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ABSTRACT 

ELECTRONIC, THERMOELECTRIC AND OPTICAL PROPERTIES OF 

VANADIUM OXIDES: VO2, V2O3 AND V2O5 

  

by 

Chiranjivi Lamsal  

Correlated electrons in vanadium oxides are responsible for their extreme sensitivity to 

external stimuli such as pressure, temperature or doping. As a result, several vanadium 

oxides undergo insulator-to-metal phase transition (IMT) accompanied by structural 

change. Unlike vanadium pentoxide (V2O5), vanadium dioxide (VO2) and vanadium 

sesquioxide (V2O3) show IMT in their bulk phases. In this study, we have performed one 

electron Kohn-Sham electronic band-structure calculations of VO2, V2O3 and V2O5 in 

both metallic and insulating phases, implementing a full ab-initio simulation package 

based on Density Functional Theory (DFT), Plane Waves and Pseudopotentials (PPs). 

Electronic band structures are found to be influenced by crystal structure, crystal field 

splitting and strong hybridization between O2p and V3d bands. “Intermediate bands”, 

with narrow band widths, lying just below the higher conduction bands, are observed in 

V2O5 which play a critical role in optical and thermoelectric processes. Similar 

calculations are performed for both metallic and insulating phases of bulk VO2 and V2O3. 

Unlike in the metallic phase, bands corresponding to “valence electrons” considered in 

the PPs are found to be fully occupied in the insulating phases. 

Transport parameters such as Seebeck coefficient, electrical conductivity and 

thermal (electronic) conductivity are studied as a function of temperature at a fixed value 

of chemical potential close to the Fermi energy using Kohn-Sham band structure 

approach coupled with Boltzmann transport equations. Because of the layered structure 



and stability, only V2O5 shows significant thermoelectric properties. All the transport 

parameters have correctly depicted the highly anisotropic electrical conduction in V2O5. 

Maxima and crossovers are also seen in the temperature dependent variation of Seebeck 

coefficient in V2O5, which can be consequences of “specific details” of the band structure 

and anisotropic electron-phonon interactions. For understanding the influence of phase 

transition on transport properties, we have also studied transport parameters of VO2 for 

both metallic and insulating phases. The Seebeck coefficient, at experimental critical 

temperature of 340K, is found to change by 18.9 µV/K during IMT, which lies within 

10% of the observed discontinuity of 17.3 µV/K.   

  Numerical methods have been used to analyze the optical properties of bulk and 

thin films of VO2, V2O3, and V2O5, deposited on Al2O3 substrates, from infrared to 

vacuum ultraviolet range (up to 12 eV). The energies corresponding to the peaks in the 

reflectivity-energy (R-E) spectra are explained in terms of the Penn gap and the degree of 

anisotropy is found to be in the order of V2O3 < VO2 < V2O5. The effective number of 

electrons participating in the optical transitions is described using the “sum rule”. The 

optical absorption is found to occur followed by the transitions of d electrons as well as 

the transitions from O2p to V3d states.      

 In the Honeywell microbolometer structure, the bolometer sensing element has 

been chosen to be VOx, with x equal to 1.8, along with other layers of Si3N4, air, Al and 

Si. The room temperature spectral emissivity of such a layered structure is analyzed using 

Multi-Rad, a simulation package that utilizes thin film optics in the form of matrix 

method of multilayers. Calculations show that the Si3N4 layer provides the much desired 

linear performance of the VOx based bolometer.    
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CHAPTER 1   

  INTRODUCTION 

1.1 General Considerations 

The state of a material, whether metallic or insulating, provides a clear and fundamental 

insight on its electric and electronic properties. Transition-metal oxides (TMOs) have 

unique physical, electronic, thermal, optical, chemical and magnetic properties [1]; they 

are ideal for the study of insulating and metallic states due to their diverse nature of 

electrical properties even within the material with similar structure [2]. A large number of 

TMOs can be categorized under good insulator, metal and yet a third class, which has 

low resistivity at room temperature similar to conventional metals but a negative 

temperature coefficient of resistivity (TCR) similar to semiconductor. These materials 

with “contradictory” properties are insulating/semiconducting at low temperatures but are 

metallic at higher temperatures above a critical temperature (Tc). Such Insulator-Metal 

Transitions (IMT) have also been observed in most of the vanadium-oxide  (V-O) 

compounds over a wide range of temperatures depending on the O/V ratio [3].  

The ground state electronic configuration of vanadium is [Ar]3d
3
4s

2
. Being a d-

transition metal, vanadium has different oxidation states that are capable of existing in 

both single as well as mixed valence states on forming oxides. The vanadium oxides such 

as VO, V2O3, VO2 and V2O5 exist in a single oxidation state whereas many others, for 

instance: V3O5, V4O7, V6O11, V6O13, V7O13, V8O15 etc., remain in mixed (two) valence 

state. However, these oxides can be categorized under the so-called Magnéli (VnO2n-1) 

and Wadsley (V2nO5n-2) homologous series. In this study, we focus on V2O3 (n=2) and 

VO2 (n=∞) which are the two end members of Magnéli phases and V2O5 (n=∞), the end 
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member of Wadsley phases. Vanadium ions in VO2 and V2O3 have V
4+

(d
1
)  and V

3+
(d

2
)  

electronic structures whereas V2O5 has V
5+

 ion with no 3d electrons.  

In transition metal oxides, the s band associated with the transition metal ions and 

the p band associated with the oxygen ions are pushed away from the Fermi level by ~ 

±5eV and only d orbitals are close to it [2] and are of significant importance. Since the 

metal d orbitals form the conduction band, we expect some electrons in this band except 

with (d
0
) configuration. Due to the small width of the d-conduction band in these oxides, 

electrons are seriously influenced by other interactions [4]. Octahedral coordination 

geometry in vanadium oxides creates a crystal-field (or ligand-field) which, in turn, splits 

the fivefold degenerate d orbitals  into different sets of degenerate orbitals- for instance, 

low lying triply degenerate t2g orbitals and higher lying doublet eg in VO2 as shown in 

Figure 1.1.  

 

 

 

Figure 1.1 Crystal-field splitting of 3d orbitals under cubic, tetragonal, and orthorhombic 

symmetries. The numbers cited near the levels are the degeneracy including spins [5]. 

 

The crystal field splitting energy for 3d-series ions in oxides has value of 1-2 eV 

[4], which increases as cation oxidation state increases [6]. For spin 1/2 transition metal 
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oxides such as VO2 to convert into a spin 1/2 insulator, an additional splitting of the 

higher lying doublet is required along with strong correlations [7]. Electron-electron 

correlations influence the electronic structure of a material [8]. 

Within conventional band theory-which treats the electrons as extended plane 

wave, insulators are defined as materials having completely filled valence band and an 

empty conduction band separated by a sizeable energy gap [9]. However, the TMOs 

undergoing IMT have incompletely filled 3d bands. deBoer and Verwey [10] explained 

this lack of conductivity, in the insulating phase, as an effect of the potential barrier 

existing between any two transition metal ions in the crystal as shown in Figure 1.2.  

 

 

 

Figure 1.2 Schematic representation of the 3d and 4s bands in a substance like NiO. The 

arrows, pointing down, indicate the position of cations except the arrow between a and a’, 

which is a vacant lattice point [10].   

 

For the case where the electronic band width is small, it is possible that the 

correlation energy is sufficiently larger than the kinetic energy of the electrons and the 

electron remains localized. In other words, electrons are considered  to be localized if the 

excited state is short lived as compared to the time that the electron would take tunneling 

through the barrier to reach it [11]. For an electron localized around an ion in ionic 

crystals, it is possible for the electron to be bound in the potential well resulting from the 
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lattice polarization due to its own presence and thus forming a “quasiparticle” known as a 

polaron. In contrast to large polarons, we call a polaron "small” when lattice deformation 

does not extend beyond nearest neighbors. The transfer of such charge carrier occurs only 

in response to appropriate motions of the neighboring atoms [12]. In fact, in small-

polaron model, a self-trapped electron participates in conduction by phonon assistance 

from site to site in the form of uncorrelated hopping as thermal fluctuation momentarily 

brings about a configuration equivalent to initial distorted site. Thus, two steps are clearly 

involved in this process: the polarization arrangement with identical initial and final 

states and tunneling during the coincidence event. The small-polaron theory has been 

used to describe conduction mechanism in TMOs [11].  

The transfer of a quantum particle from site to site can be described by two basic 

mechanisms: hopping and tunneling – which  refer, respectively, to the transfer over a 

barrier due to thermal activation and transfer between two levels of same energy due to 

the overlap of the wavefunctions on the sites [13]. A schematic representation of these 

two mechanisms is shown in Figure 1.3.   

 

 

 

Figure 1.3 Transfer of a quantum particle across a potential barrier between two identical 

localized sites [13].  
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The mechanism of hopping can be explained by Arrhenius law log         

derived from random walk theory. However, an “equivalent” relation log        has 

been used frequently in the literature, for the ease of simplicity, to fit with the 

experimental data. It has been found that the activation energy required to surmount the 

barrier, the barrier height, obtained using either form is the same within errors in many 

cases [14]. The corresponding rule for tunneling appears empirically in the form 

log      , a prediction of Tredgold model [15] for  tunneling of quantum particle 

through a potential barrier of varying thickness caused by the lattice vibrations. 

In transition metal oxides, d electrons are spatially confined in partially filled 

orbitals and are considered to be strongly interacting or “correlated” because of 

Coulombic repulsion between two d electrons of opposite spin on the same ion. In other 

words, the two conduction electrons with antiparallel spin at the same bonding site repel 

each other with strong Coulomb force so as to keep them mutually separated and hence 

spatially localized in individual atomic orbitals rather than behaving as delocalized Bloch 

functions. According to Mott and Peierls [16], electron-electron correlation could be the 

origin of the insulating behavior observed in TMOs. Obviously, the high potential 

barriers observed between the two atoms in a TMO are highly opaque for the electrons to 

pass through. However, the low transparency of the potential barrier cannot merely 

describe the observed conductivity in TMOs. Peierls [16] noted the solution of the 

problem as follows: “if the transparency of the potential barriers is low, it is quite 

possible that the electrostatic interaction between the electrons prevents them from 

moving at all. At low temperatures, the majority of the electrons are in their proper places 

in the ions. The minority which have happened to cross the potential barrier find 
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therefore all the other atoms occupied, and in order to get through the lattice have to 

spend a long time in ions already occupied by other electrons. This needs a considerable 

addition of energy and so is extremely improbable at low temperatures.” Hence, low 

transparency and electron-electron correlation contribute to the electrical properties of 

TMOs and the conductivity at low temperature is proportional to a “high power” of the 

initial transparency. 

1.2 Insulator-Metal Transitions (IMT):                                                             

Mott, Hubbard, and Peierls Mechanism 

 

Hartree-Fock band approximation, with the inclusion of crystal field splitting, failed to 

explain the insulating state of TMOs due to the neglect of electronic correlation. Later, 

Mott [17, 18] showed that electron-electron correlation can produce insulating states in 

any material, provided the lattice constant exceeds a critical value. He further suggested 

that metallic state always exist in these materials as excited state. Conduction in such an 

insulator is limited due to the formation of pairs of an electron and a hole, an exciton, 

which are bound to each other via a Coulomb interaction. However, above a critical 

concentration of excitons, the screened Coulomb interaction becomes so weak that a 

sharp transition occurs from no free carriers to larger number of carriers. This requires a 

high energy state which, in general, is hard to attain at ordinary temperature [2].  

Hubbard presented a more quantitative, but still semi-quantitative, description of 

Mott transition introducing the effects of correlation on the Hamiltonian [19],  

 

  ∑ ∑       
           ∑          (1.1) 
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where,        
     is the number operator for an electron in the state    ;      is fourier 

transform of the Bloch energies     ; U is the average intra-ionic Coulomb repulsion. 

The first term represents the hopping motion of the electrons from atom to atom and the 

second term describes the repulsion of two electrons on the same atom. This model is 

simple in that it replaces the long range Coulomb potential by delta-function repulsion. 

Two configurations, with and without electrons on the same atom, separated by the onsite 

Coulomb repulsion U, are called the upper and lower Hubbard band in solids. We will 

have an insulating state if the repulsive term dominates over the hopping term. However, 

the energy gap due to electronic correlation shrinks continuously as the ratio of band-

width (Eb) to U increases and becomes zero at a critical ratio when an insulator to metal 

transition occurs. This is not a sharp transition as predicted by Mott and is a consequence 

of neglecting inter-atomic Coulomb term, in Hubbard model, a term responsible for 

screening effect in Mott transition. It seems feasible that a large number of free carriers 

can effectively screen U and, thereby, reduce its value. It is doubtful that screening of 

such an intra-atomic quantity can be significant [2]. At the same time, an insulator–metal 

transition can be obtained if the effect of neglecting interatomic Coulomb interaction 

somehow compensates with an effective screening of U. Even though various 

explanations [20] have been proposed for the Mott-Hubbard transition, none of them has 

been clearly proved to prevail. Since the metallic and insulating states do not coexist, a 

continuous phase transition seems more probable; a discontinuous transition could simply 

be an artifact of the approximation scheme.     

Another mechanism, encountered in literature, in interpreting the IMT in V-O 

system is Peierls type [21, 22]. It was Peierls [23] who first pointed out that a one-
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dimensional (1D) metal coupled to the underlying lattice shows instability at low 

temperatures. In the absence of electron-electron or electron-phonon interaction, the 

ground state (at T=0K) of the coupled system has a periodic array of atoms with lattice 

constant a. In the presence of an electron-phonon interaction, the ground state is a 

condensate of electron-hole pairs accompanied by periodic lattice distortion of period 2a. 

The condensate is called charge-density wave (CDW) characterized by charge density 

     associated with the collective mode formed by the electron-hole pairs [24],  

 

                            (1.2) 

 

where,    is the unperturbed electron density,    is the phase of the condensate and 

Fermi wave vector      
 

 
 . CDWs are mainly a 1D phenomenon. However, despite its 

occurrence in 2D- or 3D-band structures, most of the discussions are based on idealized 

one dimensional model. 

A schematic representation of Peierls distortion, in 1D metal with half-filled band, 

is shown in Figure 1.4. This distortion opens up a gap at the Fermi level and, for small 

distortion, the configuration of the distorted system is energetically favorable [24]. At 

finite temperature T, the electron-phonon interaction is screened by the electrons that are 

excited across the gap and narrow the energy gap [25]. Consequently, the lattice 

distortion is reduced and a second order transition occurs at the so called Peierls 

temperature (Tp). The material shows metallic properties above Tp but becomes 

semiconducting below Tp. However, the attempts to interpret IMT in V-O systems, based 

on Peierls mechanism, have also been criticized [26]. 
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Figure 1.4 Peierls distortion (a) undistorted metal  (b) Peierls insulator [24].  

1.3 Literature Review 

Correlated electrons are responsible for the extreme sensitivity of materials for small 

change in external stimuli such as pressure, temperature or doping [27]. VO2 is one of the 

widely studied materials which undergoes IMT at 340K [28], while V2O3 and V2O5 show 

the transitions at 160K [29] and 530K [30], respectively. These phase transitions are 

reversible [31] and are accompanied by drastic change in crystallographic, magnetic, 

optical and electrical properties. During structural transition, atoms undergo displacement 

with redistribution of electronic charge in the crystal lattice and hence the nature of 

interaction changes [32]. Below Tc, VO2 and V2O3 have monoclinic structure [33, 34] 

and V2O5 has orthorhombic structure [35]. At temperatures higher than Tc, they have 

crystal structures that are different from their low temperature counterparts [33, 36]. 

Similarly, the phase transition leads to change in electrical conductivity up to 10 orders of 
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magnitude [37],  while optical and magnetic properties show discontinuity. Recently, the 

phase transition in bulk V2O5 has become a controversial issue even though the studies on 

its thin film show IMT; various transition temperatures have been reported for these 

materials in the literature [38, 39]. Kang et al. [39] have also concluded that V2O5 films 

undergo IMT without structural phase transition. Furthermore, the precise mechanism of 

IMT is still a matter of debate [40] and no theoretical understanding has been realized to 

predict the transition temperature [41]. 

The vanadium oxides are chromogenic materials and can change their optical 

properties due to some external stimuli in the form of photon radiation (photochromic), 

change in temperature (thermochromic) and voltage pulse (electrochromic); the change 

becomes discontinuous during IMT. Such properties can be exploited to make coatings 

for energy-efficient “smart windows” [42], and electrical and optical switching devices 

[43]. Thin films of VO2 and V2O3 have been found to show good thermochromism in the 

infrared region [44, 45]. While maintaining the transparency to visible light, a smart 

window modulates infrared irradiation from a low-temperature transparent state to a 

high-temperature opaque state [46]. The two oxides, VO2 and V2O5, can change their 

optical properties in a persistent and reversible way in response to a voltage [47]. V2O5 

exhibits exceptional electrochromic behavior because it has both anodic and cathodic 

electrochromism, different from VO2 which has only anodic electrochromism, and is also 

an integral part in band structure effects [47]. These electrochromic materials have four 

main applications: information displays, variable-reflectance mirrors, smart windows and 

variable-emittance surfaces. 
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The V-O systems are widely applicable in technology such as memory devices 

and temperature sensors [48]. The memory aspect of the material is evidenced from the 

pronounced hysteresis present in the phase transition [49]. Normally, the range of 

operation of a device lies outside the hysteresis region. Some bolometric devices are 

operational within the hysteretic transition [50]. Bolometers are thermal infrared (IR) 

detectors and can be used in infrared imaging applications such as thermal camera, night 

vision camera, surveillance, mine detection, early fire detection, medical imaging, and 

detection of gas leakage. A bolometer requires a material with high temperature 

coefficient of resistance (TCR) and a small 1/f noise constant [51]. Pure, stoichiometric 

single-crystals of VO2 and V2O5 have high TCR but are difficult to grow. Furthermore, 

the latent heat involved in IMT is highly unfavorable for the bolometric performance 

[52]. Since Tc of V2O3 is far below room temperature, the resistance and hence the level 

of noise is low which makes V2O3 a good candidate for the fabrication of efficient micro-

bolometers. Cole et al. [53] have shown that the thin films of all the three oxides, 

combined together, can produce a desired material with high TCR and optimum 

resistance for bolometer fabrication.  

