗) We

0.1 < y < 1.7333 2.52E-05 4.51E-05 0.6962 [1.1539,2]

1.7333 < y < 3.3667 0.0045 0.0045 8.6808 [0.5940,1.1539]

3.3667 < y < 5 0.1925 0.2359 13.8624 [0.4,0.5940]
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Case : Usage Rate: Gamma Distribution

Table 4.8 Optimal Warranty Servicing Cost for Observing the Effect of
Cost Ratio

(a) Optimal Warranty Servicing Cost for Overall Usage Interval

ρ K∗ L∗ I(K∗,L∗)

2 0.1881 0.3286 12.0589

7 0.1916 0.2303 15.7316

15 0.1945 0.2073 19.7789

(b) Optimal Warranty Servicing Cost for Categorized Treatment

Cost Ratio ρ = 2

y K∗ L∗ I(K∗,L∗) We

0.1 < y < 1.7333 0.4520 0.9174 0.5029 [1.1539,2]

1.7333 < y < 3.3667 0.2714 0.5248 4.8576 [0.5940,1.1539]

3.3667 < y < 5 0.192 0.389 9.0935 [0.4,0.5940]

Cost Ratio ρ = 7

y K∗ L∗ I(K∗,L∗) We

0.1 < y < 1.7333 2.48E-05 4.69E-05 0.6755 [1.1539,2]

1.7333 < y < 3.3667 0.2778 0.3511 7.6609 [0.5940,1.1539]

3.3667 < y < 5 0.1921 0.3414 11.0342 [0.4,0.5940]

Cost Ratio ρ = 15

y K∗ L∗ I(K∗,L∗) We

0.1 < y < 1.7333 3.66E-05 5.66E-05 0.6755 [1.1539,2]

1.7333 < y < 3.3667 1.08E-05 2.27E-05 9.5293 [0.5940,1.1539]

3.3667 < y < 5 0.1924 0.2357 13.9828 [0.4,0.5940]



41

Case : Usage Rate: Weibull Distribution

Table 4.9 Optimal Warranty Servicing Cost for Observing the Effect of
Cost Ratio

(a) Optimal Warranty Servicing Cost for Overall Usage Interval

ρ K∗ L∗ I(K∗,L∗)

2 0.1874 0.3084 5.2968

7 0.1923 0.2226 6.9770

15 0.2041 0.2144 8.6152

(b) Optimal Warranty Servicing Cost for Categorized Treatment

Cost Ratio ρ = 2

y K∗ L∗ I(K∗,L∗) We

0.1 < y < 1.7333 0.4499 0.8642 0.9177 [1.1539,2]

1.7333 < y < 3.3667 0.2674 0.5256 2.7503 [0.5940,1.1539]

3.3667 < y < 5 0.1921 0.3652 3.6686 [0.4,0.5940]

Cost Ratio ρ = 7

y K∗ L∗ I(K∗,L∗) We

0.1 < y < 1.7333 0.13E-04 1.32E-04 1.1924 [1.1539,2]

1.7333 < y < 3.3667 0.2795 0.3391 4.0468 [0.5940,1.1539]

3.3667 < y < 5 0.1921 0.3601 4.4025 [0.4,0.5940]

Cost Ratio ρ = 15

y K∗ L∗ I(K∗,L∗) We

0.1 < y < 1.7333 1.64E-05 5.30E-05 1.1924 [1.1539,2]

1.7333 < y < 3.3667 1.96E-05 4.67E-05 4.7894 [0.5940,1.1539]

3.3667 < y < 5 0.1932 0.2371 5.5731 [0.4,0.5940]
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Tables 4.6-4.9 demonstrate the results observing the effect of cost ratio for

overall and stratified usage rate interval. The impact of cost ratio has similar trend

for both the uncategorized and categorized treatment. As the cost ratio increases

from 2 to 15, i.e., increasing the cost of replacement, it becomes expensive to service

the failures as would be expected. Numerically, the replacement interval shrinks to

zero as cost ratio increases indicating that the manufacturer will rectify failures only

though minimal repairs. For example, from Table 4.6(a) for ρ=2, the interval length

for replacement is 0.129 whereas for ρ=15 the interval length for replacement becomes

0.016.

4.3 Concluding Remarks

In this chapter, we have observed how the categorized treatment in comparison to

uncategorized treatment results in lower warranty servicing costs for a manufacturer.

Increasing the cost ratio leads to higher warranty servicing costs and eventually

shrinks the replacement interval to zero. The overall objective of our research is

achieved by investigating the best choice of usage rate distribution that minimizes

the optimal warranty cost. In the next chapter, to illustrate practicality of our model

we will calculate the optimal warranty cost using a data set.



CHAPTER 5

OPTIMAL WARRANTY COSTS BASED UPON DATA ANALYSIS

Using the repair-replace model for addressing the failures of repairable products,

we set up a cost model in Chapter 3. We then studied various warranty servicing

strategies for many different usage rate distributions in Chapter 4. We now apply our

model to a product for which a data set is available.

5.1 Description of Data

The data under consideration here is taken from the maintenance records of a

locomotive traction motor [35]. The data set includes the time since inception of

service and miles accumulated by different traction motors when they were returned

to the maintenance depot upon failing. There are a total of 147 failures recorded in

this data set, of which only the first 40 arrive at the depot [35]. It is assumed that a

free replacement warranty has been provided by the manufacturer to cover first 500

days and 20,000 miles after the motor is sold.

5.2 Preliminary Data Analysis

Prior to application of warranty model on the given data, it is important to inspect the

data by verifying the source of the data as well as the data itself includes the variables

and units of the measurements [36]. The objectives of preliminary data analysis is to

summarize the information content of the data in an easily understood format with

the help of descriptive statistics, represent the data graphically, and prepare the data

for detailed statistical analysis.

Descriptive statistics [37] describe the basic features of the data considered in

a study, and also provide simple summaries about the sample and the descriptive

measures together with graphical analysis to form the basis of quantitative analysis

43
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of the data. Some measures that are commonly used to describe a data set are

measures of central tendency and measures of variability or dispersion. Measures of

central tendency include the mean, median, and mode, while measures of variability

include the standard deviation (or variance), the minimum and maximum values of

the variables, skewness, and kurtosis. Skewness is a measure of symmetry, or more

precisely, lack of symmetry. As a general rule, for data skewed to the right, the mean

will be greater than the median and vice versa for the data skewed to the left. Kurtosis

is a measure of whether the data are peaked or flat relative to the normal distribution.

The reference standard is a normal distribution, which has kurtosis of 3. Data sets

with high kurtosis (leptokurtic) tend to have a distinct peak near the mean, decline

rather rapidly, and have heavy tails and with low kurtosis (platykurtic) tend to have

a flat top near the mean rather than a sharp peak. Another measure of variability is

indicated via the quartiles Q1 (25%), Q2 (50%) and Q3 (75%) that divide the data

set into four equal groups, each group comprising a quarter of the data. Table 5.1

presents the descriptives for both the time to failure and usage rate. The data for

time to failure indicates positive skewness and high kurtosis which shows that the

notion of normal distribution can not be applied. The usage rate data has negative

skewness and high kurtosis which also indicates that it is not normally distributed.

Table 5.1 Descriptive Statistics of Time to Failure and Usage Rate for the
Original Data

Time to Failure

Sample Size Mean Std. Dev Skewness Kurtosis Q1 Q2 Q3

40 0.6477 0.7255 1.9916 6.9180 0.1219 0.4520 0.8082

Usage Rate

Sample Size Mean Std. Dev Skewness Kurtosis Q1 Q2 Q3

40 2.7258 0.7468 -1.2354 5.0881 2.4361 2.8287 3.1704
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Graphs allow one to observe patterns and distributions of data that are difficult

to discern by looking at the raw data [37]. Histograms are popularly used as graphical

representation of frequency distribution for quantitative data. The data is grouped

according to some specified grouping algorithm and then frequencies are plotted in

the form of vertical bar chart. Figures 5.1 and 5.2 show the histogram plots for time

to failure and usage rate. The histogram for time to failure indicates that majority of

the observations are clustered to the right indicator of positive skewness with extreme

observations clearly visible. It is noted that the histogram of usage rate is roughly

symmetric with slightly visible negative skewness. These plots are in agreement with

the results in Table 5.1.

0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

Time to Failure

F
re

q
u

e
n

c
y
 C

o
u

n
t

Histogram of  Time to Failure

Figure 5.1 Histogram of time to failure for original data.
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Figure 5.2 Histogram of usage rate for original data.
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5.2.1 Data Filtering

Data filtering is helpful in getting in identifying extreme observations that can

significantly affect the outcome of the tests and statistical procedures. Visual

techniques using box plots are frequently used to identify the outliers, particularly in

extreme cases. Box plots or box and whiskers plots were introduced by John Tukey

[37]. The spacings between the different parts of the box plot help indicate the degree

of dispersion (spread) and skewness in the data, and identify outliers. This is a plot

in which the middle 50% of the data, i.e., all observations between the quartiles Q1

and Q3 is represented by a rectangle; the horizontal line within the box indicates the

location of median Q2. The remaining data are indicated by vertical lines outside

the box or by points beyond the lines. The length of each of these vertical lines

(“whiskers”) is calculated as 1.5 times the interquartile range (IQR) where IQR =

Q3 - Q1. Figures 5.3 and 5.4 show box plots of the time to failure and usage rate

for the data. In both case, we observe that there are data points lying outside the

“whiskers”. Using Tukey’s [37] procedure, data values are identified as outliers if they

are outside the interval [Q1 − 1.5 IQR,Q3 + 1.5 IQR] and as extreme outliers if they

lie outside the interval [Q1−3 IQR,Q3 +3 IQR]. Hence, we will consider these points

as outliers.

When outliers have been detected, it is recommended to not include this data

in statistical analysis. The goal is not only to bring the data set into a consistent

state but also to ensure an accurate and complete representation of the real-world

constructs to which the data refer, in this instance, to the traction motor data. Hence,

we will remove the outliers shown in Figures 5.3 and 5.4 from the traction motor data

prior to obtaining the best fitting distribution.
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Figure 5.3 Boxplot of time to failure for original data.
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Figure 5.4 Boxplot of usage rate for original data.

5.2.2 Data Fitting

Fitting an inappropriate distribution to the given data would certainly lead to failure

in making future predictions. Distribution fitting is aimed at finding the distribution

that more closely corresponds to the observed frequency of the data than others,

depending on the characteristics of the phenomenon and of the distribution. Pearson

[38] gave a four-parameter system of probability density functions, and fitted the

parameters by what is called the “method of moments”. In most cases, it is helpful

to fit two or more distributions, compare the results, and select the most appropriate

model. A slightly more sophisticated test is to compute the moments of the actual

data distribution and to examine them for fit to the chosen distribution. As a
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preliminary step to fitting distribution, we will look briefly at the methods used

for estimating the parameters of the candidate distributions. The most commonly

use methods are method of moments (MOM), maximum likelihood estimates (MLE),

least square estimates (LSE) and method of L-moments.

The method of moments (MOM), introduced by Karl Pearson [38], is the oldest

method of deriving point estimators. The method of moments is based on matching

the sample moments with the corresponding population (distribution) moments and

is based on the assumption that sample moments should provide good estimates

of the corresponding population moments. Because the population moments are

often functions of the population parameters, corresponding population and sample

moments are equated to solve for these parameters in terms of the moments. (http:

//www.itl.nist.gov/div898/handbook/eda/section3/eda3651.htm)

Maximum likelihood estimation (MLE) begins with writing a mathematical

expression known as the Likelihood Function of the sample data. The likelihood

of a set of data is the probability of obtaining that particular set of data given

the chosen probability distribution model. This expression contains the unknown

model parameters. The values of these parameters that maximize the sample

likelihood are known as the Maximum Likelihood Estimates or MLE’s. (http:

//www.itl.nist.gov/div898/handbook/apr/section4/apr412.htm)

In least squares (LS) estimation, the unknown values of the regression

coefficients in the regression function are estimated by evaluating the numerical values

for the parameters that minimize the sum of the squared deviations between the

observed responses and the functional portion of the model. For the linear model,

the least square estimates of the parameters are computed by equating the partial

derivatives of the sum of the squared deviations, with respect to the parameters of

interest, equal to zero and further solving for those estimated parameters. (http:

//www.itl.nist.gov/div898/handbook/pmd/section4/pmd431.htm)
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The L-moments [39] are L-statistics (linear combinations of order statistics, “L”

for “linear”) that are used for characterizing the shape of a probability distribution

and estimating the distribution parameters, particularly for data where sample

sizes are commonly small. Unlike product moments, the sampling properties for

L-moments statistics are nearly unbiased, even in small samples, and are near

normally distributed. These properties make them well suited for characterizing data

that commonly exhibit moderate to high skewness.

Once the best parameters in the possible distributions have been determined,

the best fit distribution must be determined. The typical tests for goodness of fit [40]

compare the actual distribution function of the data with the cumulative distribution

of the distribution that is being used to characterize the data, to either accept the

hypothesis that the chosen distribution fits the data or to reject it. The goodness

of fit (GOF) tests [41, 42] measure the compatibility of a random sample with a

theoretical probability distribution function. In other words, these tests show how

well the distribution fits to the data. The general procedure consists of defining a test

statistic which measures the distance between the hypothesis and the data, and then

calculating the probability of obtaining data which have a still larger value of this test

statistic than the value observed, assuming the hypothesis is true. This probability is

called the confidence level. Small probabilities (say, less than one percent) indicate a

poor fit. Especially high probabilities (close to one) correspond to a fit which is too

good to happen very often. In this section, we will discuss briefly the Chi-Square,

Anderson Darling and Kolmogorov-Smirnov tests [43, 44].

Chi-Square Goodness of Fit Test

The Chi-Square goodness of fit test [43, 44], also referred to as the Chi-Square

test for a single sample is used to determine the goodness of fit of the experimental

data with a theoretical distribution. In this test, observed values are compared with

theoretical or expected values. Observed values are those that the researcher obtains
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empirically through direct observation; theoretical or expected values are developed

on the basis of some hypothesis. This test is applied to the observed data after it has

been divided into bins on categories. This is actually not a restriction since it is a

straightforward to bin data and is usual that one wishes to construct a histogram or

frequency table is before conducting the Chi-Square test.

Every hypothesis test requires the statistician to state a null hypothesis and

an alternative hypothesis in such a way that they are mutually exclusive. For a

Chi-Square goodness of fit test, the hypotheses take the following form.

H0: The data follow the specified distribution.

HA: The data do not follow the specified distribution.

The hypothesis can be tested using the Chi-Squared statistic defined as:

χ2 =
n∑
i=1

(Oi − Ei)2

Ei

where Oi is the observed frequency count for the ith level of a categorical variable, and

Ei is the expected frequency count for the ith level of the categorical variable. The

expected frequency counts at each level of the categorical variable are equal to the

sample size times the hypothesized proportion from the null hypothesis, i.e., Ei = npi.

For the Chi-Square approximation to be valid, the expected frequency should be at

least 5. This test is not valid for small samples, and if some of the counts are less

than five, it is required to combine some bins in the tails. Since the test statistic is a

Chi-Square, the associated probability (p-value) is computed using k − 1 degrees of

freedom where k is the number of levels of the categorical variable. On comparing

the p-value to the given significance level, the null hypothesis is rejected when the

p-value is less than the significance level.

Kolmogorov-Smirnov Test (K-S test)

This Kolmogorov-Smirnov test [43, 44] is used to decide if a sample comes

from a hypothesized continuous distribution. It is based on the empirical cumulative
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distribution function (ECDF). The distribution of the K-S test statistic does not

depend on the underlying cumulative distribution function being tested. Another

advantage is that it is an exact test where the Chi-Square goodness of fit test depends

on an adequate sample size for the approximations to be valid.

For a Kolmogorov-Smirnov goodness of fit test, the hypotheses take the

following form:

H0: The data follow the specified distribution.

HA: The data do not follow the specified distribution.

The hypothesis can be tested using the test statistic defined as:

Dn = sup
x
|Fn(x)− F (x)|

where F (x) equals some hypothesized distribution function and Fn(x) is the empirical

distribution function denoting the fraction of sample values less than or equal to x

for a given random sample of size n.

At any point x, a large difference between the empirical distribution Fn(x) and

the hypothesized distribution F (x) would suggest that the empirical distribution does

not equal the hypothesized distribution. Therefore, we reject the null hypothesis if

Dn is too large.

Anderson-Darling Test (A-D)

The Anderson-Darling test [43, 44] is a statistical test to determine whether a

given sample of data is drawn from a specified theoretical probability distribution.

The Kolmogorov-Smirnov test is distribution free in the sense that the critical values

(threshold values to which the value of the test statistic in a sample is compared to

determine whether or not the null hypothesis is rejected) do not depend on the specific

distribution being tested. On the other hand, the Anderson-Darling test makes use

of the specific distribution in calculating critical values.
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For an Anderson-Darling goodness of fit test, the hypotheses take the following

form:

H0: The data follow the specified distribution.

HA: The data do not follow the specified distribution.

The hypothesis can be tested using the test statistic defined as:

A2 = −n− 1

2

n∑
i=1

(2i− 1)[ln(F (Xi)) + ln(F (Xn−i+1)]

where A is the test statistic to assess if the given data {X1 < · · · < Xn} from a random

sample of size n comes from a cumulative distribution function F . The test statistic

can then be compared against the critical values of the theoretical distribution, which

are given by Scholz et al. [45] for many popular distributions. The null hypothesis is

rejected if the test statistic is greater than the critical value.

5.2.3 Model Selection

The parameter estimation and goodness of fit tests are useful in model building. An

approach to model selection when dealing with complex models is to prepare a list

of candidate models, use methods of parameter estimation and compare the results.

The selected distributions are compared based on the goodness of fit tests. Out of

the list of well known distributions, we have selected Weibull, normal, gamma and

lognormal distributions as most of the research in reliability has been performed using

these distributions.

Once the fitting procedure is completed, the distributions are ranked as per the

goodness of fit tests. Since the goodness of fit test statistics indicate the distance

between the data and the fitted distributions, the distribution with the lowest test

statistic is assigned rank of 1 with the next best model assigned rank of 2, etc., to

compare the fitted models and select the valid model. The disadvantage of Chi-Square
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test is its sensitivity to the grouping of the data. Though, Anderson−Darling

and Kolmogorov-Smrinov tests do not depend on the grouping of the data, the

former test has higher power than the latter and detects discrepancies in the tails

(NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.

gov/div898/handbook/). While all these tests were applied, the Anderson-Darling

test is the best test for small samples [45]. Tables 5.3 and 5.4 display the ranking

of the distributions for time to failure and usage rate, respectively. According to the

fitting results using the A-D test, the Weibull distribution is the most appropriate

model while for usage rate we have to choose between Weibull (3P) and normal

distributions, since the test statistic values for Weibull (3P) and normal are extremely

close in values, 0.08 and 0.09, respectively. We select the normal distribution because

of difficulties in calculating truncated moments for the Weibull (3P) distributions.

Table 5.2 Ranks of Distributions for Time to Failure Using the Goodness
of Fit Tests

Distribution K-S A-D Chi-Sq.

Gamma 1 2 5

Gamma (3P) 7 6 N/A a

Lognormal 5 5 2

Lognormal (3P) 4 4 1

Normal 2 3 3

Weibull 3 1 4

Weibull (3P) 6 7 N/Aa

aThe test says not a suitable fit
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Table 5.3 Ranks of Distributions for Usage Rate Using the Goodness
of Fit Tests

Distribution K-S A-D Chi-Sq.

Gamma 5 5 2

Gamma (3P) 4 4 5

Lognormal 6 6 6

Lognormal (3P) 2 3 4

Normal 3 2 3

Weibull 7 7 7

Weibull (3P) 1 1 1

5.3 Warranty Data Analysis

Next, we will make use of the fitting information in the warranty model and obtain

the optimal warranty costs for the given scenario [46]. As discussed in the previous

section, the Weibull distribution is used to model time to failure for the traction

motor. The estimated parameters of the distribution are scale =1.21 and shape=0.5.

Additionally, the normal distribution is used to model usage rate with estimated

parameters are standard deviation=0.72 and mean=2.77. We have considered two-

dimensional (Ω = [0,W ) × [0, U)) non-renewing free replacement warranty where

W=2 (years) and U=2 (×104 km). The time to first failure and subsequent failures

are modeled via the AFT approach as discussed in Chapter 3.

Table 5.4 shows the results for the optimal cost over the complete usage interval

and for stratified treatment of usage interval into three and six sub-intervals. It is

noted that the total optimal cost is almost two times the weighted cost for three

category system and almost 2.5 times the weighted cost for the six category system.

Therefore, the grouping of consumer population into a large number of groups each
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Table 5.4 Expected Cost for Overall and Stratified Usage Intervals

y K∗ L∗ I(K∗,L∗) We

0.01<y<4.5 0.1974 0.3314 12.0376 [0.44,2]

Usage Interval Divided into Three Sub-Intervals

y K∗ L∗ I(K∗,L∗) We

0.01<y<1.5067 0.5467 0.9011 0.2488 [1.3274,2]

1.5067<y<3.0033 0.2945 0.5279 7.8367 [0.6659,1.3274]

3.0033<y<4.5 0.2038 0.399 7.0811 [0.4444,0.6659]

Weighted Optimal Cost for Sub-Intervals = 6.3565

Usage Interval Divided into Six Sub-Intervals

y K∗ L∗ I(K∗,L∗) We

0.01<y<0.7583 0.0046 0.0047 0.0041 2

0.7583<y<1.5067 0.5427 0.9217 0.2459 [1.3274,2]

1.5067<y<2.2550 0.3783 0.7434 2.197 [0.8869,1.3274]

2.5500<y<3.0033 0.2993 0.614 6.2561 [0.6659,0.8869]

3.0033<y<3.7517 0.2468 0.4921 6.1571 [0.5331,0.6659]

3.7517<y<4.5 0.2092 0.3953 2.156 [0.4444,0.5331]

Weighted Optimal Cost for Sub-Intervals = 4.8524

with different service treatment is helpful to the manufacturers in making wise use of

resources. These conclusions are similar to those in Chapter 4.
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5.4 Concluding Remarks

We have discussed the warranty cost modeling on the data related to products sold

with 2-D warranty. After conducting the preliminary statistical fitting tests, we

selected the appropriate distribution for the time to failure and usage rate. The

optimal warranty costs are obtained and trends are observed similar to that in Chapter

4. The warranty data allows the manufacturer to assess the factors potentially

effecting the overall profits and the results of the optimal costs are useful in making

such decisions.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK ON WARRANTIES

Based on a three interval servicing strategy consisting of minimal repairs in the first

and third time interval and replacement in the second time interval, we successfully

constructed a warranty cost model that was optimized using simulated annealing. We

observed that the optimal cost is sensitive to the usage rate distribution. The mean

time to first failure is valuable indicator of which usage distributions tend to result in

lower warranty servicing costs. Instead of servicing all customer warranties in exactly

the same manner, it is observed that grouping customers according to usage rate led

to lower warranty servicing costs for the manufacturer. Increasing the ratio of cost of

replacement to repair leads to higher warranty servicing costs for the manufacturer

and a reduction in the size of the replacement time interval. Also, it was seen that

using a copula based on AFT model is obtained to capture the adverse impact of

usage rate on the product life-length.

Future work includes the investigation on other joint distribution models of

life-length and product use to examine their suitability as underlying building blocks

of a warranty cost model. Using those models we will derive and numerically compute

the copulas along with their dependency measures, to judge the potential suitability

of such models. We will potentially search for other parametric copula families with a

negative Kendall’s tau, and superimpose on them reasonable marginal distributions of

product life-length and usage rate. Additionally, we will consider possible models for

fair pricing of extended warranties that are alternative to those used in the literature.

We will model and analyze expected warranty servicing costs for the servicing strategy

for an imperfect repair. We recently received a data set from Dr. Bharatendra K.

Rai containing the information regarding usage and time to failures for vehicles. We
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will complete preliminary data analysis and apply our model to compare the results

to those obtained in Chapter 5.



CHAPTER 7

INTRODUCTION TO GOLF HANDICAPS

In the game of golf, a person’s playing ability is represented by the “handicap” [47].

The handicap can also be used to track a golfer’s progress over time. The handicap

is designed to allow golfers of different abilities to compete against each other in an

equitable fashion. In this chapter, a brief review of the historical development of

handicapping systems will be given followed by a mathematical description of the

handicapping system currently in use.

7.1 The USGA Handicap System

The United States Golf Association (USGA), a non profit organization founded in

1894, has developed a handicap system with the expressed purpose of “making the

game of golf more enjoyable by enabling golfers of differing abilities to compete on

an equitable basis” [48]. The system provides a handicap for each player and adjusts

a player’s rating up or down as the player’s game changes over time. The purpose

of the system has always been to attempt to level the playing field for golfers of

differing abilities, so that those golfers can compete equally. In match play the weaker

player receives handicap strokes on certain designated holes in conjunction with the

handicapping scheme. Before proceeding to investigate about the handicap system,

it is important to understand the history and terms along with their associated roles

in the system.

7.1.1 History of the Handicap System

The term “handicap” evolved during the 17th and 18th centuries from “hand in cap”,

a game consisting of two players having the objective of establishing fairness between

them. The handicapping system gained prominence in Great Britain and Ireland

59



60

during the late 19th century but efforts to make handicapping more uniform did not

cover all courses and golfers. The popularity of golf made it increasingly difficult

for the mentors to monitor the handicaps of fellow players; many clubs adopted

mathematical procedures to determine the calculation of the handicaps. The most

popular method was to take the average of a players best three scores for the year;

however, that did not receive widespread acceptance or support. Though various

governing bodies attempted to make handicapping more uniform and widespread,

their efforts did not cover all courses and golfers. In contrast to the way golf developed

in Great Britain and Ireland, there was one central golf authority in the US. After

years of study and experimentation, the USGA adopted the first nationwide handicap

format at a meeting on October 11, 1911, at Baltusrol Golf Club in Springfield, N.J.

(http://www.nebgolf.org/handicapping_education.html)

Over the past 100 years, many changes and refinements have been made to the

system in an attempt to minimize the advantage of one player over another. During

the first several decades of the USGA Handicap System, improvements related to

courses and players were made by various regional golf associations. By using the

three best scores of the season as the basis for determining handicaps, it was clear the

handicap system was intended to measure a player’s potential, not playing ability.

Later, the USGA increased the number of scores from the three lowest scores to the

10 best rounds with a minimum of 50 scores needed to obtain a handicap. This

change gave an advantage to the average players, who now had a better chance

of playing to their handicaps. Unfortunately, that increase triggered confusion as

regional golf associations could not agree on the number of rounds from which to

take the 10 best scores for handicap purposes. In 1967, the USGA reduced the

requirement to 10 of the last 20 scores, which remains operative today. As the game

continued to develop, the USGA constantly examined the intricacies of the system

within the foundations established years ago. Irrespective of all the changes to the
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handicap system, one aspect that has remained constant is that the handicap is

the measure of a players potential rather than an actual scoring average. (http:

//www.usga.org/news/2011/October/History-Of-Handicapping--Part-I/)

The fairness of the handicap has been researched and analyzed by a number

of authors. Scheid [49], for example, suggested that the winning proportion of a

better golfer is between 60 − 85% provided the handicap difference between the

two players was more than three strokes. Then, Pollock [50] addressed that, under

certain modeling assumptions, the better golfer has an advantage in both medal

(total strokes) and match play. The findings by Pollock and Scheid were related to

the old handicap system, which was based on treating the handicap as a function

of course rating only. In the early 1990s, the slope system was introduced to

further generalize the old handicap system by considering course difficulty. Tallis

[51] investigated that in various team competitions the existing golf handicapping

systems can be extremely unfair. Larkey [52] reviewed the handicap system and

studied other statistical applications in golf. Bingham et al. [53] considered medal

play between two golfers and used the new slope system for handicapping. James [54]

too included the details about the newer handicap system and examined the issue of

existence of bias in the handicap system. The research in this dissertation is related

to that of James but follows a different approach which will be discussed later.

The historical background of the handicap system includes the usage of the key

terms of the USGA handicap system such as “Course Handicap”, “Course Rating”,

“Handicap Differential”, “Handicap Index”, “Slope Rating”, “Slope System”, “USGA

Handicap System” and “USGA Course Rating System”, which are explained in detail

in the next section (USGA Manual 2002-2005) [47].
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7.1.2 Important Terms of the USGA Handicap System

The terms [47] discussed in this section are the backbone of the USGA handicap

system.

Gross Score: The gross score is the number of actual strokes taken by a player plus any

penalty strokes. A player’s most recent scores are denoted by Xj−19, Xj−18, · · · , Xj.

Scratch Golfer : A scratch golfer is a player whose average score over 18 holes is equal

to par. For example, if a standard course has a par of 72, a scratch golfer would need

to be capable of averaging a score of 72.

Bogey Golfer : A bogey golfer is a player who averages a bogey, or one shot over par,

on every hole they play. Since a bogey is one stroke above par per hole, a bogey golfer

would average a score of 90 on a typical par 72 course and have a handicap of 18.

Course Rating : Course rating indicates the evaluation of the playing difficulty of a

course for scratch golfers. It is usually expressed in terms of strokes. A par 72 course

that is easy might have a course rating of 68.9; one that is difficult might have a

course rating of 74.5. That means that a scratch golfer should be expected to average

68.9 strokes at the easier course and 74.5 at the more difficult one.

Bogey Rating : A bogey rating is the evaluation of the playing difficulty of a course for

bogey golfers under normal course and weather conditions. It is expressed in strokes

and is based on yardage and other obstacles to the extent that they affect the scoring

difficulty of the bogey golfer.

Slope Rating : Slope rating is a measurement of the relative difficulty of a course for

players who are not scratch golfers compared to the course rating. Currently bogey

golfers are used to determine the slope rating. It is computed from the difference

between the bogey rating and the course rating. The lowest slope rating is 55 and the

highest is 155. A golf course of standard playing difficulty has a USGA slope rating

of 113.
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Handicap Differential : A handicap differential, to one decimal place, represents a

golfer’s score in relation to the USGA course rating adjusted to take into account

slope rating. For a given course rating and slope rating, the handicap differential is

computed using the most recent gross scores Xj−19, Xj−18, · · · , Xj as shown in the

expression below:

Di =
(Xi − Course Rating)× 113

Slope Rating
,where i = j − 19, j − 18, · · · , j (7.1)

Handicap Index : A handicap index indicates the measurement of a player’s potential

ability on a course of standard playing difficulty. It is expressed as a number taken

to one decimal place and is used for conversion to a course handicap. The handicap

index formula is based on the 10 best handicap differential(s) in a player’s scoring

record of the 20 most recent scores. (A handicap index is not issued to a player who

has fewer than five acceptable scores). The handicap index is denoted by Ij and

computed in two steps:

• The average of the lowest ten differentials Dj−19∗ , Dj−18∗ , · · · , Dj−10∗ is

obtained.

