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ABSTRACT 

 

NEW SCREENING METHODOLOGY FOR SELECTION OF POLYMERIC 

MATERIALS FOR TRANSDERMAL DRUG DELIVERY DEVICES 

 

by 

Roberto P. Falcone 

 

As medical advances extend the human lifespan, the level of chronic illnesses will increase 

and thus straining the needs of the health care system that, as a result, governments will need 

to balance expenses without upsetting national budgets.        

           Therefore, the selection of a precise and affordable drug delivery technology is seen as 

the most practical solution for governments, health care professionals, and consumers.  

 Transdermal drug delivery patches (TDDP) are one of the best economical 

technologies that are favored by pharmaceutical companies and physicians alike because it 

offers fewer complications when compared to other delivery technologies. TDDP provides 

increased efficiency, safety and convenience for the patient. The TDDP segment within the 

US and Global drug delivery markets were valued at $5.6 and $12.7 billion respectively in 

2009. TDDP is forecasted to reach $31.5 billion in 2015.  

The present TDDP technology involves the fabrication of a patch that consists of a 

drug embedded in a polymeric matrix. The diffusion coefficient is determined from the slope 

of the cumulative drug release versus time. It is a trial and error method that is time and labor 

consuming. With all the advantages that TDDPs can offer, the methodology used to achieve 

the so-called optimum design has resulted in several incidents where the safety and design 

have been put to question in recent times (e.g. Fentanyl).  

            A more logical screening methodology is needed. This work shows the use of a 

modified Duda Zielinsky equation (DZE). Experimental release curves from commercial 



 

 

are evaluated. The experimental and theoretical Diffusion Coefficient values are found to be 

within the limits specified in the patent literature. One interesting finding is that the accuracy of 

the DZE is closer to experimental values when the type of Molecular Shape and Radius are 

used.  

            This work shows that the modified DZE could be used as an excellent screening tool to 

determine the optimal polymeric matrices that will yield the desired Diffusion Coefficient and 

thus effectively decreasing the amount of time and labor when developing TDDPs.
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CHAPTER 1 

INTRODUCTION 

 

1.1 Objective 

The objective of this dissertation is to present a screening methodology for trans-dermal 

patches (TDDP) that will simplify and expedite the design implementation of new passive 

drug delivery systems. These patches can be used to increase the number of therapeutic 

devices in the market, thus, helping to improve the quality of life. 

The screening methodology uses physical parameters that comprise free volume, 

thermodynamic estimators and material—solute (active) interactions.  This methodology has 

been compared with commercially available TDDP to determine the validity of such an 

approach. 

1.2 Transdermal Drug Delivery 

As medical technology continues to improve human lifespan, it will increase the number of 

chronic illnesses and consequently strain the needs of the health care system. Having 74% of 

65- to 69-year-olds in the US, stricken with one or more chronic conditions, creates an 

increasing burden on health care providers, patients, and their caregivers. This situation will 

place a greater emphasis on the selection of a more precise drug delivery technology for the 

patient and the caregiver. (1) 

Statistics: 

1. It is projected that US health care spending will reach $4.3 trillion in 2018. 

2. Of the US population, 43% will be older than 55 years old. 
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3. It is estimated that 25% of elderly people will take a minimum of three    
            medications. 

4.        The daily average number of pills ingested per patient in a nursing home is 13. 

5.        The number of elderly people who have swallowing difficulties (dysphagia) is   
           65%. 
 
6.       Twenty-three percent of caregivers indicate challenges with managing  
           medications. 
 
7.        Forty percent of elderly people must be admitted into nursing homes because of    
           their inability for self-medication. 
 

In this context, transdermal drug delivery patches (TDDP) are considered to be the 

best alternative drug delivery technology that is highly sought by pharmaceutical companies 

and physicians alike(2). TDDP offer fewer complications when compared to other delivery 

technologies. Additional benefits include increased efficiency, safety, and convenience for 

the patient. (3, 4)  

            The TDD market within the US, in 2009, was valued at $5.6 billion,(4) The size of the 

global market was estimated by Jain Pharma Biotech to be $12.7 billion in 2005 with 

expected increases to $21.5 billion and $31.5 billion in 2010 and 2015 respectively (5).  

            However, on a global perspective, drug delivery systems have shown a dramatic sales 

growth from $42B in 2007 to $80B in 2014 as shown in Figure 1.1. Moreover, TDDs 

contributed 75 % of these sales in 2007 ($30B).  Although their contribution in 2014 is 

estimated to be 57 % ($45B) and smaller when compared with 2007 figures. This category 

still contributes to a lion’s share when compared with other global drug deliveries as seen in 

Figure 1.1(3) 
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Figure 1.1 TDD Global Sales (2007-2014) 

Source: Advanced Drug Delivery Systems: New Developments, New Technologies, 
(http://www.bccresearch.com/market-research/pharmaceuticals/drug-delivery-systems-phm006g.html), 
Accessed on October 28, 2014  

Another advantage that TDD devices offer is the revenues that drug manufacturers 

get from leveraging this technology. It is expected that revenues will grow from $628.6M in 

2010 to an estimated $902.1M in 2017. This represents an approximate 50% growth as seen 

in Figure 1.2(4).   

 

http://www.bccresearch.com/market-research/pharmaceuticals/drug-delivery-systems-phm006g.html
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Figure 1.2  Manufacturer’s Revenue from TDD Technologies (2010-2017) 
 
Source: Wright, P., Transdermal drug delivery looks for new frontiers,    
(http://pharmaceuticalcommerce.com/manufacturing_and_packaging?articleid=2677).    
Accessed on October 28, 2014.  

 

Because of the advantages offered by TDDs, research and patents using them have 

substantially increased since the FDA approved the first TDD patch in 1981. The active drug 

was scopolamine used for the treatment of motion sickness. Figure 1.3 shows the timeline of 

transdermal patches since their introduction in 1979(5). 
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Figure 1.3 Timeline showing transdermal patches since their date of approval by FDA 

Source: Zielinski, B., Controlled Drug Delivery, Transdermal Drug Delivery System (TDDS),  
Brown University Lecture, https://canvas.brown.edu/courses/773684/.../download   
Accessed on November 29, 2014. 

 

Table 1.1 provides a summary of the most popular TDDs approved by the FDA along 

with their commercial trade names and intended treatment purpose from 1979 to the present. 

 

 

 

 

 

 

 

 

 

 

https://canvas.brown.edu/courses/773684/.../download
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Table 1. 1 Commercially Available Drugs in the Form of Transdermal Patches 

Approval 
Year 

Drug/Product Name Purpose Marketing Company 

1979 Scopolamine/Transderm-Scop Motion sickness Novartis Consumer 
Health (Parsippany, NJ, 
USA) 
 

1981 Nitroglycerin/Transderm-Nitro Angina pectoris Novartis 
 

1984 Clonidine/Catapres-TTS Hypertension Boehringer Ingelheim 
(Ridgefield, CT, USA) 
 

1986 Estradiol/Estraderm Menopausal symptoms 
 

Novartis 

1990 Fentanyl/Duragesic Chronic pain Janssen Pharmaceutica 
(Titusville, NJ, USA) 
 

1991 Nicotine/Nicoderm, Habitrol, 
ProStep 

Smoking cessation GlaxoSmithKline 
(Philadelphia), Novartis, 
Elan (Gainesville, GA, 
USA) 
 

1993 Testosterone/Testoderm Testosterone deficiency Alza (Mountain View, 
CA, USA) 

1995 Lidocaine with epinephrine 
(iontophoresis)/Iontocaine 

Local dermal analgesia Iomed (Salt Lake City, 
UT, USA) 
 

1998 Estradiol with 
norethidrone/Combipatch 

Menopausal symptoms 
 

Novartis 

1999 Lidocaine/Lidoderm Post-herpetic neuralgia 
pain 

Endo Pharmaceuticals 
(Chadds Ford, PA, USA) 

2001 Ethinyl estradiol with 
norelgestromin/Ortho Evra 

Contraception Ortho-McNeil 
Pharmaceutical (Raritan, 
NJ, USA) 
 

2003 Estradiol with 
levonorgestrel/Climara Pro 

Menopausal symptoms Bayer Healthcare 
Pharmaceuticals (Wayne, 
NJ, USA) 

2003 Oxybutynin/Oxytrol Overactive bladder Watson Pharma (Corona, 
CA, USA) 
 

2004 Lidocaine (ultrasound)/SonoPrep Local dermal anesthesia Echo Therapeutics 
(Franklin, MA, USA) 
 

2005 Lidocaine with tetracaine/Synera Local dermal analgesia Endo Pharmaceuticals 
 

2006 Fentanyl HCl 
(iontophoresis)/Ionsys 

Acute postoperative pain 
 

Alza 

2006 Methylphenidate/Daytrana Attention deficit 
hyperactivity disorder 

Shire (Wayne, PA, USA) 
 

2006 Selegiline/Emsam Major depressive 
disorder 

Bristol-Myers Squibb 
(Princeton, NJ, USA) 
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Table 1.2 Commercially Available Drugs in the Form of Transdermal Patches 
(Continued) 

 
2007 Rotigotine/Neupro Parkinson’s disease 

Schwarz 
Pharma (Mequon, WI, 
USA) 
 

2007 Rivastigmine/Exelon Dementia Novartis 

 
Source: VIJAY KRISHNA RACHAKONDA, EFFECTIVE SCREENING OF CHEMICAL PENETRATION 
ENHANCERS FOR TRANSDERMAL DRUG DELIVERY 
https://shareok.org/bitstream/handle/11244/9658/Rachakonda_okstate_0664M_2865.pdf?sequence=1, 
Accessed on May 10, 2015 
 

Figure 1.4 shows the percent of global sales for different transdermal patch use segments.            

       

 

 

Figure 1.4 Global Percent sales for Different TDD Segments 

Source: Rachakonda, V.K., Effective Screening of Chemical Penetration Enhancers for Drug Delivery, Master 
Thesis, Oklahoma State University, p. 2, 2006. 
 

          The cumulative number of TDDs approved by the FDA is shown in Figure 1.5.  This 

cumulative number of TDDs has steadily been increasing since their introduction in 1979. 

https://shareok.org/bitstream/handle/11244/9658/Rachakonda_okstate_0664M_2865.pdf?sequence=1


 

8 
 

There are currently 19 drugs and drug combinations administered by various delivery 

methods that are approved in the United States as shown in Figure 1.5(6). 

 

Figure 1.5 Cumulative number of transdermal drugs approved by the FDA  
 
Source: Prausnitz, M.R., Mitragotri, S. and Langer, R., Current status and future potential of transdermal drug 
delivery, Nature Reviews Drug Discovery, 3, 115-124, 2004 
 

           There are several TDDs in the market today (4) and the development trend continues as 

described in appendices A, B, and C. 

           The present TDDP methodology involves the fabrication and testing of the in-vitro 

release of drug embedded within a polymeric matrix in which the cumulative drug release is 

plotted against time as shown in Figure 1.6(5). This permits an estimation of the Diffusion 

Coefficient for the system in question which in turn is used to calculate the optimal usage to 

be expected when used by the patient as well as establishing safety factors for maximum 

time usage.   

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=2700785_nihms121685f1.jpg
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Figure 1.6 In vitro release of Nitrendipine from transdermal patches 

Source: Gannu, R., Vishnu, Y. V. Kishan, V., and Rao, M., Development of nitrendipine  
transdermal patches: In vitro and ex vivo characterization, Current Drug Delivery, 4, 69- 
76, 2007. 
 

This is obtained via a trial and error method, which is time and labor consuming. 

Although, with all the advantages that TDDs can offer, the methodology that is used to 

achieve the so-called optimum design has created several incidents in which the safety and 

design have been put to question as in the case of Fentanyl in Table 1.2.(6-8, 10) 
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Table 1.3 Transdermal fentanyl patch medication incidents classified by medication system 
stage involved 

Stage involved All incidents 
(n=3271) 

Incidents resulting in 
harm or death (n=271) 

Number  Percent* Number  Percent ** 

Physician ordering (prescribing) 419 12.8% 38 14.0% 

Order entry and transcription 417 12.8% 16 5.9% 

Preparation, dispensing and delivery of 
drugs 

397 12.1% 17 6.3% 

 
Administration and supply of a drug from a 
clinical area 

 

1692 

 

51.7% 

 

180 

 

66.4% 

Monitoring/follow-up of drug use 185 5.7% 22 8.1% 

N/A 168 5.1% 1 0.4% 

Other 41 1.3% 6 2.2% 

Total selections: 3319 101.5% 280 103.3% 

Total incidents: 3271 100.00% 271 100.00% 

 

* Percentage is calculated based on the total number of medication incidents (n = 3271). 
Since a medication incident may involve more than one stage selection, the total percentage 
is greater than 100%. 
** Percentage is calculated based on the total number of medication incidents with outcome 
of harm or death (n = 271). Since a medication incident may involve more than one stage 
selection, the total percentage is greater than 100%. 
 
Source:  Cheng, R., Samples, C., Ho, C., Lee, C., Cohen, M., U. D., Cousins, D., and Kirke, C., Medication 
incidents related to the use of fentanyl transdermal systems: An international aggregate analysis, International 
Medication Safety Network (IMSN), 2008 http://www.intmedsafe.net/wp-
content/uploads/2013/12/FentanylPatchesReport.pdf accessed on November 29, 2014 

 

 

http://www.intmedsafe.net/wp-content/uploads/2013/12/FentanylPatchesReport.pdf%20accessed%20on%20November%2029
http://www.intmedsafe.net/wp-content/uploads/2013/12/FentanylPatchesReport.pdf%20accessed%20on%20November%2029


 

11 
 

This has prompted the redesign of several TDDPs since the approval of the first patch in 

1981(10). There are 675 patents and patent applications, relating to this technology in the US 

alone (6, 7). The majority of these submissions have taken place since the late 1990s.          

          Therefore, alternate drug delivery technologies are highly sought by pharmaceutical 

companies and physicians alike, thus, increasing efficiency, safety, and convenience for the 

patient.  

1.3 Scope of the Study 

The purpose of this work is to show a new approach for setting a more robust screening 

method when considering redesigning or designing new TDD patches, especially for the ones 

where the drug is embedded within the body of the matrix. 

             The diffusion coefficient is determined by measuring the cumulative release against 

time. These experiments are usually done using in-vitro techniques where the cumulative 

amount is quantified by analytical techniques such as high performance liquid 

chromatography (HPLC), infrared spectroscopy (IR), and ultraviolet spectroscopy (UV) 

among others.  Along with the selection and fabrication techniques described in section 1.2, 

this can be resource (i.e., labor and equipment) and time consuming, cost prohibitive, and 

have limited throughput. Moreover, these protocols provide an indirect assessment on how 

effective the TDD will be when applied unto the skin.  

              Models to predict the diffusion coefficient have been used to measure the 

permeation of solutes through polymeric membranes. This suggests that these models can be 

used to predict the diffusion coefficient of drug actives through the polymeric films that are 

used in TDDs. Vrentas and Vrentas (2003) proposed the idea of using such models for the 
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diffusion of drug actives. No research to date has demonstrated how the model compares 

with the experimental techniques that are presently in use. 

1.4 Specific Objectives of the Study 

Objective 1: Comparison between experimentally obtained and calculated diffusion  
                      coefficients. 
 

In this study, the diffusion coefficient of nicotine was experimentally obtained and compared 

with the calculated value using the Dudas Zielinski equation (DZE).   

           This is because most of the physical parameters of nicotine were not readily available 

in the open literature that is required by the DZE, to calculate the diffusion coefficient, they 

had to be estimated from group contribution methods. The results show a good agreement 

between the experimental and calculated values, thus, confirming the usefulness of DZE for 

predicting meaningful diffusion coefficient values. 

 

Objective 2: Comparison between radius of gyration (Rg) and hydrodynamic radius (Rh). 

 

The solute/diffusant is always assumed to have a spherical shape (Rh). However, since most 

molecules could be rotating around their center axis (Rg) while diffusing through the 

polymeric membrane, calculated Rg values of nicotine were estimated and incorporated into 

the DZE and the diffusion coefficient values were compared with the experimental results. 
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Objective 3: The effects of molecular shape on the diffusion coefficient. 

 

Another parameter included in the DZE is the molecular shape. The molecular shape of 

nicotine was calculated using the Vrentas (ξL) and Nobrega (ξ) approximations that were 

incorporated into the DZE. 

 

1.5 Thesis Organization 

The thesis consists of six chapters. Chapters one and two introduce the topic and provide a 

literature review and background for this work. Chapter 3 shows the theoretical foundations 

while chapter 4 describes the experimental and theoretical determination of the diffusion 

coefficient. The Discussion and Conclusions details the results from this work along with 

future outlook which are summarized in chapters 5, 6 and 7, respectively. 
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CHAPTER 2 

BACKGROUND 

 

2.1 ADME Mechanism 

For any treatment to be effective, the active ingredients must undergo the physiological 

process known as Absorption Distribution Metabolism Excretion (ADME) (11).      