TMOs, among others, are the best candidates for the cathode materials for 

rechargeable Li-ion batteries. Due to the layered structure of V2O5, it has decent ionic 

storage capacity. The cathode material currently being used, coarse-grained LixCoO2, has 

a practical energy density < 500 Wh/kg which is far less than a theoretical energy density 

of ~1100Wh/kg for lithiated V2O5 [54]. Panasonic has commercialized the use of V2O5 as 

a cathode material in rechargeable Li-ion batteries for low energy applications (button 

cells). The energy density of this product is 100-140 Wh/L and has been found to be 
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insensitive to overcharging [55]. TMOs, being stable at high temperature along with their 

tunable transport properties and well established synthesis techniques, are gaining 

attention for their thermoelectric properties [56]. V2O5 is known to have hopping 

transport mechanism, with anisotropic n-type electrical conduction. The Seebeck 

coefficient varies slowly with temperature indicating the applicability of V2O5 as a 

thermistor [57].  

Clearly, phase transition in VO2 is of high technological interest. IMT occurs near 

to room temperature and Tc can be tuned optically, thermally, electrically [58] and with 

doping [37]. The phase transition in VO2 has been used to achieve frequency-tunable 

metamaterials in the near-infrared range [59, 60]. Recently, Kyoung et al. [61] have 

extended the study to terahertz range proposing an active terahertz metamaterial, a gold 

nano-slot antenna on a VO2 thin film, which transforms itself from transparent to 

complete extinct at resonance when the VO2 film undergoes thermo or photoinduced 

phase transition. Cavalleri et al. [33] showed that the phase transition can be 

photoinduced within hundreds of femtoseconds which can be an underlying principle for 

an ultrafast switch. 

Vanadium dioxide (VO2) [44, 62]  and vanadium sesquioxide (V2O3) [63, 64] are 

the model systems used to study IMT in correlated electron systems. V2O5 is the most 

stable among the other two and exhibits highly anisotropic optoelectronic properties [39, 

65]. While the study of vanadium-oxide systems is an exciting field of research due to its 

significant technological applications, the phase transition, high sensitivity to 

microscopic details and anisotropic nature make the study more difficult. In general, the 

conventional band theory, which treats the electrons as extended plane waves, can 
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explain the metallic behavior of a material but fails to account for the localized electrons 

[66]. In transition metal oxides, the d electrons are partially localized and partially 

itinerant [67] and, during IMT, an electron changes its behavior from localized to 

itinerant. Even though the Mott-Hubbard transition (strong electron-electron interactions) 

and the Peierls mechanisms (electron-phonon interactions) are considered to be 

responsible for IMT, no general consensus has been reached amongst the scientific 

community [68]. Coping with such a transition problem, which involves understanding 

the “competition” between kinetic (wavelike) and correlation (particle like) terms in the 

electronic level, is still an exciting field of research and is the heart of electronic many 

body problems.   
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CHAPTER 2    

FIRST PRINCIPLES ELECTRONIC STRUCTURE METHODS 

 

Ab initio calculations are becoming widely popular in studying electronic structures and 

various physical properties (e.g., ground state energy, dipole moment, polarizability, 

vibrational frequencies and nuclear quadrupole moment) of many-electron systems [69-72]. 

The first principles approaches can be classified into three main categories: the Hartree-

Fock (HF), the density functional theory (DFT) and the quantum Monte-Carlo (QMC) 

approaches [70]. The Hartree-Fock self-consistent method is based on the one-electron 

approximation in which the motion of each electron, in the effective field of all the other 

electrons, is governed by a one-particle Schrödinger equation. In this approximation, the 

“Hartree-Fock” energy of many-electron system having N-electrons can be written as, 

 

    HF10 EEE   (2.1) 

 

where,  

      
i

i

0

0

00 |Ĥ|E

 

(2.2) 

 

is the expectation value of sum of the one-electron Fock operators and is known as the 

lowest energy eigenvalue of the unperturbed system. Similarly, the expectation value of 

first order perturbed Hamiltonian Ĥ  over the unperturbed state  0  of the system is 

written as, 
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     001 |Ĥ|E 
 

(2.3) 

                                                                 

 which is the first order perturbation energy correction to the unperturbed energy  0E . 

The Hartree-Fock wave function satisfies the antisymmetry requirement and it 

includes the correlation effects arising from the pairs of electrons of the same spin. 

However, the motions of the electrons of the opposite spin remain uncorrelated in this 

approximation. The methods beyond the HF approximation, which deal with the 

phenomenon associated with many-electron system, are known as electron correlation 

methods. One of the approaches to electron correlation is the Møller-Plesset (MP) 

perturbation method which adds higher excitations to the HF approximation as a non-

iterative correction utilizing techniques from many-body perturbation theory [71, 73].  

Another first principles approach, to calculate the electronic structure of many-

electron systems, incorporating electron correlation, is the density functional theory 

(DFT). In this theory, exchange-correlation energy is expressed, at least formally, as a 

functional of the resulting electron density distribution, and the electronic states are 

solved self-consistently as in the HF approximation [70]. In the HF approximation, the 

exchange interaction is treated exactly but the dynamic correlation, arising due to 

Coulomb repulsion, between the electrons is neglected. The density functional theory, in 

principle, is exact but, in practice, both exchange and dynamic correlation effects are 

treated approximately [74]. 
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2.1 Modern Density Function Theory: Kohn-Sham Approach 

The history of Density Function Theory (DFT) begins with Thomas-Fermi approach in 

the 1920s [75, 76]. The theory was given subsequent extensions until 1964, when 

Hohenberg and Kohn [77] proved a theorem that the ground state energy (E) of a many-

electron system, from Schrödinger equation, is a unique functional of electron density, 

E[         ]. By introducing orbitals,   , Kohn and Sham formulated a set of equations 

called Kohn-Sham (KS) equations,   

 

[ 
  

  
   ∑  

 

  

|    |
   ∫

     

|    |
          ]        

                 1                         2                           3                    4 

(2.4) 

 

where, 

first term, Ek = Kinetic energy acting on orbital, 

second term, Vnuc= Nuclear attraction potential acting on orbital, 

third term, VH [ ] = Columbic interaction of electron in orbital,   , with other electrons in 

the molecule (Hartree potential), 

fourth tem, UXC [ ] = exchange electron correlation potential.  

Unlike Schrödinger equation (which depend on N-electrons’ 3N coordinates), the Kohn-

Sham equations depend on electron density,           , which, in turn, depend on orbital,  

 

          ∑|  |
 

 

 
(2.5) 
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Hartree potential includes a self-interaction term since the orbital that is being described 

in KS is also a part of the electron density, which is unphysical. UXC needs to be 

constructed in such a way that the self-interaction contained in the Columbic interaction 

could be removed. Since the true form of exchange correlation is not yet known, this term 

needs to be approximated in some way – the major approximation involved in DFT. 

However, the orbital concept in KS equation gives 99% of the kinetic energy right; thus, 

the accurate density is obtained except for a small contribution from exchange 

correlation.  

The most widely used approximations to exchange-correlation within DFT are 

Local Density Approximation (LDA) and Generalized Gradient Approximation (GGA). 

LDA was proposed by Kohn and Sham in 1965 based on the concepts developed in the 

Thomas Fermi Dirac theory. The main aspect of LDA is to treat a general 

inhomogeneous electronic system as locally homogeneous. This functional is known 

exactly but use of such a uniform electron gas cannot represent the electron density of a 

molecular system accurately. In order to study magnetic properties, Local Spin Density 

Approximation (LSDA) can be used which basically generalizes LDA to include electron 

spin. Within L(S)DA, wide bands of s  and p orbitals are addressed well but the 

correlations of electrons in narrow bands (d and f bands) are weakly described, in 

general. GGA, on the other hand, uses the information about local electron density and 

the local gradient in the electron density [78]. Depending on the way information is used 

from the electron density and its local gradient, a large number of L(S)DA/GGA 

functionals have been developed.     
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  In order to solve the KS equation, we need to define Hartree potential which 

depends on electron density. The electron density, in turn, depends on orbital,   , which 

are only known after solving KS equation. To solve this “chicken-egg” problem, we 

adopt an iterative method as indicated in the flow chart (Figure 2.1) and obtain self-

consistent solution (solution obtained from the iterations until the convergence is 

reached). The closer is the starting wave function to the true function, the lesser are the 

SCF iterations required in the calculations. 

 

 

Figure 2.1 Solving the KS equations for a set of fixed nuclear positions. 
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2.2 Basis Sets 

An isolated system (atoms/molecules/clusters) does not interact with others and hence no 

boundary condition is required. A material can be thought of being made of unit cell by 

repeating it indefinitely in all directions. In computer simulations, a unit cell along with a 

set of boundary conditions is used to approximate such a periodic system. The solution of 

Kohn-Sham equation, for such a periodic system, must satisfy Bloch’s theorem; the 

Kohn-Sham orbital,      , can be written in terms of two factors as,  

     

                    (2.6) 

 

where,         is called plane wave and the function       is such that it is periodic in 

space with the same periodicity of the unit cell of the system. It is the Bloch theorem that 

makes the problem easier to solve in reciprocal space than in real space. Further, the 

periodicity of        allows us to write it in terms of a set of plane waves as (Fourier 

expansion of periodic function), 
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(2.7) 

 

where,    is the volume of the unit cell of the lattice, k is the wave vector in the first 

Brillouin zone, G is the reciprocal lattice vector. Hence, the orbital can be written as,  
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(2.8) 

 

The most natural choice of basis sets for studying periodic system would be plane wave 

basis sets. Equation (2.8) consists of infinite number of plane waves in the sum and in 

real calculation, we need to truncate it to some finite number. 

With the orbital of the form (2.8), the kinetic energy is written as,  

 

   
  

    
|   |  

(

2.9) 

 

Since solutions with lower energies are more physically important, we can truncate the 

infinite sum (2.8) to a value Ecut such that 
  

    
|   |       (It is just a tradition to 

express this cutoff in energy units). 

2.3 Pseudopotential 

For the true nuclear potential, wave functions corresponding to the core electrons exhibit 

sharp peaks as shown in Figure 2.2. In order to address this fast spatial variation, we need 

a large number of plane waves. In other words, the plane waves associated with tightly 

bound core electrons in atoms oscillate in the short length scale (also, valence 

wavefunctions have wiggles: n-1 nodes near nucleus, n being principle quantum number) 

and involve large energy cutoffs. Since the chemical and physical properties of a material 

mainly depend on less-tightly-bound electrons of the outer shells rather than tightly 

bound core electrons, core electrons can be treated as a big system with the nucleus. 
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Hence, instead of using exact potential, we use an effective potential called pseudo 

potential (i.e., to replace potentials 1 through 4 in equation 2.4) which is pre-calculated in 

an atomic environment and kept frozen during the calculation. In other words, the use of 

pseudopotential avoids the situation of taking into account the core electrons in the plane 

wave expansion, which would otherwise require higher energy cut-off energy. 

Pseudopotentials are used in electronic structure calculation with great success, 

reasonable accuracy and a much more time efficient manner.   

 

 

Figure 2.2 A typical comparison of exact potential with pseudopotential [79]. 

 

 

All-electron (exact) potential and pseudopotential are same beyond a particular 

distance from the nucleus, called cutoff or core radius. A particular pseudopotential 

defines the atom, number of electrons treated as valence/core electrons, type of exchange 

correlation functional and minimum energy cutoff required in a calculation. Since the 

pseudopotentials are not unique, we are free to choose a form that simplifies the 

calculation and the interpretation of the resulting electronic structure [80]. 
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Pseudopotentials can be soft and hard depending on the cutoff energies considered; hard 

potentials require high cut off energies while the soft ones require low cutoff energies. 

Mostly used pseudopotentials are norm-conserving and ultra-soft pseudopotentials. The 

norm-conserving pseudopotential was first introduced by Hamann, Schlüter, and Chiang 

[81] based on ab initio atomic calculations. The norm conservation criterion generally 

produces hard pseudopotential. However, it is not always necessary that the norm of 

pseudo-wave and all-electron wave functions coincide [82]. On the other hand, the ultra-

soft pseudopotentials (USPPs) which require substantially lower cutoff energies are based 

on the work of Vanderbilt [83]. In practice, cutoff radius in USPP is chosen very large, 

well beyond the maximum of the radial wave function; sharp peaks in the pseudo-wave 

function are replaced by smoother wave functions. However, it has a disadvantage of 

requiring a large number of empirical parameters during the construction process. 

Blöchl introduced another frozen core approach that generalizes both the linear 

augmented-plane-wave (LAPW) method and the pseudopotential method “in a natural 

way” [84]. Later, Kresse and Joubert [85] implemented the Projector Augmented Wave 

(PAW) method in the plane wave calculations. Even though all electrons are not treated 

explicitly in the PAW formalism, it is sometimes referred to as an all-electron method in 

a sense that valence electronic states are kept orthogonal to the core wave functions. 

Some of the disadvantages of USPPs can be avoided with this PAW method. 

2.4 Integral over the First Brillouin Zone  

Many quantities such as electron density, total energy etc. involve integrating i
th

 band of 

a function,      , over the possible values of k in the first Brillouin Zone (BZ) as, 

 



   

  23 

  

  ̅  
 

    
∫      
  

    
(2.10) 

 

However, in principle, we need infinite number of k points and the integral should be 

replaced by sum over a finite number of k-points: BZ Sampling.  

 

  ̅  
 

   
∑      

 

 
(2.11) 

 

The sum over the k-points in the Brillouin Zone can be reduced to the sum in the 

Irreducible part of the Brillouin Zone (IBZ), by employing all symmetry operations of the 

Bravais lattice to individual k-point (This will highly reduce the computational time). We 

can calculate the “weight”,   , for each k-point in the IBZ by the following relation, 

 

   
                                     

                                   
 

 

(2.12) 

Then sum over the BZ becomes sum over the IBZ, 

 

  ̅  ∑        

   

 

 

(2.13) 

 

There are mainly two commonly used approximations for the sum over irreducible part of 

the BZ: (Linear) tetrahedron method and special k-points approaches. Special k-points 
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scheme has now been widely used in the calculations, which are Chadi-cohen k-points, 

Cunningham k-points and Equidistance or Monkhorst-Pack grids schemes.   

When the general shape of a function, to be integrated, is unknown, the most 

straight forward approach is to construct equidistant grid. Monkhorst and Pack (MP) [86] 

developed a method for obtaining sets of special points in the Brillouin zone. The points 

in the k-space are written as a linear combination of lattice vectors in k-space: 

                , where  q × q × q ) grid has the coordinates:    
        

   
  

      …   q ;          3.  

2.5 Metals – Fermi Surface Sampling 

In metals, the Fermi surface separates the occupied electronic states from the unoccupied 

ones. In other words, the functions to be integrated in k-space show a discontinuity at the 

Fermi surface as indicated by “ -function”/step function, 

 

  ̅  ∑        

   

 

            

(2.14) 

 

where, the step function is defined as                               

                    .  This imposes a 

serious complication in calculating integrals and hence special efforts have to be made to 

address this issue; otherwise, a very large number of k points are required to reach the 

convergence in the calculations. On the other hand, the Fermi level is adjusted to satisfy 

the normalization condition: ∑           , during self-consistency; for k-points near 

to the Fermi-surface, the coarse grid can lead to the highest occupied bands entering or 
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exiting the sums from one iteration step to the next.  This introduces instability in the 

finite sum during the self-consistent procedure.   

The remedy to this problem is to replace the step function by a smoother function  

  {     }  which allows partial occupancies at the Fermi level. This, basically, “smears 

out” the discontinuity by forcing the function being integrated to be continuous and hence 

such approaches are called smearing methods. One of the commonly used smearing 

functions is the Fermi-Dirac (FD) function, 

 

  {     }   
 

 
          

   

;        
(2.15) 

 

The broadening energy parameter,  , should be adjusted to avoid instability in the SCF 

convergence procedure and hence regarded as one of the convergence parameters. 

Clearly the F-D function approaches step function in the limit T tends to zero. However, 

the broadening parameter cannot be related to electronic Fermi temperature unless the 

system is at really finite electronic temperature (finite temperature extension of Kohn-

Sham theory by Mermin [87]): in general, it is just a technical issue. Several other 

smearing functions have been introduced to approximate the step function such as 

Gaussian smearing function, Method of Methfessel-Paxton and “cold” smearing of 

Marzari-Vanderbilt.  Besides the smearing techniques, a method of tetrahedron is also 

used in which BZ is divided into tetrahedra, interpolate the function within these 

tetrahedra and then perform integration.  
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2.6 ABINIT 

ABINIT is a full ab-initio, free to use, simulation package based on density functional 

theory, pseudopotentials and plane waves. In such plane wave based electronic structure 

calculations, Fast Fourier transforms (FFTs) are used, which are proved to be an efficient 

algorithm to transform functions (wave functions/electron densities) from real space to 

their reciprocal space counterparts. ABINIT mainly computes charge density, total 

energy and electronic structure of a periodic system based on Kohn-Sham density 

functional approach. In the usual ground state (GS) calculation or structural relaxation, 

the potential has to be determined self consistently. Several choices for the selection of 

algorithm for SCF are possible in ABINIT. In our calculations, using ABINIT (version 

7.6.3) [88, 89], we chose the default integer for Self-Consistent-Field cycle: iscf=17 

which refers to Pulay mixing of the density [90], the algorithm for accelerating 

convergence in SCF procedure. ABINIT requires parameters such as atomic species and 

their position within a particular structure as its input variables – the atoms are placed in a 

unit cell, which is built by taking the symmetries of the system into consideration. Band 

occupation scheme has to be specified during the calculations, which is basically the 

smearing technique: “cold smearing” of Marzari (bump minimization) [91] is chosen for 

metallic case (occopt=4) but default value (occopt=1) is taken elsewhere. The 

temperature of smearing is taken to be 0.01 Hartree (tsmear = 0.01 Ha) as suggested, for 

d-band metals, in ABINIT website (the convergence calculation with respect to this 

parameter should be checked; large value leads to the convergence at wrong value and 

small value requires a large number of k-points). Monkhorst-Pack Grid was chosen for 

Brillouin zone sampling and a convergence test was done to determine the density of k-
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mesh. Another convergence test was also performed to truncate the plane wave 

expansion, which was found to be 40 Hartree (ie ecut= 40 Ha). 

PAW potential used in our calculations are those with the smallest 

pseudopotential radii, generated using a program called AtomPaw [92, 93],  for both 

vanadium (V) and oxygen (O), obtained from Case Western Reserve University, which 

were well tested with previously confirmed data; the choice of valence bands was such 

that no “ghost” or “phantom” bands appeared in the band structures; minimum volume of 

the unit cell, bulk modulus, and the derivative of the bulk modulus were examined [94]. 

In oxygen, electrons in the first shell (n=1) were treated as core electrons while in 

vanadium, the electrons in first and second shell (n=1 and 2) were treated as core 

electrons. Approximation to exchange-correlation used in the calculations is Local 

Density Approximation (LDA) with the functional of Perdew and Wang (PW92) [95]. 