• The result is multiplied by .96 and truncated to 1 decimal place to obtain Ij.

Course Handicap: A course handicap indicates the number of handicap strokes a

player receives from a specific set of tees at the course being played to adjust his

scoring ability to the level of scratch golfer. The USGA course handicap accounts for

slope rating and may award extra strokes on a difficult course or take away strokes

on an easier course. Every golf course that is part of the USGA handicap system

has a chart showing course handicaps for players based on their handicap index and

the slope rating of the tees played. For example, the chart may show that a 14.5

handicapper playing tees with a slope of 108 has a course handicap of 13, or playing

tees with a slope of 138 has a course handicap of 16. For a given slope rating and
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computed value of handicap index, after calculating the handicap indices Ij, the

course handicap is computed using:

Hj =
Ij × Slope Rating

113
(7.2)

The resulting number is rounded off to the nearest whole number. Once the course

handicap is computed, the number of handicap strokes is applied during the round.

For example, a course handicap of 4 means the player has this score is reduced by

one stroke, on each of the four toughest handicap holes. As a special case, for slope

rating of 113, the course handicap is equal to the handicap index. For a course with

slope rating greater than 113, the course handicap is greater than the handicap index.

Golfers usually covert their handicap indices to handicaps using appropriate USGA

course handicap tables available at the course to be played.

7.2 Applications of Statistics for the Handicap Calculation

Now, the role of statistics in calculation of the course handicap will be discussed. As

mentioned in “Statistics in Golf” [52], this is the most mature area in the statistical

analysis of golf. Order statistics are used to obtain the handicap index with the help

of an expression of a probability density function, discussed in detail below.

7.2.1 Introduction to Order Statistics

We begin by defining the order statistics. Order statistics and functions of these

statistics play an important role in numerous practical applications [55, 56]. Order

statistics are a set of values in a random sample which have been ordered from least

to greatest, where the order is not being used to describe a sequence in which they are

drawn. If random variables {Xi}, i = 1, 2, · · · , n and their associated observations

{xi}, i = 1, 2, · · · , n are arranged in ascending order of magnitude and written as

X1:n ≤ X2:n ≤ · · · ≤ Xn:n
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with ordered set of observations,

x1:n ≤ x2:n ≤ · · · ≤ xn:n

then Xi:n is said to be ith-order statistic in a sample of size n.

7.2.2 Application of Order Statistics in Handicap Calculation

The probability density function of the handicap index requires ten order statistics.

For the sake of brevity, we will discuss the derivation of the probability density

function of the average of the first two order statistics X1:n and X2:n from a random

sample of size n.

Joint Distribution of Any Two Order Statistics

For any given two order statistics xi and xj with their probability density

functions as f(xi), f(xj) and cumulative distribution functions as F (xi), F (xj),

respectively the combined joint probability density function [55, 56] is :

f(xi,j:n) =
n!

(i− 1)!(j − i− 1)!(n− j)!
{F (xi:n)}i−1{F (xj:n)− F (xi:n)}j−i−1 (7.3)

× {1− F (xi:n)}n−jf(xi:n)f(xj:n)

0 < xi:n < xj:n < 1

A simpler version of the above equation can be used to describe the joint

distribution of first two ordered handicap differentials substituted for first two order

statistics. Therefore, for i=1 and j =2, the joint distribution function of X1:n and

X2:n can be expressed as:

f1,2:n(x1, x2) = n(n− 1){1− F (x2)}n−2f(x1)f(x2), (7.4)

−∞ < x1 < x2 <∞
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Single Order Statistic

The marginal probability density function [55, 56] of a random variable Xi:n

(1 ≤ i ≤ n) corresponding to an ordered observation xi is obtained by integrating the

joint probability density of xi and xj in (1.3) to obtain:

fi:n(xi:n) =
n!

(i− 1)!(n− i)!
{F (xi:n)}i−1{1− F (xi:n)}n−if(xi:n) (7.5)

−∞ < xi:n <∞

A simpler version of the above equation is the marginal distribution of a

handicap differential substituted for a given single order statistic. Therefore, for

i=1 and j =2, the marginal distribution function for single ordered statistics X1:n and

X2:n is expressed as:

i =1 : f1:n(x1:n) = n{1− F (x1:n)}n−1f(x1:n), −∞ < x1:n <∞

i =2 : f2:n(x2:n) = n(n− 1){F (x2:n)}{1− F (x2:n)}n−2f(x2:n), −∞ < x2:n <∞

Distribution of an Average of First Two Order Statistics

Consider X1:n and X2:n from a random sample of size n. Therefore, the

probability density function for X̄,
(
X̄ = X1:n+X2:n

2

)
, can be obtained using

convolutions:

fX̄n(x̄) = 2n(n− 1)

∫ x̄n

−∞
[1− F (2x̄n − x1)]n−2f(x1)f(2x̄n − x1) dx1 −∞ < x̄n <∞

(7.6)

Though the underlying distribution of the gross scores is unknown, we can

obtain (7.6) for independent and identically distributed X ′is random variables

following a uniform (0, 1) distribution.
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fX̄n(x̄) =


2n[(1− x̄)n−1 − (1− 2x̄)n−1] if 0 < x̄ < 1/2

2n(1− x̄)n−1 if 1/2 < x̄ < 1

(7.7)

So given the underlying distribution of the sample of golf scores, the density

function of the handicap index can be obtained by a similar approach. However, these

calculations become unwieldy for order statistics more than three in the sample. It

is not tractable to obtain, much less use, an analogous expression to (7.7) for the

first 10 order statistics as required for the handicap index calculation. A numerical

approach is required to retrieve the average of first ten order statistics (i.e., handicap

index) which is needed for estimating the handicap.

Now that we understand the handicap system and the algorithm for the

handicap calculation, we need a source of golf scores for the numerical scheme. In

the next chapter, we will analyze a data set that will give us the information we need

for our numerical study.



CHAPTER 8

STATISTICAL ANALYSIS OF THE EMPIRICAL DATA

In order to study the effectiveness of the handicap system, we need golf scores for use

in simulations. These can be obtained via exploratory analysis of a data set of gross

scores of golfers with varying handicaps. To begin, it is necessary to understand the

underlying distribution of the data sets of scores for each of the given handicaps. In

this chapter, we will begin by introducing the source of the data set. To understand

the data set, we will use descriptive statistics which exhibit the basic features of the

data set both summarized graphically as well as numerically. The statistical analysis

of the data set provides the detailed fitting information of the underlying family of

distribution of the golf scores corresponding to each handicap.

8.1 Analysis of Data Set

An empirical study is conducted with the help of the AT&T Golf Tournament

League data set. The data was obtained from Steven Swiss, President of AT&T Golf

Tournament League 2004-2005. This data set contains scores up to 10 tournaments

for each year plus a special end of year tournament for each of the 9 years 1994 to

2002. This data set contains over 10,800 scores from 84 tournaments for golfers with

handicaps ranging from 3 to 46 for games played on 27 different golf courses.

8.1.1 Summary Statistics

In this section, we will look at a number of statistics that are intended to describe

the sample and summarize its information. We will use the same set of descriptive

statistics as used earlier for warranties in Chapter 5. As a part of preliminary analysis,

the descriptives are computed for the given data set and shown in Table 8.1. For every

68
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Table 8.1 Descriptive Statistics of the Scores from the Data Set

Quartiles

Handicap Sample Size Mean Std. Dev. Skewness Kurtosis Q1 Q2 Q3

3 4 77.500 2.887 0.000 1.000 75 78 80

4 12 79.833 2.368 0.636 1.486 78 79 83

5 22 80.636 3.303 −0.142 2.281 78 81 82

6 36 81.444 4.890 0.217 2.146 78 81 86

7 78 81.667 4.302 0.772 3.880 78 82 84

8 76 82.342 4.933 0.334 2.614 79 82 86

9 106 84.793 5.675 0.727 3.331 81 84 88

10 130 84.569 4.893 0.879 4.706 81 84 87

11 186 86.742 5.872 0.791 5.774 83 86 90

12 280 87.357 5.513 0.635 3.497 84 87 91

13 318 88.711 6.048 1.382 8.136 84 88 93

14 368 89.147 5.070 0.140 2.423 85 89 93

15 372 91.296 6.472 0.870 4.061 87 90 94

16 486 91.296 5.897 0.448 3.124 87 91 95

17 564 92.036 5.650 0.670 3.445 88 91 95

18 596 93.661 5.973 0.532 3.398 89 93 97

19 554 94.267 5.798 0.548 3.632 90 94 97

20 590 95.861 6.406 −0.025 2.725 92 96 100

21 581 96.463 6.403 0.319 2.952 92 96 101

22 524 97.660 6.597 0.514 3.665 93 97 102

23 519 98.881 6.951 0.582 3.430 94 98 104

24 477 100.065 6.554 0.424 3.505 95 100 104

25 443 100.348 6.206 0.252 3.193 96 100 104

26 423 102.312 7.242 0.992 5.737 98 102 106

27 354 101.901 6.235 0.462 3.921 98 102 106

28 298 103.567 7.728 0.972 6.401 98 103 108

29 276 104.029 6.676 0.295 2.804 99 103 108

30 241 106.701 7.439 0.128 2.741 101 107 112

31 233 106.554 7.398 0.394 3.919 102 106 111

32 169 107.462 7.703 0.135 3.037 103 107 113

33 174 109.328 6.979 0.179 2.545 104 109 114

34 112 109.054 7.690 0.364 3.056 104 109 114

35 162 111.284 7.650 0.862 4.914 106 110 117
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Table 8.1 (Continued) Descriptive Statistics of the Scores from the Data Set

Quartiles

Handicap Sample Size Mean Std. Dev. Skewness Kurtosis Q1 Q2 Q3

36 129 113.457 9.120 0.635 4.554 107 113 120

37 148 115.216 9.764 0.611 3.482 109 113 119

38 117 114.111 8.178 0.414 3.089 108 114 120

39 115 117.696 9.331 0.333 2.350 110 116 127

40 134 120.373 10.399 0.893 3.530 112 119 126

41 94 120.266 9.007 0.134 2.668 115 120 126

42 36 122.694 7.270 0.116 2.173 118 122 127

43 35 126.400 7.770 0.756 2.816 121 124 132

44 18 126.222 7.134 0.456 1.968 120 125 131

45 5 131.200 14.738 1.086 2.714 120 130 130

46 5 130.000 4.472 1.500 3.250 128 128 128

handicap, the mean lies around the second quartile (median), confirming the location

where majority of the scores are concentrated. For example, for handicap 15, the

mean is given by 91.296 which is near the value of the median given by 91. The

standard deviation indicates that higher the handicaps, the more spread out the data

set is likely to be. The differing behavior for handicaps greater than 40 is caused

by small sample sizes. It is generally assumed in the golf literature that the scores

are normally distributed. This assumption does not apply to the given data because

scores for varying handicaps are slightly positive skewed and have fluctuating values

of kurtosis (either less than or greater than 3). In each case, the scores are skewed to

the right, most values are concentrated to the left of the mean, with extreme values

to the right. In addition, majority of the handicaps have kurtosis greater than 3

indicating that most of the scores are concentrated around the mean with thicker

tails than for a Gaussian. On the other hand, a few handicaps have kurtosis smaller

than 3 which shows that the scores are wide spread around the mean. Overall, the

values of skewness and kurtosis indicate that the handicaps are asymmetrical and

have peaked distributions as compared to normal distribution.
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8.1.2 Graphical Summaries

Visualization techniques are the ways of creating and manipulating graphical

representations of data. Graphs provide insight into data under investigation and

illustrate important concepts. The section begins with discussion of bivariate plot,

i.e., scatterplot. Then box plots and histograms will be shown.

A scatterplot gives a good visual picture of the relationship between the two

variables, and aids the interpretation of the correlation coefficient or regression model.

Figure 8.1 contains a scatterplot of gross scores versus handicaps. In this plot, an

increasing trend in gross scores is observed as the handicap increases, as would be

expected. The spread of the scores indicates increasing variability with increase in

handicaps. It is also observed that for the smallest and largest handicap values, the

data is sparse. Hence, our further analysis only consider the data for handicaps 10

through 40.
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Figure 8.1 Scatter plot of gross scores from the original data set for handicaps
3 through 46.
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Another way of presenting the graphical summary is via histograms, which

combine data into groups or classes as a way to exhibit the details of a data set while

at the same time illustrating the data’s overall pattern. On a histogram, the x-axis

represents the data values arranged into classes while the y-axis shows the number

of occurrences in each class. Figure 8.2 contains the histograms only for every third

handicap for brevity. It is observed that with increase in handicap, the mean in scores

increases as indicated by the horizontal shift in the plots in the right. The increase in

variability can be observed by the increasing width of the histogram. Moreover, we

can also infer that bulk of the data is at the left and right tail is longer which confirms

that the data is positively skewed. With reference to kurtosis values in Table 8.1, we

observe that handicaps having high value of kurtosis tend to have distinct peak near

the mean, decline rapidly and have heavy tails. Hence, Figure 8.2 observes similar

trends as observed in Table 8.1.

Another way of presenting a graphical summary is a box plot which is especially

useful for the detection of outliers. Figure 8.3 shows the box plots for handicaps from

10 to 40. Similar to the trend in histograms, as in Figure 8.2, the variability in scores

is observed with the vertical shift in the box plots with increase in handicap. The

presence of outliers in the plots indicates atypical behavior in the data.

8.1.3 Data Cleaning

Data cleaning (cleansing, scrubbing, etc.) is a process of identifying and repairing

the existing incorrect or corrupt records in a data set. Although outliers are often

considered as an error or noise, they may carry important information. The goal is

not only to bring the data set into a consistent state but also to ensure an accurate

and complete representation of the real-world constructs to which the data refer, in

this instance, to golf scores. The box plots in the Figure 8.3 have been useful in

visually locating the outliers which are plotted separately as points. Following Tukey
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Figure 8.2 Histograms of gross scores from original data sets for selected handicaps.
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Figure 8.3 Box plots of handicaps from 10 to 40.
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[37], the removal of these observations is done and the resulting data are used for

making statistical inference. After the data cleaning is completed, the scatter plot of

filtered data of gross scores can be compared with the original data set as shown in

Figure 8.4. Clearly, the outliers that are prominent in the scatterplot of original data

are no longer present in the plot for filtered data. Statistically, the variability in the

scores is reduced in each case.

Table 8.2 gives the descriptive statistics for the data set after the filtering.

In comparison with Table 8.1, the effect of removal of outliers is prominent in the

change of the numerical values of skewness and kurtosis in Table 8.2. For each of the

handicaps, the decrease in value of the skewness indicates that the data values are

getting clustered towards the center. Hence, the variability in the data is effectively

reduced. Filtering causes the value of kurtosis to become less than 3 for majority

of the data sets. This means that the distribution of scores has flattened peaks and

slender tails. The next step in data analysis is to use the information from a sample

to draw inferences concerning the population from which the sample was drawn.

8.1.4 Selection of Model

Most of the literature in golf research assumes the normal distribution as the

underlying distribution of golf scores because of the central limit theorem [57]. Since

both the original and fitted data sets are skewed and have kurtosis values other than 3,

we need appropriate statistical fitting tests to find the underlying distribution. Many

parameter estimation and goodness of fit tests that are useful in model building

have been discussed in detail in Chapter 5. An approach to model selection includes

preparing a list of candidate distributions, using methods of parameter estimation to

evaluate the parameters of the distributions, and performing the goodness of fit tests

to obtain the parameter values for each distribution. The selected distributions are

compared based on the results obtained from fitting procedure.
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Table 8.2 Descriptive Statistics of the Scores for Each of the Handicaps
After Filtering

Quartiles

Handicap Sample Size Mean Std. Dev. Skewness Kurtosis Q1 Q2 Q3

10 128 84.281 4.345 0.267 2.590 81 84 87

11 182 86.286 5.024 −0.131 3.331 83 86 90

12 272 86.904 4.894 0.238 2.578 84 87 90

13 316 88.494 5.412 0.443 2.563 84 88 92

14 368 89.147 5.070 0.140 2.423 85 89 93

15 346 90.266 4.898 0.254 2.903 87 90 93

16 474 90.903 5.409 0.175 2.589 87 91 94

17 552 91.685 5.175 0.418 2.926 88 91 95

18 588 93.412 5.607 0.282 2.732 89 93 97

19 534 93.798 5.040 0.190 2.833 90 94 97

20 586 95.980 6.264 0.062 2.587 92 96 100

21 581 96.463 6.403 0.319 2.952 92 96 101

22 514 97.272 6.018 0.102 2.528 93 97 101

23 508 98.429 6.291 0.187 2.327 93 97 101

24 469 99.725 6.059 0.087 2.752 95 100 104

25 434 100.000 5.737 −0.069 2.634 96 100 104

26 405 101.553 5.780 0.017 2.627 98 102 105

27 352 101.759 5.955 0.170 2.880 98 102 106

28 294 103.163 6.858 0.117 2.479 98 103 107

29 275 103.949 6.555 0.212 2.576 99 103 108

30 240 106.604 7.300 0.040 2.533 101 107 112

31 222 105.946 6.121 −0.015 2.922 102 105 110

32 169 107.462 7.703 0.135 3.037 103 107 113

33 174 109.328 6.979 0.179 2.545 104 109 114

34 112 109.054 7.690 0.364 3.056 104 109 114

35 160 110.931 6.958 0.293 2.425 106 110 116

36 128 113.148 8.451 0.105 2.428 107 113 119

37 140 114.486 8.026 0.477 2.632 109 113 119

38 116 113.897 7.876 0.274 2.773 108 114 120

39 115 117.696 9.331 0.333 2.350 110 116 127

40 129 119.256 8.859 0.512 2.581 112 119 125
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Preparing the data for distribution fitting is one of the most important steps

taken, since the analysis of the results depend on whether the data is correctly

collected and specified. The most commonly used format in probability data analysis

is an unordered set of values obtained by observing some random process. The order

of values in a data set is not important and does not affect the distribution fitting

results. This is one of the fundamental differences between distribution fitting (and

probability data analysis in general) and time series analysis where each data value

is connected to some time point at which this value was observed.

The standard rule of thumb is that the number of observations in the data set

should be more than 100 in order to perform the fitting procedure correctly. Very

large samples (tens of thousands of data points) might cause some computational

problems when fitting distributions to the data, and there might be a need to reduce

the sample size by selecting a subset of that data. However, in our case the data sets

are of reasonable size.

Once the goodness of fit tests are applied to the given data sets, the final results

include the list of distributions along with their ranks and test statistic values. The

test statistic values are calculated for various significance levels (α) and the acceptance

of the null hypothesis is tested for each of those levels. Since the goodness of fit test

statistics indicate the distance between the data and the fitted distributions, the

distribution with the lowest test statistic is assigned rank of 1 with the next best

model assigned rank of 2, etc., to compare the fitted models and select the valid

model. The Anderson-Darling test was used here as the goodness-of-fit test due to

its power in detecting discrepancies in the tails and the fact that it does not depend

upon grouping of the data.

In our work, we considered 55 distributions in the fitting procedure. For each

of these distributions, the associated parameters were estimated based on the data.

Methods used here include the method of moments (MOM), maximum likelihood
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estimates (MLE), least square estimates (LSE) and method of L-moments. (Each

of these methods were discussed in Chapter 5). The method of estimation of

parameters of the distribution associated with the scores depends on the nature of

the fitted distribution. Hence, different distributions require different methods of

estimation. For example, exponential, two-parameter gamma, and logistic models

that use method of moments. However, for many other distributions, the Method of

Moments does not yield closed form expressions for parameter estimates; and in such

cases the Maximum Likelihood Estimation (MLE) method is often used.

Next, we will discuss the results obtained from the fitting procedure. The fitted

distributions are arranged in increasing order of test statistics ranging from smallest

to largest. Among all the candidate distributions, the one with lowest test statistic

is selected as the most appropriate fitted model. For the sake of brevity, we have

only included some of the most well known distributions in Table 8.3. In order to

make the selection simpler, we have calculated overall average rank across the fitted

distributions for each handicap. It is observed that the generalized extreme value

distribution (GEV distribution) has the minimum overall average rank for both the

raw and filtered data sets of scores even among distributions not included in Table

8.3.

Table 8.3 Overall Average Rank for Popularly Used Distributions

Distribution Raw Data Filtered Data

Generalized Extreme Value 8.5 7.1

Lognormal (3P) 10.4 10.9

Gen. Gamma (4P) 11.2 11.7

Beta 11.9 11.9

Gamma (3P) 11.9 12.7

Gamma 19.6 16.5

Normal 25.4 20.9

Table 8.4 compares the ranks of the GEV and normal distributions for both the

raw and filtered data sets as an example of the behavior of the filtering procedure.
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We observe that filtering lowered the overall average rank for GEV from 8.5 to 7.1.

It is also noted that the the normal distribution has high overall average rank in

comparison with GEV. However, there are a few handicaps for which the rank of GEV

was worse than the normal distribution. But, since the overall rank is much lower for

GEV in comparison to the normal distribution, GEV distribution was selected as the

appropriate distribution.

In general, the Generalized Extreme Value distribution consists of three

parameters namely, shape, scale and location [59]. The scale must be positive,

the shape and location can take any real value. Table 8.5 gives a complete list

of parameters of GEV distribution for each of the handicaps for both the raw and

filtered data sets. On comparing the parameter values for the original and filtered

data, we find that the location parameter is almost the same in value. However the

values of the scale and shape parameters for fitted data are different from the original

data. In addition, all the values for the shape parameter for the fitted version are

more negative as compared to original data.

Figure 8.7 displays the scatter plots for original, filtered and fitted data in order

to visually compare the effect of filtering and fitting on the data in comparison to the

original data. The scatter plot of raw data clearly shows the variance of the scores

is greater in comparison to the other plots. After filtering, the pattern of the spread

of scores confirms lowering of the variance. In order to obtain a similar scatterplot

for the fitted data, random samples of scores for each handicap are generated using

the parameters from Table 8.5. We observe that the plot captures similar trend to

that of the filtered version. Hence, these plots provide important graphical summary

helpful in understanding the effect of procedures used in the data analysis.
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Table 8.4 Ranking of the Generalized Extreme Value and Normal Distributions
for Handicaps from Original and Filtered Data Sets

GEV Distribution Normal Distribution

Handicap Original Filtered Original Filtered

10 2 3 36 28

11 16 27 29 7

12 2 1 32 25

13 8 4 30 33

14 7 7 26 26

15 4 14 38 28

16 4 3 30 21

17 5 2 35 29

18 3 1 27 26

19 13 18 32 22

20 1 2 7 10

21 9 9 27 27

22 5 4 27 25

23 6 6 28 23

24 21 8 12 4

25 23 4 8 9

26 10 7 30 1

27 20 16 26 21

28 8 3 28 25

29 1 1 29 28

30 5 5 3 8

31 15 17 31 5

32 23 23 29 29

33 2 2 24 24

34 14 14 30 30

35 5 4 30 30

36 13 3 9 6

37 4 2 32 29

38 9 4 6 5

39 5 5 27 27

40 1 2 30 36

Average 8.5 7.1 25.4 20.9
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Filtered Gross Scores

Figure 8.4 Comparing the scatter plots of gross scores for handicaps 10 to 40
from original and filtered data.
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Table 8.5 Estimated Values of Parameters of the Fitted Generalized Extreme
Value Distribution for Handicaps

Original Data Filtered Data

Handicap Shape Scale Location Shape Scale Location

10 −0.103 4.201 82.536 −0.200 4.139 82.588

11 −0.171 5.168 84.517 −0.325 5.046 84.64

12 −0.110 4.851 85.039 −0.205 4.694 85.001

13 −0.042 4.858 86.099 −0.108 4.844 86.169

14 −0.230 4.960 87.222 −0.230 4.960 87.222

15 −0.022 5.152 88.434 −0.191 4.600 88.353

16 −0.156 5.403 88.908 −0.227 5.252 88.854

17 −0.073 4.792 89.592 −0.135 4.667 89.547

18 −0.146 5.410 91.229 −0.198 5.328 91.224

19 −0.137 5.171 91.908 −0.231 4.880 91.909

20 −0.287 6.246 93.613 −0.264 6.226 93.708

21 −0.181 5.995 93.929 −0.181 5.995 93.929

22 −0.158 6.022 95.010 −0.237 5.895 95.014

23 −0.127 6.232 95.987 −0.208 6.084 95.973

24 −0.212 6.191 97.586 −0.289 6.075 97.608

25 −0.242 6.008 98.067 −0.324 5.871 98.069

26 −0.116 6.170 99.391 −0.289 5.801 99.531

27 −0.192 5.796 99.495 −0.232 5.761 99.530

28 −0.143 6.809 100.490 −0.236 6.718 100.590

29 −0.167 6.215 101.340 −0.183 6.190 101.340

30 −0.268 7.389 104.020 −0.287 7.354 104.03

31 −0.171 6.700 103.670 −0.277 6.074 103.780

32 −0.218 7.357 104.540 −0.218 7.357 104.540

33 −0.228 6.809 106.680 −0.228 6.809 106.680

34 −0.173 7.136 105.990 −0.173 7.136 105.990

35 −0.085 6.540 108.020 −0.153 6.463 108.060

36 −0.194 8.494 109.950 −0.260 8.246 110.050

37 −0.056 8.156 110.940 −0.097 7.094 111.020

38 −0.200 7.757 110.940 −0.235 7.686 110.940

39 −0.160 8.748 113.860 −0.160 8.748 113.860

40 0.021 8.093 115.530 −0.072 7.686 115.330
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Fitted Data Scores

Figure 8.5 Comparing the scatter plots of gross scores for handicaps 10 to 40
from original, filtered and fitted data.
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Data filtering and fitting have been used to introduce smoothness by reducing

variability in the scores. But there are still fluctuations in the parameter values of

GEV distribution. To obtain smooth results, regression is a popularly used strategy

to construct a fit through scatter of points. We will consider linear regression in order

to determine models based on the parameters of the fitted distribution.

Linear regression attempts to model the relationship between two variables by

fitting a linear equation to observed data [58]. One variable is considered to be

an explanatory variable, and the other is considered to be a dependent variable.

Before attempting to fit a linear model to observed data, it is important to determine

whether or not there is a relationship between the variables of interest. This does

not necessarily imply that one variable causes the other but that there is some

significant association between the two variables. A scatterplot is a helpful tool in

determining the strength of the relationship between two variables. If there appears

to be no association between the proposed explanatory and dependent variables (i.e.,

the scatterplot does not indicate any increasing or decreasing trends), then fitting

a linear regression model to the data probably will not provide a useful model. A

valuable numerical measure of association between two variables is the coefficient of

determination (R-squared) which indicates the proportionate amount of variation in

the response variable explained by the independent variables in the linear regression

model. The closer to 1 the R-squared is, the more variability is explained by the linear

regression model. Once the model is obtained, the validity is checked by looking at

the probability value in the regression procedure. According to this procedure, the

regression model fits well when the probability value is less than the significance level

of α = 0.05.

It is known that the fitted distribution for both the original and filtered data

sets is GEV distribution. The distribution has parameters such as shape, scale and
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location. Each of the parameters is plotted as a function of handicap and a linear fit

is attempted in order to explain the relationship between the parameter.

Figure 8.6 is the scatter plot of the original values of the shape parameter.

Visually, there does not appear to be a strong trend in the data. Nonetheless, linear

regression was applied to the data. The best linear model for the shape parameter is

- 0.0006 × handicap - 0.14. However, the probability value is 0.6797 which is more

than the significance level of 0.05 indicating that the linear regression model is not

fit appropriate for the shape parameter. Additionally, the R-squared value is 0.0060

which indicates that the inappropriateness of the linear fit.

Figure 8.7 is the scatter plot of the original values of the scale parameter. Using

linear regression, the best linear model for the scale parameter is 0.12 × handicap

+ 3.2. The probability value is <0.0001 which is less than the significance level

of 0.05 indicating that the regression model is an appropriate fit to the values of

the parameter. Additionally, the R-squared value is 0.8711 which is high enough

indicating the variability in the scale parameter is highly affected by variability in the

handicap values.

Figure 8.8 is the scatter plot of the original values of the location parameter.

Using linear regression, the best linear model for the parameter is handicap +

73. The probability value is <0.0001 which is less than the significance level of

0.05 indicating that the regression model is an appropriate fit to the values of the

parameter. Additionally, the R-squared value is 0.9946 very high which is indicating

the variability in the location parameter is very highly affected by variability in the

handicap values.
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Figure 8.6 Scatter plot of values from the shape parameter of the generalized
extreme value distribution.
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Figure 8.7 Fitting regression model to the data of values from the scale
parameter of the generalized extreme value distribution. The regression model is
given by scale = 0.12 × handicap + 3.2.
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Figure 8.8 Fitting regression model to the data of values from the location
parameter of the generalized extreme value distribution. The regression model is
given by location = handicap + 73.

From the regression models for scale and location parameters, we will obtain

the fitted values of both the parameters. Since the behavior of the shape parameter

is important in the distribution yet does not follow a linear regression model, we

divide our analysis into three cases : (a) we use original values of shape parameter

and regression fitted values of other two, (b) we use values of the shape parameter

calculated using a moving average technique over 5 adjoining values and regression

fitted values of the other two parameters and (c) we use the overall mean value of

shape parameter (-0.153) and regression fitted values of the other two parameters.

Table 8.6 is divided into three parts displaying the GEV distribution parameter values

for original, original/regression and moving average/regression.



