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ABSTRACT

ACCELERATING DATA-INTENSIVE SCIENTIFIC VISUALIZATION
AND COMPUTING THROUGH PARALLELIZATION

by
Dongliang Chu

Many extreme-scale scientific applications generate colossal amounts of data that

require an increasing number of processors for parallel processing. The research in

this dissertation is focused on optimizing the performance of data-intensive parallel

scientific visualization and computing.

In parallel scientific visualization, there exist three well-known parallel archi-

tectures, i.e., sort-first/middle/last. The research in this dissertation studies the

composition stage of the sort-last architecture for scientific visualization and proposes

a generalized method, namely, Grouping More and Pairing Less (GMPL), for order-

independent image composition workflow scheduling in sort-last parallel rendering.

The technical merits of GMPL are two-fold: i) it takes a prime factorization-based

approach for processor grouping, which not only obviates the common restriction

in existing methods on the total number of processors to fully utilize computing

resources, but also breaks down processors to the lowest level with a minimum number

of peers in each group to achieve high concurrency and save communication cost;

ii) within each group, it employs an improved direct send method to narrow down

each processor’s pairing scope to further reduce communication overhead and increase

composition efficiency. The performance superiority of GMPL over existing methods

is evaluated through rigorous theoretical analysis and further verified by extensive

experimental results on a high-performance visualization cluster.

The research in this dissertation also parallelizes the over operator, which

is commonly used for α-blending in various visualization techniques. Compared

with its predecessor, the fully generalized over operator is n-operator compatible.



To demonstrate the advantages of the proposed operator, the proposed operator

is applied to the asynchronous and order-dependent image composition problem in

parallel visualization.

In addition, the dissertation research also proposes a very-high-speed pipeline-

based architecture for parallel sort-last visualization of big data by developing and

integrating three component techniques: i) a fully parallelized per-ray integration

method that significantly reduces the number of iterations required for image

rendering; ii) a real-time over operator that not only eliminates the restriction of

pre-sorting and order-dependency, but also facilitates a high degree of parallelization

for image composition.

In parallel scientific computing, the research goal is to optimize QR decom-

position, which is one primary algebraic decomposition procedure and plays an

important role in scientific computing. QR decomposition produces orthogonal bases,

i.e.,“core” bases for a given matrix, and oftentimes can be leveraged to build a

complete solution to many fundamental scientific computing problems including Least

Squares Problem, Linear Equations Problem, Eigenvalue Problem. A new matrix

decomposition method is proposed to improve time efficiency of parallel computing

and provide a rigorous proof of its numerical stability.

The proposed solutions demonstrate significant performance improvement over

existing methods for data-intensive parallel scientific visualization and computing.

Considering the ever-increasing data volume in various science domains, the research

in this dissertation have a great impact on the success of next-generation large-scale

scientific applications.
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CHAPTER 1

INTRODUCTION

The scale of data generated by modern scientific applications is rapidly increasing,

ranging from terabyes at present to petabytes or exabytes down the road in the

predictable future. Such data, now commonly termed as “big data”, can be resulted

from various sources including simulations, experiments, or observations, and must be

processed and analyzed in a timely manner for scientific exploration and knowledge

discovery. Among many existing methods for data processing/analytics, scientific

visualization and computing have been well recognized and widely used in broad

science communities to make sense of the data. However, the sheer volume of

today’s scientific data has posed a daunting challenge on traditional visualization and

computing technologies. Parallel scientific visualization and computing have proven

to be promising solutions to handle data of such scales.

1.1 Parallel Scientific Visualization and Image Composition

Many parallel visualization architectures have emerged in the last decade [48, 49, 30,

43, 1, 60]. As put forth by Molnar et al., according to the time when primitives

in the raw data are sorted on their corresponding processors, parallel visualization

architectures can be classified into three categories, i.e., sort-first, sort-middle, and

sort-last [47]. Although the instances in each category may differ in their particular

implementations, they generally share some common features. In sort-first, each

primitive in the raw data is assigned to a certain processor, which is responsible

for a predivided region of the display screen. This scheme could save network

communications between the processors due to the predetermined locality of each

primitive, but may result in unbalanced workload among the processors due to the

static screen partitioning. In sort-last, s are not assigned as strictly. Instead, they
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are rendered into pixels by the processors they are initially assigned to, and these

distributed pixels must be composited into a final image. This scheme may achieve a

high level of workload balance at the cost of increased network communications. In

sort-middle, the entire visualization process is naturally divided into two distinctive

stages: geometry processing and rasterization. Such a partitioning of visualization

groups together the operations with similar purposes and distinguishes from others.

This scheme may consume more bandwidth and incur a longer processing time, and

hence is investigated in more theoretical than practical settings.

Among the above three well-known parallel architectures, sort-last is often

preferred in many applications due to its adaptability to load balancing. In general,

the sort-last architecture comprises of two stages: rendering and composition [67]. We

mainly focus on composition stage here, which encompasses huge number of research

topics that are of practical importance while still not satisfactorily resolved in times

of “Big Data”, including the composition operator, the communication overheads

among participating computing units and so on.

1.2 Parallel Scientific Computing and QR Decomposition

QR decomposition is a long existing and widely used algebraic decomposition

procedure in scientific computing. Given a non-singular matrix An×n, its QR

decomposition is defined as

A = Q ·R,

where Q is an orthogonal matrix, i.e., QT · Q = I, and R is an upper-triangular

matrix. Such decomposition reveals the contained orthogonality among vectors within

the input matrix and maps the given matrix to orthogonal bases, hence simplifying

the representation of the given matrix and facilitating some of its computations with

others. In addition, such decomposition’s role of importance to literature is also

2



established by providing competitive solutions to a large number of basic scientific

computing problems including Least Squares Problem [35, 7], Linear Equations

Problem [21], Eigenvalue Problem [31], and Numerical Optimization Problem [72].

During its continuous development in the past two centuries, there emerges

tons of potential solutions, achieving the same purpose through distinct methods.

Similar to the visualization problem, these methods can also be roughly distinguished

as parallel or sequential, each of which calls for suitable evaluation criteria. In

the sequential category, we consider stability [29, 25, 6, 65, 64, 33], i.e., deviation

between the calculated and expected results, and time efficiency [15, 52], i.e., number

of floating-point operations to execute on a dedicated computing unit (flops). In

the parallel category, the criterion of stability remains the same as in the sequential

counterpart, but the criterion of time efficiency differs. It considers the number of flops

on the critical path of parallel execution and the communication overhead between

multiple parallel computing units.

Considering the practical facts of “Big Data” and continuously increasing data

size, we focus our research on parallel QR decomposition. In the literature of parallel

QR decomposition, both stability and time efficiency issues are still of concern, as

time-efficient methods need more stability while stable methods need higher time

efficiency. Our research goal here is to fully parallelize the decomposition procedure

so as to minimize the number of flops on the critical path meanwhile maintaining a

high level of accuracy.
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CHAPTER 2

IMAGE COMPOSITION OPERATOR

As one key step in a sort-last parallel rendering system, image composition has

received a great deal of attention from many researchers. Existing efforts mainly focus

on the following two aspects of research: i) design blending methods to determine

how input pixels should be combined, and ii) schedule composition workflows for

higher composition efficiency with less resource consumption. We focus mainly on

the blending methods in this chapter.

2.1 over Composition Operator

Blending methods can be divided into two categories: i) order-independent methods

and ii) order-dependent methods. Among the order-independent methods, the most

widely used one is the Z-buffer algorithm proposed by Catmull and others [10, 56].

The blending result of this method is only determined by the two input pixels’

distances to the view point, i.e., the one closer to the view point is taken as the

resultant pixel. It also means that the input order does not affect the blending result,

hence facilitating the design of more flexible algorithms. Among the order-dependent

methods, the most representative one is the Porter-Duff over operator [56]. In this

operator, two input pixels are combined with a ratio that depends on the first input

pixel’s α-channel value, which makes the operator non-commutable and imposes a

limitation on the design of potential algorithms.

The over operator [68] is a traditional and ubiquitous operator in the world of

graphics. Due to its simplicity and satisfactory blending performance, this operator

has been adopted in numerous visualization practices. For example, in the image

composition stage of sort-last parallel visualization, the over operator is used to

composite final images [55, 41, 42]; in semi-transparent surface rendering, the over
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operator is used to determine the transparency of overlapping surfaces [45, 4]; in

volume rendering based on ray tracing/casting, the over operator is also used to

blend the points sampled along a ray’s forward direction [59, 39, 40, 3]. Considering

its significant and indispensable role in the visualization field, this operator has even

been integrated into operating systems and visualization frameworks/languages by

default [2].

Although widely employed, the performance of the traditional over operator [68]

is largely limited by the following two facts. i) It is a binary operator handling only

two RGBA-formatted operands at a time. That is, n RGBA-formatted operands

require n− 1 iterations to blend, hence posing a challenge on its scalability when n is

large. ii) It blends a pair of channels (either a color component or the transparency)

in two input operands according to their relative positions, thus making itself order

sensitive. That is, the input operands need to be first sorted according to a certain

criterion (e.g., the depth of a pixel in image composition) and then blended in the

sorted order. Such order-dependency may halt the blending process at some point

when two consecutive operands are not simultaneously available, regardless of the

availability of their downstream operands.

As we step into the big data era, the aforementioned performance issues

associated with the traditional over operator have become even more severe. For

example, today’s extreme-scale e-science applications produce colossal amounts of

data on the order of terabytes or even petabytes, which must be processed and

analyzed in a timely manner for scientific discovery. In many scientific domains,

visualization is considered as one of the most important methods for data analytics.

As a fundamental unit of these methods, the over operator has a significant impact on

the overall performance of scientific visualization, especially for asynchronous parallel

visualization. Unfortunately, the inherent limitations of the traditional over operator

cause a critical bottleneck in handling ever-increasing data volumes.
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Various research efforts have been made to address the above performance

limitations. One commonly considered strategy is to generalize the original operator.

Meshkin [45] approximates the over composition result for n input pixels by ignoring

the order-sensitive parts in their corresponding extended over composition formula.

Bavoil and Myers [4] approximate n-pixel over composition by calculating the average

of all input pixels and substituting it for each pixel, which is a special case of

the extended n-pixel over composition formula with all the input pixels being

identical. Patney et al. [54] propose a generalized formula for the color components

without considering the α−channel of transparency. In our work, we generalize the

over operator for all the channels of the input operands, explore its parallelization

feasibility and study its application in both order dependent and order independent

compositions.

2.2 A Fully Generalized over Image Composition Operator

We denote n RGBA-formatted and order-predefined operands as, P1, P2, · · · , Pn. To

facilitate our explanation of the generalized over operator, we introduce another

notation Pi,j, 1 ≤ i ≤ j ≤ n, which represents the blending result of Pi over Pi+1 · · ·

over Pj and is a uniform representation for any possible (raw, intermediate, or final)

blending results in the entire operating process. For example, when i = j, it refers to

the raw operand Pi or Pj; when i = 1 and j = n, it refers to the final blending result

from all the n raw operands.

2.2.1 Extension from Two Operands to Multiple Ones

We propose a fully generalized over operator as follows:

α1,n =
∑

for any I⊆{α1·α2···αn},
I 6=∅

(
(−1)|I|+1 ·

( ∏
for any αi∈I

αi

))
, (2.1)
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c1,n =
n∑
i=1

∏
1≤j<i

(1− αj) · αi · Ci · 1, (2.2)

where ci = [cRi , cGi , cBi ]
T represents the operand’s color component values with pre-

multiplication by αi, i.e., ci = αi · Ci. Note that (2.2) was presented in [54]. We

provide a brief proof for (2.1) by means of induction.

First, we know that

α1,1 =
∑
I⊆{α1}
I 6=∅

(−1)|I|+1|
∏
αi∈I

αi| = (−1)2 · α1 = α1.

Then, we assume that (2.1) holds for n = k − 1, i.e.,

α1,k−1 =
∑

I⊆{α1·α2···αk−1}
I 6=∅

(−1)|I|+1|
∏
αi∈I

αi|. (2.3)

For n = k, we have

α1,k =αk + α1,k−1 − α1,k−1 · αk

=αk +
∑

I⊆{α1·α2···αk−1}
I 6=∅

(−1)|I|+1|
∏
αi∈I

αi|

−
∑

I⊆{α1·α2···αk−1}
I 6=∅

(−1)|I|+1|
∏
αi∈I

αi · αk|

=
∑

I⊆{α1·α2···αk}
I 6=∅

(−1)|I|+1|
∏
αi∈I

αi|.

(2.4)

Hence, (2.1) holds according to the principle of proof-by-induction.
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To represent α1,n more concisely, we derive another formula for α1,n, i.e.,

1− α1,n =
n∏
j=1

(1− αj), (2.5)

which could be proved as follows:

1− α1,n = 1− (α1,n−1 + αn − α1,n−1 · αn)

= (1− α1,n−1) · (1− αn)

= (1− α1,n−2) · (1− αn−1) · (1− αn)

= · · · =
n∏
j=1

(1− αj).

(2.6)

Based on (2.1) and (2.2), we summarize two significant properties of this

generalized operator:

• It provides a complete and accurate form of the composited result from n input

operands and specifies the exact contribution of each operand to the final result

according to its relative position on the to-be-blended list.

• For n available order-predefined operands, it reduces the number of blending

steps from n− 1 to 1, by plugging each operand into its corresponding position

and finishing all computations within one single step.

c1,n = c1,n−1 + (1− α1,n−1) · cn

= c1,n−1 + (1− α1,n−1) · αn · Cn

=
n−1∑
i=1

∏
1≤j<i

(1− αj) · αi · Ci +
n−1∏
j=1

(1− αj) · αn · Cn

=
n∑
i=1

∏
1≤j<i

(1− αj) · αi · Ci · 1

(2.7)
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2.2.2 An In-depth Illustration of the New over Operator

To justify the consistency with its predecessor, we illustrate the generalized operator

in an image composition scenario as [68], where the αi, 1 ≤ i ≤ n, channel value

is interpreted as the area of the sub-pixel region covered by Pi’s sub-pixel geometry

Gi, 1 ≤ i ≤ n. We extend the mutual division assumption from two geometries to n

geometries as follows: given n pixels P1, P2, · · · , Pn, whose sub-pixel geometries and

corresponding covered areas are (G1, α1), (G2, α2), · · · , (Gn, αn), respectively, in the

composited pixel P1,n, for any i, j ∈ [1, n] and i 6= j, Gi divides both Gj and P1,n into

two areas of the same ratio, i.e., αi
1−αi , and Gj also divides Gi and P1,n into two areas

of the same ratio, i.e.,
αj

1−αj .

Following the generalized assumption, each geometry Gi, 1 ≤ i ≤ n, in the

composited pixel P1,n intersects with every other geometry, hence dividing P1,n into

2n non-overlapping subregions (divisions), as shown in Figure 2.1. Each of these

subregions is uniquely identifiable by a set of geometries that cover this subregion,

denoted by G
′
1 ∩ G

′
2 ∩ G

′
3 · · · ∩ G

′
i · · · ∩ G

′
n−1 ∩ G

′
n, where G

′
i is either Gi or Gi: Gi

means that the sub-region is covered by Gi, and Gi means not. To be more specific,

we denote the 2n subregions as R1, R2, · · · , R2n−1, R2n , and assign each of them a

unique set of covering geometries (with 0, 1, ..., n-1, and n covering geometries) as

follows

• G1 ∩G2 ∩G3 · · · ∩Gn;

• G1 ∩G2 ∩G3 · · · ∩Gn, G1 ∩G2 ∩G3 · · · ∩Gn, G1 ∩G2 ∩G3 · · · ∩Gn, · · · , G1 ∩

G2 ∩G3 · · · ∩Gn;

• G1 ∩G2 ∩G3 · · · ∩Gn,G1 ∩G2 ∩G3 · · · ∩Gn, · · · , G1 ∩G2 ∩G3 · · · ∩Gn−1 ∩Gn;

• · · ·

• G1 ∩G2 ∩G3 ∩G4 · · · ∩Gn.
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Figure 2.1 A general illustration of dividing the pixel area by n geometries.

Based on the 2n-subregion division of a pixel, we generalize the calculation of

the color components as

c1,n =
2n∑
k=1

α(Rk) · C(Rk), (2.8)

where α(Rk) is the area of sub-region Rk and C(Rk) is the color component value

assigned to sub-region Rk. According to the definition of the over operator, the value

of C(Rk) is determined by the first covering geometry as follows: if there exists any

i (1 ≤ i ≤ n) in Rk’s covering (intersection) expression such that G
′
i = Gi and for

any existing j (1 ≤ j < i), G
′
j = Gj, then C(Rk) = Ci; otherwise C(Rk) = 0.

To facilitate the summation over the 2n subregions, we further categorize them

into n + 1 groups g1, g2. · · · , gn+1, where all the subregions in the same group have

the same color component value from the same geometry. The covering expression of

each group is as follows:

g1: G1 ∩G
′
2 ∩G

′
3 · · · ∩G

′
i · · · ∩G

′
n−1 ∩G

′
n;

g2: G1 ∩G2 ∩G
′
3 · · · ∩G

′
i · · · ∩G

′
n−1 ∩G

′
n;

· · ·

gi: G1 ∩G2 · · · ∩Gi−1 ∩Gi ∩G
′
i+1 · · · ∩G

′
n−1 ∩G

′
n;

· · ·

gn: G1 ∩G2 ∩G3 · · · ∩Gn−1 ∩Gn;

gn+1: G1 ∩G2 ∩G3 · · · ∩Gn−1 ∩Gn.
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Also, we denote the total area summed over all the subregions in group gi as

αgi . Under such grouping, we can rewrite (2.8) as

c1,n =
n+1∑
i=1

αgi · Ci. (2.9)

Note that C(gn+1) = Cn+1 = 0 as there is no geometry covering gn+1. For αgi in (2.9),

we have

αgi =

(
i−1∏
k=1

α(Gk)

)
· α(Gi) ·

 ∑
G
′
j
∈{Gj,Gj}

i+1≤j≤n

(
n∏

j=i+1

α(G
′

j)

) , (2.10)

where α(Gi) = αi and α(Gi) = 1− αi, for 1 ≤ k < i. We also have

∑
G
′
j
∈{Gj,Gj}

k≤j≤n

n∏
j′=k

α(G
′

j′
) =

∑
G
′
j
∈{Gj,Gj}

k+1≤j≤n

α(Gk) ·
n∏

j′=k+1

α(G
′

j′
)

+
∑

G
′
j
∈{Gj,Gj}

k+1≤j≤n

α(Gk) ·
n∏

j′=k+1

α(G
′

j′
)

= (α(Gk) + α(Gk)) ·
∑

G
′
j
∈{Gj,Gj}

k+1≤j≤n

α(Gk) ·
n∏

j
′
=k+1

α(G
′

j′
)

=
∑

G
′
j
∈{Gj,Gj}

k+1≤j≤n

α(Gk) ·
n∏

j′=k+1

α(G
′

j′
)

= · · · =
∑

G
′
j
⊆{Gj,Gj}
n≤j≤n

n∏
j′=n

α(G
′

j′
) = α(Gn) + α(Gn) = 1.

(2.11)
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Figure 2.2 A specific illustration of dividing the pixel area by 3 geometries.

Thus, we can rewrite αgi as αgi = α(G1) · · · α(Gi−1) · α(Gi) and expand (2.9) as

c1,n =
n+1∑
i=1

(1− α1) · · · (1− αi−1) · αi · Ci, (2.12)

which is exactly the same as (2.2). The above analysis shows that the generalized

over operator is extended from the original binary operator to work with multiple

operands simultaneously.

To make the above analysis more concrete, we consider a specific blending case

containing 3 geometries, G1, G2, and G3 in Figure 2.2, where the entire pixel area

is divided into 23 = 8 different subregions labeled from 1 to 8. According to the

grouping criteria, we further classify these 8 areas into 3 + 1 = 4 different groups, as

follows:

g1: G1 ∩G2 ∩G3, G1 ∩G2 ∩G3, G1 ∩G2 ∩G3,

G1 ∩G2 ∩G3,which are labeled as 1, 2, 4, and 5

in Figure 2.2, respectively;

g2: G1 ∩G2 ∩G3, G1 ∩G2 ∩G3,which are labeled

as 3 and 6, respectively;

g3: G1 ∩G2 ∩G3,which is labeled as 7;

g4: G1 ∩G2 ∩G3 which is labeled as 8.
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2.3 Asynchronous, Order-known Image Composition

The asynchronous, order-dependent image composition problem has the following

features:

• n operands P1,1, · · · ,Pi,i, · · · ,Pn,n on a certain blending order arrive to the

operator asynchronously in an arbitrary order.

• Two available operands Pi,j and Pi′ ,j′ are directly blendable, if their sub-indexes

satisfy either j = i
′ − 1 or j

′
= i− 1.

• In each blending, two directly blendable operands Pi,j and Pj+1,k, 1 ≤ i ≤ j <

k ≤ n, are blended into Pi,k.

Once an operand becomes available, if there is any other operand that fits in

the blending order, the operator proceeds with the blending process; otherwise, it

waits for the next available operand.

The existing over operator is a binary operator, working on two operands at a

time. Given a sequence of order-known operands that arrive asynchronously, there

exist the following two performance issues worth attentions during application of the

original operator: 1) it treats only operands which are “neighbors” to each other,

when no such operands available, it needs to halt, nn some extreme cases (depending

on the operands’ arrival order), the blending process may be delayed until over half

of the operands become available; 2) given n “neighboring” operands, it takes n− 1

steps to process, which becomes a noticeable bottleneck in the scenario of real-time

visualization/composition.