We have an advantage of using LDA in our calculations in that they have the  tendency 

of having smaller radii for their pseudopotential spheres which is consistent with 

relatively tightly packed vanadium oxide (VOx: x=1.5, 2 and 2.5) structures. 

2.7 Vanadium Oxides: Symmetries and Structure 

A crystal structure can be constructed uniquely from its lattice defined by lattice vectors, 

Ri, and its basis defined by lattice basis vectors, ri. A basis vector in the unit cell can be 

expressed as a linear combination of the lattice vectors. For a unit cell having p number 

of atoms we can write, 

 

                   ;       3 …    (2.16) 

 



   

  28 

  

where, relative coordinates xi, yi, zi (with |  | |  | |  |   ) are used to locate atoms in 

the unit cell. Here, the lattice and basis are connected to each other by the symmetry 

elements of the crystal structure. In ABINIT, the unit cell of a crystal structure is defined 

using acell/rprim (rprim, in general, defines the unit lattice vectors which are then scaled 

by acell variable to obtain Ri); alternately, acell/angdeg input variables can also be used. 

Using the Wyckoff positions, we can locate the atoms in the unit cell in terms of relative 

coordinates.  

For small change in external stimuli such as pressure, temperature or doping [27], 

several vanadium oxides undergo insulator-to-metal phase transition (IMT) that are 

accompanied by structural change and this leads to the change in number of formula unit 

(z) in the primitive unit cell.  Below the phase transition temperature Tc, vanadium 

dioxide possesses monoclinic (insulating) structure and its primitive cell contains four 

formula units (z=4; 12 atoms). In its metallic phase, above Tc, it acquires rutile structure 

and contains two formula units (z=2; 6 atoms). For temperature below Tc, V2O3 has 

monoclinic structure with 20 atoms in its unit cell (z=4), while above Tc, the structure 

changes to trigonal corundum (“corundum” was derived from Sanskrit word 

“Kuruvinda”, meaning ruby) with 10 atoms in the primitive unit cell. V2O5 has simple 

orthorhombic structure and its bulk phase does not undergo phase transition (i.e., remains 

semiconducting at all temperatures). The primitive unit cell contains two formula units 

(z=2; 14 atoms). Due to its layered structure and weak bonds between layers, few layers 

thick (~nm) or even a monolayer of V2O5 is possible to extract. IMT has been observed 

in the film of V2O5 but without structural change. Since graphene (single layer of 

graphite) exhibits interesting properties unlike its bulk counterpart, researchers are 
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curious whether analogous useful and exciting properties can be observed in the single 

layer of V2O5!   

2.7.1 Vanadium Dioxide (VO2) 

Vanadium oxide, below Tc, can exist in two phases: stable phase/M1 phase (         ) 

and metastable phase/M2 phase (        ). The metastable phase is normally induced 

by either doping or stress. Since we are mainly focused on the temperature induced phase 

transition, we will study the most stable phase and its primitive unit cell is defined by 

following lattice parameters [96],  

 

         ;       3    ;     3     ;               (2.17) 

 

 

 

Table 2.1 Wyckoff Parameters of the Stable Phase of VO2: Simple Monoclinic Structure 

  

Atom 

 

Wyckoff position 

Parameters 

x y z 

V 4e 0.23947 0.97894 0.02646 

O1 4e 0.10616 0.21185 0.20859 

O2 4e 0.40051 0.70258 0.29884 

 

The M1 phase of stoichiometric VO2 is characterized by a simple monoclinic lattice with 

space group            
          [97]. Vanadium atom and the two types of oxygen 

atoms occupy the Wyckoff position (4e):              
 

 
   

 

 
    where x, y, z are 

shown in Table 2.1 [97]. With this definition of crystal structure of VO2 and “cut3d” 

utility of ABINIT, XCrySDen [98] (a program for displaying Crystalline Structure and 
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Densities under X-window environment) was used to visualize the crystal structure, 

which is shown in Figure 2.3.  

 

 

 

Figure 2.3 Monoclinic structure of stable phase of VO2: V atoms (grey) and O atoms 

(red) are shown.  

 

Similarly, at temperature above Tc, VO2 has the rutile structure and its primitive 

unit cell is defined by the following lattice parameters, 

 

            ;             ;                 (2.18) 

 

 

 

with                          . Simple tetragonal lattice has space group 

           
        3   and accordingly, vanadium atoms occupy the Wyckoff 
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position (2a): (0,0,0), (
 

 
 
 

 
 
 

 
) and  oxygen atoms occupy the Wyckoff position (4f): 

       ,          ,  (   
 

 
   

 

 
 
 

 
),  (  

 

 
    

 

 
 
 

 
), with x = 0.3001 [97]. 

With this data, the crystal structure of VO2 (Rutile) is visualized, which is shown in 

Figure 2.4. 

 

 

 

Figure 2.4 Rutile phase of VO2: V atoms (grey) and O atoms (red) are shown.  

2.7.2 Vanadium Sesquioxide (V2O3)   

Vanadium sesquioxide (V2O3), in its insulating phase, has inner centered (body centered) 

monoclinic lattice with space group         
          and accordingly, vanadium and 

first kind of oxygen atoms occupy the Wyckoff position (8f):         ,   
 

 
        , 

  
 

 
   

 

 
   

 

 
    and     

 

 
   

 

 
    with (x, y, z)V = (0.3438,0.0008,0.2991) and 

(x, y, z)O1 = (0.407, 0.845, 0.652) while the other kind of oxygen atoms occupy the 
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Wyckoff position (4e):   
 

 
       ,   

 

 
 
 

 
     

 

 
  with     = 0.191 [99].  The unit cell 

of the monoclinic lattice is defined by following lattice parameters [36],  

  

        ;           ;           ;             (2.19) 

 

 

 

With these data, the crystal structure was visualized which is shown in Figure 2.5. 

 

 

 

Figure 2.5 Insulating phase of V2O3: V atoms (grey) and O atoms (red) are shown. 

  

Metallic phase of V2O3 has trigonal corundum structure with space group 

 3̅     
         . Vanadium atoms are located in the trigonal lattice are located at the 

Wyckoff positions (4c):          ,   
 

 
   

 

 
   

 

 
    with x = y = z = 0.3463 and 

oxygen atoms occupy the Wyckoff positions (6e):     
 

 
   

 

 
 ;   

 

 
   

 

  
   ; 
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     with x = y = z = 0.56164 [99]. The primitive unit cell of the trigonal 

lattice is defined by following lattice parameters, 

 

     (
 

 ⁄   
√3

 
 
  

  
) ;      (

 
 ⁄  

√3

 
 
  

  
) ;                    

(2.20) 

 

 

 

with                             . With these specifications, the crystal structure 

is visualized as shown in Figure 2.6.  

 

 

 

Figure 2.6 Metallic phase of V2O3: V atoms (grey) and O atoms (red) are shown. 

2.7.3 Vanadium Pentoxide (V2O5) 

The crystal structure of vanadium pentoxide consists of simple orthogonal lattice with 

space group         
             and lattice constants for the primitive unit cell are 

given by [100],   
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         ;    3      ;      3     (2.21) 

 

 

 

Table 2.2 Wyckoff Parameters of V2O5: Simple Orthorhombic Lattice 

 

 

Atom 

 

Wyckoff positions 

Parameters 

x y z 

V (4f) 0.10118 0.25 -0.1083 

O1 (4f) 0.1043 0.25 -0.469 

O2 (4f) -0.0689 0.25 0.003 

O3 (2a)  0.25 0.25 0.001 

 

The structure consists of vanadium atom and three different types of oxygen atom; 

vanadium and two types of oxygen atom occupy the Wyckoff positions (4f): (x, 1/4, z),  

(-x+1/2, 1/4, z), (-x, 3/4, -z), (x+1/2, 3/4, -z) and the third type of oxygen atom occupies 

the Wyckoff positions (2a):  (1/4, 1/4, z), (3/4, 3/4, -z) [101-104] where x, y, z are given 

in Table 2.2 [105]. Based on the crystal structure parameters, the unit cell was visualized 

as is shown in Figure 2.7.  
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Figure 2.7 Crystal structure of V2O5: V atoms (grey) and O atoms (red) are shown. 

2.8 Optimization of Unit Cell  

Structure optimization in ABINIT can be done, at 1 atmosphere and 0K, using its input 

variable “optcell” (=2) which optimizes both cell shape and dimensions when “ions” are 

allowed to move using “ionmov” variable. Since the symmetry of the system is taken into 

account, effectively relevant degrees of freedom are optimized. In order to avoid the 

discontinuities (as a result of abrupt change in number of plane waves with cell size), 

suitable value of “ecutsm” has to be used. Keeping in mind that larger sphere of plane 

waves may be necessary during the optimization, proper value of “dilatmx” should be 

provided in the input file. In our calculation, dilatmx =1.14 was used, allowing the lattice 

parameters to change up to 14% from input values.  Using ionmov=2, full variable cell 

relaxation was performed, using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

minimization procedure. 
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The result of structural optimization is given in Tables 2.3. The differences 

between original and corresponding relaxed parameters are close to each other within 5% 

except the monoclinic structure of V2O3 and V2O5 in c direction, which show little more 

deviation but lie within 10%: which were defined a little further than their relaxed 

positions. Since overall the changes were very small, unit cells were defined with 

reasonable accuracy.   

 

Table 2.3 Lattice Constants for Bulk VOx 

  Before relaxation  After relaxation 

V2O5 (Simple Orthorhombic) 

Lattice Parameter (Angstrom) a=11.512; b=3.564; c=4.368 a=11.695; b=3.546; c=3.951 

Angle (Degree)       = 90        = 90 

    V2O3 (Trigonal corundum)  

Lattice Parameter (Angstrom) a = b = c = 5.4735  a = b = c = 5.4673   

Angle (Degree)        53.7843         51.0410   

V2O3 (Monoclinic) 

Lattice Parameter (Angstrom) a = 7.255; b = 5.002; c = 5.548 a = 7.431; b = 4.781; c = 5.166 

Angle (Degree)        ; β = 96.75       ; β = 100.3311 

VO2 (Rutile) 

Lattice parameter (Angstrom)  a = b = 4.5546; c=2.8514  a = b = 4.5479; c= 2.7328 

Angle (Degree)       = 90       = 90 

VO2 (Monoclinic)  

Lattice parameter (Angstrom)  a = 5.7517; b = 4.5378; c = 5.3825 a = 5.541; b = 4.527;c = 5.286 

Angle (Degree)       ;                   ;         3 

2.9 Convergence Studies 

The variables that mainly affect the convergence of ground state energy calculations in 

ABINIT are: density of k-points in first Brillouin zone and kinetic energy cut-off for 

plane waves. Figure 2.8 shows the variation of total energy, at gamma point, of vanadium 

oxides (per unit cell used in the calculations) as a function of cutoff energy. In our 

calculations, we have considered the value of the plane wave cutoff to be 40 Hartree. 

    



   

  37 

  

 

Figure 2.8 Variation of total energy, of vanadium oxides, with plane wave cutoff; scaled 

by multiplication factors as shown.  

  

 

 

Figure 2.9 Variation of total energy, of vanadium oxides, with number of k-points. 

 

Similarly, convergence tests were done to determine the optimum number of k-

points required in the BZ; the number of k-points depends on whether the system is 
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metallic or not and, of course, the precision of the calculations.  The metallic system 

usually requires more k-points than the insulating/semiconducting systems. In the present 

study, ground state calculations were performed with Monkhorst-Pack Grid having 

different k-point densities represented by 2×2×2, 4×4×4, 6×6×6 and 8×8×8 grids as 

shown in Figure 2.9. 6×6×6 grid is found to be appropriate for all the systems except 

V2O5, for which 4×4×4 is good enough.         

2.10 BoltzTraP: Calculations of Boltzmann Transport Properties 

BoltzTraP [106] is a program for calculating the semi-classical transport coefficients 

based on Boltzmann transport equations. The code performs smooth Fourier expansion of 

band energies, maintaining the space group symmetry. In the present study, the electron 

density from Self-Consistent Field (SCF) calculation was used as an input for Non-Self-

Consistent (NSCF) calculation to obtain electronic structure on much finer grid (as 

compared to the SCF grid). The purpose of NSCF calculation, here, was to effectively 

reduce the time of transport coefficient calculations. Smooth highly resolved electronic 

bands, thus obtained, were processed using the BoltzTraP code. Transport properties 

were calculated using band energies with constant relaxation time approximation. Since 

the calculations are done at 0 Kelvin and 1 atmospheric pressure, temperature 

dependency in energy band is ignored. However, the electronic properties at higher 

temperature are simulated by applying Fermi distribution over electronic states.  

 

       
 

  
      

   ⁄
   

  (equilibrium F-D function) (2.22) 
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Main transport properties studied are (a) electrical conductivity: Ohm’s law, in the 

absence of magnetic field and thermal gradient (b) Seebeck coefficient (thermo-power) 

and (c) thermal (electronic) conductivity which are, respectively, given by equations 

(2.23), (2.25) and (2.26) [107].  Clearly, the transport coefficients are function of 

temperature (T) and chemical potential (  .  

 

     ;     
 

 
∫      [ 

     ;   

  
]    

 

(2.23) 
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(2.24) 

 

 

     ;     
 

         ;   
∫           [ 

     ;   

  
]    

 

(2.25) 

 

 

  
    ;     

 

   
∫            [ 

     ;   

  
]    

 

(2.26) 

 

 

 

where e is electronic charge,   is volume of unit cell, N is number of k-points sampled,  

v(k) is the band velocity,   (k) is band energy and    (k) is relaxation time. Due to the 

presence of delta function like factor, BoltzTraP considers transport electrons in a narrow 

energy range and relaxation time is practically same for such range [107]. 
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CHAPTER 3    

ELECTRONIC PROPERTIES OF VANADIUM OXIDES 

3.1 General Considerations 

In mean-field approximation, every electron in a crystal, with   10
23

 electrons/cm
3
, 

experiences the same average potential V(r) and Schrödinger equation for each electron 

is given by, 

 

(
  

  
     )                 

(3.1) 

 

 

 

where, the one-electron Hamiltonian operates on wavefunction       to yield energy of 

the electron in an eigenstate n (each of which can be occupied, at most, by two electrons 

of opposite spin – Pauli’s exclusion principle). Using Bloch’s theorem, the eigenstate of 

one particle Hamiltonian, can be written as the product of plane waves and a lattice 

periodic function,  

 

                      (3.2) 

 

 

 

Thus the wave function is indexed with a quantum number n and the wave vector k.  A 

plot of the electron energies in (3.1) versus k is known as electronic band structure or 

“spaghetti plot”. Each value of k has a discrete spectrum of states, labeled by band index 

n, the energy band numbering.  The number of bands, in a band structure diagram, is 

equal to the number of atomic orbitals in the unit cell [108]. The overlap integral (overlap 
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between the interacting orbitals) determines the width of the band or band width or band 

dispersion, which is the difference in energy between the lowest and highest points in a 

band. The greater the overlap between neighboring unit cells, the greater is the band 

width and vice versa.  

The wave vector k can take any value within the Brillouin zone. All the points in 

a Brillouin zone can be classified using the symmetry of the reciprocal lattice. Symmetric 

points or Lifschitz points [109], also called special/specific high symmetry points, are 

those points which remain fixed or transform into an equivalent one under a symmetry 

operation of the Brillouin zone. These points play a specific role in solid state physics: (a) 

if two k vectors can be transformed into each other due to some set of symmetry 

elements, electronic energies at those k-vectors must be identical; (b) “wave functions 

can be expressed in a form such that they have definite transformation properties under 

symmetry operations of the crystal” [110]. Similarly, we can define symmetric lines and 

planes in the Brillouin zone. Customarily, high symmetry points and lines inside the 

Brillouin zone are denoted by Greek letters while those on the surface are denoted by 

Roman letters. The center of a Brillouin zone is always denoted by Greek letter  .        

The behavior of electrons in a solid can be studied microscopically from its 

electronic band structure [110]. One can extract important information about a material 

such as its stability, transport coefficients, optical properties, and intra as well as 

intermolecular bonding interactions from the band structure diagrams. Since electronic 

band structure of a material is dependent on the crystal structure, it (band structure) can 

be considered as a link between crystal structure and physical properties. 
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 Experiments have been performed to investigate the electronic structure of 

vanadium oxides through photoemission and x-ray absorption spectroscopy. The studies 

have revealed that the electronic structure of these three oxides of vanadium, VO2, V2O3 

and V2O5, is characterized by a strong hybridization between the 2p (O) and 3d (V) 

bands. It has been found that the hybridization energy exceeds both the coulomb 

repulsion energy of two 3d electrons (Udd) and the energy required to transfer an electron 

from a ligand orbital (e.g., 2p (O)) to 3d (V) orbital, i.e., the charge transfer energy [111]. 

It is the hybridization that determines the shape of the valence band [112, 113].    

3.2 Electronic Band Structure of Bulk V2O5 

Figure 3.1 shows the electronic band structure and density of states of bulk V2O5 

calculated by ABINIT. The variable “acell” was set to the theoretical value of 21.7545, 

6.7350, 8.2543 Bohr [100] and 76 bands were computed by solving Kohn-Sham equation 

for uniformly spaced k points, at least 12 k points along each symmetry line, using the 

variable “ndivsm = 12”. Occupation option was chosen such that all k points have the 

same number of bands and the same occupancies of the band. The electron density from 

SCF calculation (data set number 1) was used as an input for NSCF calculation (data set 

number 2) and hence the potential used for Kohn-Sham equation does not vary during the 

k-point scanning. The variable “tolwfr=10
-12

” was used as a tolerance criterion for non-

self-consistent calculations in ABINIT, which is tolerance on wavefunction squared 

residual. However, not all bands can be converged within the specified tolerance. By 

default, two upper bands constitute such “buffer” bands. Since buffer allows reaching the 

convergence of important non-buffer bands, the number of bands can be increased, for 

instance, by 2 so as to achieve the same convergence for all bands. The following high   
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Figure 3.1 Electronic band structure and density of states for bulk V2O5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Definition of high symmetry points and lines in BZ for bulk V2O5.  
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symmetry points, specified in reduced coordinates within the first Brillouin zone, were 

chosen in the calculations:   (0, 0, 0), X (0.5, 0, 0), S (0.5, 0.5, 0), Y (0, 0.5, 0),   (0, 0, 0), 

Z (0, 0, 0.5), U (0.5, 0, 0.5), R (0.5, 0.5, 0.5), T (0, 0.5, 0.5) and Z (0, 0, 0.5) as indicated 

in Figure 3.2. XCrySDen [98] was used for the visualization of Brillouin Zone. 