88

Table 8.6 Estimated Values of Parameters of the Fitted Generalized Extreme Value
Distribution to the Scores of the Handicaps

Original Original/Regression Moving Average/Regression

Handicap Shape Scale Location Shape Scale Location Shape Scale Location

10 -0.103 4.201 82.536 -0.103 4.400 83 -0.128 4.400 83

11 -0.171 5.168 84.517 -0.171 4.520 84 -0.107 4.520 84

12 -0.110 4.851 85.039 -0.110 4.640 85 -0.131 4.640 85

13 -0.042 4.858 86.099 -0.042 4.760 86 -0.115 4.760 86

14 -0.230 4.960 87.222 -0.230 4.880 87 -0.112 4.880 87

15 -0.022 5.152 88.434 -0.022 5.000 88 -0.105 5.000 88

16 -0.156 5.403 88.908 -0.156 5.120 89 -0.125 5.120 89

17 -0.073 4.792 89.592 -0.073 5.240 90 -0.107 5.240 90

18 -0.146 5.410 91.229 -0.146 5.360 91 -0.160 5.360 91

19 -0.137 5.171 91.908 -0.137 5.480 92 -0.165 5.480 92

20 -0.287 6.246 93.613 -0.287 5.600 93 -0.182 5.600 93

21 -0.181 5.995 93.929 -0.181 5.720 94 -0.178 5.720 94

22 -0.158 6.022 95.010 -0.158 5.840 95 -0.193 5.840 95

23 -0.127 6.232 97.586 -0.127 5.960 96 -0.184 5.960 96

24 -0.212 6.191 98.076 -0.212 6.080 97 -0.171 6.080 97

25 -0.242 6.008 98.067 -0.242 6.200 98 -0.178 6.200 98

26 -0.116 6.170 99.391 -0.116 6.320 99 -0.181 6.320 99

27 -0.192 5.796 99.495 -0.192 6.440 100 -0.172 6.440 100

28 -0.143 6.809 100.490 -0.143 6.560 101 -0.177 6.560 101

29 -0.167 6.215 101.340 -0.167 6.680 102 -0.188 6.680 102

30 -0.268 7.389 104.020 -0.268 6.800 103 -0.193 6.800 103

31 -0.171 6.700 103.670 -0.171 6.920 104 -0.210 6.920 104

32 -0.218 7.357 104.540 -0.218 7.040 105 -0.212 7.040 105

33 -0.228 6.809 106.680 -0.228 7.160 106 -0.175 7.160 106

34 -0.173 7.136 105.990 -0.173 7.280 107 -0.180 7.280 107

35 -0.085 6.540 108.020 -0.085 7.400 108 -0.147 7.400 108

36 -0.194 8.494 109.950 -0.194 7.520 109 -0.142 7.520 109

37 -0.056 8.156 110.940 -0.056 7.640 110 -0.139 7.640 110

38 -0.200 7.757 110.940 -0.200 7.760 111 -0.118 7.760 111

39 -0.160 8.748 113.860 -0.160 7.880 112 -0.099 7.880 112

40 0.021 8.093 115.530 0.021 8.000 113 -0.113 8.000 113
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Average / Regression Data

Figure 8.9 Comparing the scatter plots of gross scores for handicaps
10 to 40 depicting the three cases based on the values of the shape parameter.
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Figure 8.9 contains the scatter plots for the data obtained using the regression

fitted values of scale and location parameters in combination with original, moving

average and average values of shape parameter. The plots based on the moving

average/regression and average/regression categories have data clustered more

towards center (an indicator of reduced variance) as compared to that observed in

original/regression. In comparison with the scatter plot based on the fitted data

shown in Figure 8.5, the plot for original/regression data matches closely as both

have similar trend in the spread of data. But in comparison to the plots for moving

average/regression and average/regression data, the plot for fitted data shows greater

spread in terms of extreme observations. Hence, we observe that the variance in the

scores is further reduced by using the averaging techniques for shape parameter in

combination with regression.

8.2 Concluding Remarks

Numerical and graphical summaries have been used to describe the data spread. We

have used data filtering and fitting techniques in order to reduce the variability in the

golf scores. Further, we obtained a family of target distributions (GEV distribution)

via the fitting procedure to help in understanding the behavior of the underlying

distribution of the data. For further smoothing we used a regression procedure to

fit appropriate linear model to the parameters of GEV distribution. Having this

preliminary data analysis completed, we will now use this information to perform a

simulation study of golf.



CHAPTER 9

SIMULATION OF GOLF HANDICAPS

Now that we have completed the statistical analysis of the data, we are ready to move

forward using the data as an input into an algorithm for the handicap calculation.

This is accomplished by using samples of gross scores of the golfers as input to the

simulation system and then observing the behavior of the handicap indices. In this

chapter, we will begin introducing the simulation procedure in detail. Further using

the adopted simulation technique, the qualitative behavior of the output is analyzed

for the empirical, filtered and fitted data which helps us to understand the effect of

filtering and fitting.

9.1 Simulation Procedure

In Chapter 8, the exploratory analysis of the data helped us to convert the original

form of data into different forms like fitted or filtered. Since statistical methods

involving order statistics are generally more complicated than those based on the use

of unordered data, to estimate the handicap index we will make use of Monte Carlo

simulation approach. Monte Carlo methods [60] are a broad class of computational

algorithms that rely on repeated random sampling to obtain numerical results by

running simulations many times in order to obtain estimates of quantities, especially

those for which is difficult or impossible to obtain an expression in closed form. The

simulation study is conducted by using scores of the sample golfers as basic inputs.

We will also study the effect of a sudden change in the distribution of the scores on

the handicap.
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The sequence of golf scores used in these simulations will be generated using:

• the normal distribution with assumed mean and standard deviation

• the empirical distributions of scores from the data set

• the fitted distributions of scores based upon the data set

• the fitted distributions of scores based upon the filtered version of the data set.

The purpose of including the simulation output for the case of normally

distributed golf scores is to compare the sensitivity in the response of the handicap

index to the form of the input data, despite our earlier data analysis which included

that golf scores do not follow a normal distribution.

9.1.1 Simulation of the Scores and Handicap Indices

The algorithm of the simulation procedure for the handicap calculation follows the

exact steps and formula as discussed in Chapter 7. As part of the simulations, for

each simulation run we will generate scores as random samples from the handicaps

10 through 40. These scores are adjusted with respect to the handicap. Based on the

moving window technique, the 20 most recent scores are used as input for calculating

handicap differentials. As a result, we obtain handicap index. For our study, the

values for course rating and slope rating are 70 and 113, respectively. The result is

displayed graphically in terms of a plot between the scores and the handicap indices.

Let’s consider the first case stated in the simulation procedure that the gross

scores follow a normal distribution with mean µ = 85 and standard deviation σ = 2.

Figure 9.1 is the plot of the resulting handicap indices from the simulation of scores.

It is observed that there is little variability in the pattern of handicap indices, which

is true for a symmetric distribution.

As the next step in the simulation procedure, let us consider the golf scores

from an empirical distribution of selected handicaps. As an example, we will show
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Figure 9.1 Simulation of scores from normal distribution with mean µ = 85 and
standard deviation σ = 2 and corresponding response of handicap indices is observed.

the results for handicap 13. Figure 9.2 is the normalized probability density function

of the scores from the data. We observe that the given data set is positively skewed

and contains outliers on the high end of data. Using the parameters of handicap 13, we

analyze the output graphically as displayed in Figure 9.3. After comparing Figures 9.1

and 9.3, the output for an asymmetrical distribution has fluctuating output indicating

variability in the data. To stabilize it we will proceed with the case of filtered data

set.

Figure 9.4 is the normalized histogram for the filtered data for handicap 13. It

is observed that the variance in the data is reduced thereby reducing the spread as

indicated by no gaps between the bins. Now, the parameters of the algorithm are

updated according to the criteria and the output is observed as in Figure 9.5. The
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trends in the simulation output in Figures 9.3 and 9.5 are almost similar with minor

reduction in the fluctuation in the handicap indices, an indicator of reduced variance.

Now, we will conduct simulations by using the information of the fitted GEV

distribution to the scores of original data set of handicap 13. From Table 8.5, the

estimated parameters for handicap 13 are shape = -0.042, scale = 4.858 and location

= 86.099. The histogram of the fitted distribution is shown in Figure 9.6. Updating

the algorithm, the simulations are replicated and the output is observed in Figure

9.7. The response of the handicap indices to the simulated scores is similar to that

in Figure 9.5.

Furthermore, considering the same fitting procedure for the filtered data set of

gross scores for handicap 13. In the Table 8.5, the parameters of the filtered scores

from handicap 13 are given by shape = -0.108, scale = 4.844 and location = 86.169.

The normalized histogram of the fitted distribution of the filtered data set is shown

in Figure 9.8. Replicating the simulation procedure using this choice of parameters,

the output is observed in Figure 9.9. We observe that the output is similar to that

shown in Figures 9.5 and 9.7.
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Figure 9.2 Histogram of original data set of scores for handicap 13.
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Figure 9.3 Simulation of empirical distribution of scores from handicap 13 and
corresponding response of handicap indices is observed.
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Figure 9.4 Histogram of data set of scores for handicap 13 after the filtering
procedure.
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Figure 9.5 Simulation of filtered distribution of scores from handicap 13
corresponding response of handicap indices is observed.
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Figure 9.6 Histogram of data set of scores for handicap 13 after fitting generalized
extreme value distribution.
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Figure 9.7 Simulation of fitted distribution of scores from handicap 13
corresponding response of handicap indices is observed.
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Figure 9.8 Histogram of filtered data set of scores for handicap 13 after fitting
generalized extreme value distribution.
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Figure 9.9 Simulation of fitted distribution of filtered data set of scores from
handicap 13 and corresponding response of handicap indices is observed.
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9.1.2 Effect on Handicap Indices of a Sudden Change in the Distribution

of the Scores

Now, we will observe how responsive the handicap system is to a sudden change in the

distribution of the scores. For example, arthritis will degrade the performance of the

golfer gradually whereas major surgery might lead to a rapid decline in performance.

Even though the player was a better golfer before the surgery, it will take time for

the handicap to adjust to reflect the golfer’s current playing potential. In fact, it

will take a minimum of ten rounds of high scores before the corresponding response

of the handicap system will occur. The algorithm used in this section is similar to

that used in the previous section with the difference being that the parameters of the

distribution are changed after certain number of games are played. For our case, we

will consider the change of distribution after 50 games are played.

To begin the analysis, let us consider the gross scores which are simulated from

a normal distribution with a mean of µ = 85 and standard deviation σ = 2. For the

same value of the standard deviation, the sudden increase in the average of the scores

to mean of µ = 95 will cause a delayed increase in the handicap index as seen in

the Figure 9.10. The output displays that the sudden change in the handicap indices

occurs smoothly because of the relative low variability in the scores.

In order to study the effect of sudden change in distribution for the given data

set, the handicaps 13 and 23 are considered. With sudden change in the empirical

distribution of the scores from handicap 13 to that from handicap 23, there is a

delayed increase in the simulation output of the corresponding handicap indices as

shown in the Figure 9.11. Compared to Figure 9.10, the transition to higher handicap

index is less pronounced due to the variability existing in the data.

Similar simulations are replicated for the filtered versions of the handicap data

sets 13 and 23. Figure 9.12 represents the effect of sudden change of the filtered

distribution of scores from handicap 13 to 23. Figures 9.11 and 9.12 exhibit similar
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Figure 9.10 Simulation of sudden change in mean of scores from normal
distribution and corresponding behavior of handicap indices is observed.

pattern in the output but former plot has lesser variability as compared to the latter

plot, because the filtering reduced the spread of scores.

Next, consider the estimated parameters of the target distribution given by

GEV distribution for handicap 13 and 23. From Table 8.5, parameters for handicap

13 are shape = -0.042, scale = 4.858 and location = 86.099 and the parameters of the

handicap 23 are shape = -0.127, scale = 6.232 and location = 95.987. The resultant

effect in the behavior of the handicap indices is displayed in Figure 9.13. The pattern

in the output is similar to Figures 9.11 and 9.12.

Similarly, after fitting GEV distribution to the filtered handicap data set, the

estimated parameters of the handicap 13 are given by shape = -0.108, scale = 4.844

and location = 86.1699 and for handicap 23 are given by shape = -0.208, scale =

6.084 and location = 95.973. Figure 9.14 shows the effect of sudden change in the

distribution of the fitted distributions to the filtered handicap data sets.
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Figure 9.11 Simulation of sudden change in the empirical distribution of scores
from handicap 13 to 23 and corresponding behavior of handicap indices is observed.
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Figure 9.12 Simulation of sudden change in the filtered distribution of scores from
handicap 13 to 23 and corresponding behavior of handicap indices is observed.
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Figure 9.13 Simulation of sudden change in the fitted distribution of scores from
handicap 13 to 23 and corresponding behavior of handicap indices is observed.
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Figure 9.14 Simulation of sudden change in the fitted distribution of filtered
data set of scores from handicap 13 to 23 and corresponding behavior of handicap
indices is observed.
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The qualitative behavior of the results from the simulations is similar for both

filtered and fitted data sets but filtering has a greater impact in terms of reducing

variance. In each of the simulations, a sudden increase in typical scores results in

a delayed increase in the handicap index, was seen; in results not included here, a

sudden decrease in typical scores led to an immediate decrease in handicap index as

would be expected. We observed almost a similar pattern in the simulations based

on data even though the variability in the scores tends to make the transition less

obvious. Overall, we can conclude that this study indicates that the handicap system

is quite responsive to changes in nature of golf scores.

9.2 Summary of Results from the Simulations

The qualitative behavior of the handicap index from the simulations is similar for

both empirical and fitted. Fitting and filtering reduce the variance of the data but

filtering has a greater impact. Given how handicaps are computed, a sudden increase

in typical scores results in a delayed increase in the handicap index whereas a sudden

decrease in typical scores causes an immediate decrease (not shown in the Subsection

9.1.2). From these simulations, we can infer that variance of the golf scores has a great

impact on the handicap as high variability in the scores tends to make transition in the

handicap less obvious. In order to understand the effectiveness of the handicap system

in making matches between players equitable, next chapter includes the simulations

of competitions between players having different handicaps.



CHAPTER 10

DISCUSSION AND ANALYSIS OF COMPETITIONS BETWEEN

PLAYERS WITH DIFFERING HANDICAPS

In a statistically fair handicapping system, the chance of the better golfer and weaker

golfer winning will be same. But, better golfers might suggest that the system should

be designed so the stronger golfer still has an advantage over the weaker golfer [61,

62]. In order to investigate the effectiveness of the handicap system, we will conduct

simulations of competitions between golfers with differing handicaps and complete

competition tables comprising the results of these simulations, based on the empirical

and fitted data for golf scores.

10.1 Description of Competitions Using Empirical and Fitted Data

In order to investigate the fairness of the current handicapping system, it is required

to set up a simulation procedure to estimate the probability of the winning golfer

in a competition between golfers. We will begin our simulation study by completing

competition tables using golf scores based upon the original and fitted data sets. A

competition table, used to summarize the results of the matches, consists of rows

and columns both headed with handicap values 10 through 40. Each entry in the

table represents the probability of a golfer with handicap as indicated by the row

emerging as the winner of a competition with a golfer with handicap as indicated by

the column. Each of the probabilities is obtained by averaging over 100,000 simulated

golf matches. We will begin our discussion by analyzing the competitions for both

the empirical and fitted data.
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10.1.1 Competitions Observed Using the Data

In a two player competition, the USGA recommends that the stronger player allow

the weaker to subtract from his score a number of strokes equal to the difference in

their handicaps. For example for a competition between players of handicap 10 and

15, then the player with handicap 15 will have 5 strokes subtracted from the overall

score. We will discuss the step wise algorithm to estimate the chance that the better

golfer is the winner.

First, the data set of the gross scores of both the golfers are used as input and

adjusted with respect to their handicap value. Second, the adjusted scores of both the

golfers are used to conduct a tally of wins, losses and ties in the game; and determine

the proportion of wins with ties excluded in the calculation of the proportion. Finally,

the error bars of the winning probability are evaluated. The procedure of estimating

the probability of winning the game is replicated for all possible pairs of handicaps

ranging from 10 to 40. Therefore, a completed competition table will have 31 rows

and 31 columns.

The competition results are shown for selected handicaps 12, 15, 18, · · · , 39 in

form of 10×10 matrix as shown in Tables 10.1 to 10.4 for the original data, the filtered

data, the GEV distribution fit to the original data and the GEV distribution fit to the

filtered data, respectively. For the sake of simplicity, the full 31×31 matrices are given

in the appendix. Ideally, each cell in a competition matrix should have three outputs:

the probability of winning, the number of ties, and the error bars. For example, for a

competition between a golfer with handicap 12 against that of handicap 15, using the

original data, the three entries should be in form of probability of winning = 0.5340,

number of ties = 5403 and error bars = [0.5308 0.5372]. The number of ties is small

in comparison to 100,000 simulations and also the error bars are on the order of 10−3.

These values are completely typical of those observed for all cases; thus for the sake

of brevity, they are not included in any of the tables.
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Table 10.1 Competition Matrix for Original Data Set of Scores

Handicap 12 15 18 21 24 27 30 33 36 39

12 0.5000 0.5340 0.5137 0.5072 0.5398 0.4809 0.5671 0.5471 0.5777 0.6018

15 0.4623 0.5008 0.4817 0.4738 0.5073 0.4509 0.5365 0.5162 0.547 0.5702

18 0.4849 0.5196 0.4992 0.4931 0.5215 0.4631 0.5512 0.5329 0.5621 0.5865

21 0.4952 0.5265 0.5088 0.5009 0.5305 0.4755 0.5553 0.5385 0.5663 0.5988

24 0.4568 0.4933 0.4767 0.4712 0.5022 0.4433 0.5337 0.5104 0.5473 0.5707

27 0.5194 0.553 0.5347 0.5261 0.5564 0.4984 0.5836 0.5635 0.5902 0.6182

30 0.4330 0.4652 0.4478 0.4447 0.4688 0.4174 0.5010 0.4847 0.5193 0.5527

33 0.4523 0.4856 0.4651 0.4585 0.4894 0.4388 0.5154 0.5016 0.5287 0.5672

36 0.4213 0.4535 0.4323 0.4314 0.4553 0.4077 0.4808 0.4685 0.5005 0.5352

39 0.4004 0.4322 0.4106 0.4061 0.4281 0.3819 0.4481 0.4334 0.4639 0.5006

Table 10.2 Competition Matrix for Filtered Data Set of Scores

Handicap 12 15 18 21 24 27 30 33 36 39

12 0.5012 0.5213 0.5251 0.5244 0.5448 0.4912 0.5834 0.5660 0.5890 0.6146

15 0.4811 0.4992 0.5073 0.5040 0.5319 0.4707 0.5665 0.5457 0.5745 0.6030

18 0.4769 0.4938 0.5008 0.5015 0.5214 0.4692 0.5588 0.5393 0.5679 0.5944

21 0.4792 0.4962 0.4989 0.4994 0.5207 0.4708 0.5528 0.5414 0.5652 0.5972

24 0.4516 0.4669 0.4803 0.4780 0.4975 0.4483 0.5409 0.5199 0.5534 0.5825

27 0.5085 0.5269 0.5299 0.5269 0.5511 0.4998 0.5844 0.5675 0.5923 0.6201

30 0.4184 0.4328 0.4434 0.4485 0.4595 0.4177 0.5016 0.4862 0.5166 0.5542

33 0.4356 0.4550 0.4599 0.4608 0.4770 0.4350 0.5165 0.4974 0.5293 0.5698

36 0.4086 0.4256 0.4299 0.4343 0.4456 0.4097 0.4833 0.4727 0.5010 0.5350

39 0.3873 0.3982 0.4033 0.4053 0.4205 0.3794 0.4442 0.4309 0.4614 0.4978
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Table 10.3 Competition Matrix for Fitted Data Set of Scores

Handicap 12 15 18 21 24 27 30 33 36 39

12 0.4989 0.5341 0.5110 0.5076 0.5364 0.4812 0.5649 0.5437 0.5694 0.6065

15 0.4677 0.5006 0.4813 0.4736 0.5047 0.4507 0.5296 0.514 0.5441 0.5778

18 0.4848 0.5185 0.501 0.4907 0.5215 0.4657 0.5491 0.5312 0.5577 0.5942

21 0.4948 0.5264 0.5096 0.5010 0.5112 0.5284 0.4795 0.5384 0.5624 0.6029

24 0.4643 0.4963 0.4788 0.4740 0.4991 0.4467 0.5327 0.5102 0.5430 0.5766

27 0.5206 0.5534 0.5321 0.5234 0.5506 0.5008 0.5766 0.5613 0.5850 0.6180

30 0.4363 0.4717 0.4518 0.4465 0.4711 0.4210 0.5030 0.4842 0.5174 0.5529

33 0.4528 0.4874 0.4679 0.4627 0.4873 0.4396 0.5151 0.4970 0.5329 0.5655

36 0.4283 0.4574 0.4407 0.4318 0.4579 0.4172 0.4832 0.4690 0.5009 0.5324

39 0.3947 0.4248 0.4057 0.396 0.4222 0.3836 0.4479 0.4325 0.4638 0.4993

Table 10.4 Competition Matrix for Fitted Distribution of Filtered Data Set of
Scores

Handicap 12 15 18 21 24 27 30 33 36 39

12 0.5001 0.5201 0.5244 0.5201 0.5473 0.4929 0.5789 0.5609 0.5859 0.6243

15 0.4791 0.4976 0.5055 0.5033 0.5277 0.4753 0.5627 0.5460 0.5716 0.6085

18 0.4753 0.4966 0.4982 0.4975 0.5174 0.4697 0.5550 0.5397 0.5647 0.6032

21 0.5065 0.4942 0.4659 0.5317 0.4990 0.5134 0.4743 0.4996 0.5151 0.5176

24 0.4542 0.4706 0.4802 0.4798 0.5002 0.4520 0.5369 0.5204 0.5455 0.5890

27 0.5107 0.5254 0.5289 0.5288 0.5516 0.5001 0.5793 0.5662 0.5858 0.6239

30 0.4206 0.4376 0.4457 0.4487 0.4633 0.4216 0.5011 0.4848 0.5171 0.5543

33 0.4375 0.4543 0.4621 0.4594 0.4812 0.4386 0.5174 0.4998 0.5274 0.5654

36 0.4137 0.4288 0.4329 0.4365 0.4528 0.4102 0.4865 0.4718 0.5012 0.5431

39 0.3781 0.3914 0.3962 0.3992 0.4116 0.3777 0.4445 0.4326 0.4588 0.4995
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In Tables 10.1 to 10.4, it is observed that the probabilities along the diagonal

are close to 0.5 for golfers having equal handicaps. The probabilities for a competition

between players with a pair of distinct handicaps and the reversed order of handicaps

do not sum exactly to 1 because these results are from independent simulations. The

amount that these probabilities do not sum equal to 1 is usually comparable in size to

the error bar. Furthermore, it is observed that in a direct competition, a player with

a lower handicap seems to have an advantage over a player with a higher handicap.

In addition, as the gap between the handicaps increases, the lower-handicap golfer

has an increasing advantage over the weaker golfer. This is caused due to the fact

that there is high variance associated with the scores from high handicap golfers.

It is clear from the competition tables that due to high variability in the scores,

there is no clear trend in the actual probability values. Results in the handicap

simulations are in qualitative agreement for fitted and empirical; filtering reduces the

variance in all cases. From the simulation of scores under different scenarios, we can

conclude that there is an existence of bias in the handicap system which is most

evident in the competition between players of greatly differing handicaps.

As none of the techniques were helpful in providing clear trends in the

probability values, so we will now adopt the approach of linear regression as discussed

in Chapter 8. Table 8.6 includes the lists of the regression fitted parameters. Based

on the discussion in Chapter 8, we know that Table 8.6 lists the values of parameters

under three categories original, original/regression and moving average/regression.

Using the information given in Table 8.6, we will now complete the competition

tables. Based on the shape parameter, the competitions are completed for categories

as original/regression, moving average/regression, and average and regression.

Table 10.5 is the competition table using the information under the category

original/regression. For the sake of brevity, the complete 31×31 table is shown in

appendix. In this table, it is observed that the extreme behavior in probability values



109

has been reduced considerably with very few fluctuations as each of those values are

around 0.5.

Next, using the combination of moving average and regression to determine the

parameters of the GEV distribution, the competition table is shown in Table 10.10

with complete table in the appendix for the sake of simplicity. The table has fewer

fluctuations than Table 10.6 in the probability values, indicates further reduction in

the variance of the scores. To clarify the trend in the probability values, it is helpful

to construct a color map. In Figure 10.1, the color coding from light pink to dark pink

indicates the increase in probability values around 0.45 to 0.49, values around 0.5 are

given in white, while light blue to dark blue indicates probability values increasing

from 0.5 to around 0.54. The color coding provides a clear indicator of the general

bias observed in the handicap system.

Finally, Table 10.7 is completed using the regression fitted values of scale and

location and the average value of the shape parameter in the GEV distribution. In

comparison with Table 10.6, we observe that the winning probability values follow

similar trend while moving across the row for each handicap. We can infer that using

the regression procedure and average value of shape parameter, there is stability in

values. Similar to Figure 10.1, we also obtain the color map for the given situation.

We observe that the variance in Figure 10.1 is further reduced in Figure 10.2. This is

indicated by the smoother transition of the colors. Hence, using the average value for

shape parameter in combination with regression fitted values for the other two leads

to further smoothing in the results.
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Table 10.5 Competition Matrix: Using Regression Fitting Procedure and Original
Values of Shape Parameter

Handicap 12 15 18 21 24 27 30 33 36 39

12 0.4987 0.5139 0.5084 0.5104 0.5121 0.5204 0.5183 0.5268 0.5330 0.5351

15 0.4876 0.5018 0.4928 0.4969 0.4955 0.5048 0.5044 0.5098 0.5161 0.5226

18 0.4896 0.5064 0.5000 0.5050 0.5016 0.5125 0.5076 0.5079 0.5248 0.5296

21 0.4890 0.5063 0.4975 0.4991 0.5021 0.5097 0.5088 0.5150 0.5240 0.5269

24 0.4879 0.5026 0.4972 0.4985 0.4980 0.5073 0.5049 0.5127 0.5211 0.5282

27 0.4827 0.4926 0.4880 0.4921 0.4956 0.4996 0.4955 0.5050 0.5109 0.5186

30 0.4792 0.4908 0.4908 0.4923 0.4979 0.5036 0.5017 0.5100 0.5153 0.5238

33 0.4759 0.4913 0.4818 0.4836 0.4877 0.4940 0.4914 0.4989 0.5055 0.5168

36 0.4688 0.4845 0.4759 0.4812 0.4800 0.4833 0.4844 0.4900 0.5008 0.5079

39 0.4621 0.4770 0.4700 0.4722 0.4725 0.4815 0.4768 0.4862 0.4935 0.4995

Table 10.6 Competition Matrix: Using Regression Fitting Procedure and Moving
Average on the Values of Shape Parameter

Handicap 12 15 18 21 24 27 30 33 36 39

12 0.5008 0.5085 0.5089 0.5113 0.5174 0.5253 0.5251 0.5310 0.5410 0.5443

15 0.4904 0.5004 0.4988 0.4997 0.5105 0.5125 0.5175 0.5226 0.4897 0.5371

18 0.4908 0.4981 0.4983 0.5057 0.5095 0.5157 0.5179 0.5245 0.5295 0.5352

21 0.4845 0.4973 0.4987 0.4996 0.5050 0.5123 0.5169 0.5204 0.5262 0.5312

24 0.4803 0.4884 0.4911 0.4975 0.5001 0.5053 0.5078 0.5138 0.5214 0.5238

27 0.4770 0.4864 0.4868 0.4865 0.4942 0.5024 0.5011 0.5074 0.5155 0.5229

30 0.4743 0.4833 0.4820 0.4858 0.4920 0.4954 0.5007 0.5059 0.5146 0.5182

33 0.4664 0.4764 0.4789 0.4804 0.4846 0.4922 0.4919 0.5009 0.5075 0.5142

36 0.4605 0.4719 0.4710 0.4740 0.4806 0.4883 0.4876 0.4914 0.5022 0.5064

39 0.4592 0.4662 0.4629 0.4663 0.4734 0.4749 0.4774 0.4844 0.4910 0.4994
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Figure 10.1 Color map of the winning probability values using regression fitted
values of scale and location and moving average values for shape parameters.

Table 10.7 Competition Matrix: Using Regression Fitting Procedure and Average
of the Values of Shape Parameter

Handicap 12 15 18 21 24 27 30 33 36 39

12 0.5022 0.5066 0.5140 0.5192 0.5226 0.5272 0.5324 0.5362 0.5366 0.5411

15 0.4942 0.5004 0.5058 0.5121 0.5186 0.5209 0.5258 0.5296 0.5324 0.5376

18 0.4884 0.4943 0.5009 0.5051 0.5087 0.5156 0.5191 0.5223 0.5266 0.5325

21 0.4859 0.4864 0.4969 0.4991 0.5026 0.5116 0.5119 0.5183 0.5228 0.5245

24 0.4802 0.4832 0.4920 0.4935 0.5000 0.5050 0.5095 0.5145 0.5156 0.5208

27 0.4756 0.4821 0.4885 0.4937 0.4984 0.5028 0.5061 0.5102 0.5112 0.5169

30 0.4712 0.4742 0.4818 0.4867 0.4906 0.4959 0.4985 0.5059 0.5071 0.5109

33 0.4613 0.4706 0.4765 0.4831 0.4901 0.4891 0.4976 0.5003 0.5060 0.5087

36 0.4597 0.4649 0.4711 0.4794 0.4842 0.4861 0.4935 0.4984 0.5000 0.5040

39 0.4587 0.4636 0.4702 0.4757 0.4782 0.4830 0.4864 0.4900 0.4992 0.4994
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Figure 10.2 Color map of the winning probability values using regression
fitted values of scale and location and overall mean value of scale parameter.

10.1.2 Competition Tables for Stratified Data

In the previous section, we observed that though the regression technique produced

smoother trends in the probability values, the bias still exits. For the sake of achieving

fairness in the competitions, we will restrict competitions from the data set to those

between golfers playing on same day and tournament. The size of the tournaments in

the data set varies from about 40 to over 100 golfers with handicaps ranging from 10 to

40. In the simulation procedure, the steps followed to complete the competition table

are similar to those discussed in the previous section with the difference that, for each

competition, the tournament is selected randomly. There is a possibility of having no

or very few golfers corresponding to a particular handicap in the randomly selected

tournament. In order to better understand the impact of this, we will consider two

cases: (a) there is at least one player of each handicap in the tournament, and (b)

there are at least two players of each handicap in the tournament.
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To begin with, the competition table is obtained for original data set of scores.

Tables 10.8 to 10.11 are the competitions for selected pairs of handicaps in form

of 10×10 matrix. The complete matrix of competition of size 31×31 is given in

the appendix. Table 10.8 and 10.10 show the simulation results when there is at

least one player of each handicap in the selected tournament. Tables 10.9 and 10.11

contain the simulation results when there are at least two players of each handicap

in the selected tournament. We observe that the winning probabilities become more

extreme with improved consistency in comparison to those in Tables 10.1 to 10.4.

Hence, though the fluctuations in the trend of probability values have been reduced,

but a lower handicap player still seems to have an advantage over a player with a

higher handicap. But in comparison to Tables 10.5 to 10.7, the results in Tables 10.8

to 10.11 do not have smoother trends in the probability values.