           These are the steps that any ingredient that the body is exposed to must undergo in 

order to be assimilated. Vergnaud and Rosca defined ADME as follows, “Absorption is the 

drug assimilation from the gastrointestinal tract (GIT) into the bloodstream or the lymphatic 

system. These molecules must go through several complex membranes made of lipid 

barriers, thus, involving different steps.”(12) 

 The steps are as follows: 

1. Drug dissolution into the membrane, 

2. Transcellular passive diffusion or active transport through the membrane walls, and 

3. Luminal and epithelial metabolism. 

            This can be considered as a first order kinetics. The drug concentration in the GIT 

will decrease as shown in equation (2.1): 

Mt = Min exp (-kat) (2.1) 

where,  

ka is the rate absorption constant, 

Min is the initial amount of drug introduced into the body, 

Mt is the amount of drug available at time t, 

and t is time after drug introduction into the body. 
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This will lead to a concurrent drug concentration increase in the blood: 

Ct = C∞ [1-exp (-kat)] (2.2) 

where,  

Ct is the initial drug concentration, 

C∞ is the drug concentration at time t, 

The unbound/free drug concentration in the plasma is: 

C∞ = Min / Vp (2.3) 

and Vp is the plasma volume.  

          Then ka is estimated from the drug profile in the bloodstream at time t.  The change in 

maximum drug concentration with time is described in equation (2.4): 

Tmax = 1 / (ka – ke) ln (ka/ ke) (2.4) 

           Distribution is the step where the unbound drug molecule, present in the bloodstream, 

passes into the tissues and organs. The human organism consists of cells and fluids. The fluid 

can be divided into three distinctive compartments: intravascular, interstitial or extracellular, 

and intracellular. 

           Metabolism can be defined as the sum of all the chemical reactions involved in the 

biotransformation of endogenous and exogenous substances that can occur in the cells. 

Although several processes are part of the biotransformation processes, catabolic and 

anabolic are the most predominant. Catabolic is the breakdown of the drug into simpler 

entities. Anabolic is the synthesis of new compounds from simpler entities. 
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2.2   First Pass Effect 

The first pass effect is defined for the hepatic metabolism of a drug when it is absorbed from 

the gastrointestinal tract and delivered to the liver via the bloodstream as seen in Figure 2.1. 

The greater the first pass effect, the lesser will be the amount of drug to reach the systemic 

circulation. This is the case for orally delivered drugs. 

 

 

Figure 2.1 First pass effect 

Source: Boomer, D., PHAR 7633 Chapter 7, Routes of Drug Administration  
http://www.boomer.org/c/p4/c07/c07.pdf 
 

The effect of the first pass effect or extraction ratio (ER) is given by equation (2.5): 

ER = CL liver / Q (2.5) 

where, Q is the hepatic blood flow (usually, approximately 90 L per hour). 

 

 

http://www.boomer.org/c/p4/c07/c07.pdf
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Systemic drug bioavailability (F) may be determined from the extent of absorption (f) and 

the extraction ratio (ER) as described in equation (2.6): 

F = f x (1 -ER)  (2.6) 

           The greater the first pass effect, the lower is the rate and extent of the drug reaching 

cells and target organs. This is also known as drug bioavailability. 

Excretion or clearance of the active drug usually takes place in the kidney and intestinal tract 

with the exception of gaseous deliveries such as anesthetics and inhalers, which are secreted 

through the lungs. The main excretion route is via the kidneys where the rate and extent is 

regulated by glomerular filtration, tubular reabsorption, and secretion. Clearance (Cl) 

happens by blood perfusion through the extraction organs. Extraction (E) is directly related 

to the drug that is excreted or metabolized. The following relationship is found: 

Cal = QE (2.7) 

where, Q is the blood flow through the organ where secretion is taking place. Since the 

secretion organs are mostly the liver and kidneys, with hepatic clearance Clh and renal 

clearance Clr, the overall mass systemic balance Cl is: 

Cl = Clh + Clr (2.8) 

            Thus, clearance is a function of the necessary blood volume passing through the 

excretion organ to discharge the drug in a certain period of time: 

RE = Cl*C (2.9) 

RE is the rate of excretion of drug discharged per unit time. 
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2.3 Therapeutic Index (TI) 

 

Ehrlich defined the Therapeutic Index (TI) as the relationship between the minimum curative 

and maximum tolerated dose. In pharmacological terms, TI is the ratio associating the 

median lethal dose (drug concentration in the bloodstream that promotes the deaths of 50% 

of the test population, LD50) to the median effective dose (drug concentration in the 

bloodstream that is effective for 50% of the test population, ED50): 

TI = (LD50) / (ED50) (2.10) 

            TI is a derivation of the threshold model that assumes an exposure concentration, or 

threshold, for the drug to be effective. 

 

2.4 Routes of Administration 

There are several approaches or routes that drugs can be delivered as shown in Figure 2.2. 

 

Figure 2.2 Different routes for therapeutic actives to enter the body 

Source: Administration, Merck Manual, 
http://www.merckmanuals.com/home/drugs/administration_and_kinetics_of_drugs/drug_administration. html. 
Accessed on November 28, 2014 
 
           For the subcutaneous route, a needle is inserted into the fatty tissue just beneath the 

skin. After a drug is injected, it then moves into small blood vessels (capillaries) and is 

http://www.merckmanuals.com/home/drugs/administration_and_kinetics_of_drugs/drug_administration.%20html
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carried away by the bloodstream. Alternatively, a drug reaches the bloodstream through the 

lymphatic vessels. Protein drugs that are large in size usually reach the bloodstream through 

the lymphatic vessels because these drugs move slowly from the tissues into capillaries. The 

subcutaneous route is used for many protein drugs because such drugs would be destroyed in 

the digestive tract if they were taken orally.  

        Certain drugs (such as progestins used for birth control) may be given by inserting 

plastic capsules under the skin (implantation). Although this route of administration is rarely 

used, its main advantage is to provide a long-term therapeutic effect (for example, 

etonogestrel that is implanted for contraception may last up to 3 years).  

          The intramuscular route is preferred to the subcutaneous route when larger volumes 

of a drug product are needed. Because the muscles lie below the skin and fatty tissues, a 

longer needle is used. Drugs are usually injected into the muscle of the upper arm, thigh, or 

buttock. The rate of absorption of the drug into the bloodstream depends, in part, on the 

blood supply to the muscle. The sparser the blood supply, the longer it takes for the drug to 

be absorbed.  

           For the intravenous route, a needle is inserted directly into a vein. A solution 

containing the drug may be given in a single dose or by continuous infusion. For infusion, 

the solution is moved by gravity (from a collapsible plastic bag) or, more commonly, by an 

infusion pump through a thin flexible tubing to a tube (catheter) inserted in a vein, usually in 

the forearm. Intravenous administration is the best way to deliver a precise dose quickly and 

in a well-controlled manner throughout the body. It is also used for irritating solutions, which 

would cause pain and damage tissues if given by subcutaneous or intramuscular injection.  
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           When given intravenously, a drug is delivered immediately to the bloodstream and 

tends to take effect more quickly than when given by any other route. Consequently, 

healthcare practitioners closely monitor people who receive an intravenous injection for 

signs that the drug is working or is causing undesired side effects.     

            Also, the effect of a drug given by this route tends to last for a shorter time. 

Therefore, some drugs must be given by continuous infusion to keep their effect constant.    

            These routes can be divided into two potential avenues of entry into the human body.  

They are categorized as: 

 Enteral,  

 Parenteral,  

 inhalation, and 

 Topical and local application. 

Enteral is when the drug is placed directly in the GIT.  The enteral path could be subdivided 

as: 

Oral – this is when the drug is swallowed. The efficacy and delivery can vary depending on 

the rate of how the active can dissolve and be quickly absorbed by the lower intestine as seen 

in Figure 2.3. 
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Figure 2.3 Typical plot of Cp versus time after oral administration fast and slow 
 
Source: Boomer, D., PHAR 7633 Chapter 7, Routes of Drug Administration 
http://www.boomer.org/c/p4/c07/c07.pdf. Accessed on November 28, 2014 
 

         Sublingual is when the drug is placed under the tongue. The drug release is fast and 

short-lived as shown in Figure 2.4. 

 

 

 

 

 

http://www.boomer.org/c/p4/c07/c07.pdf
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Figure 2.4 Typical plot of Cp versus time after sublingual administration 

Source: Boomer, D., PHAR 7633 Chapter 7, Routes of Drug Administration  
http://www.boomer.org/c/p4/c07/c07.pdf Accessed on November 28, 2014 
 

         Buccal is when the active drug is placed in the buccal cavity where it dissolves / is 

transported through the mucous membrane. The drug release is slow and more consistent 

when compared to the oral and sublingual methodologies as seen in Figure 2.5. 

 

 

 

 

 

 

http://www.boomer.org/c/p4/c07/c07.pdf
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Figure 2.5 Typical plot of Cp versus time after buccal administration 

Source: Boomer, D., PHAR 7633 Chapter 7, Routes of Drug Administration  
http://www.boomer.org/c/p4/c07/c07.pdf. Accessed on November 28, 2014 

 

         Rectal is when the drug is directly absorbed through the rectum. It shows a drug release 

pattern similar to sublingual delivery systems. This is because both technologies must go 

through the mucosa in order to enter the bloodstream as seen in Figure 2.6. 

 

 

 

 

 

 

 

http://www.boomer.org/c/p4/c07/c07.pdf
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Figure 2.6 Typical plot of Cp versus time after rectal administration 

Source: Boomer, D., PHAR 7633 Chapter 7, Routes of Drug Administration  
http://www.boomer.org/c/p4/c07/c07.pdf. Accessed on November 28, 2014 

 

   Parenteral is when the drug is not placed directly in the GIT. The parenteral path   

could be subdivided as: 

          Intravenous (IV, IA)—placing a drug directly into the bloodstream. The absorption 

phase is bypassed (100% bioavailability). It is precise, accurate and almost immediate onset 

of action where large quantities can be given, fairly pain-free as seen in Figure 2.7. 

 

 

 

http://www.boomer.org/c/p4/c07/c07.pdf
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Figure 2.7 Typical plot of Cp versus time during an IV infusion administration 

Source: Boomer, D., PHAR 7633 Chapter 7, Routes of Drug Administration  
http://www.boomer.org/c/p4/c07/c07.pdf. Accessed on November 28, 2014 
 

          Intramuscular is similar to Intravenous in which a very rapid absorption of drugs in 

aqueous solution is typically used as a repository and requires slow release preparations.  

 

 

 

 

 

 

 

http://www.boomer.org/c/p4/c07/c07.pdf
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Figure 2.8 Typical plot of Cp versus time after intramuscular administration 

Source: Boomer, D., PHAR 7633 Chapter 7, Routes of Drug Administration  
http://www.boomer.org/c/p4/c07/c07.pdf 
 

Subcutaneous is absorption of drugs from the subcutaneous tissues. 

http://www.boomer.org/c/p4/c07/c07.pdf
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Figure 2.9 Typical plot of Cp versus time after subcutaneous administration  
 
Source: Boomer, D., PHAR 7633 Chapter 7, Routes of Drug Administration  
http://www.boomer.org/c/p4/c07/c07.pdf 
 

           Figures 2.8 and 2.9 show plot of Cp versus time after intramuscular administration 

and Cp versus time after subcutaneous administration slow and constant absorption, 

respectively. 

 

 

 

 

 

http://www.boomer.org/c/p4/c07/c07.pdf
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Figure 2.10 Various routes of drug administration through injections 

Source: Rachakonda, V.K., Effective Screening of Chemical Penetration Enhancers for Drug    
Delivery, Master Thesis, Oklahoma State University, p. 17, 2006. 

 

         Figure 2.10 shows the various routes for drug administration.  These include: 

 intra-arterial 

 intra-articular, and 

 Intra-dermal. 

Inhalation is when the active drug is delivered directly from the lungs. Topical and local 

application is when the drug is delivered upon and through the skin. Parenteral is an 

intramuscular (IM) drug injected into skeletal muscle. Figures 2.11 – 2.14 show various case 

studies of concentration versus time after administration of the drug. 
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Figure 2.11 Plot of drug blood concentration versus time comparison of different    
parenteral delivery systems 
 
Source: Pharmacokinetics Presentation, 
http://web.calstatela.edu/faculty/mchen/454L%lectures/pharmacokinetics.ppt 
Accessed on November 29, 2014 

 

             Inhalation is absorption through the lungs by means of gaseous, volatile agents 

and aerosols. This creates a rapid onset of action due to rapid access to circulation, 

because of the following factors 

a. large surface area, 

b. thin membranes separates alveoli from circulation, and 

c. high blood flow. 

               The effect versus time is shown in Figure 2.12.  

http://web.calstatela.edu/faculty/mchen/454L%25lectures/pharmacokinetics.ppt
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Figure 2.12 Typical plot of Cp versus time after inhalation administration 

Source: Boomer, D., PHAR 7633 Chapter 7, Routes of Drug Administration                  
http://www.boomer.org/c/p4/c07/c07.pdf. Accessed on November 29, 2014 
 
         Topical administrations leverage the mucosal membranes (e.g., eye drops, antiseptic, 

sunscreen, and callous removal, nasal) and skin to deliver drug actives by means of  

      a. dermal - rubbing in of oil or ointment (local action) and 

b. transdermal - absorption of drug through skin (systemic action).  

providing a longer time which increases effectiveness. Topicals can be considered as 

the best Chronopharmaco kinetic systems as seen in Figure 2.13. 

http://www.boomer.org/c/p4/c07/c07.pdf
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Figure 2.13 Typical plot of Cp versus time after topical administration 

Source: Boomer, D., PHAR 7633 Chapter 7, Routes of Drug Administration      
http://www.boomer.org/c/p4/c07/c07.pdf . Accessed on November 29, 2014 

 

 

 

Figure 2.14 Plot of drug plasma concentration versus time comparison between IV and                                                             
oral administration.  
 
Source:  Tangphao, O.,  Grossmann, M., Chalon, S., Hoffman, B.B., and Blaschke, T.F.,     
Pharmacokinetics of intravenous and oral l-arginine in normal volunteers,  
Br J Clin Pharmacol. 47(3): 261–266, 1999 

http://www.boomer.org/c/p4/c07/c07.pdf
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tangphao%20O%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Grossmann%20M%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chalon%20S%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hoffman%20BB%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Blaschke%20TF%5Bauth%5D
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        Tables 2.1 and 2.2 summarize the routes of administration of drugs and their associated 

advantages and disadvantages, respectively. Table 2.1 shows the effective time by the 

different routes of administration. 

Table 2.1 Routes of Administrations and Effective Times 

Route of Administration Effective Time 

Intravenous 30-60 seconds 
Inhalation 2-3 minutes 
Sublingual 3-5 minutes 
Intramuscular 10-20 minutes 
Subcutaneous 15-30 minutes 
Rectal 5-30 minutes 
Ingestion 30-90 minutes 

 

Source: Manitoba Health, ROUTES for DRUG ADMINISTRATION, EMERGENCY TREATMENT   
GUIDELINES, APPENDIX A2, http://www.gov.mb.ca/health/ems/guidelines/docs/A2.08.03.pdf.   Accessed 
on November 30, 2014. 
         

         Table 2.2 shows the advantages and disadvantages of the different types of 

administration routes. 

 

 

 

 

 

 

 

 

 

 

http://www.gov.mb.ca/health/ems/guidelines/docs/A2.08.03.pdf
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Table 2.2 Advantages and Disadvantages of different Types of Administration  

Type of 
Administration 

Advantages Disadvantages 

Oral Convenient - portable, safe, no 
pain, easy to take. 
Cheap - no need to sterilize (but 
must be hygienic of course), 
compact, multi-dose bottles, 
automated machines produce 
tablets in large quantities. 
Variety of dosage forms 
available - fast release tablets, 
capsules, enteric coated, layered 
tablets, slow release, 
suspensions, mixtures 

Sometimes inefficient - high dose or 
low solubility drugs may suffer poor 
availability, only part of the dose 
may be absorbed. 
First pass effect - drugs absorbed 
orally are transported to the general 
circulation via the liver. Thus drugs 
which are extensively metabolized 
will be metabolized in the liver 
during absorption. 
Food - Food and GI motility can 
affect drug absorption. Often, patient 
instructions include a direction to 
take with food or take on an empty 
stomach. Absorption is slower with 
food for tetracycline and penicillin, 
etc. 
Local effect - Antibiotics may kill 
normal gut flora and allow 
overgrowth of fungal varieties. 
Thus, antifungal agent may be 
included with an antibiotic. 
Unconscious patient - Patient must 
be able to swallow solid dosage 
forms. Liquids may be given by 
tube. 

Buccal and 
Sublingual 

First pass - The liver is by-
passed, thus, there is no loss of 
drug by first pass effect for 
buccal or sublingual 
administration 
 Bioavailability is higher. Rapid 
absorption - Because of the good 
blood supply to the area of 
absorption is usually quite rapid, 
especially for drugs with good 
lipid solubility. 
Drug stability - pH in mouth 
relatively neutral (cf. stomach - 
acidic). Thus, a drug may be 
more stable. 