The proposed over operator well address the above issues: as soon as an operand

becomes available, based on its blending order among all the existing operands, we

directly plug it into Equations (2.2) and (2.5) for concurrent blending with all of

its upstream operands and further explore the parallelization possibility within (2.2)

and (2.5).
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2.3.1 Algorithm Design, Analysis, and Optimization

Our designed algorithm based on the generalized over operator comes in two versions:

a sequential version, referred to as Sequential Generalized over Operator based

Order-known Composition (SGOKC), and a parallel version, referred to as Parallel

Generalized over Operator based Order-known Composition (PGOKC).

SGOKC The pseudocode of SGOKC is provided in Algorithm 5, which consists of

three parts:

• Part 1 (lines 1 to 6): Initialize the arrays and variables for storing the

intermediate or final blending results.

• Part 2 (lines 7 to 20): Use an n-iteration “while” loop, where n is the number

of operands for blending, to update the corresponding global α
′

and color

components related to a given operand Pj′ .

• Part 3 (lines 21 to 26): Transform the above intermediate results into the final

ones.

Note that Algor. 5 may not perform well when the number of input operands is

large. Part 2 is an n-iteration “while” loop with one “for” loop embedded, and is more

time-consuming than the other two parts. For the j-th “while” loop, its corresponding

“for” loop runs in O(j). Hence, the time complexity for the n-iteration “while” loop

is of O(n2), which also sets the time complexity for the entire algorithm.

PGOKC SGOKC could be further improved through parallelization because i)

when an operand Pj′ arrives, updating the corresponding elements in each color

component array is independent of each other; ii) while summing up n elements

in each array, instead of adding them up sequentially, a binary-tree based summation

scheme can be used to exploit the parallelism.

Following the above analysis, we parallelize Algorithm 5 as PGOKC as shown

in Algorithm 23, where all the multiplications upon the arrival of a pixel take place
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Algorithm 1 SGOKC(P1′ , P2′ , · · · , Pn′ )
Input: n RGBA-formatted operands P1′ , P2′ , · · · , Pn′ , which arrive in a sequence for
blending by the order-dependent n-tuple over operator
Output: a blended RGBA-formatted operand P

′
from the n input operands using

the over operator
1: Array a[3][n] = [1, · · · , 1; 1, · · · , 1; 1, · · · , 1]
2: Array P

′
[4] = [0, 0, 0, 0];

3: j = 1;
4: α

′
= 1;

5: while j ≤ n do
6: Receive an operand Pj′ ;
7: k = Pj′ ’s position in the n-tuple over operator;

8: α
′

= α
′ · (1− Pj′ [4]);

9: for t = 1 to 3 do
10: a[t][k] = a[t][k] · (Pj′ [t]);
11: for m = k + 1 to n do
12: Pj′ [1 : 3][m] = Pj′ [1 : 3] · (1− Pj′ [4]);
13: j = j − 1;
14: P

′
[4] = 1− α′ ;

15: for m = 1 to n do
16: P

′
[1 : 3] = P

′
[1 : 3] + a[1 : 3][m];

17: return P
′
;

Algorithm 2 PGOKC(P1′ , P2′ , · · · , Pn′ )
Input: n RGBA-formatted operands P1′ , P2′ , · · · , Pn′ , which arrive in a sequence for
blending by the order-dependent n-tuple over operator
Output: a blended RGBA-formatted operand P

′
from the n input operands using

the over operator
1: Array a[3][n] = [1, 1, · · · , 1; 1, 1, · · · , 1; 1, 1, · · · , 1];
2: Array P

′
[4] = [0, 0, 0, 0];

3: j = 1;
4: α

′
= 1;

5: while j ≤ n do
6: Receive an operand Pj′ ;
7: k = Pj′ ’s position in the n-tuple over operator;
8: α′ = α′ · (1− Pj′ [4]);
9: MIMD MULTI ≪ 3, (n− k + 1)≫ (a, k, Pj′ );

10: j = j − 1;
11: P

′
[4] = 1− α′;

12: for m = 1 to dlog ne do
13: MIMD SUM ≪ 3, d n2m e≫ (a,m, n);

14: P
′
[1] = a[1][1];

15: P
′
[2] = a[1][2];

16: P
′
[3] = a[1][3];

17: return P
′
;
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Function 3 MIMD MULTI(a[ ], k, Pj′ )
Input: a newly available operand Pj′ , its blending order k, the partial color
component result matrix a without Pj′
Output: the partial color component result matrix a with Pj′ integrated

1: int bid = blockIdx.x;
2: int gid = gridIdx.x;
3: if bid = 0 then
4: a[gid][k + bid] = a[gid][k + bid] · Pj′ [4] · Pj′ [gid];
5: else
6: a[gid][k + bid] = a[gid][k + bid] · (1− Pj′ [4]);

Function 4 MIMD SUM(a[ ],m, n)
Input: the partial color component result matrix a, the total round of summation n,
the current round of summation n
Output: the final color component result matrix a
1: int bid = blockIdx.x;
2: int gid = gridIdx.x;
3: int k = blog2 nc;
4: int interval = 2k−m;
5: if n ≥ bid+ interval then
6: a[gid][bid] = a[gid][bid] + a[bid+ interval];

simultaneously by using the MIMD-featured function, and the final-stage summation

employs a binary-tree scheme. The time complexity of Algorithm 23 is reduced to

O(n), and the number of steps needed for the final summation is reduced to dlog ne.

Functions 7 and 22 detail the parallelization strategy in PGOKC.

2.3.2 Theoretical Performance Analysis

To facilitate theoretical analysis of the proposed over operator, we consider the

situation where the operands become available to the operator one by one at a fixed

time interval of ta ≥ 0. Especially, when ta = 0, it means that all the operands are

available to the operator simultaneously. We conduct theoretical analysis of time cost

for both the original and proposed over operators.

The Original over Operator It is not straightforward to determine the time cost

range for the original over operator because i) the number of all possible availability
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orders is n! for n asynchronously available operands, and ii) the blending process

highly depends on the arriving or availability order. For example, if the operands

arrive in the order of P1, P2, · · · , Pn, then the idle time for blending is relatively

short; if the operands arrive in the order of P1, P3, · · · , P2i+1, P2, P4, · · · , P2i, then

the blending process would halt till P2 arrives, hence resulting in i + 1 idle time

intervals.

The n-operand blending procedure can be viewed as a pipeline of 2 steps, i.e.,

waiting and blending, and one operand gets blended during one repetition of the

pipeline. To be more specific, in Step 1, the procedure would wait for a newly available

operand and buffer them before moving onto Step 2, which incurs a constant time

cost of ta. In Step 2, the procedure would look for blendable operands for the newly

available one for blending; if not found, it would skip the current step. Depending

on the number of blendable operands that have been found, the time cost for Step 2

contains some uncertainties, which need to be addressed.

We consider the following conditions for blending:

1. For any instance of Step 2 in the pipeline, all found blendable operands are

blended.

2. The blending of each channel in two operands is performed sequentially.

3. There are 18 basic arithmetic operations for blending and they are treated

equally in terms of time cost.

We provide the following lemmas for time cost analysis.

Lemma 2.3.1. The number of blendable operands for the newly-available operand in

each blending step is no more than two.

Lemma 2.3.2. All n arriving operands are blended into one after n repetitions of the

blending step.

Both of the above lemmas are straightforward. Their proofs can be established

by contradiction, and are omitted due to the page restriction.
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To quantify the time cost of Step 1, we further investigate the n-repetition

pipeline. Within each repetition of the pipeline, the number of blended operands

could be 0, 2 or 3, according to which, we divide the n repetitions into 3 groups: i)

0-blending repetition, ii) 1-blending repetition, and iii) 3-blending repetition, denoted

by G0, G2, and G3, respectively. In addition, we denote the size of each group as N0,

N2, and N3, respectively. Obviously,

N0 +N2 +N3 = n. (2.13)

The pipeline is empty initially without any operand. As the repetition proceeds,

one repetition in G0 or G2 increases the number of to-be-blended operands in the

pipeline by 1 or 0, and one repetition in G3 decreases this number by 1. When n

repetitions finish, n input operands are blended into one. Considering the repetitions

and the way they change the number of to-be-blended operands in the pipeline, we

derive the following equation

0 + 1 ·N0 + 0 ·N2 + (−1) ·N3 = 1, (2.14)

which is equivalent to

N0 −N3 = 1. (2.15)

In (2.13) and (2.15), there are 3 unknowns, so one unknown needs to serve as a free

variable. For simplicity, we choose N0 as the free variable and represent the other

two variables as follows

N2 = n+ 1− 2N0, (2.16)
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N3 = N0 − 1. (2.17)

Also, N2 ≥ 0, N3 ≥ 0, and it follows that

N2 = n+ 1− 2N0 ≥ 0, (2.18)

N3 = N0 − 1 ≥ 0. (2.19)

Combining (2.18), (2.19) with (2.16), and (2.17), we have

1 ≤ N0 ≤ d
n

2
e, (2.20)

0 ≤ N2 ≤ n− 1, (2.21)

0 ≤ N3 ≤ d
n

2
e − 1. (2.22)

(2.20), (2.21), and (2.22) specify the possible size of each group.

Given n operands, there are total n! different availability orders, each of which

uniquely leads to one blending order or procedure. According to the number N0 of

0-blending repetitions in each blending procedure, we divide n! blending procedures

into dn
2
e groups, and use Bi, 1 ≤ i ≤ dn

2
e to represent the group whose corresponding

N0 is i. In addition to the above grouping, we introduce the following notations:

• oj(1 ≤ j ≤ n!) – a specific availability order;

• bj(1 ≤ j ≤ n!) – oj’s corresponding blending procedure;

• Tbj(1 ≤ j ≤ n!) – the time cost of bj;
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• rj,k(1 ≤ j ≤ n!, 1 ≤ k ≤ n) – the blending step in the k-th repetition of the

pipeline for bj;

• tj,k(1 ≤ j ≤ n!, 1 ≤ k ≤ n) – the earliest start time of rj,k;

• t′j,k(1 ≤ j ≤ n!, 1 ≤ k ≤ n) – the time cost to finish rj,k;

• tb – the time cost to perform a two-operand blending;

•
i︷ ︸︸ ︷

0 · · · 0
n+1−2i︷ ︸︸ ︷
2 · · · 2

i−1︷ ︸︸ ︷
3 · · · 3 – a special notation for bj′ s that satisfy the condition where

there is 0 blendable operand in each of the first i repetitions, 2 blendable

operands in each of the immediately following n + 1 − 2i repetitions, and 3

blendable operands in each of the last i− 1 repetitions.

Based on these notations, we define a series of lemmas that lead to the final

time cost estimation.

Lemma 2.3.3. Within the blending group Bi, (1 ≤ i ≤ dn
2
e), the blending order bmax

with the maximum blending time has the form of

i︷ ︸︸ ︷
0 · · · 0

n+1−2i︷ ︸︸ ︷
2 · · · 2

i−1︷ ︸︸ ︷
3 · · · 3.

Proof. We prove this lemma in two steps: i) find the maximum blending time in the

given blending group, and ii) prove that this maximum blending time is incurred by

the specified bmax blending order.

It is obvious that

tj,k = max{tj,k−1 + t
′

j,k−1, k · ta} (t
′

j,k−1 ∈ {0, tb, 2 · tb}) (2.23)

and

tj,k−1 + ta ≥ (k − 1) · ta + ta = k · ta(1 ≤ k ≤ n). (2.24)

Plugging (2.24) into (2.23), for 1 ≤ k ≤ n, we have

tj,k ≤ max{tj,k−1 + t
′

j,k−1, tj,k−1 + ta}

≤ tj,k−1 + max{t′j,k−1, ta}. (2.25)
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By iteratively expanding (2.25) from k = n to 1, we get

tj,n ≤ tj,n−1 + max{t′j,n−1, ta}

≤ tj,n−2 + max{t′j,n−2, ta}+ max{t′j,n−1, ta}

≤ · · · (2.26)

≤ max{t′j,1, ta}+ max{t′j,2, ta}+ · · ·+ max{t′j,n−1, ta}.

The n − 1 “max” operators on the right side of (2.26) are solvable. For t
′

j,k

(k = 1, 2, · · · , n− 1), we know that i of them are 0, n + 1 − 2i are tb, and the rest

i−1 are 2 · tb, according to (2.16) and (2.17). Thus, to solve these n−1 operators, we

need to know the relation between ta and tb in terms of their quantities. Considering

that ta and tb are independent of each other, we consider all of their possible relations

for completeness:

• If ta ≤ tb, i of the n max operators yield ta, n+ 1− 2i yield tb, and i− 1 yield

2 · tb. Thus, we have

tj,n ≤ i · ta + (n+ 1− 2 · i) · tb + (i− 1) · 2 · tb; (2.27)

• If tb ≤ ta ≤ 2 · tb, similarly, we have

tj,n ≤ i · ta + (n+ 1− 2 · i) · ta + (i− 1) · 2 · tb; (2.28)

• If 2 · tb ≤ ta, we have

tj,n ≤ i · ta + (n+ 1− 2 · i) · ta + (i− 1)·ta. (2.29)

Furthermore, we would like to show that in any of the above three cases, the

“=” symbol is established for bj′ , which has the form of

i︷ ︸︸ ︷
0 · · · 0

n+1−2i︷ ︸︸ ︷
2 · · · 2

i−1︷ ︸︸ ︷
3 · · · 3.
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If ta ≤ tb, for repetition rj′ ,k (k ∈ [1, i]), their corresponding t
′

j′ ,k
= 0. Plugging

it into (2.23), we have

tj′ ,k = max{tj′ ,k−1, k · ta} (k ∈ [1, i]).

Since tj′ ,0 = 0, we get

tj′ ,k = k · ta(k ∈ [1, i]).

For repetition rj′ ,k, k ∈ [i+ 1, n− i+ 1], according to (2.23) and the relation ta ≤ tb,

we get

tj′ ,k−1 + tb ≥ (k − 1) · ta + ta

≥ k · ta. (2.30)

Plugging (2.30) into (2.23), we get

tj′ ,k = max{tj′ ,k−1 + tb, k · ta}

= tj′ ,k−1 + tb.

Since tj′ ,i = i · ta, we have

tj′ ,k = i · ta + (k − i) · tb (k ∈ [i+ 1, n− i+ 1]).

For k ∈ [n− i+ 2, n], we similarly get

tj′ ,k = i · ta + (n− 2 · i+ 1) · tb + 2 · (k − n+ i− 1) · tb;
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Especially for tj′ ,n, we have

tj′ ,n = i · ta + (n− 2 · i+ 1) · tb + 2 · (n− n+ i− 1) · tb

= i · ta + (n− 2 · i+ 1) · tb + 2 · (i− 1) · tb.

In the cases where tb ≤ ta ≤ 2 · tb and 2 · tb ≤ ta, we can prove that bj′ would incur

the maximum time cost similarly as we do for case tb ≥ ta. Hence, bmax = bj′ . Proof

ends.

For convenience, we denote Tbmax(Bi) by max(TBi).

Lemma 2.3.4. For any i ∈ [1, n − 1] and its corresponding max(TBi), max(TBi) ≤
max(TBi+1

).

Proof. Similarly, we prove Lemma 2.3.4 case by case.

If ta ≤ tb,

max(TBi) = i · ta + (n+ 1− 2 · i) · tb + (i− 1) · 2 · tb,

max(TBi+1
) = (i+ 1) · ta + (n− 2 · i− 1) · tb + i · 2 · tb,

max(TBi+1
)−max(TBi) = ta ≥ 0;

If tb ≤ ta ≤ 2 · tb,

max(TBi) = i · ta + (n+ 1− 2 · i) · ta + (i− 1) · 2 · tb,

max(TBi+1
) = (i+ 1) · ta + (n− 2 · i− 1) · ta + i · 2 · tb,

max(TBi+1
)−max(TBi) = ta − 2 · ta + 2 · tb = 2 · tb − ta ≥ 0;
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If 2 · tb ≤ ta,

max(TBi) = i · ta + (n+ 1− 2 · i) · ta + (i− 1) · ta,

max(TBi+1
) = (i+ 1) · ta + (n− 2 · i− 1) · ta + i · ta,

max(TBi+1
)−max(TBi) = ta − 2 · ta + ta = 0.

Proof ends.

Theorem 2.3.5. For any bj ∈ Bi(1 ≤ i ≤ dn
2
e) and its corresponding Tbj , Tbj ≤

max(TBdn2 e
) and

max(TBdn2 e
) =



dn
2
e · ta + n · tb

if ta ≤ tb,

(n+ 1− dn
2
e) · ta + (2 · dn

2
e − 1) · tb

if tb ≤ ta ≤ 2 · tb,

n · ta + tb

if 2 · tb ≤ ta.

(2.31)

Proof.

max(TBn+1
2

) =k · ta + (n− 2k + 1) ·max{ta, tb}

+ (k − 1) ·max{ta, 2 · tb}+ tb.

Proof ends.

For convenience, we further denote max(TBdn2 e
) as max(TB), which represents

the maximum possible time cost of the original over operator.
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Theorem 2.3.6. Given a set of blending groups Bi, (1 ≤ i ≤ dn
2
e), the minimum

blending time Tbmin among all the groups is incurred by any blending order in B1, i.e.,

Tbmin = T (B1) = (n− 1) ·max{ta, tb}+ ta.

Proof. If tb ≤ ta, for any blending order bj and its corresponding tj,n, according to

(2.24), we know that

tj,n ≥ n · ta. (2.32)

If tb ≥ ta, according to (2.23), we get

tj,n ≥ tj,n−1 + t
′

j,n

≥ tj,n−2 + t
′

j,n−1 + t
′

j,n

≥ · · ·

≥ t
′

j,1 + t
′

j,2 + · · ·+ t
′

j,n =
n∑

m=1

t
′

j,m. (2.33)

According to the definition of t
′
j,m, we know that

∑n
m=1 t

′
j,m represents the total time

for blending only, which remains the same for any arriving order and is equal to

(n− 1) · tb. In addition to the first waiting time ta, we can rewrite Tbj as

Tbj ≥ (n− 1) · tb + ta. (2.34)

Combining (2.32) and (2.34), we have

Tbj ≥ (n− 1) ·max{ta, tb}+ ta. (2.35)

Therefore, the minimum blending time Tbmin = (n− 1) ·max{ta, tb}+ ta.

For any blending order b ∈ B1, it has the form of

1︷︸︸︷
0

n−1︷ ︸︸ ︷
2 · · · 2, which is a

regular 2-step pipeline, and hence its corresponding blending time is Tb,b∈B1 =

(n− 1) ·max{ta, tb}+ ta. Proof ends.
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Fully Generalized over Operator For the fully generalized over operator, we

view its blending procedure as a 2-step pipeline, i.e., waiting and multi-operand

blending, plus one final summation step.

We introduce several more notations to facilitate the time cost analysis of the

proposed over operator:

• TG1 – the end time of the two-step pipeline;

• tc – the time cost of the multi-operand blending step;

• td – the time cost of the final summation step;

• TG – the total time cost of the blending procedure using the fully generalized

over operator.

The blending pipeline of the fully generalized over operator works in the same

way as the original one in the first step, but improves significantly in the second step.

According to Alg. 23, for any newly available operand Pj′ and its order k among the

operands, the fully generalized operator launches 1 + 3 · (n− k + 1) threads, one for

the α-channel and n− k + 1 for each of three color component channels. The thread

for the α-channel updates α
′

as shown in line 8 of Alg. 23, which essentially contains

two basic multiplications. Each of the n − k + 1 threads for each color component

channel updates one single term in the series in line 4 or 6 of Alg. 7. Updating either

of them uses only two basic operations, so the workload is balanced for each of the

n−k+1 threads. Ideally, the time cost of the multi-operand blending step is incurred

by two basic operations, and can be calculated as

TG1 = (n− 1) ·max{ta, tc}+ tc. (2.36)

The final summation step is to add up all n serial terms in each color component

channel. Using the optimal binary-tree structure, the n-operand summation can be

done with dlog ne basic operations. The best performance is achieved if the summation
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takes place simultaneously on each color component channel. Thus, the final step

involves dlog ne basic operations.

Combining the time cost of the pipeline and that of the final stage, we obtain

the total time cost of the blending procedure using the proposed over operator:

TG = TG1 + td

= (n− 1) ·max{ta, tc}+ tc + td. (2.37)

Different from the variable time cost of the original over operator, the fully

generalized over operator guarantees a stable and consistent performance. Since tb

in (2.35) involves 18 basic operations, tc involves 2 basic operations and td involves

dlog ne basic operations, the fully generalized operator incurs less computing time in

the blending step. Especially when ta ≤ tc < tb, the proposed over operator performs

much better than the original one.

2.3.3 Implementation and Experimental Results

To achieve a high level of parallelism, we implement the new over operator in a

heterogeneous computing environment comprised of both CPUs and GPUs. We use

two computer languages to implement Algorithm 23, i.e., C for CPU programming

and CUDA for GPU programming. To be more specific, the lines 9 and 14 in

Algorithm 23 are parallel functions, which are executed with a large number of

threads and are hence implemented in CUDA. The rest of the code is sequential

and is hence implemented in C. Since there is no global memory addressing between

CPUs and GPUs in existing heterogeneous computing environments, explicit data

transfer is needed to support communications between them, which inevitably incurs

an overhead. In practice, we overlap such data transfer overhead with other activities

to minimize the cost.
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Figure 2.3 Composited images of Human Brain.

Figure 2.4 Composited images of HIPIP Surfaces.

To test and evaluate the proposed over operator, we apply it to the image

composition of a 3D human brain volume dataset using parallel visualization. We

plot the final images composited by the proposed over operator in Figure 2.3,

which justifies the validity of the proposed over operator and the correctness of our

implementation.