Table 10.8 Competition Matrix for Original Data Set of Scores with At Least One
Player from Each Tournament

Handicap 12 15 18 21 24 27 30 33 36 39

12 0.5004 0.5463 0.5222 0.5180 0.5595 0.4712 0.5805 0.5698 0.5663 0.6137

15 0.4526 0.4967 0.4858 0.4717 0.5084 0.4603 0.5506 0.5194 0.5722 0.5792

18 0.4769 0.5150 0.5039 0.4918 0.5195 0.4813 0.5556 0.5190 0.5718 0.5816

21 0.4824 0.5267 0.5083 0.5034 0.5277 0.4885 0.5566 0.5447 0.5769 0.5935

24 0.4380 0.4898 0.4807 0.4704 0.4997 0.4352 0.5219 0.5192 0.5232 0.5843

27 0.5293 0.5405 0.5179 0.5124 0.5627 0.5026 0.5675 0.5656 0.5865 0.5938

30 0.4212 0.4524 0.4461 0.4450 0.4800 0.4334 0.4977 0.4659 0.5324 0.5504

33 0.4300 0.4847 0.4784 0.4555 0.4830 0.4343 0.5326 0.4969 0.5145 0.5504

36 0.4327 0.4298 0.4282 0.4267 0.4744 0.4157 0.4645 0.4833 0.5002 0.5276

39 0.3876 0.4217 0.4164 0.4107 0.4142 0.4024 0.4515 0.4510 0.4718 0.5025
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Table 10.9 Competition Matrix for Original Data Set of Scores with At Least Two
Players from Each Tournament

Handicap 12 15 18 21 24 27 30 33 36 39

12 0.5028 0.5600 0.5194 0.5235 0.5618 0.4750 0.5709 0.5689 0.6056 0.6379

15 0.4399 0.5010 0.4757 0.4779 0.5120 0.4948 0.5278 0.5213 0.5791 0.6219

18 0.4783 0.5247 0.5014 0.5082 0.5242 0.4797 0.5565 0.5517 0.6022 0.6226

21 0.4758 0.5203 0.4929 0.5000 0.5162 0.4834 0.5413 0.5404 0.5915 0.6310

24 0.4396 0.4883 0.4738 0.4832 0.4997 0.4396 0.5263 0.5070 0.5541 0.6072

27 0.5274 0.5506 0.5205 0.5189 0.5583 0.4996 0.5683 0.5721 0.6168 0.6280

30 0.4326 0.4722 0.4443 0.4611 0.4701 0.4302 0.5025 0.4704 0.5301 0.5752

33 0.4262 0.4762 0.4481 0.4558 0.4945 0.4294 0.5292 0.4996 0.5343 0.5895

36 0.3918 0.4205 0.3982 0.4113 0.4473 0.3829 0.4710 0.4660 0.4980 0.5334

39 0.3617 0.3815 0.3771 0.3678 0.3928 0.373 0.4249 0.4084 0.4625 0.5000

Table 10.10 Competition Matrix for Filtered Data Set of Scores with At Least One
Player from Each Tournament

Handicap 12 15 18 21 24 27 30 33 36 39

12 0.5044 0.5319 0.5369 0.5367 0.5586 0.4940 0.5605 0.5780 0.5970 0.6265

15 0.4711 0.4994 0.5077 0.5132 0.5295 0.4671 0.5371 0.5501 0.5790 0.6090

18 0.4654 0.4911 0.4980 0.5094 0.5155 0.4589 0.5330 0.5443 0.5683 0.6039

21 0.4597 0.4848 0.4913 0.4975 0.5157 0.4572 0.5206 0.5356 0.5620 0.5987

24 0.4434 0.4703 0.4777 0.4868 0.4988 0.4414 0.5122 0.5228 0.5531 0.5891

27 0.5088 0.5378 0.5410 0.5422 0.5594 0.5000 0.5650 0.5817 0.5999 0.6361

30 0.4374 0.4623 0.4678 0.4772 0.4861 0.4313 0.4984 0.5116 0.5380 0.5873

33 0.4250 0.4496 0.4573 0.4631 0.4764 0.4221 0.4913 0.4987 0.5268 0.5785

36 0.4038 0.4241 0.4310 0.4381 0.4423 0.4011 0.4604 0.4693 0.4999 0.5451

39 0.3832 0.4240 0.4035 0.4023 0.4242 0.3766 0.4199 0.4205 0.4571 0.5008
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Table 10.11 Competition Matrix for Filtered Data Set of Scores with At Least
Two Players from Each Tournament

Handicap 12 15 18 21 24 27 30 33 36 39

12 0.5023 0.5485 0.5244 0.5369 0.5645 0.4879 0.5840 0.5935 0.6260 0.6540

15 0.4509 0.5006 0.4954 0.5051 0.5270 0.4699 0.5577 0.5551 0.6172 0.6466

18 0.4741 0.5032 0.4973 0.5174 0.5237 0.4870 0.5637 0.5603 0.6118 0.6326

21 0.4643 0.4937 0.4840 0.4986 0.5117 0.4793 0.5366 0.5400 0.5874 0.6339

24 0.4350 0.4707 0.4742 0.4891 0.5003 0.4457 0.5342 0.5170 0.5625 0.6187

27 0.5148 0.5291 0.5167 0.5214 0.5537 0.4976 0.5711 0.5782 0.6187 0.6320

30 0.4126 0.4442 0.4352 0.4606 0.4623 0.4292 0.4996 0.4710 0.5252 0.5777

33 0.4085 0.4460 0.4354 0.4579 0.4811 0.4204 0.5261 0.4981 0.5290 0.5930

36 0.3749 0.3815 0.3912 0.4155 0.4425 0.3816 0.4764 0.4699 0.4985 0.5420

39 0.3445 0.3529 0.3664 0.3659 0.3790 0.3642 0.4226 0.4089 0.4551 0.4989

When the data set is stratified tournament wise, there is not enough data for

each handicap within each tournament in order to complete the fitting procedure. As

a result, we can not complete simulations using data from a fitted distribution.

Each of the scenarios indicate preference to the low handicap golfer in the row

versus the high handicap golfer. In view of this, the competition tables discussed

above still reflect the existing bias in the handicap system. In other words, these

results indicate that the current handicap system is not statistically fair.

10.2 Competition Tables Using Dynamically Generating Handicaps

The purpose of this section to study the impact on the effectiveness of the system

while following the performance of a single golfer through time. Under this situation,

in a competition between two golfers the gross scores will be adjusted using the

dynamically generated handicaps at each stage. For each run of the simulations,

using the same procedure of calculating the handicap, the scores will be adjusted

based on the handicap obtained in the previous run. It implies in this case that
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two golfers will be playing sequence of games with handicaps evolving in time. For

example, in this case in a competition between golfer of “handicap 10” and “handicap

13”, the corresponding scores will be adjusted by not subtracting these numbers but

the current handicap. For the sake of simplicity, we have shown the results in 10×10

matrix as shown in Table 10.12. It is observed that with increase in the handicap

values across the row, the golfer with lower handicap has an advantage over the higher

handicap golfer. There is no smooth trend in the probability values. In order to apply

fitting and filtering techniques, we would require more data. Overall, we observe that

the bias in the system still exists.

Table 10.12 Competition Matrix: Using Dynamic Generation of the Handicaps

Handicap 12 15 18 20 22 24 27 28 30 36

12 0.4989 0.5153 0.5306 0.5550 0.5643 0.5585 0.6073 0.5999 0.6389 0.6390

15 0.4795 0.4998 0.5113 0.5349 0.5449 0.5372 0.5862 0.5768 0.6171 0.6183

18 0.4660 0.4828 0.4986 0.5274 0.5345 0.5268 0.5815 0.5689 0.6144 0.6165

21 0.4427 0.4603 0.4730 0.4966 0.5060 0.4967 0.5563 0.5439 0.5892 0.5956

24 0.4277 0.4487 0.4619 0.4890 0.4943 0.4861 0.5466 0.5363 0.5833 0.5874

27 0.4402 0.4575 0.4724 0.5004 0.5107 0.4991 0.5593 0.5480 0.5962 0.6001

30 0.3897 0.4121 0.4211 0.4461 0.4526 0.4405 0.4980 0.4907 0.5415 0.5542

33 0.3961 0.4173 0.4254 0.4511 0.4559 0.4476 0.5083 0.4953 0.5472 0.5606

36 0.3617 0.3832 0.3875 0.4088 0.4143 0.4070 0.4602 0.4501 0.4983 0.5180

39 0.3554 0.3750 0.3806 0.3998 0.4050 0.3962 0.4411 0.4349 0.4794 0.4977
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10.3 Concluding Remarks

In Tables 10.1 to 10.4, we observe that bias is most evident in the competition between

players of greatly differing handicaps. Though filtering has some impact in reducing

the extreme behavior of the probability values, but there are fluctuations in the trend

of those values. This is an indicator of high variance in the golf scores. In order to

reduce this effect, the regression approach is adopted and results are discussed in the

Tables 10.5 to 10.7 by considering various categories. It is clearly evident from these

tables that the variance in the probability values for higher handicaps is reduced and

fluctuations are minimized effectively. As an alternative means of studying this issue,

Tables 10.8 to 10.11 are completed under the scenario that the players are restricted

to the same tournament. We observe that stratifying the data causes extreme values

of probability to become more extreme. Regardless of the approach taken, bias clearly

exists in the USGA handicap system; the existence of bias in the handicap system is

most evident in the competition between players of greatly differing handicaps.



CHAPTER 11

CONCLUSIONS AND FUTURE WORK ON GOLF HANDICAPS

For over 100 years, the USGA has been attempting to create an unbiased

handicapping system. With the help of the AT&T Golf Tournament League data

set, we have studied this problem. We conducted data analysis on the data set using

sophisticated techniques for fitting procedure and state of the art filtering techniques;

we observed that the generalized extreme value distribution is an appropriate fit for

the golf scores whereas the normal distribution is not an appropriate fit for the golf

scores. Simulation of handicaps demonstrated the effect of variations in golf scores on

handicap. For instance, a sudden increase in typical golf scores resulted in a delayed

increase in the handicap index. Simulation of direct competitions have demonstrated

that a player with a lower handicap seems to have an advantage over a player with

a higher handicap indicating a bias in the handicap system. This bias arises in

particular due to higher variability in golf scores of players with higher handicap.

As further refinement of this work, we will explore the use of other techniques

for data filtering such as the Grubbs test. Likewise, we can use other goodness of fit

tests and other parameter estimation techniques. It would be worthwhile to consider

variations of the current handicapping system to see the effect on the bias. Possible

modifications include changing the number of scores used in calculating the handicap

and modifying the procedure for integrating the course difficulty. It would also be

interesting to further pursue the idea of a competition between a pair of golfers with

dynamically evolving handicaps. A data set with a large temporal record of golf

scores for several individuals would be necessary for such a study.
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APPENDIX A

COMPETITION TABLES

A.1 Competition Matrix for Raw Data

Tables A.1 through A.3 are the competition matrices reflecting the competitions

between players of handicaps 10 through 40 having gross scores from the original

data set. Each entry in this table is the value of the winning probability the golfer

with handicap as indicated by the row emerging as the winner of a competition with

a golfer with handicap as indicated by the column. Due to space limitation, it is

divided into three tables where Table A.1 lists competitions between handicaps 10

to 20, Table A.2 lists competitions between handicaps 21 to 30 and Table A.3 lists

competitions between handicaps 31 to 40.
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Table A.1 Competition Matrix for Raw Data Set

Handicap 10 11 12 13 14 15 16 17 18 19 20

10 0.5029 0.5699 0.5406 0.5509 0.5441 0.5771 0.5429 0.5175 0.5633 0.5398 0.5771

11 0.4305 0.4979 0.4762 0.4805 0.4746 0.5062 0.4746 0.4498 0.4872 0.4663 0.518

12 0.4591 0.5304 0.5000 0.5083 0.5009 0.5340 0.4992 0.4790 0.5137 0.4963 0.5348

13 0.4493 0.5182 0.4863 0.4971 0.4860 0.5286 0.4868 0.4717 0.5063 0.4862 0.5268

14 0.4549 0.5304 0.4997 0.5110 0.4973 0.5356 0.4965 0.4766 0.5133 0.4959 0.5424

15 0.4202 0.4941 0.4623 0.4707 0.4649 0.5008 0.4643 0.4393 0.4817 0.4602 0.5035

16 0.4564 0.5283 0.5032 0.5136 0.5025 0.5369 0.5011 0.4819 0.5177 0.5007 0.5374

17 0.4818 0.5496 0.5221 0.5280 0.5217 0.5603 0.5200 0.4980 0.5410 0.5188 0.5573

18 0.4391 0.5106 0.4849 0.4964 0.4825 0.5196 0.4802 0.4620 0.4992 0.4801 0.5190

19 0.4610 0.5348 0.5061 0.5160 0.5047 0.5373 0.5019 0.4812 0.5189 0.4983 0.5410

20 0.4217 0.4857 0.4644 0.4760 0.4635 0.4956 0.4626 0.4454 0.4762 0.4595 0.4996

21 0.4553 0.5164 0.4952 0.505 0.4907 0.5265 0.4889 0.4739 0.5088 0.4871 0.5296

22 0.4487 0.5143 0.489 0.5013 0.4844 0.5203 0.4850 0.4737 0.5022 0.4819 0.5182

23 0.4500 0.5042 0.4845 0.4955 0.4815 0.5169 0.4785 0.4655 0.4960 0.4784 0.5091

24 0.4191 0.4833 0.4568 0.4717 0.4631 0.4933 0.4607 0.4370 0.4767 0.4556 0.501

25 0.4467 0.5101 0.4925 0.5036 0.4925 0.5237 0.4943 0.4725 0.5062 0.4885 0.5281

26 0.4142 0.4803 0.4604 0.4686 0.4594 0.4922 0.4613 0.4376 0.4777 0.4570 0.4961

27 0.4808 0.5460 0.5194 0.5302 0.5205 0.5530 0.5184 0.5007 0.5347 0.5153 0.5531

28 0.4607 0.5209 0.4994 0.5097 0.4949 0.5312 0.4936 0.4800 0.5084 0.4932 0.5277

29 0.4834 0.5406 0.5212 0.5302 0.5155 0.5534 0.5164 0.5011 0.5304 0.5172 0.5452

30 0.3959 0.4448 0.433 0.4501 0.4311 0.4652 0.4299 0.4188 0.4478 0.4295 0.4709

31 0.4537 0.5125 0.4915 0.5032 0.4908 0.5258 0.4929 0.4753 0.5051 0.4893 0.5272

32 0.4596 0.5143 0.4932 0.5037 0.4912 0.5297 0.4926 0.4766 0.5079 0.4917 0.5250

33 0.4176 0.4692 0.4523 0.464 0.4480 0.4856 0.4514 0.4377 0.4651 0.4483 0.4835

34 0.4898 0.5439 0.5188 0.5292 0.5181 0.5481 0.5164 0.5039 0.5328 0.5154 0.5427

35 0.4452 0.4975 0.4737 0.4842 0.4700 0.5125 0.4742 0.4628 0.4861 0.4710 0.5036

36 0.3849 0.4391 0.4213 0.4328 0.4206 0.4535 0.4197 0.4074 0.4323 0.4195 0.4481

37 0.3837 0.4378 0.4162 0.4249 0.4115 0.4481 0.4171 0.402 0.4306 0.4149 0.4431

38 0.4416 0.4820 0.4699 0.4846 0.4684 0.4980 0.4695 0.4608 0.4833 0.4686 0.497

39 0.3753 0.4114 0.4004 0.4099 0.3955 0.4322 0.3987 0.3854 0.4106 0.3965 0.4241

40 0.3249 0.3797 0.3596 0.3710 0.3566 0.3884 0.3550 0.3457 0.3706 0.3544 0.3837



121

Table A.2 Competition Matrix for Raw Data Set (Continued)

Hcp 21 22 23 24 25 26 27 28 29 30

10 0.5452 0.5534 0.5486 0.5822 0.5472 0.584 0.5184 0.5423 0.518 0.6023

11 0.4853 0.4861 0.4964 0.5175 0.4827 0.5214 0.4555 0.4808 0.4574 0.5551

12 0.5072 0.5105 0.518 0.5398 0.5086 0.5416 0.4809 0.5006 0.4784 0.5671

13 0.4957 0.5029 0.5027 0.5262 0.497 0.5289 0.4708 0.4913 0.4696 0.5525

14 0.5062 0.5131 0.5185 0.5388 0.5083 0.5399 0.4808 0.5019 0.4843 0.5693

15 0.4738 0.4779 0.4817 0.5073 0.4728 0.5098 0.4509 0.4702 0.4473 0.5365

16 0.5092 0.5171 0.5205 0.5406 0.5098 0.5411 0.4819 0.5068 0.4874 0.5674

17 0.5253 0.5315 0.5358 0.5592 0.5271 0.5591 0.5024 0.5211 0.4996 0.5792

18 0.4931 0.4992 0.5045 0.5215 0.4937 0.5241 0.4631 0.4887 0.4671 0.5512

19 0.5121 0.5149 0.5186 0.5435 0.5109 0.5436 0.4865 0.5058 0.4828 0.5676

20 0.4717 0.4803 0.4852 0.5018 0.4725 0.5052 0.4478 0.4736 0.4545 0.5348

21 0.5009 0.5036 0.5135 0.5305 0.5001 0.5297 0.4755 0.4949 0.4806 0.5553

22 0.494 0.5018 0.506 0.5215 0.4916 0.5211 0.4689 0.488 0.4707 0.5458

23 0.4886 0.4919 0.5012 0.5128 0.4844 0.5172 0.4642 0.4856 0.4723 0.541

24 0.4712 0.4797 0.4871 0.5022 0.4706 0.4991 0.4433 0.4703 0.4501 0.5337

25 0.499 0.5057 0.5165 0.5328 0.4992 0.5324 0.4722 0.498 0.4815 0.5615

26 0.47 0.4759 0.4832 0.5046 0.4683 0.5004 0.4443 0.4681 0.4522 0.5312

27 0.5261 0.5293 0.5324 0.5564 0.5241 0.5581 0.4984 0.5218 0.4992 0.5836

28 0.5046 0.5094 0.5179 0.53 0.5039 0.5306 0.4789 0.4989 0.4822 0.5562

29 0.5226 0.5298 0.5298 0.5497 0.522 0.547 0.4996 0.5164 0.5002 0.5681

30 0.4447 0.4485 0.4581 0.4688 0.4393 0.4685 0.4174 0.4457 0.4287 0.501

31 0.4985 0.5062 0.5098 0.5299 0.5007 0.5326 0.4748 0.4939 0.4762 0.5539

32 0.5001 0.5054 0.5113 0.5286 0.4989 0.5267 0.4774 0.4967 0.4807 0.5508

33 0.4585 0.4679 0.4759 0.4894 0.4576 0.4871 0.4388 0.4591 0.4428 0.5154

34 0.5237 0.5279 0.5294 0.548 0.5197 0.5487 0.4989 0.5144 0.5023 0.5746

35 0.4782 0.4782 0.4897 0.5024 0.478 0.5078 0.4579 0.4729 0.4601 0.526

36 0.4314 0.4348 0.446 0.4553 0.4294 0.4537 0.4077 0.4337 0.4122 0.4808

37 0.4198 0.425 0.4351 0.4474 0.4257 0.4536 0.4003 0.4234 0.4056 0.4748

38 0.4775 0.4865 0.4942 0.4997 0.4738 0.5003 0.4554 0.4777 0.4629 0.5255

39 0.4061 0.4087 0.4187 0.4281 0.4008 0.4317 0.3819 0.4057 0.3935 0.4481

40 0.3669 0.3681 0.3781 0.3844 0.3640 0.3877 0.3444 0.3638 0.3475 0.4145
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Table A.3 Competition Matrix for Raw Data Set (Continued)

Hcp 31 32 33 34 35 36 37 38 39 40

10 0.5459 0.5389 0.5835 0.5123 0.5523 0.6144 0.6155 0.5629 0.6267 0.6749

11 0.4856 0.4879 0.5333 0.458 0.5043 0.5644 0.5669 0.5182 0.5884 0.6205

12 0.5118 0.5024 0.5471 0.4803 0.5234 0.5777 0.5844 0.5283 0.6018 0.6402

13 0.4975 0.4935 0.533 0.4667 0.5149 0.5666 0.5719 0.5186 0.5906 0.6312

14 0.5097 0.5079 0.5504 0.4830 0.5300 0.5807 0.5866 0.5332 0.6025 0.6465

15 0.4755 0.4747 0.5162 0.4529 0.4868 0.5470 0.5515 0.5003 0.5702 0.6115

16 0.5099 0.5076 0.5485 0.4853 0.5267 0.5774 0.5847 0.5306 0.6010 0.6452

17 0.5278 0.5198 0.5628 0.4992 0.5371 0.5916 0.5995 0.5399 0.6166 0.6566

18 0.4954 0.4917 0.5329 0.4700 0.5105 0.5621 0.5700 0.5169 0.5865 0.6300

19 0.5111 0.5111 0.5510 0.4831 0.5266 0.5811 0.5863 0.5322 0.6016 0.6415

20 0.4755 0.4777 0.5151 0.4553 0.4999 0.5523 0.5568 0.5005 0.5797 0.6143

21 0.5043 0.4993 0.5385 0.4767 0.5215 0.5663 0.5777 0.5231 0.5988 0.6360

22 0.4946 0.4930 0.5316 0.4717 0.5162 0.5623 0.5721 0.5174 0.5913 0.6295

23 0.4898 0.4909 0.5264 0.4651 0.5112 0.5535 0.5618 0.5053 0.5847 0.6227

24 0.4731 0.4729 0.5104 0.4519 0.4952 0.5473 0.5521 0.4989 0.5707 0.6158

25 0.5016 0.5031 0.5399 0.4778 0.5220 0.5737 0.5787 0.5276 0.5994 0.6365

26 0.4701 0.4721 0.5119 0.4504 0.4886 0.5448 0.5485 0.4984 0.5700 0.6125

27 0.5229 0.5232 0.5635 0.5015 0.5421 0.5902 0.5982 0.5477 0.6182 0.6516

28 0.5061 0.5034 0.5440 0.4835 0.5275 0.5693 0.58 0.5238 0.5959 0.6370

29 0.5248 0.5168 0.5583 0.5005 0.5431 0.5849 0.5949 0.5344 0.6102 0.6534

30 0.4486 0.4503 0.4847 0.4272 0.4739 0.5193 0.5267 0.4779 0.5527 0.5864

31 0.5012 0.4987 0.5364 0.4734 0.5200 0.5660 0.5728 0.5256 0.5928 0.6245

32 0.5023 0.4990 0.5338 0.4787 0.5167 0.5654 0.5745 0.5234 0.5957 0.6278

33 0.4630 0.4657 0.5016 0.4436 0.4880 0.5287 0.5437 0.4891 0.5672 0.5988

34 0.5251 0.5206 0.5603 0.5009 0.5427 0.5799 0.5924 0.5408 0.6100 0.6455

35 0.4799 0.4823 0.5120 0.4566 0.4998 0.5419 0.5552 0.4956 0.5785 0.6098

36 0.4345 0.4349 0.4685 0.4164 0.4560 0.5005 0.5086 0.4578 0.5352 0.5678

37 0.4276 0.4279 0.4570 0.4073 0.4429 0.4878 0.5006 0.4488 0.5193 0.5552

38 0.4767 0.4771 0.5124 0.4608 0.5004 0.5416 0.5523 0.4977 0.5791 0.6079

39 0.4069 0.4046 0.4334 0.3915 0.4216 0.4639 0.4810 0.4186 0.5006 0.5372

40 0.3744 0.3703 0.4046 0.3538 0.3937 0.4307 0.4482 0.3921 0.4651 0.4982
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A.2 Competition Matrix for Filtered Data

Tables A.4 through A.6 are the competition matrices reflecting the competitions

between players of handicaps 10 through 40 having gross scores from the filtered

version of the data set. Each entry in this table is the value of probability the golfer

with handicap as indicated by the row emerging as the winner of a competition with

a golfer with handicap as indicated by the column. Due to space limitation, it is

divided into three tables where Table A.4 lists competitions between handicaps 10

to 20, Table A.5 lists competitions between handicaps 21 to 30 and Table A.6 lists

competitions between handicaps 31 to 40.
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Table A.4 Competition Matrix for Filtered Data Set

Handicap 10 11 12 13 14 15 16 17 18 19 20

10 0.5014 0.5677 0.5395 0.5588 0.5535 0.5628 0.5388 0.5158 0.5643 0.5372 0.5897

11 0.4323 0.5004 0.4691 0.4907 0.4813 0.4849 0.4697 0.4462 0.4924 0.4631 0.531

12 0.4602 0.5336 0.5012 0.5208 0.5157 0.5213 0.5024 0.4811 0.5251 0.4958 0.5536

13 0.4415 0.5099 0.4776 0.4996 0.4873 0.4992 0.4751 0.4574 0.5002 0.4717 0.5319

14 0.4489 0.5165 0.4851 0.5107 0.5007 0.5038 0.4854 0.4656 0.5107 0.4798 0.5406

15 0.4376 0.5135 0.4811 0.5007 0.4945 0.4992 0.4811 0.4579 0.5073 0.4742 0.539

16 0.4604 0.5301 0.4998 0.5252 0.5147 0.5194 0.5005 0.4806 0.5249 0.4986 0.5558

17 0.4842 0.5557 0.5186 0.5417 0.5311 0.5413 0.5176 0.5001 0.5443 0.5171 0.5752

18 0.4367 0.5064 0.4769 0.4963 0.4911 0.4938 0.4725 0.4554 0.5008 0.4720 0.5307

19 0.4653 0.5377 0.5030 0.5251 0.5184 0.5269 0.5052 0.4866 0.5296 0.4982 0.5610

20 0.4085 0.4691 0.4429 0.4689 0.4583 0.4611 0.4465 0.4286 0.4690 0.4403 0.4989

21 0.4459 0.5070 0.4792 0.5015 0.4923 0.4962 0.4783 0.4650 0.4989 0.4720 0.5314

22 0.4460 0.5121 0.4835 0.5071 0.4955 0.5025 0.4811 0.4695 0.5041 0.4765 0.5342

23 0.4516 0.5048 0.4795 0.5038 0.4905 0.4993 0.4769 0.4669 0.4996 0.4746 0.5305

24 0.4136 0.4781 0.4516 0.4805 0.4670 0.4669 0.4541 0.4387 0.4803 0.4453 0.5113

25 0.4482 0.5107 0.4878 0.5129 0.4986 0.5040 0.4900 0.4691 0.5140 0.4798 0.5457

26 0.4221 0.4841 0.4592 0.9100 0.4753 0.4776 0.4625 0.4413 0.4843 0.4547 0.5221

27 0.4758 0.5409 0.5085 0.5312 0.5219 0.5269 0.5086 0.4894 0.5299 0.5052 0.5606

28 0.4579 0.5181 0.4936 0.5161 0.5032 0.5075 0.4875 0.4733 0.5122 0.4883 0.5364

29 0.4761 0.5341 0.5066 0.5275 0.5218 0.5258 0.5032 0.4911 0.5308 0.5035 0.5535

30 0.3876 0.4354 0.4184 0.4457 0.4323 0.4328 0.4216 0.4088 0.4434 0.4136 0.4732

31 0.4590 0.5187 0.4956 0.5130 0.5059 0.5102 0.4959 0.4795 0.5154 0.4896 0.5467

32 0.4509 0.4982 0.4795 0.4987 0.4905 0.4982 0.4812 0.4691 0.5072 0.4778 0.5277

33 0.4053 0.4592 0.4356 0.4604 0.4486 0.4550 0.4378 0.4211 0.4599 0.4313 0.4864

34 0.4784 0.5329 0.5051 0.5299 0.5182 0.5192 0.5040 0.4919 0.5234 0.5003 0.5482

35 0.4431 0.4904 0.4651 0.4875 0.4721 0.4881 0.4672 0.4562 0.4865 0.4645 0.5149

36 0.3771 0.4304 0.4086 0.4330 0.4225 0.4256 0.4117 0.3976 0.4299 0.4054 0.4539

37 0.3830 0.4316 0.4115 0.4317 0.4218 0.4299 0.4137 0.3971 0.4335 0.4062 0.4623

38 0.4348 0.4765 0.4602 0.4813 0.4741 0.4733 0.4635 0.4552 0.4801 0.4544 0.5056

39 0.3642 0.3962 0.3873 0.4061 0.3960 0.3982 0.3853 0.3745 0.4033 0.3799 0.4244

40 0.3283 0.3820 0.3579 0.3804 0.3683 0.3732 0.3543 0.3458 0.3763 0.3515 0.4047
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Table A.5 Competition Matrix for Filtered Data Set (Continued)

Handicap 21 22 23 24 25 26 27 28 29 30

10 0.5549 0.5522 0.5498 0.5862 0.5496 0.5784 0.5256 0.5441 0.5254 0.6133

11 0.4951 0.4906 0.4954 0.5189 0.4864 0.5133 0.4611 0.4828 0.4643 0.5653

12 0.5244 0.5181 0.5193 0.5448 0.5151 0.5409 0.4912 0.5100 0.4919 0.5834

13 0.4985 0.4939 0.4931 0.5197 0.4918 0.5174 0.4672 0.4857 0.4720 0.5546

14 0.5069 0.5047 0.5090 0.5315 0.4990 0.5263 0.4771 0.4958 0.4819 0.5662

15 0.504 0.4991 0.5040 0.5319 0.4963 0.5227 0.47070 0.4978 0.4719 0.5665

16 0.5196 0.5192 0.5207 0.5458 0.5106 0.5382 0.4935 0.5124 0.4950 0.5776

17 0.5368 0.5310 0.5350 0.5633 0.5284 0.5604 0.5129 0.5260 0.5084 0.5912

18 0.5015 0.4955 0.4967 0.5214 0.4878 0.5164 0.4692 0.4901 0.4688 0.5588

19 0.5268 0.5226 0.5256 0.5509 0.5192 0.5458 0.4955 0.5157 0.4961 0.5859

20 0.4690 0.4664 0.4708 0.4912 0.4564 0.4799 0.4413 0.4616 0.4484 0.5285

21 0.4994 0.4992 0.5024 0.5207 0.4882 0.5142 0.4708 0.4895 0.4777 0.5528

22 0.5055 0.4998 0.5042 0.5207 0.4901 0.5164 0.4755 0.4908 0.4773 0.5566

23 0.4990 0.4958 0.5005 0.5164 0.4869 0.5120 0.4724 0.4893 0.4798 0.5536

24 0.4780 0.4784 0.4847 0.4975 0.4670 0.4878 0.4483 0.4742 0.4556 0.5409

25 0.5092 0.5082 0.5132 0.5358 0.5012 0.5282 0.4790 0.5004 0.4925 0.5698

26 0.4860 0.4841 0.4896 0.5079 0.4701 0.5007 0.4520 0.4787 0.4643 0.5482

27 0.5269 0.5230 0.5298 0.5511 0.5188 0.5435 0.4998 0.5150 0.5033 0.5844

28 0.5121 0.5064 0.5103 0.5272 0.4987 0.5193 0.4837 0.5016 0.4862 0.5613

29 0.5219 0.5246 0.5237 0.5429 0.5140 0.5343 0.4988 0.5129 0.5016 0.5713

30 0.4485 0.4426 0.4502 0.4595 0.4275 0.4520 0.4177 0.4364 0.4245 0.5016

31 0.5183 0.5097 0.5155 0.5374 0.5041 0.5339 0.4888 0.5034 0.4923 0.5674

32 0.5026 0.4942 0.4992 0.5220 0.4914 0.5148 0.4726 0.4893 0.4787 0.5518

33 0.4608 0.4548 0.4636 0.4770 0.4476 0.4694 0.435 0.4492 0.4404 0.5165

34 0.5224 0.5202 0.5263 0.5400 0.5128 0.5328 0.4984 0.5070 0.5000 0.5738

35 0.4837 0.4762 0.4819 0.5029 0.4728 0.4968 0.4615 0.4716 0.4646 0.5302

36 0.4343 0.4323 0.4363 0.4456 0.4208 0.4378 0.4097 0.4267 0.4167 0.4833

37 0.4335 0.4287 0.4349 0.4504 0.4210 0.4449 0.4069 0.4254 0.4144 0.4850

38 0.4829 0.4774 0.4855 0.4968 0.4706 0.4888 0.4580 0.4782 0.4643 0.5271

39 0.4053 0.4012 0.4029 0.4205 0.3887 0.4118 0.3794 0.3998 0.3881 0.4442

40 0.3795 0.3743 0.3796 0.3925 0.3671 0.3846 0.3581 0.3681 0.3589 0.4288
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Table A.6 Competition Matrix for Filtered Data Set (Continued)

