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ABSTRACT

EFFICIENT HIGH-ORDER INTEGRAL EQUATION METHODS FOR
THE HEAT EQUATION

by
Shaobo Wang

Efficient high-order integral equation methods have been developed for solving the

boundary value problems of the heat equation with complex geometries in two and

three dimensions. First of all, the classical heat potential theory is applied to convert

such problems to Volterra integral equations of the second kind via the heat layer

potentials. Some advantages of the integral formulation as compared with standard

finite difference and finite element methods include reduction of the dimension of

the problem by one, high order accuracy, unconditional stability, insensitivity to

different geometries, and elimination of truncating the computational domain and

the need of artificial boundary conditions for exterior problems. However, the heat

layer potentials contains convolution integrals in both space and time whose direct

evaluation requires O(N2
SN

2
T ) work and O(NSNT ) storage, where NS is the total

number of discretization points in the spatial boundary and NT is the total number

of time steps. This is excessively expensive even for problems of modest size, especially

for three-dimensional problems.

In order to evaluate the heat layer potentials accurately and efficiently, they are

split into two parts - the local part which contains the temporal integration from t−δ

to t and the history part which contains the temporal integration from 0 to t − δ.

For the local part, Product integration is applied on the temporal integral to convert

it to a sum of several spatial convolution integrals where the so-called local kernels

have logarithmic singularity in two dimensions and 1
r

singularity in three dimensions.

These weakly singular integrals are discretized via high-order quadratures and the



resulting discrete summations can then be evaluated via fast algorithms such as the

fast multipole method and its descendants.

For the history part, efficient separated sum-of-exponentials approximations

can be constructed for the heat kernel in any dimension. Specifically, in one space

dimension, the heat kernel admits an approximation involving a number of terms that

is of the order O(log(T
δ
)(log(1

ε
) + log log(T

δ
))) for any x ∈ R and δ ≤ t ≤ T , where

ε is the desired precision. In all higher dimensions, the corresponding heat kernel

admits an approximation involving only O(log2(T
δ
)) terms for fixed accuracy ε. These

approximations can be used to accelerate the evaluation of the history part of the

heat layer potentials for stationary geometries.

For two-dimensional problems with complex stationary geometries, the sum-

of-exponentials approximation is used for the heat kernel and all local and history

kernels are compressed only once. The resulting algorithm is very efficient with

quasilinear complexity in both space and time for both interior and exterior problems.

For two-dimensional problems with complex moving geometries, the spectral Fourier

approximation is applied for the heat kernel and NUFFT is used to speed up the

evaluation of the history part of the heat potentials. The complexity of the algorithm

is again quasilinear in both space and time, albeit only for the interior problem.

For three-dimensional problems, the sum-of-exponentials approximation is applied to

speed up the evaluation of the history part. The singular surface integrals in the local

kernels are treated with a spectrally accurate integrator. The algorithm is applicable

for both interior and exterior problems and has quasilinear complexity with respect

to the temporal variable. All these algorithms can be parallelized in a straightforward

manner and their performance is demonstrated with extensive numerical experiments.
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CHAPTER 1

INTRODUCTION

In this dissertation, we consider the boundary value problems of heat equation in two

and three dimensions:

Ut(x, t) = ∆U(x, t), (x, t) ∈
T∏
τ=0

Ω(τ),

U(x, 0) = 0, x ∈ Ω0,

U(x, t) = f(x, t), (x, t) ∈
T∏
τ=0

Γ(τ),

(1.1)

where x ∈ Rd (d = 2, 3), Ω(τ) ∈ Rd is a domain at t = τ which could be multiply

connected and/or unbounded, and Γ(τ) is its boundary. Although we will focus on

the Dirichlet boundary conditions for the most part of the dissertation, the Neumann

and Robin conditions can be dealt with in an almost identical manner. Moreover,

it is straightforward to treat the nonzero initial data and the inhomogeneous term

in the equation in our framework. We refer the reader to Chapter 3 and references

therein for a detailed discussion about this.

In order to solve (1.1) numerically, we first apply standard heat potential theory

to convert it to a Volterra integral equation of the second kind using the heat double

layer potentials. As compared with the commonly used finite difference and finite

element methods, integral formulation have a number of advantages for solving this

type of problems. First, the unknown density is only on the space-time boundary∏T
τ=0 Γ(τ). This reduces the dimension of the problem by one and thus the total

number of unknowns by a large extent. Second, it is easier to design high-order

discretization scheme for the boundary and the unknowns on the boundary rather

than the whole volume and the unknowns in the whole volume, especially in the case

1



of complex geometries. In two dimensions, one only needs to discretize the boundary

curves instead of the 2D domain; while in three dimensions, one only needs to

discretize the boundary surfaces instead of the 3D domain. Third, it is easier to design

high-order marching scheme in time using integral formulation in the case of moving

geometry. Fourth, the integral formulation leads to a well-conditioned linear system

which requires a constant number of iterations to solve and the associated marching

scheme is unconditionally stable, while finite difference/finite element methods either

requires certain restriction on the Courant number for explicit schemes or needs good

preconditioners for solving the linear system for implicit schemes. Finally, for exterior

problems, there is no need to design artificial boundary conditions to truncate the

computational domain when the integral formulation is used.