Holding the dose in the mouth is 
inconvenient. If any part of the dose 
is swallowed, that portion must be 
treated as an oral dose and subject to 
first pass metabolism. 
Usually, more suitable for drugs 
with small doses. 
Drug taste may need to be masked. 
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Table 2.3 Advantages and Disadvantages of different Types of Administration 
(Continued) 

Rectal By-pass liver - Some (but not all) of 
the veins draining the rectum lead 
directly to the general circulation, 
thus, bypassing the liver. Therefore, 
there may be a reduced first pass 
effect. 
Useful - This route may be most 
useful for patients unable to take 
drugs orally or with younger 
children. 

Erratic absorption - Drug absorption 
from a suppository is often 
incomplete and erratic. However, for 
some drugs it is quite useful. There is 
research being conducted to look at 
methods of improving the extent and 
variability of rectal administration.  
Absorption from solutions used as an 
enema may be more reliable. Not well 
accepted. May be some discomfort. 

Intravenous 
(IV) 

Rapid - A quick response is 
possible. Plasma concentration can 
be precisely controlled using IV 
infusion administration. 
Total dose - The whole dose is 
delivered to the bloodstream. That 
is the bioavailability is generally 
considered 100% after IV 
administration. Larger doses may 
be given by IV infusion over an 
extended time. 
 Poorly soluble drugs may be given 
in a larger volume over an extended 
time period. 
Veins relatively insensitive - to 
irritation by irritant drugs at higher 
concentration in dosage forms. 

Suitable vein - It may be difficult to 
find a suitable vein. There may be 
some tissue damage at the site of 
injection. 
May be toxic - Because of the rapid 
response, toxicity can be a problem 
with rapid drug administrations. For 
drugs where this is a particular 
problem the dose should be given as 
an infusion, monitoring for toxicity. 
Requires trained personnel - Trained 
personnel are required to give 
intravenous injections. 
Expensive - Sterility, pyrogen testing 
and larger volume of solvent means 
greater cost for preparation, transport, 
and storage. 

Subcutaneous Can be given by patient (e.g. in the 
case of insulin). 
Absorption can be fast from 
aqueous solution but slower with 
depot formulations.  
Absorption is usually complete. 
Improved by massage or heat.  
Vasoconstrictor may be added to 
reduce the absorption of a local 
anesthetic agent, thereby 
prolonging its effect at the site of 
interest. 

Can be painful. Finding suitable sites 
for repeat injection can be a problem. 
Irritant drugs can cause local tissue 
damage. 
Maximum of two ml injection, thus, 
often small doses limit use. 
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Table 2.4 Advantages and Disadvantages of different Types of Administration 
(Continued) 

 
   
Intramuscular Larger volume than SC can be 

given by IM. They may be easier to 
administer than IV injections. 
A depot or sustained release effect 
is possible with IM injections (e.g. 
procaine penicillin). 
Absorption can be rapid from 
aqueous solution. 
 

Trained personnel required for 
injections. The site of injection will 
influence the absorption; generally, 
the deltoid muscle provides faster and 
more complete absorption. 
Absorption is sometimes erratic, 
especially for poorly soluble drugs 
(e.g. diazepam, phenytoin).  
The solvent may be absorbed faster  
 than the drug causing precipitation of     
 the drug at the site of injection. 
 Irritating drug may be painful. 

Inhalation May be used for a local effect, e.g. 
bronchodilators. 
Can be used for systemic effect 
(e.g. general anesthesia). 
Rapid absorption by-passing the 
liver. 

 Absorption of gases is relatively    
 efficient; however, solids and liquids  
 are excluded if larger than 20 micron  
 and even then only 10% of the dose       
 may be absorbed.  
 Larger than 20 micron and the     
 particles impact in the mouth and    
 throat.  
 Smaller than 0.5 micron and they are   
 not retained. Some portion of the  
 dose may be swallowed. 

Topical or 
Transdermal 

The local effect (e.g., ear drops, eye 
drops or ointment, antiseptic 
creams and ointments, sunscreens). 
The systemic effect (e.g., 
nitroglycerin ointment). 
Absorption is quite slow. 
Transdermal patches can provide 
prolonged or controlled drug 
delivery. 

There may be some skin irritation. 
Drug absorption will vary by site of    
administration, skin condition, age,   
and gender. 
Absorption is better with low dose,   
low MW, lipid soluble drugs. 
 

 
Source: Understanding Pharmacology for Health Professionals, Fourth Edition, by Susan      
M. Turley, 2010. http://wps.pearsoncustom.com/wps/media/objects/10490/10742713/HC115_Ch04.pdf  
Accessed on November 29, 2014 
 
 
 
 
 
          

http://wps.pearsoncustom.com/wps/media/objects/10490/10742713/HC115_Ch04.pdf
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2.5 Structure of the Skin 

The skin is the largest organ in the human body. The best approximation that a material 

scientist could make of the skin is of a multi-component/compartmental membrane. 

           This membrane consists of three separate and distinct components; the superficial, 

thinner portion is the epidermis. The subsequent thicker part is the dermis, and the deeper 

part, which connects to the blood vessels, muscles, and bones, is the hypodermis as seen in 

Figure 2.15. 

 

Figure 2.15 Skin structure 

Source: Subcutaneous tissue, http://en.wikipedia.org/wiki/Subcutaneous_tissue. Accessed      
on November 30, 2014 
 
 
 
 
 
 
 
 
 

http://en.wikipedia.org/wiki/Subcutaneous_tissue
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2.4.1 Hypodermis 
 

The hypodermis, shown in Figure 2.16, is the skin’s innermost/deepest component that 

consists of adipose and areolar tissue along with nerves, blood, and lymph vessels. It is the 

component that surrounds muscles and bones. 

 

 

Figure 2.16 Hypodermis structure (200X Magnification) 

Source: Human Skin Tissues. PPT 
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=11&ved=0CB0QFjAAOAo&url=http%
3A%2F%2Fwww.tamdistrict.org%2Fsite%2Fhandlers%2Ffiledownload.ashx%3Fmoduleinstanceid%3D7776%
26dataid%3D14305%26FileName%3DHumanSkinTissuesLecture.ppt&ei=ysF7VJ3NIobesAT-
jIH4AQ&usg=AFQjCNE66ihbnqoftxh5XtVXRul3ywueDg&bvm=bv.80642063,d.cWc 
Accessed on November 30, 2014. 

 

 

 

 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=11&ved=0CB0QFjAAOAo&url=http%3A%2F%2Fwww.tamdistrict.org%2Fsite%2Fhandlers%2Ffiledownload.ashx%3Fmoduleinstanceid%3D7776%26dataid%3D14305%26FileName%3DHumanSkinTissuesLecture.ppt&ei=ysF7VJ3NIobesAT-jIH4AQ&usg=AFQjCNE66ihbnqoftxh5XtVXRul3ywueDg&bvm=bv.80642063,d.cWc
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=11&ved=0CB0QFjAAOAo&url=http%3A%2F%2Fwww.tamdistrict.org%2Fsite%2Fhandlers%2Ffiledownload.ashx%3Fmoduleinstanceid%3D7776%26dataid%3D14305%26FileName%3DHumanSkinTissuesLecture.ppt&ei=ysF7VJ3NIobesAT-jIH4AQ&usg=AFQjCNE66ihbnqoftxh5XtVXRul3ywueDg&bvm=bv.80642063,d.cWc
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=11&ved=0CB0QFjAAOAo&url=http%3A%2F%2Fwww.tamdistrict.org%2Fsite%2Fhandlers%2Ffiledownload.ashx%3Fmoduleinstanceid%3D7776%26dataid%3D14305%26FileName%3DHumanSkinTissuesLecture.ppt&ei=ysF7VJ3NIobesAT-jIH4AQ&usg=AFQjCNE66ihbnqoftxh5XtVXRul3ywueDg&bvm=bv.80642063,d.cWc
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=11&ved=0CB0QFjAAOAo&url=http%3A%2F%2Fwww.tamdistrict.org%2Fsite%2Fhandlers%2Ffiledownload.ashx%3Fmoduleinstanceid%3D7776%26dataid%3D14305%26FileName%3DHumanSkinTissuesLecture.ppt&ei=ysF7VJ3NIobesAT-jIH4AQ&usg=AFQjCNE66ihbnqoftxh5XtVXRul3ywueDg&bvm=bv.80642063,d.cWc
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2.4.2 Adipose Tissue 

Adipose tissue consists of cells designed to store fat that could be released as fuel to the skin 

and surrounding tissues as required. Their structure consists of lipids surrounded by a 

cytoplasmic membrane as seen in Figure 2.17. 

 

 

Figure 2.17 Adipose tissue/cells (320 x 240 enlargement) 

Source: Adipose Tissue, Tissues of the Human Body, McGraw Hill. 
http://www.mhhe.com/biosci/ap/histology_mh/adiposfs.html. Accessed on November 30, 2014. 
 

       The cytoplasmic membrane releases the lipids upon mechanical stress, thus, enabling the 

skin to leverage the lipids as a fuel when additional energy is required to fulfill immediate 

needs. 

 

 

 

http://www.mhhe.com/biosci/ap/histology_mh/adiposfs.html
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2.4.3 Areolar Tissue 

Areolar tissue, also known as loose connective tissue, is a randomly arranged series of fibers 

that creates a mesh surrounding blood, lymph vessels, and organs, thus, making it the ideal 

cushioning agent providing a greater degree of protection as seen in Figure 2.18. 

 

 

Figure 2.18 Areolar tissue (600 x 381 magnification) 

Source: http://www.anatomybox.com/wpcontent/uploads/2012/01/AreolarConnectiveTissueSkin.jpg.  
Accessed on November 30, 2014 

2.4.4 Dermis 

The dermis is a layer of skin that is between the epidermis and the hypodermis as shown in 

Figure 2.19. 

 

http://www.anatomybox.com/wpcontent/uploads/2012/01/AreolarConnectiveTissueSkin.jpg
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Figure 2. 19 Dermis 

Source: http://www.webmd.com/skin-problems-and-treatments/picture-of-the-skin 
             Accessed on November 30, 2014. 
 

         It is divided into two adjacent substrates or layers. The one next to the epidermis is 

called the papillary region and the deeper thicker layer, known as the reticular dermis, is 

shown in Figure 2.20. 

 

 

http://www.webmd.com/skin-problems-and-treatments/picture-of-the-skin
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Figure 2. 20 Dermis layers 

Source: http://droualb.faculty.mjc.edu/Lecture%20Notes/Unit%201/FG04_07.jpg. Accessed on    
November 30, 2014. 
 

          The papillary layer lies directly beneath the epidermis and connects to it via papillae 

(i.e., finger-like projections). The reticular layer of the dermis contains crisscrossing collagen 

fibers that form a strong elastic network. Both the layers are depicted in Figure 2.21. 

http://droualb.faculty.mjc.edu/Lecture%20Notes/Unit%201/FG04_07.jpg
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Figure 2. 21 Papillary and Reticular layers (384 x 288 magnification) 

Source: http://rubred.files.wordpress.com/2013/05/161_dermis.gif. Accessed on November 30, 2014. 
 

         Papillary region (i.e., the upper layer immediately beneath epidermis) consists of 

areolar connective tissue containing thin collagen and elastic fibers, dermal papillae 

(including capillary loops), corpuscles of touch and free nerve endings. The papillary region 

is the superficial part of the dermis. The surface area of the papillary region is greatly 

increased by small fingerlike projections called dermal papillae. Some dermal papillae 

contain tactile receptors called corpuscles of touch or Meissner corpuscles. These are nerve 

endings that are sensitive to touch. Also present in dermal papillae are free nerve endings, 

which initiate a signal that gives rise to sensations of warmth, coolness, pain, tickling, and 

itching. 

 

http://rubred.files.wordpress.com/2013/05/161_dermis.gif.%20Accessed%20on%20November%2030
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The reticular region is the deeper part of the dermis. In this region, bundles of collagen fibers 

are interlaced in a net-like manner. Adipose cells, hair follicles, nerves, sebaceous glands, 

and sweat glands occupy the space between the fibers. A combination of collagen and elastic 

fibers in the reticular region is responsible for providing the skin with strength, extensibility, 

and elasticity. 

           Fibroblasts provide the structural framework for many tissues and have a critical role 

in wound healing. They are also responsible for synthesizing the dermal proteins as seen in 

Figure 2.22.  

 

 

Figure 2. 22 Fibroblasts (640 x 530 magnification) 

Source: http://www.pathologyoutlines.com/images/softtissue/02_28C.jpg. Accessed on November 30, 2014   
         

           

http://www.pathologyoutlines.com/images/softtissue/02_28C.jpg
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Collagen is composed of a triple helix, which generally consists of two identical chains (α1) 

and an additional chain that differs slightly in its chemical composition (α2) (Figure 2.23).(15) 

The amino acid composition of collagen is atypical for proteins, particularly with respect to 

its high hydroxyproline content. 

 

 

 

Figure 2. 23 Tropocollagen structure 

Source: http://en.wikipedia.org/wiki/Collagen. Accessed on November 30, 2014. 

 

http://en.wikipedia.org/wiki/Collagen#cite_note-SzpakJAS-24
http://upload.wikimedia.org/wikipedia/commons/d/d1/Collagentriplehelix.png
http://en.wikipedia.org/wiki/Collagen
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2.4.5 Epidermis 

The epidermis encompasses different stages of cellular differentiation, gradual loss of 

nuclear material, and accumulation of keratin proteins. These stages are physically four 

layers:  

- Stratum Basale 

- Stratum Spinosum 

- Stratum Granulosum 

- Stratum Corneum 

but there are a few areas where exposure to friction is greatest (e.g. fingertips, palms, and 

soles have five layers - Figure 2.24). 

 

 

 

 

Figure 2. 24  Layers of the epidermis: (B) Stratum Basale, (S) Stratum Spinosum, (G)      
Stratum Granulosum, and (C) Stratum Corneum (497 x 311 magnification) 
 
Source: http://pharmaxchange.info/press/wp-content/uploads/2011/03/Figure-6-Layers-of-epidermis.jpg. 
Accessed on November 30, 2014 

http://pharmaxchange.info/press/wp-content/uploads/2011/03/Figure-6-Layers-of-epidermis.jpg
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               These layers are stratified in a sequential order as shown in Figure 2.25. 

 

 

            

Figure 2. 25 Schematic image showing a section of epidermis with labelled layers 
             
Source: http://wikidraft.referata.com/wiki/Epidermis_(skin). Accessed on November 30, 2014 
 

 

 

 

 

 

http://wikidraft.referata.com/wiki/Epidermis_(skin)
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2.6.1 Stratum Corneum 

This layer is composed of 10 to 30 polyhedral, anucleated corneocytes, which is the final 

phase of keratinocytes differentiation. Palm and soles have most of these layers.       

           Corneocytes are surrounded by a protein sheath (cornified proteins) filled with water-

retaining with keratinized proteins, attached together through corneodesmosomes and 

surrounded in the extracellular space by stacked layers of lipids.[10] Most of the barrier 

functions of the epidermis localize within this layer.[11] 

 

2.6.2 Stratum Lucidum 

This is a clear/translucent layer that is only present in palms and soles. This layer is present 

only in those areas that are prone to friction (i.e. in thick skin). It consists of a large amount 

of keratin and thickened plasma membrane. The layer is made of three to five layers of 

flattened dead keratinocytes. 

 

2.6.3 Stratum Granulosum 

This is the middle layer of the epidermis. It consists of a protein called keratohyalin, which 

converts to no filaments into keratin. This layer consists of three to five layers of flattened 

keratinocytes. Also present in the keratinocytes are membrane enclosed lamellar granules, 

which release a lipid-rich secretion. This secretion fills the space between cells of stratum 

granulosum, stratum lucidum, and stratum corneum. They act as a water repellent sealant that 

helps retard loss of body fluids and entry of foreign materials. 

 

http://en.wikipedia.org/wiki/Keratin
http://en.wikipedia.org/wiki/Proteins
http://en.wikipedia.org/wiki/Desmosome
http://en.wikipedia.org/wiki/Extracellular
http://en.wikipedia.org/wiki/Lipids
http://en.wikipedia.org/wiki/Epidermis_(skin)#cite_note-bensouillah-10
http://en.wikipedia.org/wiki/Epidermis_(skin)#cite_note-elias-11
http://en.wikipedia.org/wiki/Hand#Human_anatomy
http://en.wikipedia.org/wiki/Sole_(foot)
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2.6.4 Stratum Spinosum 

This is the layer above the stratum basale. It provides both strength and flexibility to the skin. 

This layer consists of 8 to 10 layers of keratinocytes. The Keratinocytes become connected 

through desmosomes and start to produce lamellar bodies, from within the Golgi, enriched in 

polar lipids, glycosphingolipids, free sterols, phospholipids and catabolic enzymes.[4] 

Langerhans cells, immunologically active cells, are located in the middle of this layer. 