Handicap 31 32 33 34 35 36 37 38 39 40

10 0.5403 0.5483 0.5929 0.5224 0.5558 0.6206 0.6149 0.5650 0.6357 0.6711

11 0.4816 0.5006 0.5416 0.4689 0.5107 0.5711 0.5669 0.5242 0.6018 0.6142

12 0.5080 0.5191 0.5667 0.4922 0.5353 0.5890 0.5874 0.5874 0.6146 0.6460

13 0.4874 0.4975 0.5383 0.4735 0.5132 0.5688 0.5658 0.5196 0.5951 0.6227

14 0.4953 0.5088 0.5531 0.4814 0.5258 0.5765 0.5792 0.5285 0.6063 0.6328

15 0.4883 0.5005 0.5457 0.4793 0.5094 0.5745 0.5726 0.5271 0.603 0.6307

16 0.5074 0.5187 0.5616 0.4920 0.5323 0.5871 0.5873 0.5384 0.6122 0.6443

17 0.5195 0.5322 0.5763 0.5124 0.5422 0.6025 0.6017 0.5452 0.6258 0.6534

18 0.4849 0.4982 0.5393 0.4768 0.5149 0.5679 0.568 0.5193 0.5944 0.6205

19 0.5118 0.5210 0.5678 0.4980 0.5377 0.5908 0.5906 0.5442 0.6155 0.6483

20 0.4499 0.4719 0.5107 0.4544 0.4842 0.5447 0.5384 0.4925 0.5761 0.5985

21 0.4858 0.4988 0.5414 0.4754 0.5125 0.5652 0.5699 0.5187 0.5972 0.6179

22 0.4919 0.5034 0.5427 0.4818 0.5195 0.5713 0.5719 0.5206 0.6029 0.6294

23 0.4830 0.5002 0.5335 0.4763 0.5177 0.5632 0.5649 0.5142 0.5964 0.6180

24 0.4635 0.4790 0.5199 0.4574 0.4965 0.5534 0.5480 0.5043 0.5825 0.6097

25 0.4914 0.5107 0.5536 0.4864 0.5269 0.5801 0.576 0.5310 0.6114 0.6330

26 0.4673 0.4861 0.5322 0.4671 0.5014 0.5609 0.5531 0.5098 0.5900 0.6148

27 0.5111 0.5271 0.5675 0.5040 0.5399 0.5923 0.5906 0.5431 0.6201 0.6433

28 0.4969 0.5087 0.5524 0.4900 0.5294 0.5711 0.5755 0.5240 0.6043 0.6293

29 0.5089 0.5200 0.5611 0.4990 0.5358 0.5824 0.5851 0.5364 0.6132 0.6438

30 0.4311 0.4538 0.4862 0.4287 0.4694 0.5166 0.5162 0.4725 0.5542 0.5691

31 0.5014 0.5145 0.5548 0.4864 0.5294 0.5819 0.5828 0.5346 0.6141 0.633

32 0.4847 0.4998 0.5344 0.4775 0.5135 0.5631 0.5653 0.5185 0.5904 0.6116

33 0.4465 0.4662 0.4974 0.4422 0.4854 0.5293 0.5321 0.4873 0.5698 0.5833

34 0.5088 0.5223 0.5563 0.5001 0.5355 0.5785 0.5826 0.5363 0.6082 0.6328

35 0.4691 0.4872 0.5215 0.4641 0.4996 0.5470 0.5507 0.5005 0.5871 0.6001

36 0.4176 0.4393 0.4727 0.4228 0.4539 0.5010 0.5024 0.4586 0.5350 0.5558

37 0.4187 0.4343 0.4682 0.4163 0.4476 0.5009 0.5026 0.4543 0.5339 0.5527

38 0.4647 0.4799 0.5155 0.4634 0.4983 0.5410 0.5432 0.5011 0.5856 0.5982

39 0.3874 0.4073 0.4309 0.3922 0.4157 0.4614 0.4666 0.4160 0.4978 0.5181

40 0.3679 0.3842 0.4131 0.3687 0.4000 0.4443 0.4478 0.4037 0.4813 0.4981
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A.3 Competition Matrix for Fitted Data Set

Tables A.7 through A.9 are the competition matrices reflecting the competitions

between players of handicaps 10 through 40 having gross scores from the fitted version

of the data set. Each entry in this table is the value of probability the golfer with

handicap as indicated by the row emerging as the winner of a competition with a golfer

with handicap as indicated by the column. Due to space limitation, it is divided into

three tables where Table A.7 lists competitions between handicaps 10 to 20, Table

A.8 lists competitions between handicaps 21 to 30 and Table A.9 lists competitions

between handicaps 31 to 40.
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Table A.7 Competition Matrix for Fitted Data Set

Handicap 10 11 12 13 14 15 16 17 18 19 20

10 0.5019 0.5624 0.5398 0.5478 0.5415 0.5703 0.5363 0.516 0.5543 0.5359 0.5686

11 0.4354 0.5008 0.4776 0.4859 0.4759 0.5116 0.4734 0.4546 0.4920 0.4709 0.5100

12 0.4619 0.5240 0.4989 0.5109 0.4960 0.5341 0.4996 0.4806 0.5110 0.4940 0.5340

13 0.4526 0.5151 0.4900 0.4986 0.4904 0.5237 0.4881 0.4711 0.5052 0.4838 0.5210

14 0.4595 0.5269 0.5026 0.5089 0.4992 0.5338 0.4986 0.4789 0.5155 0.4943 0.5322

15 0.4313 0.4916 0.4677 0.4783 0.4656 0.5006 0.4661 0.4474 0.4813 0.4653 0.4998

16 0.4645 0.5252 0.5023 0.5134 0.5013 0.5343 0.5002 0.4823 0.5167 0.4996 0.5333

17 0.4824 0.5440 0.5235 0.5318 0.5206 0.5492 0.5193 0.4958 0.5360 0.5151 0.5500

18 0.4465 0.5094 0.4848 0.4953 0.4839 0.5185 0.4829 0.4668 0.5010 0.4829 0.5186

19 0.4642 0.5270 0.5069 0.5154 0.5024 0.5322 0.5038 0.4860 0.5203 0.4958 0.5361

20 0.4301 0.4877 0.4666 0.4794 0.4668 0.4996 0.4691 0.4510 0.485 0.4645 0.5001

21 0.4592 0.5181 0.4948 0.5050 0.4930 0.5264 0.4926 0.4776 0.5096 0.4926 0.5229

22 0.4548 0.5107 0.4877 0.4979 0.4872 0.5166 0.4881 0.5006 0.5030 0.4857 0.5173

23 0.4498 0.5016 0.4848 0.4946 0.4842 0.5132 0.4824 0.4669 0.4953 0.4797 0.5101

24 0.4240 0.4838 0.4643 0.4748 0.4596 0.4963 0.4644 0.4454 0.4788 0.4599 0.4928

25 0.4555 0.4942 0.4933 0.5043 0.4924 0.5273 0.4924 0.4749 0.5082 0.4897 0.5247

26 0.4305 0.4844 0.4682 0.4753 0.4620 0.4985 0.4628 0.4480 0.4805 0.4594 0.4945

27 0.4829 0.5402 0.5206 0.5249 0.5206 0.5534 0.5189 0.4973 0.5321 0.5169 0.5500

28 0.4683 0.5197 0.4991 0.5089 0.4991 0.5312 0.4989 0.4839 0.5102 0.4978 0.5240

29 0.4858 0.5363 0.5182 0.5282 0.5188 0.5464 0.5175 0.5007 0.5290 0.5147 0.5448

30 0.4031 0.4559 0.4363 0.4486 0.4337 0.4717 0.4362 0.4220 0.4518 0.4342 0.4681

31 0.4617 0.5146 0.4945 0.5050 0.4936 0.5263 0.4961 0.4797 0.5093 0.4946 0.5222

32 0.4654 0.5167 0.4993 0.5074 0.4951 0.5273 0.4922 0.4817 0.5096 0.4922 0.5188

33 0.4154 0.4749 0.4528 0.4649 0.4519 0.4874 0.4535 0.438 0.4679 0.4506 0.4836

34 0.4913 0.5384 0.5180 0.5301 0.5150 0.5485 0.5179 0.5294 0.5314 0.5154 0.5419

35 0.4430 0.4956 0.4780 0.4875 0.4748 0.5056 0.4722 0.4573 0.4901 0.4768 0.5016

36 0.3958 0.4466 0.4283 0.4377 0.4255 0.4574 0.4261 0.4161 0.4407 0.4282 0.4496

37 0.3897 0.4373 0.4222 0.4340 0.4196 0.4514 0.4200 0.4082 0.4344 0.4220 0.4498

38 0.4415 0.4926 0.4748 0.4844 0.4743 0.5034 0.4707 0.4585 0.4884 0.4716 0.4974

39 0.3618 0.4094 0.3947 0.4015 0.3891 0.4248 0.3927 0.3798 0.4057 0.3882 0.4154

40 0.3262 0.3730 0.3573 0.3690 0.3571 0.3881 0.3589 0.3451 0.3706 0.3573 0.3854
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Table A.8 Competition Matrix for Fitted Data Set (Continued)

Handicap 21 22 23 24 25 26 27 28 29 30

10 0.5422 0.5470 0.5503 0.5745 0.5452 0.5697 0.5130 0.5326 0.5161 0.5970

11 0.4846 0.4918 0.4958 0.5168 0.4844 0.5136 0.4590 0.4797 0.4610 0.5444

12 0.5076 0.5111 0.5139 0.5364 0.5050 0.5332 0.4812 0.5001 0.4805 0.5649

13 0.4947 0.5004 0.5068 0.5262 0.4987 0.5291 0.4739 0.4877 0.4718 0.5535

14 0.5066 0.5138 0.5194 0.5376 0.5347 0.4799 0.5669 0.5024 0.4840 0.5672

15 0.4736 0.4780 0.4841 0.5047 0.4765 0.5048 0.4507 0.4709 0.4515 0.5296

16 0.5083 0.5154 0.5168 0.5385 0.5090 0.5364 0.4849 0.5035 0.4834 0.5629

17 0.5245 0.5272 0.5337 0.5573 0.5252 0.5529 0.5020 0.5151 0.4999 0.5772

18 0.4907 0.4974 0.5035 0.5215 0.4943 0.5214 0.4657 0.4889 0.4692 0.5491

19 0.5088 0.5152 0.5202 0.5368 0.5099 0.5402 0.4851 0.5040 0.4885 0.5076

20 0.4769 0.4831 0.4885 0.5070 0.4768 0.5077 0.4539 0.4748 0.4558 0.5346

21 0.5010 0.5051 0.5130 0.5112 0.5277 0.4997 0.5284 0.4762 0.4978 0.4795

22 0.4913 0.4975 0.5039 0.5215 0.4926 0.5214 0.4692 0.4885 0.4731 0.5483

23 0.4880 0.4948 0.5028 0.5159 0.4894 0.5132 0.4652 0.4860 0.4691 0.5410

24 0.4740 0.4783 0.4815 0.4991 0.4686 0.5006 0.4467 0.4699 0.4550 0.5327

25 0.5010 0.5067 0.5095 0.5281 0.5019 0.5274 0.4779 0.4977 0.4794 0.5570

26 0.4742 0.4745 0.4851 0.4996 0.4708 0.5005 0.4487 0.4693 0.4505 0.5250

27 0.5234 0.5284 0.5344 0.5506 0.5232 0.5520 0.5008 0.5171 0.5029 0.5766

28 0.5006 0.5120 0.5155 0.5292 0.5032 0.5303 0.4832 0.5001 0.4857 0.5529

29 0.5209 0.5296 0.5305 0.5498 0.5207 0.5486 0.4977 0.5153 0.5005 0.5708

30 0.4465 0.4517 0.4602 0.4711 0.4454 0.4758 0.4210 0.4490 0.4289 0.5030

31 0.4990 0.5070 0.5103 0.5255 0.50110 0.5225 0.4789 0.4986 0.4827 0.5673

32 0.5023 0.5077 0.5125 0.5261 0.4995 0.5296 0.4801 0.4996 0.4827 0.5473

33 0.4627 0.4696 0.4912 0.4873 0.4611 0.4897 0.4396 0.4624 0.4422 0.5151

34 0.5252 0.5277 0.5344 0.5479 0.5208 0.5485 0.4991 0.5165 0.5021 0.5714

35 0.4800 0.4846 0.4935 0.5077 0.4836 0.5073 0.4577 0.4762 0.4601 0.5298

36 0.4318 0.4429 0.4485 0.4579 0.4312 0.4601 0.4172 0.4367 0.4815 0.4832

37 0.4288 0.4336 0.4379 0.4518 0.4293 0.4546 0.4112 0.4294 0.4088 0.4775

38 0.4781 0.4851 0.4900 0.5027 0.4764 0.5051 0.4587 0.4772 0.4609 0.5294

39 0.3960 0.4041 0.4114 0.4222 0.3965 0.4260 0.3836 0.4043 0.3864 0.4479

40 0.3665 0.3708 0.3771 0.3911 0.3646 0.3923 0.3455 0.3689 0.3523 0.4168
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Table A.9 Competition Matrix for Fitted Data Set (Continued)

Handicap 31 32 33 34 35 36 37 38 39 40

10 0.5369 0.5371 0.5816 0.5129 0.5559 0.6030 0.6054 0.5572 0.6395 0.6727

11 0.4815 0.4864 0.5249 0.4627 0.5034 0.5561 0.5618 0.5087 0.5918 0.6228

12 0.5049 0.5065 0.5437 0.4803 0.5236 0.5694 0.5767 0.5252 0.6065 0.6384

13 0.4915 0.4935 0.5355 0.4724 0.5171 0.5605 0.5685 0.5147 0.5987 0.6320

14 0.5037 0.5076 0.5492 0.4834 0.5293 0.5731 0.5837 0.5302 0.6142 0.6476

15 0.4731 0.4728 0.5140 0.4527 0.4938 0.5441 0.5499 0.4955 0.5778 0.612

16 0.5057 0.5061 0.5476 0.4826 0.5267 0.5723 0.5800 0.5251 0.6090 0.6402

17 0.5204 0.5179 0.5614 0.4983 0.5410 0.5875 0.5884 0.5408 0.6223 0.6529

18 0.4919 0.4899 0.5312 0.4689 0.5133 0.5577 0.5667 0.5120 0.5942 0.6287

19 0.5076 0.5062 0.5482 0.4842 0.5283 0.5753 0.5798 0.5311 0.6083 0.6447

20 0.4779 0.4811 0.5178 0.4567 0.5009 0.5484 0.5555 0.5032 0.5851 0.6159

21 0.5556 0.4986 0.5384 0.4783 0.5187 0.5624 0.5729 0.5181 0.6029 0.6335

22 0.4922 0.4910 0.5304 0.4715 0.5139 0.5596 0.5647 0.5157 0.5966 0.6281

23 0.4900 0.4896 0.5258 0.4690 0.5066 0.5516 0.5582 0.5083 0.5868 0.6217

24 0.4755 0.4744 0.5102 0.4511 0.4911 0.5430 0.5462 0.4974 0.5766 0.6109

25 0.5002 0.5006 0.5391 0.4807 0.5194 0.5657 0.5748 0.5224 0.6022 0.634

26 0.4723 0.4715 0.5080 0.4533 0.4926 0.5379 0.5489 0.4943 0.5721 0.6087

27 0.5238 0.5184 0.5613 0.4992 0.5390 0.5850 0.5907 0.5403 0.618 0.6536

28 0.5042 0.503 0.5367 0.4818 0.5235 0.5643 0.5729 0.5224 0.5959 0.6294

29 0.522 0.5183 0.5556 0.4994 0.5393 0.5827 0.5875 0.5379 0.6152 0.6458

30 0.4463 0.4524 0.4842 0.4314 0.4700 0.5174 0.5236 0.4752 0.5529 0.5851

31 0.4983 0.4992 0.5381 0.4791 0.5186 0.5621 0.5675 0.5184 0.5968 0.6305

32 0.5027 0.4990 0.5322 0.4850 0.5250 0.5646 0.5698 0.5209 0.5948 0.6269

33 0.4644 0.4622 0.4970 0.4438 0.4840 0.5329 0.5410 0.4864 0.5655 0.5993

34 0.5229 0.5206 0.5556 0.4994 0.5407 0.5796 0.5865 0.5388 0.6110 0.6436

35 0.4814 0.4798 0.5133 0.4589 0.5026 0.5418 0.5515 0.5013 0.5771 0.6086

36 0.4384 0.4380 0.4690 0.4206 0.4572 0.5009 0.5074 0.4603 0.5324 0.5649

37 0.4292 0.4304 0.4619 0.4142 0.4470 0.4934 0.4983 0.4506 0.5240 0.5543

38 0.4825 0.4784 0.5161 0.4633 0.5017 0.5408 0.5498 0.5021 0.5755 0.6075

39 0.4009 0.4014 0.4325 0.3881 0.4209 0.4638 0.4765 0.4284 0.4993 0.5314

40 0.3720 0.3719 0.4011 0.3542 0.3886 0.4348 0.4446 0.3900 0.4691 0.4982
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A.4 Competition Matrix for Fitted Filtered Data Set

Tables A.10 through A.12 are the competition matrices reflecting the competitions

between players of handicaps 10 through 40 having gross scores from the filtered

version of the data set. Each entry in this table is the value of probability the golfer

with handicap as indicated by the row emerging as the winner of a competition with

a golfer with handicap as indicated by the column. Due to space limitation, it is

divided into three tables where Table A.10 lists competitions between handicaps 10

to 20, Table A.11 lists competitions between handicaps 21 to 30 and Table A.12 lists

competitions between handicaps 31 to 40.
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Table A.10 Competition Matrix for Fitted Filtered Data Set

Handicap 10 11 12 13 14 15 16 17 18 19 20

10 0.5019 0.5663 0.536 0.5551 0.5507 0.5576 0.534 0.5145 0.5573 0.532 0.5876

11 0.4315 0.5005 0.4698 0.4917 0.4874 0.489 0.4725 0.4516 0.496 0.4647 0.5297

12 0.466 0.5295 0.5001 0.5211 0.5154 0.5201 0.5009 0.481 0.5244 0.4973 0.5525

13 0.4431 0.5075 0.4772 0.4996 0.4952 0.4992 0.477 0.4573 0.504 0.4755 0.5284

14 0.4483 0.5166 0.4861 0.5062 0.5017 0.5053 0.489 0.4663 0.5097 0.4816 0.5383

15 0.4441 0.5111 0.4791 0.5017 0.4954 0.4976 0.481 0.4594 0.5055 0.4779 0.5381

16 0.4633 0.5275 0.501 0.5225 0.5144 0.5182 0.498 0.4799 0.5223 0.495 0.5528

17 0.4833 0.5497 0.5211 0.5375 0.5318 0.5406 0.5167 0.5027 0.5391 0.5174 0.5693

18 0.4414 0.5043 0.4753 0.4981 0.4923 0.4966 0.478 0.4579 0.4982 0.4765 0.5278

19 0.4712 0.534 0.5026 0.5254 0.521 0.5246 0.502 0.4869 0.5272 0.5006 0.5594

20 0.4141 0.4724 0.445 0.4673 0.4585 0.4604 0.4476 0.431 0.4705 0.4416 0.5022

21 0.4493 0.5065 0.5065 0.4814 0.4998 0.4942 0.4962 0.4784 0.4659 0.4974 0.4772

22 0.447 0.5076 0.4835 0.5019 0.4939 0.5005 0.4829 0.4665 0.5041 0.4772 0.5355

23 0.449 0.5028 0.4792 0.5007 0.492 0.4974 0.4817 0.4667 0.4991 0.4747 0.5288

24 0.419 0.4795 0.4542 0.4717 0.47 0.4706 0.4589 0.4385 0.4802 0.4502 0.5104

25 0.4553 0.5139 0.4871 0.5099 0.5019 0.5052 0.4901 0.4717 0.5126 0.4839 0.5395

26 0.4249 0.4899 0.4598 0.4849 0.476 0.4727 0.4619 0.4455 0.4867 0.4579 0.5186

27 0.4787 0.533 0.5107 0.5292 0.5232 0.5254 0.508 0.4909 0.5289 0.504 0.5567

28 0.4626 0.5109 0.4923 0.5108 0.5028 0.5091 0.4911 0.4778 0.5111 0.4861 0.536

29 0.4769 0.5282 0.5061 0.528 0.5192 0.5225 0.5068 0.4922 0.5287 0.5025 0.5527

30 0.3917 0.4419 0.4206 0.4447 0.4365 0.4376 0.4257 0.4109 0.4457 0.419 0.4738

31 0.4667 0.5215 0.4952 0.515 0.5078 0.5118 0.4954 0.4771 0.5182 0.4898 0.546

32 0.4561 0.505 0.4827 0.5013 0.4918 0.4989 0.484 0.4704 0.5027 0.4789 0.526

33 0.4067 0.4592 0.4375 0.4585 0.4505 0.4543 0.4407 0.4269 0.4621 0.4339 0.4891

34 0.4814 0.5293 0.5079 0.5235 0.5171 0.5204 0.5062 0.4937 0.5208 0.5033 0.5474

35 0.4385 0.4861 0.4667 0.489 0.4773 0.4824 0.4625 0.4507 0.4866 0.4613 0.5129

36 0.3868 0.4326 0.4137 0.4362 0.4242 0.4288 0.4167 0.4041 0.4329 0.4093 0.4618

37 0.3828 0.4331 0.4147 0.4354 0.4241 0.4269 0.4133 0.4035 0.4295 0.41 0.46

38 0.4365 0.4828 0.4619 0.4832 0.4721 0.476 0.464 0.4516 0.4849 0.4592 0.5076

39 0.3525 0.3952 0.3781 0.397 0.3852 0.3914 0.3799 0.3657 0.3962 0.3756 0.4245

40 0.3295 0.3739 0.3544 0.3749 0.3653 0.3674 0.3579 0.3477 0.3744 0.3542 0.4039
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Table A.11 Competition Matrix for Fitted Filtered Data Set (Continued)

Handicap 21 22 23 24 25 26 27 28 29 30

10 0.5523 0.5519 0.5507 0.58 0.5461 0.5727 0.5246 0.539 0.5214 0.6071

11 0.4952 0.4912 0.4986 0.5216 0.4862 0.5142 0.4662 0.4845 0.4705 0.5573

12 0.5201 0.5181 0.5212 0.5473 0.5133 0.5367 0.4929 0.5097 0.495 0.5789

13 0.4998 0.4962 0.5004 0.5241 0.4889 0.5164 0.4726 0.489 0.4742 0.5581

14 0.5071 0.5046 0.5075 0.5302 0.5002 0.525 0.4782 0.498 0.4803 0.5671

15 0.5033 0.5006 0.5022 0.5277 0.4954 0.5213 0.4753 0.4931 0.479 0.5627

16 0.5218 0.5155 0.5236 0.5434 0.5107 0.5379 0.4889 0.5104 0.4946 0.5743

17 0.5347 0.5343 0.5374 0.5614 0.5311 0.5539 0.5059 0.527 0.5094 0.5855

18 0.4975 0.4954 0.4967 0.5174 0.4904 0.5112 0.4697 0.4886 0.4735 0.555

19 0.524 0.5218 0.5248 0.5476 0.5159 0.5443 0.497 0.5146 0.4956 0.5816

20 0.4699 0.4667 0.4713 0.4898 0.4597 0.4851 0.4395 0.4514 0.4514 0.5263

21 0.5317 0.5019 0.4927 0.499 0.522 0.4926 0.5134 0.4713 0.4896 0.4743

22 0.5039 0.5008 0.504 0.5225 0.4948 0.5164 0.4727 0.4972 0.4837 0.5593

23 0.4993 0.4969 0.4993 0.5188 0.4889 0.5093 0.4741 0.4901 0.4797 0.5532

24 0.4798 0.475 0.4795 0.5002 0.4673 0.4916 0.452 0.4695 0.4552 0.5369

25 0.5102 0.5075 0.5105 0.5347 0.5001 0.5229 0.4834 0.5004 0.4878 0.5672

26 0.4846 0.4806 0.4863 0.5065 0.4737 0.5014 0.4559 0.4789 0.463 0.5421

27 0.5288 0.5247 0.527 0.5516 0.5183 0.5395 0.5001 0.5161 0.5027 0.5793

28 0.5102 0.5047 0.5094 0.5052 0.4997 0.5218 0.4837 0.4975 0.4883 0.5574

29 0.5232 0.5167 0.5232 0.5436 0.5124 0.535 0.4982 0.5119 0.5005 0.5728

30 0.4487 0.4437 0.4491 0.4633 0.4637 0.4576 0.4216 0.4398 0.4305 0.5011

31 0.5165 0.5124 0.5157 0.537 0.5038 0.5292 0.4886 0.5062 0.4931 0.5696

32 0.5039 0.5023 0.5016 0.5166 0.4907 0.5106 0.4783 0.4927 0.4804 0.5461

33 0.4594 0.4621 0.4638 0.4812 0.4505 0.47 0.4386 0.4543 0.4407 0.5174

34 0.5243 0.5205 0.5224 0.5389 0.5122 0.5334 0.498 0.5109 0.5018 0.5652

35 0.485 0.4826 0.4864 0.5025 0.472 0.4989 0.4585 0.4759 0.4621 0.536

36 0.4365 0.4318 0.4376 0.4528 0.4237 0.4429 0.4102 0.4291 0.4214 0.4865

37 0.4364 0.4286 0.4376 0.4526 0.4225 0.4475 0.4113 0.4278 0.4156 0.485

38 0.4846 0.4803 0.4838 0.4982 0.475 0.492 0.46 0.4756 0.4643 0.5313

39 0.3992 0.3958 0.3991 0.4116 0.3869 0.4075 0.3777 0.3942 0.3821 0.4445

40 0.3799 0.3726 0.3815 0.3991 0.3668 0.3866 0.3584 0.3747 0.3632 0.4317
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Table A.12 Competition Matrix for Fitted Filtered Data Set (Continued)

Handicap 31 32 33 34 35 36 37 38 39 40

10 0.5372 0.5454 0.5446 0.52 0.5638 0.6138 0.6161 0.5627 0.6479 0.6703

11 0.4799 0.4971 0.5359 0.4736 0.5129 0.5685 0.5634 0.5155 0.608 0.6256

12 0.5041 0.5179 0.5609 0.4958 0.5792 0.5859 0.5846 0.5358 0.6243 0.6452

13 0.4832 0.4975 0.5395 0.4736 0.5132 0.5649 0.5672 0.5175 0.6054 0.6212

14 0.4936 0.5057 0.5489 0.4799 0.5238 0.5743 0.5728 0.5283 0.617 0.6433

15 0.4867 0.502 0.546 0.4771 0.5171 0.5716 0.5705 0.521 0.6085 0.6288

16 0.5055 0.5159 0.5614 0.4979 0.5323 0.5816 0.5854 0.5372 0.6217 0.6404

17 0.5855 0.5306 0.5738 0.5082 0.548 0.5935 0.5983 0.5497 0.6319 0.6569

18 0.4851 0.4976 0.5397 0.4736 0.5144 0.5647 0.5646 0.5174 0.6032 0.6223

19 0.5094 0.521 0.5647 0.4991 0.538 0.5899 0.5914 0.5384 0.6267 0.6459

20 0.4566 0.4718 0.5115 0.4537 0.4865 0.5403 0.5374 0.4934 0.5804 0.5956

21 0.5515 0.4867 0.4996 0.5365 0.4793 0.5151 0.564 0.5629 0.5176 0.5998

22 0.4873 0.5014 0.5419 0.4784 0.5184 0.5664 0.5702 0.5223 0.6068 0.6251

23 0.4835 0.4989 0.5388 0.4771 0.5122 0.5621 0.5633 0.5196 0.6009 0.6275

24 0.4646 0.4813 0.5204 0.4592 0.4937 0.5455 0.5489 0.5026 0.589 0.6038

25 0.4929 0.4929 0.5503 0.4882 0.5275 0.5742 0.578 0.5272 0.6123 0.6338

26 0.4703 0.4901 0.5292 0.4661 0.5022 0.5574 0.5551 0.5047 0.5967 0.6129

27 0.5076 0.5249 0.5662 0.5039 0.537 0.5858 0.5928 0.5437 0.6239 0.643

28 0.4968 0.5082 0.548 0.4879 0.5232 0.5688 0.5713 0.5243 0.608 0.6248

29 0.5064 0.5215 0.5596 0.4988 0.5367 0.5775 0.5857 0.5367 0.6161 0.6395

30 0.4325 0.4513 0.4848 0.4344 0.4619 0.5171 0.516 0.4696 0.5543 0.5709

31 0.5029 0.5137 0.5536 0.4926 0.53 0.5779 0.5797 0.5313 0.6156 0.6347

32 0.4856 0.5041 0.5349 0.4806 0.5154 0.5607 0.5655 0.5174 0.5978 0.616

33 0.4452 0.4684 0.4998 0.4421 0.4743 0.5274 0.5269 0.4825 0.5654 0.5832

34 0.5106 0.5187 0.5547 0.4995 0.5355 0.5749 0.5776 0.5307 0.6129 0.6311

35 0.4709 0.487 0.524 0.4633 0.5001 0.5455 0.5487 0.5044 0.5855 0.6018

36 0.4199 0.441 0.4718 0.4242 0.4534 0.5012 0.5008 0.4582 0.5431 0.555

37 0.4194 0.4395 0.4699 0.4172 0.4508 0.4508 0.5011 0.4552 0.5413 0.5553

38 0.4702 0.4803 0.5175 0.4644 0.4969 0.5398 0.5443 0.5016 0.5812 0.5961

39 0.3851 0.4035 0.4326 0.3895 0.4124 0.4588 0.4599 0.4197 0.4995 0.5158

40 0.3666 0.3852 0.4136 0.371 0.3976 0.4435 0.4466 0.4028 0.4865 0.4989
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A.5 Competition Matrix Using Regression Fitting Procedure and