For a practical performance evaluation of these two operators, we use the image

composition task in Figure 2.3, 2.4, 2.5, as a benchmark with a sequence of partial

images of the same size without any blank pixels. Each input image is assigned a

certain sequential blending index. For a comprehensive comparison, in the image

composition experiments, we consider 2 image sizes: 20482 and 30722; 3 different

numbers of input images: 8, 16, and 32; 6 image arriving intervals: 0s, 0.1s, 0.2s,

0.3s, 0.4s, and 0.5s; and 7 different image arriving (i.e., availability) orders, in each

sequence of input images. We define the k-distance arriving order as an arriving
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Figure 2.5 Composited images of Jet Ejections.

order where the difference between the indices (which refer to the blending order) of

any two subsequently arriving input images is k. We generate seven different arriving

orders as follows. Given n operands (i.e., partial images), at time t, when k 6= 2, the

index of the newly arriving operand is computed as

F (k, t, n) =



(t mod d n/ke) · k + bt/dn/kec

if 0 ≤ t < (n mod k) · dn/ke,

(t mod b n/kc) · k + n− 1

−b(n− 1− t)/bn/kcc

if (n mod k) · dn/ke ≤ t < n,

(2.38)

where k ∈ [1, 3, 4, 5, 6, 7], n ∈ [8, 16, 32], and t ∈ [0, n). When k = 2, the index of the

newly arriving operand is computed as

F (k, t, n) =



(t mod d n/ke) · k + 1

if 0 ≤ t < (n mod k) · dn/ke,

(t mod b n/kc) · k

if (n mod k) · dn/ke ≤ t < n.

(2.39)
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(b) Arriving interval of 0.1s.
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(c) Arriving interval of 0.2s.
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(d) Arriving interval of 0.3s.

Figure 2.6 Comparison of two over operators using images of size 20482: compo-
sition time versus arriving order. The three sub-figures in Figures 2.6a, 2.6b, 2.6c,
and 2.6d correspond to the cases of 8, 16, 32 input images, respectively, from left to
right.

We plot the experimental results in Figures 2.6 and 2.7, which show that

given the same arriving interval and the same number of input images of the same

size, the fully generalized over operator achieves a robust blending performance

against different arriving orders, while the original one suffers from such variations

in the arriving order. We observe that the 2-distance arriving order, whose

corresponding blending procedure is depicted as

dn
2
e︷ ︸︸ ︷

0 · · · 0
n+1−2·dn

2
e︷ ︸︸ ︷

2 · · · 2
dn
2
e−1︷ ︸︸ ︷

3 · · · 3, incurs the

most time cost, while the 1-distance arriving order, whose corresponding blending

procedure is depicted as

1︷ ︸︸ ︷
0 · · · 0

n−1︷ ︸︸ ︷
2 · · · 2, incurs the least time cost. These observations

are consistent with our theoretical analysis results.

The arriving interval also affects the performance of the blending algorithms.

From Figures 2.6 and 2.7, we observe that the fully generalized over operator

significantly outperforms the best case of the original one when the arriving interval
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(a) Arriving interval of 0s.
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(b) Arriving interval of 0.2s.
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(c) Arriving interval of 0.4s.
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(d) Arriving interval of 0.5s.

Figure 2.7 Comparison of two operators using images of size 30722: composition
time versus arriving order. The three sub-figures in Figure 2.7a, 2.7b, 2.7c, and 2.7d
correspond to the cases of 8, 16, and 32 input images, respectively, from left to right.

is small, as shown in Figures 2.6a, 2.6b, 2.7a, and 2.7b. As the arriving interval

increases, the performance difference between these two operators decreases until

converging, as shown in Figure 2.6c, 2.6d, 2.7c, and 2.7d. In addition, the arriving

intervals leading to the performance convergence are almost identical for the input

images of the same size, regardless of the number of input images.

With a larger image size, both of the operators achieve about the same

performance with a larger arriving interval. Based on our observations, such an

arriving interval leading to performance convergence usually approximates the time

cost of blending two images of the same size using the original over operator.

With a smaller arriving interval, the input images arrive faster and the blending

operation becomes the bottleneck, so optimizing the blending operation would

improve the overall performance. The fully generalized over operator achieves more

performance gains with smaller arriving intervals. As the arriving interval increases,
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the performance gain becomes marginal. When the arriving interval is larger than

the blending time, the arriving interval becomes the bottleneck and there is not much

performance gain through blending optimization. These results provide guidelines for

optimizing asynchronous, order-dependent image composition.

2.4 Asynchronous, Order-unknown Image Composition

The original over operator is a binary order-dependent operator, working on two

operands at a time in a strict blending order. Given a sequence of input operands that

arrive in an arbitrary order, the original operator may suffer from serious performance

disadvantages, because it must wait until all the operands have arrived.

The performance limitation due to order dependency still stands out in practice.

In many existing blending frameworks, the operands must be pre-sorted before the

actual composition can take place [54][28], hence causing a significant performance

issue, especially in dynamic environments where there is a long delay in producing

all the operands. Unfortunately, very limited efforts have been devoted to this issue.

Given the proposed over operator, our work removes the order dependency of the

existing over operator and hence makes an advancement in the field.

In an image composition problem where the operands arrive in an arbitrary

order, the i-th term
∏

1≤j<i(1−αj) ·αi ·Ci · 1 of ( 2.1) calculates the color component

value of the i-th pixel Pi′ weighted by each of its i − 1 upstream pixels in the form

of (1 − αj), and is free of dependency with any downstream pixels. Also, according

to the associative law of multiplication, the order of the operand’s weight has no

effect on the product. For a newly arriving pixel, it follows that the weight factor in

the corresponding term is only determined by its relative depth relationship with all

the other pixels that have arrived: 1) the current pixel will be affected by all of its

upstream pixels that have arrived, and 2) it will make a contribution to each of its

downstream pixels that have arrived.
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Figure 2.8 The P Pack{} data structure for sequential image composition based on
the proposed operator.

It is worth pointing out that (2.5) for computing the α value does not have any

order restriction since every operand in (2.5) makes the same contribution. Hence,

when an operand (pixel) arrives, we can immediately multiply its α value with the

accumulated one.

2.4.1 Algorithm Design and Analysis

To apply the proposed over operator to a blending scenario where the operands

arrive in an arbitrary order, we design two versions of the algorithm for two different

platforms: Sequential Generalized over Operator based Order-unknown Composition

(SGOUC) for sequential execution, and Parallel Generalized over Operator based

Order-unknown Composition (PGOUC) for parallel execution.

2.4.2 SGOUC

In SGOUC, as shown in Figure 2.8, we use a data structure P Pack to store the

intermediate results for a pixel P : a float array C for P ’s three color components

in the order of R,G,B, a float variable α for P ’s α channel, a float variable “D”

for P ’s actual depth value, a float variable “W” for P ’s accumulated weight factor

from upstream pixels, which is initialized to be 1.0. The pseudocode of SGOUC is

provided in Algorithm 5, which consists of three parts.

• Part 1 (Lines 1 to 3): initialize the variables.
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• Part 2 (Lines 4 to 15): The j-th arriving operand P
′
j is assigned the j-th instance

of P Pack from S P . The “for” loop updates the W components of all the

existing instances: for instances whose W components are larger than that of

the new one, multiply their “W” components by (1 − S P [j].α); for instances

whose W components are smaller than that of the new one, multiply the j-th

pixel’s “W” component by (1 − S P [i].α) from all those smaller instances one

at a time.

• Part 3 (Lines 16 to 18): subtract C α from 1 to obtain the α channel of the

composited pixel, and add up the color channels of all the existing instances to

obtain the color channels of the composited pixel.

In Part 2, for the j-th iteration of the “for” loop, its embedded “for” loop runs

in O(j). Hence, the time complexity of Algorithm 5 is of O(n2).

Function 5 SGOUC(P
′
1, P

′
2, · · · , P

′
n)

Input: n RGBA-formatted operands P
′
1, P

′
2, · · · , P

′
n arriving in an arbitrary order

Output: a single RGBA-formatted blended operand P
′

1: P Pack Array S P [n];
2: Array P

′
[4] = [0, 0, 0, 0];

3: float C α = 1;
4: for (j = 0; j ≤ n− 1; j + +) do
5: Receive an operand P

′
j ;

6: S P [j].D= P
′
j (D);

7: S P [j].C=P
′
j (C);

8: S P [j].α= P
′
j (α);

9: C α = C α · (1− P ′j(α));
10: for (i = 1; i ≤ j − 1; i+ +) do
11: if (S P [i].D > S P [j].D) then
12: S P [i].W = S P [i].W · (1− S P [j].α);
13: else
14: if (S P [i].D < S P [j].D) then
15: S P [j].W = (1− S P [i].α) · S P [j].W ;
16: P

′
[3] = 1− C α;

17: for (m = 0; m ≤ n− 1; m+ +) do
18: P

′
[0 : 2] = P

′
[0 : 2] + S P [m].C · S P [m].W · S P [m].α;

19: return P
′
;
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Figure 2.9 The ParaP Pack{} data structure for parallelized image composition
based on the proposed operator.

2.4.3 PGOUC

We parallelize SGOUC for further performance improvement. There exist several

parallelizable operations in SGOUC, for example, the variable updates as a new

operand arrives and the final summation operations. Such parallelization improves

time efficiencies of SGOUC but does not change SGOUC’s time complexity. In

Algorithm 1, each “for” loop is to decide the relative order between the new operand

and all existing ones to calculate their “W” components. There are two cases: Case 1:

the operands with larger “D” component values than that of the new one are modified

by the new one. Case 2: the new operand is modified by those with smaller “D”

component values than itself. In Case 1, the same weight factor are applied to all

existing operands, which could be parallelized. In Case 2, different weight factors are

applied to the same operand, which makes direct parallelization impossible because of

the possible conflict in concurrently modifying the same variable. For parallelization,

as shown in Figure 4.3, we use a new ParaP Pack structure with a pointer component

“pNext”, which represents the index of a ParaP Pack instance whose “D” component

is the smallest among those with larger “D” components than the current operand.

By default, “pNext” is set to be NULL, indicating that there is no downstream

operand found yet.
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With the “pNext” component, we are able to parallelize the modifications to

the same new operand, by directly setting the arriving operand’s “W” component to

be (1 − P P [i].α) · P P [i].W , where P P [i] satisfies that P P [i].D ≤ P
′
j (D) and

P P [P P [i].pNext].D ≥ P
′
j (D). Here, P P [i] represents the existing immediate

upstream (preceding) operand of P
′
j , P P [i].W stores the weight factors from all

the existing upstream operands of P P [i], and (1−P P [i].α) ·P P [i].W is the weight

factors from all the existing upstream operands of P
′
j .

The pseudocode of PGOUC is provided in Algorithm 23, which uses 3 MIMD-

featured functions, i.e., MIMDMULTI, MIMDWEIGHT and MIMDSUM, given in

Functions 7, 8 and 22, respectively. MIMDMULTI updates the W components of

all existing instances in parallel in the embedded “for” loop and reduces the time

complexity of each embedded “for” loop to the order of O(1). MIMDWEIGHT and

MIMDSUM together parallelize the previous n-step summations at the end of SGOUC

by organizing them in a binary tree and reduces the time cost to the order of dlog ne.

Parallelizing these two time-consuming parts in PGOUC results in a reduced overall

time complexity of O(n). We illustrate difference of the SGOUC and PGOUC in

Figure 2.10 for better understanding

2.4.4 Theoretical Performance Analysis

We consider n operands arriving in an arbitrary order with arriving intervals of

t1, · · · , ti, · · · , tn−11. We use TR and TG to represent the time cost of the composition

procedures based on the traditional and proposed over operators, respectively.

With the traditional over operator, the composition cannot start until all

operands become available and are sorted globally. After sorting, the operands are

composited one at a time in each channel in the sorted order. Hence, the total time

cost using a traditional over operator contains three parts for waiting, sorting, and

1The time interval between the (i−1)-th and i-th arriving operands is ti, i = 1, 2, . . . , n−1.
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Function 6 PGOUC(P
′
1, P

′
2, · · · , P

′
n)

Input: n RGBA-formatted operands P
′
1, P

′
2, · · · , P

′
n arriving in an arbitrary order

Output: a single RGBA-formatted blended operand P
′

1: ParaP Pack P P [n];
2: Array P

′
[4] = [0, 0, 0, 0];

3: int j = 0;
4: float C α = 1;
5: for (j = 0; j ≤ n− 1; j + +) do
6: Receive an operand Pj′ ;

7: P P [j].D= P
′
j(D);

8: P P [j].α= P
′
j(α);

9: P P [j].C=P
′
j(C);

10: C α = C α · (1− P ′j (α));
11: if (j > 0) then
12: MIMDMULTI � j � (P P, Pj′ , j);

13: P
′
[3] = 1− C α;

14: MIMDWEIGHT� n� (P P );
15: for (r = 1; r ≤ dlog ne; r + +) do
16: MIMDSUM � d n2r e � (P P, r, n);

17: P
′
[0 : 2] = P P [0].C;

18: return P
′
;

Function 7 MIMDMULTI(P P [], Pj′ , j)
Input: the data structures P P [] of all exiting operands, the newly available operand
Pj′ , the number of available operands j
Output: P P [] storing the operand’s updated weight factor related to Pj′

1: int i = blockIdx.x; //obtain the thread ID in CUDA
2: if (P P [i].D > P

′
j(D)) then

3: P P [i].W = P P [i].W · (1− P ′j (α));
4: else
5: if (P P [i].D < P

′
j (D) and P P [P P [i].pNext].D > P

′
j (D)) then

6: P P [j].pNext = Pi(pNext);
7: P P [j].W = (1− P P [i].α) · P P [i].W ;
8: P P [i].pNext = j;

Function 8 MIMDWEIGHT(P P [ ])
Input: the data structures P P [ ] of all existing operands
Output: P P [ ] storing the operand’s final weight factor

1: int m = blockIdx.x; //obtain the thread ID in CUDA
2: P P [m].C = P P [m].C · P P [m].W · P P [m].α;
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Function 9 MIMDSUM(P P [ ], r, n)
Input: the data structures P P [ ] of all existing operands, the current iteration r for
summation, the total number n of operands
Output: P P [ ] storing the operand’s intermediate summation result

1: int m = blockIdx.x; //obtain the thread ID in CUDA
2: int k = blog2 nc;
3: int interval = 2k−r;
4: if (n ≥ m+ interval) then
5: P P [m].C = P P [m].C + P P [m+ interval].C;

compositing, respectively, i.e.,

TR =
n−1∑
i=1

ti + tsrt + 4(n− 1) · tc, (2.40)

where tsrt denotes the time for sorting, tc denotes the time for compositing a single

channel. Since there are 4 channels in each operand, the time for compositing all n

operands is 4(n− 1) · tc.

With the proposed over operator, there is no clear distinction between the

waiting and composition stages, which often overlap with each other. To facilitate

the analysis of such mixture, we construct a pipeline model that exactly maps the

waiting stage and the composition stage to two continuous steps of the pipeline. The

time cost for the waiting step varies, depending on the operands’ arriving intervals,

i.e., t1, · · · , ti, · · · , tn−1. In the composition step of each incoming operand, we create

a separate thread for every existing operand. The time cost for the second step is

determined by the thread, which composites with the existing immediate upstream

(preceding) operand of the current operand, and hence takes the longest to complete

among all.

The threads in PGOUC are comprised of the same set of operations executed

in possibly different orders. We thus introduce tmax to uniformly represent the time

cost of the second step in all the running instances. The time cost for the entire
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composition process using the proposed over operator is

TR =
n−1∑
i=1

max(ti, tmax) + tsum, (2.41)

where
∑n−1

i=1 max(ti, tmax) is the time cost of the pipeline, and tsum denotes the time

for the final summation.

Comparing (2.40) with (2.41), since in general ti > tmax, it is straightforward

to see the performance advantage of the proposed operator over the traditional one.

2.4.5 Implementation and Experimental Results

For a high level of parallelism, we implement the new over operator in a heterogeneous

computing environment comprised of both CPUs and GPUs. We use two languages

to implement Algorithm 23, i.e., C for CPU programming and CUDA for GPU

programming. To be more specific, lines 12, 14 and 16 in Algorithm 23 are

parallel functions, which are executed with a large number of threads and are hence

implemented in CUDA. The rest of the code is sequential and is hence implemented

in C. Since there is no global memory addressing between CPUs and GPUs in the

existing heterogeneous computing environment, explicit data transfer is needed to

support communications between them, which inevitably incurs an overhead. In

practice, we overlap such data transfer with other activities to minimize the cost.

To test and evaluate the proposed over operator, we apply it to the image

composition in parallel visualization of volume datasets of 3D Human Brain, High-

Potential Iron Protein (HIPIP), and Jet Ejections using ray casting. We plot the

final images composited by the new over operator in Figures 2.11, 2.12 and 2.13,

respectively, which illustrate the validity of the proposed operator and the correctness

of our implementation.
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Figure 2.11 Composited images of Human Brain.

Figure 2.12 Composited images of HIPIP Surfaces.

Figure 2.13 Composited images of Jet Ejections.
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For a practical performance evaluation of these two operators, we use the image

composition task in Figure 2.11 as a benchmark with a sequence of partial images of

the same size without any blank pixels. For a comprehensive comparison, in the image

composition experiments, we consider 2 image sizes: 20482 and 30722; 3 different

numbers of input images: 8, 16, and 32; 6 image arriving intervals: 0s, 0.1s, 0.2s,

0.3s, 0.4s, and 0.5s; and 7 different image arriving (i.e., availability) orders, in each

sequence of input images.

We define the k-distance arriving order as an arriving order where the difference

between the blending orders of any two subsequently arriving input images is k. In

the experiments, we generate 7 different arriving orders as follows. Given n operands

(i.e., partial images), at time t, when k 6= 2, their arriving order is generated as

F (k, t, n) =



(t mod d n
k
e) · k + bt/dn

k
ec

if 0 ≤ t < (n mod k) · dn
k
e;

(t mod b n
k
c) · k + n− 1− b(n− 1− t)/bn

k
cc

if (n mod k) · dn
k
e ≤ t < n;

(2.42)

where k ∈ [1, 3, 4, 5, 6, 7], n ∈ [8, 16, 32], and t ∈ [0, n). When k = 2, the arriving

order of the operands is generated as

F (k, t, n) =



(t mod d n
k
e) · k + 1

if 0 ≤ t < (n mod k) · dn
k
e,

(t mod b n
k
c) · k

if (n mod k) · dn
k
e ≤ t < n.

(2.43)
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We plot the experimental results in Figure 2.14, which show that given the

same arriving interval and the same number of input images of the same size, but

different arriving orders, both algorithms exhibit relatively stable performance curves,

which imply that both of the operators are immune to the arriving order. For the

traditional operator, since it must wait for all the operands to become available,

the arriving order does not affect the time cost; while for the proposed operator,

whichever operand arrives, the composition is always performed in constant time in

parallel, hence resulting in the identical total composition time.

However, the proposed operator takes consistently much less time than the

original one in all the cases, which confirms our theoretical analysis. We further

observe that the performance differences become more obvious as the image size and

the number of input images increase, as shown in each subfigure (from a to h) of

Figure 2.14.

Furthermore, in Figure 2.14i and Figure 2.14j, as the arrival interval increases,

the proposed operator’s relative performance gain over the original one remains quite

stable, i.e., the gap between two performance curves does not vary much, which is

justified by (2.40) and(2.41). For the proposed operator, the time to perform all

the computations for a newly arriving operand is constant. As the arriving interval

increases, such computing time becomes negligible, (2.41) is dominated by the other

two time cost components, i.e.,

TR =
n−1∑
i=1

ti + tsum. (2.44)

Comparing (2.44) with (2.40), the difference only lies in tsum and tsrt + 4(n− 1) · tc,

which are all fixed given the same number of input images and the same image size.

Thus, the performance difference between two these operators as the arriving interval

increases is essentially the difference of these two terms.
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(a) arriving interval 0s for image
size of 20482.

2 4 6
1

1.5

2

2.5

3

k−distance
arriving order

C
om

po
si

tio
n 

tim
e 

(s
ec

)

2 4 6
1

2

3

4

5

6

k−distance
arriving order

C
om

po
si

tio
n 

tim
e 

(s
ec

)

2 4 6
2

4

6

8

10

12

k−distance
arriving order

C
om

po
si

tio
n 

tim
e 

(s
ec

)

 

 

Proposed Over

 

 

Original Over

(b) arriving interval 0.1s for image
size of 20482.

2 4 6
1.5

2

2.5

3

3.5

k−distance
arriving order

C
om

po
si

tio
n 

tim
e 

(s
ec

)

2 4 6
3

4

5

6

7

k−distance
arriving order

C
om

po
si

tio
n 

tim
e 

(s
ec

)

2 4 6
6

8

10

12

14

k−distance
arriving order

C
om

po
si

tio
n 

tim
e 

(s
ec

)

 

 

Proposed Over

 

 

Original Over

(c) arriving interval 0.2s for image
size of 20482.
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(d) arriving interval 0.3s for image
size of 20482.
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(e) arriving interval 0s for image
size of 30722.
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(f) arriving interval 0.2s for image
size of 30722.
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(g) arriving interval 0.4s for image
size of 30722.
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(h) arriving interval 0.5s for image
size of 30722.
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(i) Image size of 20482.
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(j) Image size of 30722.

Figure 2.14 Comparisons of two operators on the image size of 20482 and 30722 with
varying arriving intervals and numbers of input images using the 3D brain dataset.
The three subfigures in each group correspond to the cases of 8, 16, and 32 input
images, respectively, from left to right.
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2.5 The In-practice Real-time over Operator

The generalized over (GOO) operator simply considers composition at a single pixel

position and introduces multiple additional elements to support the desired extent of

parallelization. When it comes to the composition of multiple partial images, where

the number of involved pixel positions increases dramatically, treating each position

independently and then applying GOO directly is a straight-forward but efficiency-

disadvantageous method. To best suit the new composition situation, we propose the

following optimizations oriented to GOO and its relevant structure ParaP Pack{} : 1.

correlating all fragments in the same partial image to a common depth value,“PID”,

which is minimal of all “D” values related to the partial image, instead of storing

depth component “D” for each fragment in the image. Validity of the common “D”

value is “D” justifiable according to assumptions, its specific value is determined

during rendering. 2. breaking ParaP Pack{} down into 3 finer-grained data structures

FragCompC, FragCompAlpha, FragCompW, which correspond to “C[3]”, “D”,“W”

components in ParaP Pack respectively. Such division provides more flexibility while

exchanging data between CPU and GPU, enables the prioritization of needed data

components, and facilitates a more efficient and complete usage of the limited GPU

memory resources. To distinguish the over operator with the above optimizations,

we denote it as IROO (in-practice real-time over operator).