However, the heat layer potentials contain the convolution integrals in both

space and time. A straightforward way to evaluate heat potentials at a sequence of

time steps tn = n∆t, for n = 0, . . . , NT , clearly requires an amount of work of the

order O(N2
TN

2
S), where NS denotes the number of points in the discretization of the

spatial boundary. While direct discretization methods have been used in the absence

of fast algorithms, it is difficult to argue that integral equation methods would be

methods of choice for large-scale simulation. In the last two decades, a variety of

schemes have been developed to overcome this obstacle. The scheme of [31] used

discrete Fourier methods to represent the history part, while [10] replaced the Fourier

representation with a regular (physical space) grid on which to update the history part

of the heat layer potential. In [28], the problem of exterior heat flow was considered

using the continuous Fourier transform in the spatial variables. Sethian and Strain

[58] and Ibanez and Power [37] developed variants of the fast algorithm of [31] in

the analyses of solidification, melting and crystal growth. More recently, Tausch [62]

developed an interesting space-time “fast-multipole-like” method that also overcomes

the cost of history-dependence (although it involves a hierarchical decomposition of

2



the entire space-time domain and thus has a very large prefactor in its computational

complexity).

A somewhat different approach to overcoming history-dependence is based on

using the Laplace transform in the time variable, leading to what are sometimes called

”Laplace transform boundary element methods”. That is the approach we consider

here, for the following reasons:

1. The Fourier methods of [28, 31] assume that the spatial domain of interest is

finite (even when considering exterior problems). Both the computation of the

Fourier modes and the evaluation of the solution at large distances can involve

highly oscillatory integrals.

2. The required number of Fourier modes in [28, 31] is O

((
a√
δ

)d)
, where a is a

bound on the extent of the domain in each spatial direction. This makes the

method inefficient for small δ.

Using the Laplace transform avoids both of these difficulties and leads to a

sum-of-exponentials approximation of the heat kernel that is asymptotically optimal

(although in the end, hybrid schemes may yield better constants).

Sum-of-exponentials approximations of convolution kernels have many appli-

cations in scientific computing. They permit, for example, the construction of

diagonal forms for translation operators. We refer the reader to [17, 67] for their

use in the elliptic case in accelerating fast multipole methods. They also permit the

development of highly efficient nonreflecting boundary conditions for the wave and

the Schrödinger equations [2, 3, 34, 38, 39, 48].

Function approximation using sums of exponentials is a highly nonlinear

problem, so that the numerical construction of such approximations is nontrivial.

In a series of papers, Beylkin and Monzón [5, 6, 7] carried out a detailed investigation

and developed efficient and robust algorithms when given function values on a
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fixed interval. In some cases, the function of interest can be represented as a

parameterized integral with exponential functions in the integrand, in which case

generalized Gaussian quadrature methods [13, 49] can also be used. In other cases,

however, the function being approximated, say f(t) is only accessible as the inverse

Laplace transform of an explicitly computable function, say f̂(s). If f̂(s) is sectorial

(i.e., holomorphic on the complement of some acute sector containing the negative

real axis for s ∈ C), then the truncated trapezoidal or midpoint rule can be used in

conjunction with carefully chosen contour integrals, leading to efficient and accurate

sum-of-exponentials approximations. López-Fernández, Palencia, and Schädle, for

example, have made effective use of various hyperbolic contours [46, 47]. On the

other hand, if the Laplace transform f̂(s) does not have such well-defined properties,

one may instead try to find a sum-of-poles approximation in the s-domain, from

which a sum-of-exponentials approximation for f(t) can be obtained by inverting the

sum-of-poles approximation analytically (see, for example, [66]).

In this dissertation, we construct efficient separated sum-of-exponentials (SOE)

approximations for the free-space heat kernel. In particular, we show that the one-

dimensional heat kernel 1√
4πt
e−|x|

2/(4t) admits an approximation of the form

1√
4πt

e−|x|
2/(4t) ≈

N1∑
i=1

wie
−site

√
si|x|

for any t ∈ [δ, T ] and x ∈ R, where N1 = O(log(T
δ
)(log(1

ε
)+log log(T

δ
))) where ε is the

desired precision. In the d-dimensional case (d > 1), the heat kernel 1
(4πt)d/2

e−|x|
2/(4t)

admits an approximation of the form

1

(4πt)d/2
e−|x|

2/(4t) ≈
N2∑
j=1

w̃je
−λjt

N1∑
i=1

wie
−site

√
si|x| (1.2)

for all t ∈ [δ, T ] and x ∈ Rd, where N1 = O(log(T
δ
)(log(1

ε
) + log log(T

δ
))) and N2 =

O
(
log
(

1
ε

)
·
(
log T

δ
+ log log 1

ε

))
. Both our construction and proof draw on earlier

work, especially [7, 47].
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The basic idea is to use the sum-of-exponentials approximation for the compu-

tation of the history part, since the parameter δ separates the time integration variable

τ from the current time t so that t − τ ∈ [δ, T ]. Since the temporal dependence for

each term in equation (1.2) involves a simple exponential, the convolution in time can

be easily computed using standard recurrence relations, as in [28, 31]. Furthermore,

the convolutions in space can be evaluated by a variety of fast algorithms, such as

variants of the fast multipole method. These issues are discussed in Chapter 5. In

the local part, the variants of fast multipole methods are again employed to evaluate

the convolution in space.

Although the Fourier method suffers from the aforementioned shortcomings, it

has the advantage that the Fourier approximation of the heat kernel is completely

separable in the temporal variable and spatial variable, and also in the source points

and target points. This makes it very suitable for dealing with moving geometries.

Hence, as a complementary algorithm of the SOE approximation method, we have

also implemented the spectral Fourier approximation for the heat kernel and applied

it to solve the boundary value problems of the heat equation for complex moving

geometries in two dimensions.

To summarize, we have developed the following three algorithms for solving the

boundary value problems of the heat equation.

1. A quasilinear complexity algorithm in both space and time for solving the

boundary value problems of the heat equation with stationary complex geometries

in two dimensions using sum-of-exponentials approximations.