Original Values of Shape Parameter

Tables A.13 through A.15 are the competition matrices reflecting the competitions

between players of handicaps 10 through 40 using regression fitting procedure on scale

and location parameters and original values of shape parameter. Each entry in this

table is the value of the winning probability the golfer with handicap as indicated

by the row emerging as the winner of a competition with a golfer with handicap

as indicated by the column. Due to space limitation, it is divided into three tables

where Table A.13 lists competitions between handicaps 10 to 20, Table A.14 lists

competitions between handicaps 21 to 30 and Table A.15 lists competitions between

handicaps 31 to 40.
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Table A.13 Competition Matrix: Using Regression Fitting Procedure and
Original Values of Shape Parameter

Handicap 10 11 12 13 14 15 16 17 18 19 20

10 0.4994 0.5040 0.5054 0.5052 0.5087 0.5108 0.5146 0.5118 0.5178 0.5168 0.5183

11 0.4968 0.5010 0.4981 0.5057 0.5077 0.5100 0.5066 0.5107 0.5146 0.5181 0.5175

12 0.4945 0.4957 0.5020 0.5027 0.5050 0.5062 0.5064 0.5118 0.5111 0.5109 0.5185

13 0.4956 0.4986 0.4969 0.4992 0.5018 0.5047 0.5064 0.5071 0.5088 0.5112 0.5113

14 0.4932 0.4934 0.4964 0.4983 0.5006 0.5019 0.5055 0.5069 0.5087 0.5115 0.5101

15 0.4817 0.4801 0.4876 0.4930 0.4797 0.4975 0.4910 0.4970 0.4942 0.4966 0.4841

16 0.4903 0.4910 0.4965 0.5044 0.4888 0.5105 0.4995 0.5119 0.5048 0.5089 0.4952

17 0.4834 0.4804 0.4871 0.4961 0.4794 0.5020 0.4904 0.5015 0.4961 0.4986 0.4859

18 0.4888 0.4843 0.4915 0.5006 0.4829 0.5059 0.4957 0.5044 0.5022 0.5035 0.4905

19 0.4875 0.4822 0.4875 0.5001 0.4991 0.5059 0.4920 0.5018 0.4972 0.5004 0.4861

20 0.4948 0.4946 0.5009 0.5094 0.4927 0.5166 0.5043 0.5166 0.5101 0.5145 0.4998

21 0.4876 0.4804 0.4894 0.4989 0.4806 0.5061 0.4946 0.5048 0.4988 0.4999 0.4877

22 0.4827 0.4786 0.4888 0.4951 0.4758 0.5004 0.4873 0.4987 0.4957 0.4978 0.4820

23 0.4809 0.4740 0.4827 0.4899 0.4733 0.4953 0.4841 0.4956 0.4893 0.4943 0.4798

24 0.4815 0.4803 0.4892 0.4929 0.4768 0.5043 0.4905 0.5015 0.4938 0.4979 0.4860

25 0.4830 0.4789 0.4902 0.4981 0.4802 0.5036 0.4891 0.5033 0.4960 0.4963 0.4886

26 0.4330 0.4293 0.4408 0.4480 0.4320 0.4573 0.4464 0.4559 0.4494 0.4525 0.4355

27 0.4761 0.4697 0.4851 0.4900 0.4738 0.4937 0.4825 0.4937 0.4898 0.4924 0.4759

28 0.4746 0.4695 0.4739 0.4834 0.4669 0.4906 0.4791 0.4884 0.4822 0.4861 0.4704

29 0.4743 0.4694 0.4767 0.4833 0.4670 0.4903 0.4803 0.4939 0.4829 0.4871 0.4721

30 0.4773 0.4754 0.4843 0.4898 0.4733 0.4956 0.4832 0.4956 0.4916 0.4948 0.4806

31 0.4690 0.4661 0.4733 0.4812 0.4655 0.4876 0.4789 0.4862 0.4812 0.4901 0.4710

32 0.4728 0.4697 0.4777 0.4852 0.4668 0.4913 0.4789 0.4930 0.4848 0.4923 0.4714

33 0.4733 0.4659 0.4732 0.4833 0.4653 0.4916 0.4774 0.4889 0.4846 0.4862 0.4725

34 0.4688 0.4601 0.4685 0.4797 0.4616 0.4857 0.4720 0.4832 0.4775 0.4799 0.4660

35 0.4598 0.4566 0.4620 0.4742 0.4543 0.4780 0.4636 0.4753 0.4675 0.4714 0.4589

36 0.4620 0.4604 0.4700 0.4771 0.4585 0.4828 0.4714 0.4838 0.4744 0.4794 0.4640

37 0.4554 0.4521 0.4623 0.4664 0.4495 0.4714 0.4602 0.4709 0.4627 0.4699 0.4527

38 0.4653 0.4564 0.4675 0.4728 0.4582 0.4802 0.4668 0.4803 0.4760 0.4770 0.4620

39 0.4594 0.4521 0.4629 0.4713 0.4546 0.4783 0.4650 0.4755 0.4698 0.4720 0.4720

40 0.4491 0.4426 0.4538 0.4601 0.4414 0.4655 0.4511 0.4632 0.4554 0.4583 0.4454
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Table A.14 Competition Matrix: Using Regression Fitting Procedure and
Original Values of Shape Parameter (Continued)

Handicap 21 22 23 24 25 26 27 28 29 30

10 0.5225 0.5226 0.5231 0.5280 0.5277 0.5305 0.5314 0.5314 0.5330 0.5345

11 0.5176 0.5215 0.5206 0.5229 0.5257 0.5278 0.5270 0.5319 0.5321 0.5361

12 0.5213 0.5218 0.5203 0.5233 0.5225 0.5238 0.5264 0.5254 0.5301 0.5295

13 0.5126 0.5154 0.5159 0.5195 0.5224 0.5233 0.5244 0.5284 0.5290 0.5289

14 0.5132 0.5152 0.5169 0.5222 0.5179 0.5330 0.5280 0.5325 0.5340 0.5266

15 0.4951 0.5005 0.5000 0.4991 0.4986 0.5075 0.5045 0.5096 0.5089 0.5044

16 0.5068 0.5094 0.5153 0.5095 0.5064 0.5226 0.5167 0.5206 0.5230 0.5135

17 0.4961 0.5003 0.5056 0.4985 0.5000 0.5107 0.5030 0.5119 0.5096 0.5052

18 0.5039 0.5059 0.5082 0.5047 0.5033 0.5156 0.5119 0.5129 0.5171 0.5108

19 0.5012 0.5015 0.5075 0.5027 0.5012 0.5145 0.5105 0.5128 0.5138 0.5069

20 0.5125 0.5154 0.5207 0.5155 0.5125 0.5287 0.5234 0.5275 0.5299 0.5200

21 0.5009 0.5034 0.5105 0.5030 0.4992 0.5159 0.5087 0.5164 0.5152 0.5056

22 0.4980 0.5008 0.5069 0.4974 0.4967 0.5104 0.5015 0.5112 0.5105 0.5011

23 0.4918 0.4970 0.5008 0.4923 0.4925 0.5058 0.4994 0.5074 0.5019 0.4991

24 0.4972 0.5007 0.5054 0.5000 0.5002 0.5126 0.5050 0.5130 0.5128 0.5043

25 0.5030 0.5048 0.5084 0.5008 0.4993 0.5137 0.5089 0.5119 0.5140 0.5041

26 0.4530 0.4585 0.4616 0.4543 0.5005 0.5016 0.4939 0.5002 0.4970 0.4916

27 0.4485 0.4930 0.4980 0.4935 0.4875 0.5072 0.5018 0.5084 0.5077 0.4982

28 0.4390 0.4872 0.4934 0.4858 0.4866 0.4991 0.4912 0.4989 0.5028 0.4924

29 0.4868 0.4934 0.4976 0.4876 0.4863 0.4981 0.4978 0.5019 0.4996 0.4898

30 0.4916 0.4945 0.4998 0.4967 0.4951 0.5067 0.5022 0.5119 0.5064 0.5026

31 0.4835 0.4870 0.4909 0.4871 0.4849 0.4977 0.4901 0.4982 0.4974 0.4890

32 0.4850 0.4914 0.4964 0.4893 0.4849 0.5001 0.4975 0.4980 0.5016 0.4917

33 0.4858 0.4883 0.4941 0.4866 0.4839 0.5027 0.4944 0.4995 0.5016 0.4904

34 0.4798 0.4821 0.4874 0.4809 0.4784 0.4973 0.4884 0.4933 0.4935 0.4839

35 0.4772 0.4798 0.4724 0.4725 0.4860 0.4841 0.4795 0.4844 0.4821 0.4771

36 0.4768 0.4828 0.4878 0.4794 0.4930 0.4856 0.4930 0.4924 0.4930 0.4832

37 0.4679 0.4711 0.4740 0.4660 0.4783 0.4824 0.4729 0.4780 0.4796 0.4707

38 0.4755 0.4796 0.4845 0.4786 0.4814 0.4924 0.4880 0.4908 0.4913 0.4814

39 0.4689 0.4760 0.4771 0.4759 0.4752 0.4841 0.4791 0.4848 0.4872 0.4767

40 0.4602 0.4608 0.4677 0.4598 0.4566 0.4724 0.4622 0.4718 0.4713 0.4613
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Table A.15 Competition Matrix: Using Regression Fitting Procedure and
Original Values of Shape Parameter (Continued)

Handicap 31 32 33 34 35 36 37 38 39 40

10 0.5359 0.5364 0.5416 0.5401 0.5406 0.5451 0.5448 0.5420 0.5462 0.5470

11 0.5318 0.5348 0.5340 0.5371 0.5389 0.5401 0.5392 0.5440 0.5442 0.5436

12 0.5333 0.5352 0.5354 0.5375 0.5383 0.5373 0.5404 0.5426 0.5428 0.5445

13 0.5320 0.5336 0.5312 0.5351 0.5354 0.5368 0.5386 0.5384 0.5380 0.5420

14 0.5368 0.5355 0.5325 0.5399 0.5455 0.5400 0.5509 0.5429 0.5436 0.5581

15 0.5116 0.5069 0.5104 0.5147 0.5234 0.5165 0.5267 0.5185 0.5213 0.5360

16 0.5208 0.5220 0.5220 0.5275 0.5354 0.5254 0.5407 0.5323 0.5359 0.5445

17 0.5134 0.5283 0.5132 0.5147 0.5257 0.5157 0.5269 0.5210 0.5233 0.5351

18 0.5205 0.5131 0.5150 0.5234 0.5321 0.5326 0.5233 0.5331 0.5255 0.5278

19 0.5163 0.5157 0.5148 0.5179 0.5291 0.5205 0.5329 0.5237 0.5270 0.5410

20 0.5274 0.5285 0.5283 0.5345 0.5425 0.5320 0.5477 0.5386 0.5430 0.5515

21 0.5169 0.5145 0.5170 0.5185 0.5308 0.5208 0.5315 0.5252 0.5281 0.5403

22 0.5114 0.5119 0.5110 0.5163 0.5254 0.5165 0.5320 0.5211 0.5242 0.5384

23 0.5103 0.5071 0.5023 0.5103 0.5212 0.5152 0.5249 0.5133 0.5201 0.5318

24 0.5137 0.5151 0.5110 0.5202 0.5272 0.5161 0.5305 0.5208 0.5285 0.5409

25 0.5175 0.5151 0.5148 0.5219 0.5294 0.5200 0.5336 0.5254 0.5290 0.5435

26 0.5009 0.4974 0.4984 0.5067 0.5172 0.5102 0.5212 0.5116 0.5138 0.5283

27 0.5081 0.5045 0.5059 0.5132 0.5206 0.5136 0.5255 0.5142 0.5224 0.5364

28 0.5004 0.4995 0.4989 0.5053 0.5165 0.5036 0.5217 0.5074 0.5134 0.5318

29 0.5048 0.4975 0.5012 0.5077 0.5150 0.5067 0.5216 0.5073 0.5178 0.5310

30 0.5119 0.5082 0.5087 0.5161 0.5254 0.5193 0.5288 0.5277 0.5276 0.5399

31 0.4983 0.4971 0.4938 0.5029 0.5137 0.5057 0.5184 0.5066 0.5106 0.5238

32 0.5038 0.4964 0.5059 0.5065 0.5174 0.5104 0.5218 0.5129 0.5163 0.5319

33 0.5043 0.5006 0.4984 0.5069 0.5170 0.5105 0.5192 0.5112 0.5142 0.5290

34 0.4972 0.4938 0.4918 0.5000 0.5097 0.5031 0.5128 0.5032 0.5065 0.5217

35 0.4824 0.4843 0.4862 0.4921 0.4960 0.4889 0.5060 0.4952 0.4975 0.5142

36 0.4942 0.4927 0.4879 0.5704 0.5126 0.4999 0.5142 0.5023 0.5053 0.5217

37 0.4809 0.4793 0.4766 0.4860 0.4942 0.4868 0.4971 0.4910 0.4937 0.5110

38 0.4937 0.4878 0.4892 0.4966 0.5082 0.4994 0.5137 0.5009 0.5044 0.5172

39 0.4910 0.4853 0.4869 0.4900 0.5040 0.4938 0.5090 0.4953 0.5017 0.5196

40 0.4752 0.4660 0.4672 0.4722 0.4857 0.4770 0.4905 0.4770 0.4815 0.4986
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A.6 Competition Matrix Using Regression Fitting Procedure and

Average Values of Shape Parameter

Tables A.16 through A.18 are the competition matrices reflecting the competitions

between players of handicaps 10 through 40 using regression fitting procedure on scale

and location parameters and average values of shape parameter. Each entry in this

table is the value of the winning probability the golfer with handicap as indicated

by the row emerging as the winner of a competition with a golfer with handicap

as indicated by the column. Due to space limitation, it is divided into three tables

where Table A.16 lists competitions between handicaps 10 to 20, Table A.17 lists

competitions between handicaps 21 to 30 and Table A.18 lists competitions between

handicaps 31 to 40.
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Table A.16 Competition Matrix: Using Regression Fitting Procedure and
Average of the Values of Shape Parameter

Handicap 10 11 12 13 14 15 16 17 18 19 20

10 0.5019 0.5007 0.5048 0.5064 0.5093 0.5105 0.5129 0.5142 0.5175 0.5180 0.5213

11 0.4966 0.5022 0.5025 0.5062 0.5068 0.5082 0.5092 0.5143 0.5148 0.5156 0.5195

12 0.4961 0.4967 0.5022 0.5028 0.5057 0.5066 0.508 0.5082 0.514 0.5145 0.5152

13 0.4956 0.4943 0.4964 0.4990 0.5000 0.5045 0.5065 0.5069 0.5091 0.5130 0.5137

14 0.4908 0.4929 0.4957 0.4993 0.4979 0.5010 0.5044 0.5043 0.5073 0.5098 0.5115

15 0.4906 0.4906 0.4942 0.4977 0.4978 0.5004 0.5004 0.5042 0.5058 0.5080 0.5092

16 0.4858 0.4901 0.4889 0.4957 0.4937 0.4996 0.4987 0.5021 0.5039 0.5057 0.5073

17 0.4884 0.4883 0.4897 0.4921 0.4944 0.4954 0.5000 0.5005 0.5033 0.5037 0.5054

18 0.4834 0.4835 0.4884 0.4898 0.4910 0.4943 0.4964 0.4993 0.5009 0.5010 0.5036

19 0.4819 0.4820 0.4846 0.4899 0.4904 0.4941 0.4982 0.4953 0.4969 0.4997 0.5026

20 0.4850 0.4836 0.4833 0.4850 0.4885 0.4899 0.4908 0.4960 0.4970 0.4994 0.4972

21 0.4801 0.4787 0.4859 0.4866 0.4862 0.4864 0.4912 0.4932 0.4969 0.4974 0.4962

22 0.4773 0.4778 0.4827 0.4817 0.4829 0.4873 0.4882 0.4893 0.4930 0.4973 0.4964

23 0.4754 0.4783 0.4821 0.4857 0.4869 0.4875 0.4865 0.4888 0.4910 0.4907 0.4970

24 0.4726 0.4775 0.4802 0.4793 0.4786 0.4832 0.4830 0.4875 0.4920 0.4913 0.4931

25 0.4733 0.4738 0.4759 0.4785 0.4816 0.4815 0.4861 0.4872 0.4892 0.4906 0.4911

26 0.4719 0.4722 0.4744 0.4770 0.4799 0.4801 0.4845 0.4854 0.4876 0.4890 0.4893

27 0.4685 0.4726 0.4756 0.4776 0.4812 0.4821 0.4802 0.4836 0.4885 0.4886 0.4909

28 0.4717 0.4716 0.4739 0.4742 0.4773 0.4775 0.4800 0.4833 0.4853 0.4874 0.4888

29 0.4685 0.4695 0.4737 0.4718 0.4748 0.4750 0.4772 0.4811 0.4822 0.4833 0.4841

30 0.4662 0.4678 0.4712 0.4699 0.4733 0.4742 0.4747 0.4793 0.4818 0.4815 0.4837

31 0.4618 0.4672 0.4697 0.4724 0.4723 0.4745 0.4741 0.4760 0.4788 0.4809 0.4842

32 0.4618 0.4645 0.4678 0.4681 0.4703 0.4751 0.4740 0.4764 0.4797 0.4796 0.4822

33 0.4622 0.4634 0.4613 0.4686 0.4669 0.4706 0.4740 0.4735 0.4765 0.4762 0.4811

34 0.4601 0.4596 0.4646 0.4662 0.4645 0.4702 0.4731 0.4750 0.4726 0.4785 0.4807

35 0.4595 0.4626 0.4609 0.4653 0.4657 0.4706 0.4675 0.4724 0.4739 0.4777 0.4796

36 0.4575 0.4595 0.4597 0.4651 0.4648 0.4649 0.4656 0.4680 0.4711 0.4754 0.4743

37 0.4561 0.4576 0.4585 0.4648 0.4608 0.4648 0.4698 0.4697 0.4681 0.4748 0.4742

38 0.4547 0.4558 0.4621 0.4619 0.4620 0.4648 0.4646 0.4680 0.4693 0.4732 0.4731

39 0.4556 0.4553 0.4587 0.4592 0.4610 0.4636 0.4660 0.4671 0.4702 0.4705 0.4728

40 0.4539 0.4551 0.4577 0.4579 0.4600 0.4623 0.4648 0.4661 0.4692 0.4693 0.4718
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Table A.17 Competition Matrix: Using Regression Fitting Procedure and
Average of the Values of Shape Parameter (Continued)

Handicap 21 22 23 24 25 26 27 28 29 30

10 0.5233 0.5217 0.5253 0.5260 0.5278 0.5309 0.5316 0.5303 0.5348 0.5364

11 0.5189 0.5182 0.5232 0.5241 0.5257 0.5279 0.5306 0.5318 0.5330 0.5303

12 0.5192 0.5185 0.5178 0.5226 0.5237 0.5250 0.5272 0.5297 0.5312 0.5324

13 0.5144 0.5176 0.5171 0.5223 0.5224 0.5221 0.5237 0.5228 0.5278 0.5290

14 0.5134 0.5177 0.5171 0.5166 0.5207 0.5230 0.5267 0.5258 0.5247 0.5269

15 0.5121 0.5128 0.5159 0.5186 0.5163 0.5197 0.5209 0.5227 0.5253 0.5258

16 0.5103 0.5111 0.5138 0.5163 0.5145 0.5178 0.5190 0.5208 0.5238 0.5237

17 0.5065 0.5086 0.5109 0.5102 0.5159 0.5162 0.5164 0.5202 0.5190 0.5213

18 0.5051 0.5087 0.5072 0.5087 0.5111 0.5131 0.5156 0.5148 0.5185 0.5191

19 0.5056 0.5052 0.5064 0.5082 0.5095 0.5111 0.5147 0.5137 0.5153 0.5202

20 0.5011 0.5041 0.506 0.5057 0.5080 0.5122 0.5124 0.5113 0.5148 0.5151

21 0.4991 0.5013 0.5026 0.5026 0.5087 0.5069 0.5116 0.5111 0.5090 0.5119

22 0.4971 0.5018 0.5009 0.5028 0.5056 0.5089 0.5098 0.5096 0.5131 0.5097

23 0.4968 0.5005 0.4983 0.4975 0.5016 0.5040 0.5050 0.5039 0.5120 0.5083

24 0.4935 0.4961 0.4999 0.5000 0.5015 0.5062 0.5050 0.5046 0.5058 0.5095

25 0.4936 0.4953 0.4957 0.5007 0.5001 0.4998 0.5046 0.5043 0.5065 0.5068

26 0.4925 0.4938 0.4940 0.4989 0.4985 0.4983 0.5033 0.5026 0.5056 0.5047

27 0.4937 0.4941 0.4945 0.4984 0.4992 0.4986 0.5028 0.4991 0.5053 0.5061

28 0.4913 0.4921 0.4922 0.4952 0.4962 0.4978 0.5000 0.4966 0.5039 0.5059

29 0.4875 0.4887 0.4909 0.4903 0.4914 0.4990 0.4970 0.4977 0.4995 0.5020

30 0.4867 0.4870 0.4891 0.4906 0.4904 0.4962 0.4959 0.4970 0.4980 0.4985

31 0.4850 0.4868 0.4903 0.4859 0.4903 0.4910 0.4946 0.4937 0.4970 0.4967

32 0.4849 0.4877 0.4860 0.4884 0.4904 0.4909 0.4923 0.4935 0.4955 0.4964

33 0.4831 0.4829 0.4854 0.4901 0.4881 0.4886 0.4891 0.4901 0.4945 0.4976

34 0.4805 0.4823 0.4812 0.4854 0.4874 0.4882 0.4881 0.4923 0.4915 0.4930

35 0.4781 0.4821 0.4825 0.4818 0.4857 0.4899 0.4883 0.4914 0.4913 0.4918

36 0.4794 0.4782 0.4822 0.4842 0.4829 0.4842 0.4861 0.4889 0.4885 0.4935

37 0.4767 0.4766 0.4791 0.4796 0.4855 0.4830 0.4858 0.4851 0.4908 0.4894

38 0.4747 0.4777 0.4798 0.4815 0.4804 0.4844 0.4848 0.4878 0.4867 0.4884

39 0.4757 0.4749 0.4772 0.4782 0.4791 0.4845 0.4830 0.4844 0.4879 0.4864

40 0.4747 0.4737 0.4762 0.4772 0.4778 0.4834 0.4817 0.4832 0.4866 0.4851
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Table A.18 Competition Matrix: Using Regression Fitting Procedure and
Average of the Values of Shape Parameter (Continued)

Handicap 31 32 33 34 35 36 37 38 39 40

10 0.5372 0.5380 0.5387 0.5408 0.5410 0.5430 0.5418 0.5432 0.5474 0.5475

11 0.5318 0.5369 0.5386 0.5377 0.5382 0.5406 0.5391 0.5400 0.5459 0.5464

12 0.5298 0.5312 0.5362 0.5378 0.5370 0.5366 0.5394 0.5408 0.5411 0.5429

13 0.529 0.5343 0.5360 0.5362 0.5343 0.5352 0.5360 0.5366 0.5402 0.5390

14 0.5272 0.5316 0.5293 0.5333 0.5358 0.5365 0.5367 0.5352 0.5394 0.5368

15 0.5247 0.5289 0.5296 0.5308 0.5324 0.5324 0.5349 0.5348 0.5376 0.5359

16 0.5224 0.5267 0.5269 0.5289 0.5305 0.5305 0.5330 0.5348 0.5341 0.5366

17 0.5236 0.5263 0.5251 0.5296 0.5253 0.5309 0.5296 0.5349 0.5315 0.5339

18 0.5211 0.5223 0.5223 0.5202 0.5280 0.5266 0.5277 0.5273 0.5325 0.5347

19 0.5184 0.5207 0.5212 0.5219 0.5230 0.5255 0.5296 0.5253 0.5259 0.5299

20 0.5191 0.5204 0.5219 0.5190 0.5235 0.5266 0.5296 0.5283 0.5272 0.5283

21 0.5141 0.5203 0.5183 0.5216 0.5207 0.5228 0.5209 0.5254 0.5245 0.5269

22 0.5153 0.5133 0.5159 0.5171 0.5201 0.5198 0.5199 0.5236 0.5263 0.5274

23 0.5096 0.5140 0.5106 0.5193 0.5208 0.5218 0.5218 0.5220 0.5247 0.5227

24 0.5123 0.5133 0.5145 0.5139 0.5137 0.5156 0.5195 0.5210 0.5208 0.5223

25 0.5078 0.5071 0.5112 0.5118 0.5134 0.5170 0.5182 0.5173 0.5191 0.5188

26 0.5077 0.5091 0.5123 0.5091 0.5144 0.5132 0.5143 0.5179 0.5177 0.5176

27 0.5079 0.5101 0.5102 0.5124 0.5122 0.5112 0.5138 0.5173 0.5169 0.5179

28 0.5057 0.5099 0.5078 0.5078 0.5105 0.5107 0.5122 0.5157 0.5173 0.5158

29 0.4996 0.5055 0.5088 0.5074 0.5080 0.5093 0.5095 0.5120 0.5114 0.5131

30 0.5052 0.5064 0.5059 0.5058 0.5054 0.5071 0.5082 0.5108 0.5109 0.5146

31 0.4995 0.4990 0.5006 0.5033 0.5066 0.5059 0.5090 0.5099 0.5091 0.5111

32 0.4963 0.4971 0.4996 0.5032 0.5028 0.5067 0.5059 0.5047 0.5079 0.5124

33 0.4975 0.5001 0.5003 0.4990 0.5006 0.5060 0.5064 0.5058 0.5087 0.5113

34 0.4931 0.4979 0.5002 0.4985 0.5019 0.5050 0.5065 0.5044 0.5055 0.5078

35 0.4936 0.4986 0.4986 0.4992 0.4986 0.5034 0.5022 0.5038 0.5081 0.5071

36 0.4939 0.4940 0.4984 0.4989 0.4958 0.5000 0.5008 0.5007 0.5040 0.5071

37 0.4894 0.4932 0.4948 0.4964 0.5004 0.4997 0.4992 0.5001 0.5040 0.5036

38 0.4901 0.4944 0.4938 0.4939 0.4927 0.4969 0.4988 0.5003 0.5034 0.5029

39 0.4909 0.4918 0.4900 0.4941 0.4947 0.4992 0.4978 0.4974 0.4994 0.5008

40 0.4897 0.4905 0.4885 0.4930 0.4936 0.4977 0.4963 0.4990 0.4989 0.4995
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A.7 Competition Matrix Using Regression Fitting Procedure and

Moving Average Values of Shape Parameter

Tables A.19 through A.21 are the competition matrices reflecting the competitions

between players of handicaps 10 through 40 using regression fitting procedure on

scale and location parameters and moving average values of shape parameter. Each

entry in this table is the value of the winning probability the golfer with handicap

as indicated by the row emerging as the winner of a competition with a golfer with

handicap as indicated by the column. Due to space limitation, it is divided into

three tables where Table A.19 lists competitions between handicaps 10 to 20, Table

A.20 lists competitions between handicaps 21 to 30 and Table A.21 lists competitions

between handicaps 31 to 40.
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Table A.19 Competition Matrix: Using Regression Fitting Procedure and
Moving Average on the Values of Shape Parameter

Handicap 10 11 12 13 14 15 16 17 18 19 20

10 0.5019 0.5027 0.5042 0.5078 0.5104 0.5134 0.5144 0.5143 0.5133 0.5149 0.5151

11 0.4955 0.4998 0.4990 0.5031 0.5053 0.5064 0.5106 0.5122 0.5089 0.5123 0.5094

12 0.4945 0.5022 0.5008 0.5062 0.5047 0.5085 0.5087 0.5087 0.5089 0.5104 0.5094

13 0.4923 0.4970 0.4940 0.5001 0.5010 0.5052 0.5061 0.5087 0.5053 0.5070 0.5054

14 0.4876 0.4939 0.4976 0.4987 0.4988 0.5031 0.5024 0.5055 0.5050 0.5012 0.5057

15 0.4904 0.4921 0.4904 0.4952 0.4961 0.5004 0.5019 0.5025 0.4988 0.5016 0.5033

16 0.4869 0.4937 0.4933 0.4946 0.4992 0.4966 0.5009 0.5024 0.5040 0.4994 0.5003

17 0.4827 0.4912 0.4868 0.4908 0.4950 0.4974 0.4959 0.4989 0.4961 0.4976 0.5013

18 0.4881 0.4922 0.4908 0.4950 0.4972 0.4981 0.5019 0.5033 0.4983 0.5030 0.5010

19 0.4852 0.4920 0.4900 0.4929 0.4971 0.4990 0.4966 0.5019 0.4978 0.4989 0.5015

20 0.4854 0.4900 0.4865 0.4899 0.4980 0.4977 0.4967 0.4989 0.4956 0.4982 0.5011

21 0.4814 0.4885 0.4845 0.4909 0.4927 0.4973 0.4944 0.4998 0.4987 0.4984 0.4994

22 0.4814 0.4906 0.4875 0.4879 0.4955 0.4975 0.4953 0.5006 0.4954 0.4965 0.4989

23 0.4804 0.4877 0.4836 0.4884 0.4888 0.4917 0.4933 0.5008 0.4938 0.4945 0.4970

24 0.4781 0.4805 0.4803 0.4838 0.4885 0.4884 0.4882 0.4916 0.4911 0.4922 0.4946

25 0.4768 0.4819 0.4803 0.4833 0.4873 0.4880 0.4911 0.4927 0.4907 0.4913 0.4915

26 0.4775 0.4790 0.4795 0.4842 0.4874 0.4896 0.4900 0.4900 0.4888 0.4908 0.4885

27 0.4730 0.4791 0.4770 0.4810 0.4813 0.4864 0.4878 0.4890 0.4868 0.4894 0.4873

28 0.4741 0.4759 0.4756 0.4784 0.4800 0.4848 0.4843 0.4871 0.4852 0.4880 0.4863

29 0.4710 0.4736 0.4753 0.4792 0.4797 0.4853 0.4858 0.4882 0.4832 0.4868 0.4845

30 0.4709 0.4730 0.4743 0.4757 0.4799 0.4833 0.4815 0.4868 0.4820 0.4841 0.4845

31 0.4710 0.4739 0.4731 0.4783 0.4809 0.4829 0.4845 0.4870 0.4837 0.4854 0.4835

32 0.4691 0.4755 0.4724 0.4766 0.4792 0.4806 0.4813 0.4849 0.4828 0.4814 0.4841

33 0.4634 0.4698 0.4664 0.4716 0.4762 0.4764 0.4793 0.4818 0.4789 0.4812 0.4789

34 0.4640 0.4708 0.4693 0.4722 0.4762 0.4786 0.4759 0.4814 0.4752 0.4753 0.4792

35 0.4599 0.4655 0.4605 0.4699 0.4693 0.4731 0.4724 0.4764 0.4748 0.4731 0.4762

36 0.4607 0.4640 0.4605 0.4676 0.4702 0.4719 0.4713 0.4739 0.4710 0.4734 0.4734

37 0.4535 0.5048 0.4621 0.4595 0.4657 0.4682 0.4718 0.4740 0.4698 0.4712 0.4686

38 0.4550 0.5000 0.4592 0.4644 0.4654 0.4665 0.4689 0.4727 0.4674 0.4694 0.4710

39 0.4529 0.4556 0.4592 0.4613 0.4657 0.4662 0.4625 0.4698 0.4629 0.4657 0.4681

40 0.4541 0.4565 0.4602 0.4590 0.4615 0.4625 0.4619 0.4675 0.4662 0.4664 0.4662
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Table A.20 Competition Matrix: Using Regression Fitting Procedure and
Moving Average on the Values of Shape Parameter (Continued)