2.5.1 IROO Based Image Composition and the General Optimization

Strategies

The image composition problem considered here contains n h×k-sized asynchronously-

arriving partial images, m homogeneously-configured composition devices cj, j =

0, 1, · · · ,m − 1. Each partial image is divided into m identically-sized tiles tj,

j = 0, 1, · · · ,m − 1. The fragment (x, y), 0 ≤ x < w, 0 ≤ y < h, belongs to

tile tj, if j = by/nc. The composition unit cj, 0 ≤ j < n, only composites fragments

belonging to tile tj.
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To be more specific, each considered composition unit here provides a hetero-

geneous computing enviroment that contains both GPU and CPU. GPU performs

most of the parallelization works and CPU coordinates the communications.2 We

study several performance-gaining strategies within such enviroment, which include

1) reducing data movement between CPU and GPU, 2) increasing data access rates,

3) modeling the amounts of requisite resources on GPU (mainly the global memory

and threads, which are critical to the operator’s parallelization), 4) exploring the

parallelization opportunities with the given amounts of resources. We first address

each of them individually, then apply and integrate them in proposed algorithms.

1) Data movement between host memory and device memory occurs when data

on one side is requested from the other. Before desired data arrive, the operations

depending on the requested data are halted. Such movement halts proceeding of

all dependent operations and introduces non-negligible performance degrading. Our

main optimization principle is thus to best locate the requested data along with the

requesting side, i.e. locating requested data for GPU/CPU in device/host memory.

In the current form of the proposed operators, operations on GPU require the W

component of each participating fragment. Considering the W components are

initialized uniformly for all fragments, we initialize all W components on device

directly instead of doing that on host and later moving from host to device.

2) We consider increasing data access rates for GPU related operations through

exploring the usage of share memory on GPU. Considering the scarcity of share

memory and its preference over certain access patterns to deliver highest access

rates, we accordingly propose the following acceleration strategies: 1. reserving the

share memory for newly-arriving image’s alpha values, which are highly concurrently

demanded while updating all existing images’ W components; 2. swapping data

in/out of share memory at a size equivalent to the share memory’s capacity so as to

2the GPU device we select are CUDA compatible, the terms follow CUDA conventions
naturally.
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minimize the relevant data movement overheads, i.e., all required alpha components

are splited into n parts, where n is the number of locations the share memory exist, one

alpha component-part corresponding to one share memory-location; 3. coordinating

the each thread’s share-memory access scheme so as to minimize bank confliction.

3) In our real-time composition problem, as new image arrives, the cost of

memory to keep the W components and alpha values of all available operands on

board also increases. It is possible that the required amounts in such a manner exceed

the available at a particular point. We figure out the feasibility of avoiding/delaying

such a point based on the observation that the requisite alpha values as new image

arrives come from two images at most: one is the newly arriving one, the other is

immediately in front of the arriving one among the currently available ones, leaving

all the rest eligible for being replaced without affecting the performance. In addition,

the immediately in-front image has less priority than the new one, the memory

requirement of new image should be always considered first. When the memory

shortage occurs, we further propose to substitute the alpha values of existing partial

images with the W component and alpha values of the newly arriving one. Methods

to determine the shortage and the corresponding treatment are given in the modeling

and algorithm design, respectively.

In compliance with the problem specification and proposed optimization, we

propose the following modeling for the proposed operator’s resource requirement,

covering both memory and thread. For memory requirement, there exist the following

metrics: 1) a constant size C to hold the permanent variables which live through

the whole composition procedure; 2) a varying size D(j) to support the update of

all j existing images’ W components in parallel, which requires the simultaneous

availability of these images’ all related W components and at least two images’ all

related alpha values, thus determines that D(j) = (j + 2) × h × k, where h × k is

the size of each considered image, j × h × k is allocated to W components of all
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considered images, 2 × h × k is for alpha values of the newly arriving image and

its immediately-before one; 3) D(j) is the size of memories actually accessed in the

parallel execution, reserving memory space merely of size D(j) doesn’t guarantee

optimal performance, since the new image’s immediately-before image is determined

only after the new image is ready, it requires another round of data transferring

if the needed immediately-before image is not in device memory yet, instead, if all

existing images’ alpha components are already in memory when the new image arrives,

there is no such follow-up transferring need, the required amounts of memory in such

situation is (j + 2) × h × k then. Given available amounts of memories ma, we

categorize the according composition of the j images as: 1) sufficient memory(SM) if

ma > 2j × h× k; 2) acceptable memory(AM) if (j + 2)× h× k < ma < 2j × h× k;

3) deficient memory(DM) if ma < (j + 2)× h× k.

For thread requirement, we follow the similar logics. The requisite number of

threads for completely parallel composition of the j images is j×h×k, which tells the

thread sufficiency in the considered situation as 1)insufficient threads(IT) 2) sufficient

threads(ST).

The above analysis tells the extent of possible parallelism in the given situation,

points out the issues to consider while exploring parallelization, and provides a

concise framework to organise the according algorithm design. We thus consider

our algorithm design based on the above categorization of memory availability and

cover the divided cases of 1. SM 2. AM 3. DM individually.

2.5.2 IROO Based Image Composition Algorithms

SM With the ideal availability of memory resources, we consider improving

the performance from the perspectives of increasing memory access-rates and best

utilizing the given thread pool individually.
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To best utilize the limited high-speed memories, and thus increase overall access

rates, in each step of the composition, we devote such memories to the most commonly,

concurrently requested data, i.e., the alpha values of the newly available image.

Considering the shortage of such resource as well as its split into multiple same-sized

units on the device, we also divide all alpha values of the new image into the same

number of blocks, assign one block to one high-speed unit, and swap data in/out of

the unit to address the deficiencies. The specific division and assignment logics are

given in Figure 2.17 for better understanding. Another restriction related to access of

such high-speed memory is that only threads in the same thread-block can access the

same high-speed memory unit. We bear such restriction in mind while specifying each

thread’s job assignment. A proper algorithm integrating the above considerations is

given in Algorithm 10.

Given partial image tiles, PIT0, · · · , P ITi, · · · , P ITn−1 as input, the functionality

body of Algorithm 10 consists of the following parts: 1) variable declaration, from

lines 1 to 6, where requisite variables are introduced and briefly illustrated with

comments; 2) weight updating as each image arrives, from lines 7 to 12, which involves

sending the received image to GPU and launching the kernal there for parallelization

of related operations; 3) weight finalizing after all images are available at line 12, i.e.,

executing the kernel “FinalAlpha” on GPU; 4) weight summarizing for desired results,

from lines 13 to 14, i.e., launching rounds of kernel “IROOSUM” before the desired

image is ready to be sent back to CPU. Among the multiple kernels introduced in

the algorithm, “FinalAlpha” and “IROOSUM” in part 3) and 4) are straight-forward

extensions from the single-operator version, thus skipped for brevity. We focus on the

proposed two kernels for the weight updating in part 2), “CacheUPD SM”, utilizing

the high-speed cache for increasing access rates, and “ThreadUPD SM”, fully utilizing

available thread resources for higher degree of parallelization.
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Device CacheDevice Memory

Figure 2.15 Illustration for the correlation between the global memory and high-
speed cache.

For kernel “CacheUPD SM”, its functionality body consists of the following 3

parts, 1) variable declaration, lines 1 to 6; 2) determination of the immediately-before

and immediately-behind images for the new one, lines 7 to 11; 3) updating the W

components of the new image and all others that are behind the new one, lines 12

to 25. Logics and validity for part 1) and 2) are straight forward, we focus on the

illustration to part 3). The update procedure in part 3) is generally in the form of

an l-iteration loop, where l is the ratio between the size of each input image, i.e.,

h · w, and that of the high-speed memory, BufferSize. At the beginning of i-th

iteration, all threads wait till the high speed cache is fulfilled with the new image’s

i-th alpha component block, each of which is of the same size, BufferSize, then

diverge on whether the images they are assigned to fall before and behind the new

image: threads assigned to the behind images update all its W components in parallel;

threads assigned to immediately-before images update the W component of the new

image in parallel; other threads idle .

For kernel “ThreadUPD SM”, it is similar to the “CacheUPD SM” on the

aspects of first two parts, we thus focus only on their differences on specification
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for the update loop. The proposed update loop here consists of l iterations, where l

is the number of positions each thread needs to deal with. Given iteration i of the l

ones, each thread tells whether to update the considered position based on the same

depth info that is utilized in “CacheUPD SM”. The kernel finishes when the loop is

done. An illustrating figure for each thread’s assignment of pixel positions is given in

Figure 2.16.

2.5.3 AM

With barely enough memory resources, proper memory management is also required

to secure the procedure’s overall performance. We incorporate the proposed

optimizations in Section 2.5.1 to speed up the composition in this new situation.

According solution integrating the above is given in Algorithm 15. Functionality

body of Algorithm 15 is divided into the same number of parts as Algorithm 10,

1) variable declaration, lines 1 to 8; 2) weight updating as each image arrives, from

lines 9 to 13; 3)weight finalizing after all images available, lines 14 to 18; 4) weight

summarizing for desired image, lines 19 to 20. Each divided part shares a common

goal with its counterpart in Algorithm 10 and adopts new strategies to cope with the

difference. We thus focus only on new strategies introduced in each part. Launched

kernels, “CacheUPD AM” and “ThreadUPD AM”, in Part 2) consider the possible

unavailability of the immediately before-image’s alpha components while updating

the new image’s “W” components and address the problem by checking the variable

AlphaTag, which indicates the index of the image whose alpha values are currently

kept in device memory: if the value of AlphaTag points to the desired immediately

in-front image, the W components of the new image are updated directly, otherwise,

updating of such components are delayed until alpha components of the desired image

are transferred to device memory. Weight Finalizing in Part 3) operates in two

parallel streams to fully utilize the allocated space that can only accommodate alpha
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Computing Threads
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... ...... ... ...... ... ......

Computing Threads

(c) Available number of threads is equal to one third of positions.

Figure 2.16 Illustrating figure for each thread’s assignment of pixel positions.
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Device CacheDevice Memory

Figure 2.17 Illustration for the correlation between the global memory and high-
speed cache.

components of two images, to be more specific, all odd-numbered images are assigned

to one stream, all even-numbered images are assigned to the other stream. Images

in each stream go through the process of transferring alpha components to GPU and

finalizing them by “FinalAlpha”. Weight summarizing in Part 4) has no difference

with its counterparts in “CacheUPD SM” or “ThreadUPD SM”, is thus skipped.

2.5.4 DM

As the memory resource falls out of the self-sufficiency range, we consider the

strategies of frequently swapping data between the host and device memory and other

underlying possibilities to minimize the related overheads. The accordingly proposed

algorithm is given in Algorithm 18. Its functionality body is divided into the same

parts : 1) variable declaration; 2) weight updating as each image arrives; 3) weight

finalizing after all images are available; 4) weight summarizing for desired image. We

also focus only on new strategies oriented to the new problem setting.

Weight updating in Part 1) operates in d parallel streams, where d is the

maximal number of images the selected GPU can support for keeping their relevant

alpha values within device memory. The image PITj is attributed to the stream
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Stream1

Stream2

Stream3Stream33

Figure 2.18 Illustration of the assignment of images to streams.

StrmNum(0 ≤ StrmNum < d) if and only if StrmNum == (j/bn/dc). As PITi

arrives, its alpha values are transferred to GPU first, then images in each stream go

through the process of weight updating by “ThreadUPD”, transferring back updated

weight back to host one after another. Illustration for the assignment of images to

streams is given in Figure 2.18.

Weight finalizing in Part 2) operates in maximal bd
2
c parallel streams, considering

that the required space for each image is h · w · 2 at this part, one half for alpha

components, the other for W components. The image PITj is assigned to the

stream StrmNum(0 ≤ StrmNum < bd
2
c) if and only if StrmNum == (j/bn/bd

2
cc.

Images in each stream go through the process of transferring alpha components, W

components to GPU, weight finalizing by “FinalAlpha” and transferring back finalized

weight to host one image after another.

Weight summarization in Part 3) consists of two subparts. Subpart 1, lines 22

to 30, operates in maximal bd
2
c parallel streams, since the required space in each

stream is also h · w · 2, one half for alpha components of the fixed image, the other

for alpha components of a varying image. The image PITj is assigned to the stream

StrmNum(0 ≤ StrmNum < bd
2
c) if and only if StrmNum == (j/bn/bd

2
cc). The

least-numbered image in each stream is selected as the fixed image. At the beginning

of each stream, finalized weights of the fixed image are transferred to GPU first, then
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rest images in the same stream follow the steps of sending their W components to

GPU, summing up with the fixed image one after another. Subpart 2, lines 31 and

32, finishes summing up the last bd
2
c images similarly as IROO-SM, IROO-AM did.

Function 10 IROO-SM(PIT0, · · · , P ITi, · · · , P ITn−1)
Input: the data structures PITi(0 ≤ i < n) which contains the rendered tile from ci
and the corresponding PIDi value
Output: Composited Tile
1: —constant— DInfo[n]; // Depth value for each input image
2: —constant— NextInfo[n];//Index of immediately behind-peer for each input image
3: int i = 0;
4: FinalImg=Malloc(h · w);//CPU memory for composited final images
5: FragW=Cudamalloc(h ·w ·n);//dedicated GPU memory for W compoment of all input

images
6: FragAlpha=Cudamalloc(h ·w · n);//dedicated GPU memory for Alpha compoment of

all input images
7: while (Receive PITi) do
8: DInfo[i]=PITi.P IDi;
9: FragAlpha[h · w · i]=Host2DeviceCpy(PITi.T ile);

10: ThreadUPD SM� 1, {BuffSize, i + 1} � ( FragW, FragAlpha, DInfo, Next
Info, h, w,AlphaTag);

11: i+ +;
12: FinalAlpha� 1, {h,w,min(n, ThDNumh·w )} � (FragW,FragAlpha);
13: for (r = 1; r ≤ dlog ne; r + +) do
14: IROOSUM� d n2r e, {h,w} � (FragW, 0);
15: FinalImg=Device2HostCpy(FragW );
16: return FinalImg
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Function 11 CacheUPD SM(FragW,FragAlpha,DInfo,NextInfo, h, w)
Input: FragW , array of W component; FragAlpha, array of alpha components;
DInfo, array of depth info; NextInfo, array of indexes for immediately-next image;
h, image height; w, image width
Output: Updated FragW
1: int tx = threadIdx.x;
2: int BuffSize = blockDim.x;
3: int k = blockDim.y − 1;
4: int l = h · w/BuffSize;
5: int ty = threadIdx.y;
6: int PreImg = 0;
7: if tx == 0 then
8: if (DInfo[ty] < DInfo[k] and DInfo[NextInfo[ty]] > DInfo[k] ) then
9: NextInfo[k] = NextInfo[ty];

10: NextInfo[ty] = k;
11: PreImg = ty;
12: for i = 0 to l − 1 do
13: —shared— FragCompAlpha ShareFrag[BuffSize];
14: if ty == 0 then
15: ShareFrag[tx] = FragAlpha[h · w · k + i ·BuffSize+ tx];
16: —syncthreads();
17: if (DInfo[ty] > DInfo[k]) then
18: Windex = h · w · ty + i ·BuffSize+ tx;
19: FragW [Windex] = FragW [Windex] · (1− ShareFrag[tx]);
20: else
21: if (PreImg == ty ) then
22: Windex = h · w · k + i ·BuffSize+ tx;
23: PreWindex = h · w · ty + i ·BuffSize+ tx;
24: Aindex = PreWindex;
25: FragW [Windex]· = FragW [PreWindex] · (1− FragAlpha[Aindex]);
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Function 12 ThreadUPD SM(FragW,FragAlpha,DInfo,NextInfo, w)
Input:FragW , array of W component; FragAlpha, array of alpha components;
DInfo, array of depth info; NextInfo, array of indexes for immediately-next image;
w, image width
Output Updated FragW
1: int tx = threadIdx.x;
2: int ty = threadIdx.y;
3: int tz = threadIdx.z;
4: int k = blockDim.x;
5: int h = blockDim.y;
6: int l = w/blockDim.z;
7: int PreImg = 0;
8: if tx == 0 then
9: if (DInfo[ty] < DInfo[k] and DInfo[NextInfo[ty]] > DInfo[k] ) then

10: NextInfo[k] = NextInfo[ty];
11: NextInfo[ty] = k;
12: PreImg = ty;
13: for (int i = 0; i < l; i+ +) do
14: if (DInfo[tx] > DInfo[k]) then
15: Windex = h · w · tx+ w · ty + tz · l + i;
16: Aindex = h · w · k + w · ty + tz · l + i;
17: FragW [Windex] = FragW [Windex] · (1− FragAlpha[Aindex]);
18: else
19: if (ty == PreImg ) then
20: Windex = h · w · k + w · ty + tz · l + i;
21: PreWindex = h · w · tx+ w · ty + tz · l + i;
22: Aindex = PreWindex;
23: FragW [Windex]· = FragW [PreWindex] · (1− FragAlpha[Aindex]);

Function 13 FinalAlpha(FragW,FragAlpha)
Input: FragW , array of W component; FragAlpha, array of alpha components
Output Finalized FragW
1: int tx = threadIdx.x;
2: int ty = threadIdx.y;
3: int tz = threadIdx.z;
4: int h = blockDim.x;
5: int w = blockDim.y;
6: WPos = tz · h · w + ty · w + tx;
7: Frag[WPos] = Frag[WPos] · FragAlpha[WPos];
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Function 14 IROOSUM(FragW, SumNum)
Input: FragW , array of W component; SumNum, finished rounds of summation
Output: FragW storing the operand’s intermediate summation result
1: int tx = threadIdx.x;
2: int ty = threadIdx.y;
3: int tz = threadIdx.z;
4: int interval = SumNum/blockDim.z;
5: int h = blockDim.x;
6: int w = blockDim.y;
7: WPos = tz · h · w · interval + ty · w + tx;
8: PairWPos = (2 · tz + 1) · (interval/2) · h · w + ty · w + tx;
9: FragW [WPos] = FragW [WPos] + FragW [PairWPos];

Function 15 IROO-AM(PIT0, · · · , P ITj, · · · , P ITn−1)
Input: the data structures PITj(0 ≤ j < n) which contains the rendered tile from
ci and the corresponding PIDi value
Output: Composited Tile
1: —constant— DInfo[n];
2: —constant— NextInfo[n];
3: int k = 0;
4: int AlphaTag = −1;
5: cudaStream t streams[2];
6: FragW=Cudamalloc(h · w · n);
7: FragAlpha=Cudamalloc(h · w · 2);
8: HostAlpha=Hostmalloc(h · w · n);
9: while (Receive PITk) do

10: DInfo[k] = PITk.P IDk;
11: FragAlpha[0]=Host2DeviceCpy(PITk.T ile);
12: ThreadUPD� 1, {k + 1, h, 1} �(FragW,FragAlpha,DInfo,NextInfo, w,);
13: k + +;
14: while k > 0 do
15: StrmNum = k mod 2;
16: FragAlpha[h·w·StrmNum]=AyncHost2DeviceCpy(PITk.T ile, streams[StrmNum]);
17: FinalAlpha� 1, {h,w, 1}, streams[StrmNum] � (FragW [h · w · k], F ragAlpha[h ·

w · StrmNum]);
18: k −−;
19: for (r = 1; r ≤ dlog ne; r + +) do
20: IROOSUM � d n2r e, {h,w} � (FragW, 0);
21: FinalImg=Device2HostCpy(FragW );
22: return FinalImg
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Function 16 CacheUPD AM(FragW,FragAlpha,DInfo,NextInfo, h, w)
Input: FragW,FragAlpha, array of W and alpha components; DInfo, array of
depth info; NextInfo, array of indexes for immediately-next image; h,w, image
height and width;
Output: Updated FragW
1: int tx = threadIdx.x, ty = threadIdx.y; ;
2: int BuffSize = blockDim.x, PreImg = 0;
3: int k = blockDim.y − 1, l = h · w/BuffSize;
4: if tx == 0 and DInfo[ty] < DInfo[k] and DInfo[NextInfo[ty]] > DInfo[k] ) then
5: NextInfo[k] = NextInfo[ty];
6: NextInfo[ty] = k, PreImg = ty;
7: for i = 0 to l − 1 do
8: —shared— FragCompAlpha ShareFrag[BuffSize];
9: if ty == 0 then

10: ShareFrag[tx] = FragAlpha[h · w · k + i ·BuffSize+ tx];
11: —syncthreads();
12: if (DInfo[ty] > DInfo[k]) then
13: Windex = h · w · ty + i ·BuffSize+ tx;
14: FragW [Windex] = FragW [Windex] · (1− ShareFrag[tx]);
15: else
16: if (PreImg == ty ) then
17: Windex = h · w · k + i ·BuffSize+ tx;
18: PreWindex = h · w · ty + i ·BuffSize+ tx;
19: if AlphaTag! = ty then
20: if i == 0 and tx == 0 then
21: FragAlpha[h · w]=Host2DeviceCpy(PITty.T ile);
22: AlphaTag = ty;
23: —syncthreads();
24: else
25: Aindex = h · w + i ·BuffSize+ tx;
26: FragW [Windex]· = FragW [PreWindex] · (1− FragAlpha[Aindex]);
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Function 17 ThreadUPD AM(FragW,FragAlpha,DInfo,NextInfo, w)
Input:FragW,FragAlpha, array ofW and alpha components; DInfo, array of depth
info; NextInfo, array of indexes for immediately-next image; w, image width;
Output: Updated FragW
1: int tx = threadIdx.x, ty = threadIdx.y;
2: int tz = threadIdx.z, PreImg = 0;
3: int k = blockDim.x, h = blockDim.y;
4: int l = w/blockDim.z;
5: int AlphaTag = −1;
6: if tx == 0 and DInfo[ty] < DInfo[k] and DInfo[NextInfo[ty]] > DInfo[k] ) then
7: NextInfo[k] = NextInfo[ty];
8: NextInfo[ty] = k;
9: PreImg = ty;