The Fermi energy obtained at the end of SCF calculations, in bulk V2O5, is 1.62 eV; 

the origin is shifted by this amount as shown by the horizontal dotted line in the band 

structure plot. The Fermi level corresponds to the highest occupied band. As the number 

of valence electron bands (as opposed to core electron bands considered in the 

pseudopotential) is equal to one half the number of the “valence electrons” in the unit cell 

(i.e., 2×13+5×6=56 but only 30 are shown in the Figure 3.1 and other 26 bands, not 

shown, range from -62.1 eV to -15.4 eV) and the rest, 18+2=20, bands correspond to the 

conduction band. Sometimes the two bands appearing around 2 eV are also called 

intermediate bands. These (intermediate) bands, with narrow band width 0.65 eV(   0.75 eV 

[114]) separated from higher conduction band by 0.58 eV (   0.6 eV [114]), can make 

significant contribution to transport phenomena or mediate optical transitions from 

valence to higher conduction bands. Also, not shown in the Figure are the 4s like bands 

which lie at a much higher energy. Bands appearing at -62.1 and -15.4 eV correspond to 

V3s and O2s, respectively. Some other bands appearing at -37.1 eV correspond to V3p. 

Valence-top bands (5 eV wide   5.1 eV [114]) comprise of mainly O2p states (total of 

30: p orbitals consist of three states per oxygen atom and there are ten oxygen atoms in 

the unit cell) plus some contribution from V3d states. Similarly, conduction-bottom 

bands (5.3 eV wide) consist of empty V3d states (total of 20: d orbitals consist of five 

states per vanadium atom and there are four vanadium atoms in the unit cell) hybridized  



   

  

Table 3.1 Band Structure of V2O5: Comparison Table 

 Present calculation 
Comparison with remark  

                                                             (Remark)  

Band gap 1.7 eV (indirect:    )   1.74 eV (indirect :    ) Similar calculation [105] 

1.6 eV (indirect:    ) Similar calculation [94] 

2.2 eV (indirect) Experiment  [105] 

V3s bands 4 bands ( ~ appearing at -62.1 eV ) N/A Not shown in Figure 

V3p bands 12 bands ( ~ appearing at -37.1 eV) N/A Not shown in Figure 

O2s bands 10 bands ( ~ appearing at -15.4 eV ) N/A Not shown in Figure  

Valence bands            

(mainly O2p)  

30 bands (width: 5 eV) 30 bands (width: 5.1 eV) Similar calculation [114] 

Conduction bands      

(mainly V3d) 

20 bands (width: 5.3 eV) 20 bands  Similar calculation [105] 

Intermediate bands ~ 2 eV (width: 0.65 eV)  ~ 2 eV (width: 0.75 eV) Similar calculation [114] 

 Width: 0.45 eV Experiment  [115] 

0.58 eV below higher band 0.6 eV below higher band Similar calculation [114] 

 0.35 eV below higher band Experiment [115] 

“Valence electrons” 

considered by PPs 

56×2=112 electrons  ----- ----- 

Number of bands calculated 76 bands ----- ----- 

4
5
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with O2p states, the bonding oxygen orbitals with higher energy (as compared to anti-

bonding counterpart). Triply degenerate t2g and doublet eg states, separated from each 

other by the crystal-field, are located at the lower edge of the conduction band and higher 

energies, respectively. All the degeneracies involved in t2g and eg states are lifted 

eventually because the octahedral coordination in V2O5 suffers strong deviation [105]. 

The density of electronic states (DOS) for V2O5 is shown on the right side of Figure 3.1. 

As can be seen in Figure 3.1, the most bonding part of the d band is split-off from the d 

band spectrum and the optical band gap is the difference in energy between the top of the 

O2p band and the bottom of the split-off part of the V3d band [116]. An indirect band 

gap of 1.7 eV is observed between T-point of the valence band to the  -point of the 

conduction band which is smaller than the experimental value of 2.2 eV [105]. It is to be 

noted here that this result is consistent with the reported band gap (1.74 eV) of Eyert and 

Höck [105]. This underestimation of the band gap is an inherent problem in determining 

band-gap using the DFT formalism. For convenience, the analyses of band structures of 

bulk V2O5 are summarized in Table 3.1 and are compared with the literature. 

 It is also seen from Figure 3.1 that the bands are dispersive to a varying extent. 

Bands are relatively flat (narrow band width) along  -X while larger dispersions (wide 

band width) are observed along  -Y and  -Z directions, for instance. This is a clear 

indication of anisotropies of the crystal structure. Disperse bands are indication of 

hybridization: the more the bands are dispersive, the stronger is the hybridization and 

vice-versa [117]. In general, the DOS is proportional to the inverse of the slope of the 

“band structure”. Conduction bands below 4.7 eV are relatively flat which is also 

confirmed by the peaks in the DOS in the corresponding energy range. Bands along X-S, 
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S-Y, U-R and R-T are doubly degenerate throughout the energy range and the rest are 

non-degenerate.    

3.3 Electronic Band Structure of Bulk VO2 

Figure 3.3 shows the electronic band structure and the DOS of bulk VO2 in its metallic 

rutile phase. The following high symmetry points, specified in reduced coordinates 

within the first Brillouin zone, were chosen in the calculations:   (0, 0, 0), X (0, 0.5, 0),   

R (0 0.5 0.5), Z (0, 0, 0.5),   (0 0 0), R (0, 0.5, 0.5), A (0.5, 0.5, 0.5),     (0, 0, 0), M (0.5, 0.5, 0), 

A (0.5, 0.5, 0.5) and Z (0, 0, 0.5) as indicated in Figure 3.4. As usual, origin was shifted 

by 7.47 eV, the Fermi energy, as shown by the horizontal dotted line in the band structure 

plot. Out of the computed 35 bands, the first 24 [(1×13+2×6)-1=24] were fully occupied 

while the rest were either partially occupied or unoccupied. The Fermi level passes through 

partially occupied bands with indices 25-28, where the band with index 25 corresponds to 

the valence electrons (as opposed to core electrons considered in the pseudopotential). 

This is a clear indication of finite overlapping of valence and conduction bands, a factor 

that characterizes metallic behavior. We mainly observed seven groups of bands but the 

first three groups lying around -63 eV, -38 eV and -18 eV, not shown in the figure, are 

due to V3s, V3p and O2s states, respectively. These are less important in our discussion 

because they are very tightly bound. The rest of the four groups of bands lie below (one), 

at (one) and above (two) the Fermi energy. Out of the four groups, the first one lying 

between -7.6 and -1.6 eV (energy range = 6 eV [118]) consists of 12 bands and are 

mainly due to O2p states. The second group which starts at 6.8 eV is due to V4s states. 

The third and fourth groups consisting of 6 and 4 bands, in the ranges from -0.6 to 2.0 eV 

and from 2.2 to 5.1 eV, respectively, are mainly from V3d states and some contribution  
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Figure 3.3 Electronic band structure and density of states for bulk VO2 rutile structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Definition of high symmetry points and lines in BZ for VO2 rutile structure.  
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from O2p states as a result of the p-d hybridization. The groups of bands discussed above 

can be more clearly understood from the following picture of crystal field splitting. 

It is known that nearly octahedral crystal field partially lifts the degeneracy of the 

d orbitals yielding two sets of bands:     and   
  (total of 10 bands, the sum of bands in 

the third and the fourth groups mentioned in the previous paragraph). Further, the 

tetragonal crystal field splits triply degenerate     states, containing the single d electron, 

into an     state and    
  doublet (which are also called    and   , respectively in the 

literatures) [22] as shown in Figure 3.5 (b). The Fermi level passes through partially 

occupied   
  and     bands. Octahedral distortions can be measured in terms of    -    

configuration mixing [97]. In the case of insulating, monoclinic (M1) phase,     further 

splits into lower and upper     bands as shown in Figure 3.5 (a), which are, respectively, 

called lower and upper Hubbard band, in the Mott picture while bonding (lower)  and 

anti-bonding (upper) bands in the Peierls model [118]. This latest splitting has been 

explained by metal-metal pairing in the vanadium chains [99].     

   

 

Figure 3.5 Schematic energy diagrams of the V3d and O2p states at the (a) insulating and 

(b) metallic phases of VO2 [118].  
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Figure 3.6 Electronic band structure and density of states for bulk VO2 monoclinic (M1) 

phase. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Definition of high symmetry points and lines in BZ for VO2 monoclinic (M1) 

phase.  
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Figure 3.6 shows the electronic band structure and density of states of bulk VO2 

in its monoclinic (M1) insulating phase. The following high symmetry points, specified in 

reduced coordinates within the first Brillouin zone, were chosen in the calculations: Γ (0, 0, 0), 

Y (0, 0, 0.5), C (0, 0.5, 0.5), Z (0, 0.5, 0), Γ (0, 0, 0) as indicated in Figure 3.7. As usual, 

the origin was shifted by 7.44 eV, the Fermi energy, as shown by the horizontal dotted 

line in the band structure plot. Out of 69 bands that were computed, the first fifty 

[2×(1×13+2×6)=50] are fully occupied; the band with indices 51 and 52 are partially 

occupied and the rest are unoccupied. The number of band-groups in the insulating phase 

is exactly the same as in the metallic phase. They appear in similar locations as in the 

metallic phase and hence can be interpreted with same arguments. One difference is that 

the number of bands in each group is doubled in the insulating phase, which is consistent 

with the fact that the number of formula units in the real space primitive unit cell doubles 

during the phase transition. The fact that electronic states are present at the Fermi Level 

indicates the shortcomings of LDA in reproducing the observed optical gap of 0.6 eV [3]. 

However, some differences in the bands properties can be clearly seen in the insulating 

phase: (a) number of bands crossing the Fermi level is less, with smaller amount of 

overlapping between valence and conduction bands (b) bands corresponding to “valence 

electrons” considered in the pseudopotential are fully occupied, unlike in the metallic 

phase, as shown in Figure 3.8. For convenience, the analyses of band structures of bulk 

VO2 are summarized in Table 3.2 and are compared with the literature. 
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Figure 3.8 (a) Metallic phase and (b) insulating phase of bulk VO2 at Fermi level. 
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Table 3.2 Band Structure of VO2: Comparison Table 

                      Present calculation Comparison with remark                                                             

                                                                                         

                                               (Remark)  

Band gap  M 0 0 Metal 

  I 0 0.6 eV Experiment [119] 

0  Similar calculation 

[120] 

V3s bands  M 2 bands  Appearing at  ~ -63 eV  N/A Not shown in Figure 

  I 4 bands N/A Not shown in Figure 

V3p bands  M 6 bands Appearing at  ~ -38 eV N/A Not shown in Figure  

  I 12 bands N/A Not shown in Figure 

O2s bands  M 4 bands Appearing at  ~ -18 eV  N/A Not shown in Figure 

  I 8 bands N/A Not shown in Figure  

Valence bands   

(mainly O2p)  

 M 12 bands Width: 6 eV Width: 6 eV Experiment [118] 

Width: 5.4 eV Similar calculation [97] 

  I 24 bands Width: 6 eV    

Conduction bands 

(mainly V3d) 

 M Two groups: 

6 bands: t2g 

4 bands: eg  

From -0.6 to 2.0 eV 

 &  

From  2.2 to 5.1 eV 

from -0.6 to 2.0 eV  

&  

from  2.0 to 5.5 eV 

Similar calculation [97] 

  I 20 bands Similar location as in 

metallic case 

   

Upper conduction 

bands (V4s) 

 M 2 bands Starting at 6.8 eV N/A  

  I 4 bands    

“Valence 

electrons” 

considered by PPs 

 M 50 electrons ---- ---- ---- 

  I 100 electrons ---- ---- ---- 

Number of bands 

calculated 

 M 35 bands ----- ----- ---- 

  I 69 bands ---- ----- ---- 

5
3
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3.4 Electronic Band Structure of Bulk V2O3 

Figure 3.9 shows the electronic band structure and density of states of bulk V2O3 in its 

metallic corundum phase. The following high symmetry points, specified in reduced 

coordinates within the first Brillouin zone, were chosen in the calculations:   (0, 0, 0),   

L (0, -0.5, 0),   Z (0, 0, 0.5),   F (0.5, 0, 0.5),      (0, 0, 0) and   Z (0, 0, 0.5) as indicated 

in Figure 3.10. As usual, the origin was shifted by 9.2 eV, the Fermi energy, as shown by 

the horizontal dotted line in the band structure plot. Out of 61 computed bands, the first 

42 were fully occupied while the rest were either partially occupied or unoccupied. The 

Fermi level passes through partially occupied bands with indices 43-47, where the bands 

with indices 43 and 44 correspond to the valence electrons (as opposed to core electrons 

considered in the pseudopotential). This is a clear indication of finite overlapping of 

valence and conduction bands, a property that indicates metallic behavior. The V3s, V3p 

and O2s states appear in similar locations as in VO2 but are not important for our purpose 

because they are tightly bound. By excluding these groups of bands, we can now see, 

mainly, four groups of bands as in VO2. The first one lying between -8.0 and -3.6 eV 

(energy range   4.0 eV [121]) consists of 18 bands and are mainly due to O2p states. The 

second group which starts at 4 eV, consistent with the work of Mattheiss [121],  is due to 

V4s states. The third and fourth groups consisting of 12 and 8 bands, in the ranges from 

-1.23 to 1.4 eV and from 1.94 to 3.7 eV, respectively, are mainly from V3d states and 

some contribution from O2p states as a result of p-d hybridization. The magnitude of the 

p-d hybridization is same as found for VO2 [99]. The groups of bands, discussed above, 

can be more clearly understood from the following picture of crystal field splitting 

(Figure 3.11).     
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Figure 3.9 Electronic band structure and density of states for bulk V2O3 metallic phase.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Definition of high symmetry points and lines in BZ for V2O3 metallic phase.   
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Figure 3.11 Schematic energy diagrams of the V3d and O2p states at the (a) insulating 

and (b) metallic phases in V2O3 [118], LHB and UHB are lower and upper Hubbard 

bands, respectively. 

 

 

As in the case of VO2, the crystal field due to the oxygen octahedra (VO6) splits d 

orbitals into two sets of bands:     (lower band) and   
  (upper band). The upper band   

  

is twofold degenerate and consists of      and     bands.  This oxygen octahedron is not 

perfect but has trigonal distortion. The influence of non-cubic arrangement of distant metal 

ions in the lattice, combined with the trigonal distortion, split the three fold degenerate 

    orbitals into a1g singlet (       ) and two fold degenerate   
  bands (          ) 

[122] as shown in Figure 3.11 (b). In the case of monoclinic phase, lower symmetry of 

the crystal field (due to structural change during phase transition ) further lifts the 

degeneracy between two    
  bands as shown in Figure 3.11 (a) [118, 122, 123]. In this 

a) b) 
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model, the antiferromagnetic insulating (AFI) phase remains in Hund’s rule (maximum 

spin) configuration   
  , leaving a1g band empty (putting V 3d

2
 ions in the S = 1 state). 

This is contrary to the one-band Hubbard model, where one V electron enters bonding a1g 

orbital state and the other enters the doubly degenerate    
  state (S=1/2 on each V site) [123].    

Figure 3.12 shows the electronic band structure and density of states of bulk V2O3 

in its monoclinic insulating phase. The following high symmetry points, specified in 

reduced coordinates within the first Brillouin zone, were chosen in the calculations: 

Γ (0,0, 0), Y (0.5, 0, 0), C (0.5, 0.5, 0), Z (0, 0.5, 0) and Γ (0, 0, 0), as indicated in Figure 3.13. 

As usual, the origin was shifted by 9.2 eV, the Fermi energy, as shown by the horizontal 

line at zero energy. Out of the 121 bands that were computed, the first eighty-eight 

[2×(2×13+3×6)=88] are fully occupied; the band with indices 89, 90 and 91 are partially 

occupied and the rest are unoccupied. The number of band-groups in the insulating phase 

is exactly the same as in the metallic phase. They appear in similar locations as in the 

metallic phase and hence can be interpreted with same arguments. One difference is that 

the number of bands in each group is doubled in the insulating phase, which is consistent 

with the fact that the number of formula units in the real space primitive unit cell doubles 

during the phase transition. The fact that electronic states are present at the Fermi Level 

indicates the shortcomings of LDA in reproducing the observed optical gap of 0.66 eV 

[124]. However, some differences in the band properties can be clearly seen in insulating 

phase: (a) number of bands crossing the Fermi level is less (b) bands corresponding to 

“valence electrons” considered in the pseudopotential are fully occupied, unlike in the 

metallic phase as shown in Figure 3.14. For convenience, the analyses of band structures 

of bulk V2O3 are summarized in Table 3.3 and are compared with the literature.  
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Figure 3.12 Electronic band structure and density of states for bulk V2O3 in insulating 

phase.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13 Definition of high symmetry points and lines in BZ for V2O3 insulating 

phase.   
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Figure 3.14 (a) Metallic phase and (b) insulating phase of V2O3 at Fermi level.  
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Table 3.3 Band Structure of V2O3: Comparison Table 

                      Present calculation Comparison with remark                                                                         

                                             (Remark)  

Band gap  M 0 0 Metal 

  I 0 0.66 eV Experiment [123]  

0  Similar calculation 

[125]   

V3s bands  M 4 bands Appearing at similar location as in VO2 N/A Not shown in Figure 

  I 8 bands N/A Not shown in Figure 

V3p bands  M 12 bands Appearing at similar location as in VO2 N/A Not shown in Figure 

  I 24 bands N/A Not shown in Figure 

O2s bands  M 6 bands Appearing at similar location as in VO2 N/A Not shown in Figure 

  I 12 bands N/A Not shown in Figure 

Valence bands   

(mainly O2p)  

 M 18 bands Width: 4.4 eV Width: 4.0 eV Calculation [121] 

  I 36 bands Width: 4.4 eV     

Conduction bands 

(mainly V3d) 

 M Two groups: 

12 bands: t2g 

8 bands: eg 

From -1.2 to 1.4 eV 

 &  

From  1.9 to 3.7 eV 

  

  I 40 bands Similar location as in metallic case    

Upper conduction 

bands (V4s) 

 M 4 bands Starting at 4.1 eV N/A Starting at 4 eV [121] 

  I 8 bands    

“Valence 

electrons” 

considered by PPs 

 M 88 electrons  ---- ---- ---- 

  I 

 

176 electrons 

 

---- ---- ---- 

Number of bands 

calculated 

 M 61 bands ----- ----- ---- 

  I 121 bands ---- ----- ---- 

6
0
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3.5 Summary 

In this chapter, we have summarized the findings of our LDA one-electron, Kohn-Sham 

band-structure calculations of bulk vanadium oxides in both insulating and metallic 

phase. Electronic band structures depend on the crystal structure and contribute to 

stability, bonding interactions and physical properties such as transport and optical 

properties. Band structures, obtained in our study, are consistent with similar studies in 

the literatures.  Band structures are found to be influenced by crystal field and the strong 

hybridization between 2p (O) and 3d (V) bands.  