Handicap 21 22 23 24 25 26 27 28 29 30

10 0.5192 0.5180 0.5174 0.5229 0.5229 0.5251 0.5274 0.5273 0.5292 0.5311

11 0.5101 0.5133 0.5156 0.5177 0.5198 0.5168 0.5237 0.5252 0.5254 0.5226

12 0.5113 0.5150 0.5155 0.5174 0.5195 0.5196 0.5253 0.5253 0.5247 0.5251

13 0.5083 0.5102 0.5133 0.5156 0.5176 0.5170 0.5189 0.5209 0.5210 0.5216

14 0.5055 0.5068 0.5121 0.5105 0.5155 0.5161 0.5169 0.5189 0.5161 0.5207

15 0.4997 0.5062 0.5082 0.5105 0.5094 0.5136 0.5125 0.5153 0.5165 0.5175

16 0.5044 0.5025 0.5036 0.5086 0.5104 0.5119 0.5155 0.5176 0.5158 0.5157

17 0.4974 0.4977 0.5043 0.5049 0.5068 0.5067 0.5132 0.5125 0.5139 0.5123

18 0.5057 0.5051 0.5052 0.5095 0.5108 0.5137 0.5157 0.5142 0.5148 0.5179

19 0.4985 0.5040 0.5072 0.5042 0.5075 0.5110 0.5151 0.5137 0.5133 0.5160

20 0.5058 0.5008 0.5052 0.5073 0.5074 0.5122 0.5123 0.5132 0.5140 0.5144

21 0.4996 0.5031 0.5027 0.5050 0.5105 0.5084 0.5123 0.5102 0.5084 0.5169

22 0.4991 0.4985 0.5050 0.5067 0.5064 0.5093 0.5119 0.5076 0.5105 0.5129

23 0.4959 0.4999 0.5000 0.5037 0.5032 0.5064 0.5086 0.5072 0.5065 0.5095

24 0.4975 0.4950 0.4991 0.5001 0.4997 0.5470 0.5053 0.5473 0.5053 0.5078

25 0.4935 0.4934 0.4970 0.4981 0.4996 0.5449 0.5492 0.5479 0.5063 0.5073

26 0.4919 0.4940 0.4942 0.4947 0.5014 0.5002 0.5017 0.5048 0.5056 0.5062

27 0.4865 0.4924 0.4924 0.4942 0.4972 0.4989 0.5024 0.4997 0.5014 0.5011

28 0.4872 0.4899 0.4906 0.4929 0.4956 0.4974 0.4982 0.4971 0.5036 0.5035

29 0.4862 0.4880 0.4916 0.4930 0.4909 0.4990 0.5004 0.4984 0.5008 0.5015

30 0.4858 0.4883 0.4870 0.4920 0.4943 0.4951 0.4954 0.4984 0.4959 0.5007

31 0.4894 0.4864 0.4877 0.4928 0.4943 0.5004 0.4972 0.4997 0.4997 0.5027

32 0.4867 0.4831 0.4889 0.4910 0.4953 0.4910 0.4993 0.4971 0.4970 0.4991

33 0.4804 0.4835 0.4849 0.4846 0.4888 0.4842 0.4922 0.4939 0.4950 0.4919

34 0.4759 0.4810 0.4853 0.4869 0.4828 0.4869 0.4916 0.4946 0.4923 0.4916

35 0.4756 0.4776 0.4810 0.4829 0.4830 0.4848 0.4854 0.4863 0.4875 0.4852

36 0.4740 0.4747 0.4744 0.4806 0.4789 0.4836 0.4883 0.4900 0.4857 0.4876

37 0.4723 0.4741 0.4772 0.4808 0.4805 0.4817 0.4810 0.4844 0.4852 0.4833

38 0.4687 0.4702 0.4721 0.4762 0.4754 0.4767 0.4795 0.4815 0.4831 0.4778

39 0.4663 0.4703 0.4699 0.4734 0.4714 0.4742 0.4749 0.4765 0.4797 0.4774

40 0.4678 0.4651 0.4683 0.4741 0.4727 0.4742 0.4791 0.4785 0.4797 0.4775
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Table A.21 Competition Matrix: Using Regression Fitting Procedure and
Moving Average on the Values of Shape Parameter (Continued)

Handicap 31 32 33 34 35 36 37 38 39 40

10 0.5278 0.5317 0.5324 0.5343 0.5409 0.5404 0.5391 0.5464 0.5460 0.5475

11 0.5235 0.5275 0.5325 0.5310 0.5335 0.5364 0.5353 0.5387 0.5423 0.5433

12 0.5225 0.5281 0.5310 0.5295 0.5376 0.5410 0.5410 0.5406 0.5443 0.5415

13 0.5221 0.5228 0.5273 0.5265 0.5290 0.5330 0.5342 0.5379 0.5398 0.5399

14 0.5201 0.5207 0.5247 0.5272 0.5294 0.5329 0.5343 0.5362 0.5369 0.5377

15 0.5173 0.5206 0.5226 0.5200 0.4853 0.4897 0.5306 0.5319 0.5371 0.5339

16 0.5161 0.5170 0.5226 0.5244 0.5291 0.5284 0.5287 0.5314 0.5348 0.5356

17 0.5119 0.5143 0.5194 0.5207 0.5211 0.5263 0.5270 0.5286 0.5315 0.5319

18 0.5165 0.5169 0.5245 0.5237 0.5288 0.5295 0.5295 0.5325 0.5352 0.5351

19 0.5156 0.5172 0.5217 0.5205 0.5281 0.5286 0.5325 0.5295 0.5349 0.5338

20 0.5157 0.5183 0.5229 0.5206 0.5266 0.5287 0.5260 0.5313 0.5342 0.5368

21 0.5118 0.5125 0.5204 0.5210 0.5221 0.5262 0.5288 0.5313 0.5312 0.5329

22 0.5139 0.5138 0.5174 0.5204 0.5225 0.5209 0.5278 0.5284 0.5332 0.5320

23 0.5102 0.5123 0.5160 0.5176 0.5204 0.5220 0.5255 0.5290 0.5293 0.5280

24 0.5093 0.5100 0.5138 0.5157 0.5189 0.5214 0.5223 0.5246 0.5238 0.5257

25 0.5068 0.5086 0.5133 0.5128 0.5147 0.5177 0.5221 0.5227 0.5276 0.5283

26 0.5037 0.5057 0.5096 0.5151 0.5163 0.5187 0.5180 0.5237 0.5258 0.5247

27 0.5063 0.5046 0.5074 0.5080 0.5149 0.5155 0.5160 0.5218 0.5229 0.5217

28 0.5007 0.5035 0.5072 0.5069 0.5111 0.5148 0.5164 0.5189 0.5245 0.5237

29 0.5009 0.5006 0.5055 0.5079 0.5122 0.5141 0.5192 0.5199 0.5201 0.5211

30 0.4997 0.5044 0.5059 0.5067 0.5117 0.5146 0.5153 0.5175 0.5182 0.5212

31 0.4967 0.5027 0.5057 0.5070 0.5108 0.5146 0.5135 0.5198 0.5205 0.5235

32 0.4988 0.4995 0.5075 0.5063 0.5122 0.5129 0.5138 0.5162 0.5201 0.5208

33 0.4930 0.4951 0.5009 0.4988 0.5068 0.5075 0.5087 0.5116 0.5142 0.5130

34 0.4927 0.4914 0.4982 0.5017 0.5054 0.5052 0.5097 0.5117 0.5166 0.5130

35 0.4895 0.4924 0.4967 0.4947 0.5003 0.5024 0.5029 0.5054 0.5078 0.5101

36 0.4860 0.4868 0.4914 0.4942 0.4958 0.5022 0.4997 0.5056 0.5064 0.5060

37 0.4861 0.4889 0.4930 0.4914 0.4961 0.4956 0.5000 0.5008 0.5070 0.5070

38 0.4811 0.4825 0.4879 0.4892 0.4938 0.4934 0.4960 0.5013 0.5041 0.5030

39 0.4798 0.4814 0.4844 0.4857 0.4874 0.4910 0.4942 0.4960 0.4994 0.4992

40 0.4804 0.4809 0.4864 0.4857 0.4899 0.4941 0.4944 0.4974 0.5005 0.4993
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A.8 Competition Matrix for Original Data Set of Scores with At Least

One Player from Each Tournament

Tables A.22 through A.24 are the competition matrices reflecting the competitions

between players of handicaps 10 through 40 using for original data set of scores with

at least one player from each tournament. Each entry in this table is the value of the

winning probability the golfer with handicap as indicated by the row emerging as the

winner of a competition with a golfer with handicap as indicated by the column. Due

to space limitation, it is divided into three tables where Table A.22 lists competitions

between handicaps 10 to 20, Table A.23 lists competitions between handicaps 21 to

30 and Table A.24 lists competitions between handicaps 31 to 40.
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Table A.22 Competition Matrix for Original Data Set of Scores with At Least
One Player from Each Tournament

Handicap 10 11 12 13 14 15 16 17 18 19 20

10 0.4976 0.5685 0.5027 0.5503 0.5305 0.5440 0.5211 0.4953 0.5533 0.5237 0.5515

11 0.4304 0.4994 0.4347 0.4466 0.4742 0.5081 0.4549 0.4439 0.4871 0.4712 0.5219

12 0.4981 0.5617 0.5004 0.5188 0.5233 0.5463 0.5069 0.4920 0.5222 0.5108 0.5386

13 0.4497 0.5555 0.4809 0.4988 0.5075 0.5387 0.5045 0.4781 0.5206 0.5100 0.5324

14 0.4706 0.5260 0.4739 0.4921 0.5000 0.5289 0.5126 0.4762 0.5256 0.4991 0.5383

15 0.4578 0.4925 0.4526 0.4571 0.4722 0.4967 0.4703 0.4557 0.4858 0.4854 0.4917

16 0.4777 0.5479 0.4934 0.4925 0.4872 0.5281 0.5000 0.4859 0.5196 0.5157 0.5441

17 0.506 0.5519 0.5105 0.5227 0.5254 0.5447 0.5113 0.5014 0.5418 0.5279 0.5616

18 0.4504 0.5113 0.4769 0.4788 0.4747 0.5150 0.4811 0.4557 0.5039 0.4929 0.5270

19 0.4744 0.5300 0.4908 0.4895 0.5011 0.5151 0.4855 0.4713 0.5051 0.5007 0.5275

20 0.4466 0.4895 0.4603 0.4676 0.4599 0.5092 0.4552 0.4367 0.4728 0.4741 0.4963

21 0.4476 0.5114 0.4824 0.4885 0.4949 0.5267 0.4829 0.4731 0.5083 0.5079 0.5277

22 0.4693 0.5014 0.4900 0.4722 0.4828 0.5105 0.4744 0.4614 0.4982 0.4833 0.5000

23 0.4365 0.4995 0.4636 0.4635 0.4780 0.4957 0.4790 0.4544 0.4850 0.4900 0.5023

24 0.4508 0.5077 0.4380 0.4779 0.4556 0.4898 0.4621 0.4184 0.4807 0.4678 0.4909

25 0.4470 0.5085 0.4730 0.4824 0.4700 0.5072 0.4830 0.4757 0.5011 0.4817 0.5191

26 0.4265 0.4955 0.4352 0.4506 0.4543 0.4637 0.4389 0.4413 0.4796 0.4582 0.4954

27 0.4805 0.5508 0.5293 0.5257 0.5059 0.5405 0.5129 0.5051 0.5179 0.5230 0.5457

28 0.4738 0.5041 0.4805 0.5053 0.4857 0.4977 0.4743 0.4669 0.5081 0.497 0.5219

29 0.4892 0.5581 0.504 0.5154 0.5221 0.5334 0.5049 0.5034 0.5454 0.5162 0.5409

30 0.4093 0.4720 0.4212 0.4270 0.4302 0.4524 0.4346 0.4300 0.4461 0.4421 0.4420

31 0.4544 0.5348 0.4790 0.4627 0.4849 0.5230 0.4913 0.4748 0.4993 0.5076 0.5261

32 0.4700 0.5497 0.4877 0.4804 0.5000 0.5473 0.4984 0.4678 0.5045 0.5086 0.5252

33 0.4188 0.4953 0.4300 0.4276 0.4485 0.4847 0.4536 0.4311 0.4784 0.4559 0.4929

34 0.5194 0.5683 0.5662 0.5669 0.5522 0.5792 0.5313 0.5398 0.5823 0.565 0.5829

35 0.4892 0.5000 0.4867 0.5014 0.4826 0.5288 0.4986 0.4716 0.4991 0.4922 0.5249

36 0.4182 0.4371 0.4327 0.4172 0.3887 0.4298 0.4243 0.4135 0.4282 0.4291 0.4407

37 0.4509 0.5242 0.4579 0.4721 0.4411 0.5109 0.4418 0.4716 0.4706 0.4663 0.4997

38 0.4336 0.4841 0.4577 0.4605 0.4420 0.4759 0.4564 0.4350 0.4928 0.4514 0.4928

39 0.3976 0.4158 0.3876 0.3983 0.4017 0.4217 0.4237 0.3616 0.4164 0.3911 0.4103

40 0.3499 0.4245 0.3688 0.3687 0.3805 0.4126 0.3802 0.3541 0.3692 0.3753 0.4113
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Table A.23 Competition Matrix for Original Data Set of Scores with At Least
One Player from Each Tournament (Continued)

Handicap 21 22 23 24 25 26 27 28 29 30

10 0.5567 0.5315 0.5644 0.5478 0.5519 0.5703 0.5192 0.5304 0.5078 0.5925

11 0.4875 0.5000 0.5014 0.4908 0.4889 0.5064 0.4473 0.4969 0.4422 0.5276

12 0.5180 0.5114 0.5336 0.5595 0.5238 0.5622 0.4712 0.5184 0.4921 0.5805

13 0.5123 0.5266 0.5356 0.5249 0.5180 0.5484 0.4748 0.4897 0.4858 0.5743

14 0.5051 0.5198 0.5171 0.5418 0.5290 0.5463 0.4981 0.5104 0.4763 0.5683

15 0.4717 0.4891 0.5037 0.5084 0.4936 0.5411 0.4603 0.5004 0.4620 0.5506

16 0.5141 0.5265 0.5206 0.5385 0.5187 0.5586 0.4869 0.5288 0.4948 0.5630

17 0.5258 0.5410 0.5427 0.5827 0.5270 0.5581 0.4953 0.5333 0.4955 0.5700

18 0.4918 0.5018 0.5141 0.5195 0.5004 0.5231 0.4813 0.4909 0.4569 0.5556

19 0.4927 0.5194 0.5104 0.5267 0.5199 0.5414 0.4761 0.5007 0.4852 0.5594

20 0.472 0.4959 0.4974 0.5071 0.4799 0.5046 0.4527 0.4797 0.4547 0.5548

21 0.5034 0.5060 0.5189 0.5277 0.5182 0.5229 0.4885 0.5112 0.4704 0.5566

22 0.4963 0.4977 0.5046 0.5173 0.4882 0.5093 0.4821 0.5021 0.4552 0.5422

23 0.4771 0.4965 0.4994 0.5211 0.4750 0.5251 0.4639 0.4961 0.4669 0.5298

24 0.4704 0.4832 0.4780 0.4997 0.4674 0.4929 0.4352 0.4727 0.4688 0.5219

25 0.4800 0.5149 0.5256 0.5289 0.5012 0.5368 0.4677 0.5020 0.4727 0.5331

26 0.4804 0.4904 0.4767 0.5082 0.4644 0.4986 0.4377 0.4786 0.4665 0.5076

27 0.5124 0.5181 0.5374 0.5627 0.5358 0.5608 0.5026 0.5084 0.4985 0.5675

28 0.4929 0.4971 0.5013 0.5272 0.4988 0.5233 0.4906 0.4982 0.4612 0.5563

29 0.5297 0.5396 0.5334 0.5281 0.5261 0.5315 0.5025 0.5353 0.4985 0.556

30 0.4450 0.4598 0.4734 0.4800 0.4640 0.4931 0.4334 0.4415 0.4419 0.4977

31 0.5148 0.514 0.5136 0.5323 0.5023 0.5404 0.4941 0.5012 0.4895 0.5378

32 0.5058 0.5104 0.5173 0.5539 0.5127 0.5408 0.4916 0.5066 0.4556 0.5354

33 0.4555 0.4774 0.4786 0.4830 0.4668 0.5119 0.4343 0.4577 0.4823 0.5326

34 0.5739 0.5685 0.5750 0.5810 0.5717 0.5684 0.5612 0.5717 0.5428 0.5938

35 0.4949 0.5108 0.5047 0.5406 0.5009 0.5490 0.4958 0.5154 0.4868 0.5222

36 0.4267 0.4424 0.4437 0.4744 0.4202 0.4560 0.4157 0.4613 0.4147 0.4645

37 0.4536 0.4642 0.4555 0.4779 0.4568 0.5027 0.4413 0.4641 0.4297 0.5393

38 0.4679 0.4804 0.4754 0.5050 0.4798 0.5016 0.4472 0.4978 0.4339 0.5263

39 0.4107 0.3953 0.4511 0.4142 0.4062 0.4401 0.4024 0.3974 0.4003 0.4515

40 0.3788 0.3742 0.4110 0.4036 0.3839 0.3835 0.3645 0.3956 0.3841 0.4574
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Table A.24 Competition Matrix for Original Data Set of Scores with At Least
One Player from Each Tournament (Continued)

Handicap 31 32 33 34 35 36 37 38 39 40

10 0.5455 0.5306 0.5795 0.4811 0.5085 0.5828 0.5493 0.5634 0.6006 0.6537

11 0.4634 0.4514 0.5059 0.4282 0.5030 0.5620 0.4803 0.5181 0.5828 0.5763

12 0.5218 0.5051 0.5698 0.4316 0.5131 0.5663 0.5437 0.5450 0.6137 0.6312

13 0.5375 0.5193 0.5700 0.4354 0.4956 0.5831 0.5303 0.5409 0.6014 0.6320

14 0.5197 0.5033 0.5485 0.4506 0.5178 0.6085 0.5583 0.5576 0.6026 0.6198

15 0.4776 0.4557 0.5194 0.4207 0.4703 0.5722 0.4900 0.5213 0.5792 0.5869

16 0.5073 0.5008 0.5500 0.4697 0.5005 0.5759 0.5568 0.5425 0.5812 0.6210

17 0.5245 0.5369 0.5661 0.4601 0.5323 0.5879 0.5278 0.5611 0.6404 0.6440

18 0.4989 0.4935 0.519 0.4167 0.4966 0.57180 0.5284 0.5084 0.5816 0.6315

19 00.4907 0.488 0.5431 0.4338 0.5099 0.5716 0.5292 0.5493 0.6071 0.6234

20 0.4745 0.4754 0.5085 0.4168 0.4716 0.5602 0.5039 0.5082 0.5913 0.6412

21 0.4830 0.4909 0.5447 0.4248 0.5069 0.5769 0.5480 0.5366 0.5935 0.6224

22 0.4886 0.4899 0.5236 0.4311 0.4914 0.5555 0.5362 0.5154 0.6061 0.6225

23 0.4816 0.4795 0.5257 0.4238 0.4964 0.5574 0.5471 0.5238 0.5502 0.5942

24 0.4666 0.4452 0.5192 0.4197 0.4612 0.5232 0.5205 0.4939 0.5843 0.5953

25 0.4932 0.4850 0.5337 0.4307 0.4965 0.5772 0.5470 0.5226 0.5932 0.6167

26 0.4625 0.4534 0.4886 0.4266 0.4471 0.5410 0.4980 0.5012 0.5595 0.6139

27 0.5064 0.5063 0.5656 0.4398 0.5024 0.5865 0.5576 0.5513 0.5938 0.6348

28 0.4934 0.4950 0.5429 0.4279 0.4826 0.5389 0.5343 0.4999 0.6029 0.6084

29 0.5130 0.5434 0.5176 0.4553 0.5165 0.5864 0.5713 0.5668 0.5987 0.6171

30 0.4623 0.4701 0.4659 0.4071 0.4757 0.5324 0.4639 0.4725 0.5504 0.5404

31 0.4994 0.4777 0.5310 0.4604 0.4947 0.5811 0.5036 0.5082 0.5972 0.6248

32 0.5201 0.4979 0.5404 0.4369 0.5112 0.5666 0.5056 0.5384 0.6036 0.6052

33 0.4705 0.4581 0.4969 0.4001 0.4683 0.5145 0.4865 0.5104 0.5504 0.5855

34 0.5435 0.5629 0.6041 0.4978 0.5719 0.6544 0.6035 0.6247 0.6317 0.6621

35 0.5043 0.4902 0.5329 0.4236 0.5051 0.5489 0.5381 0.5381 0.6027 0.6321

36 0.4146 0.4329 0.4833 0.3448 0.4560 0.5002 0.4811 0.4721 0.5276 0.5802

37 0.4973 0.4962 0.5156 0.3969 0.4641 0.5206 0.5028 0.4466 0.5572 0.6336

38 0.4906 0.4657 0.4843 0.3779 0.4632 0.5264 0.5539 0.4964 0.5890 0.6031

39 0.4016 0.3965 0.4510 0.3700 0.3966 0.4718 0.4402 0.4104 0.5025 0.5204

40 0.3776 0.3941 0.4122 0.3375 0.3687 0.4169 0.3676 0.4033 0.4789 0.4971
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A.9 Competition Matrix for Original Data Set of Scores with At Least

Two Players from Each Tournament

Tables A.25 through A.27 are the competition matrices reflecting the competitions

between players of handicaps 10 through 40 using for original data set of scores with

at least two players from each tournament. Each entry in this table is the value of the

winning probability the golfer with handicap as indicated by the row emerging as the

winner of a competition with a golfer with handicap as indicated by the column. Due

to space limitation, it is divided into three tables where Table A.25 lists competitions

between handicaps 10 to 20, Table A.26 lists competitions between handicaps 21 to

30 and Table A.27 lists competitions between handicaps 31 to 40.
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Table A.25 Competition Matrix for Original Data Set of Scores with At Least
Two Players from Each Tournament

Handicap 10 11 12 13 14 15 16 17 18 19 20

10 0.4973 0.5830 0.5623 0.5380 0.5691 0.5840 0.5524 0.5435 0.5891 0.5690 0.5985

11 0.4179 0.4993 0.4408 0.4426 0.4643 0.4857 0.4742 0.4260 0.4838 0.4453 0.5124

12 0.4381 0.5622 0.5028 0.5142 0.5215 0.5600 0.5145 0.4780 0.5194 0.4909 0.5451

13 0.4598 0.5544 0.4833 0.4996 0.5090 0.5526 0.5066 0.4859 0.5277 0.5002 0.5377

14 0.4354 0.5345 0.4810 0.4927 0.5012 0.5324 0.5152 0.4757 0.5115 0.4947 0.5415

15 0.4124 0.5125 0.4399 0.4476 0.4689 0.5010 0.4734 0.4496 0.4757 0.4726 0.4990

16 0.4428 0.5256 0.4842 0.4942 0.4903 0.5261 0.5011 0.4752 0.5205 0.5008 0.5332

17 0.4603 0.5783 0.5212 0.5147 0.5241 0.5515 0.5238 0.5015 0.5469 0.5364 0.5650

18 0.4126 0.5158 0.4783 0.4685 0.4859 0.5247 0.4822 0.4514 0.5014 0.4880 0.5237

19 0.4284 0.5531 0.5092 0.5040 0.5028 0.5250 0.5018 0.4685 0.5132 0.5005 0.5346

20 0.4047 0.4921 0.4536 0.4589 0.4623 0.4999 0.4689 0.4362 0.4732 0.4640 0.4993

21 0.4129 0.5109 0.4758 0.4812 0.4907 0.5203 0.4813 0.4653 0.4929 0.4879 0.5280

22 0.4367 0.5172 0.4786 0.4594 0.4745 0.5104 0.4740 0.4561 0.4906 0.4815 0.5180

23 0.4232 0.4854 0.4829 0.4690 0.4823 0.5105 0.4719 0.4503 0.4929 0.4772 0.5102

24 0.3852 0.5105 0.5604 0.4567 0.4586 0.4833 0.4572 0.4300 0.4738 0.4522 0.4890

25 0.4008 0.5113 0.4826 0.4852 0.4635 0.5174 0.4917 0.4737 0.5049 0.4759 0.5167

26 0.3953 0.4924 0.4526 0.4523 0.4637 0.4931 0.4507 0.4446 0.4830 0.4475 0.4992

27 0.4571 0.5474 0.5274 0.5088 0.5122 0.5506 0.5101 0.4999 0.5205 0.5054 0.5433

28 0.4091 0.5127 0.4947 0.4941 0.4781 0.5033 0.4909 0.4648 0.5035 0.4952 0.5212

29 0.4622 0.5360 0.5081 0.5105 0.5236 0.5543 0.5045 0.5040 0.5435 0.5198 0.5479

30 0.4022 0.4646 0.4326 0.4279 0.4267 0.4722 0.4420 0.4191 0.4443 0.4260 0.4615

31 0.4589 0.5102 0.4697 0.4701 0.4723 0.5135 0.4823 0.4689 0.4922 0.4761 0.5196

32 0.4221 0.5049 0.4499 0.4504 0.4667 0.4991 0.4699 0.4434 0.4843 0.4782 0.5035

33 0.3722 0.4754 0.4262 0.4159 0.4407 0.4762 0.4478 0.4297 0.4481 0.4327 0.4933

34 0.4731 0.5393 0.5191 0.5104 0.5068 0.5348 0.5131 0.5071 0.5373 0.5113 0.5468

35 0.4110 0.4752 0.4628 0.4496 0.4399 0.4961 0.4509 0.4349 0.4720 0.4474 0.4891

36 0.3024 0.4142 0.3918 0.3963 0.3696 0.4205 0.4028 0.3800 0.3982 0.3688 0.4174

37 0.3495 0.4302 0.3844 0.3814 0.3644 0.4348 0.3707 0.3810 0.3866 0.3911 0.4196

38 0.3540 0.4411 0.4141 0.4197 0.4216 0.4392 0.4306 0.4153 0.4376 0.4116 0.4587

39 0.3178 0.3917 0.3617 0.3549 0.3377 0.3815 0.3832 0.3202 0.3771 0.3452 0.3753

40 0.3049 0.3876 0.3291 0.3127 0.3292 0.3665 0.3312 0.3147 0.3208 0.3246 0.3608
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Table A.26 Competition Matrix for Original Data Set of Scores with At Least
Two Players from Each Tournament (Continued)

Handicap 21 22 23 24 25 26 27 28 29 30

10 0.5868 0.5653 0.5776 0.6132 0.6002 0.6050 0.5440 0.5931 0.5388 0.5977

11 0.4864 0.4837 0.5141 0.4920 0.4841 0.5080 0.4509 0.4855 0.4655 0.5350

12 0.5235 0.5225 0.5173 0.5618 0.5168 0.5478 0.4750 0.5105 0.4930 0.5709

13 0.5177 0.5407 0.5346 0.5373 0.5166 0.5473 0.4875 0.5066 0.4862 0.5672

14 0.5117 0.5236 0.5189 0.5413 0.5356 0.5354 0.4930 0.5248 0.4784 0.5754

15 0.4779 0.4872 0.4868 0.5120 0.4798 0.5044 0.4489 0.4948 0.4506 0.5278

16 0.5168 0.5287 0.5269 0.5442 0.5082 0.5484 0.4895 0.5087 0.4951 0.5563

17 0.5344 0.5431 0.5460 0.5746 0.5254 0.5605 0.4997 0.5338 0.4978 0.5821

18 0.5082 0.5074 0.5068 0.5242 0.4921 0.5144 0.4797 0.4981 0.4556 0.5565

19 0.5175 0.5196 0.5217 0.5509 0.5226 0.5507 0.4961 0.5021 0.4771 0.5728

20 0.4760 0.4827 0.4910 0.5126 0.4822 0.5012 0.4528 0.4801 0.4518 0.5382

21 0.5000 0.5117 0.5140 0.5162 0.5049 0.5133 0.4834 0.4973 0.4615 0.5413

22 0.4887 0.5017 0.5021 0.5122 0.4876 0.5102 0.4632 0.4927 0.4573 0.5355

23 0.4872 0.4955 0.4989 0.5287 0.4916 0.5289 0.4616 0.4803 0.4658 0.5156

24 0.4832 0.4879 0.4763 0.4997 0.4760 0.4990 0.4396 0.4631 0.4473 0.5263

25 0.4965 0.5138 0.5087 0.5231 0.4982 0.5333 0.4660 0.5102 0.4686 0.5347

26 0.4824 0.4884 0.4728 0.5025 0.4666 0.5001 0.4390 0.4846 0.4431 0.5234

27 0.5189 0.5369 0.5386 0.5583 0.5323 0.5585 0.4996 0.5270 0.5105 0.5683

28 0.4982 0.5088 0.5230 0.5379 0.4886 0.5176 0.4740 0.4987 0.4566 0.5467

29 0.5384 0.5458 0.5344 0.5478 0.5328 0.5597 0.4874 0.5465 0.4971 0.5510

30 0.4611 0.4614 0.4855 0.4701 0.4635 0.4755 0.4302 0.4561 0.4484 0.5025

31 0.5032 0.5012 0.5067 0.5281 0.4889 0.5259 0.4663 0.4999 0.4860 0.5331

32 0.4791 0.4824 0.5181 0.5176 0.4899 0.5042 0.4592 0.4878 0.4435 0.5102

33 0.4558 0.4617 0.4769 0.4945 0.4510 0.4849 0.4294 0.4648 0.4462 0.5292

34 0.5285 0.5245 0.5442 0.5512 0.5395 0.5307 0.4920 0.5375 0.4959 0.5660

35 0.4737 0.4652 0.4870 0.5065 0.4818 0.4966 0.4463 0.4854 0.4426 0.5195

36 0.4113 0.4188 0.4198 0.4473 0.4044 0.4275 0.3829 0.4312 0.3857 0.4710

37 0.3913 0.3917 0.3916 0.4053 0.3774 0.4174 0.3449 0.3969 0.3637 0.4740

38 0.4300 0.4565 0.4487 0.4678 0.4513 0.4575 0.4106 0.4683 0.4160 0.4764

39 0.3678 0.3793 0.4009 0.3928 0.3694 0.4025 0.3730 0.3813 0.3671 0.4249

40 0.3346 0.3430 0.3506 0.3667 0.3508 0.3529 0.3245 0.3646 0.3214 0.4071
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Table A.27 Competition Matrix for Original Data Set of Scores with At Least
Two Players from Each Tournament (Continued)