10: for (int i = 0; i < l; i+ +) do
11: if (DInfo[tx] > DInfo[k]) then
12: Windex = h · w · tx+ w · ty + tz · l + i;
13: Aindex = h · w · k + w · ty + tz · l + i;
14: FragW [Windex] = FragW [Windex] · (1− FragAlpha[Aindex]);
15: else
16: if (ty == PreImg ) then
17: Windex = h · w · k + w · ty + tz · l + i;
18: PreWindex = h · w · tx+ w · ty + tz · l + i;
19: if AlphaTag! = ty then
20: if i == 0 and tx == 0 then
21: FragAlpha[h · w]=Host2DeviceCpy(PITty.T ile);
22: AlphaTag = ty;
23: —syncthreads();
24: else
25: Aindex = h · w + i ·BuffSize+ tx;
26: FragW [Windex]· = FragW [PreWindex] · (1− FragAlpha[Aindex]);
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Function 18 IROO-DM(PIT0, · · · , P ITj, · · · , P ITn−1)
Input: the data structures PITi(0 ≤ i < n) which contains the rendered tile from ci
and the corresponding PIDi value
Output: Composited Tile
1: —constant— DInfo[n], NextInfo[n];
2: int i = 0;
3: FragW=Cudamalloc(h · w · d);
4: HostW=Malloc(h · w · n);
5: cudaStream t streams[d];
6: FragAlpha=Cudamalloc(h · w · 2);
7: while (Receive PITi) do
8: DInfo[i] = PITi.P IDi;
9: int StrmNum = i mod d;

10: FragAlpha[h·w·StrmNum]=AyncHost2DeviceCpy(PITi.T ile, streams[StrmNum]);
11: ThreadUPD� 1, {1, h, w}, streams[StrmNum] � (FragW, FragAlpha, DInfo,

NextInfo);
12: HostW [h · w · i]=AyncDevice2HostCpy(FragAlpha[h · w · StrmNum], streams[

StrmNum]);
13: i+ +;
14: while i > 0 do
15: StrmNum = i mod bd2c;
16: FragW [h · w · StrmNum · 2]=AyncHost2DeviceCpy(HostW [h · w · i], streams[

StrmNum]);
17: FragW [h·w·(StrmNum·2+1)]=AyncHost2DeviceCpy(PITi.T ile, streams[StrmNum]);
18: FinalAlpha � 1, {h,w, 1}, streams[StrmNum] � (FragW [h · w · StrmNum ·

2], F ragW [h · w · (StrmNum · 2 + 1)]);
19: HostW [h · w · i]=AyncDevice2HostCpy(FragW [h · w · StrmNum · 2], streams[

StrmNum]);
20: i−−;
21: while i < n do
22: StrmNum = (i mod bd2c);
23: TileNum = (i mod bd2c) · (n/

d
2c) + i/bd2c;

24: if i/bd2c == 0 then
25: FragW [h · w · StrmNum · 2]=AyncHost2DeviceCpy(HostW [h · w · TileNum],

streams[StrmNum]);
26: else
27: FragW [h ·w ·(StrmNum ·2+1)]=AyncHost2DeviceCpy(HostW [h ·w ·TileNum],

streams[StrmNum]);
28: IROOSUM � 1, {h,w} � (FragW,StrmNum · 2);
29: i−−;
30: for (r = 1; r ≤ logbd2c; r + +) do

31: IROOSUM � dbd2c/2
re, {h,w} � (FragW, 0);

32: FinalImg=Device2HostCpy(FragW );
33: return FinalImg
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CHAPTER 3

IMAGE COMPOSITION WORKFLOW ORGANIZATION

3.1 Image Composition Workflow Organization

There exist a wide range of research efforts in the aspect of image composition

workflow scheduling. Among the most traditional ones, the Binary Swap method

proposed by Ma et al. divides the entire procedure into several sub-stages according

to the number of available processors [42]. At each sub-stage, each processor is paired

with its counterpart according to its own processor label and the current sub-stage

number. This method evenly distributes the composition workload among all the

participating processors, and minimizes the number of sub-stages. The main issue

associated with this method is its constraint on the number of processors being a

power of 2.

Lee et al. proposed the Parallel Pipeline method, where all the processors are

arranged in a 2-D grid and the entire composition procedure is divided into two sub-

stages accordingly [37]. At each sub-stage, each processor joins a group of processors

sharing one common coordinator in the established 2-D grid coordinate system, and

communicates with others in the current group to blend its own pixels. Different

from Binary Swap, this method removes the power-of-2 constraint on the number

of processors. However, it introduces more communication cost than Binary Swap

when the number of available processors happens to be a power of 2. Eilemann et al.

proposed the classical Direct Send method, which can be viewed as a simplified version

of the Parallel Pipeline method in 1-D [18].

Lin et al. proposed the Rotate Tiling (RT) method, which integrates the

Binary Swap method with the Parallel Pipeline method [41]. By carefully dividing

the rendered image of each processor into a certain number of blocks, Rotate

Tiling reduces the communication overhead incurred in the entire procedure at the
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cost of unbalanced workload, which may negatively affect the overall visualization

performance.

Yu et al. proposed the 2-3 swap composition method with the intention to

generalize the original Binary Swap method [71]. In this generalized method, each

processor is initially assigned a different number of pixels for composition. As the

process continues, the difference in the number of pixels on each processor may become

smaller, and eventually, it reaches a finish point when the number of pixels each

processor needs to handle is equal and the pixels on all the processors constitute a

complete image. This method removes the constraint on the number of processors,

but each participating processor may incur more communications with others and

some processors may be left idle in the process. In addition, they also proposed

and analyzed several intuitive methods such as Reduced Binary Swap to extend the

application scope of Binary Swap.

More recently, Peterka et al. proposed the Radix-k method, in which the number

of processors can be factorized arbitrarily [55]. Once a certain factorization is selected,

the composition procedure is scheduled according to the number of factors and the

value of each factor involved in the factorization. This method does not impose

any constraint on the number of processors, and has potential to achieve a good

performance in terms of communication cost with a carefully selected factorization.

However, since this method is intended for order-dependent problems, it raises an

issue on how a proper factorization should be selected in the case of a dynamic image

arriving order. In general, an exhaustive search of all possible factorizations might

be needed for the best performance.

We proposed Grouping More and Pairing Less (GMPL) method, which provides

a generalization framework that encompasses several existing algorithms. GMPL

takes a prime factorization-based approach to strategically divide the processors into

a set of groups at the finest possible grain and form a well-structured grid to minimize
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the communication overhead with evenly distributed workload. When the number of

processors is a prime or a power of 2, GMPL reduces to an improved version of the

Direct Send algorithm applied to all the processors or in each established group.

3.2 GMPL Algorithm for Image Composition Workflow Scheduling

We consider a general image composition problem in sort-last parallel rendering

that involves N homogeneous processors, denoted as W0,W1, . . . , WN−1, which are

interconnected through a local switch. Each processor has a locally rendered image

of an identical size P without any blank pixels, and needs to blend its own pixels

with those corresponding ones of the same position on all other processors using the

Z-depth test, i.e., Z-buffer method. In this image composition problem, we consider a

multi-port communication model such that each processor is able to send and receive

messages simultaneously with an equal amount of bandwidth.

3.2.1 Algorithm Design

Based on a thorough investigation into the existing methods for image composition,

we provide a summary of the observations and rationales in support of our algorithm

design:

• Given N processors, i) if they are arranged in the way of Direct Send, the

latency would proportionally relate to the number of processors [71]; ii) if they

are arranged in a 2-D grid of f i0×f i1, whereN = f i0×f i1 and f i0, f
i
1 ≥ 1, the latency

can be reduced compared with Direct Send [37]. The difference between these

two arrangements lies in the decision on whether or not to factorize the number

of nodes. Peterka et al. further suggested that the N processors be arranged

in a multidimensional grid based on the factors of N [55]. As factorization is

conducive to the latency performance and can be conducted recursively, one

may be able to achieve the highest performance gain by factorizing the number

of nodes into prime numbers, i.e., to the lowest degree.
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• If the number N of processors happens to be prime, a grid-based grouping

approach through factorization does not work, and therefore these N nodes may

have to be arranged as in Direct Send. As Direct Send generally incurs a high

latency, more efficient methods are needed to improve its latency performance.

By integrating the above two aspects into algorithm design, we propose a

Grouping More and Pairing Less (GMPL) method for order-independent image

composition, whose pseudocode is provided in Algorithm 19, which calls PrimeFactor-

Encoding() in Algorithm 20 and ImprovedDS() in Algorithm 21. The PrimeFactor-

Encoding() function is used to calculate the code series of a given processor ID, which

comprises of a sequence of coordinates in the hyperspace of the prime factors derived

from the number of processors.

Note that the decision version of the prime or integer factorization problem

is generally considered within the class of UP (Unambiguous Non-deterministic

Polynomial-time) and outside the class of P [13]. However, there exist many

special-purpose algorithms including trial division [23] and elliptic curves [32], and

general-purpose algorithms including Dixon’s factorization method [16] and continued

fraction factorization [38], which are highly efficient in factorizing very big numbers

of dozens of digits. Considering the scale of today’s PC clusters is still quite limited

with merely hundreds or thousands of processors on average, prime factorization

can be performed online to support real-time operations. For larger numbers,

prime factorization can be always done off-line before the visualization begins. The

algorithm ImprovedDS is designed to coordinate the processors’ sending/receiving

and blending workflows to improve the latency performance of the original Direct

Send method.

In Algorithm 19, each processor first obtains its code series from the function,

PrimeFactorEncoding(), in line 2. Then, the composition procedure is divided into

k sub-stages, where k is the number of prime factors of the given number N of
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processors. At each sub-stage, we label N
′

groups in line 6, where N
′
= N/ft and ft

is the t-th factor of N . Here, each “group” represents a collection of processors, which

only communicate with others in the same group to blend their image tiles. In line 7,

“simultaneously” means that all the groups and their member processors are expected

to start performing their tasks in parallel at the same time. In line 8, each denoted

group ID also obtains its corresponding code series using the PrimeFactorEncoding()

function with respect to N ′. The N processors are then assigned to the N
′

groups

as follows: a processor Wi is added to Gj if their corresponding code series (i.e.,

coordinate sequences) (di0, d
i
1, · · ·, dik−1) and (dj0, d

j
1, · · ·, d

j
k−2) satisfy (3.1), as shown

in line 10: 
dir = djr, if 0 ≤ r ≤ t− 2;

dir = djr+1, if t ≤ r ≤ k − 1.

(3.1)

When the group assignment is completed for all the processors, we call the

ImprovedDS algorithm for each group in line 14 to coordinate the processors’

communication and blending workflows within the same group. After executing

ImprovedDS, we remove all the group associations established in the current sub-stage

in line 16 and move on to the next sub-stage for a regrouping of the processors. After

completing these k sub-stages, each processor holds a composited image tile, which

is then collected by processor W0 using a Binary-Tree scheme in line 18.

For ImprovedDS in Algorithm 21, given a group Gj containing h processors and

the sub-stage, i.e., t, where the algorithm is applied, all the h processors are first

arranged in an increasing order according to their original processor IDs in line 1.

Similarly, “simultaneously” in line 2 means that all the processors are expected to

start performing their tasks in parallel at the same time. Each processor also needs

to divide the sub-image it currently holds into h equal-sized tiles and label them by
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Function 19 GMPL(W0,W1,W2 · ··,WN−1)
Input: N processors with partial images
Output: A composited final image on W0

1: for i = 0 to N − 1 do
2: (di0, d

i
1, d

i
2 · ··, dik−1)=PrimeFactorEncoding(i,N);

3: for t = 0 to k − 1 do
4: Set N

′
= N/ft;

5: Use G0, G1, · · ·, GN ′−1 to denote N ′ groups;

6: for all j ∈ [0, N
′ − 1] simultaneously do

7: (dj0, d
j
1, d

j
2 · ··, d

j
k−2) = PrimeFactorEncoding(j,N

′
);

8: for all i ∈ [0, N − 1] do
9: if the coordinate sequences (di0, d

i
1, · · ·, dik−1) of Wi and (dj0, d

j
1, · · ·, d

j
k−2) of

Gj satisfy (3.1) then
10: Add Wi to Group Gj;
11: ImprovedDS(Group Gj, sub-stage number t);
12: Remove all group associations;
13: Processor W0 collects the composited tiles held by all other processors Wi (1 ≤

i ≤ N − 1) using a Binary-Tree scheme to compose the final image I;
14: return the final image I on processor W0;

Function 20 PrimeFactorEncoding(i,N)
Input: a processor ID i ∈ [0, N − 1], the number N of processors
Output: A sequence of coordinates of the processor ID i in N ′s prime-factors’
hyperspace

1: Prime factorize N such that N = f0 · f1 · f2 · · · · · fk−1, where the factors are
arranged in a descending order;

2: pid = i;
3: for r = k − 1 to 0 do
4: dir = pid mod fr;
5: pid=pid div fr;
6: return (di0, d

i
1, d

i
2, · · ·, dik−1);
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It,n(0 ≤ n ≤ h− 1) in line 4 to facilitate the sub-image composition in the following

h− 1 steps, which are described from lines 5 to 9. Note that each processor executes

lines 6, 7, and 8 in parallel. At each step s (0 ≤ s ≤ h− 2) of sub-stage t, processor

Wi′n
sends out the image-tile It,j(s) to processor Wi

′
l(s)

, where

j(s) =


(n · bh

2
c+ s) mod h, if 0 ≤ s ≤ bh

2
c;

(n · bh
2
c+ s+ 1) mod h, if bh

2
c < s ≤ h− 2;

(3.2)

and

l(s) =


n+ 1 mod h, if 0 ≤ s ≤ bh

2
c − 1;

(2h− 2 · j(s) + 1) mod h, if bh
2
c ≤ s ≤ h− 2.

(3.3)

In the mean time, processor Wi′n
is also ready to receive an image-tile labeled

as It,b(s) from processor Wi
′
m(s)

, where

b(s) =


(bh

2
c · T (n) + s) mod h, if 0 ≤ s ≤ bh

2
c;

((n+ 1) · bh
2
c+ 1) mod h, if bh

2
c < s ≤ h− 2;

(3.4)

T (n) = (n− 1 + h) mod h, and

m(s) =


n− 1 + h mod h, if 0 ≤ s < bh

2
c;

(n− 1 + 2 · s) mod h, if s = bh
2
c;

(n+ 1 + 2 · s) mod h, if bh
2
c < s ≤ h− 2.

(3.5)
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Function 21 ImprovedDS(Group Gj of h member processors, sub-stage number t)
Input: group Gj of h member processors and their sub-images, number of the sub-
stage where the method is applied
Output: each member processor has its partial image composited with other member
processors

1: Denote the h processors in Group Gj as Wi
′
0
, · · · , Wi′n

, · · · ,Wi
′
h−1

, where i
′
0 ≤

· · · ≤ i
′
n · · · ≤ i

′

h−1;
2: for all h processors simultaneously do
3: Denote the partial image Wi′n

currently holds as It;
4: Divide It into h equal tiles and label them as It,0, · · · It,n, · · · It,h−1;
5: for step s = 0 to h− 2 simultaneously do
6: Wi′n

sends its tile labeled as It,j(s) to Wi
′
l(s)

, where j(s) and l(s) are specified

by (3.2) and (3.3), respectively;
7: Wi′n

receives a tile labeled as It,b(s) from Wi
′
m(s)

, where b(s) and m(s) are

specified by (3.4) and (3.5), respectively;
8: Wi′n

blends its own tile labeled as It,b(s−1) with the one received at the
previous, i.e., s− 1 step, when s > 0;

To better explain the proposed GMPL method, we present a step-by-step

example of 10 processors as shown in Figure 3.1. In this example, the number of

processors, i.e., 10, is prime factorized into 5 × 2, and the composition procedure

is thereby divided into 2 sub-stages with 2 and 5 groups, respectively. In the first

sub-stage, i.e., sub-stage 0, processors W0,W2,W4,W6, and W8 constitute one group

and act as Wi
′
0
,Wi

′
1
,Wi

′
2
,Wi

′
3
, and Wi

′
4
, respectively, in the application instance of the

ImprovedDS method to their group; processors W1,W3,W5,W7, and W9 constitute

another group and act as Wi
′
0
,Wi

′
1
,Wi

′
2
,Wi

′
3
, and Wi

′
4
, respectively. Similarly, we can

derive the grouping and each processor’s activities in sub-stage 1 using the proposed

algorithms.

3.2.2 Algorithm Analysis

We provide a thorough analysis of our proposed GMPL method in this subsection in

reference to a composition procedure comprised of k sub-stages.

Analysis of ImprovedDS Considering a processor group Gj of h processors, at

sub-stage t of ImprovedDS, we have the following properties:
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Figure 3.1 Illustration of the proposed GMPL method in the case of 10 processors.

• Property 1: At each step s (0 ≤ s ≤ h−2) of group Gj’s composition procedure,

each processor Wi′n
(0 ≤ n ≤ h− 1) has an exclusive sending destination Wi

′
l(s)

and receiving source Wi
′
m(s)

within the group.
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• Property 2: When the composition within group Gj is finished, processor Wi′n

(0 ≤ n ≤ h − 1) holds an exclusive tile labeled as It,r(n), into which all the h

tiles with the same label in the group have been blended, where

r(n) = ((n+ 1) · bh
2
c+ 1) mod h. (3.6)

Property 1 indicates that at any step of ImprovedDS, each processor’s sending

or receiving partner has no dependency with any other one performing the same job

in the same group, which, together with the multi-port communication model, leads

to a high level of parallelism in the communication process of ImprovedDS. Property

2 is used to establish the correctness of its composition procedure.

Proof of Property 1: Without loss of generality, we focus on the sending process,

as the proof for the receiving process is similar.

Considering group Gj with h− 1 steps, we divide these steps into two disjoint

sets: [0, bh
2
c], and (bh

2
c, h− 2].

In the first set [0, bh
2
c], according to the upper part of (3.3), which determines

the destination of the tile sent from each processor at a specific step s, each processor’s

sending destination corresponds one-to-one to the processor’s unique ID in its current

group. Therefore, there is no conflict of data sending between any two processors in

the same group.

In the second set (bh
2
c, h− 2], from the lower part of (3.3), we know that given

a processor Wi′n
and its current step s, Wi′n

’s sending destination at step s, i.e., Wi
′
l(s)

,

is related to the following three parameters: n (i.e., the processor’s unique ID in

the current group, h (i.e., the number of processors in the group), and s (i.e., the

step number in the entire procedure). Considering that h and s are the common

parameters for the entire group at a given step, each processor’s sending destination
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is only determined by its unique group ID. For clarity, we represent Wi′n
’s sending

destination at a given step s, i.e., Wi
′
l(s)

, as W (n). The conflict-free sending problem

at a given step s can be converted into the following problem: given i, j ∈ [0, h− 1],

if i 6= j, then W (i) 6= W (j).

We use a proof-by-contradiction strategy to prove the above property. Given

i, j ∈ [0, h− 1], let us assume that i < j and W (i) = W (j). Based on the properties

of the mod operation, which dominates the operations in function W (n), we can

infer that W (j − i) = 0, i.e., j − i is a cyclic period of W (n). On the other hand,

from W (n)’s definition, we know that W (n) naturally has a cyclic period h. For j− i

and h, since 0 ≤ i, j < h, j > i, it follows that 0 < j − i < h. According to a basic

theorem in Algebra Theories [69], the following equality involving j − i and h holds:

c = q · (j − i) + p · h, (3.7)

where q and p are both integers, and c is the greatest common divisor between j − i

and h.

From (3.7), we know that c is also a cyclic period of W (n). Since h is a prime,

c must be 1. It means that W (0) = W (1) = · · · = W (h − 2) = W (h − 1), which

obviously is incorrect. For example, W (0) = s− 1, W (1) = (bh
2
c+ s− 1) mod h, and

W (0) 6= W (1). Therefore, it conflicts with our assumption that W (i) = W (j). Proof

ends. �

Proof of Property 2: The proof of Property 2 is divided into two parts: i)

processor Wi′n
holds a unique tile when composition is completed, and ii) the obtained

tile It,r(n) has blended all the h tiles with the same label.

Combining Equations (3.2) and(3.4), we know that for processor Wi
′
n
, after the

h−1-step image-tile sending and receiving, all the tiles have been sent out except the
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ones labeled as It,b(h−2). After blending them, we obtain the final tile held by Wi′n
,

i.e., It,r(n), where r(n) = ((n+ 1) · bh
2
c+ 1) mod h.

For the problem of complete composition, we consider the tile labeled as It,r,(0 ≤

r ≤ h− 1), and the proof for the rest can be done in a similar way. According to the

upper part of (3.4), we know that in steps [0, bh
2
c], there are bh

2
c processors receiving

tiles labeled as It,r, one tile for each receiving processor. These receiving processors

would blend immediately once receiving the It,r-labeled tile. Thus, the number of

It,r-labeled tiles in group Gj is reduced from h to h− bh
2
c − 1. In the following steps

(bh
2
c, h − 2], It,r-labeled tiles are sent to Wi′n

, one tile at each step. When the latter

steps are finished, the number of It,r-labeled tiles in group Gj is further reduced from

h − bh
2
c − 1 to h − bh

2
c − 1 − (h − 2 − bh

2
c) = 1, which is the final composited tile.