 

2.6.5 Stratum basale 

 This layer is mainly composed of disseminating and non-disseminating keratinocytes, 

attached to the basement membrane by hemidesmosomes. Melanocytes are present, 

connected to numerous keratinocytes in this and other strata through dendrites.  

Within these layers, different types of cells with specific functionality are present as seen in 

Figure 2.26 and the key cells are known as Langerhans. 

 

 

 

 

http://en.wikipedia.org/wiki/Keratinocytes
http://en.wikipedia.org/wiki/Desmosomes
http://en.wikipedia.org/wiki/Lamellar_bodies
http://en.wikipedia.org/wiki/Golgi_apparatus
http://en.wikipedia.org/wiki/Lipids
http://en.wikipedia.org/wiki/Glycosphingolipids
http://en.wikipedia.org/wiki/Sterols
http://en.wikipedia.org/wiki/Phospholipids
http://en.wikipedia.org/wiki/Epidermis_(skin)#cite_note-Proksch-4
http://en.wikipedia.org/wiki/Langerhans_cells
http://en.wikipedia.org/wiki/Cell_(biology)
http://en.wikipedia.org/wiki/Keratinocytes
http://en.wikipedia.org/wiki/Basement_membrane
http://en.wikipedia.org/wiki/Hemidesmosomes
http://en.wikipedia.org/wiki/Melanocytes
http://en.wikipedia.org/wiki/Keratinocytes
http://en.wikipedia.org/wiki/Dendrites
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Figure 2.26 Types of cells present within the epidermis layers 

Source:https://bohone09.wikispaces.com/file/view/Picture_3.jpg/87308785/619x422/Picture_3.jpg. Accessed 
on November 30, 2014 
 
 
 

2.6.6  Merkel Cells 

Merkel cells are also found in the stratum basale with large numbers in touch-sensitive sites 

such as the fingertips and lips. They are closely associated with cutaneous nerves and seem 

to be involved in light touch sensation.[10]  

             Merkel cells are used as sensory receptors for light touch. They are usually located in 

the deepest layer of the epidermis. These cells are in contact with the flattened process of a 

sensory neuron structure called a tactile disc. Merkel cells and tactile discs together detect 

different aspects of touch sensation. Figure 2.27 shows the schematic representation of a 

Merkel cell-neurite complex as observed ultra-structurally. This diagram depicts (1) a 

dendritic Merkel cell (Mc) with its desmosomal attachments to adjacent keratocytes (K), 

http://en.wikipedia.org/wiki/Merkel_cells
http://en.wikipedia.org/wiki/Stratum_basale
http://en.wikipedia.org/wiki/Fingertips
http://en.wikipedia.org/wiki/Lip
http://en.wikipedia.org/wiki/Nerves
http://en.wikipedia.org/wiki/Epidermis_(skin)#cite_note-bensouillah-10
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intranuclear “rodlet,” and membrane-bound dense core granules (G) and (2) a mitochondria-

rich myelinated axon (A) with postsynaptic thickening of its terminal membrane. 

 

 

Figure 2. 27 Merkel cells 

Source: http://www.derm101.com/wp-content/uploads/ac01g069.jpg. Accessed on November 30, 2014 
 

2.6.7  Langerhans Cells 

Langerhans cells arise from red bone marrow and migrate to the epidermis. They participate 

in immune response against microbes that invade the skin and these cells are easily damaged 

by ultraviolet light (Figure 2.28). 

 

http://www.derm101.com/wp-content/uploads/ac01g069.jpg
http://www.derm101.com/wp-content/uploads/ac01g069.jpg
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Figure 2. 28 Langerhans cells (1818 x 1228 magnification) 

Source: http://upload.wikimedia.org/wikipedia/commons/2/2e/Dendritic_cells.jpg. Accessed on November 30, 
2014. 
 

2.6.8  Keratinocyte 

They make up 90% of the epidermal layer of the skin and they produce the protein keratin. 

The protein protects the skin and underlying tissues from heat, microbes, and chemicals. It 

also produces lamellar granules, which release a water repellent sealant. This is shown in 

Figure 2.29. 

 

http://upload.wikimedia.org/wikipedia/commons/2/2e/Dendritic_cells.jpg
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Figure 2. 29 Keratinocytes as seen under a microscope 

Source: http://pharmaxchange.info/press/wp-content/uploads/2011/03/Figure-2-keratinocytes- as-seen-under-a-
microscope.jpg. Accessed on November 30, 2014. 
 

2.6.9  Melanocytes 

Melanocytes make up 8% of the epidermis. It produces the pigment melanin, which 

contributes to the color of the skin and absorbs the damaging ultraviolet light. Figure 2.30 

shows the structure of Melanocytes. 

 

 

Figure 2.30 Melanocytes 

Source: http://upload.wikimedia.org/wikipedia/commons/d/dd/Illu_skin02.jpg. Accessed on November 30, 
2014 

 

http://pharmaxchange.info/press/wp-content/uploads/2011/03/Figure-2-keratinocytes-%20as-seen-under-a-microscope.jpg
http://pharmaxchange.info/press/wp-content/uploads/2011/03/Figure-2-keratinocytes-%20as-seen-under-a-microscope.jpg
http://upload.wikimedia.org/wikipedia/commons/d/dd/Illu_skin02.jpg
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2.6.10  Macrophages 

Macrophages are white blood cells, also called big eaters, as their role is to digest and eat 

(phagocytocis) cellular debris and pathogens. They are about 21 micrometers (0.00083 in) in 

diameter and are produced by the differentiation of monocytes in tissues. This is shown in 

Figure 2.31. 

 

 

Figure 2.31 Macrophage 

Source: http://www.phartoonz.com/wp-content/uploads/2010/11/leukocyte_immunity_Macrophage.png. 
Accessed on November 30, 2014 

 

http://en.wikipedia.org/wiki/Monocyte
http://www.phartoonz.com/wp-content/uploads/2010/11/leukocyte_immunity_Macrophage.png
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2.7 Routes of Drug Entry unto the Skin 

There are three paths that drug actives can penetrate the skin. These paths are known as the 

intercellular, transcellular, and follicular routes (17). This is shown in Figure 2.32. 

          

Figure 2.32 Delivery Skin Routes 

Source: http://biomed.brown.edu/Courses/BI108/BI108_2003_Groups/Transdermal/Skin/SkinPerm.htm    
Accessed on December 1, 2014. 

 

          This is also well known as the “brick and mortar” model. The brick is the protein 

where trans-cellular penetration occurs whilst the lipid is the mortar in which the intercellular 

diffusion takes place. This is shown in Figure 2.33.  

http://biomed.brown.edu/Courses/BI108/BI108_2003_Groups/Transdermal/Skin/SkinPerm.htm
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Figure 2. 33 Brick and Mortar 

Source: Understanding the causes of skin disease, Health and Safety Executive,   
 http://www.hse.gov.uk/skin/professional/causes/understand.htm. Accessed on December 1, 2014. 
 

2.8 TDD Techniques 

The delivery of drugs is the basis for the improvement in patient health. The usual route is to 

develop such deliveries to be administered orally for improved patient compliance.  

However, using the oral route can cause issues such as the following: 

 

 

http://www.hse.gov.uk/skin/professional/causes/understand.htm


 

56 
 

1. Irritation of the GIT. GIT is the chemical interaction between the active drug and 

mucosa membranes of the gastrointestinal track comprised of the region from the 

upper esophagus to the duodenum region of the intestine that can create discomfort 

and potential chemical erosion of the membranes. In turn, this can make the patient 

either skip or discontinue the use of the treatment, thus, making the patient no longer 

abide by the therapeutic regime set by the physician, thus, effectively delaying the 

sought after benefits. This is perhaps one of the major issues encountered by 

physicians when prescribing orally delivered therapies. 

2. First pass metabolism, or pre-systemic metabolism, is defined as the condition in 

which the bio-available concentration of the drug is significantly reduced when 

passing through the liver before it is in contact with the bloodstream. [1, 2]  Therefore, 

in order to overcome this, the concentration of the drug must be substantially 

increased in order to be effective, thus, ensuring that the patient receives the correct 

amount. However, as seen in Figure 2.34(14) this can create situations during which 

the drug is rarely at the desired therapeutic level (TL). This can be either fully below 

or above the TL, thus, practically rendering the treatment inadequate or dangerous. 

3. Low patient compliance - For any treatment to be effective, the patient must adhere to 

the regime prescribed by the physician. Aside from the influence of GIT along with 

busy schedules, people very often skip doses, thus, rendering the designed procedure 

to be therapeutically ineffective. 
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Figure 2.34 Hypothetical blood level pattern from a conventional multiple dosing            
schedule and the idealized pattern from a transdermal controlled release system. 

 
   Source: Falcone, R., Jaffe, M. and Ravindra, N.M.,  New screening methodology for selection of  
   polymeric matrices for transdermal drug delivery devices, Bioinspired, Biomimetic and  
   Nanobiomaterials, Volume 2 Issue BBN2, p. 65 – 75, 2013  
 

         TDDs are passive drug delivery systems that provide a constant active drug flow to the 

patient through the skin.  

          The advantages of leveraging TDD against any other non-oral delivery (NOD) can be 

summarized as follows:  

 complete avoidance of the first pass metabolism through the liver, 

 non-GIT incompatibility, 

 lower side effects or better plasma – concentration time profiles,  

 greater predictability and long period of drug activity, 

 increased patient compliance, 

 enhanced therapeutic efficacy, 

 dose frequency is reduced, 
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 increased flexibility in ending protocol by simply removing the source, and 

 Non-invasive and ease of implementation/use. 

 

2.9 Transdermal Patch Design 

Transdermal patches (TDDP) are systems consisting of several components that are 

specifically designed for different applications as shown in Figure 2.35(18). 

 

          

Figure 2.35 Types of transdermal patches 

Source: Sachan, R. and Bajpai, M., TRANSDERMAL DRUG DELIVERY SYSTEM: A REVIEW,  
International Journal of Research and Development in Pharmacy and Life Sciences, Vol.3, No.1, pp 748-765, 
2013 Accessed on December 2, 2014 
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         The basic TDDP working release mechanism is shown in Figure 2.36. 

 

           

Figure 2.36 TDDP release mechanism 

Source: http://www.hisamitsu.co.jp/english/company/operations/tdds.html. Accessed on      
              December 2, 2014 
 

           Designing transdermal patches is a three-step process. Step 1 involves finding the 

physicochemical compatibility between the active drug and polymers used in the films. Step 

2 involves the film fabrication. Step 3 is the in-vitro active drug release evaluation where the 

cumulative release is then plotted against time as shown in Figure 2.34 where the diffusion 

coefficient is found from the slope. This is a trial and error method, which is time 

consuming. Although, with all the advantages that TDDs can offer, the methodology used 

has created several incidents in which the safety and design have been put to question as seen 

in the case of Fentanyl patches (Table 2.3). 

  

http://www.hisamitsu.co.jp/english/company/operations/tdds.html
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A generally accepted set of selection rules, for materials, in TDD patches were   

suggested by Williams (19).  These can be summarized as follows: 

1. Selection of a good drug candidate: 

a. molecular size limit not to exceed between 300-500 Da., 

b. active release of drug in the range of 1 mg/cm2/day, 

c. log P(octane / water) = 1 – 3.5, 

d. aqueous solubility > 100 µg / ml, 

e. daily dose < 10 mg / day, 

2. maintain optimum drug saturation, keeping in mind that the thermodynamic activity 

is the key driving force instead of concentration, 

3. drug flux can be optimized by formulation design, 

4. use of vehicles/solvents with good partition coefficients can increase dose delivery; 

and 

5. Drug molecules will continue to move after penetrating the skin. 

         The most difficult part is to create a TDD patch that will lead to the desired dose 

delivery. In addition to Williams’ rules, most research work involves an empirical trial and 

error process to identify the polymeric matrix that will release the drug at the desired 

therapeutic levels.  Drug delivery is determined by the permeation rate in the patch; the 

critical factor in the permeation rate is the diffusion coefficient of the actives through the 

TDD matrix.  
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CHAPTER 3                                                                                                                                                   

DIFFUSION 

                                                        3.1 Definition 

Diffusion is defined as the solute displacement in solids from high concentration to low 

concentration zones, ending with equal solute distribution. Diffusion can be considered as a 

process resulting not from a forced action, but more as a result of the random distribution of 

solute atoms (See Figure 3.1) (20, 21). 

 

 

Figure 3.1 Fick’s self-diffusion 

Source: Karger, J., Ruthven, D. M. and Theodorou, D. N., Diffusion in Nanoporous Materials,   
http://www.wiley-vch.de/books/sample/352731024X_c01.pdf. Accessed on December 5, 2014. 
 

          This process was originally evaluated by Fick (22), who described this phenomenon 

with equation (3.1): 
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          (3.1) 

where, 

C = active concentration, 

t = time, 

x = traveling distance, 

and D = diffusion coefficient. 

Equation (3.1) is better known as Fick’s Second Law, which takes into account the non-

uniformity solubility of the diffusing solute into the matrix within which it is encased.  

          There are presently two models that describe the diffusion in solids and in polymeric 

matrices in particular. The molecular model analyzes how the diffusant or solute moves 

along the polymer chains with the correspondent molecular interactions or forces. The free 

volume model approximates the relationship between the diffusion coefficient and the free 

volume that is present in the polymeric matrix.  

3.2 Definition of Molecular Models 

Molecular models assume that small voids or oscillating “cavities” are within the polymeric 

matrix. When the matrix is in equilibrium, these “cavities” could be defined as definite 

distribution centers inside the matrix. Solute diffusion is highly dependent on the number of 

available cavities that are large enough to allow the solute molecular movement throughout 

the matrix. A solute molecule could be in a cavity that is large enough for it to move (jumps) 

into the nearest available cavity as soon as it gathers the minimum amount of energy. This is 

shown in Figures 3.2 and 3.3. 
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Figure 3.2 Molecular mobility through voids / oscillating cavities 

Source: Callister, W.D., Fundamentals of Materials Science and Engineering, 5th Edition, p. 149,   
NY, 2001 
 

 

Figure 3.3 Diffusion motion  

Source: 
http://amisca.chem.itb.ac.id/download/Fundamentals%20of%20Materials%20Science%20and%20Engineering
%205th%20ed.pdf. Accessed on December 6, 2014. 
 

 

 

 

 

http://amisca.chem.itb.ac.id/download/Fundamentals%20of%20Materials%20Science%20and%20Engineering%205th%20ed.pdf
http://amisca.chem.itb.ac.id/download/Fundamentals%20of%20Materials%20Science%20and%20Engineering%205th%20ed.pdf
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      In Figure 3.3, the numbers represent the following: 

1. Neighboring atoms exchange sites, 

2. Ring mechanism, 

3. Vacancy mechanism, 

4. Direct interstitial mechanism, and 

5. Indirect interstitial mechanism. 

The minimum amount of energy is easily experimentally demonstrated by the modified 

Arrhenius seen for diffusion coefficients and shown in equation (3.2) (22) and Figure 3.4 

D = Do exp (-E
a
/RT) (3.2) 

where, 

Ea = apparent activation energy of diffusion, 

Do = a pre-exponential constant, 

R = the gas constant, and 

T = the absolute temperature. 
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Figure 3.4 Mechanism steps and activation energies 

Source: Torres, L.L., Diffusion in Materials (PPT),  
http://www.slideshare.net/luiscobaya/diffusion-in-materials. Accessed on December 6, 2014. 
 

          Meares (23, 24) suggested a molecular model for polymeric matrices in which the 

activation energy of diffusion was directly related to the square of the solute/diffusant 

diameter. Moreover, the initial diffusion step was related to the energy required to create a 

cylindrical path within the polymeric chains where the solute was able to move or jump from 

one position to the next. This was defined as: 

Ed = (π/4) σ2 NA λ (CED) (3.3) 

where, 

Ed is the activation energy of diffusion, 

σ is the collision diameter of the penetrant,  

http://www.slideshare.net/luiscobaya/diffusion-in-materials.%20Accessed%20on%20December%206
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NA is the Avogadro number, 

λ is the diffusional jump length,  

and CED is the cohesive energy density of the polymer. 

It is relevant to indicate that Meares assumes the following: 

1. The solute is solely spherical and that no other shapes are possible; 

2. No polymer-solute interactions exist.  

          Brandt (25) suggested a different approach that employed a more succinct definition of 

the matrix structure to estimate Ed. The approximation is based on the assumption that 

diffusion is active when two or more polymer chains are symmetrically bent, thus, enabling 

direct routing for the solute. In turn, this promotes a synergistic process among neighboring 

polymer chains, which is deemed essential for solutes that unable movement within the 

existing inter-chain spaces.  

           The activation energy, Ed, is defined as the sum of an intermolecular contribution, Ei, 

and an intermolecular contribution, Eb. 

Ed = Eb + Ei (3.4) 

          Ei is the result from the interaction between the internal resistance and the chain 

bending and Eb is defined as the repulsion of the bent chain segment due to its neighboring 

chains.       

            When applying this model to experimental results, it was found that Ed had a 

nonlinear dependence on the solute collision square diameter. 