2. A quasilinear complexity algorithm in both space and time for solving the

boundary value problems of the heat equation with moving complex geometries

in two dimensions using spectral Fourier approximation of the heat kernel and

nonuniform FFT.
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3. A high-order algorithm with quasilinear complexity in time for solving the

boundary value problems of the heat equation with stationary complex geometries

in three dimensions using sum-of-exponentials approximations.

The rest of the dissertation is organized as follows. In Chapter 2, we review

several numerical and analytical apparatus that are needed for our algorithms. In

Chapter 3, we collect some well-known results on the potential theory for the heat

equation. In Chapter 4, we present theoretical results about the sum-of-exponentials

approximation for the heat kernels in all dimensions. In Chapter 5, we discuss in

detail various algorithms that we have developed for solving the boundary value

problems of the heat equation in both two and three dimensions. The performance

of these algorithms is demonstrated via extensive numerical experiments in Chapter

6. Finally, we conclude the dissertation with further discussion and future research

directions.
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CHAPTER 2

PRELIMINARIES

In this chapter, we collect several numerical tools to be used subsequently.

2.1 Recursive Skeletonization Factorization

Consider the boundary integral equation

−1

2
σ(x) +K(σ)(x) = f(x), (2.1)

which is commonly seen in physics and engineering when applying classical potential

theory. The equation can be discretized into a linear system

Ax = b , (2.2)

where A ∈ CNXN , x ∈ CNX1 and b ∈ CNX1. Direct matrix-vector product of the

above system clearly requires O(N2), which become impractical when N is large.

There have been many fast algorithms in recent thirty years that speed up either the

matrix-vector product or solving the above linear system. Here we will only discuss

the fast multipole method (FMM) and its descendants. The original FMM was first

developed by Greengard and Rokhlin [29] to evaluate the sum of the form

fi =
N∑

j=1,j 6=i

ln |xi − xj| qj, xi ∈ R2, i = 1, · · · , N , (2.3)

with O(N) computational cost. It was then extended in [17, 30] to speed up

the Coulomb interactions in three dimensions. Since then there have been many

generalizations of the FMM which is more or less “kernel-independent” in the

sense that it is capable of speeding up the evaluation of the matrix-vector product

as long as the matrix satisfies certain hierarchical low rank structure. In these
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kernel-independent FMMs, the analytical multipole and local expansions are replaced

by the singular value decomposition [23], the equivalent proxy charges [68], the

interpolative decomposition [52], etc. Recently, there have been rapid developments

in the so-called fast direct solvers (FDS) which construct an efficient representation

of the matrix inverse and solve the linear system efficiently (see, for example,

[12, 22, 26, 35, 42, 42, 50, 51, 53]). The most recent paper by Ho and Ying [36]

presents two fast algorithms - recursive skeletonization factorization (rskelf) and

hierarchical interpolative factorization (hifie). Both algorithms factorize the matrix

and its inverse into a product of sparse low-rank matrices and have optimal complexity

for intrinsically 1D problems. The difference between rskelf and hifie is that

hifie will introduce extra compression steps to achieve better complexity for higher

dimensional problems.

For the boundary value problems of the heat equation in two dimensions, we

will need to solve a linear system whose unknowns are on the boundary curves if we

use a high-order implicit scheme to discretize the boundary integral equation. In this

case, the intrinsic geometry is 1D for most practical problems and rskelf seems to

be the method of choice for matrix (and its inverse) compression. It is especially

advantageous for stationary geometries since one only needs to compress the matrix

once and the apply time is often at least ten times faster than the FMM.

We now present a short discussion about rskelf in [36]. First, we introduce

interpolative decomposition (ID) [16], which is different from the known singular

value decomposition and QR decomposition in a sense that we can use it to develop

a multi-level compression for a matrix in a hierarchical way.

Lemma 2.1. For any m × n matrix A with rank k, there exists an approximation

A ≈ SP , where S ∈ Cm×k is called the skeleton matrix, whose columns are a subset

of the columns of A, and P ∈ Ck×n is called the projection matrix, a subset of whose
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columns are the k × k identity matrix. Furthermore, ||P || is small and ||A− SP || ∼

σk+1, where σk+1 is the (k + 1)st greatest singular value of A.

Lemma 2.1 shows ID compresses the column space of A. Similarly the row space

of A can be compressed by applying ID to AT . The compression requires O(kmn) in

[16], while a more recent technology based on random sampling [45, 65] needs a work

of O(mn log k + k2n).

Lemma 2.2. Assume that p, q, r, k are ordered sets of indices. Suppose

A =


Arr Ark Arq

Akr Akk Akq

Aqr Aqk Aqq

 ,

with the submatrices [
Aqr Aqk

]

and Arq
Akq


low rank. Suppose there exists a matrix Pt ∈ C |k|×|r| such that Aqr = AqkPt. Let

Qt =


I

−Pt I

I

 .

Then

Q∗tAQt =


Brr Brk

Bkr Akk Akq

Aqk Aqq

 , (2.4)
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where

Brr = Arr − P ∗t Akr − ArkPt + P ∗t AkkPt ,

Brk = Ark − P ∗t Akk ,

Bkr = Akr − AkkPt.

In addition, there exists unit triangular matrices Lr and Ur such that Brr = LrDrUr.

Then

L(A) = R∗rQ
∗
tAQtSr =


Dr

Bkk Akq

Aqk Aqq

 , (2.5)

where

R∗r =


I

−BkrU
−1
r D−1

r I

I



L−1
r

I

I

 ,

Sr =


U−1
r

I

I



I −D−1

r L−1
r Brk

I

I

 ,

and

Bkk = Akk −BkrB
−1
rr Brk.