Proof ends. �

We would like to point out that the blending operations in ImprovedDS can also

be performed in parallel with data communications with necessary synchronization.

For example, upon the receival of a tile It,b(s), the processor starts blending, and in the

meanwhile, it continues to receive another tile. Hence, the sending/receiving parts

of ImprovedDS overlap with the blending part. With some buffer in place for the

purpose of data caching, such parallelization can be further exploited, especially on

a homogeneous system.

In addition, compared with the original Direct Send algorithm, ImprovedDS

results in a great improvement on latency. For a group containing h processors,

since each processor sends/receives with a fixed partner in the first bh
2
c steps, the

connections need to be established only once, instead of bh
2
c times as in the Direct

Send algorithm, hence leading to a significant performance gain, especially when h is

large.
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Analysis of GMPL In the GMPL method, the activities of different groups are

also performed in parallel. At each sub-stage t(0 ≤ t ≤ k − 1), based on the unique

code series of each processor and group, the way of group association in GMPL ensures

that each processor is associated with only one group. Therefore, all the groups are

independent of each other and work in parallel. Ideally, on a homogeneous system,

each processor is expected to start and finish stage t at the same time.

The above analysis, together with that in Section 3.2.2, shows that the

proposed GMPL method features completely balanced workload, a high level of

resource utilization, and a high degree of parallelism, which, collectively, contribute

to an improved latency performance. Furthermore, GMPL removes the power-of-2

constraint and works on an arbitrary number of processors. Particularly, when the

number N of processors is a power of 2, GMPL reduces to the traditional Binary

Swap method. When N is prime, the GMPL procedure has only one sub-stage where

all the processors are in the same group executing the ImprovedDS algorithm directly.

3.2.3 Theoretical Analysis and Comparison of Latency Performance

We conduct a theoretical analysis and comparison of latency performance between

the proposed GMPL method and several existing methods including Binary Swap,

Direct Send, and Parallel Pipeline. We consider the cost models for both data

communication and image blending as follows:

• Data communication: the time cost of sending/receiving a tile is calculated as:

α + nβ, where α is the link delay, β is transmission time for each pixel, and n

is the number of pixels in the tile.

• Image blending: the time cost of each image tile blending is calculated as nγ,

where γ is the blending time of each pixel, and n is the number of pixels in the

tile.

74



Based on the above cost models, the entire composition time mainly consists of

3 components: connection establishing time Tl due to the link delay, image transfer

time Tc, and image blending time Tb. Our performance analysis and comparison are

focused on these 3 aspects as well as the total composition time Ta.

Binary Swap, Direct Send, and Parallel Pipeline Binary Swap (BS) is one

of the most traditional methods for image composition and has been thoroughly

analyzed in the literature with the following three time cost components [42, 71]:

Tl(BS) = α · log2N,

Tc(BS) = β·P · (1− 1

N
),

Tb(BS) = γ·2 · P · (1− 1

N
),

where N is the number of processors and P is the number of pixels in the image to

be composited. The total time Ta(BS) BS takes is:

Ta(BS) = Tl(BS) + Tc(BS) + Tb(BS).

In Direct Send (DS), the three time cost components are [18, 71]:

Tl(DS) = α · (N − 1),

Tc(DS) = β·P · (1− 1

N
),
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Tb(DS) = γ·P,

respectively, and the total time cost is:

Ta(DS) = max{Tl + Tc, Tb}. (3.8)

Parallel Pipeline (PP) arranges the given N processors in a f i
′

0 × f i
′

1 mesh

architecture, where f i
′

0 and f i
′

1 can be any two over-1 integers that follow N = f i
′

0 ·

f i
′

1 [37]. Given a specific pair of f i
′

0 and f i
′

1 , the three time cost components of PP

are as follows:

Tl(PP ) = α ·
1∑
s=0

(f i
′

s − 1),

Tc(PP ) = β·P · (1− 1

N
),

Tb(PP ) = γ·P · (1− 1

N
),

respectively, and its total time cost is dependent on the factorization result.

Grouping More and Pairing Less(GMPL) In Grouping More and Pairing

Less (GMPL), given N processors, if N = f0 · f1 · f2 · · · fk−1, the composition process

contains k sub-stages. From Algorithm 19 and 21, at each sub-stage t (0 ≤ t ≤ k−1),

76



the number P (t) of pixels each processor holds when sub-stage t starts is

P (t) =



P, if t = 0;

P
f0·f1·f2···ft−1

, if 1 ≤ t ≤ k − 1;

P
N
, if t = k,

(3.9)

the number gt of groups in stage t is N
ft

, and the number wt of working processors

contained in each group is equal to ft.

At sub-stage t, although the processors are assigned to different groups, each

processor still works in a similar way. Each processor needs to simultaneously send to

and receive from other processors for wt − 1 times. For the first bwt
2
c transfers, each

processor sends/receives its tiles to/from the same processor, so the connection needs

to be established only once when the first tile is transferred, and the rest bwt
2
c − 1

transfers do not incur any extra connection overhead. Therefore, the connection

establishment latency for the first bwt
2
c transfers is α.

For the last wt−1−bwt
2
c transfers, each processor changes its sending/receiving

partners at each step, and hence needs to establish a new connection each time. The

connection establishment latency for the last wt−1−bwt
2
c transfers is (wt−1−bwt

2
c)α.

By summing up the connection establishment cost for all wt transfers, we calculate

the sending/receiving latency T tl in sub-stage t as:

T tl = α · (1 + wt − 1− bwt
2
c)

= α ∗ (wt − b
wt
2
c)

= α · (ft − b
ft
2
c).

(3.10)
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Furthermore, the total latency Tl of each processor for all k sub-stages is

calculated as:

Tl =
k−1∑
t=0

T tl

= α ·
k−1∑
t=0

(ft − b
ft
2
c)

≈
k−1∑
t=0

(
ft
2

) · α.

(3.11)

The image transfer time T tc of each processor in sub-stage t is straightforward,

i.e.,

T tc = β · P (t)

wt
· bwt

2
c+ β · (wt − 1− bwt

2
c) · P (t)

wt

= β ∗ P (t)

wt
∗ (wt − 1− bwt

2
c+ bwt

2
c)

= β · P (t)

wt
· (wt − 1)

= β ∗ (P (t)− P (t)

wt
)

= β ∗ (P (t)− P (t)

ft
)

= β · (P (t)− P (t+ 1)).

(3.12)

Similarly, the total image transfer time Tc of each processor for all k sub-stages

is:

Tc =
k−1∑
t=0

T tc =
k−1∑
t=0

β · (P (t)− P (t+ 1))

= β · (P (0)− P (k) = β · P · (1− 1

N
).

(3.13)
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The image blending time T tb of a processor at sub-stage t can be derived in a

similar way to (3.12):

T tb = γ · (P (t)− P (t+ 1)). (3.14)

It follows, for the total image composition time Tb of a processor during all the

k sub-stages, that:

Tb = γ · P · (1− 1

N
), (3.15)

which is also derived in a similar way to (3.13).

Similar to Direct Send, since the processors in the same group are arranged in

a pipeline to overlap the data sending/receiving and image blending tasks, the total

time T ta a processor spends at sub-stage t is:

T ta = max{T tl + T tt , T
t
b}. (3.16)

Considering the homogeneity in the computing power, the amount of workload, and

the composition workflow, the processors in the same group enter and leave the sub-

stage t at the same time. As the same is true in all the groups, T ta is actually the

time that each processor spends in sub-stage t. Similarly, the total time cost Ta for

the entire composition procedure is:

Ta =
k−1∑
t=0

T ta. (3.17)

As a summary, we provide the above theoretical latency performance analysis

results of the image composition methods in comparison in Table 3.1. The comparison

of the image transfer and blending time is straightforward, but not the comparison
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Table 3.1 Latency Performance Analysis of Four Methods in Comparison, where Tl
is the Connection Establishing Time, Tc is the Image Transfer Time,Tb is the Image
Blending Time

Methods Tl Tc Tb

BS α · log2N β·P · (1− 1
N

) 2 · γ · P · (1− 1
N

)

DS α · (N − 1) β·P · (1− 1
N

) γ·P · (1− 1
N

)

PP α ·
1∑
t=0

(f i
′

t − 1) β·P · (1− 1
N

) γ·P · (1− 1
N

)

GMPL α ·
k−1∑
t=0

(ft − b
ft
2
c) β·P · (1− 1

N
) γ·P · (1− 1

N
)

of the connection establishing time, which is in some form of summation over the

factors of the processor number N . For an accurate comparison, we introduce a

new variable F i. Given one arbitrary factorization of an arbitrary integer N , i.e.,

N = f i0 · f i1 · f i2 · · · f iki−1, we use F i to denote the following factors summation:

F i =

ki−1∑
t=0

(f it − 1).

The connection establishing time of PP can be represented by F i under the constraint

that ki can be at most 2. The connection establishing time of DS can be represented

by F i under the constraint that ki must be 1, which also means that f i0 is N itself. The

connection establishing time of GMPL can be represented by F i under the constraint

that all the factors f ij(0 ≤ j ≤ ki − 1) must be prime.

Based on F i, we are able to compare the connection establishing time of these

four methods if we can determine how F i varies with different factorizations. We

provide below one observation of such pattern:
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Given an arbitrary integer N
′
, if there exists one possible 2-factor factorization

N
′
= f i

′

0 · f i
′

1 , where f i
′

0 ≥ 1, f i
′

1 ≥ 1, then N
′

and F i
′

have the following relationship:

N
′ − 1− F i

′

= N
′ − 1−

1∑
t=0

(f i
′

t − 1)

= f i
′

0 · f i
′

1 − 1− (f i
′

0 + f i
′

1 − 2)

= (f i
′

0 − 1) · (f i
′

1 − 1) ≥ 0.

(3.18)

The equality in (3.18) is satisfied only if N is prime.

(3.18) can be further generalized as follows: for an arbitrary N and its

factorization f i, where N = f i0 ·f i1 · · · f iki−1, if there exists f it (0 ≤ t ≤ ki−1), which is

non-prime and greater than 1, then f it can be further factorized as f it = f i
′

0 · f i
′

1 . The

newly derived factors f i
′

0 and f i
′

1 , as well as the rest ki − 1 factors in f i, constitute a

new factorization f j of N and we denote its corresponding factor-summation as F j.

Then based on (3.18), it follows that F i ≤ F j. If there still exists a non-prime factor

in f j, the replacement of the non-prime factor can be recursively performed until all

the factors are prime, at which point, the minimum factor-summation F l is achieved.

The notation F i is also applicable to BS, where the processor number N is

required to be a power of 2, i.e.,

N =

log2N−1∏
t=0

2, (3.19)

and its corresponding connection establishing time is calculated as:

α ·
log2N−1∑
t=0

(2− b2
2
c) = α · log2N. (3.20)
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Obviously, (3.19) is the prime factorization required by GMPL. The performance

superiority of BS over PP and DS confirms what we derive from the notation F i.

Based on (3.18), we conclude that the connection establishing time of GMPL is less

than, or at most equal to, that of PP, DS, and BS.

3.2.4 Performance Evaluation

To illustrate the actual composition result and evaluate the performance of GMPL,

we implement and test it on a high-performance visualization cluster together with

the other five algorithms in comparison including DS, PP, Reduced BS, and BS to

support our theoretical analysis, as well as Radix-k to evaluate the effects of the

order-dependence restriction. This cluster consists of 1 head node and 16 compute

nodes, each of which is equipped with dual 6-core processors at the speed of 2.3 GHz

for each core and 64GB RAM, and is connected through a 1GigE switch. The cluster

is able to launch 17× 12 = 204 MPI jobs in parallel.

We run GMPL and the other algorithms on different numbers of cores ranging

from 16 to 128 at an interval of 16 with different image sizes from 2048×2048, 3072×

3072, 4096 × 4096, to 5120 × 5120 pixels. To facilitate comparison, the arbitrary

factorization of the number N of cores in PP and Radix-k is specified as a factorization

into 2×N
2

and all its prime factors, respectively. Each input image is processed directly

by all the composition methods without applying any optimization techniques such

as blank pixel elimination and image re-coding.

For each problem instance, we repeat the experiment for five times, and plot

in Figure 3.2 the average of the total latency performance measurements of all the

methods in comparison on four different image sizes. From these performance curves,

we have the following observations.

1) For each image size, DS does not factorize the number N of processors, PP

factorizes N into two factors, Radix-k, GMPL, Reduced BS, and BS factorize
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(a) Image size of 20482.
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(b) Image size of 30722.
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(c) Image size of 40962.
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(d) Image size of 51202.

Figure 3.2 Latency performance of different methods on different image sizes and
numbers of processors.

N into prime factors (the prime factors are 2′s for Reduced BS and BS). The

methods with more thorough factorization seem to outperform those with less

factorization in terms of the total composition time, which is consistent with

our derivation in (3.18).

2) When the image size is fixed, as the number of processors increases, the

performances of PP and DS degrade quickly as their data transfer time cost is

linearly related to the number of processors. The performances of BS and GMPL

are relatively more stable with the increase of processors as their workload

is evenly distributed among the working processors and the data transfer

cost logarithmically depends on the number of processors. The performance

of Radix-k lies between PP and GMPL, since it takes relatively thorough

factorization but retains the restriction of order-dependence. The performance

of Reduced BS is unstable as it treats different numbers of processors in different
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(a) Front View (b) Back View (c) Left View (d) Right View

Figure 3.3 Composited brain images of size 20482 using the GMPL method.

ways. In most cases, Reduced BS takes longer than GMPL to complete the

composition, even up to twice of GMPL on 112 processors with an image size of

5120 × 5120. This observation may be related to the fact that the more pixels

one image contains, the longer it takes those processors beyond 2n (n = log2bNc,

N is the number of processors) and their partners to transfer and composite

images when the number of processors is not a power of 2.

3) When the number of processors is fixed, as the image size increases, the

processing time of each method increases correspondingly as expected.

Figure 3.3 shows a set of composited images of size 20482 rendered from a brain

CT dataset using the proposed GMPL method from different view angles. The

composited images of other sizes are qualitatively similar.
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CHAPTER 4

V4BD

Many extreme-scale scientific applications generate colossal amounts of data that

require a large number of processors for parallel visualization. Among the three

well-known visualization schemes, i.e., sort-first/middle/last, sort-last, which is

comprised of two stages, i.e., image rendering and composition, is often preferred

due to its adaptability to load balance. We propose a very-high-speed pipeline-based

architecture for parallel sort-last visualization of big data by developing and

integrating three component techniques: i) a fully parallelized per-ray integration

method that significantly reduces the number of iterations required for image

rendering; ii) a real-time over operator that not only eliminates the restriction of

pre-sorting and order-dependency, but also facilitates a high degree of parallelization

for image composition; and iii) a novel sort-last visualization pipeline that overlaps

rendering and composition to completely avoid waiting time between these two stages.

The performance superiority of the proposed parallel visualization architecture is

evaluated through rigorous theoretical analyses and further verified by extensive

experimental results from the visualization of various real-life scientific datasets on a

high-performance visualization cluster.

4.1 Background

Next-generation simulation-based e-sciences are producing colossal amounts of data,

now frequently termed as “Big Data”, on the order of terabyte at present and petabyte

or even exabyte in the predictable future. Such data must be visualized and analyzed

in a timely manner for knowledge discovery and scientific innovation. In fact, on-line

simulation monitoring and interactive computational steering through visual feedback

constitutes a critical part of these research processes.
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Among the above three well-known parallel schemes, sort-last is often preferred

in many applications due to its adaptability to load balance. In general, after

data partitioning and distribution, a sort-last parallel visualization scheme takes

two sequential steps, i.e., image rendering and image composition, which consume

most of the time in the entire visualization process. There exist separate research

efforts in these two individual problems, for example, early ray termination for image

rendering and binary-swap for image composition, and GPU-based parallelization

for both. However, the overall performance of parallel volume visualization still

suffers mainly from the following three aspects: i) the traditional raycasting approach

follows an almost serial procedure and hence may incur a long delay when sampling

and blending a large number of data blocks; ii) the traditional over operator

performs order-dependent composition and hence may incur a long idle time when

fragments arrive out of order; iii) the treatment of rendering and composition as

two strictly sequential steps may incur a long waiting time between them due to

unbalanced workload. These issues are becoming even more prominent as the data

volume continues to increase and the computing platform continues to expand at an

unprecedented pace, which makes it extremely challenging to achieve load balance

among different nodes in a parallel computing architecture.

In this chapter, we propose an architecture for Very-high-speed Value-added

Volume Visualization of Big Data, referred to as V4BD, by developing and integrating

three component techniques: i) a fully parallelized per-ray integration method that

significantly reduces the number of iterations required for image rendering; ii) a

real-time over operator that not only eliminates the restriction of pre-sorting and

order-dependency, but also facilitates a high degree of parallelization for image

composition; and iii) a novel sort-last visualization pipeline that overlaps rendering

and composition to completely avoid waiting time between these two stages. The

performance superiority of the proposed architecture is evaluated through rigorous
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theoretical analyses and further verified by extensive experimental results from the

visualization of various real-life scientific datasets on a high-performance visualization

cluster.

4.2 Related Work

We provide a survey of existing work related to each of the proposed component

techniques.

4.2.1 Raycasting and its Acceleration

Research on raycasting is mainly focused on two aspects: 1) required adjustments as

applied to non-uniform volume data, e.g. Bunyk [9] considered irregular grid data,

Zhu [73] considered segmented regular volume data, and Marmitt [44] considered

tetrahedral and hexahedral meshes; 2) performance improvements, e.g. Grimm [27]

achieved performance gains through optimized memory utilization, Bernardon [5]

achieved the same goal by decomposing the screen into tiles, Kruger [34] adopted early

ray termination (Z-test feature), and Lee [36] parallelized the integration procedure

for different rays and ported it to GPU platforms. However, the work on parallelizing

per-ray integration in big data visualization still remains largely unexplored.

4.2.2 over Operator for Image Composition

There exist several research efforts in addressing the performance issues associated

with the traditional over operator. Meshkin [45] approximated the over-composition

result for n input pixels by ignoring the order-sensitive parts in their extended over-

composition formula. Bavoil and Myers [4] approximated n-pixel over-composition

by calculating the average of all input pixels and substituting it for each pixel, which

is a special case of the extended n-pixel over-composition formula with all the input

pixels being identical. Patney et al. [54] proposed a generalized formula for the color

components without considering α−channel of transparency.
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The performance limitation on image composition caused by order dependency

still stands out in practice. In many existing composition frameworks, fragments must

be pre-sorted before the actual composition can take place [54, 28], hence significantly

limiting the composition performance, especially in dynamic environments where

fragments may arrive out of order. Unfortunately, very limited efforts have been

devoted to this issue. Our work removes the order dependency of the traditional over

operator and hence makes an important advancement in this field.

4.2.3 Sort-last Visualization Architecture

Several research efforts have been made to develop pipeline-based visualization

architectures. Cavin [11] proposed to overlap the generation processes for consecutive

images in the expected sequence. Such a pipeline outperforms the traditional

sequential process when visualizing multiple images, but does not exhibit a strong

performance advantage when visualizing a single image. Fang [20] employed similar

strategies to pipeline image composition also for multiple images. In this paper,

we develop a parallel computing architecture that pipelines the entire visualization

process for big data including the rendering and composition of single and multiple

images.

4.3 V4BD: A Very High-speed Value-added Volume Visualization

Architecture for Big Data

We consider the visualization of big data B using a parallel computing architecture

with 2n homogeneous nodes, each of which supports at most Nt concurrent threads.

These nodes are connected via a high-speed switch and are divided into two equal-

sized groups, i.e., {r0, r1, · · · , rn−1}, {c0, c1, · · · , cn−1}, for dedicated image rendering

and composition, respectively.

In volume visualization, a user typically specifies a view port V P and a size x×y

of the final image for display. To support parallel processing, the dataB is first divided
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Figure 4.1 The execution process of the proposed V4BD architecture in a simple
case of three rendering/composition units.
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into k equal-sized blocks B0, B1, · · · , Bk−1, k >> n, which are then distributed in their

adjacency to different raycasting-based rendering units ri, i = 0, 1, · · · , n−1, with an

attempt to achieve load balance. For the convenience of referencing the fragments in

an intermediate image and the pixels in the final image, we employ a commonly used

coordinate system, where the top-left corner of the display region is set as the origin,

and the x-axis/y-axis is aligned with the horizontal/vertical dimension of the image.

We propose architecture for Very-high-speed Value-added Volume Visualization

of Big Data, referred to as V4BD, as shown in Figure 4.1, which illustrates the

execution process of a simple case with three units for rendering and compo-

sition, respectively. The proposed V4BD architecture integrates three component

techniques: a fully parallelized per-ray integration method, a real-time over operator,

and a sort-last visualization pipeline.

In the proposed V4BD architecture, the entire image area is divided into n

equal-sized tiles (n is the number of rendering/composition units and n = 3 in this

example as shown in Figure 4.1). Each rendering unit renders a full-size intermediate

image on a tile-by-tile basis horizontally, and each composition unit is responsible

for compositing all the intermediate tiles at the same position vertically. The entire

visualization process takes n + 1 steps as follows. In Step 1, each rendering unit

performs data integration independently for a different image tile, and sends the

rendered (intermediate) image tile to its corresponding composition unit once finished.

In Steps 2 to n, all processing units perform rendering or composition simultaneously

on different image tiles, and the intermediate image tiles are sent from a rendering unit

to a composition unit as the pipeline progresses. In Step n+1, each composition unit

performs the last image composition to produce the final image tile at one particular

position. Note that during the above process, the rendering units employ the proposed

rendering method for parallel data integration and the composition units employ the

proposed over operator for parallel image composition. By pipelining image rendering
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and composition using the proposed techniques, we are able to overlap the operations

of rendering and composition and hence completely avoid waiting time between these

two stages.