             This is contradictory to the model of Meares, which shows a linear dependence of Ed 

on σ2. Brandt’s model also suggests that the activation energy is dependent on the molecular 

size. The smaller the molecule, the less relevant is the activation energy that is required to 
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diffuse throughout the existing free volume within the polymer chains. Brandt found that Ed 

was not proportional to the cohesive energy density of the polymer. The diffusion process 

could then be described in terms of polymer chain energy displacements where the matrix 

and solute interactions could be considered non-significant. 

        A different approach was proposed by DiBenedetto and Paul (26) in which the nonlinear 

interaction of Ed with σ2 was better predicted. Yet, it ignores any interactions that can exist 

between the matrix and the solute. In their approximation, the polymeric matrix can be 

assumed as a homogeneous continuous entity that consists of Avogadro’s number of 

“principal components.” A principal component is defined as a polymer repeat unit that 

comprises a cylindrically symmetric potential field formed by its four nearest-neighbors.  

          The activation energy is defined as the potential energy difference between the 

“normal” state in which the four neighboring components are at equilibrium positions, and 

the “activated” state in which they are separated by a cylindrical void. This implies that the 

activation energy can be described as the potential energy difference in the partial breaking 

of the bonds between the four principal components. This concept is very similar to the 

cohesive energy density as described by Meares.  

          A solute molecule is assumed to exist within a void or cell created by the four parallel 

polymer components. Coordinated rotations and vibrations of these components can result in 

another cylindrical void adjacent to the solute molecule. This is followed by the displacement 

of the solute molecule into the nearest newly created cylindrical void.     

          The energy required to compress the surrounding polymer is ignored. This approach 

does not take into account the complexity of the matrix and the molecular shape and size of 

the active. Thus, the free volume concept must be considered. 
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3.3 Free Volume 

Free volume can be simply defined as the difference between the specific volume and the 

calculated molecular volume  

Vf = Vs – Vcm                                                                                                                (3.5) 

A graphical representation of the Free Volume concept is shown in Figure 3.5. 

 

Figure 3.5 Free Volume Model 

Source: Free Volume, Cambridge University, http://www.doitpoms.ac.uk/tlplib/glass-               transition/free-
volume.phpl. Accessed on December 2, 2014. 
 

          Eyring(27) suggested that the molecular motion in any polymeric matrix is proportional 

to the presence of molecular cavities that are creating voids within the structure. In other 

words, when the solute molecule travels to a void, the void will trade places with the solute 

molecule as shown in Figure 3.6. 

 

http://www.doitpoms.ac.uk/tlplib/glass-%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20transition/free-volume.phpl
http://www.doitpoms.ac.uk/tlplib/glass-%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20transition/free-volume.phpl
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Figure 3.6 Eyring Molecular Model 

Source: http://www.owlnet.rice.edu/~ceng402/proj02/beckys/. Retrieved on December 16, 2014 
 

         For a solute molecule to move from one position to the next, a critical void volume 

must be in place before any changes or displacement can take place. This implies that solute 

motion will not take place if these voids are not present. These voids as a whole could be 

defined as the free volume.  A 3-D representation of free volume is shown in Figure 3.7. 

http://www.owlnet.rice.edu/~ceng402/proj02/beckys/
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Figure 3.7 Free volume 3D representation 

Source: https://www.xsede.org/documents/234989/378230/XSEDE12-willmore.pdf. Retrieved on  
December 16, 2014. 
 

           In general terms, the free volume of a polymeric system can be stated as the volume of 

the one at a particular temperature of interest less the one of the same system that would exist 

at absolute zero.  

           Therefore, free volume can be seen as creating holes where solutes can diffuse and 

pass through. Free volume can be seen as the overall contribution of all the entities present in 

the matrix, solute and voids.  Figure 3.8 shows the volume disposition in a rubbery matrix as 

a function of temperature. 

https://www.xsede.org/documents/234989/378230/XSEDE12-willmore.pdf
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Figure 3.8 Schematic representation of volume disposition in a rubbery matrix as a     
function of temperature 
 
Source: Fig. 2 in J. L. Duda and J. M. and Zielinski, Ch. 3 in “Diffusion in Polymers”, P. Neogi,  
ed., M. Dekker, N. Y., 1996. https://www.uakron.edu/dotAsset/483661.pdf. Accessed on  
December 2, 2014. 
 

           

 

 

 

 

 

 

 

 

https://www.uakron.edu/dotAsset/483661.pdf
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3.4 Free Volume Models 

The difference between molecular and free volume (FV) models is that diffusion is not 

considered as a thermal dependent process in FV models. FV models assume diffusion as a 

random renormalization of free volume voids within the polymeric matrix. 

          This assumption was first suggested by Cohen and Turnbull. (27) They originally 

thought that this approach was only suited for liquids that could be visualized as the uniform 

aggregation of hard spheres. From the Cohen and Turnbull viewpoint, the hard sphere 

molecules would compose of an ideal liquid that exists in empty spaces created by the 

nearest neighbors. In other words, the total volume can be seen as two volumetric 

compartments, one occupied and the other free. Although the sphere does not have the ability 

to migrate within its space unless a thermal natural fluctuation would create a gap (vacancy) 

next to its enclosure, this gap must be sufficiently large enough that it would enable the 

displacement of a spherical molecular entity. The diffusion or molecular movement is 

deemed successful when the empty space left behind by a molecule is then filled by the 

adjacent molecule. Instead of creating gaps by the physical displacement of the nearest 

neighbors, this is a mechanical and not translational motion that does not need a set energy 

level to surmount an activation energy barrier. This is indicated in the activation energy 

approach of Pace and Daytner (28). Molecular migration is solely based on the constant 

rearrangement of free volume entities inside the liquid. The mathematical description of the 

free volume entities could be better described as a probability function in which the diffusion 

coefficient can be assumed to be proportional to the probability of locating a gap of volume 

V* or larger, and could be written as: 

D = A exp (γV*/V) (3.6) 
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where the molecular self-diffusion coefficient,  V*, is the lowest gap size volume that a 

molecule can migrate, V is the specific volume and γ is a numerical factor between 0.5 and 

1.0, to account for the overlap between free volume entities such as the free space (gap) 

shared by a neighboring molecule.  A is defined as the proportionality constant that is 

associated with the gas kinetic energy. This clearly indicates that the molecular self-diffusion 

coefficient is an exponential function of the ratios of the molecular size of the diffusing 

solute to the free volume per molecule of the matrix. Considering the self-diffusion of a 

solute in a binary type matrix, equation (3.6) can be rewritten as follows: 

D1 = D01 exp[-γ V1
*/VFH] (3.7) 

V1
* 

 = critical molar free volume needed for any displaced singularity of species 1    

          to move,  

VFH = free volume per mole of all individual moving solute units in the matrix, 

and D01 = temperature – independent constant. 

          While Cohen and Turnbull defined the moving solute unit as a single hard-sphere 

molecule that undergoes diffusion, this is not the case when dealing with polymeric systems 

where the matrix consists of a macromolecular mixture. Yet, an individual solute molecule 

can be made of several diffusing units that are united by covalent bonds. Free volume gaps 

that can easily accommodate whole polymeric entities will not readily form.    

          Rather, solute migration is seen as a series of continuous jumps of small parts along 

the matrix as shown in Figure 3.9. 
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Figure 3.9 Cohen and Turnbull graphical representation 

Source: http://www.scl.kyoto-u.ac.jp/~kanaya2/kanaya_lab~2009/e-g-j.htm. Accessed on  
December 4, 2014 

 

          This could be further convoluted when low molecular weight solutes, having sufficient 

size and maneuverability, are able to move in a disposition similar to what is seen in 

polymeric systems that consist of the use of several components of the molecular chain(29,30).  

Generalizing the Cohen and Turnbull theory to depict the motion in binary systems, where 

the molecular shape and size of the solute must be included, Vrentas and Duda(31) introduced 

the following relationships: 

 (3.8) 

VFH = specific gap free volume of a solute with a weight fraction ωi of species i, 

Mij = molecular weight diffusing units  (i = 1 or 2). 

Vrentas and Duda18 further simplify this as: 

http://www.scl.kyoto-u.ac.jp/~kanaya2/kanaya_lab~2009/e-g-j.htm
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D∞ = Do exp [ -  ] exp [ - ] (3.9) 

where,  

            D∞ is the infinite dilution diffusion coefficient, 

Do  is a constant pre-exponential factor, 

E* is the energy that a molecule must possess to overcome attractive forces from   

     the surrounding neighboring entities, 

V* is the specific free volume space of polymer needed for molecular jump, 

Vf  is the space free volume provided by the polymer for solute to diffuse, 

and ξ is the ratio of the solvent critical molar volume jumping unit to the polymer  

   jumping unit. 

         Then, combining equations (3.7), (3.8), and (3.9), an expression is derived for the 

diffusion  of a solute in a polymeric matrix that can be expressed as: 

     (3.10) 

where, 

Ws is the weight percent of the solute – drug active present in the matrix, 

Vs is the volume of the solute or drug active in this case, 

Wp is the weight percent of the polymer – matrix component, 

Vp is the volume of the polymer matrix where the active drug is  

embedded, 

ξ is the ratio of the solvent critical molar volume jumping unit to the   

polymer jumping unit, 

VFH is the free volume, 

E is the energy that a molecule must possess to overcome attractive  
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forces from the surrounding neighboring entities, 

R is the Boltzmann’s constant, 

and T is the temperature at which the diffusion is taking place. 

            If  is defined as the specific hole free volume in a block copolymer and 

solute mixture, then, the available free volume for molecular diffusion/transport 

could be written as: 

 

  (3.11) 

where, 

ωi is the weight fraction of component i (i =1 or 2), 

W2a and W2b are the weight fractions of the blocks A and B within the  

 copolymer, 

M1j, M2ja and M2jb are the molecular weights of the jumping unit for the  

solute, copolymers A and B respectively. 

 (3.12) 

 (3.13) 

where, 

ξijk is the ratio of solvent to polymer jumping units, 

Mij is the molecular weight of the solute, 

Mijk is the molecular weight of the block copolymer, 

V*
i is the specific volume of the solute,  

and V*
i k is the specific volume of block k (k = a or b) in the copolymer at 0 K.  

Inserting equations (3.11), (3.12), and (3.13) into equation (3.10) gives, 
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  (3.14) 

          where, V2k (k is for either a or b) is defined as the specific volume of block k in the 

copolymer at 0 K. In the event that the polymeric system is a homo-polymer, then W2a = 0 

and W2b = 1 and equation (3.14) is reduced to the original system for solute self-diffusion in 

a homo-polymer in equation (3.10). 

3.5 Effect of various physical effects on the Diffusion Coefficient 

3.5.1. Effect of Molecular Radius 

Several researchers have shown the influence of molecular size on the diffusion coefficient. 

This was originally shown by Einstein and Stokes. They assumed an ideal solution, in which 

there is an inverse proportionality between diffusion and molecular size defined by the solute 

radius: 

 

   (3.15) 

where, 

KB is the Boltzmann’s constant, 

µ is the solute viscosity, 

and R0 is the solute molecular radius. 

R0 can be estimated from the volume V, which is defined as:  

V = (4/3)π R0
3 (3.16) 

and 

(4/3)π R0
3 = m/ρ (3.17) 
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            Defining m as solute mass and ρ as solute density, 

M = Mw / NA (3.18) 

where,  

Mw is the solute molecular weight, 

and NA is Avogadro number, 

Substituting (3.18) in (3.16), 

(4/3π R0
3) = Mw/NAρ (3.19) 

Then, R0 can be defined as: 

  (3.20) 

R0 is also known as hydrodynamic radius, Rh. Rg is defined as the mass weighted 

average distance from the core of a molecule to each mass element in the molecule. The 

radius of gyration of a molecule is the radius of a thin ring that has the same mass and 

moment of inertia as the molecule when centered at the same axis.  Figure 3.10 shows the 

comparison between radius of rotation, hydrodynamic radius, radius of gyration and mass 

radius. 
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Figure 3.10 Comparison between radius of rotation, hydrodynamic radius, radius of 
                     gyration, and mass radius  
 

Source: http://www.imbb.forth.gr/people/aeconomou/pdf/hydrodynamic_radius.pdf. Retrieved on December 2, 
2014. 
 

There are different relationships for spheres, rods, and coils that can be expressed as (32): 

Rsphere = ksD / 2                                                                                             (3.21) 

Rrod = ksL / 2                                                                                                          (3.22) 

Rcoil = (k2s2r2) / 2                                                                                              (3.23) 

where, 

D = diameter of sphere, 

L = length of rod, 

k and s = constants, 

r = root mean square of the distance between the ends of the random coil.(32) 

http://www.imbb.forth.gr/people/aeconomou/pdf/hydrodynamic_radius.pdf
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The radius of gyration (Rg) is usually calculated from static scattering measurements and the 

hydrodynamic radius (Rh) also known as the Einstein-Stokes radius or equivalent spherical 

radius.  It can be determined by dynamic light scattering or other diffusion measurements.  

For instance, a solid sphere can yield a value of: 

Rg / Rh = √3/5 ≈ 0.77                                                                                     (3.24) 

Rg = 0.77 Rh                                                                                                                                                 (3.25) 

DRh  /  DRg  (1/Rh ) / (1/Rg)                                                                         (3.26) 

DRh  /  DRg  = Rg/Rh                                                                                                                               (3.27) 

DRg =  DRh  / 0.77                                                                                            (3.28) In 

this case, the Rg / Rh ratio could be estimated as: 

Rg / Rh ~ 1.22 ln (L/D)                                                                                       

(3.29) 

where, L/D is the aspect ratio of the longitudinal and latitude axes of the molecule 

and this can be achieved by a slender rod geometry (Appendix E) and,  

DRg =  DRh / 1.22 ln (L/D)                                                                                (3.30) 

Tande et al noted that Rg and Rh can be determined in larger molecules as a power 

law relationship to the molecular weight. This is not the case with molecules having lower 

molecular weights. (32) 
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3.5.2 Effect of Molecular Shape 

However, from 3D molecular modeling, not all molecules will have spherical shapes as seen 

for the nicotine molecule (Figure 3.11). 

 

 

Figure 3.3 3D nicotine model 

Source: http://commons.wikimedia.org/wiki/File:Nicotine-3D-vdW.png. Retrieved on November  
23, 2014. 

 

 In the original work of Vrentas and Dudas, ξ is defined as the ratio of the molar 

volume of a solute jumping unit to the molar volume jumping unit. This is based on the 

assumption that the solute will jump in single units and flexible long chain solutes would 

exhibit segment-wise movement. A method for estimating ξ was developed by Vrentas et al.   

Moreover, this approach also assumes that the average hole free volumes within the polymer 

and solute jumping units would be different. Nobrega et al. suggested that, for solutes that 

can jump as single units, ξ could be defined as:  

 

http://en.wikipedia.org/wiki/File:Nicotine-3D-vdW.png
http://commons.wikimedia.org/wiki/File:Nicotine-3D-vdW.png
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                                                                            (3.31) 

  

3.6 Theoretical Background 

The known solution for the equation of the diffusion coefficient, for a planar surface, a 

TDDP in this case, when the diffusion coefficient is constant, was shown by Crank (20, 21) to 

be: 

 (3.32) 

            In most cases, TDDP systems are designed to deliver, under non-steady state, where 

the following boundary conditions must be in place. Therefore, equation (3.32) can be further 

simplified as: 

 (4) when                                                      (3.33) 

where, Mt is the active released from the patch at time t, M∞ is the initial concentration of the 

active in the patch, D is the diffusion coefficient, and t is the time of release. 

             Diffusion phenomena in TDDS must be modeled as small molecule mobility in the 

macromolecular matrix. This along with the backbone chemistry are perhaps the main 

influential factors. Yet, in these types of systems, the mobility is considerably influenced by 

temperature and concentration. These conditions are mostly pronounced near the glass 

transition temperature (Tg) where it has been shown that an increase of 1% of the solvent 

weight fraction in the matrix can effectively increase the diffusion (D) by three orders of 

magnitude.   
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Therefore, significant experimentation is the key to obtaining satisfactory approximation, as 

well as optimization of results for this particular situation that is actually governed by 

molecular transport.  However, this requires significant trial and error process in determining 

the right matrix that will provide the release rate of the solute into the skin to achieve the 

desired therapeutic effect.  

             This approach does not take into account the complexity of the matrix and the 

molecular shape and size of the active; thus, free volume concept must be considered in the 

polymer in the TDDS case.  From this, it could then be assumed that free volume is the key 

factor that controls the diffusion of solutes through the polymeric matrix.  
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          CHAPTER 4                                                                              

EXPERIMENTAL RESULTS 

 

                                            4.1 Experimental Methods 

Nicotine patches were used for this evaluation for two key reasons: 

1. Nicotine patches have been one of the most predominant and successful technologies 

used to control smoking cessation. 