Bands in V2O5 are remarkably dispersive to different extent, along various high 

symmetry lines in the Brillouin zone (BZ). This implies that the crystal structure is highly 

anisotropic. A group of conduction bands (with narrow band width, called intermediate 

bands), lying close (0.6 eV apart) to higher conduction bands observed in V2O5, seem to 

play an important role in a variety of device applications. An indirect gap of 1.7 eV is 

observed between T and   points of the BZ, which is close to the value of 1.74 eV 

reported in the literature [105]. 

Similar calculations are done in both metallic and insulating phases of bulk 

vanadium dioxide (VO2) and sesquioxide (V2O3). In the metallic phase, we see finite 

overlapping of valence and conduction bands. Bands in the insulating phases appear in 

similar locations as in corresponding metallic phases. The number of bands is doubled in 

the insulating phases (as compared to corresponding metallic counterpart), which is 

consistent with the fact that the number of formula units of the unit cell, in the 

calculations, is doubled in each of the oxides as the materials transition from metallic to 

insulating phase. Even though an optical gap is not observed in the insulating phase 
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(shortcomings of LDA), we have noticed some differences in the band structures that 

characterize phase- whether insulating or metallic. In insulating phase,  (a) number of 

bands crossing the Fermi level is less; (b) bands corresponding to “valence electrons” 

considered in the pseudopotential are fully occupied, unlike in the metallic phase.
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CHAPTER 4  

THERMOELECTRIC PROPERTIES OF VANADIUM OXIDES 

4.1 General Considerations 

Boltzmann Transport Equation (BTE) is a semi-classical transport equation: quantum 

mechanics is embedded in the electronic band structure but the equation of motion for 

electrons is written in momentum space that looks like Newton’s equation of motion, 

 

    ⃗  

  
              ⃗      

  (4.1) 

 

 

  

where,  ⃗      = electric field;         bottom of conduction band. Here, the force is due 

to the electric field in the sample. The solution to equation (4.1) yields time dependent 

momentum coordinate. Similarly, the velocity of an electron is obtained from the band 

structure,  

 

  ⃗⃗⃗⃗      
 

 
      ⃗      

 

  (4.2) 

 

 

and its solution gives the position of the particle with time. With these two solutions, the 

electrons can be tracked in phase space (this proves the semi classical nature of the 

approach because both momentum and position of a particle cannot be specified quantum 

mechanically). There are some assumptions considered in the Boltzmann approach such 

as: variation of bottom of the conduction band with space is slow so that quantum 
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mechanical reflections are not considered. This is a single particle approach but many 

body effects are treated.  We include the effects of scattering (collision) but we consider 

the scattering to be very short in time duration such that the electrons’ positions do not 

change during those events. It is the scattering or source term, in the second order, linear, 

non-homogeneous differential Equation (4.3), that imposes difficulty in finding analytical 

solution. In other words, these scattering phenomena are complicated and hence some 

approximation techniques need to be adopted to obtain analytical solutions.  One of the 

widely used approximations is the relaxation time approximation (RTA) which considers 

a constant averaged (momentum) relaxation time,   , for the electrons.  The basic idea in 

RTA is that the effect of collision is to take a small perturbation and to react in a negative 

way to try to pull the system back to equilibrium. In other words, if the system is 

perturbed, it will decay back to equilibrium as:   
  

  ⁄ . Within RTA, the BTE can be 

written as, 

 

         ⃗        
      

  
 

  (4.3) 

 

 

 

where, f = f(r,p,t)  is occupation function which, in equilibrium, is given by, 

 

       
 

 
      

   ⁄
  

  (equilibrium F-D function)   (4.4) 

 

 

 

The solution of BTE within RTA can be used to derive thermoelectric (TE) 

transport parameters, which surprisingly yields accurate results for various systems [126]. 
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In this study, the “BoltzTraP” code [106] is used which implements the Boltzmann theory 

to calculate the thermoelectric properties under constant relaxation time and rigid band 

approach [127]. The main transport properties calculated in this study are:  Electrical 

Conductivity ( ), Seebeck Coefficient (S), Thermal (Electronic) Conductivity (   ) as 

given by equations 4.5-4.7, respectively. Since Seebeck coefficient is independent of    , 

it can be tested against experimental data to get the relatively realistic comparison.    

 

      (In absence of magnetic field, B and thermal gradient,   ) (4.5) 

 

 

  

  = −Δ𝑉/ΔT  (-ve sign, only when  Δ𝑉 &    are opposite) (4.6) 

 

 

  

           (In absence of electric field, ie    =0) 

 

(4.7) 

 

 

 

However, these transport coefficients, in a crystal, are tensors and given by the relations 

(2.23), (2.25) and (2.26), respectively.   

  

 

 

Figure 4.1 Voltage due to heat flow. 
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 Thermoelectric effect refers to conversion of thermal energy into electric energy 

as shown in Figure 4.1. Good thermoelectric performance of a device is understood as 

having low thermal conductivity but high electrical conductivity as well as high Seebeck 

coefficient. These transport coefficients depend largely on the electronic structure of 

materials, specifically, electronic states near the Fermi level [128]. Moreover, the 

electron-electron correlation effect, present in vanadium oxides, are of immense interest 

for properties related to details of electronic structure [8]. Since the layered structures of 

oxide materials demonstrate interesting thermoelectric behavior [129], we are mainly 

interested in the thermoelectric properties of V2O5 which consists of layered unit cells.  

V2O5 is the most stable than the other two (vanadium dioxide and vanadium sesquioxide) 

and easy to produce using simple, inexpensive and non-toxic sol-gel deposition 

technique. Amongst the three oxides, only V2O5 exhibits thermoelectric (TE) properties 

[56] while VO2 and V2O3 show little TE response (small value of Seebeck coefficient) as 

shown in Figure 4.2. In order to study the effect of phase transition on thermoelectric  
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Figure 4.2 Seebeck coefficient versus temperature for VO2 (red) and V2O3 (black)  

before and after phase transition [130, 131]. 

 



   

  67 

  

properties, the Seebeck coefficient, electrical conductivity and thermal (electronic) 

conductivity of vanadium dioxide, VO2 are calculated. 

Even though “BoltzTraP” works well for a large number of systems, it is 

computationally expensive because it requires high k-point mesh for convergence. In 

order to avoid the computational expense, a self-consistent (SCF) calculation was 

performed for the theoretical structure (before relaxation) with fewer (but well 

converged) k-point density. The electron density obtained in the SCF calculation was 

then fed to non-SCF calculation to obtain the electronic structure on a finer mesh of k-

points as shown in Table 4.1. Both calculations use the cut-off energy to be 40 Hartree, a 

converged value with corresponding tolerance in energy of 0.1 meV for all the systems 

studied. In our study, the x-axis is defined parallel to the crystallographic a-axis (of 

conventional cell); y-axis is orthogonal to x-axis and lies in the a-b plane while z-axis is 

orthogonal to both the x and y axes. In other words, the coordinate-axes are same as 

crystallographic axes if the latter one is an orthogonal system. We have studied direction 

dependent (along the three axes) transport properties as well as their averaged (trace of a 

3×3 tensor quantity) value.    

 

Table 4.1 Non-SCF Grids Used in the Calculations 

 Number of k-points in IBZ 

V2O5 500 

VO2 (Metallic) 550 

VO2 (Insulating) 595 
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4.2 Transport Properties of Bulk V2O5  

Figure 4.3 shows the variation of Seebeck coefficient with temperature from 10 to 700 K 

along the three crystallographic axes a b and c, at the value of chemical potential ( ) = 

1.619 eV (   1.624 eV, the Fermi energy). Clearly, the Seebeck coefficient is anisotropic. 

The absolute value of Seebeck coefficient, | |, along a, is higher throughout the range 

beyond T = 150 K, as compared to the other two. The maximum (absolute) value of 

average Seebeck coefficient is found to be 246.54  V/K at 300K. This value is consistent 

with the absolute value of 258  V/K obtained in similar calculation [113] and an absolute 

value of 218  V/K measured experimentally at room temperature [132]. Maxima and 

crossovers are also seen in the variation of Seebeck coefficient and have been attributed 

to the (a) “Specific details” of the band structure and (b) direction dependent electron-

phonon interactions [133].  
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Figure 4.3 Seebeck coefficient versus temperature for bulk V2O5.  
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Figure 4.4 a) Electrical and b) thermal (electronic) conductivities of V2O5. 
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Figure 4.5 Calculated electrical conductivity of V2O5 compared with the experiment 

[132].  

 

Figure 4.4 shows the temperature dependent variation of electrical and thermal 

(electronic) conductivities along the three crystallographic axes, in terms of constant 

relaxation time. Figure 4.5 shows the comparison of calculated averaged conductivity 
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    ×        with available experimental value of conductivity for V2O5 films (both 

as-deposited and post-annealed at 773 K) [132]. Assuming that the behavior of thin-film 

does not differ drastically with its bulk counterpart of V2O5 [134], we conclude that RTA, 

within the Boltzmann theory, cannot reproduce the experimental results of electrical 

conductivity  with desired accuracy. In other words, the rate of variation of electrical 

conductivity is much higher than that predicted by the BTE. However, it can predict the 

anisotropic behavior as clearly manifested in the Figures 4.4 (a) in the following order: 

          and    
      

     
 . With attosecond momentum relaxation time 

(  ~       s), as seen from Figure 4.5, the thermal (electronic) conductivity, calculated 

in the Boltzmann framework, at 300K,  is 6.7944 ×      W/(m·K), which is ~3 orders of 

magnitude smaller than the thermal conductivity value of 0.45 W/(m·K), observed in the 

experiment [132]. Hence, the contribution of phonons might be taken into account to 

understand the thermal conductivity of bulk V2O5. With this analysis, we will mainly 

focus on Seebeck coefficient of VO2 in the following discussion.         

4.3 Transport Properties of Bulk VO2 

Figure 4.6 shows the temperature dependent variation of Seebeck coefficient of bulk VO2 

in its metallic rutile phase, at the value of chemical potential ( ) = 7.51 eV (   7.47 eV the 

Fermi energy). In VO2, there are two distinct directions for electric polarization: E ⊥ c 

and E   c axes which is also manifested by the Seebeck coefficient in Figure 4.6. The 

absolute value of Seebeck coefficient increases with temperature. The absolute value of 

Seebeck coefficient parallel to the rutile c axis is slightly lower than its perpendicular 

counterpart. Berglund and Guggenheim [130] have measured Seebeck coefficients at 
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348K as 23.1    0.2  V/K and 21.1   0.2  V/K (absolute values) in the directions 

perpendicular and parallel to the rutile c-axis, respectively. The corresponding BoltzTraP 

(absolute) values are 227  V/K and 205  V/K, which are of one order of magnitude 

higher. This is due to the insufficient k-points used in our calculation. A rule of thumb is  
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Figure 4.6 Seebeck coefficient versus temperature for bulk VO2 in rutile phase. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Electrical and b) thermal (electronic) conductivities of bulk VO2 in high 

temperature phase. 
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that the number of k-points in the calculation  should be more than   ×    𝑉   ⁄ , where 

𝑉    is the volume of the primitive unit cell [106]. Figure 4.7 shows the temperature 

dependent variation of electrical and thermal (electronic) conductivities along the three 

crystallographic axes, in terms of constant relaxation time. The anisotropic features are 

seen from both the plots, but electrical conductivity seems to be relatively reluctant to the 

directional variation as compared to the electronic component of thermal conductivity.   

Figure 4.8 shows the temperature dependent variation of Seebeck coefficient of 

bulk VO2 in its monoclinic phase, at the value of chemical potential ( ) = 7.51 eV (   

7.44 eV, the Fermi energy). There is no noticeable anisotropy in the Seebeck coefficient. 

The Seebeck coefficient decreases with temperature. The absolute value of Seebeck 

coefficient at 298K is found to be 223   V/K, whose magnitude is about five times 

greater than that measured in an experiment (43  V/K, the absolute value) [130]. Seebeck 

coefficient in insulating phase deviates less from the experimentally measured values 

than that in the metallic phase. This relatively reduced value can be attributed to the 

reduction in BZ volume, where the k-point mesh is relatively denser. (The volumes of 

primitive unit cells, in real space, are: 59.149834 (Metallic phase) and 118.289910 Å
3
 

(Insulating phase) with a ratio of 1:2, which will be flipped in reciprocal space). Figure 

4.9 shows the temperature dependent variation of electrical and thermal (electronic) 

conductivities along the three crystallographic axes, in terms of the constant relaxation 

time. Figure 4.10 shows the comparison of temperature dependent variations of Seebeck 

coefficient in low and high temperature phases with the experimental data; Seebeck 

coefficient in the metallic and insulating phases are scaled by factors 216/22.3 and 223/43, 

respectively. It is seen that the Seebeck coefficient, at experimental critical temperature of   
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Figure 4.8 Seebeck coefficient versus temperature for bulk VO2 in monoclinic phase.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 a) Electrical and b) thermal (electronic) conductivities of VO2 in low 

temperature phase.  
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Figure 4.10 Seebeck coefficient in low and high temperature phases of bulk VO2: 

“Kohn-Sham-Boltzmann” prediction of phase transition in VO2. 

 

 

340K, changes  by 18.9 µV/K which lies within 10% of the observed discontinuity of 

17.3 µV/K during the phase transition [130]. “Kohn-Sham-Boltzmann” approach can 

predict phase transition in VO2 with reasonable accuracy.   

4.4 Summary 

Among the three oxides of our interest, in the present study, only V2O5 exhibits 

thermoelectric (TE) properties. It is the layered structure, stability and easiness to prepare 

by inexpensive and non-toxic approaches, which make V2O5 an interesting thermoelectric 

material. Seebeck coefficient, electrical conductivity and thermal (electronic) 

conductivity are studied as a function of temperature at a fixed value of chemical 

potential close to the Fermi energy using Kohn-Sham band structure approach coupled 

with Boltzmann transport equations. All the transport parameters have correctly 

reproduced highly anisotropic electrical conduction that has been observed in V2O5.  
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Maxima and crossovers are also seen in the temperature dependent variation of Seebeck 

coefficient which can be the consequences of “specific details” of the band structure and 

anisotropic electron-phonon interactions. Comparisons of averaged electrical 

conductivity with that of as-deposited as well as post-annealed V2O5 films have shown 

the value of momentum relaxation time to be ~10
-18

 s.  

For understanding the effect of phase transition on transport properties, we have 

also calculated the thermoelectric properties of vanadium dioxide, VO2, for both metallic 

and insulating phases. Seebeck coefficient and thermal (electronic) conductivity in 

metallic phase show similar and more pronounced anisotropic feature as compared to the 

electronic part of the thermal conductivity. However, in the insulating phase, Seebeck 

coefficient does not show noticeable anisotropy. The absolute value of Seebeck 

coefficient increases monotonically with temperature in the metallic phase while it 

decreases monotonically with temperature in the insulating phase. Seebeck coefficient, at 

experimental critical temperature of 340K, is found to change by 18.9 µV/K which lies 

within 10% of the observed discontinuity of 17.3 µV/K during the phase transition. 

“Kohn-Sham-Boltzmann” approach can predict phase transition in VO2 with reasonable 

accuracy.   
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CHAPTER 5  

OPTICAL PROPERTIES OF VANADIUM OXIDES 

5.1 General Considerations 

The optical property of a material originates from the response of electrons to 

perturbation due to the incident radiation and transition between electronic states. The 

two optical parameters, namely frequency dependent complex refractive index   ̃    and 

dielectric function     , are related to the electronic structure and band structure of the 

solid. The band gap calculation and absorption edge estimation have been of immense 

interest in research due to their application in the design of optical, electronic and 

optoelectronic devices. Band gaps of VO2 and V2O5, at room temperature, have been 

reported as 0.6 eV [3] and 2.3 eV [135], respectively while a gap of 0.66 eV is found in 

V2O3 at 70K [124]. In this study, we have mainly analyzed the spectral dependence of the 

complex dielectric function      of both bulk and thin film of the V-O systems 

deposited on Al2O3 substrates, based on the data available in the literature. Observed 

peaks in the corresponding spectra have been interpreted and compared as a function of 

structure, polarization and temperature. Complex dielectric function      is related to 

the complex refractive index by the following equations,  

 

                                                                                                                    (5.1) 

                                                                                                                               (5.2) 
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where,       and        are frequency      dependent refractive index     and 

extinction coefficient    , respectively. 

Since the dielectric function is a complicated function of frequency [136], we 

have used the Penn model, a simplified model of a semiconductor or insulator [137, 138] 

to account for the average isotropic energy gap in terms of the long-wavelength 

electronic dielectric constant in the non-dispersive region. Van Vechten’s [139] extension 

of Penn model to d-electrons has also been implemented to account for the energy gap 

and ionicity of the bonds have been calculated using the empirical theory developed by 

Phillips [140]. Also, the sum rule has been applied to the V-O system to describe the 

effective number of electrons participating in the optical transitions.  

5.2 Review of Optical Spectra 

Above Tc, VO2 has a tetragonal crystal structure with two distinct directions for electric 

polarization. The lower symmetry monoclinic structure is energetically favorable for the 

crystal phase below Tc, and hence higher degree of anisotropic behavior is expected with 

three distinct directions for electric polarization. However, the “domain” pattern [141], 

observed in this low temperature phase, reduces the degree of anisotropy and hence 

electric vector (E) sees only two independent directions. Therefore, the optical properties 

have been studied with E ⊥ a axis for monoclinic phase and E ⊥ c axis for tetragonal 

phase and their parallel counter-parts. Anisotropic character of V2O3 is rarely taken into 

consideration since experimental study of its electrical and optical properties show very 

small directional dependence [142, 143]. However, V2O5 is highly anisotropic [114]. 

By definition, the dielectric function of an insulator or semiconductor quantifies 

the dielectric polarization, which in turn is described classically by the oscillation of a 
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spring connecting a pair of electric charges generated by an external electric field. 

Resonant oscillation of the spring, followed by light absorption, can be observed when 

the frequency of the incident radiation matches with the oscillating frequency of the 

spring. In other words,   , which is proportional to the amount of light absorbed in the 

medium, shows a peak corresponding to the resonance frequencies of the spring. Since 

the region of interest for incident photons lies within the infrared to the vacuum 

ultraviolet range, we will analyze, in essence, the atomic and electronic polarization. On 

the other hand, refraction or absorption of light in a medium can be completely 

determined by the complex refractive index, (n+ik), as well. Clearly, the real part (n) 

controls the speed of light in the medium while the extinction coefficient (k) signifies 

absorption and modulates the amplitude of the electromagnetic radiation in the medium. 