Lemma 2.2 uses ID to sparsify A with only the skeletons k left, leading to further

compression by efficient sparse techniques. Moreover, for a collection C of disjoint

index sets, the compression leads to

L(A) ≈ U∗AV, U =
∏
t∈C

QtRr, V =
∏
t∈C

QtSr.
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With Lemma 2.2, the main algorithm can be constructed. Suppose that the

integral equation (2.1) defined in region Ω = (0, 1)2 is discretized into an N × N

matrix. Consider an L-level compression scheme where at each level l, the region is

partitioned into Voronoi cells [4] m(j1 − 1, j1) × m(j2 − 1, j2) with width m = N
2L−l

about the centers m(j1 − 1
2
, j2 − 1

2
) for 1 ≤ j1, j2 ≤ m. Then the full compression is

as in Algorithm 2.1.

Algorithm 2.1 Recursive Skeletonization Factorization

1: for l = 0 to h− 1 do

2: Compress the Al such that Al+1 = L(A) ≈ U∗l AlVl

3: end for

After the multi-level compression, it results in

D ≈ U∗L−1 · · ·U∗0AV0 · · ·VL−1,

with unit triangular matrices Ul and Vl. Then A can be represented by

A ≈ U−∗0 · · ·U−∗L−1DV
−1
L−1 · · ·V

−1
0 . (2.6)

Note the inverse matrix is obtained by simply negating the off-diagonal entries from

each unit triangular matrix. Therefore, we can apply the compression (2.6) for

efficient matrix-vector product.

Remark 2.1. The cost of the above compression is dominated by applying ID to

submatrices, which need to access all rows or columns during the skeletonization.

The process can be accelerated by introducing a proxy surface for each ID and making

local compression only as in [16, 19, 22, 26, 35, 51, 52, 57, 68].

Remark 2.2. For intrinsically 2D problems, the compression cost of rskelf becomes

O(N
3
2 ). In this case, we could switch to hifie in [36] to obtain better complexity.
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2.2 Spectral Fourier Approximation for the Heat Kernel in Free Space

Spectral Fourier approximation for the heat kernels has been studied in detail in [28].

For the 1D heat kernel G1(x, t), the starting point is the following well-known Fourier

representation:

G1(x, t) =
e−x

2/4t

√
4πt

=
1

2π

∫ ∞
−∞

e−k
2teikxdk. (2.7)

The explicit construction of the spectral Fourier approximation for G1 in [28] first

truncates the above infinite integral to a finite interval [−p, p], then divides this

finite interval dyadically with smaller and smaller subintervals towards the origin, and

approximates the integral on each subinterval by the Gaussian-Legendre quadrature

with a constant number of nodes. In summary, in order to approximate G1 by a

discrete Fourier series for all t ≥ δ > 0 and |x| ≤ R within an absolute error ε, i.e.,∣∣∣∣∣G1(x, t)−
NF∑
i=1

wie
−k2i teikix

∣∣∣∣∣ ≤ ε, |x| ≤ R, t ≥ δ, (2.8)

the number of Fourier nodes needed NF has to be of the following order:

NF = O

(
log

(
1

ε

)(
log

(
1

ε
√
δ

))1/2
R√
δ

)
. (2.9)

The spectral Fourier approximation for the heat kernel Gd in higher dimensions

is obtained via the tensor product in [28].

2.3 Nonuniform Fast Fourier Transform

The ordinary FFT computes the discrete Fourier transform (DFT) and its inverse:

F (k) =
N−1∑
j=0

f(j)e−2πikj/N , k = 0, · · · , N − 1,

f(j) =
1

N

N−1∑
k=0

F (k)e2πikj/N , j = 0, · · · , N − 1

(2.10)
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in O(N logN) operations by exploiting the algebraic structure of the DFT matrix.

The points xj = 2πj/N and the frequencies k, however must be equispaced in both

the physical and Fourier domains (see, for example, [18]).

The purpose of the NUFFT is to remove this restriction, while maintaining a

computational complexity of O(N logN), where N denotes the total number of points

in both the physical and Fourier domains. Dutt and Rokhlin were the first to construct

an algorithm of this type, with full control of precision [21], although heuristic versions

had been used earlier. There are, by now, many variants of the NUFFT. All of

these algorithms rely on interpolation coupled with a judicious use of the FFT on an

oversampled grid. Here, we will use the convention in [27], which describes a simple

framework for the NUFFTs using Gaussian kernels for interpolation.

The type-1 NUFFT evaluates sums of the form

f(x) =
1

N

N−1∑
n=0

Fne
±ikn·x, (2.11)

for “targets” x on a regular grid in Rd, given function values Fn prescribed at arbitrary

locations kn in the dual space. Here, N denotes the total number of source points.

The type-2 NUFFT evaluates sums of the form

F (kn) =

M1/2−1∑
j1=−M1/2

· · ·
Md/2−1∑
jd=−Md/2

f(xj)e
±ikn·xj , (2.12)

where the “targets” kn are irregularly located points in Rd, given the function values

f(xj) on a regular grid in the dual space.

Finally, the type-3 NUFFT evaluates sums of the form

f(xj) =
1

N

N−1∑
n=0

Fne
±ikn·xj , (2.13)

where both the “targets” xj and the sources kn are irregularly located in their

corresponding domain.
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All these NUFFTs based on the algorithms in [21, 27, 43] consist of three steps:

interpolation (or convolution) via the Gaussians to spread each irregular grid to the

nearest p grid points, FFT on an oversampled grid points, pointwise multiplication

which performs deconvolution. Hence, the computational cost of NUFFTs isO(pdNI+

M logM), where d is the dimension of the underlying space, NI is the number of

irregular grid points, and M is the number of regular grid points. In practice, with

the oversampling factor equal to 2, p = 24 yields about 12 digits of accuracy, and

p = 12 yields about 6 digits of accuracy.
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CHAPTER 3

POTENTIAL THEORY FOR THE HEAT EQUATION

In this chapter, we collect some standard theoretical results on the potential theory

for the heat equation, which can be found in [11, 55, 54, 56, 15, 20, 32]. We will denote

Ω as a bounded domain in Rd, and its boundary ∂D as Γ. Assume that functions on

Γ are at lease twice differentiable. We will use Ω̄ to denote Ω ∪ Γ. Denote ΩT as the

space-time domain Ω× [0, T ] and ΓT as the space-time boundary Γ× [0, T ]. We will

use ny to represent the unit outward normal to Γ at the point y.