2. Nicotine patches are the most commercially sold TDD patches in the market. 

          The first step was to generate a nicotine ultraviolet absorption chart by means of 

setting a master curve. This master curve was determined from ultraviolet readings of 

different nicotine concentrations in a normal saline solution (0.90 % w/v of sodium chloride 

or about 300 mOsm/L or 9.0 g per liter).(33) The reason for using such a system is because the 

osmolarity of normal saline is a close approximation to the osmolarity of NaCl in blood. 

Different nicotine concentration solutions were made and ultraviolet absorption 

measurements were performed using a Genesys VI ultraviolet spectrophotometer.  

           An ultraviolet absorption versus nicotine concentration chart was generated in which 

the plots were fitted by means of regression, thus, resulting in a master curve having a linear 

characteristic with R2 = 0.9778, which was deemed acceptable to use as a master calibration 

curve.  This is shown in Figure 4.1.  The nicotine was purchased as a 99% active 

pharmaceutical ingredient from Aceto Chemical. 
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Figure 4.1 Nicotine ultraviolet absorption chart 

          The next step was to determine the release from the nicotine patches. Samples were 

purchased from commercially available nicotine patches sold over the counter in the US. 

These patches consist of three layers: (a). backing to provide mechanical support as well as 

protection to the release layer from environmental conditions, (b). a nicotine reservoir 

containing a layer that includes the adhesive, and (c). the PET disposable piece that is 

removed when the patch is ready for positioning into the selected area (Figure 4.2)  
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Figure 4.2 Diagram of a typical commercial nicotine patch [20] 

Source: TRANSDERMAL A NOVEL DRUG DELIVERY SYSTEM  
http://www.pharmatutor.org/articles/transdermal-novel-drug-delivery-           
system?page=0,1. Retrieved on December 5, 2014. 
           

         The patch used in these experiments is the Nicoderm CQ, 7 mg daily dosage patch. The 

physical measurements of the patch is 1 inch square with a thickness of 0.229 cm. where the 

actual thickness of the diffusion layer is estimated to be approximately 0.0113 cm. 

           Patches from the same lot were assembled on top of vertical static Franz cells (Figure 

4.3) and were placed in direct contact with the saline solution. These patches were secured in 

place by clamping the top onto the cell body as shown in Figure 4.3.  

 

 

 

 

 

http://www.pharmatutor.org/articles/transdermal-novel-drug-delivery-%20%20%20%20%20%20%20%20%20%20system?page=0,1
http://www.pharmatutor.org/articles/transdermal-novel-drug-delivery-%20%20%20%20%20%20%20%20%20%20system?page=0,1
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Figure 4.3 Franz static cell components (34) 

Source: http://www.permegear.com/franzcellcomponents.gif. Accessed on December 7, 
2014. 
 

          The nicotine patch was placed between the top of the cell and the body of the cell 

(Figure 4.4) in contact with a normal saline solution which is kept at a constant temperature 

of 37°C +/- 3°C.  

http://www.permegear.com/franzcellcomponents.gif
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Figure 4.4 Fully assembled typical Franz static cell 

Source: http://www.permegear.com/6G01000520.jpg. Accessed on December 7, 2014. 
 
        Measurements of the samples were taken at 1 hour intervals for the first 8 hours and 

then the last measurement after 24 hours. Then the amount released was estimated as a 

function of the measured concentration by ultraviolet spectrophotometry and the volume 

present in the vertical static Franz cell reservoir. This was done in accordance with the FDA 

SUPAC guidelines(35) as well those with Thakker and Chern,(36) Siewert, Dressman, Brown, 

and Shah,(37) Raney, Lehman, and Franz,(38) Marangon, Bock, and Haltner,(39) Lionberger (40), 

Flynn,(41) Hauck, Shah, Shah, and Ueda,(42) and Addicks, Flynn, Weiner, and Chiang.(43)   

http://www.permegear.com/6G01000520.jpg
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Figure 4.5 shows the cumulative amount of nicotine released versus time. 

 

Figure 4.5 Cumulative nicotine release. 

        The diffusion constant was estimated according to the methodology shown by Crank (21) 

and Miller, Oehler, and Kunz (44) as: 

D = 1.467*10-9 cm2/sec 

4.2 Theoretical Approach/Calculation of Diffusion Coefficient D 

          The next part of this section is the theoretical calculation of the diffusion coefficient by 

using the Duda and Zielinski equation (3.14): 
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4.3 Estimation of Nicotine Values 

            D0 was obtained from the Einstein-Stokes equation: 

   (4.1) 

KB is Boltzmann’s constant,  

µ is the solute viscosity, 

and R0 is the solute molecular radius. 

R0 can be estimated from the volume V which is defined as (4/3) π R0
3,  

(4/3π) R0
3 = m/ρ  (4.2) 

Defining m as (Mw / NA) where, Mw is the molecular weight of nicotine, NA is the 

Avogadro number, and ρ is the density of nicotine at 37ºC, from the literature, the 

following properties are obtained and summarized in Table 4.1 

Table 4.1 Summary of Nicotine Properties 

Property Value 

ρNicotine 1.014 grams /cm3 (45,46) 

Mw 162 grams / mole(45,46) 

µNicotine 2.9037 centipoises or 0.021 grams/cm*sec(45,46) 

Rewriting equation (4.2) gives: 

R0 = 4.062*10-8 cm 

Then, inserting the values for R0, µNicotine into equation (4.1) gives: 

  2.6685*10-5 cm-2 sec-1 

To determine VNic, the Yamada and Gunn (47) (YG) equation was used to calculate:  
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   (4.3) 

 

           The YG equation was chosen because it provided the closest value of  for molecules 

such as nicotine.  To estimate the value of Vs, the critical volume (Vc), accentric factor (ω), 

T, the temperature and critical temperature (Tc) values are needed. Since these values are not 

available from the experimental data, they must be estimated. 

            The acentric factor is estimated from the Pitzer thermodynamic approximations (48-54). 

The values of Tc, Pc, and Vc for nicotine were required to be calculated using the group 

contribution method described by Joback (55, 56). The reason for choosing this equation was 

because of the close approximation found in the estimation of pyridine cyclical structures 

such as nicotine as seen in Figure 4.6. 

 

 

Figure 4.6 Nicotine molecular structure  

Source: http://en.wikipedia.org/wiki/Nicotine. Accessed on December 6, 2014 
 

    (4.4) 

    (4.5) 

http://en.wikipedia.org/wiki/Nicotine
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    (4.6) 

To obtain the value of Tc for nicotine, the boiling temperature was required and its 

experimental value was found to be 247ºC or 520.15 K.[33]  Table 3.2 presents a summary of 

the critical properties of nicotine found by using equations (4.4), (4.5), and (4.6). 

Table 4.2 Summary of Critical Properties of Nicotine 

Property Value 

Tc 749.016 K 

Pc 22.6365 atm 

Vc 463.5 cm3/mole 

 The accentric factor for nicotine was found to be: 

        (4.7) 

Using the YG equation, the values of Vs for nicotine, at 37ºC (310.15 K) and 0 K (-

273.15ºC), were calculated and the results are summarized in Table 4.3. 

Table 4. 3 Summary of Volumes of Nicotine @ 310 and 0 K 

Temperature Vs (cm3/mole) Vs (cm3/gram) 

310.15 ºK (37 K) 154.606 0.954 

0 K 94.002 0.580 

 

Now, the corresponding values for nicotine must be estimated. By leveraging the modified 

version of the Doolittle equation for viscosity (56) 

  +  (4.8) 

where, 
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and      
 

         K22+T are determined from a non-linear regression using viscosity and temperature 

data (56) 

The results of these calculations are shown in Table 4.4. 

Table 4.4 Nicotine Values 

Property Value 

 

57.32 

K11/γ 3.41*10-2 

K21-Tg1 -121.495 

Ξ (Nicotine/Ethylene) 0.797 

Ξ (Nicotine/Vinyl Acetate) 0.577 

          

This gives the value for 
     

as 0.1465 

4.4 Estimation of the values of polymeric matrix components 

As shown by Fierro et al., (57)  

     +  +  

  (4.9) 
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 where, w1, w2a, and w2b are the weight fractions for nicotine, ethylene, and vinyl acetate   

 respectively. 

           The free volume parameters, used in this study, particularly for polymers, are related 

to the constants of the Williams-Landel-Ferry (WLF) (58) equation, C1p and C2p, by the 

following relationships: 

  (4.10) 

  =   (4.11) 

Table 4. 5 Physical properties of ethylene and vinyl acetate units/blocks 

Block Element C1 C2 Tg Wa 

Ethylene 17.44(59,60,61) 51.6(59,60) 237(59) 0.5989(59,60) 

Vinyl acetate 15.6(59,61) 104.4(59,61) 305(59) 0.399(59,60) 

 

 0.0925  if Tg < 295 ºK  (4.12) 

 0.6334  if Tg > 295 ºK  (4.13) 

Then, taking the values from Table 4.5 and inserting them into equations (4.8), (4.9), and 

(4.11), the values for: 

 

  = , and K1i – Tgi                        (4.14) 

 are obtained and summarized in Table 4.6. 
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Table 4.6 Results Summary 

Block Element 
 

V2 (grams/cm3) K1i/γ K1i - Tgi 

Polyethylene 91.392 1.005 4.825*10-4 -219.56 

Polyvinyl acetate 102.882 0.728(44) 4.33*10-4 -258.2 

 

4.5 Energy Calculations (E*) 

The energy component is calculated from the Tonge and Gilbert (62) equation: 

E*  (4.15) 

δ = (H-RT) 0.5/ v0.5                                                                                                       (4.16) 

                                                                      (4.17) 

where,  

ECOH = m1* ECOH (homopolymer of repeat unit 1) + m2* ECOH (homopolymer of  

            repeat unit 2) (63) (4.18) 

Vcopolymer = m1* V (homopolymer of repeat unit 1) + m2* V (homopolymer of repeat 

unit 2) (63)  (4.19) 

and  

     (4.20) 

           The values of energy for ethylene and vinyl acetate were estimated by Van Krevelen 

(64) and are presented in Table 4.7. 
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Table 4.7 Hildebrand Coefficients for Ethylene and Vinyl Acetate  

Property Ethylene Vinyl Acetate 

ECOH (J/mol) 9,500 25,300 

Vcopolymer (cm3/mole) 32 72 

 

         Then, using the results from Table 4.7 and equations (4.15), (4.16), (4.17), and (4.18), 

the value of energy for the EVA copolymer is found to be 55.66 (cal/cm3).0.5 

          Because no values of Hildebrand Coefficients were found in the literature for nicotine, 

they had to be estimated by using the Fedor’s equation/model (65). This model uses the 

structure to calculate the approximate values of ECOH and volume and this, in turn, yields the 

Hildebrand coefficient. The results are summarized in Table 4.8. 

 

Table 4.8 Hildebrand Coefficients for Nicotine [54] 

Property Value 

ECOH (J/mol) 56,520  

V(cm3/mol) 139.7  

δNIC (cal/cm3) 10.02697  

         Then, inserting the values for δNIC and δpol into equation (4.15), E* was found to be 

8.0722 cal/mol. 
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Table 4.9 shows the summary of the calculated parameters used to calculate the Nicotine 

theoretical Diffusion Coefficient from an EVA polymeric matrix. 

Table 4.9 Parameters used to Estimate the Theoretical Diffusion Coefficient 

Parameter Nicotine Vinyl Acetate Ethylene 

Ws 0.018 0.399 0.5989 

K11/γ 3.41*10-2 4.33*10-4 4.825*10-4 

K21-Tg1 -121.495 -258.2 -219.56 

Ξ (Nicotine/Ethylene)   0.577 

Ξ (Nicotine/Vinyl Acetate)  0.797  

Vi 0.954 0.728 1.005 

E*
   8.0722 

             Then, inserting all the values into (3.14), the diffusion was estimated to be 1.781*10-

9 cm2/sec. Figure 4.7 shows the comparison between the theoretical and experimental values. 
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Figure 4.7  Cumulative release comparison between Dexp. and Dcalc. 

4.6 Effect of Molecular Radius of Gyration 

In the previous section, the radius of nicotine was estimated to be R0 = 4.062*10-8 cm. If 

assuming a spherical shape, the Rg and Ro are substituted into equation (3.14) where the 

following relationship between DRg and DR0 (also known as Dc) is: 

DRg = DR0 / 0.77                                                                                           (4.21) 

        where, DR0 (calculated diffusion coefficient from section 1) was found to be 1.781*10-9 

cm2/sec; then equation (4.21) is: 

DRg = 1.781*10-9 cm2/sec / 0.77 

and the diffusion coefficient is found to be: 

DRg = 2.313 *10-9 cm2 / sec 

          If assuming a cylindrical shape, then using an analog to equation (4.21), 

DRg = DR0 / 1.732                                                                                         (4.22) 
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and the diffusion coefficient is found to be: 

DRg = 1.028*10-9 cm2 / sec 

Table 4.10 Comparison of Experimental and Calculated Values of the Diffusion 
                    Coefficient using Different Rg Values. 
 

Property Value 

D(experimental)  1.467*10-9 cm2/sec 

DRg (Rg = 0.77 Rh)   2.313*10-9 cm2/sec 

DRg (Rg = 1.732 Rh)   1.028*10-9 cm2/sec 

The calculated results of the diffusion coefficient, using different values of the radius of 

gyration, are shown in Figure 4.8. 

 

Figure 4.8 Diffusion coefficient comparisons between Rg and Rh 
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4.7 Effect of Molecular Shape 

In the previous section, the ξL values of nicotine and EVA were estimated to be as follows: 

Table 4.11 ξL Values 

ξL (Nicotine/Ethylene)  0.577 

ξL (Nicotine/Vinyl Acetate) 0.797  

          The molecular shape factor (A/B) of nicotine was estimated to be 1.450 (APPENDIX E). 

The ξ values can be estimated using equation (3.31) and APPENDIX E, and the results are 

summarized in Table 4.12. 

Table 4.12 ξ Values 

ξ (Nicotine/Ethylene)  0.7794 

ξ (Nicotine/Vinyl Acetate) 1.2427  

The diffusion coefficient Dξ is estimated to be 2.2887E-09 cm2/sec.   

Table 4.13 Comparison of experimental and calculated values of the Diffusion 

Coefficient using different Rg values. 

Property Value 

D(experimental) 1.467*10-9  cm2/sec 

D (ξ)  2.2887*10-9 cm2/sec 

D (ξL)  1.781*10-9  cm2 / sec 

 

     Figure 4.9 shows the comparison of the Diffusion Coefficients for different types of ξ 

values. 
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Figure 4.9 Diffusion coefficient comparison between ξ, ξL and experimental values 

          Figure 4.10 shows the effect of the different values of ξ on the results of the Diffusion 

Coefficient. 

         

Figure 4.10 Comparison between DζL and DRh 
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4.8 Effect of Combining Molecular Radius of Gyration and Shape Factors 

Then, inserting the A/B values from Table 4.12 along with the different radii (hydrodynamic 

and gyration) from Table 4.13 into equation (3.14), the diffusion coefficients for different 

cases/conditions are estimated and the results are summarized in Table 4.14. 

Table 4.14 Diffusion Coefficients using Different Radius and ξ / ξL Values 

       Case Diffusion Coefficient (cm2/sec) 

D Rg(0.77)+ξ+ξl(IIa)  1.7623E-09 

D Rg(1.732)+ξ+ξl(IIb)  3.964E-09 

D Rg(0.77)+ξL+ξ(IIIa)  1.7998E-09 

D Rg(1.732)+ξL+ξ(IIIb)  1.3214E-09 

Dexperimental 1.467E-09 

The comparison of cumulative release curves of Dexperimental and DRg(0.77) +ξ+ξl(IIa) is shown in 

Figure 4.11. 
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Figure 4.11  Diffusion coefficient comparison between experimental and DRg(0.77)+ξ+ξl(IIa)     

               The comparison of cumulative release curve of Dexperimental and D Rg(1.732)+ξ+ξl(IIb is 

shown in Figure 4.12. 
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Figure 4.12  Comparison of Diffusion coefficient of experimental and D Rg(1.732)+ξ+ξl(IIb . 

The comparison of cumulative release curve of Dexperimental and D Rg(0.77)+ξL+ξ(IIIa) is shown in 

Figure 4.13. 
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Figure 4.13  Comparison of Diffusion coefficient of experimental and DRg (0.77) +ξL+ξ (IIIa) The 
comparison of cumulative release curve of Dexperimental and D Rg(1.732)+ξL+ξ(IIIb) is shown in 
Figure 4.14. 
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Figure 4.14 Comparison of Diffusion coefficient of experimental and D Rg(1.732)+ξL+ξ(IIIb).
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CHAPTER 5                                                                                                        

DISCUSSION 

 
The DZE equation shows that Diffusion Coefficient can easily be estimated without the need 

of experimental work and still provide a very good approximation. The DZE demonstrates 

the effect of molecular shape as seen in Figure 5.1.   