4.3.1 Parallelized Per-Ray Integration (PPRI)

Derivation of Data Integration Process In volume visualization, image rendering

typically takes longer than image composition and often becomes the bottleneck of

the entire process. The traditional raycasting approach is a serial procedure, which

does not scale well with the number of data blocks each ray has to traverse. This

problem becomes worse as the data volume continues to grow rapidly. We propose a

parallelized per-ray integration method to address this problem.

Given a particular ray and its propagation direction, we denote its n RGBA-

formatted and sequentially sampled points as S1, S2, · · · , and Sn. To facilitate our

explanation, we introduce another notation Si,j, 1 ≤ i ≤ j ≤ n, which represents the

integration result of Si⊕ Si+1⊕· · ·⊕Sj and also serves as a uniform representation for

any possible (raw, intermediate, or final) integrating results in the entire integration

process. For example, when i = j, it refers to the raw sampling point Si or Sj; when

i = 1 and j = n, it refers to the final integrated result from all n raw sampling points.

Given Si = [cRi , cGi , cBi , αi]
T , i ∈ {1, 2}, we have

S1,2 = S1 ⊕ S2 = [cR1,2 , cG1.2 , cB1,2 , α1,2]
T

= S1 + (1− α1) · S2,

(4.1)

and the following law of association holds [42]:

S1 ⊕ (S2 ⊕ S3) = (S1 ⊕ S2)⊕ S3.
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Given n sampling points S1, S2, · · · , Si, · · · , Sn, we have

S1 ⊕ S2 ⊕ · · · ⊕ Si ⊕ · · · ⊕ Sn

=S1,2 ⊕ S3,4 ⊕ · · · ⊕ Si,i+1 ⊕ · · · ⊕ Sn−1+n%2,n

=S1,4 ⊕ · · · ⊕ Si,i+3 ⊕ · · · ⊕ Sn−3+(n%4),n

= · · ·

=S1,bn
2
c ⊕ Sbn

2
c+1,n,

(4.2)

which inspires a parallel integration of n sampling points in a binary tree structure if

all the sampling points along a given ray are simultaneously available.

Algorithm Design For each ray, we first create n threads to calculate n sampling

points simultaneously in the assigned data blocks and then integrate them in a

parallelized procedure with ln(n) steps. Following (4.2), at step t, 0 ≤ t ≤ ln(n), there

exist dn/2te sampling points in the form of S1,2t , S1+2t,2t+2t , · · · , S1+k·2t,2t+k·2t , · · ·

Sn−2t+(n%2t),n. We launch ddn/2te/2e threads sth, h = 1, 2, · · · , ddn/2te/2e, each of

which is used to integrate the sampling points S1+2h·2t,(2h+1)·2t and S1+(2h+1)·2t,(2h+2)·2t .

For illustration, we show the parallel per-ray data integration process in Figure 4.2

using the proposed PPRI method for 8 sampling points. The pseudocode of this

method is provided in Algorithm 22.

4.3.2 Real-Time over Operator for Online Image Composition

To best accommodate the considered scenario here, we make necessary adaption

the proposed algorithm in section. We design a Parallel Real-Time over Operator

(PRTO) for parallel real-time composition and define a FragCompInfo{} structure,

as shown in Figure 4.3, for storing the composition information of each fragment

throughout the parallel image composition process. Given an operand (a fragment)

P , its FragCompInfo{} instance consists of the following items: a float array C
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Figure 4.2 Illustration of the proposed parallel ⊕ operation for per-ray integration
with 8 sampling points.

Function 22 PPRI(RStart, REnd,Bk, s)
Input: the ray’s first intersecting point RStart with the volume, the ray’s exiting
point REnd from the volume, a given data block Bk, and the number s of sampling
points
Output: the integration result S0 of all sampling points
1: for all g ∈ [0, s) simultaneously do
2: Cg = RStart+ g · (REnd−RStart)/s;
3: Sg = Sampling(Cg, Bk);
4: for t ∈ [0, ln s) do
5: if (Ztest(S0) == true) then
6: for all g ∈ [0, 2(ln s)−t) simultaneously do
7: Sg = Sg ⊕ Sg+2t ;
8: else
9: exit;

10: return S0;
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struct  FragCompInfo

{

       FragCompInfo( ): W(1.0), pNext(NULL){ }

       float    C[3];

       float    D;

       float    W; 

       float    α; 

       FragCompInfo *pNext;        

};

Figure 4.3 The FragCompInfo{} data structure for storing the composition
information of each fragment.

that stores P ’s 3 color components in the order of R,G,B, a float variable α that

stores P ’s α channel, a float variable D for P ’s actual depth value, a float variable W

that stores P ’s accumulated weight factor from its nearer operands and is initialized

to be 1.0, and a pointer pNext that points to the FragComInfo{} instance of its

next farther fragment that has arrived. By default, pNext is initialized to be NULL,

indicating that no farther fragment exists among the fragments that have already

arrived.

Given an array FCI[n] of FragCompInfo{}, whose element FCI[j] corre-

sponds to the j-th arriving operand Pj, we divide the operations triggered by

the arrival of a new operand into two groups: 1) operations applied to the

FragCompInfo{} instances of the existing operands, and 2) operations applied to

the FragCompInfo{} instance of the newly arriving operand. We apply a different

parallelization strategy to each group. Parallelizing the operations in the first group

is straightforward as they are independent of each other. However, parallelizing the

operations in the second group is more complicated. For the j-th arriving operand

Pj, we set FCI[j].W to be (1−FCI[i].α) ·FCI[i].W , where FCI[i] is the immediate

nearer (preceding) operand of Pj that has arrived, i.e., FCI[i].D ≤ FCI[j].D and

∗(FCI[i].pNext).D ≥ FCI[j].D. Also, FCI[i].W stores the weight factors from all
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the existing nearer operands of FCI[i], and (1−FCI[i].α)·FCI[i].W stores the weight

factors from all the existing nearer operands of Pj. Note that in this composition

process, we only need to perform one comparison in each of the threads created for

all existing operands to decide the position of a new operand. The pseudocode of the

PRTO operator is provided in Algorithm 23.

Function 23 PRTO(FCI[ ], i)
Input: an array FCI[ ] of FragCompInfo{} instances of the existing fragments at
the same position as the newly arriving fragment in the image space, the index i of
the newly arriving fragment in FCI[]
Output: updated FCI[ ]

1: for all threads ctj , j ∈ [0, i− 1] simultaneously do
2: if (FCI[j].D > FCI[i].D) then
3: FCI[j].W = FCI[j].W · (1− FCI[i].α);
4: else
5: if (∗(FCI[j].pNext).D > FCI[i].D and FCI[j].D < FCI[i].D) then
6: FCI[i].pNext = FCI[j].pNext;
7: FCI[i].W = (1− FCI[j].α) · FCI[j].W ;
8: FCI[j].pNext = &FCI[i];

4.3.3 A Tile-based Visualization Pipeline

Pipelining Rendering and Composition Traditionally, image rendering and

image composition are treated as two sequentially executed stages. In order to

eliminate the waiting time between them, we propose to overlap these two stages

by dividing the image area into n equal-sized tiles ti, i = 0, 1, · · · , n− 1, as shown in

Figure 4.1. A fragment (x, y), 0 ≤ x < w, 0 ≤ y < h, belongs to tile ti, i = by/nc.

Rendering and composition are performed on a tile-by-tile basis. We provide in

Figure 4.4 an example to illustrate the differences between the pipeline in [11] and

the proposed one.

To best utilize computing resources, we create multiple composition-rendering

pipelines: 1) the composition unit cj, 0 ≤ j < n, only composites fragments belonging

to tile tj; 2) to align composition with rendering, rendering unit ri renders and sends

tiles t(i+k)%n, k = 0, 1, · · · , n− 1, to the corresponding composition unit.
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Figure 4.4 An illustration of the pipeline in [11] (left) and the proposed one (right),
where “RS” represents a rendering step, “TS1” represents a data transfer from a
rendering unit to a composition unit, “CS” represents a composition step, “TS2”
represents a data transfer from a composition unit to a display unit, and “DS”
represents a display step.
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The benefits of the proposed tile-by-tile pipelining scheme are multifold as

follows: 1) it overlaps rendering and composition, hence eliminating the waiting time

between them; 2) it only needs to store one tile in each intermediate image on the

composition unit, hence minimizing the memory use; 3) similarly, it minimizes the

required buffer space on the rendering unit.

Algorithm Design We present the proposed visualization pipeline in Algorithm 24

and 25 for rendering and composition, respectively. In Algorithm 24, the data type

Pix in Line 2 denotes the data structure for storing a RGBA-formatted fragment,

which is the same as the structure of the sampling point S in Section 4.3.1. The Pix

array “F Tiles” is used to store rendered tiles on each rendering unit. The entire

rendering process on each unit takes n steps, each of which is further divided into two

tasks of tile rendering and sending. At each step, each rendering unit first calculates

the scope of the “to-be-rendered” tile as shown in Lines 4 and 5, and then performs

a per-ray data integration procedure for each fragment in the tile. The raycasting

procedure calls VolIntersect() to calculate the ray’s first intersecting point RStart

with the data block and the exiting point REnd from the data block, and then

employs the proposed PPRI method (Algorithm 22) to integrate the sampling points

along the ray within the data block. The tile sending task follows immediately, as

shown in Line 10, once the rendering task is completed.

In Algorithm 25, we define a 2D array F Tile[w, h/n] of Pix in Line 4 to store

the final composited tile, a 1D array Frags[w × h] to store the FragCompInfo

instances for the fragments within the tile composited by cj, an array FCI[ ] to

temporarily store the FragCompInfo instances for all the fragments with the same

coordinates in the image space, and an array Wt Frag to temporarily store the color

components of all the fragments with the same coordinates in the image space. The

entire composition procedure consists of three stages: 1) Tile receiving and updating
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in Lines 6-14. Upon the arrival of a new tile, we initialize a corresponding region

in Frags, and then employ the PRTO method to update the corresponding regions

in Frags for all the existing and the newly arriving tiles on a fragment-by-fragment

basis. 2) Tile finalizing in Lines 15-16. After all the tiles have arrived and been

updated, we compute the final color component values of all the fragments within

Frags. 3) Pixel generation in Lines 17-22. We generate each pixel in the final image

by adding up the final color component values of all the fragments with the same

coordinates in parallel using a binary-tree structure, as shown in Lines 20 and 21

where Algorithm 5 is called.

Function 24 Rendering(B0, B1, · · · , Bn−1, w, h, V P )
Input: data blocks B0, B1, · · · , Bn−1, width w and height h of the image, view point
V P
Output: a sequence of rendered tiles in the intermediate images
1: for all ri ∈ [0, n− 1] simultaneously do
2: Pix F Tiles[w][h];
3: for k = 0 to n− 1 do
4: ystart = (i+ k)%n · (h/n);
5: yend = (i+ k + 1)%n · (h/n);
6: for cx = 0 to w do
7: for cy = ystart to yend do
8: RStart, REnd = VolIntersect(V P, cx, cy,Bk);
9: F Tiles[cx, cy] = PPRI(RStart, REnd,Bk, S);

10: send the tile indexed by ystart and yend in F Tiles to c(i+k)%n;

Performance Analysis We conduct theoretical performance analysis of the

existing and proposed visualization pipelines. For the traditional pipeline, we follow

the main modeling framework in [11] and have the following three assumptions: 1)

There is no bandwidth sharing between different rendering machines. 2) The time

cost of rendering is strictly linear with respect to the size of the bounding box where

the partitioned data block is projected. 3) All bounding boxes are of the same size as

the display image. The time cost Told of the traditional visualization pipeline in [11]
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Function 25 Composition(w, h, n)
Input: the width w and height h of the image, the number n of composition units
Output: the composited tile of the final image on each composition unit
1: for all cj , j ∈ [0, n− 1] simultaneously do
2: Pix F Tile[w][h/n];
3: FragCompInfo Frags[w × h];
4: FragCompInfo FCI[n];
5: Pix Wt Frag[n];
6: for i = 0 to n− 1 do
7: receive one tile from r(j+n−g)%n and store it in F Tile;
8: ystart = (i+ j)%n · (h/n);
9: yend = (i+ j + 1)%n · (h/n);

10: for k = ystart · w to yend · w do
11: Initialize(Frags[k]);
12: for cx = 0 to w do
13: for cy = ystart to yend do
14: Frag Ind = cy · w + cx;
15: for k = 0 to i do
16: FCI[k] = Frags[cx+ i · w·hn ];
17: PRTO(FCI, i);
18: for k = 0 to w · h do
19: Frags[k].C = Frags[k].C · Frags[k].W · Frags[k].α;
20: for tx = 0 to w do
21: for ty = 0 to h/n do
22: for k = 0 to n do
23: Wt Frag[k] = Frags[cx+ k · w·hn ].C;
24: for t = 0 to lnn do
25: ParaSum(Wt Frag, t, n);
26: F Tile[tx, ty]=Wt Frag[0];
27: return the final image tile F Tile;

Function 26 ParaSum(Wt Frag, t, n)
Input: a weighted fragment array Wt Frag, an integer t, the number n of tiles to
composite;
Output: updated Wt Frag from the addition of a pair of elements;

1: for all ctg,g ∈ [0, 2(ln acnt)−t] simultaneously do
2: Wt Frag[g].C = Wt Frag[g].C ⊕Wt Frag[g + 2t].C;
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is as follows:

Told = Tr + Tt1 + Tc + Tt2 + Td, (4.3)

where Tr is the time cost of rendering the assigned data block using the traditional

raycasting method, Tt1 is the time cost of sending an intermediate image from a

rendering unit to a composition unit, Tc is the time cost of compositing all the tiles

on each composition unit, Tt2 is the time cost of sending one composited tile from a

composition unit to a display unit.

For the proposed pipeline, we calculate the time cost as

Tnew = Tr′ + Tt′1
+ Tc′ + (n− 1) ·max{Tr′ , Tt1 , Tc′}+ Tt2 + Td, (4.4)

where Tr′ is the time cost of rendering one tile using the proposed raycasting method,

Tt′1
is the time cost of sending one intermediate image tile from a rendering unit to

a composition unit, Tr′ is the time cost of compositing one tile using the proposed

composition operator, Tt′2
is the time cost of sending one composited tile from a

compositing unit to a display unit, and n is the number of divided tiles. Comparing

(4.3) and(4.4), since n · Tr′ < Tr, n · Tt′1 < Tt1 , and n · Tc′ < Tc, it is obvious that

Tnew < Told.

4.3.4 Implementation and Experimental Results

To evaluate the performance of the proposed V4BD architecture, we implement the

component techniques on a high-performance visualization cluster and compare them

with existing methods. The visualization cluster consists of 1 head node and 16

compute nodes, each of which is equipped with one GTX580 GPU, dual 6-core

processors at the speed of 2.3 GHz for each core and 64GB RAM, and is connected
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Figure 4.5 Composited images of Human Brain, HIPIP and Jet Ejection.

through a 1GigE switch. We assign half of them as rendering nodes and the other

half as composition nodes.

We use V4BD to visualize three real-life scientific datasets from different

domains: 3D Human Brain, High-Potential Iron Protein (HIPIP), and Jet Ejection.

We plot a representative final image for each of them in Figure 4.5, which confirms

the validity of the proposed methods and the correctness of our implementations.

We use the 3D Human Brain data as a benchmark dataset for performance

comparison. For the proposed parallel rendering method, we assign the entire raw

data to a single node and blend different numbers of sampling points within the

assigned data block. The performance comparison with the existing rendering method

is plotted in Figure 4.6, where we observe that the performance superiority of the

proposed method over the existing one becomes more obvious as the number of

sampling points increases. With a small number of sampling points, the existing

method may outperform the proposed one because of the overheads for thread

spawning and synchronization, which could be reduced by launching threads in groups

for different rays and optimizing synchronization timings.

For the real-time over operator for image composition, we consider: 1) different

numbers of input images: 8, 16, and 32; 2) different image arriving intervals: 0s and

0.1s; and 3) 7 different image arriving (i.e., availability) orders, in each sequence of
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Figure 4.6 Performance comparison between the proposed and existing raycasting
methods.

input images. We define the k-distance arriving order as an arriving order where the

difference between the blending orders of any two subsequently arriving input images

is k. In the experiments, the seven different arriving orders are generated as follows.

Given n operands (i.e., intermediate fragments), at time t, when k 6= 2, their arriving

order is generated as

F (k, t, n) =



(t mod d n
k
e) · k + bt/dn

k
ec

if 0 ≤ t < (n mod k) · dn
k
e;

(t mod b n
k
c) · k + n− 1− b(n− 1− t)/bn

k
cc

if (n mod k) · dn
k
e ≤ t < n;

(4.5)
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where k ∈ [1, 3, 4, 5, 6, 7], n ∈ [8, 16, 32], and t ∈ [0, n). With k = 2, the arriving order

of the operands is generated as

F (k, t, n) =



(t mod d n
k
e) · k + 1

if 0 ≤ t < (n mod k) · dn
k
e,

(t mod b n
k
c) · k

if (n mod k) · dn
k
e ≤ t < n.

(4.6)

We plot the performance measurements in Figure 4.7, which shows that given the same

arriving interval and the same number of input images of the same size, but different

arriving orders, both algorithms exhibit relatively stable performance, implying that

both of the operators are immune to the arriving order. For the traditional operator,

since it must wait for all the operands to become available, the arriving order does not

affect the time cost; while for the proposed operator, whichever operand arrives, the

composition is always performed in constant time in parallel, hence resulting in the

identical total composition time. The proposed operator takes consistently much less

time than the original one in all the cases, which confirms our theoretical analysis. We

further observe that the performance differences become more obvious as the image

size and the number of input images increase, as shown in each subfigure (from a to

h) of Figure 4.7.

Furthermore, in Figure 4.7a and Figure 4.7b, as the arrival interval increases

from 0s to 0.1s, the proposed operator’s relative performance gain over the original

one remains quite stable, i.e., the gap between two performance curves does not vary

much, which is justified by Equations (2.40) and (2.41). For the proposed operator,

the time to perform all the computations for a newly arriving operand is constant. As

the arriving interval increases, such computing time becomes negligible, and (2.41) is
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dominated by the other two time cost components, i.e.,

TS =
n−1∑
i=1

ti + tsum. (4.7)

Comparing (4.7) with (2.40), the difference only lies in tsum and tsrt + 4(n − 1) · tc,

which are all fixed given the same number of input images and the same image size.

Thus, the performance difference between these two operators essentially arises from

the difference of these two terms as the arriving interval increases.

We also compare these two over operators on the image size of 20482 and 30722

using the 3D brain dataset with varying arriving intervals and numbers of input

images arriving in the pre-sorted order, and plot their performance measurements in

(4.8). We observe that with such an “ideal” arriving order, the proposed operator

still outperforms the original one.

We also conduct experiments to evaluate the performance of the proposed

V4BD architecture. We consider three scenarios: i) visualization with the pipelining

structure using the proposed rendering and composition methods, ii) visualization

with the pipelining structure using only the proposed composition method, and iii)

visualization using the traditional rendering and composition methods. In the same

computing environment, we execute the above three visualization scenarios with

different image sizes and plot the results in Fig. 4.9, which shows the performance

gains brought by the proposed image composition operator, per-ray integration

method, and pipelined scheme, respectively.
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(a) arriving interval 0s for image size of
20482.
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(b) arriving interval 0.1s for image size
of 20482.
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(c) arriving interval 0s for image size of
20482.
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(d) arriving interval 0.1s for image size
of 20482.
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(e) arriving interval 0s for image size of
30722.
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(f) arriving interval 0.1s for image size
of 30722.
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(g) arriving interval 0s for image size of
30722.
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(h) arriving interval 0.1s for image size
of 30722.

Figure 4.7 Comparisons of two over operators on the image size of 20482 in
subfigures (a,b,c,d) and 30722 in subfigures (e,f,g,h) using the 3D brain dataset with
varying arriving intervals and numbers of input images. The three figures in each
subfigure correspond to the cases of 8, 16, and 32 input images, respectively, from
left to right.
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(a) Image size of 20482.
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(b) Image size of 30722.

Figure 4.8 Comparisons of two over operators on the image size of 20482 in subfigure
(a) and 30722 in subfigure (b) using the 3D brain dataset with varying arriving
intervals and numbers of input images arriving in an “ideal” order. The three figures
in subfigures (a) and (b) correspond to the cases of 8, 16, and 32 input images,
respectively, from left to right.
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Figure 4.9 Comparison of the proposed and existing visualization pipeline with 8, 16,
and 32 rendering/composition nodes, where “Traditional” represents the traditional
sort-last pipeline, “Pipeline+over” represents the tile-based pipelining structure using
only the proposed over operator, and “V4BD” represents the tile-based pipelining
structure using the proposed rendering and composition methods.
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CHAPTER 5

QR DECOMPOSITION

It has been a long history since QR was first proposed [63, 26]. Along its way of

development during the past over one hundred years, it constantly attract attentions

from researchers for its construction of orthogonal bases for the input matrix and the

benefiting to other linear algebraic problems. Such long-term and large-scale focus

place QR decomposition at a important role in nowadays scientific computing, also

result in huge number of works targeting at different aspects of the decomposition

problem, such as decomposition method itself, time efficiency or stability studying

of one given decomposition method, application of the decomposition results and

so on. The application of QR decomposition is briefly covered in the chapter of

Introduction, we devote our research efforts here mainly to different decomposition

methods and their time efficiency, stability analysis, especially in the context of

parallelization. A brief survey of existing mainstream QR decomposition methods

and their corresponding analytics are given as follows.