3.1 Fundamental Solution of the Heat Equation

Consider the initial value problem for the heat equation

Ut(x, t)−∆U(x, t) = 0, x ∈ Rd, t > 0

U(x, 0) = U0(x), x ∈ Rd.

(3.1)

The solution to the problem (3.1) can be represented as

U(x, t) =

∫
Rd
G(x− y, t)U0(y)dy , (3.2)

in terms of the fundamental solution G(x, t), where

G(x, t) =
1

(4πt)d/2
e−
|x|2
4t .

Lemma 3.1. Suppose that x, y ∈ Rd and t > τ > t0. Then the fundamental solution

satisfies 
∂tG(x− y, t− τ)−∆G(x− y, t− τ) = 0,∫
Rd
G(x− y, t− τ)dy = 1,

lim
t→0+

G(x, t) = δ(x),

(3.3)
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where δ(x) is the Dirac delta function.

We now consider the inhomogeneous initial value problem

Ut(x, t)−∆U(x, t) = h(x, t), x ∈ Rd, t > 0

U(x, 0) = U0(x), x ∈ Rd .

(3.4)

The solution can be expressed as

U(x, t) =

∫
Rd
G(x− y, t)U0(y)dy +

∫ t

0

∫
Rd
G(x− y, t− τ)h(y, τ)dydτ . (3.5)

Theorem 3.1. Suppose in the system (3.4), U0(x) is continuous in Rd and bounded

such that |U0(x)| ≤M for all x. Assume that h(x, t) is continuous and |h(x, t)| ≤ N

for 0 ≤ t ≤ T and x ∈ Rd. In addition, hx(x, t) is also bounded. Then equation (3.5)

is the unique continuous solution to the system (3.4). Furthermore, U also satisfies

the following inequality:

|U(x, t)| ≤M +NT, x ∈ Rd and 0 ≤ t ≤ T.

3.2 Heat Potentials and their Properties

The solution to the initial-boundary value problem of the heat equation can be

represented by an initial potential, a volume potential, a single layer potential and a

double layer potential defined as follows.

Definition 3.1. Suppose U0 is a function on Ω. Then the initial potential is defined

by the following formula

I(U0)(x, t) =

∫
Ω

G(x− y, t)U0(y)dy. (3.6)

Definition 3.2. Suppose h is a function on ΩT . Then the volume potential is defined

by the following formula

V (h)(x, t) =

∫ t

0

∫
Ω

G(x− y, t− τ)h(y, τ)dydτ. (3.7)
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Definition 3.3. Suppose σ is a function on ΓT . Then the single layer potential is

defined by the following formula

S(σ)(x, t) =

∫ t

0

∫
Γ

G(x− y, t− τ)σ(y, τ)dsydτ. (3.8)

The double layer potential is defined by the following formula

D(σ)(x, t) =

∫ t

0

∫
Γ

∂

∂ny
G(x− y, t− τ)σ(y, τ)dsydτ . (3.9)

Theorem 3.2. The single layer potential satisfies the following jump relation

lim
z→x

∂S

∂nx
(σ)(x, t) = ±1

2
σ(x, t) +

∫ t

0

∫
Γ

∂

∂nx
G(x− y, t− τ)σ(y, τ)dsydτ . (3.10)

The plus sign applies if z approaches x from within the domain Ω while the minus

sign applies if z approaches x from outside Ω. The double layer potential satisfies the

following jump relation

lim
z→x

D(σ)(z, t) = ±1

2
σ(x, t) +D(σ)(x, t). (3.11)

where the plus sign applies for the limit from exterior and the minus sign applies for

the limit from interior.

3.3 The Dirichlet Problem

For the Dirichlet problem
Ut −∆U = h(x, t), x ∈ Ω, t > 0

U(x, 0) = U0, x ∈ Ω

U(x, t) = f(x, t), x ∈ Γ .

(3.12)

it is standard to represent U using the double layer heat potential, the volume

potential and the initial potential:

U(x, t) = D(σ)(x, t) + I(U0)(x, t) + V (h)(x, t), (3.13)
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where σ is an unknown density function.

From Section 3.1, the representation (3.13) clearly satisfies the first two

equations of (3.12). The remaining is to satisfy the boundary condition by solving

the unknown density σ. Imposing the boundary condition and using Theorem 3.2

leads to the Volterra integral equation of the second kind for the interior Dirichlet

problem:

−1

2
σ(x, t) +D(σ)(x, t) = f(x, t)− V (h)(x, t)− I(U0)(x, t) , (3.14)

and the integral equation for the exterior Dirichlet problem:

1

2
σ(x, t) +D(σ)(x, t) = f(x, t)− V (h)(x, t)− I(U0)(x, t) . (3.15)

3.4 The Neumann Problem

For the Neumann problem
Ut −∆U = h(x, t), x ∈ Ω, t > 0

U(x, 0) = U0, x ∈ Ω

∂
∂n
U(x, t) = f(x, t), x ∈ Γ .