Handicap 31 32 33 34 35 36 37 38 39 40

10 0.5430 0.5786 0.6305 0.5285 0.5862 0.6974 0.6539 0.6449 0.6835 0.7000

11 0.4931 0.4973 0.5206 0.4560 0.5250 0.5891 0.5703 0.5590 0.6083 0.6155

12 0.5314 0.5513 0.5689 0.4769 0.5411 0.6056 0.6170 0.5847 0.6379 0.6724

13 0.5305 0.5483 0.5820 0.4900 0.5496 0.6058 0.6171 0.5802 0.6447 0.6893

14 0.5275 0.5353 0.5596 0.4911 0.5627 0.6318 0.6362 0.5775 0.6627 0.6722

15 0.4835 0.4998 0.5213 0.4617 0.5034 0.5791 0.5627 0.5621 0.6219 0.6334

16 0.5165 0.5311 0.5516 0.4879 0.5484 0.5956 0.6314 0.5680 0.6194 0.6705

17 0.5292 0.5579 0.5696 0.4935 0.5656 0.6218 0.6189 0.5856 0.6785 0.6852

18 0.5080 0.5165 0.5517 0.4681 0.5251 0.6022 0.6137 0.5661 0.6226 0.6833

19 0.5209 0.5275 0.5632 0.4903 0.5533 0.6304 0.6127 0.5893 0.6555 0.6758

20 0.4810 0.5009 0.5082 0.4505 0.5105 0.5843 0.5810 0.5372 0.6233 0.6374

21 0.4954 0.5197 0.5404 0.4681 0.5303 0.5915 0.6084 0.5669 0.6310 0.6607

22 0.4992 0.5177 0.5386 0.4779 0.5350 0.5832 0.6106 0.5446 0.6230 0.6564

23 0.4964 0.4820 0.5233 0.4551 0.5184 0.5827 0.6111 0.5506 0.5950 0.6488

24 0.4723 0.4797 0.5070 0.4508 0.4914 0.5541 0.5949 0.5362 0.6072 0.6330

25 0.5108 0.5085 0.5511 0.4632 0.5199 0.5964 0.6230 0.5527 0.6269 0.6492

26 0.4744 0.4966 0.5147 0.4695 0.5018 0.5754 0.5821 0.5424 0.5939 0.6460

27 0.5375 0.5411 0.5721 0.5122 0.5547 0.6168 0.6561 0.5900 0.6280 0.6731

28 0.4962 0.5073 0.5350 0.4567 0.5138 0.5692 0.6027 0.5330 0.6175 0.6359

29 0.5106 0.5553 0.5530 0.5046 0.5568 0.6110 0.6376 0.5846 0.6317 0.6777

30 0.4639 0.4936 0.4704 0.4375 0.4840 0.5301 0.5261 0.5196 0.5752 0.5937

31 0.4997 0.5207 0.5456 0.4779 0.5187 0.5851 0.5917 0.5441 0.6115 0.6400

32 0.4807 0.5012 0.5011 0.4537 0.4988 0.5527 0.5681 0.5462 0.6335 0.6150

33 0.4558 0.4957 0.4996 0.4245 0.4961 0.5343 0.5717 0.5369 0.5895 0.5897

34 0.5196 0.5489 0.5737 0.5006 0.5715 0.6320 0.6068 0.5991 0.6569 0.6577

35 0.4819 0.5033 0.5055 0.4311 0.4988 0.5544 0.5910 0.5324 0.5969 0.6233

36 0.4183 0.4410 0.4660 0.3670 0.4430 0.4980 0.5179 0.4557 0.5334 0.5698

37 0.4090 0.4314 0.4287 0.3964 0.4087 0.4831 0.5012 0.3829 0.5267 0.5828

38 0.4552 0.4525 0.4612 0.3979 0.4650 0.5419 0.6138 0.4986 0.5907 0.6077

39 0.3891 0.3623 0.4084 0.3403 0.4041 0.4625 0.4744 0.4078 0.5000 0.5235

40 0.3607 0.3829 0.4111 0.3435 0.3762 0.4310 0.4166 0.3883 0.4814 0.5015
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A.10 Competition Matrix for Filtered Data Set of Scores with At Least

One Player from Each Tournament

Tables A.28 through A.30 are the competition matrices reflecting the competitions

between players of handicaps 10 through 40 using for filtered data set of scores with

at least one player from each tournament. Each entry in this table is the value of the

winning probability the golfer with handicap as indicated by the row emerging as the

winner of a competition with a golfer with handicap as indicated by the column. Due

to space limitation, it is divided into three tables where Table A.28 lists competitions

between handicaps 10 to 20, Table A.29 lists competitions between handicaps 21 to

30 and Table A.30 lists competitions between handicaps 31 to 40.
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Table A.28 Competition Matrix for Filtered Data Set of Scores with At Least
One Player from Each Tournament

Handicap 10 11 12 13 14 15 16 17 18 19 20

10 0.5003 0.5677 0.5360 0.5566 0.5648 0.5696 0.5353 0.5236 0.5738 0.5466 0.6038

11 0.4312 0.4987 0.4714 0.4892 0.5026 0.4996 0.4783 0.45890 0.5074 0.4766 0.5482

12 0.4672 0.5287 0.5044 0.5182 0.5308 0.5319 0.5037 0.4928 0.5369 0.5076 0.5739

13 0.4441 0.5084 0.4811 0.5009 0.5078 0.5091 0.4819 0.4708 0.5138 0.4846 0.5533

14 0.4329 0.4973 0.4709 0.4916 0.5034 0.4975 0.4756 0.4626 0.5025 0.4769 0.5425

15 0.4288 0.5003 0.4711 0.4881 0.5030 0.4994 0.4765 0.4578 0.5077 0.4778 0.5474

16 0.4583 0.5231 0.4945 0.5150 0.5269 0.5196 0.5006 0.4864 0.5333 0.4998 0.5636

17 0.4786 0.5404 0.5078 0.5272 0.5406 0.5391 0.5143 0.5004 0.5443 0.5170 0.5769

18 0.4267 0.4943 0.4654 0.4881 0.4950 0.4911 0.4710 0.4550 0.4980 0.4723 0.5402

19 0.4577 0.5223 0.4943 0.5115 0.5218 0.5212 0.4976 0.4825 0.5282 0.4983 0.5608

20 0.3973 0.4517 0.4304 0.4483 0.4573 0.4571 0.4363 0.4218 0.4629 0.4361 0.5012

21 0.4277 0.4882 0.4597 0.4797 0.4871 0.4848 0.4662 0.4539 0.4913 0.4673 0.5310

22 0.4360 0.4937 0.4713 0.4890 0.4930 0.4906 0.4706 0.4634 0.4991 0.4764 0.5322

23 0.4367 0.4863 0.4663 0.4888 0.4892 0.4945 0.4740 0.4583 0.4953 0.4727 0.5317

24 0.4086 0.4663 0.4434 0.4695 0.4759 0.4703 0.4481 0.4363 0.4777 0.4524 0.5186

25 0.4526 0.5043 0.4796 0.5029 0.5094 0.5079 0.4887 0.4743 0.5134 0.4897 0.5539

26 0.4176 0.4770 0.4527 0.4756 0.4863 0.4791 0.4605 0.4438 0.4912 0.4581 0.5263

27 0.4775 0.5375 0.5088 0.5294 0.5362 0.5378 0.5142 0.5027 0.5410 0.5138 0.5720

28 0.4434 0.4938 0.4715 0.4921 0.4961 0.4970 0.4764 0.4655 0.5012 0.4797 0.5328

29 0.4654 0.5168 0.4949 0.5153 0.5215 0.5205 0.4963 0.4855 0.5274 0.5030 0.5585

30 0.4086 0.4560 0.4374 0.4595 0.4657 0.4623 0.4477 0.4354 0.4678 0.4444 0.5049

31 0.4704 0.5213 0.4974 0.5150 0.5287 0.5274 0.5049 0.4924 0.5320 0.5069 0.5639

32 0.4414 0.4835 0.4696 0.4873 0.4936 0.4941 0.4754 0.4658 0.5002 0.4761 0.5278

33 0.3929 0.4397 0.4250 0.4450 0.4481 0.4496 0.4306 0.4208 0.4573 0.4305 0.4919

34 0.4622 0.5090 0.4886 0.5081 0.5126 0.5112 0.4905 0.4825 0.5136 0.4944 0.5441

35 0.4172 0.4620 0.4432 0.4568 0.4628 0.4682 0.4468 0.4389 0.4723 0.4475 0.5037

36 0.3746 0.4229 0.4038 0.4221 0.4223 0.4241 0.4070 0.3976 0.4310 0.4070 0.4587

37 0.3859 0.4226 0.4072 0.4226 0.4215 0.4476 0.4166 0.4031 0.4356 0.4191 0.4525

38 0.3850 0.4091 0.4146 0.4231 0.4252 0.4536 0.4241 0.4144 0.4352 0.4259 0.4602

39 0.3684 0.3865 0.3832 0.3928 0.3901 0.4240 0.3877 0.3796 0.4035 0.3934 0.4179

40 0.3605 0.4046 0.3888 0.3957 0.3920 0.4279 0.3886 0.3844 0.4075 0.3934 0.4236
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Table A.29 Competition Matrix for Filtered Data Set of Scores with At Least
One Player from Each Tournament(Continued)

Handicap 21 22 23 24 25 26 27 28 29 30

10 0.5687 0.5646 0.5625 0.5903 0.5529 0.5834 0.5234 0.5596 0.5344 0.5882

11 0.5152 0.5101 0.5113 0.5318 0.4970 0.5248 0.4626 0.5063 0.4851 0.5459

12 0.5367 0.5341 0.5338 0.5586 0.5190 0.5474 0.4940 0.5301 0.5079 0.5605

13 0.5178 0.5111 0.5121 0.5297 0.4967 0.5266 0.4732 0.5080 0.4840 0.5395

14 0.5116 0.5067 0.5076 0.5246 0.4896 0.5142 0.4608 0.5025 0.4813 0.5367

15 0.5132 0.5059 0.5075 0.5295 0.4923 0.5205 0.4671 0.5075 0.4769 0.5371

16 0.5339 0.5254 0.5305 0.5466 0.5124 0.5406 0.4864 0.5257 0.5027 0.5544

17 0.5447 0.5363 0.5365 0.5652 0.5246 0.5580 0.5028 0.5328 0.5134 0.5642

18 0.5094 0.4995 0.5011 0.5155 0.4859 0.5116 0.4589 0.4971 0.4748 0.533

19 0.5319 0.5267 0.5271 0.5475 0.5124 0.5385 0.4868 0.5241 0.4971 0.556

20 0.4685 0.4672 0.4693 0.4821 0.8582 0.4736 0.4251 0.4657 0.4443 0.4950

21 0.4975 0.4944 0.4982 0.5157 0.4793 0.5069 0.4572 0.4937 0.4687 0.5206

22 0.5056 0.4988 0.5023 0.5146 0.4826 0.5045 0.4630 0.4961 0.4732 0.5253

23 0.5003 0.4988 0.5002 0.5149 0.4776 0.5046 0.4558 0.4924 0.4737 0.5197

24 0.4868 0.4858 0.4845 0.4988 0.4664 0.4877 0.4414 0.4843 0.4579 0.5122

25 0.5200 0.5168 0.5214 0.5360 0.4983 0.5265 0.4733 0.5147 0.4948 0.5433

26 0.5001 0.4953 0.4957 0.5144 0.4754 0.5023 0.4478 0.4919 0.4658 0.5213

27 0.5422 0.5366 0.5376 0.5594 0.5251 0.5540 0.5000 0.5369 0.5169 0.5650

28 0.5071 0.5041 0.5069 0.5180 0.4871 0.5074 0.4646 0.4977 0.4763 0.5300

29 0.5306 0.5268 0.5250 0.5445 0.5071 0.5302 0.4862 0.5257 0.5013 0.5489

30 0.4772 0.4761 0.4798 0.4861 0.4568 0.4785 0.4313 0.4713 0.4536 0.4984

31 0.5348 0.5277 0.5320 0.5530 0.5172 0.5431 0.4919 0.5272 0.5064 0.5547

32 0.5064 0.5012 0.5016 0.5187 0.4851 0.5089 0.4646 0.5012 0.4796 0.5261

33 0.4631 0.4562 0.4641 0.4764 0.4453 0.4649 0.4221 0.4582 0.4365 0.4913

34 0.5198 0.5156 0.5174 0.5293 0.5016 0.5244 0.4811 0.5085 0.4925 0.5379

35 0.4770 0.4663 0.4663 0.4838 0.4506 0.4817 0.4379 0.4680 0.4520 0.4924

36 0.4381 0.4360 0.4370 0.4423 0.4210 0.4400 0.4011 0.4390 0.4146 0.4604

37 0.4312 0.4255 0.4385 0.4561 0.4216 0.4429 0.4028 0.4301 0.4104 0.4507

38 0.4372 0.4417 0.4564 0.4636 0.4325 0.4474 0.4076 0.4426 0.4207 0.4660

39 0.4023 0.3994 0.4114 0.4242 0.3907 0.4096 0.3766 0.4006 0.3805 0.4199

40 0.4071 0.4032 0.4119 0.4221 0.4000 0.4124 0.3826 0.4015 0.3835 0.4241
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Table A.30 Competition Matrix for Filtered Data Set of Scores with At Least
One Player from Each Tournament(Continued)

Handicap 31 32 33 34 35 36 37 38 39 40

10 0.5353 0.5558 0.6037 0.5394 0.5797 0.6268 0.6140 0.6192 0.6421 0.643

11 0.4816 0.5163 0.5589 0.4901 0.5349 0.5776 0.5707 0.5899 0.6171 0.5956

12 0.4998 0.5285 0.5780 0.5132 0.5601 0.5970 0.5893 0.5967 0.6265 0.6161

13 0.4818 0.5094 0.5544 0.4892 0.5383 0.5383 0.5720 0.5754 0.6095 0.6007

14 0.4794 0.5083 0.5494 0.4884 0.5365 0.5757 0.5653 0.5719 0.6092 0.5978

15 0.4744 0.5071 0.5501 0.4889 0.5299 0.5790 0.5646 0.5749 0.6090 0.5948

16 0.4949 0.5242 0.5674 0.5067 0.5528 0.5922 0.5822 0.5864 0.6237 0.6178

17 0.5085 0.5357 0.5803 0.5180 0.5619 0.6007 0.5949 0.5908 0.6294 0.6180

18 0.4673 0.5029 0.5443 0.4870 0.5265 0.5683 0.5599 0.5690 0.6039 0.5915

19 0.4935 0.5211 0.5699 0.5076 0.5534 0.5911 0.5869 0.5874 0.6203 0.6138

20 0.4339 0.4659 0.5069 0.4525 0.4967 0.5413 0.5297 0.5330 0.5837 0.5587

21 0.4623 0.4965 0.5356 0.4836 0.5289 0.5620 0.5561 0.5582 0.5987 0.5839

22 0.4714 0.5000 0.5423 0.4839 0.5320 0.5631 0.5577 0.5571 0.6056 0.5904

23 0.4691 0.4974 0.5356 0.4840 0.5306 0.5649 0.5595 0.5532 0.6029 0.5879

24 0.4512 0.4786 0.5228 0.4715 0.5126 0.5531 0.5448 0.5458 0.5891 0.5824

25 0.4815 0.5161 0.5564 0.5023 0.5476 0.5820 0.5744 0.5761 0.6206 0.6044

26 0.4536 0.4900 0.5355 0.4786 0.5193 0.5632 0.5493 0.5570 0.5964 0.5855

27 0.5088 0.5404 0.5817 0.5231 0.5632 0.5999 0.5975 0.5990 0.6361 0.6198

28 0.4707 0.4981 0.5420 0.4925 0.5320 0.5628 0.5608 0.5518 0.6038 0.5951

29 0.4931 0.5222 0.5644 0.5097 0.5447 0.5853 0.5788 0.5771 0.6230 0.6098

30 0.4455 0.4742 0.5116 0.4616 0.5095 0.5380 0.5348 0.5335 0.5873 0.5710

31 0.4984 0.5298 0.5675 0.5127 0.5586 0.5942 0.5889 0.5934 0.6312 0.6135

32 0.4721 0.5012 0.5344 0.4872 0.5258 0.5656 0.5606 0.5556 0.6006 0.5841

33 0.4280 0.4640 0.4987 0.4474 0.4964 0.5268 0.5262 0.5249 0.5785 0.5538

34 0.4881 0.5139 0.5512 0.5002 0.5434 0.5696 0.5711 0.5659 0.6071 0.5949

35 0.4423 0.4755 0.5022 0.4595 0.4981 0.5340 0.5352 0.5275 0.5815 0.5588

36 0.4077 0.4358 0.4693 0.4277 0.4662 0.4999 0.4939 0.4866 0.5451 0.5296

37 0.4116 0.4280 0.4575 0.4171 0.4532 0.4919 0.5022 0.4788 0.5287 0.5166

38 0.4163 0.4399 0.4660 0.4300 0.4715 0.5140 0.5219 0.4986 0.5621 0.5385

39 0.3839 0.3972 0.4205 0.3930 0.4195 0.4571 0.4754 0.4385 0.5008 0.4910

40 0.3985 0.4063 0.4409 0.3946 0.4388 0.4675 0.4844 0.4622 0.5072 0.5011



159

A.11 Competition Matrix for Filtered Data Set of Scores with At Least

Two Players from Each Tournament

Tables A.31 through A.33 are the competition matrices reflecting the competitions

between players of handicaps 10 through 40 using for filtered data set of scores with

at least two players from each tournament. Each entry in this table is the value of the

winning probability the golfer with handicap as indicated by the row emerging as the

winner of a competition with a golfer with handicap as indicated by the column. Due

to space limitation, it is divided into three tables where Table A.31 lists competitions

between handicaps 10 to 20, Table A.32 lists competitions between handicaps 21 to

30 and Table A.33 lists competitions between handicaps 31 to 40.
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Table A.31 Competition Matrix for Filtered Data Set of Scores with At Least
Two Players from Each Tournament

Handicap 10 11 12 13 14 15 16 17 18 19 20

10 0.5023 0.5875 0.5615 0.5464 0.574 0.5826 0.5521 0.5311 0.5938 0.5623 0.6153

11 0.4143 0.4983 0.4435 0.4570 0.4744 0.4793 0.4824 0.4265 0.4930 0.4478 0.5284

12 0.4400 0.5559 0.5023 0.5306 0.5241 0.5485 0.5221 0.4854 0.5244 0.4923 0.5664

13 0.4517 0.5442 0.4686 0.4970 0.4953 0.5186 0.4811 0.4707 0.5103 0.4925 0.5477

14 0.4243 0.5225 0.4733 0.5000 0.4964 0.5088 0.5053 0.4709 0.5083 0.4790 0.5479

15 0.4206 0.5234 0.4509 0.4809 0.4900 0.5006 0.4880 0.4606 0.4954 0.4813 0.5307

16 0.4490 0.5185 0.4797 0.5211 0.4998 0.5108 0.5020 0.4735 0.5208 0.4954 0.5491

17 0.4704 0.5710 0.5181 0.5304 0.5317 0.5400 0.5260 0.5013 0.5510 0.5333 0.5811

18 0.4073 0.5075 0.4741 0.4871 0.4880 0.5032 0.4795 0.4500 0.4973 0.4777 0.5368

19 0.4374 0.5512 0.5096 0.5079 0.5165 0.5174 0.5063 0.4663 0.5229 0.5001 0.5532

20 0.3865 0.4722 0.4346 0.4530 0.4526 0.4682 0.4532 0.4191 0.4602 0.4453 0.4995

21 0.4034 0.4939 0.4643 0.4894 0.4845 0.4937 0.4714 0.4538 0.4840 0.4689 0.5284

22 0.4335 0.5215 0.4781 0.4716 0.4814 0.4976 0.4790 0.4587 0.4951 0.4737 0.5371

23 0.4149 0.4844 0.4744 0.4925 0.4887 0.4966 0.4674 0.4530 0.4931 0.4730 0.5226

24 0.3792 0.5025 0.4350 0.4723 0.4600 0.4707 0.4475 0.4224 0.4742 0.4391 0.5029

25 0.4007 0.5116 0.4829 0.5054 0.4741 0.4976 0.4836 0.4775 0.5097 0.4706 0.5339

26 0.3879 0.5002 0.4506 0.4791 0.4763 0.4765 0.4498 0.4398 0.4905 0.4550 0.5190

27 0.4506 0.5338 0.5148 0.5211 0.5125 0.5291 0.5050 0.4900 0.5167 0.4974 0.5528

28 0.4017 0.5122 0.4889 0.4962 0.4800 0.4889 0.4875 0.4660 0.5027 0.4893 0.5346

29 0.4578 0.5157 0.4947 0.5288 0.5200 0.5220 0.4925 0.4926 0.5379 0.5123 0.555

30 0.3876 0.4396 0.4126 0.4281 0.4253 0.4442 0.4326 0.4029 0.4352 0.4082 0.4669

31 0.4677 0.5157 0.4737 0.4973 0.4876 0.5133 0.4948 0.4750 0.4986 0.4795 0.5466

32 0.4084 0.4790 0.4377 0.4558 0.4644 0.4678 0.4563 0.4300 0.4693 0.4613 0.5022

33 0.3583 0.4579 0.4085 0.4006 0.4367 0.4460 0.4326 0.4198 0.4354 0.4144 0.4969

34 0.4659 0.5301 0.5047 0.5044 0.5057 0.5125 0.5000 0.4915 0.5309 0.4984 0.5518

35 0.4099 0.4683 0.4512 0.4606 0.4444 0.4778 0.4431 0.4339 0.4726 0.4410 0.5032

36 0.2934 0.3901 0.3749 0.3866 0.3684 0.3815 0.3848 0.3714 0.3912 0.3642 0.4248

37 0.3581 0.4310 0.3852 0.4193 0.3874 0.4170 0.3878 0.3846 0.3974 0.3977 0.4447

38 0.3443 0.4353 0.4090 0.4356 0.4268 0.4230 0.4252 0.4036 0.4362 0.4050 0.4711

39 0.2957 0.3743 0.3445 0.3657 0.3310 0.3529 0.3707 0.3078 0.3664 0.3288 0.3771

40 0.2936 0.3661 0.3166 0.3075 0.3319 0.3384 0.3296 0.3058 0.3121 0.3126 0.3709
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Table A.32 Competition Matrix for Filtered Data Set of Scores with At Least
Two Players from Each Tournament (Continued)

Handicap 21 22 23 24 25 26 27 28 29 30

10 0.5970 0.5669 0.5813 0.6163 0.6000 0.6128 0.5493 0.5995 0.5451 0.6134

11 0.5052 0.4814 0.5151 0.4981 0.4853 0.5003 0.4654 0.4881 0.4822 0.5603

12 0.5369 0.5223 0.5251 0.5645 0.5167 0.5482 0.4879 0.5135 0.5055 0.5840

13 0.5102 0.5288 0.5055 0.5240 0.4967 0.5219 0.4814 0.5011 0.4708 0.5721

14 0.5153 0.5201 0.5107 0.5386 0.5276 0.5238 0.4905 0.5178 0.4786 0.5758

15 0.5051 0.5048 0.5032 0.5270 0.4982 0.5216 0.4699 0.5072 0.4790 0.5577

16 0.5258 0.5232 0.5329 0.5548 0.5161 0.5498 0.4941 0.5130 0.5075 0.5694

17 0.5501 0.5404 0.5478 0.5766 0.5230 0.5603 0.5131 0.5359 0.5083 0.5943

18 0.5174 0.5045 0.5071 0.5237 0.4874 0.5110 0.4870 0.4989 0.4627 0.5637

19 0.5324 0.5253 0.5287 0.5626 0.5250 0.5478 0.5076 0.5115 0.4887 0.5900

20 0.4706 0.4633 0.4785 0.4988 0.4664 0.4848 0.4478 0.4639 0.4483 0.5307

21 0.4986 0.4976 0.5039 0.5117 0.4937 0.5024 0.4793 0.4910 0.4621 0.5366

22 0.5028 0.4984 0.5037 0.5172 0.4862 0.5140 0.4726 0.4930 0.4681 0.5540

23 0.4960 0.4933 0.5009 0.5263 0.4910 0.5225 0.4706 0.4816 0.4765 0.5265

24 0.4891 0.4801 0.4730 0.5003 0.4702 0.4918 0.4457 0.4616 0.4573 0.5342

25 0.5109 0.5157 0.5111 0.5312 0.4988 0.5301 0.4755 0.5162 0.4769 0.5439

26 0.4996 0.4877 0.4763 0.5071 0.4686 0.4998 0.4515 0.4859 0.4534 0.5477

27 0.5214 0.5281 0.5278 0.5537 0.5249 0.5457 0.4976 0.5212 0.5152 0.5711

28 0.5109 0.5041 0.5218 0.5393 0.4874 0.5142 0.4790 0.4991 0.4608 0.5568

29 0.5392 0.5300 0.5220 0.5449 0.5206 0.5457 0.4837 0.5401 0.4994 0.5507

30 0.4606 0.4446 0.4726 0.4623 0.4540 0.4508 0.4292 0.4402 0.4508 0.4996

31 0.5222 0.5013 0.5251 0.5425 0.5045 0.5296 0.4837 0.5138 0.5163 0.5590

32 0.4829 0.4638 0.5025 0.5098 0.4729 0.4836 0.4578 0.4776 0.4439 0.5050

33 0.4579 0.4456 0.4670 0.4811 0.4346 0.4615 0.4204 0.4548 0.4447 0.5261

34 0.5312 0.5131 0.5312 0.5387 0.5246 0.5196 0.4845 0.5356 0.4960 0.5648

35 0.4828 0.4552 0.4812 0.5074 0.4727 0.4866 0.4442 0.4807 0.4504 0.5221

36 0.4155 0.4025 0.4058 0.4425 0.3923 0.4073 0.3816 0.4232 0.3897 0.4764

37 0.4157 0.3917 0.3960 0.4135 0.3873 0.4150 0.3562 0.3999 0.3851 0.4987

38 0.4354 0.4445 0.4462 0.4645 0.4346 0.4525 0.4047 0.4627 0.4203 0.4792

39 0.3659 0.3598 0.3880 0.3790 0.3499 0.3845 0.3642 0.3680 0.3649 0.4226

40 0.3416 0.3315 0.3386 0.3584 0.3428 0.3362 0.3278 0.3579 0.3288 0.4173
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Table A.33 Competition Matrix for Filtered Data Set of Scores with At Least
Two Players from Each Tournament (Continued)

Handicap 31 32 33 34 35 36 37 38 39 40

10 0.5313 0.5923 0.6419 0.5348 0.5936 0.7020 0.6408 0.6554 0.7037 0.7070

11 0.4813 0.5177 0.5446 0.4686 0.5343 0.6090 0.5719 0.5682 0.6242 0.6355

12 0.5225 0.5608 0.5935 0.4977 0.5476 0.6260 0.6140 0.5926 0.6540 0.6778

13 0.4991 0.5486 0.5997 0.4903 0.5380 0.6121 0.5802 0.5627 0.6379 0.6965

14 0.5117 0.5339 0.5629 0.4931 0.5543 0.6320 0.6096 0.5721 0.6696 0.6697

15 0.4862 0.5285 0.5551 0.4854 0.5249 0.6172 0.5799 0.5795 0.6466 0.6631

16 0.5069 0.5429 0.5692 0.5026 0.5559 0.6156 0.6168 0.5730 0.6350 0.6729

17 0.5259 0.5698 0.5825 0.5051 0.5668 0.6295 0.6169 0.5988 0.6918 0.6910

18 0.5018 0.5294 0.5603 0.4734 0.5259 0.6118 0.6013 0.5633 0.6326 0.6875

19 0.5212 0.5409 0.5845 0.5035 0.5591 0.6391 0.5995 0.5948 0.6698 0.6883

20 0.4550 0.4975 0.5041 0.4482 0.5009 0.5767 0.5539 0.5327 0.6240 0.6272

21 0.4744 0.5183 0.5400 0.4700 0.5197 0.5874 0.5820 0.5619 0.6339 0.6560

22 0.4971 0.5383 0.5567 0.4878 0.5473 0.5958 0.6094 0.5586 0.6403 0.6703

23 0.4711 0.4980 0.5331 0.4659 0.5160 0.5908 0.6075 0.5554 0.6092 0.6594

24 0.4579 0.4902 0.5170 0.4631 0.4909 0.5625 0.5858 0.5356 0.6187 0.6409

25 0.4945 0.5262 0.5637 0.4725 0.5294 0.6055 0.6110 0.5630 0.6517 0.6563

26 0.4704 0.5176 0.5362 0.4795 0.5175 0.5928 0.5843 0.5453 0.6150 0.6628

27 0.5225 0.5441 0.5782 0.5162 0.5535 0.6187 0.6436 0.5925 0.632 0.6708

28 0.4876 0.5227 0.5501 0.4666 0.5206 0.5768 0.5964 0.5369 0.6284 0.6423

29 0.4844 0.5587 0.5568 0.5076 0.5476 0.6075 0.6193 0.5798 0.6324 0.6738

30 0.4404 0.4927 0.4710 0.4377 0.4786 0.5252 0.4977 0.5178 0.5777 0.5821

31 0.4994 0.5492 0.5718 0.5009 0.5363 0.6077 0.6000 0.5699 0.6503 0.6557

32 0.4483 0.4991 0.5016 0.4517 0.4878 0.5580 0.5496 0.5436 0.6391 0.6093

33 0.4270 0.4972 0.4981 0.4254 0.4855 0.5290 0.5439 0.5339 0.5930 0.5786

34 0.4995 0.5445 0.5756 0.4986 0.5600 0.6248 0.5793 0.5933 0.6597 0.6510

35 0.4645 0.5118 0.5127 0.4409 0.4983 0.5576 0.5826 0.5422 0.6049 0.6305

36 0.3940 0.4437 0.4699 0.3749 0.4422 0.4985 0.5003 0.4584 0.5420 0.5696

37 0.4015 0.4516 0.4555 0.4236 0.4196 0.4958 0.4975 0.3992 0.5538 0.5950

38 0.4265 0.4522 0.4675 0.4071 0.4633 0.5463 0.6041 0.4975 0.5993 0.6103

39 0.3490 0.3631 0.4089 0.3404 0.3946 0.4551 0.4430 0.4004 0.4989 0.5145

40 0.3437 0.3927 0.4232 0.3454 0.3697 0.4319 0.3994 0.3913 0.4833 0.5028
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