Figures 5.1-5.4 show the variations in optical properties such as   ,   , n, k and 

R  of the bulk and thin film of VO2, V2O3 and V2O5 with photon energy at different 

temperatures and polarizations of electric field. It is evident from the figures that the 

optical parameters show strong variation with energy of incident photons from infrared to 

vacuum ultraviolet range (up to 12 eV). The value of    at temperature higher than Tc 

decreases with frequency at the lower end of the spectrum and becomes negative while 

the   -E spectra show the corresponding exponential increase with decrease in 

frequency. This can be attributed to the free-carrier absorption or Drude tail of the 

metallic [144] phase and can further be justified by the rapid increase in reflectivity 

spectra with decrease in frequency below     , the plasma frequency at which    

becomes zero. The Drude absorption feature can also be observed in k-E spectra at high 

temperature metallic phase as evidenced in Figure 5.3 (b). The anisotropy is manifested  
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Figure 5.1 Variation of   ,    and R with photon energy at temperatures 300K and 
355K [141] for bulk VO2 with two polarizations of electric field (a) E              E ⊥ 
a axis and (c) a 1000 Å thin film of VO2 on Al2O3 substrate. 

 

from the amplitude, width and energy position of the corresponding structure in the 

optical spectra for polarizations parallel to the crystallographic axes a, b and c. By 

comparing the peaks in the   -E spectra of the insulating phase, for instance, of all the 

three oxides, V2O5 shows high anisotropic behavior; most of the peaks are more sharply 

peaked in V2O5 than those seen in VO2 and V2O3. Similarly, unlike in high temperature 

phase, the absorption peaks in the   -E spectra, at low temperature phase, are relatively 

sharper. The temperature dependence of the spectral variation of the optical properties is 

highly manifested at the lower end of the spectrum. These changes in the infrared region 
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during IMT are due to the onset of free carrier dominated absorption, a characteristic of 

metallic phase [141]. However, no remarkably high qualitative difference is observed in 

the optical spectrum between different temperatures at the higher frequency. 

Figure 5.1 shows the comparison of the reflectivity spectra and dielectric 

function- both real and imaginary part- of vanadium dioxide in the energy range of 0.25-

5.0 eV as a function of temperature below and above Tc. Figures 5.1(a) and 5.1(b) show 

  -E,   -E and R-E spectra of bulk single crystal of VO2 for polarization E   a axis and 

E ⊥ a axis, respectively while Figure 5.1 (c) shows the optical spectrum for 1000 Å 

polycrystalline thin film of VO2 deposited on Al2O3 substrate. The band gap absorption, 

as expected in the   -E spectra, cannot be seen which might be due to stoichiometric 

impurity and other imperfections in the samples. Comparison of Figure 5.1 (a) and (b) 

indicates the direction dependence of optical properties; the absorption and reflectivity 

peaks, observed in the low temperature phase, are higher for the polarization E ⊥ a axis 

as compared to the parallel counterparts. The contribution of atomic polarization to the 

dielectric function, which is indicated by the first resonance peak located in the infrared 

region, at 300K for electric field E ⊥ a axis is higher than for the polarization E   a axis. 

A small peak appearing near 0.6 eV in the   -E spectra in the metallic phase at 355K, as 

seen in Figure 5.1 (b), is absent for the polarization E   a axis. It means that the 

anisotropy is remarkable in the infrared region. No significant difference in structural 

feature between the bulk and thin film spectra is seen. The structures in the spectra below 

2.0 eV at high temperature phase have been described as a result of metallic free carrier 

dominated absorption [141]. However, significant peaks can be seen at energies above 

2.5 eV in both phases as indicated in Table 5.1  and are explained in terms of (direct) 
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inter band transitions i.e. the transitions between the 2p (O) and 3d (V) bands which are 

separated approximately by 2.5 eV [141]. A shoulder appearing relatively distinct near 

0.7 eV in the   -E spectra of high temperature phase, in Figure 5.1 (b), has been 

interpreted as inter band transition within the 3d bands [141]. 

 

Table 5.1 Photon Energies Corresponding to the Peaks and Shoulders as Seen in   -E 

Spectra of VO2 [141] 

 

 

E (eV) 

Bulk Film on Al2O3 

E   a axis E⊥  a axis 

E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4 

   300K 1.0 1.3 2.6 3.6 0.85 1.3 3.0 3.7 1.0 1.3 2.8 3.5 

355K --- --- 3.0 3.6 --- 0.75 2.9 3.6 --- 0.85 2.8 3.5 

 

Figure 5.2 shows the reflectivity spectra and dielectric function-both real and 

imaginary part- of vanadium sesquioxide (V2O3) from infrared to vacuum ultraviolet 

range (up to 10.0 eV) as a function of temperature below and above Tc.  Figure 5.2 (a) 

shows the   -E and   -E spectra of bulk V2O3 calculated using density function theory 

[145] and R-E spectra of single crystal of V2O3 at near-normal incidence [63]. The 

absorption, in bulk V2O3 at temperature of 148K, starts at 1eV as seen in the   -E spectra 

of Figures 5.2 (a). It means that the low temperature insulating phase is transparent to 

infrared radiation. Other absorption peaks appear at near infrared, visible and near 

ultraviolet regions as indicated in Table 5.2. The highest but wider peak centered at 6.1 eV 

covers the range from 5 to 9 eV, which is an indication of strong absorption in the 

ultraviolet region. The infrared reflectivity spectra of a single crystal of V2O3, measured 

in the temperature range of 100 to 600 K, show two distinct behaviors.  Unlike the R-E 

spectra at the temperature of 100K, the reflectivity at low frequency edge increases with  
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Figure 5.2 Variation of   ,    and R with photon energy for (a) bulk V2O3 at different 
temperatures [63, 145] (b) thin film of V2O3 on Al2O3 substrate [118]. 

 

decrease in frequency at all temperatures above 200K. This can be attributed to the high 

temperature metallic behavior. However, the temperature dependent variations at higher 

temperatures are relatively insignificant, and it seems that the significant changes in 

reflectivity occur within a few degree of Tc. On the other hand, the high frequency 

reflectivity tails merge with each other, irrespective of the temperature. Figure 5.2 (b) 

shows the dielectric function of a 75 nm polycrystalline film of V2O3 deposited on Al2O3 

substrate at temperatures below and above Tc [118].  Table 5.2 lists the absorption peaks 

observed in the   -E spectra. Clearly, fewer structures are seen in the case of 

experimental spectra of the thin film as compared to the calculated spectra of the bulk 

V2O3. This can be partially attributed to the optical property calculations combined with 
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other parameters such as temperature difference and possibly surface effects. However, 

the peaks in insulating phase, existing at three energy locations viz. E2, E3 and E7 (see 

Table 5.2), seem to refer to major optical transitions. 

 

Table 5.2 Photon Energies Corresponding to the Peaks and Shoulders as Seen in   -E 

Spectra of V2O3 [118, 145] 

 

Energy (eV) E1 E2 E3 E4 E5 E6 E7 E8 

Bulk 148 K 1.0 1.2 2.3 3.0 3.6 4.0 4.5 6.1 

Film on Al2O3 100 K --- 1.2 2.4 --- --- --- 4.6 --- 

200 K --- --- 2.0 --- --- --- 4.3 --- 

 

 

 

 

Figure 5.3 Variation of   [115],   [114], R[115] n and k  [39] with photon energy 
for (a) bulk V2O5 at polarization E              E                E                     
film of V2O5 on Al2O3 substrate. 
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Figure 5.3 shows the dielectric function, reflectivity spectra, and both the real and 

imaginary part of refractive index of vanadium pentoxide (V2O5) from infrared to near-

vacuum ultraviolet range (up to 7.0 eV) as a function of temperature below and above Tc. 

Figure 5.3 (a) shows the   -E,   -E and R-E spectra of bulk single crystal of V2O5 for 

polarizations parallel to crystallographic axes a, b and c. The band-edge absorption is 

visible around 2.0 eV from the   -E spectra, which cannot be described by a unique inter 

band optical transition but can only be partially attributed to direct forbidden transitions 

(k ≠0, where k is the wave vector) [114]. Beyond the intrinsic edge towards higher 

energy, the peaks represent the absorption and correspond to electronic transitions from 

filled 2p (O) to empty 3d (V) states [115]. It can be seen from the   -E and R-E spectra 

for polarization vector E   a axis, in Figure 5.3(a), that the first sharp absorption occurs at 

around 2.8 eV whereas the second and third peaks appear at 4.3 and 6.4 eV, respectively. 

The dielectric function shows a very high anisotropy in the range between 2.2-3.3 eV 

(visible region) as noticed in   -E and   -E spectra; the spectra in E   a axis deviates 

most from the other two. Clearly the anisotropy depends on the spatial distribution of 

electron wave functions and it is possible that the 3d-orbitals directed along the a-axis are 

relatively more localized, as indicated by the narrow intense peak in the   -E spectra for 

E   a axis, forming a wider conduction band. Figure 5.3 (b) shows the frequency 

dependent refractive index and extinction coefficient of a polycrystalline thin film of  -

V2O5 deposited on Al2O3 substrate. The measurements were taken from 0.75 -4.0 eV at 

various temperatures ranging from 265 to 325 ºC with an increment of 15 ºC. Both n-E 

and k-E spectra exhibit significant temperature dependent change over the entire energy 

range indicating the phase transition. The k-E spectra shows a shift in the absorption edge 
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from 1.5 eV to less than 0.75 eV as the temperature rises from 280 to 295 ºC [39]. The 

sharp absorption observed in the k-E spectra, at around 3.0 eV, is close to the 

corresponding absorption peak located at 2.8 eV in bulk V2O5.   

 

 

 

Figure 5.4 Variation of R with photon energy for bulk VO2, V2O3 and V2O5 at 298K [146].  

5.3 Application of Penn Model 

Band structure of a material is related to its R-E spectra (  -E spectra). By definition, an 

intensity maximum in R (or   ) in the R-E spectra (or   -E spectra) represents a 

maximum number in the optically induced electronic transitions in the material [147]. 

The energy corresponding to the peak should therefore correspond to a band-to-band 

energy difference or a band gap. Since this is a macroscopic gap [138], it should be 

related to the high-frequency dielectric constant    (=n
2
), where n is the refractive index. 

It should be noted here that “high-frequency” dielectric constant refers to the “zero-

frequency” dielectric constant       which is low compared to interband transition 

frequencies but higher than phonon frequencies.  
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Several models [138, 148, 149] have been proposed to interpret the frequency and 

wave-vector dependence of the dielectric function. All these models have, however, been 

proposed for elemental semiconductors. Extrapolation of the applicability of these 

models to amorphous semiconductors, [150] and narrow and wide gap materials, 

including alkali halides [139, 151, 152], has been carried out with  reasonable success. 

Here, we demonstrate the applicability of one such model to the three oxides of 

vanadium. For a model semiconductor, the high frequency dielectric constant is given by [138], 

                  

                  (      )
 
   (     ⁄ )  

 

 
(     ⁄ )

 
                         (5.3) 

 

where,    is the Penn gap [138] and    is the Fermi energy given by [151], 

 

                                                     (   )
  ⁄

                                                       (5.4) 

 

with the valence-electron plasmon energy given by [153]:           v  W 
 

 ⁄ , W is 

the molecular weight and  v is the number of valence electrons per molecule calculated 

by using, 

 

                                              v  M                                                              (5.5) 

 

for a compound 𝐴𝑀𝐵𝑁, where a(b) is number of valence electrons per atom of type A(B) 

and M(N) is the atomic fraction of element A(B). Equation (5.3) can be rewritten as,  
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                                                      (      )
 
                                                 (5.6) 

 

where, S0  represents the terms inside the square brackets. Since the most significant 

variation occurs in the expression before S0, Penn neglects the smaller terms containing 

  
  

⁄  and thus approximates the value of S0 as 1 [154]. This is true for materials with 

band gaps in the commonly occurring range where 
  

  
⁄    3 [149]. However,  Grimes 

and Cowley [149] found that the value of S0 is only weakly dependent on the band gap 

and that a value of 0.6 is a fairly good representation of S0. Thus, with this slightly more 

accurate value for S0, the energy gap can be determined by using appropriate values of 

the dielectric constant.  

At room temperature, VO2 and V2O5 are in insulating phase while V2O3 is in 

metallic phase with very low density of states at the Fermi level [146]. It is believed that 

IMT is governed by the change in the 3d band structure [155, 156]. In Penn model, the 

effect of the d band is to increase the number of valence electrons per molecule,  v. Van 

Vechten [139] has considered, in detail, the effect of d electrons on the dielectric 

properties of materials. In Table 5.4, we also evaluate the Penn gap incorporating the d-

electron contribution to  v as indicated within the parenthesis.  

It is important to note here that the effective valence-conduction band gap, for the 

material consisting of different atoms in the unit cell, can be separated into homopolar 

(Eh) and heteropolar part (C) as introduced by Phillips [157]. Accordingly, we write 

  
    

     and introduce a parameter, Phillips ionicity, defining the ionic character in 
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bonds as,           
     , where,    is related to the static dielectric constant      by [140], 

 

                                                          (      )
 
                                             (5.7) 

 

In order to study the Penn gap, which is the macroscopic gap accounting for all the 

possible optically induced electronic transitions in the material, we rely on the reflectivity 

data, measured at room temperature, extended  for longer range of photon energy as 

shown in Figure 5.4 [146]. The size of the single crystal samples of V2O5 and V2O3 used 

in these measurements were 10×10×5 mm
3
 each whereas that of VO2 was 7×5×5 mm

3
. 

The measurements were performed for the polarization E   a axis. The energies 

corresponding to maxima in intensities seen in Figure 5.4 are listed in Table 5.3.  

We can clearly see three major peaks for VO2 crystal as indicated in the Table. 

The first peak appearing at 0.7 eV, in the insulating phase, corresponds to the shoulder 

appearing in the   -E spectra of high temperature phase, in Figure 5.1 (b), both of them 

having the same origin of transition, i.e., from occupied to empty states within the d band 

[141, 146]. The other two peaks, at 3.6 and 7.4 eV, correspond to the transition from 2p 

(O) to 3d (V) band. The fact that the 3d-band width in V2O3 is around 3 eV [156], which 

is the largest of all three V-O system [146], and the electronic transitions start at 4.2 eV 

imply that no transition occurs within the d band in V2O3. Also, the transitions are mostly 

to the 4s, 4p bands of vanadium only after 10 eV [146], the observed peaks between 4.2 eV 

and 9.0 eV can be referred to the transition from 2p (O) to 3d (V) band. We can see four 

major peaks for V2O5 crystal as indicated in the Table and refer to the transition from 2p 

(O) to 3d (V) band, where the first peak at 2.97 eV shows the highest optical transition 
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rate and is attributed to excitonic transition [146]. Since the first peak appears at 

relatively high energy, no transition occurs within the d band in V2O5.        

 

Table 5.3 Peak Energies from Reflectivity Data of the V-O Systems at Temperature of 

298 K 

Energy (eV) E1 E2 E3 E4 

VO2 0.7 3.6 7.4 --- 

V2O3 4.2 6.8 9.0 --- 

V2O5 2.97 4.51 6.5 8.1 

 

The results of the calculations based on Penn model are presented in Table 5.4.  

Also, listed in Table 5.4 are the values of band gap energy (Eg), zero-frequency (  ) and 

high-frequency (  ) dielectric constants, Phillips ionicity (fi), average homopolar (Eh) 

and heteropolar (C) energy gaps, Fermi energy (EF) and arithmetic average of all the 

energies corresponding to the peaks in the R-E spectra ( ̅). Using the values of EF and Ep 

listed in Table 5.4, we have evaluated the value of S0 and it is found to be 0.88 which is 

more than our approximation but still less than unity. It can be seen from Table 5.4 that 

the calculated value of Ep for the single crystal of V2O3 is close to  ̅. While Ep of VO2 

and V2O5 are also seen to be in good accord with the corresponding values of  ̅, the 

difference between Ep and  ̅ for V2O5 is relatively higher as compared to that of VO2. 

These relative deviations are consistent with the degree of anisotropy of the three V-O 

systems. It is important to note here that Ep value of VO2 and V2O3 are closer to the value 

in the parenthesis (the average of all energies corresponding to the peaks and shoulders in 

the R-E spectra,  ̅). This indicates that an isotropic, nearly free electron model such as 

the Penn model seems to be valid in explaining the energies corresponding to the peaks in 
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the reflectivity spectra of these vanadium oxides. It is to be noted here that such a 

procedure of comparing the calculated Ep with the average of the energies corresponding 

to the peaks in the R-E spectra was proposed by Phillips [140]. Examining the ionicity, 

we see that the V-O systems are more than 65% ionic. V2O3 and VO2 follow the general 

trend that low oxidation states of vanadium oxides are more ionic and undergo IMT 

[158]. However, V2O5 is highly ionic but is consistent with the fact that V2O5 is more 

ionic than VF5 [159].   



   

  

Table 5.4 Properties of the V-O Systems; the Parenthesis Value of E̅ is the Arithmetic Average of All the Energies Corresponding to 

the Peaks and Shoulders in the R-E Spectra 

 

V-O system Mol. Wt 

(W) 
   

(g/cc) 

Eg  

(eV)  

Nv       

(eV) 

    

(eV) 

   Ep  

(eV) 

E̅  

(eV) 

   fi C  

(eV) 

Eh 

(eV) 

VO2 82.94 4.68 

[160] 

 

0.60 [3] 6 16.56 12.44 9.7 

[161] 

4.4 

(4.6) 

3.9 

(4.79) 

25.9 

[161] 

0.65 3.55 2.60 

V2O3 149.88 4.98 

[142] 

 

0.66 

[124] 

10 16.60 12.48 5.0 

[162] 

6.4 

(6.7) 

6.6 

(6.30) 

15.0 

[163] 

0.71 5.43 3.44 

V2O5 181.88 3.36 

[164] 

 

2.30 

[135] 

14 14.64 10.55 4.0 

[165] 

6.5 

(6.8) 

7.36 

(5.52) 

13.8 

[115] 

0.77 5.73 3.17 
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5.4 Sum Rule 

At this stage, it would be worthwhile to look into the number of electrons participating in 

the optical transitions. Most of the electrons in the material are core electrons and are 

tightly bound to the atomic nuclei. If we consider that the core electrons are excited for 

high enough frequencies, the sum rule can be written as [166], 

 

                                  
    𝑁   

 
 ∫       

 

 
                                                          (5.8) 

 

where, m is the mass of a free electron; e, the electronic charge; N, the number of atoms 

per unit volume (atom density);   , the angular frequency of light and n, the total number 

of electrons per atom. However, the electrons contributing to the optical properties of 

solids are conduction and valence electrons and, hence, the core states can be neglected. 