(3.16)

U is represented by using the single layer heat potential:

U(x, t) = S(σ)(x, t) + V (h)(x, t) + I(U0)(x, t). (3.17)

The representation (3.17) clearly satisfies the first two equations of (3.16) from

Section 3.1. To satisfy the boundary condition, apply the boundary condition and

Theorem 3.2, leading to the integral equations

1

2
σ(x, t) +

∫ t

0

∫
Γ

∂

∂nx
G(x− y, t− τ)σ(y, τ)dsydτ = f(x, t)− V (h)(x, t)− I(U0)(x, t)

(3.18)
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and

−1

2
σ(x, t) +

∫ t

0

∫
Γ

∂

∂nx
G(x− y, t− τ)σ(y, τ)dsydτ = f(x, t)− V (h)(x, t)− I(U0)(x, t)

(3.19)

for the interior Neumann problem and the exterior Neumann problem, respectively.
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CHAPTER 4

SUM-OF-EXPONENTIALS APPROXIMATION FOR THE HEAT

KERNEL

We develop the sum-of-exponentials approximation for the heat kernel in this chapter

by inverting the Laplace transform Ĝ(x, s) of the heat kernel G(x, t) = 1√
4πt
e−
|x|2
4t

numerically through truncated trapezoidal or midpoint rule applied on contour

integrals on the condition that Ĝ(x, s) is sectorial. We also show that power functions

1
tβ/2

, β = 1, 2, 3, 4 can be approximated by sum-of-exponentials. Furthermore, we also

develop sum-of-exponentials approximations for heat kernels in higher dimensions

with the approximations for the one-dimensional heat kernel and power functions.

4.1 Analytical Apparatus

The following lemma provides an error estimate for the sum-of-exponentials approxi-

mation obtained by the truncated trapezoidal rule discretization of a certain contour

integral in the Laplace domain.

Lemma 4.1. [Adapted from [47].] Suppose that U(z) is holomorphic on W = C \

(−∞, 0] and satisfies the estimate

‖U(z)‖ ≤ 1

2|z|1/2
(4.1)

for z ∈ W . Suppose that u(t) = 1
2πi

∫
Γ
etzU(z)dz is the inverse Laplace transform

of U . Suppose further that α and β satisfy the condition 0 < α − β < α + β < π
2
,

0 < θ < 1, and that Γ is chosen to be the left branch of the hyperbola

Γ = {λT (x) : x ∈ R}, (4.2)
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where T (x) = (1 − sin(α + ix)). Finally, suppose that un(t) is the approximation to

u(t) given by the formula

un(t) = − hλ
2πi

n∑
k=−n

U(λT (kh))T ′(kh)eλT (kh)t. (4.3)

Then the choice of parameters

h =
a(θ)

n
, (4.4)

λ =
2πβn(1− θ)

Ta(θ)
, (4.5)

a(θ) = arccosh

(
2T

δ(1− θ) sinα

)
(4.6)

leads to the uniform estimate on δ ≤ t ≤ T ,

‖u(t)− un(t)‖ ≤ 1√
t
φ(α, β) · L(λδ sin(α− β)/2) · e−

2πθβn
a(θ) , (4.7)

where

φ(α, β) =
2

π

√
1 + sin(α + β)

1− sin(α + β)
(e sin(α− β))1/2, (4.8)

L(x) = 1 + | ln(1− e−x)|. (4.9)

Proof. Choosing s = 1
2
, µ = 1

2
in the first equation of Remark 2 of [47], we have the

estimate

‖u(t)−un(t)‖ ≤ 1

2
√
t
φ(α, β) ·L(λt sin(α−β)/2) ·eλt

(
1

e2πβ/h − 1
+

1

eλt sinα cosh(nh)/2

)
.

(4.10)
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With the choice of parameters given by equations (4.4)-(4.6), it is easy to see that

eλt = e
2πβn(1−θ)t

Ta(θ) ≤ e
2πβn(1−θ)

a(θ) , δ ≤ t ≤ T, (4.11)

1

e2πβh− 1
u e−2πβ/h = e−

2πβn
a(θ) , (4.12)

1

eλt sinα cosh(nh)/2
= e−

2πβnt
a(θ)δ ≤ e−

2πβn
a(θ) , δ ≤ t ≤ T, (4.13)

Finally, it is easy to see that L(x) is decreasing in x and thus

L(λt sin(α− β)/2) ≤ L(λδ sin(α− β)/2), δ ≤ t ≤ T. (4.14)

Substituting equations (4.11)-(4.14) into equation (4.10), we obtain equation

(4.7).

Remark 4.1. The parameters α, β, and θ are available for optimization. For our

problem, i.e., the sum-of-exponentials approximation of the 1D heat kernel, we choose

α = 0.8, β = 0.7 in equation (4.8). We have also tested various values of θ in (0, 1).

Numerical experiments indicate that the number of nodes needed for a prescribed

accuracy is relatively insensitive when θ is in the range [0.85, 0.95].

Combining Lemma 4.1 and Remark 4.1, we have the following Corollary.

Corollary 4.1. Suppose that 0 < ε < 0.1 is the prescribed relative error and that

T ≥ 1000δ > 0. Then under the conditions of Lemma 4.1, the following estimate

holds

‖u(t)− un(t)‖ ≤ 1√
t
· ε, δ ≤ t ≤ T, (4.15)

if the number of exponentials n satisfies the following estimate:

n = O

((
log

(
1

ε

)
+ log log

(
T

δ

))
log

(
T

δ

))
. (4.16)

Proof. We choose the parameters α, β, and θ as in Remark 4.1. The factor φ(α, β) in

equation (4.7) is just a fixed constant independent of n, T , and δ. For T ≥ 1000δ > 0,
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the parameter a(θ) defined in equation (4.6) satisfies the estimate

a(θ) = O(log
T

δ
). (4.17)

Moreover, the function L defined in equation (4.9) is decreasing for x > 0, L(x) ≈

| lnx| as x → 0+, and L(x) → 1 as x → +∞. Combining this observation with the

assumption equation (4.16), we observe that the factor L(λδ sin(α − β)) in equation

(4.7) satisfies the estimate

L(λδ sin(α− β)) ≤ C log

(
T

δ

)
. (4.18)

Substituting equation (4.17) and equation (4.18) into equation (4.7), we obtain

‖u(t)− un(t)‖ ≤ C1√
t
· log

(
T

δ

)
· e−C2n/ log(Tδ ). (4.19)

It is then easy to see that equation (4.15) follows if n satisfies equation (4.16).