 

 Figure 5.1 Comparison of Diffusion Coefficient using shape factors 

             The effect of the radius on the diffusion coefficient is as follows – 30% (Rg = 1.732 

R0) to + 58% (Rg = 0.77 R0) difference when compared with the experimental value as seen 

in Figure 5.2. 
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Figure 5.2 Comparison of Diffusion Coefficient 

           The effect of the integration of molecular shape and radius of gyration, used in the 

diffusion coefficient, affected the results from 90% to 270% when compared with the 

experimental value.  
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A combination of parameters such as DRg (1.732) +ξL+ξ (IIIb)) has a 90% accuracy against 

the experimental value as seen in Figure 5.3. 

 

 

Figure 5. 3 Comparison of Diffusion Coefficient using different molecular shape and 
    radius combinations 
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However, when combining the effect of the hydrodynamic radius, Rh, with the modified 

shape factor, ξL, then a very close approximation to the experimental value is achieved as 

seen in figure 5.4.  

 
                

          

Figure 5.4 Overall Comparison of Diffusion Coefficients 
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Although the DZE can be considered as an empirical approach, it still uses molecular 

descriptors that relate to the morphology and chemical parameters of the diffusing solute and 

the surrounding matrix. 

         One of the key aspects of this model is the use of group contribution and 

thermodynamic methods such as Joback, Yamada and Gunn, Pitzer and Williams and 

Landel. 

          The energy component, E*, is not particularly large which is in agreement to the 

findings of Vrentas and Vrentas(66) which contradicts the findings seen by HU(67). This could 

perhaps be due to the lack of a chemical affinity between the solute and the polymeric 

matrix. Nevertheless, DZE shows a very close approximation of the experimental values. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

112 
 

 CHAPTER 6  

 CONCLUSIONS 

 

In US patent 5603947 [1], Wong et al. reported typical diffusion coefficient values of 

Nicotine patches that were experimentally determined to be between 10-8 to 10-9 cm2/sec. 

This is in agreement with the experimental and theoretical values obtained in this research.  

            The DZE modified equation (DZME) shows a small influence of the interaction 

between the solute and the polymeric structure which was indicated by Wang, Wu and Wang 

(68). DZME shows that molecular shape has a greater impact on the Diffusion Coefficient and 

this is in agreement with the findings of Reyner et al (69). 

             The combination of molecular size, defined as hydrodynamic and Gyration radius, 

Rh and Rg, along with molecular shape of the diffusing molecule, can influence the Diffusion 

Coefficient as reported by Zhimin (70) and De Kee et al (71) work.  

              The DZME shows a slight deviation from Chandler’s(72) Self Diffusion Coefficient 

models based on hard spheres and this should be expected since solute molecules should not 

be seen as hard spheres but more as small to large flexible coils as described by De 

Gennes(73) (Figure 6.1)  
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Figure 6.1 De Gennes Molecular Representation 

Source: Reptation, http://en.wikipedia.org/wiki/Reptation. Accessed on December 7, 2014 
 

         where solute molecules will diffuse through a polymeric matrix on a reptation pattern 

(74, 75) as shown in Figure 6.2. 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/File:Reptation_theory.jpg
http://en.wikipedia.org/wiki/Reptation
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Figure 6.2  De Gennes Molecular Reptation Pattern 

Source: Polymer Reptation, http://euler.phys.cmu.edu/widom/images/polymer_icon.gif.   
Retrieved on December 7, 2014. 
 

       Examining the results obtained when considering hydrodynamic radius, Rh, compared to 

the gyration radius, Rg, the results are close to the experimental values. This particular model 

shows that the Diffusion Coefficient can be influenced by the molecular shape and size, type 

of radius used.  

        The DZE proves that mathematical models can help and demonstrate key processes that 

can influence drug delivery (76). 

          Therefore, this work shows that the modified Duda Zelinsky equation can be used not 

only to obtain diffusion coefficients that are closer to the experimental value, but more 

importantly, it can be used as a screening methodology to help select the most suitable 

polymeric matrix for a particular solute that will provide the right Diffusion Coefficient that 

will achieve the most desired therapeutic level at a quickest pace. 

http://euler.phys.cmu.edu/widom/images/polymer_icon.gif


 

115 
 

CHAPTER 7 

 FUTURE WORK 

 

Although this work shows that DZE is a good screening methodology, the following aspects 

could enhance this methodology: 

1. Physical properties selection protocol (PPSP) - 

The use of group contribution methods for the estimation of physical properties when 

the experimental data is missing or not readily available; this should be based on 

Aliphatic and Aromatic chemical structures. 

2. Expand from a singularity to a general model - 

Compare DZE with different solutes and polymeric matrices with experimental/  

literature data. 

3. Reptation Model evaluation - 

Evaluate the effect of DeGennes scaling reptation concept (74)  

D ~ M-2 c (2-υ)/ (1-3υ)  

4. Skin Penetration Effect - 

Evaluate the effect of incorporating DZE into the Guy-Potts skin penetration equation 

log KP  = -2.71 – 0.0061*Mw + 0.74 * log P (75-78) 

5. Permeation in Textiles -  

Evaluate the effect of incorporating the DZE into the modified Darcy’s equation 

proposed by Verleye et al. (79) 
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APPENDIX A 

Table A.1 shows the transdermal delivery systems that are presently available in the global 

market (up to 2014). 

 

Table A.1. Commercially Available Transdermal Delivery Systems 

Active 
ingredient 

Molecula
r weight 

(Da) 

Trade 
name(s) Manufacturer Daily dose Frequency of 

application Type of system 

Clonidine 230 Catapres-
TTS® 

ALZA 
Corporation, 
Mountain View, 
CA, USA 

The 3.5, 
7.0, and 
10.5 cm2 
systems 
deliver 
0.1, 0.2, 
and 
0.3 mg of 
clonidine 
per day, 
respectivel
y 

Weekly 

A drug reservoir 
of clonidine, 
mineral oil, 
polyisobutylene, 
and colloidal 
silicon dioxide 

Estradiol 

272 Esclim® 
Laboratories 
Fournier SA, 
Dijon, France 

0.025–
0.1 mg Weekly Drug-in-adhesive 

  
Vivelle® 
Vivelle-
Dot® 

Noven 
Pharmaceuticals 
Inc., Miami, FL, 
USA 

Nominal 
in vivo 
delivery 
rates of 
0.025, 
0.0375, 
0.05, 
0.075, or 
0.1 mg of 
estradiol 
per day 

Twice weekly 

Adhesive 
formulation 
containing 
estradiol 

  Climara® 

3 M Drug Delivery 
Systems, 
Northridge, CA, 
USA Copyright © 
2007, Bayer 
HealthCare 
Pharmaceuticals 
Inc. 

Menostar 
(estradiol 
transderm
al system), 
14μg/day. 
Each 
3.25 cm2 
system 
contains 
1 mg of 
estradiol 
USP 

Only one 
system should 
be worn at 
any one time 
during the 7-
day dosing 
interval 

Adhesive matrix 
containing 
estradiol 
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Table A.1. Commercially Available Transdermal Delivery Systems 

Active 
ingredient 

Molecula
r weight 

(Da) 

Trade 
name(s) Manufacturer Daily dose Frequency of 

application Type of system 

Ethinyl 
Estradiol w/ 
Norelgestro
min 

296/328 Ortho-
Evra® 

Ortho-McNeil 
Pharmaceutical, 
Inc., Raritan, NJ, 
USA 

0.15 mg/0.
02 mg 
Each 
systems 
contains 
6 mg 
norelgestr
omin and 
0.75 mg 
ethinyl 
estradiol 

This system 
uses a 28-day 
(four-week) 
cycle. A new 
patch is 
applied each 
week for 
three weeks 
(21 total 
days). Week 
four is patch-
free 

Adhesive layer 
contains 
norelgestromin 
and ethinyl 
estradiol 
polyisobutylene/
polybutene 
adhesive, 
crospovidone, 
non-woven 
polyester fabric 
and lauryl lactate 
as inactive 
components 

Fentanyl 337 Duragesi
c 

Manufactured by: 
ALZA 
Corporation, 
Mountain View, 
CA, USA. 
Manufactured for: 
Janssen, division 
of Ortho-McNeil-
Janssen 
Pharmaceuticals, 
Inc., Titusville, NJ, 
USA 

0.6 mg Once every 
three days Reservoir 

Lidocaine 234 Lidoderm
® 

Endo 
Pharmaceuticals 
Inc., Chadds Ford, 
PA, USA 

Lidoderm 
(lidocaine 
patch 5%) 

Apply 
lidoderm to 
intact skin to 
cover the 
most painful 
area. Apply 
up to three 
patches, only 
once for up to 
12 hours 
within a 24-
hour period 

Drug-in-adhesive 

Nicotine 162 Nicoderm 
CQ® 

GlaxoSmithKline 
Consumer 
Healthcare, L.P, 
Philadelphia, PA, 
USA 

7-21 mg Daily No information 
available 
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Table A.1. Commercially Available Transdermal Delivery Systems 

Active 
ingredient 

Molecula
r weight 

(Da) 

Trade 
name(s) Manufacturer Daily dose Frequency of 

application Type of system 

Nitroglyceri
n 

227 Nitro-
Dur® 

Schering-Plough 
Pty Ltd, Baulkham 
Hills, NSW, 
Australia. 
Copyright © 1987, 
2002, Key 
Pharmaceuticals, 
Inc. 

Each cm2 
of applied 
system 
delivers 
approxima
tely 
0.02 mg 
of 
nitroglyce
rin per 
hour 

Daily 

Nitroglycerin in 
acrylic-based 
polymer 
adhesives with a 
resinous cross-
linking agent to 
provide a 
continuous 
source of active 
ingredient 

  Nitrodisc
® 

GD Searie, 
Chicago, IL, USA 

Nitrodisc, 
release 
rate 
0.2/0.3/0.4
 mg of 
nitroglyce
rin per 
hour 

Daily Reservoir 

Scopolami
ne 303 Transder

m-Scop® 

ALZA 
Corporation, Palo 
Alto, CA, USA 

0.33 mg 
programm
ed to 
deliver in 
vivo 
approxima
tely 
1.0 mg of 
scopolami
ne over 3 
days 

Once every 
three days 

Reservoir of 
scopolamine, 
light mineral oil, 
and 
polyisobutylene 

Testosteron
e 288 Androder

m® 

Watson Pharma, 
Inc. A subsidiary 
of Watson 
Pharmaceuticals, 
Inc., Corona, CA, 
USA 

2.5-5 mg 

Androderm 
5 mg system 
or two 
androderm 
2.5 mg 
systems 
applied 
nightly for 24 
hours, 
providing a 
total dose of 
5 mg/day 

Reservoir of 
testosterone 
USP, alcohol 
USP, glycerin 
USP, glycerol 
monooleate, 
methyl laurate, 
sodium 
hydroxide NF, to 
adjust pH, and 
purified water 
USP, gelled with 
carbomer 
copolymer Type 
B NF 
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Ref.: Tanner, T. and Marks, R., Delivering drugs by the transdermal route: review and 
comment, Skin Research & Technology, Volume 14, Issue 3, pages 249–260, 2008 – 
Accessed on December 1, 2014 
 
 

 

http://onlinelibrary.wiley.com/doi/10.1111/srt.2008.14.issue-3/issuetoc
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APPENDIX B 

TYPES OF TRANSDERMAL PATCHES 

Table A.2 shows the types of patches commercially available in the US and EU 

 
Table B.1 Types of Transdermal Patches globally sold 

 
Marketed 

Products of 
Transdermal 

Drug 
Delivery 
System 

Product Active drug Type of 
transdermal 

patch 

Purpose 

1. Estraderm Estradiol Membrane Postmenstrual 
syndrome 

2. Duragesic Fentanyl Reservoir Pain relief patch 

3. Transderm-Scop (Scopolamine)  Reservoir                              Motion sickness 

4. Alora Estradiol Matrix Postmenstrual 
Syndrome 

5. Climara Estradiol Matrix Postmenstrual 
Syndrome 

6. Androderm Testosterone Membrane Hypogonadism in 
males 

7. Captopress TTS Clonidine Membrane Hypertension 

8. Combipatch Estradiol Matrix Postmenstrual 
Syndrome 

9. Esclim Estradiol Matrix Harmone 
replacement 

therapy 
10. Deponit Nitroglycerine Drug in adhesive Angina Pectoris 

11. FemPatch Estradiol Matrix Postmenstrual 
syndrome 

12. Lidoderm Lidocaine Drug in adhesive Anesthetic 

13. Ortho Evra Estradiol Drug in adhesive Postmenstrual 
Syndrome 

14. Testoderm TTS Testosterone Reservoir Hypogonadism in 
males 

15. Habitrol Nicotine Drug in adhesive Smoking 
Cessation 
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Table B.1 Types of Transdermal Patches globally sold 
(Continued) 

 
 

Marketed 
Products of 

Transdermal 
Drug 

Delivery 
System 

Product Active drug Type of 
transdermal 

patch 

Purpose 

16. Prostep Nicotine Reservoir Smoking 
Cessation 

17. Nicotrol Nicotine Drug in adhesive Smoking 
Cessation 

18. Vivelle Estradiol Reservoir Postmenstrual 
syndrome 

19. MatrifenR Fentanyl Reservoir Pain relief patch 

20. NuPatch 100 Diclofenac 
diethylamine 

Drug in adhesive Anti 
Inflammatory 

21. Nicoderm CQ Nicotine Drug in adhesive Smoking 
Cessation 

22. Vivelle-Dot Estradiol Reservoir Postmenstrual 
syndrome 

23. Minitran Nitroglycerine Drug in adhesive Angina Pectoris 

24. Nitrodisc Nitroglycerine Micro reservoir Angina Pectoris 

25. Nitrodur Nitroglycerine Matrix Angina Pectoris 

26. TransdermNitro Nitroglycerine Reservoir Angina Pectoris 

27. OxytrolR oxybutynin Matrix Overactive 
bladder 

28. Nuvelle TS Estradiol Drug in adhesive Harmone 
replacement 

therapy 
29. Fematrix Estrogen Matrix Postmenstrual 

syndrome 
30. Climaderm Estradiol Matrix Postmenstrual 

syndrome 
 

 

Ref: TRANSDERMAL PATCHES: A RECENT APPROCH TO NEW DRUG DELIVERY 
SYSTEM, SONIA DHIMAN*, THAKUR GURJEET SINGH AND ASHISH KUMAR 
REHNI, International Journal of Pharmacy and Pharmaceutical Sciences, Vol 3, Suppl 5, 
2011 
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APPENDIX C 

Summary of Release Kinetics 

Table C.1 shows a summary of the release kinetics and transport mechanisms of all 
commercially sold transdermal patches. 

Table C.1 - Summary of release kinetics and transport mechanisms of nondegradable 
polymer based delivery devices 

Type of material Type of device Loaded drug Burst 
release 

Release 
kinetics 

Transport 
mechanism 

Segmented PU 
(Cardiomat 610) 

Drug-eluting 
stent 

1,3-Dipropyl-8- 
cyclopentyl 
xanthine 

1 d Near 
linear 
release 
(~ 20 d) 

Non-Fickian 
diffusion 

Elast-Eon™ Drug-eluting 
stent 

Dexamethasone 
acetate 

w/ Biphasic 
pattern 

Fickian diffusion 

Polyurethane 
(Walopur®) 

Disk-shaped 
matrices 

Flucloxacillin-Na 
Fosfomycin 
Gentamicin-
base 

1 d Near 
linear 
(2 ~ 5 d) 

Matrix-controlled 

Poly(urea- 
urethane) 

Microcapsule 
Auramine 
(Oil-soluble dye) 

w/o Near 
linear 
(~20 min) 

Non-Fickian Diffusion 

PEG modified 
polyurethane 

Dermal patch Thiamazole, 
diclofenac 
sodium, 
ibuprofen 

12 h Biphasic 
pattern 
(~ 48 h) 

- 

PDMS Rod 
(matrix vs. 
reservoir) 

Ivermectin w/o Matrix: 
first 
order, 50 
d; 
Reservoir: 
zero 
order, 84 d 

Matrix: diffusion Reservoir: 
case II transport 
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Type of material Type of device Loaded drug Burst 
release 

Release 
kinetics 

Transport 
mechanism 

PDMS Intravaginal ring 
(reservoir) 

TMC120 1–2 d Biphasic; 
near zero 
order 
release for 
30 d 

Case II 
transport 

PDMS Intravaginal ring 
(core-type) 

TMC120 w/o Zero 
order, 71 d 

Case II 
transport 

PDMS 
Strip 
(10×20 mm) 

Metronidazole w/ Higuchi 
(linear vs. 
t1/2) 

Fickian 
diffusion 

PEVA 
(VA content, 40%) 

Membrane Quinupramine w/ Higuchi 
(linear vs. 
t1/2) 

Fickian 
diffusion 

PEVA Thin film Acyclovir 
Chlorhexidine 
diacetate 

w/o Near zero-
order 
(~ 8 d) 

Non-Fickian 
diffusion 

PEVA 
Drug-eluting 
stent coating 

5-Fluorouracil w/ Biphasic 
pattern 
(~20 d) 

Fickian 
diffusion 

PEVA 
(VA content, 40%) 

Disk-shape Film 
Chlorhexidine 
diacetate 

w/ Near-zero 
order 
(~ 7 d) 

Non-Fickian 
diffusion 

PEVA 
(VA content, 40%) 

Membrane Furosemide w/ Higuchi 
(linear vs. 
t1/2) 

Fickian 
diffusion 
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Type of material Type of device Loaded drug Burst 
release 

Release 
kinetics 

Transport 
mechanism 

Dextran sulfate Microcapsule Insulin w/ Biphasic 
pattern 
(~12 h) 

Fickian 
diffusion 

Methacrylated 
dextran 

Hydrogel Vitamin E ~3 h Biphasic Swelling 

HPMC with β- 
CD 

Tablet Difunisal w/o Zero-order 
for 
nonsoluble 
β- 
CD 
First-order 
for 
soluble β-
CD 

Non-Fickian 
diffusion 
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APPENDIX D 

Experimental Data Analysis 

This appendix the statistical analysis done for the validation of the data generated during the 

experimental phase. Experimental data for testing Transdermal Patches in Vitro by means of 

Franz Cells utilizing the procedures outlined by the United States Pharmacopeia (USP)(1 -2) 

and the FDA (3) . (See Tables D.1 and D.3).  