Further assuming that other absorptive processes such as phonon excitation are not 

overlapping with electronic excitation [167], the effective number of electrons per atom 

participating in optical transitions over a given frequency range is approximated by,  

  

         
 

       
∫       

  

 

                            

 

         
         

        
∫       

  

 

                                       

                                                                                                                            (5.9) 
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where,    is the permittivity of free space and          is the effective number of 

electrons per atom governed by polarization of electron shells, contributing to optical 

transitions below an energy   . Since we are interested in calculating the effective 

number of electrons per formula unit, we define N as the number of vanadium ions per 

formula unit per unit volume.  

 

 
 

Figure 5.5 Variation of neff with photon energy calculated using Eq. (5.9) along with 
its slope with respect to the energy for (a) bulk at polarization E      [114, 141, 145] 
and (b) film of VO2, V2O3 and V2O5 on Al2O3 substrate [39, 118, 141].  

 

Figure 5.5 shows the variation of neff and its slope with photon energy, which were 

calculated numerically using Equation (5.9) for all the three V-O systems at temperatures 

below and above Tc. The effective number of electrons shows a clear temperature 

dependent variation with photon energy below and above Tc. The calculated neff for 

insulating phase is zero below certain photon energy but varies with photon energy. The 
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rate of change of neff with respect to energy of incident photons, referred to as slope, is 

not constant throughout the frequency range and shows significant variation.  

The neff for both the bulk and thin film of VO2, corresponding to the insulating 

phase (300K), is almost zero below 0.6 eV which then varies with the energy of incident 

photons. The slope for bulk phase, at 300K, initially increases until 1.2 eV, remains fairly 

constant from 1.2-2.1 eV, rises to a maximum at 3.8 eV, with a small shoulder in 

between, and finally decreases with increase in photon energy. The region of the shoulder 

may refer to the transition from 2p (O) to 3d (V) states and is small when compared to its 

expected value of unity for the absorption due to the one “extra” d electron per formula 

unit. While there are some differences in the magnitude between the slope of the bulk and 

film of VO2, their energy dependent variations show similar pattern. The slope for the 

high temperature phase of VO2 initially decreases and reaches minimum at 1.75 eV and 

then rises until 2.5 eV and finally shows slight rise and fall alternatively as indicated in 

Figure 5.5 (b).       

The slope for V2O3 in Figure 5.5 (a) shows the highest peak, besides other small 

structures, at around 6.1 eV which indicates a strong absorption in the ultraviolet region. 

This peak is consistent with the corresponding peak in the   -E spectra observed in 

Figure 5.2 (a). On comparing Figures 5.5 (a) and (b), we see that the neff for both the bulk 

and film of V2O3 in its insulating phase show similar trend until 3 eV. However, after 3 eV, 

the neff in the film of V2O3 deviates considerably from its bulk counterpart, which in fact 

shows saturation near a value of 4 electrons per formula unit at the end of the ultraviolet 

spectrum. Assuming that the density functional theory [145] correctly predicts the optical 

properties of V2O3 in the photon energy range of 0 to 10 eV, this saturation can be 
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attributed mainly to absorption due to the two d-electrons per vanadium ion combined 

with some contribution due to the transition from 2p (O) to 3d (V) states. However, there 

is a remarkable difference in the neff between the bulk and film of V2O3 and may require 

further study to make a definite conclusion to interpret the difference. 

The neff for both the bulk and film of insulating phase of V2O5 is almost zero 

below 2.2 eV and is consistent with the observed absorption band edge. An abrupt change 

in the slope near the peak region, as seen in Figure 5.5 (a), is characteristic of inter band 

transition. This peak is consistent with the peak in Figure 5.3 (a) in the   -E spectra 

observed at polarization E   a axis. The neff in bulk phase of V2O5 shows a value of 1.49 

at photon energy of 4.0 eV. Since V2O5 does not have any d electron in its V
5+

 ion, this 

should be the contribution due to the transition from 2p (O) to 3d (V) states. The value of 

neff corresponding to this transition is higher in V2O5 as compared to the other two oxides 

and can be attributed to the higher number of oxygen atoms per formula unit. A similar 

interpretation can be made for the film of V2O5 on Al2O3 substrate. However, the 

variation of neff with energy at two different temperatures below and above Tc appears to 

show more consistent pattern at sufficiently high photon energy in both VO2 and V2O3 

while a divergence pattern can be easily seen from Figure 5.5(b) for the corresponding 

variation in V2O5. Comparison of neff of bulk at room temperature and film of V2O3 at 

265
o
C shows different pattern of variation with photon energy which may be partly 

attributed to the difference in temperature and the highly anisotropic nature of V2O5. This 

may be due to the fact that studies [3, 39] of optical property do not pertain to the same 

crystallographic axis besides ambient conditions and other aspects of the experiment such 

as the quality of the crystal and analysis procedures. This conclusion is consistent with 
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the perspective of Kang et al. [39], where assertion has been made that the structural 

phase transition in V2O5 does not occur and that V2O5 film undergoes an IMT at a critical 

temperature of 280
o
C instead of 257 

o
C [30] as reported in most of the literature. 

5.5 Summary  

Vanadium oxides, which consist of strongly correlated d electrons, are extremely 

sensitive to the external stimulus such as temperature and undergo insulator-metal 

transitions (IMT) at a particular temperature depending on the O/V ratio. Vanadium 

oxides are widely used in technology in which devices make use of their properties such 

as IMT, high temperature coefficient of resistance (TCR) and a small 1/f noise constant. 

In this study, we have analyzed the optical properties such as   ,   , n, k and R of  bulk 

and film of VO2, V2O3, and V2O5 deposited on Al2O3 substrates, based on the data 

available in the literature. The observed peaks in the corresponding spectra have been 

interpreted and compared as a function of structure, polarization and temperature. The 

anisotropy is significant in the infrared region for VO2 and in the visible region for V2O5. 

Penn model leads to an explanation of the energies corresponding to the peaks in the R-E 

spectra of the single crystal of the V-O systems at room temperature. Ep values for VO2 

and V2O5 are close to the average of the energies corresponding to the peaks ( ̅  while 

their values are even closer in V2O3, clearly reflecting the degree of anisotropy in the 

order of V2O3 < VO2 < V2O5. The vanadium oxygen bonds are highly ionic and undergo 

IMT at Tc as a function of oxidation state of the vanadium ion i.e. the transition 

temperature increases with oxidation states of the vanadium atom. Optical transitions and 

effective number of electrons participating in these processes are described from the   -E 

spectra and its numerical integration using the well-known sum rule. The results of these 
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calculations show that the optical transitions from valence to conduction band occur 

including the transition from 2p (O) to 3d (V) bands and the inter band transitions within 

the d bands. The optical spectra has no indication of the transition occurring from 

occupied to empty states within the d band for V2O3 and V2O5 systems but the intra band 

transition seems to occur in VO2. The change in neff with respect to the energy of incident 

photons is also calculated and it is found that this change is consistent with the peaks 

observed in the   -E spectra. 
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CHAPTER 6  

SIMULATION OF SPECTRAL EMISSIVITY OF VANADIUM OXIDES (VOX) 

BASED MICROBOLOMETER STRUCTURES 

6.1 Introduction 

Materials at non-zero temperature emit radiation and the radiated energy varies as the 

fourth power of the absolute temperature (Stefan-Boltzmann law). At room temperature, 

the emission is mostly in the infrared (IR) region which ranges from 0.75-1000  m [168]. 

The other major source of thermal radiation is Cosmic Microwave Background (CMB) 

radiation, a remnant of the hot Big Bang theory for the origin of the universe (Nobel prize 

in 1978, Penzias and Wilson of Bell Labs, NJ, USA). The microwave ranges in the region 

between 103 to 106  m. Detection of dangers in advance, superior situation awareness 

and the use of precise weapon on time are the main requirements for both military 

(defense) and non-military (civilian) security applications. Infrared detectors, sensitive in 

both short and long wavelength infrared region, fulfill most of these requirements [116].  

The atmosphere allows infrared (IR) transmission in the following region [168]: 

0.79-1.7  m (Near Infrared, Near-IR), 2-6  m (Mid Wave Infrared, MWIR) and 8-14  m 

(Long Wave Infrared,  LWIR). As can be seen from Figure 6.1, the transmission is 

affected primarily due to the IR scattering and absorption by various atmospheric gases 

such as H2O, CO2, O3 and O2. According to Wien’s displacement law, a sensor such as 

the human eye can see an object in the presence of radiation within certain range of 

electromagnetic (EM) spectrum and a temperature source around it, with certain 

minimum temperature (for example: industrial fluorescent light bulbs for eye) as shown  
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Figure 6.1 IR transmission in earth’s atmosphere [168]. 

 

in Table 6.1. Usually 8-14  m window is a choice for high performance thermal imagers 

because of the following reasons: (a) smoke and mist particles are small as compared to 

these wavelengths and IR can easily transmit through them; (b) it is highly sensitive to 

objects at ambient temperature and  (c) scattering by gas molecules is very small in the 

region above 2  m [169]. However, at high altitude in the atmosphere, where the 

temperature is far below -35ºC, the IR detection is still a challenge to the current 

technology.   

    

Table 6.1 Minimum Temperature of Sources Required to “See” an Object in Different 

Spectral Regions [170]     

 Eye Near IR SWIR LWIR 

  ( m) 0.38-0.72 0.79-1.7 2-6 8-14 

Temp (ºC) 525 275 -25 -35 
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In order to detect radiation, a photodetector, a device which converts the absorbed 

photons into a measurable form is used. There are mainly two types of detectors that can 

convert the absorbed photons into a measurable form: photon detectors and thermal 

detectors. A photon detector is an optoelectronic device which gives rise to an electrical 

output signal when energy distribution of electrons changes as a result of the interaction 

of radiation with either free or bound charge carriers in a material. Interaction can be 

either internal or external. In internal interaction, photons either interact with charge 

carriers (bound or free) or produce a localized excitation of an electron to higher energy 

state [171]. However, in external interaction, electrons are emitted as a result of 

Einstein’s photoelectric effect. On the other hand, thermal detectors absorb the photon 

energy and convert it into heat which, in turn, affects physical or electrical parameters 

such as electrical conductivity, thermoelectric voltage, and pyroelectric voltage. Hence 

thermal detectors do not depend on the nature of the photon or spectral content of the 

radiation but depend on radiant power; the spectral response of a sensing material is 

determined by the emissivity of the surface. Since heating and cooling are slower 

processes compared to the interaction between photons and electrons, thermal response is 

relatively slower than spectral response. Typically, thermal effects occur in millisecond 

time scale while the effects due to photons are observed on micro or nano second time 

scale. 

Photon detectors are used in IR detector technology due to two major 

performance parameters: excellent signal to noise ratio and fast response time. Since the 

energy of incident photons is comparable to average thermal energies (KBT) of atoms of 

the sensing element [172], the noise due to thermal charge carriers is inevitable and hence 
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these photon detectors require cryogenic cooling to 77K or below [1]. Cooling 

mechanism, included in the photodetectors, makes the device not only heavy, bulky and 

inconvenient but also expensive. Furthermore, photon detectors lack in broad band 

response, i.e., they exhibit selective wavelength dependent response to incident radiation. 

The difficulty in operating photon detectors with appropriate spectral response in the IR 

region [173] is their other drawback.  On the other hand, thermal detectors such as 

thermocouples, bolometers, thermopiles, and pyroelectric detectors are interesting 

because they are rugged, reliable, light, inexpensive and they can be operated at room 

temperature. Most of the thermal detectors are passive devices since they do not require 

bias and, most importantly, they provide flatter spectral response. In this chapter, a 

discussion of one of the thermal IR detectors, the bolometer, is presented. 

The bolometer consists of a sensing element having a strong temperature 

coefficient of resistance [TCR,   
 

 

  

  
] so that a small temperature change, caused by 

the incident radiation, can be measured. Commonly used bolometer sensing elements are: 

VOx, SiO2 and amorphous Silicon (    ) [168]. Thermal bolometric detectors can be 

fabricated on thermally isolated hanging membranes by utilizing micro-electro-

mechanical systems (MEMS) technology [174]. A “monolithic” structure fabricated, at 

Honeywell, by silicon micromachining is termed as microbolometer which consists of a 

two-level structure with a gap (d) of ~ 2.5   m between them as shown in Figure 6.2 

(Texas Instruments developed the pyroelectric detector arrays).  The upper layer is a 

square shaped silicon nitride (Si3N4) plate, of side 50  m and thickness 0.5  m, 

suspended over an underlying silicon readout integrated circuit (ROIC) substrate. 

Encapsulated in the center [169] of Si3N4 bridge is 500Å of polycrystalline VOx - a 



   

  102 

  

popular thermistor. A reflective layer of Al coated on top of Si wafer increases the 

absorption effectively at 10µm wavelength due to the formation of a quarter wave 

resonant cavity. 

 

 
 

Figure 6.2 Schematic of a microbolometer pixel structure [168].  

 

       

Due to the development of MEMS technology, uncooled infrared bolometers have 

now maintained the performance levels of cooled infrared photon detectors [51]. The 

performance of a thermal detector can be divided into two steps: raising the temperature 

of a sensing material by input radiation and using the temperature dependent variation of 

a particular property of the material as its response.  The second step, involving the use of 

material property, depends on the type of thermal detector and, for a bolometer, TCR is 

utilized. TCR is related to the voltage responsivity, a widely used parameter to specify 

the performance of a bolometer, as, 

 

   
      

  
 

       

            
 

  (6.1) 
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where,    is the incident power, G is thermal conductance,    is frequency of sinusoidal 

excitation,   is thermal time constant,    is the rise in temperature,   is emissivity,    is 

resistance at ambient temperature and I is bias current. The complete characterization of a 

microbolometer requires the understanding of both electrical and optical properties. The 

focus of the present study is the simulation of room temperature spectral emissivity of a 

single pixel industry standard VOx based microbolometer.  

6.2 Results and Discussion 

The Multi-Rad, a copyrighted software, was developed at Massachusetts Institute of      

Technology (MIT) to study the radiative properties of silicon-related layered materials 

[175-177]. It implements thin film optics in the  form of the matrix method of  

multilayers [175] and assumes the layers to be optically smooth, parallel to each other, 

optically isotropic (no variation in azimuthal direction) and the area in question is much 

larger than the wavelength of the incident radiation (no edge effects).   

A generic layered structure is shown in Figure 6.3 [178].  The analyses in this 

section follows the earlier approach [178]. There are N layer interfaces (circled) and N+1 

“layers” (squared), including the unbounded transparent media on each side of the actual 

stack. The terms Ai and Bi are the amplitudes of the forward and backward propagating 

electric-field vectors on the left side of the interface, i. The prime notation on A′N+1 and 

B′N+1 indicates that these are the amplitudes on the right side of interface N. Light is 

incident on interface 1, with an angle of incidence θ =θ1.  

The central equation of the multilayer theory relates the amplitudes on the left 

side of interface 1 with those on the right side of interface N, 
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where, Pi is the propagation matrix, Di is the dynamical matrix, and mij  is an element of 

the transfer function matrix.  The propagation matrix accounts for the effect of absorption 

and interference within a layer i bounded by two interfaces.   
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Figure 6.3 Notation for matrix method of multilayers. 

 

Reflectance, transmittance and emittance of a multilayer stack can be studied in the 

spectral range of 0.4-20 µm at different thickness and angle of incidence. Radiation at a 

given wavelength is treated as coherent; so interference effects are taken into account 

[179].  The details of the modeling and the approach to the simulation has been described 

in earlier studies [178]. 
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Figure 6.4 A microbolometer pixel structure [180]. 

 

Emissivity,   (          ), is the ratio of energy radiated from a material surface 

to that radiated from a blackbody at the same temperature (T), wavelength (  , viewing 

condition (    ). It also depends on the property of a material and its surface roughness.  

According to Kirchhoff’s law, emissivity is equal to absorptivity for an object in 

thermodynamic equilibrium which can be clearly conceptualized from the notion that an 

object absorbing all the incident light will emit more radiation. Radiation penetrates 

certain thickness of the specimen before being absorbed and hence opacity is not only a 

material property but it depends on thickness as well. Emissivity also depends on its 

thickness; for instance, thinner sample is characterized by lower emissivity. Emissivity is 

usually measured (experimentally) at a direction normal to the surface. In this study, the 

point in question is singular with respect to   and hence θ=0 and       . The 

present study analyzes the spectral emissivity of the VOx based micro-bolometer 

structure [Figure 6.4] under conditions of normal incidence using Multi-rad. The 

microbolometer structure, considered in this study, was originally developed by 

Honeywell, Inc. [180]. 
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In the Honeywell microbolometer structure, the bolometer sensing element has 

been chosen to be VOx, a standard sensing material with x equal to 1.8, and is used in 

large scale production [181]. The thin films (500Å) of mixed oxides of vanadium 

(VO2,V2O3 and V2O5) result in a family of materials having desired properties for 

bolometric operation such as high TCR and well-defined electrical properties with good 

fabrication capability [53]. As mixed oxides of vanadium, the VOx can be realized as, 

 

x VO2    𝑉   + z𝑉    = VO1.8 (6.3) 

 

 

 

The above equation yields the two relations, 

 

x+2y+2z=1 

2x+3y+5z=1.8 

 

 

 

 

which after solving yields the following relation, 

 

   𝑉           ×    𝑉            𝑉     𝑉      (6.4) 

 

 

 

This leads to a set of inequalities for non-zero amount of all three oxides as:    ; 

      ×     ;         i.e.         3 . Since x=1.8 in VOx is nearly equal 

to 2, we assume that other oxides (V2O3 and V2O5) are formed during VO2 deposition 

process, due to their smaller heat of enthalpy (enthalpy of formation, ΔH, for V2O5, V2O3 
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and VO2 are −1557, -1219 and −713 cal/mole, respectively [182]). By choosing y = 

0.2025, a value close to 0.2, relation (6.4) can be written as, 

 

        𝑉         ×  𝑉            𝑉        = VO1.8   (6.5) 

 

 

 

On the other hand, the value of y can be chosen in such a way that the maximum possible 

amount of V2O5 is obtained in the mixture, consistent with the lowest enthalpy of all the 

three vanadium oxides. Choosing the value of y = 0.3475, the following relation is 

obtained, 

 

  3     𝑉         ×  𝑉            𝑉    =VO1.8   (6.6) 

 

 

 

However, by considering the heat of formation, ΔH, and assuming that different oxides 

are formed with a probability which varies linearly as ΔH, the following relation is 

obtained, 

 

        ×                   3        (6.7) 

 

 

 

The non-negative value of y, obtained by solving equation (6.7), is 0.3 and leads to the 

following relation, 

 

  3  𝑉        ×  𝑉         𝑉              (6.8) 
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Accordingly, 0.05  m thick VOx layer in 50µm× 50µm pixel, in Figure 6.4, can be 

realized in the following three combinations:  

(a) t (VO2) = 4.7589×10
-4  m, t (V2O3) = 0.0281  m, t (V2O5) =  0.0214  m [based 

on relation (6.7)] - consistent with lowest ΔH of V2O5; 

(b) t (VO2) = 0.0313  m, t (V2O3) = 0.0183  m, t (V2O5) =  4.0551×10
-4

  m [based 

on relation (6.5)] – with the assumption that the two oxides, V2O3 and V2O5, are 

formed during the deposition process of VO2; 

(c) t (VO2) = 0.0099  m, t (V2O3) = 0.0251  m, t (V2O5) =  0.0150  m [based on 

relation (6.8)] – with the assumption that formation probability of the three oxides 

is linear with enthalpy.  