Remark 4.2. For most practical cases, the log log
(
T
δ

)
factor is much smaller than the

log
(

1
ε

)
factor. Thus for a fixed precision ε, we will simply say that n = O

(
log
(
T
δ

))
.

Remark 4.3. The hyperbolic contour is chosen in such a way that the horizontal strip

Dβ = {z ∈ C : |Imz| ≤ β} is transformed into a region bounded by the left branches of

two hyperbolas defined as in equation (4.2), but with x replaced by x± iβ. The reason

that such contour is chosen is the (well-known) fact that the trapezoidal rule converges

exponentially fast for functions holomorphic on a horizontal strip containing the real

axis (see, for example, [59, 60]). We have actually used the midpoint rule to eliminate

the occurrence of a node directly on the real axis. There is almost no difference in

terms of accuracy, but this allows us to assume that all nodes lie in the upper half

plane in actual computation.

Remark 4.4. It is likely that other contours would yield similar results. Trefethen et

al. [63] have analyzed this issue with great care and presented a detailed comparison
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of various contours (hyperbolic, parabolic, and Talbot contours [61]) for inverting

sectorial Laplace transforms, though they are mainly concerned with the efficiency of

various contours for a fixed time t.

4.2 Sum-of-exponentials Approximation for Power Functions

In this section, we show how to construct the efficient sum-of-exponentials approx-

imation for the power function 1
t2

using the techniques in [38] for building the

sum-of-exponentials approximation for 1√
t
. Then it would be straightforward to

extend the techniques for constructing the sum-of-exponentials approximations for

1
t

and 1

t
3
2

. First, we have the following observation

1

t2
=

∫ ∞
0

se−st ds . (4.20)

Lemma 4.2. For t ≥ δ ≥ 0, ∣∣∣∣∫ ∞
p

se−st ds

∣∣∣∣ ≤ ε
1

t2
(4.21)

where ε = (pδ + 1)e−pδ.

Proof. Let u = st,∣∣∣∣∫ ∞
p

se−st ds

∣∣∣∣ =

∣∣∣∣∫ ∞
pt

ue−u du

∣∣∣∣ 1

t2
<

∣∣∣∣∫ ∞
pδ

ue−u du

∣∣∣∣ 1

t2
< (pδ + 1)e−pδ

1

t2
(4.22)

The error approaches to zero as p grows to infinity. Then we will show dyadic

intervals (as in [28]) using Gauss-Legendre quadrature can be applied to discretize

the integral on the interval [0, p].

Lemma 4.3. Consider a dyadic interval [a, b] = [2j, 2j+1] and let s1, ..., sn and

w1, ..., wn be the nodes and weights for n-point Gauss-Legendre quadrature on the
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interval. Then ∣∣∣∣∣
∫ b

a

se−st ds−
n∑
k=1

e−sktskwk

∣∣∣∣∣ < √π2−4n+5n
3
2

1

t2
. (4.23)

Proof. From the n-point Gauss-Legendre quadrature, we have∣∣∣∣∣
∫ b

a

se−st ds−
n∑
k=1

e−sktskwk

∣∣∣∣∣ =
(b− a)2n+1

2n+ 1

(n!)4

[(2n)!]3
∣∣D2n

ξ ξe
−ξt∣∣ , a < ξ < b, (4.24)

where Dξ denotes the partial derivative with respect to ξ.

Based on the equation

∣∣D2n
ξ ξe

−ξt∣∣ =
∣∣(−t)2nξe−ξt + 2n(−t)2n−1e−ξt

∣∣ < 2a(t)2ne−at + 2n(−t)2n−1e−at

(4.25)

we obtain∣∣∣∣∣
∫ b

a

se−st ds−
n∑
k=1

e−sktskwk

∣∣∣∣∣ < 2

2n+ 1

(n!)4

[(2n)!]3
[(at)2n+2e−at + n(at)2n+1e−at]

1

t2
.

(4.26)

Using the Stirling’s approximation

√
2πnn+1/2e−n < n! < 2

√
πnn+1/2en, (4.27)

and the following equations

max
x>0

xne−x = (n)ne−n, n ∈ R+ , (4.28)

(
1 +

1

n

)n
< e , (4.29)

it is easy to derive equation (4.23).

Lemma 4.4. For 0 < t ≤ T ,∣∣∣∣∣
∫ a

0

se−st ds−
n∑
k=1

e−sktskwk

∣∣∣∣∣ < 2
√
πn

3
2 (
aT

n
)2n+1(

e

8
)2n 1

t2
. (4.30)
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Proof. The proof is very similar to the preceding lemma. First, we get∣∣∣∣∣
∫ a

0

se−st ds−
n∑
k=1

e−sktskwk

∣∣∣∣∣ < 1

2n+ 1

(n!)4

[(2n)!]3
[(at)2n+2 + 2n(at)2n+1]

1

t2
. (4.31)

instead of equation (4.26). Then the result follows after applying equation (4.27),

equation (4.28) and equation (4.29) to equation (4.30).