5.0.5 Existing Mainstream Sequential QR Decomposition Methods

We enumerate 5 existing mainstream methods in sequential scenario here: Classical

Gram-Schmidt(CGS) method, as in Algorithm 27, Modified Gram-Schmidt(MGS)

method, as in Alg. 28, HouseHolder method as in Alg. 29, Givens method as in

Algorithm 30, Choelsky-based factorization as in Algorithm 31. Comparing these

5 methods, they are of the same order of time complexity(efficiency), differing on

stability, where HouseHolder has strongest stability, MGS method follows, Choelsky-

based method follows and CGS comes last. Details of these analytics are given in

Table 5.1.
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Function 27 Classical Gram-Schmidt(a1,a2, · · · , an)
Input:n independent vectors a1,a2, · · · , an
Output: Normalized orthogonal matrix Q = (q1,q2, · · · , qn) and upper triangular
matrix R, where A = Q ·R
1: for j = 1 to n do
2: vj = aj;
3: for i = 1 to j − 1 do
4: rij = qTi · aj;
5: vj = vj − rijqi;
6: rij = ‖vj‖2;
7: qj = vj/rjj;

Function 28 Modified Gram-Schmit(a1,a2, · · · , an)
Input:n independent vectors a1,a2, · · · , an
Output: Normalized orthogonal matrix Q = (q1,q2, · · · , qn) and upper triangular
matrix R, where A = Q ·R
1: for j = 1 to n do
2: vj = aj;
3: for i = 1 to n do
4: rii = ‖vi‖2;
5: qi = vi/rii;
6: for j = i+ 1 to n do
7: rij = qTi · vj;
8: vj = vj − rijqi;
9: for i = 1 to n do

10: for k = i to n do
11: R(i, k) = ai · qk;
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Function 29 Householder(a1,a2, · · · , an)
Input:n independent vectors a1,a2, · · · , an
Output: Normalized orthogonal matrix Q = (q1,q2, · · · , qn) and upper triangular
matrix R, where A = Q ·R
1: Q = In;a

2: R = Zn,n;b

3: for i = 1 to n do
4: σi = ‖Ei−1 · ai‖;c
5: vi = Ei−1 · ai − σiei;d
6: Hi = In − 2

vTi vi
viv

T
i ;

7: A = Hi · A;
8: Q = Q ·Hi;
9: for j = 1 to n do

10: for k = j to n do
11: R(j, k) = aj · qk;

aIn =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


n×n

bZn,n =

0 · · · 0
...

...
...

0 · · · 0


n×n

cEin =

[
Zi,i Zi,n−i
Zn−i,i In−i

]
n,n

dei =
[
0 · · · 1 · · · 0

]T
1 · · · i · · · n
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Function 30 Givens QR(a1,a2, · · · , an)
Input:n independent vectors a1,a2, · · · , an
Output: Normalized orthogonal matrix Q = (q1,q2, · · · , qn) and upper triangular
matrix R, where A = Q ·R
1: Q = In;
2: R = A;
3: for j = 1 to n do
4: for i = m : −1 : j + 1 do
5: r =

√
A(i− 1, j)2 + A(i, j)2;

6: c = A(i− 1, j)/r;
7: s = −A(i, j)/r;
8: Create G(i− 1, i, j);a

9: Q = QG(i− 1, i, j);
10: R = GT (i− 1, i, j)R;

aG(i − 1, i, j) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · −s · · · 0
...

. . .
...

...
...

0 · · · s · · · c · · · 0
...

. . .
...

...
...

0 · · · 0 · · · 0 · · · 1


where c = A(i−1,j)√

A(i−1,j)2+A(i,j)2
, s =

A(i−1,j)√
A(i−1,j)2+A(i,j)2

appear at the intersections ith and i − 1th row, other elements are

determined by gk,k = 1, for k 6= i, i− 1, gi,i = c, gi−1,i−1 = c, gi−1,i = −s, gi,i−1 = s.
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Table 5.1 Stability Analysis of Four Methods in Comparison

Algorithm ‖I −QTQ‖2 bound Assumption on κ(A)a References
Householder QR O(ε) None [25]

MGS O(εκ(A)) None [6]
CholeskyQR O(εκ(A)2) None [65]

CGS O(εκ(A)n−1) None [64, 33]

aκ(A) = ‖A‖2‖A−1‖2 as in [29]

proju(a) = <a,u>
<u,u>

u

u1 = a1 e1 =
u1
‖u1‖

(5.1)

u2 = a2 − proju1(a2) e2 =
u2
‖u2‖

u3 = a3 − proju1(a3)− proju2(a3) e3 =
u3
‖u3‖

u4 = a4 − proju1(a4)− proju2(a4)− proju3(a4) e4 =
u4
‖u4‖

...

uk = ak −
k−1∑
j=1

projuj(ak) ek =
uk
‖uk‖

Q = [e1, e2, · · · , en], R =



< e1, a1 > < e1, a2 > < e1, a3 > · · ·

0 < e2, a2 > < e2, a3 > · · ·

0 0 < e3, a3 > · · ·
...

...
...

. . .


Function 31 CholeskyQR(a1,a2, · · · , an)
Input:n independent vectors a1,a2, · · · , an
Output: Normalized orthogonal matrix Q = (q1,q2, · · · , qn) and upper triangular
matrix R, where A = Q ·R
1: W = ATA;
2: Compute the Cholesky factorization L · LT of W as in Algorithm 32;
3: Q = AL−T ;
4: R = L;
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Function 32 CholeskyDecomposition(a1,a2, · · · , an)
Input:n independent vectors a1,a2, · · · , an
Output: Cholesky factorization L · LT such that A = L · LT
1: for i = 1 : n do
2: for j = 1 : i do
3: if i==j then
4: sum = 0;
5: for k = 1 : j do
6: sum+ = a[j, k] ∗ a[j, k];

7: L[j, j] =
√
a[j, j]− sum;

8: else
9: sum = 0;

10: for k = 1 : j do
11: sum+ = a[i, k] ∗ a[j, k];

12: L[i, j] = 1.0
L[j,j]

√
a[i, j]− sum;

5.1 Parallelization for QR Decomposition

Parallelization here are oriented to the few previously mentioned sequential methods.

Unlike a single computing unit within consideration, there requires more complex

underlying architecture supporting such procedure. We first illuminate all requisite

supportive components during such procedure, then list multiple parallelization

instances of the mainstream sequential methods.

5.1.1 Requisite Components in Parallel QR Factorization

Data Partition There are two commonly used methods, row-wise partitioning,

column-wise partitioning, block-wise partitioning, block-wise cyclic partitioning

and so on. We provide definition of row-wise partitioning and block-wise cyclic

partitioning as follows. The others can be derived in a similar way.

Definition 5.1.1. Given P (≤ n) processors, denoted ρ0,ρ1, · · · , ρp−1 and an integer

β where 1 ≤ β ≤ n/P , a one-dimensional row-wise partitioning of panel size β, is

a partitioning where for all i,0 ≤ i < P , ρi is assigned row kβP + iβ + q, for all

0 ≤ k ≤ n
βP

and 1 ≤ q ≤ β.

Definition 5.1.2. Given P (≤ n2) processors, denoted ρi,j,where 1 ≤ i, j ≤
√
P and

an integer G where 1 ≤ G ≤ n/
√
P , a two-dimensional block cyclic partitioning of

granularity size G assigns to each processor ρi,j the matrix items al,m where n
G
k +
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Figure 5.1 Commonly-used parallel processor architecture.

n
G
√
P

(i − 1) + 1 ≤ l ≤ n
G
k + n

G
√
P
i, n
G
k + n

G
√
P

(j − 1) + 1 ≤ m ≤ n
G
k + n

G
√
P
j where

0 ≤ k < G.

Topology of Computing Units and Communication Models The paradigm

of parallel computing units varies a lot. We list a few commonly used ones here, such

as Cellular Automata, pRAMS, Hypercubes, Meshes, Butterflies, sorting networks,

and further provide illustrating figures for selected ones of them in Figure 5.1.

Given a specific topology of parallel computing units, we consider the LogP

model [14] to be the responsive communication model, which is defined as follows:

• L: Latency or delay incurred in communicating a message containing a word

from the source processor to the target one.

• o: Overhead, the length of time that a processor is either transmitting or

receiving a message. During this time, the processor cannot perform other

operations;
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• g: the gap defined as the minimum time interval between consecutive message

sending or consecutive message receiving at a processor;

• P: number of processor/memory pairs running in parallel.

Note that there is an upper bound for numbers of messages, L/g, to send/receive

through the network.

5.1.2 Parallelized QR Decomposition Methods and Their Performances

Based on the above platform of parallelization, we did a survey for each sequential

method with different data partitioning schemes and computing unit topologies. For

CGS method, there exist parallelization instances following row-wise column wise

partitioning in [70], running on topology of MIMD in [46] and pRAMS in [70].

For MGS method, there exist parallelization instances following the column-wise

partitioning in [52], the row-wise partitioning in [8], block-wise partitioning in [66],

running on topology of hypercube and ring in [51]. For HouseHolder method, there

exist parallelization instances following the column partition in [58], the row and

block partition in [51], running on topology of ring, hypercube in [51], and torus

in [19]. For Givens method, there exist parallelization instances following the block

partition in [17], row-wise partition in [22], running on topology of shared-memory

machine in [61][12], torus in [19], ring in [50], hypercube in [57]. For Cholesky

based decomposition, there exist parallelization instances following the block and

row partition in [62], running on topology of hypercube in [24] and ring in [53]. The

most efficient parallelization across all possible data partition schemes and topologies

for each individual sequential algorithm is given in Table 5.2.

5.2 Supportive Theorems for Parallel QR Decomposition

The performance of existing parallelized decomposition methods is still limited in

terms of time efficiency and stability. To the best of our knowledge, there does not

exist a single parallelization method that addresses both time efficiency and stability
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Table 5.2 Latency Performance Analysis of Four Methods in Comparison[15]

Parallel Algorithm Flops on critical path Messages Comm. volume

Householder QR 3n3

P
log(P ) n2 log(P )

MGS 2n3

P
log(P ) n2

2
log(P )

CholeskyQR 2n3

P
+ n3

3
log(P ) n2

2
log(P )

CGS 2n3

P
log(P ) n2

2
log(P )

issues. Towards this goal, we propose a new parallelized QR decomposition method.

Currently, we have derived two theorems that pave a promising way to such a goal:

one provides an explicit representation of each vector in the Q matrix generated by the

HouseHolder method as in Theorem 5.2.2. and the other provides a new distinctive

QR decomposition method as in Theorem 5.2.4. Proofs for these two theorems are as

follows, where one key formula required in Theorem 5.2.2 is proved in Lemma 5.2.1

in advance for convenience of reference.

Lemma 5.2.1. For the i-th row (column) of I− 2
vTi vi

viv
T
i , i.e., I− 2

vTi vi
viv

T
i (:, i), there

exists the following equation:

I − 2

vTi vi
viv

T
i (:, i) =

a
(i)
i

‖a(i)i ‖
, (5.2)

where a
(i)
i = Ei(I −

2

vTi−1vi−1
vi−1v

T
i−1) · · · (I −

2

vT1 v1
v1v

T
1 )ai, vi = a

(i)
i − γiei,

γi = ‖a(i)i ‖2, Ei =

[
Zi,i Zi,n−i

ZT
i,n−i In−i

]
, Zi,j =


0 0 · · · 0

0 0 · · · 0
...

0 0 · · · 0


i×j

.
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Proof.

I − 2

vTi vi
viv

T
i (:, i) = ei −

(a
(i)
i [i]− ‖a(i)i ‖)(a

(i)
i − ‖a

(i)
i ‖ei)

‖a(i)i ‖2 − ‖a
(i)
i ‖ · a

(i)
i (i)

(5.3)

= ei −
(‖a(i)i ‖2 − ‖a

(i)
i ‖ · a

(i)
i (i))ei − (a

(i)
i [i]− ‖a(i)i ‖)a

(i)
i

‖a(i)i ‖2 − ‖a
(i)
i ‖ · a

(i)
i (i)

= ei − ei +
a
(i)
i

‖a(i)i ‖
=

a
(i)
i

‖a(i)i ‖

Theorem 5.2.2. Matrix Q = (q1, · · · , qk · · · , qn), where qk is calculated according to

5.4 is numerically equivalent to the counterpart generated from HouseHolder method.

qk =
q
′

k

‖q′k‖
, q
′

k = ak −
k−1∑
j=1

< aTk · qj > qj (5.4)

Proof. According to the definition of Householder, we have

qi = (I − 2

vT1 v1
v1v

T
1 ) · · · (I − 2

vTi−1vi−1
vi−1v

T
i−1)(I −

2

vTi vi
viv

T
i (:, i)). (5.5)

Plugging (5.2) in (5.5) and setting Vi = I − 2
vTi vi

viv
T
i , we have

qi = V1 · · ·Vi−1 · Ei · Vi−1 · · ·V1 ·
ai

‖a(i)i ‖2
(5.6)

= V1 · · ·Vi−1 · Vi−1 · · ·V1 ·
ai

‖a(i)i ‖2
+

i−1∑
j=1

V1 · · ·Vi−1 · E
′

j · Vi−1 · · ·V1 ·
ai

‖a(i)i ‖2

where

Ei = In −
i−1∑
j=1

E
′

j, (i ≥ 2), E
′

i =


Zi−1,n

ei

Zn−i,n

 .
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There also exists that:

V1 · · ·Vi−1 · E
′

j · Vi−1 · · ·V1 · ai (5.7)

=V1 · · ·Vi−1 · E
′

j · Vj · · ·V1 · ai

=V1 · · ·Vi−1 ·Q
′

j · Vj−1 · · ·V1 · ai

=V1 · · ·Vi−1 ·


Zj−1,n

qTj

Zn−j,n

 · ai
=(qTj · ai) · V1 · · ·Vi−1 · ej

=(qTj · ai) · V1 · · ·Vj−1 ·
a
(i)
i

‖a(i)i ‖2
=(qTj · ai)qj

where

Q
′

i =


Zi−1,n

I − 2
vTi vi

viv
T
i (i, :)

Zn−i,n

 .

Combining (5.6) and (5.7), the theorem is proved.

Theorem 5.2.3. Given matrix A = (a1, a2, · · · , an), its corresponding Q matrix for

QR decomposition satisfies that

Q =

(
q
′
1

|q′1|
,
q
′
2

|q′2|
, · · · , q

′
n

|q′n|

)
(5.8)
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where

q
′

i = −→a1 ⊗−→a2 · · · ⊗ −→ai =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−→a1 −→a2 · · · −→ai
−→a1 · −→a1 −→a2 · −→a1 · · · −→ai · −→a1
−→a1 · −→a2 −→a2 · −→a2 · · · −→ai · −→a2

...

−→a1 · −−→ai−1 −→a2 · −−→ai−1 · · · −→ai · −−→ai−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=(−1)1+1−→a1 · A(i)

1 + (−1)1+2−→a2 · A(i)
2

+ · · ·+ (−1)1+i−→ai · A(i)
i

=(−1)1+1−→a1 ·
·A(i)

1

A
(i)
i

+ (−1)1+2−→a2 ·
A

(i)
2

A
(i)
i

+ · · ·+ (−1)1+i−→ai

=(−1)1+1−→a1 · d(i)1 + (−1)1+2−→a2 · d(i)2

+ · · ·+ (−1)1+i−→ai , (5.9)

d
(i)
j =

|A(i)
j |

|A(i)
i |

(1 ≤ j < i), A
(i)
1 = Aii

T · Ai1, · · · , A
(i)
j = Aii

T · Aij, · · · , A
(i)
i = Aii

T · Aii.

Aij = (a1, · · · , aj−1, aj+1, · · · , ai), Aii = (a1, a2, · · · , ai−1) and |A(i)
j | is the determinant

of matrix A
(i)
j .

Proof for (5.8) is straightforward, and is thus skipped for brevity.

Theorem 5.2.4. For the sequence of D(i) = (d
(i)
1 , · · · , d

(i)
j , · · · , d

(i)
i−1) where 1 ≤ j < i,

d
(i)
j =

|A(i)
j |

|A(i)
i |

, A
(i)
j = Aii

T · Aij, Aij = (a1, · · · , aj−1, aj+1, · · · , ai), Aii = (a1, · · · , ai−1) ,

there exists the following equation

A
(i)
i ·D(i) = Aii

T · ai. (5.10)

Proof of such theorem is constructed by simply applying Cramer’s rule to (5.10), and

is thus skipped for brevity.
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Comparing to determining each vector in the Q matrix individually, we prefer

determining all vectors in D(i) systematically. Actually, given D(i) and

A
(i)
i ·X = Aii

T · ai, (5.11)

there exists that the solution X to (5.11) is the expected sequence to D(i). We thus

propose to determine D(i) by solving an equation set in (5.11). For convenience of

reference in the rest of the dissertation, we denote the equation set in (5.11) as D(i)’s

companion equation set, i.e., CEQ(D(i)).

5.2.1 Implementation and Experimental Results

To evaluate the performance of the proposed ParaQR method, we implement and

compare it together with other five algorithms including CGS, MGS, HouseHolder,

Givens, and Cholesky on a high-performance computing node. The computing node

is equipped with one GTX580 GPU, dual 6-core processors at the speed of 2.3 GHz

for each core and 64GB RAM. We select the GPU to run the parallelized algorithms.

We test executable of each algorithm on multiple benchmark dataset of different

sizes, collect experimental performance metrics of each algorithm and show them in

Figure 5.2. It is valid to infer the following conclusions from Figure 5.2:

• 1: Proposed algorithm reveals an unanimous performance advantages over all

existing methods on all considered data sizes. As the data size increases, the

advantage extent enlarges further.

• 2: Given the same-sized dataset, performances of existing algorithms follow the

order that HouseHolder<Cholesky<MGS<CGS<Givens<ParaQR methods,which

complies with the established theoretical analysis and justifies performance

superiority of the proposed algorithm.
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Function 33 ParaQR(Am×n)
Input: a non-singular matrix A of m× n and rank n
Output: two decomposed matrixes Q,R such that A = QR, where Q is m× n
orthogonal, i.e., QT ·Q = In and R is n× n upper triangular

1: M [1 : n, 1 : n] =


−→a1T−→a2T
· · ·
−→anT

 (−→a1 ,−→a2 , · · · ,−→an);

2: InversR[1 : n, 1 : n] =


1 0 · · · 0
0 1 · · · 0
...
0 0 · · · 1


n×n

;

3: R[1 : n, 1 : n] =


1 0 · · · 0
0 1 · · · 0
...
0 0 · · · 1


n×n

;

4: Q[1 : n, 1 : n] =


0 0 · · · 0
0 0 · · · 0
...
0 0 · · · 0


n×n

;

5: Static M [1 : n, 1 : n] = M [1 : n, 1 : n];
6: for i=1:n do
7: Simultaneously do lines 8 to 9
8: M [i+ 1 : n, i : n] = M [i+ 1 : n, i : n]− 1

M [i,i]
·M [i+ 1 : n, i : n] ·M [i, i : n];

9: M [1 : i− 1, i : n] = M [1 : i− 1, i : n]− 1
M [i,i]

·M [1 : i− 1, i : n] ·M [i, i : n];

10: InversR[1 : i− 1, i]=M [1 : i− 1, 1 : i− 1]−1 × Static M [1 : i− 1, i];
11: q

′
i−1 = Static M [:, 1 : i− 1] · InversR[1 : i− 1, i];

12: qi−1 =
q
′
i−1

|q′i−1|
;

13: R[1 : i− 1, i]=
(
q
′
1, q

′
2, · · · , q

′
i−1
)T · −→a1 ;

14: R = (InversR)−1 ×


|q′1| 0 · · · 0
0 |q′2| · · · 0
...
0 0 · · · |q′n|

;

15: Q =
(
q
′
1

|q′1|
,
q
′
2

|q′2|
, · · · , q

′
n

|q′n|

)
;

16: return Q,R
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Figure 5.2 Performances of different algorithms on different sizes of data.
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CHAPTER 6

CONCLUSION

We consider a few practical problems in the domain of scientific visualization and

computing, briefly summarize each of them as follows, respectively.

6.1 Image Composition in Scientific Visualization

We proposed a Grouping More and Pairing Less (GMPL) method for sort-last parallel

rendering. To reduce the image composition time, GMPL employs two approaches:

prime factorization and Improved Direct Send. Prime factorization is considered

based on a common pattern that underlies the three most widely used methods: DS,

PP and BS, i.e., the more thoroughly the number of processors is factorized, the more

latency performance gain may be achieved. ImprovedDS is considered in the case

where the number of processors is already prime. In such a case, we designed a new

sending/receiving scheme, which, ideally, is able to reduce the connection establishing

time almost by half compared with the original DS method.

We parallelized the over operator for performance improvement by exploiting

the parallelism in blending different channels and summing up partial blending

results. For performance evaluation, we constructed cost models for both of the

operators, and conducted rigorous theoretical analyses to justify the advantages of

the generalized operator in terms of efficiency, which was confirmed by extensive

experimental results. We also proposed an improved over operator that was capable

of performing blending on any number of operands arriving in any arbitrary order.

Such order independency overcomed the performance limitation of the traditional

over operator. We implemented the proposed operator in both a sequential and a

parallel mode, and applied it to the image composition problem in parallel volume
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visualization. Both theoretical analyses and extensive experimental results showed

its performance superiority over the traditional one.

In addition, we proposed a volume visualization architecture that integrated

three components, i.e., a parallelized per-ray integration method, a real-time over

operator, and a pipelining scheme that overlapped rendering and composition. The

proposed techniques overcame the performance limitations of traditional methods.

We implemented the proposed architecture and evaluated the performances using real-

life scientific datasets on a high-performance visualization cluster. Both theoretical

analyses and extensive experimental results demonstrated their performance superi-

orities over existing ones.

6.2 QR Decomposition in Scientific Computing

In the QR decomposition procedure, we derived two theorems that illustrated

the prototype of the proposed procedure and confirmed its stability, respectively.

We further developed the prototype into a fully-fledged method, parallelized the

corresponding procedure, justified its performance superiority in comparison with

other existing methods.
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