For clarification and simplicity, we will label them as combinations (a), (b) and (c), 

respectively, in the following discussion. The use of thickness (and composition) to four-

decimal place is due to the capability of Multi-rad. 

 

 

 

Figure 6.5 Simulated structure of a microbolometer pixel [180, 183]. 
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Materials, in Multi-rad, are defined in terms of their real and imaginary parts of 

their refractive indices; the air gap is defined as n = 1 and k = 0 throughout; the 

wavelength dependent optical constants, n and k, of Al, VO2, V2O3 and V2O5 have been 

taken from the literature [184-186]. Since typical microbolometer pixels are fabricated on 

an industry standard substrate of 4 inch diameter [187], wafer thickness is taken as 525 

 m [188], with 1  m thick Al layer “deposited” on the substrate. The simulated structure 

of the microbolometer pixel is shown in Figure 6.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Comparison of simulated emissivity of VO2/Si, V2O3/Si and Si with 

experiments [185]; only simulated emissivity is presented for V2O5/Si. 

 

Room temperature emissivity of VO2/Si, V2O3/Si and Si, simulated using Multi-

Rad, and their comparison with experimental data are presented in Figure 6.6.  As can be 

seen in the figure, the simulated values of emissivity of these structures are in good 

agreement with the experimental data.  It can be further noted that V2O3/Si exhibits high 

emissivity that is consistent with the metallic behavior of V2O3 at room temperature.  The 

c) b) a) 
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emissivity spectrum of VO2/Si follows the wavelength dependent emissivity of Si.  Thus, 

having established the validity of the application of Multi-Rad in simulating the 

emissivity of vanadium oxides/Si successfully, the study is extended to simulate the 

emissivity of V2O5/Si.  Similar to VO2/Si, V2O5/Si also follows the spectral emissivity of 

Si.  It should be noted that VO2 and V2O5 are insulators at room temperature. 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

Figure 6.7 Room temperature (30 °C) emissivity of each of VOx constituents for 

different thicknesses of the three combinations defined by relations (6.6), (6.5) and (6.8). 

 

Figure 6.7 shows the calculated emissivity of each of the VOx constituents, at 30 °C, 

in the wavelength range of 2.4-20  m, for different thicknesses of the three combinations 

defined by relations (6.6), (6.5) and (6.8). As can be seen in the figure, the emissivity of 

each oxide at different thickness, corresponding to the combinations (a) through (c), is 

calculated and compared with  a situation where 50 nm thick VOx is either VO2 or V2O3 

or V2O5. The emissivity of V2O3 (metallic phase [189]) shows almost flat spectral 

response throughout the wavelength range considered in all the combinations. However, 

the emissivity of the insulating phase [189] of both VO2 and V2O5 exhibit wavelength 

dependent variation with two major peaks as shown in Table 6.2. Emissivity spectra of 

a) b) c) 
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VO2 have peaks at wavelengths 15.9 and 19.2  m whereas those of V2O5 have peaks at 

wavelengths 13.2 and 16.5  m. Without implying generality, wavelength λ=16.5  m 

corresponding to the highest value of emissivity, listed in Table 6.2, will be considered as 

a reference value for comparison as seen in the following discussion. 

 

Table 6.2 Emissivity Peaks for Each V-O System of Three Different Combinations 

 

 

 

VO2 

Wavelength (λ)   =15.9  m   =19.2  m 

 

Emissivity-peak 

for thickness (t) 

t1=0.0099  m 0.035 0.029 

t2=0.0313  m 0.103 0.085 

t3=0.05  m 0.154 0.129 

 

 

V2O5 

Wavelength ( )   =13.2  m   =16.5  m 

 

Emissivity-peak 

for thickness (t) 

t1=0.0150  m 0.044 0.061 

t2=0.0214  m 0.061 0.085 

t3=0.05  m 0.132 0.177 

 

 

It can also be seen from Figure 6.7 that the qualitative features of emissivity of the 

three oxides, at two different thicknesses, are generally similar for all the combinations, 

the deviation being   7.03% (excluding films of thickness less than 1 nm for which the 

emissivity is close to zero).  Since the industry uses 0.05 m thick film of VOx (Figure 6.5), 

all the calculated emissivity of the vanadium oxides have been normalized with respect to 

the emissivity of 0.05 m thick film of VOx. Emissivity is a volume effect.  In order to 

correlate the film thickness with emissivity, the parameters: “thickness ratio”, defined as 

the ratio of 0.05 m to the thickness of a single oxide film and “ -scaling”, defined as the 

ratio of emissivity at different thicknesses to emissivity at thickness of 0.05 m, at   = 

16.5  m, are compared. Variation of  -scaling with thickness ratio for each V-O system 

is shown in Figure 6.8 and summarized in Table 6.3. It can be seen from this table and 

the figure that  -scaling varies linearly with thickness ratio as:   -scaling = (0.73 ×
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 thickness ratio) + 0.55 (for VO2);  -scaling = (0.42 × thickness ratio) + 0.55 (for V2O3) 

and  -scaling = (0.70 × thickness ratio) + 0.50 (for V2O5). This indicates that the slope of 

this variation is less than one for each of the V-O systems. Furthermore, due to the 

metallic phase of V2O3 at room temperature [189], the slope of the  -scaling versus 

thickness ratio for V2O3 differs from that of the insulating phase of the other oxides at 

room temperature. The emissivity of 0.05 m thick film at 16.5  m varies as V2O3 > V2O5 

> VO2 such that the emissivity for V2O3 is more than twice that for VO2 or V2O5.  

 

 
 

Figure 6.8 Variation of  -scaling with thickness ratio for each vanadium oxide layer. 

 

Table 6.3 Thickness Dependence of Emissivity for Each V-O System 

 

 VO2 V2O3 V2O5 

Combination (a)  -scaling 73.5000 1.3009 2.0824 

thickness ratio 100.0000 1.7794 2.3364 

Combination (b)  -scaling 1.5000 1.7027 88.5000 

thickness ratio 1.5974 2.7322 125.0000 

Combination (c)  -scaling 4.4545 1.3912 2.9016 

thickness ratio 5.0505 1.9920 3.3333 

  at   = 16.5  m for 0.05 m thick film 0.1470 0.4410 0.1770 
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Figure 6.9 shows the emissivity of VOx in the wavelength range of 2.4-20  m, 

with all six possible layer-stacking of its constituents of the three combinations defined 

by relations (6.6), (6.5) and (6.8). The emissivity change within the entire wavelength 

range is < 0.085. As can be seen in Figure 6.9, a closer examination within the framework 

of specified “variation” shows that the wavelength dependent emissivity of all possible 

layer-stacking completely overlaps, especially in the range of 8-14 µm, for all 

combinations (a) through (c). In other words, stacking pattern of layers of the three 

different vanadium oxides has no effect on the emissivity in the region of interest 

(LWIR). This is an indication that the combined structure of the thin films of vanadium 

oxides behave as a mixed system instead of thin isolated layered system. In the present 

simulation, however, the thin film layer of V2O3 is stacked on the VO2 layer with V2O5 

layer on top of V2O3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9 Emissivity of VOx with all six possible layer-stacking of its constituents of the 

three combinations defined by relations (6.6), (6.5) and (6.8). 

 

Figure 6.10 shows the evolution in emissivity of the microbolometer pixel 

structure [180] in the wavelength range of 8-14  m, as the individual component layers 

a) b) c) 

a) b) c) 
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are introduced on top of silicon substrate in the specific pattern of the three combinations 

defined by relations (6.6), (6.5) and (6.8). It can be seen that the wavelength dependent 

emissivity for the aluminum-silicon system is minimal. In other words, due to the highly  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10 Evolution in emissivity of a microbolometer pixel structure [180] with 

addition of individual constituent layers on top of silicon substrate in the specific order of 

the three combinations defined by relations (6.6), (6.5) and (6.8).  

 

reflecting nature of Al coating on silicon substrate, emissivity is practically zero over the 

entire spectral range. Furthermore, the addition of Si3N4 overlayer on air/Al/Si has no 

contribution to the emissivity. The two configurations, without and with Si3N4 on top of 

VOx/Si3N4/Air/Al/Si, hereafter labeled as configuration 1 (Config. 1) and configuration 2 

(Config. 2), respectively, show high emissivity throughout the LWIR range; the 

wavelength dependent variation of emissivity, (   ), in the shorter wavelength of the 

LWIR range seems to be linear but tends to saturate in the longer wavelengths. It is also 

apparent that the role of Si3N4 overlayer on top of configuration 1, combination (b) is to 

linearize the spectral emissivity. The arithmetic and weighted averages of emissivity for 

a) b) c) 
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the two configurations, in all the three combinations (a) through (c), as defined below, 

have been presented in Table 6.4.  

 

𝐴               
∑   

∑  
  and                           

∑   ×  

∑  
 

 

 

The configuration 2 (Si3N4/VOx/Si3N4/Air/Al/Si) is the structure that is being utilized in 

the current uncooled VOx based microbolometer technology, whose average emissivity is 

reported to be 0.8 [190] in the wavelength range of 8 to 14 microns. 

 

Table 6.4 Emissivity Comparison for the Two Configurations in All Three Combinations 

(a) through (c) 

 

Emissivity 

Combination (a) Combination (b) Combination (c) 

Config. 

1 

Config. 

2 

Config. 

1 

Config. 

2 

Config. 

1 

Config. 

2 

Arithmetic 

average 

0.8197 0.6979 0.6249 0.4973 0.7707 0.6431 

Weighted average 0.8393 0.7252 0.6496 0.5240 0.7925 0.6711 

 

 

Calculations in Table 6.4 show that this Config. 2, with Combination (a), has the 

weighted average value of emissivity of 0.73.  This represents about 8.7% deviation from 

the reported average emissivity of 0.8 [190] for the “VOx based industry micro-

bolometer”.  It is interesting to note that the calculated emissivity for Config. 1 is 

consistently higher than that of Config. 2 and is irrespective of the combination (a), (b) or 

(c). The overall influence of the top Si3N4 layer seems to be to reduce the spectral 

emissivity of the bolometer structure while at the same time providing the much desired 

linear performance of the bolometer [Figure 6.10(b)].   
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6.3 Summary 

The analysis of an industry standard VOx based micro-bolometer [180], with x equal to 

1.8 [181], has been performed in the above study.  This analysis is based on modeling 

room temperature spectral emissivity using Multi-Rad, a simulation package that utilizes 

thin film optics in the form of matrix method of  multilayers [175] and assumes the layers 

to be optically smooth and parallel to each other.  The study of spectral emissivity of 

individual component of bare VOx, i.e., VO2, V2O3 and V2O5, with different thickness 

shows that the wavelength dependent variation of emissivity, (   ), scales with 

thickness almost linearly. Unlike the insulating phase (VO2 and V2O5), the metallic phase 

(V2O3) of same thickness shows appreciable emissivity throughout the spectral range and 

its emissivity is less sensitive to thickness variation. The (   ) of bare VOx, in the 

wavelength range of 8-14  m, with all six possible layer-stacking of its constituents for 

all three combinations, shows that the stacked layers of the thin films of VO2, V2O3 and 

V2O5, of total thickness of 500Å, behave as a mixed system.  

The evolution in the (   ) of the microbolometer pixel structure [180] has been 

studied in detail by considering the constituent layers, one layer at each step, on top of the 

silicon substrate in the specific stacking order of the three specific combinations of VO2, 

V2O3 and V2O5 layers. Si3N4 overlayer does not change the spectral emissivity of Al/Si 

while it decreases the spectral emissivity of the VOx/Si3N4/Air/Al/Si system. Calculations 

show that the Si3N4 layer provides the much desired linear performance of the VOx based 

bolometer.
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CHAPTER 7  

CONCLUSIONS 

In this study, we have performed one electron Kohn-Sham electronic band-structure 

calculations of VO2, V2O3 and V2O5 in both metallic and insulating phases, implementing 

a full ab-initio simulation package based on Density Functional Theory (DFT), Plane 

Waves and Pseudopotentials (PPs). Electronic band structures are found to be influenced 

by crystal structure, crystal field splitting and strong hybridization between 2p (O) and 3d 

(V) bands. Bands in V2O5 are remarkably dispersive to different extents, along various 

high symmetry lines in the Brillouin zone (BZ). This implies that the crystal structure is 

highly anisotropic. A group of conduction bands (with narrow band width, called 

intermediate bands), lying close (0.6 eV apart) to higher conduction bands, observed in 

V2O5, play a critical role in optical and thermoelectric processes. An indirect gap of 1.7 eV 

is observed between T and   points of the BZ, which is close to the value of 1.74 eV 

reported in similar calculations but is smaller than the experimental value of 2.2 eV 

[105]. This underestimation of the band gap is inherent with DFT.  

Similar calculations have been performed in both metallic and insulating phases 

of bulk vanadium dioxide (VO2) and sesquioxide (V2O3). In the metallic phase, we see 

finite overlapping of valence and conduction bands. Bands in insulating phases appear in 

similar locations as in corresponding metallic phases. However, the numbers of bands are 

doubled in the insulating phases (as compared to corresponding metallic counterpart), 

which is consistent with the fact that the number of formula units of the unit cell, in the 

calculations, is doubled in each oxide during phase transition from metallic to insulating 

phase. Even though an optical gap is not observed in the insulating phase (shortcomings 
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of LDA), we have noticed some differences in the band structures that characterize 

phase- whether insulating or metallic. In insulating phase, (a) number of bands crossing 

the Fermi level is less, (b) bands corresponding to “valence electrons” considered in the 

pseudopotential are fully occupied, unlike in the metallic phase. 

Transport parameters such as Seebeck coefficient, electrical conductivity and 

thermal (electronic) conductivity are studied as a function of temperature at a fixed value 

of chemical potential close to the Fermi energy using Kohn-Sham band structure 

approach coupled with Boltzmann transport equations. Among the three oxides of our 

interest, in the present study, only V2O5 exhibits significant thermoelectric (TE) 

properties that are found to be consistent with the literature. A comparison of averaged 

electrical conductivity with that of as-deposited as well as post-annealed V2O5 films has 

shown the value of momentum relaxation time to be ~10
-18

 s. For understanding the 

effect of phase transition on transport properties, we have also calculated the 

thermoelectric properties of vanadium dioxide, VO2, for both metallic and insulating 

phases. The absolute value of Seebeck coefficient increases monotonically with 

temperature in the metallic phase while it decreases monotonically with temperature in 

the insulating phase. Seebeck coefficient, at an experimental critical temperature of 

340K, is found to change by 18.9 µV/K which lies within 10% of the observed 

discontinuity of 17.3 µV/K during the phase transition. “Kohn-Sham-Boltzmann” 

approach can predict phase transition in VO2 with reasonable accuracy. 

Numerical methods have been used to analyze the optical properties of bulk and 

thin films of VO2, V2O3, and V2O5, deposited on Al2O3 substrates, from infrared to 

vacuum ultraviolet range (up to 12 eV), based on the data available in the literature. The 
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observed peaks in the corresponding spectra have been interpreted and compared as a 

function of structure, polarization and temperature. The anisotropy is significant in the 

infrared region for VO2 and in the visible region for V2O5. Penn model has been used to 

explain the energies corresponding to the peaks in the R-E spectra of the single crystal of 

the V-O systems at room temperature. Ep values for VO2 and V2O5 are close to the 

average of energies corresponding to the peaks ( ̅  while their values are even closer in 

V2O3, reflecting the degree of anisotropy in the order of V2O3 < VO2 < V2O5. The 

vanadium oxygen bonds are highly ionic and undergo IMT at Tc as a function of 

oxidation state of the vanadium ion i.e. the transition temperature increases with 

oxidation states of the vanadium atom. Optical transitions and effective number of 

electrons participating in these processes are described from the   -E spectra and its 

numerical integration using the well-known sum rule. The results of these calculations 

show that the optical transitions from valence to conduction band occur including the 

transition from 2p (O) to 3d (V) bands and the inter band transitions within the d bands. 

The optical spectra has no indication of the transition occurring from occupied to empty 

states within the d band for V2O3 and V2O5 systems but the intra band transition seems to 

occur in VO2. The change in neff with respect to the energy of incident photons is also 

calculated and it is found that this change is consistent with the peaks observed in the   -

E spectra.  

In the Honeywell microbolometer structure, the bolometer sensing element has 

been chosen to be VOx, with x equal to 1.8, along with other layers of Si3N4, air, Al and 

Si. The room temperature spectral emissivity of such layered structure is analyzed using 

Multi-Rad, a simulation package that utilizes thin film optics in the form of matrix 
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method of multilayers. The study of spectral emissivity of individual components of bare 

VOx, i.e., VO2, V2O3 and V2O5, with different thickness shows that the wavelength 

dependent variation of emissivity, (   ), scales with thickness almost linearly. Unlike 

the insulating phase (VO2 and V2O5), the metallic phase (V2O3) of same thickness shows 

appreciable emissivity throughout the spectral range and its emissivity is less sensitive to 

thickness variation. The (   ) of bare VOx, in the wavelength range of 8-14  m, shows 

that the stacked layers of the thin films of VO2, V2O3 and V2O5, of total thickness of 

500Å, behave as a mixed system.  

The evolution in the (   ) of the microbolometer pixel structure [180] has been 

studied in detail by considering the constituent layers, one layer at each step, on top of the 

silicon substrate in the specific stacking order of the three specific combinations of VO2, 

V2O3 and V2O5 layers. Si3N4 overlayer does not change the spectral emissivity of Al/Si 

while it decreases the spectral emissivity of the VOx/Si3N4/Air/Al/Si system. Calculations 

show that the Si3N4 layer provides the much desired linear performance of the VOx based 

bolometer.
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