 Cell Bank D.1 – Raw Data 

Cum 
Release                   

Mt / Minf                   

Cell Bank 
1                   

Time, hrs. 

→ 0 1 2 3 4 5 6 7 23 

Cell # ↓                   

1 0 0.51 1.14 1.42 1.70 2.23 2.77 3.19 4.80 

2 0 0.48 1.21 1.52 1.84 2.14 2.85 3.13 4.61 

3 0 0.47 1.11 1.49 1.74 2.11 2.96 3.07 4.94 

4 0 0.55 1.08 1.38 1.57 2.34 2.69 3.39 4.42 

5 0 0.48 1.12 1.34 1.75 2.43 2.71 3.42 4.90 
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Figure D.1. Cell Bank 1 - Cumulative Release vs. Time 
 

Table D.2. Cell Bank 1 – Statistical Analysis 

Cell # R2 (Polynomial Fit) R2 (Linear Fit) 
1 0.9953 0.8656 
2 0.9898 0.8589 
3 0.9845 0.8844 
4 0.9832 0.7592 
5 0.994 0.8338 
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Figure D.2. Cell Bank 1 - Cumulative Release vs. Time – Average Curve / Response 
Statistical Analysis:  R2 (Polynomial Fit) = 0.9944 / R2 (Linear Fit) = 0.8271 
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Figure D.3. Cell Bank 1 –Confidence Interval Level Analysis (Individual and Sum Plots) 

             The 95 % Confidence Interval Level Analysis for the experimental data from Cell 

Bank 1 is uniform and with a narrow difference between data points indicating a robust 

statistical data set. (See Figure D.4) 
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Figure D.4. Cell Bank 1 –Box Plot Analysis (Individual and Sum Plots) 

           The box plot analysis for the experimental data from Cell Bank 1 is uniform and with 

a narrow difference between data points indicating a robust statistical data set. 

 
Table D.3. Cell Bank 2 – Raw Data 

 
Cum 

Release                   
Mt / Minf                   
Cell Bank 

2                   
Time, 
hrs. → 0 1 2 3 4 5 6 7 23 
Cell # ↓                   

1 0 0.50 0.87 1.12 1.37 2.08 2.56 3.03 5.08 
2 0 0.54 0.85 1.06 1.46 1.95 2.66 3.11 4.88 
3 0 0.57 0.81 1.10 1.43 2.03 2.61 3.33 4.63 
4 0 0.53 0.85 1.12 1.48 2.11 2.53 3.49 4.91 
5 0 0.56 0.78 1.15 1.40 2.24 2.33 3.28 4.67 

 
 



 

130 
 

 
 
Figure D.5. Cell Bank 2 - Cumulative Release vs. Time 

Table D.4. Cell Bank 2 – Statistical Analysis 

Cell # R2 (Polynomial Fit) R2 (Linear Fit) 
1 0.9884 0.8872 
2 0.984 0.8596 
3 0.9752 0.8124 
4 0.9743 0.8283 
5 0.9756 0.8265 

 
 



 

131 
 

Release Time, hrs 

 
 

Figure D.6. Cell Bank 2 - Cumulative Release vs. Time – Average Curve / Response 

Statistical Analysis:  R2 (Polynomial Fit) = 0.9882 / R2 (Linear Fit) = 0.8872 

 

2376543210
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Interval Plot - Cell Bank 2

Number of Cells: 5

95% CI for the Mean

Individual standard deviations were used to calculate the intervals.  
 
 
  
           Figure D.7. Cell Bank 2 –Confidence Interval Level Analysis (Individual and    
           Sum Plots)  
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Release Time, hrs 

 
The 95 % Confidence Interval Level Analysis for the experimental data from Cell Bank 2 is 

uniform and with a narrow difference between data points indicating a robust statistical data 

set.  

          The box plot analysis for the experimental data from Cell Bank 2 is uniform and with a 

narrow difference between data points indicating a robust statistical data set. (See Figure 

D.8) 

 

 
 
 

 
 
Figure D.8. Cell Bank 2 –Box Plot Analysis (Individual and Sum Plots) 
 
           In order to assess the statistical validity / cohesiveness of the data from the readings, 

one preferred option is using the Coefficient of Variation that can help determine the 

frequencies of the magnitudes of differences amongst the experimental values. The lower the 

value, the more accurate the testing procedures are (5). 
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“Coefficient of variation” 
In probability theory and statistics, the coefficient of variation (CV) is a standardized 

measure of dispersion of a probability distribution or frequency distribution. It is defined as 

the ratio of the standard deviation to the mean . It is also known as unitized risk or the 

variation coefficient. The absolute value of the CV is sometimes known as relative standard 

deviation (RSD), which is expressed as a percentage. 

Definition 
The coefficient of variation (CV) is defined as the ratio of the standard deviation to the 

mean : 

 
It shows the extent of variability in relation to mean of the population. 

            The coefficient of variation should be computed only for data measured on a ratio 

scale, as these are measurements that can only take non-negative values. The coefficient of 

variation may not have any meaning for data on an interval scale. Measurements that are log-

normally distributed exhibit stationary CV; in contrast, SD would vary depending on the 

expected value of measurements.(6)  

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Standardized_(statistics)
http://en.wikipedia.org/wiki/Statistical_dispersion
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Frequency_distribution
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Relative_standard_deviation
http://en.wikipedia.org/wiki/Relative_standard_deviation
http://en.wikipedia.org/wiki/Ratio_scale
http://en.wikipedia.org/wiki/Ratio_scale
http://en.wikipedia.org/wiki/Interval_scale
http://en.wikipedia.org/wiki/Log-normal
http://en.wikipedia.org/wiki/Log-normal
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Statistical Data Summary 

 

The Coefficient of Variance for Bank Cell 1 shows a very narrow distribution of 4.022 to 

6.413 which indicates results are substantive and valid with no major statistical deviations 

amongst all results. (See Table 5) 

Table D.5. Bank Cell 1 Statistical Review 

 
Time (hours) 

→ 
1 2 3 4 5 6 7 23 

Average 0.499 1.130 1.430 1.720 2.248 2.796 3.240 4.732 
Standard 
Deviation 0.032 0.048 0.077 0.099 0.133 0.112 0.156 0.219 

Coefficient of 
Variation 6.413 4.241 5.381 5.773 5.899 4.022 4.811 4.625 

Number of Cells: 5 

The Coefficient of Variance for Bank Cell 1 shows a very narrow distribution of 2.915 to 

5.610 which indicates results are substantive and valid with no major statistical deviations 

amongst all results. (See Table 6) 

Table D.6. Bank Cell 2 Statistical Review 

 
Time (hours) 

→ 
1 2 3 4 5 6 7 23 

Average 0.540 0.833 1.109 1.429 2.083 2.535 3.249 4.834 
Standard 
Deviation 0.028 0.035 0.032 0.045 0.106 0.127 0.182 0.185 

Coefficient of 
Variation 5.119 4.188 2.915 3.120 5.084 5.022 5.610 3.831 

 
Number of Cells: 5 
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SUMMARY 
 

The experimental data and statistical analysis from Cell Banks 1 and 2 show a good 

consistent response with a very narrow deviation and close Coefficient of Variation values 

indicating a very robust data set. (See Figure D.9 and Table D.7). 

 

 
 
Figure D.9. Cell Banks 1 and 2 – Cumulative Release vs. Time – Average Curve / Response 
Comparison 
 

         The statistical results from both Bank Cells are consistently equivalent to each other. 

(See Table D.7)  
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Table D.7. Cell Banks 1 and 2 – Summary Statistical Analysis 

Bank Cell ID R2 (Polynomial Fit) 
 

R2 (Linear Fit) 

1 0.9944 0.8271 
2 0.9882 0.8872 
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APPENDIX E 

Molecular Shape Factor Calculations 

In order to evaluate the effect of the molecular shape, a series of calculations had to be 

performed based on the work of Dr. Jurs’ group at Pennsylvania State University in late 

1970’s to late 1980’s. They developed a software package named ADAPT that was capable 

to determine the molecular radius, among other parameters. However, trying to obtain and 

use the software became a challenge and with the assistance of Dr. C.M. Vrentas, who 

became one of the main users / adaptors for the work done in diffusion modelling, was able 

to locate one of its members, Dr. David T. Stanton. The author approached Dr. Stanton and 

explained the need to obtain access to the software. Dr. Stanton not only offered to assist but 

also performed all the necessary calculations that enable to complete the DZE model and 

research. The following pages are the summary of the results and the theoretical background 

of the ADAPT software done by Dr. David T. Stanton to whom the author is highly indebted 

for his generosity and willingness to assist a total stranger. 

 

 

 

 

 

 

 

 



ADAPT Size/Shape Descriptors
D.T. Stanton, 19-Jan-2010

ADAPT 
Worklist ADAPT Structure ID Full Structure ID

Ionization 
State MAX-L/B MIN-L/B SHDW-1 SHDW-2 SHDW-3 SHDW-4 SHDW-5 SHDW-6

1 2-phenoxyethanol 2-phenoxyethanol Neutral 1.580 1.580 51.72 38 24.04 0.5224 0.5352 0.4906

2 Fentanyl Fentanyl Neutral 1.817 1.724 106.8 82 50.04 0.4748 0.5093 0.5267

3 Glycidate Glycidate (AM1) Anion 1.442 1.399 32.92 28.56 20.44 0.5144 0.476 0.4443

4 Glycidate2 Glycidate2 (DFT) Anion 1.452 1.306 32.88 28.04 19.8 0.5138 0.4673 0.44

5 N-hydroxymethyl-gly N-(hydroxymethyl)-glycine Neutral 1.510 1.507 36.08 31.48 20.32 0.5229 0.5161 0.4417

6 Nicotine Nicotine Neutral 1.452 1.313 49.6 51.12 34.96 0.4769 0.5112 0.4856

7 Scopolamine Scopolamine Neutral 1.570 1.570 76.08 70.04 49.04 0.5005 0.5559 0.5389

Note:  The structures were first oriented to align the first two principal moments of intertia

to the X and Y axes, respectively, before any of the shape calculations were performed.

MAX-L/B = the L/B ratio for the structure orientation that maximizes this ratio

MIN-L/B = the L/B ratio for the structure orientation that minimizes this ratio 

SHDW-1 = area projected onto the X-Y plane

SHDW-2 = area projected onto the X-Z plane

SHDW-3 = area projected onto the Y-Z plane

SHDW-4 = Standardized SHDW-1

SHDW-5 = Standardized SHDW-2

SHDW-6 = Standardized SHDW-3

The Standardized shadow areas (SHDW-4, SHDW-5, and SHDW-6) minimize the the size dependence of the shadow areas 
by

dividing the shadow area by the area of the box that encompasses the shadow for a given plane.  In other words, the 1st 
standardized

shadow area (SHDW-4) is the first shadow area (SHDW-1) divided by the area of the box defined by the maximum X and Y 
dimensions

for that shadow.

Table E.1



The original Rohrbaugh and Jurs paper used molecular mechanics to obtain the 3D atomic coordinates 
for the shadow areas.  The papers by Vrentras and Vrentras do not specific how the 3D coordinates 
were generated.  It's expected that as long as all the calculations are done using the same methods, the 
results will be consistent.  With that in mind, I've chosen to use semi -empirical quantum mechanical 
optimization (AM1) as is available in Spartan '08 (Wavefunction, Inc., ver. 1.1.0, Build 131)



Nicotine:  CAS-Number = 54-11-5, Name = 3-[(2S)-1-methyl-2-pyrrolidinyl]-pyridine□

Structure used: □

N

N

□

Information received was ambiguous with regard to the position of the pyridine nitrogen.  
Decided to use SciFinder as a the primary reference



Nicotine○

SciFinder:  Name = 2-phenoxyethanol, CAS-Number = 122-99-6

Structure used: 

OH

O



Phenoxyethanol○

SciFinder:  Name = N-hydroxymethyl glycine sodium salt, CAS-Number 70161-44-3

H
N

O

O-

HO□

The ionized form (glycinate) is an anion as shown:

Both the anion and the neutral form (glycine) will be used (just in case)

Hydroxymethyl glycinate (Sodium salt)○

SciFinder:  Name = Benzeneacetic acid, .alpha.-(hydroxymethyl)-, 
(1.alpha.,2.beta.,4.beta.,5.alpha.,7.beta.)-9-methyl-3-oxa-9-azatricyclo[3.3.1.02,4]non-7-yl 
ester, (.alpha.S)-



CAS-Number = 51-34-3

Structure: 

O

O

HO

N

O



Scopolamine○

SciFinder:  Name = N-phenyl-N-[1-(2-phenylethyl)-4-piperidinyl]-propanamide

CAS-Number = 437-38-7

Fentanyl○

Began data entry

Lab Notes:  18-Jan-2010
Monday, January 18, 2010

9:20 PM

   Lab Notes Page 1    



CAS-Number = 437-38-7

Structure:

O

NN

Molecular mechanics, MMFF force field

Total charge = Neutral (used Anion for glycidate)

Compute equilibrium conformer○

Semi-empirical, AM1

Total charge = 0 (used Anion for glycidate)

Compute equilibrium geometry○

The geometry obtained for glycidate was folded, with the hydroxyl hydrogen being strongly 
attracted to the anion.  In water this might not be a proper geometry, but I am not certain about 
the case of glycidate in the polymer if it exists as the anion in the polymer.

○

Spartan calculation sequence:

○ Copies the Glycidate structure to a new file named Glycidate2
Spartan conditions: Equlibrium geometry, DFT, B3LYP, 6-31G*, in water○

Decided to run a copy of the final glycidate AM1 structure at the ab initio level to see if the geometry 
changes at all



See Data Files Section○

Exported all seven of the structures from Spartan as individual Sybyl MOL2 files

Added appropriate file names (Spartan did not put proper structure file name in the exported 
MOL2 File).

○

Stored the files in a single Sybyl database○

Working directory:  ~/dat/Falcone/Polymer-diffusion/○

Imported the MOL2 files into Sybyl

Exported the Sybyl database as a single multi -structure MOL (Sybyl MOL) format file

Moved the MOL file to the Linux computer

Working directory: ~/dat/Falcone/Polymer-diffusion/adapt1○

Created a new ADAPT data area

Created a worklist including the seven structures○

Stored the structures in the ADAPT files

CURRENT OPERATING PARAMETERS

USE MAIN DESCRIPTOR AREA

USE WORKLIST

GRID DENSITY:    5

ORIENT WITH MOMENTS OF INERTIA

FIRST AREA WILL BE STORED IN LAN   1

SECOND AREA WILL BE STORED IN LAN   2

THIRD AREA WILL BE STORED IN LAN   3

AREA ONE STD. WILL BE STORED IN LAN   4

AREA TWO STD. WILL BE STORED IN LAN   5

AREA THREE STD. WILL BE STORED IN LAN   6

OUTPUT TO OUTPUT FILE

SHADOW parameters:○

Computed the SHADOW descriptors

   Lab Notes Page 2    



STRUCTURES WILL BE STORED IN INITIAL ORIENTATION

Note that the structures were stored in the initial orientation (oriented the first two principal 
moments on the X-Y axes).

○

CURRENT OPERATING PARAMETERS:

USE MAIN DESCRIPTOR AREA

USE WORKLIST

ANGLE FOR ROTATION:   1.0

MAXIMUM L/B RATIO IS SET FOR STORAGE

MIN. AREA L/B IS SET FOR STORAGE

DESCRIPTORS WILL BE STORED IN LANS :

7

8

OUTPUT TO OUTPUT FILE

LOVERB parameters:○

Computed the LOVERB ("L/B") descriptors

Polymer
diffusion ...

○

Exported the computed descriptors to a text file.  Moved the text file back to the PC and created an 
Excel spreadsheet



Forwarded the results and the Rohrbaugh and Jurs paper to R. Falcone by Email (19 -Jan-2010)

END

   Lab Notes Page 3    
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