Combining the preceding three lemmas, it is straightforward to come up with

the sum-of-exponentials approximation for 1
t2

.

Theorem 4.1. Let ε > 0 be the desired precision, let 0 < δ ≤ t ≤ T , let no =

O(log(1
ε
)), let NL = O(log(no

T
)), and let NM = O(log log(1

ε
) + log(1

δ
)). Further,

let s0,1, ..., s0,n0 and w0,1, ..., w0,no be the nodes and weights for the no-point Gauss-

Legendre quadrature on the interval [0, 2NL ], and let sj,1, ..., sj,n and wj,1, ..., wj,n be the

nodes and weights for the n-point Gauss-Legendre quadrature on the interval [2j, 2j+1],

where n = O(log(1
ε
)). Then,∣∣∣∣∣ 1

t2
−

(
no∑
k=1

e−so,ktso,kwo,k +

NM∑
j=NL

n∑
k=1

e−sj,ktsj,kwj,k

)∣∣∣∣∣ < 3ε
1

t2
(4.32)

Remark 4.5. The theorem above shows that we only need O
(
log(1

ε
)
(
log log(1

ε
) + log(T

δ
)
))

to approximate 1
t2

for 0 < δ ≤ t ≤ T .

Remark 4.6. The sum-of-exponentials approximation for 1√
t

can be found in [38].

Moreover, similar sum-of-exponentials approximations can be constructed for 1
t

and

1

t
3
2

using the same techniques for 1
t2

based on the observations

1

t
=

∫ ∞
0

e−st ds , (4.33)

and

1

t
3
2

=
4√
π

∫ ∞
0

s2e−s
2t ds . (4.34)

Then it would be sufficient for the heat kernel in one, two, and three dimensions.
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Remark 4.7. In [8], the error of the approximation of 1/x by exponential sums is

studied in detailed on both finite and infinite intervals. In [9], Braess and Hackbusch

extend their analysis to the general power function 1/xα, α > 0, obtaining sharp error

estimates for the absolute error.

4.3 Sum-of-exponentials Approximation of the Heat Kernel

In this section, we first develop a separated sum-of-exponentials approximation for

the one-dimensional heat kernel. We then extend the approximation to arbitrary

space dimensions, and to directional derivatives of the heat kernel, such as the kernel

of the double layer potential D(σ).

The one-dimensional result is summarized by the following theorem.

Theorem 4.2. Let G(x, t) = 1√
4πt
e−
|x|2
4t denote the one-dimensional heat kernel and

let its Laplace transform be denoted by Ĝ(x, s) =
∫∞

0
e−stG(x, t)dt. Then, for s > 0

and x ∈ R,

Ĝ(x, s) =
1

2
√
s
e−
√
s|x|. (4.35)

Furthermore, let 0.1 > ε > 0 be fixed accuracy and T ≥ 1000δ > 0 . Then there exists

a sum-of-exponentials approximation

GA(x, t) =
n∑

k=−n

wke
skte−

√
sk|x| (4.36)

such that

|G(x, t)−GA(x, t)| < 1√
t
· ε (4.37)

for x ∈ R and t ∈ [δ, T ], with

n = O
(

log(
T

δ
)

(
log(

1

ε
) + log log

(
T

δ

)))
. (4.38)
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Proof. The formula (4.35) is well-known and can be derived from standard Laplace

transform tables. The natural extension of Ĝ(x, s) to the complex s-plane has an

obvious branch point at s = 0, and a branch cut along the negative real axis assuming

the restriction −π < s ≤ π. Thus, Ĝ(x, s) is holomorphic on W = C \ (−∞, 0] and

satisfies the estimate

‖Ĝ(x, s)‖ ≤ 1

2|s|1/2
(4.39)

for s ∈ W and all x ∈ R. As a result, G(x, t) can be represented by the inverse

Laplace transform:

G(x, t) =
1

2πi

∫
Γ

estĜ(x, s)ds

=
1

4πi

∫
Γ

1√
s
est−

√
s|x|ds,

(4.40)

where Γ is a simple contour lying in W = C \ (−∞, 0], and parametrizable by a

regular mapping S : (−∞,+∞)→ C such that

lim
x→±∞

ImS(x) = ±∞ and lim
x→±∞

Re (S(x))

|x|
< 0.

The last condition implies that

Re(z) ≤ −b|z|, as z →∞, z ∈ Γ,

for some b > 0. This forces the integral equation (4.40) to be absolutely convergent.

It is easy to see that the integral is independent of the choice of Γ.

The main result equation (4.36) is now a direct consequence of Lemma 4.1 and

Corollary 4.1 since Ĝ satisfies the condition equation (4.39). In particular, we have

GA(x, t) =
n∑

k=−n

wke
skte−

√
sk|x|, (4.41)
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where

sk = λ(1− sin(α + ikh)), (4.42)

wk = − h

4πi
√
sk
s′k, (4.43)

with s′k = −λi cos(α + ikh), and the parameters h, λ specified in equation (4.4) and

equation (4.5), respectively.

In Table 4.1, we list the number of exponentials needed to approximate the

1D heat kernel for x ∈ R over three different time intervals [δ, T ]: I1 = [10−3, 1],

I2 = [10−3, 103], I3 = [10−5, 104], which correspond roughly to 103, 106, and 109 time

steps, respectively. The first column lists the maximum error of the approximation

computed over a 50× 1000 grid (xj, tk) where x0 = 0, xj = 2−16+j for j = 1, · · · , 49,

and the tk are 1000 samples on [δ, T ] chosen to be equispaced on a logarithmic scale.

The node locations are plotted in Fig. 4.1.

Table 4.1 Number of Exponentials Needed to Approximate the 1D Heat Kernel for
x ∈ R over Different Time Intervals: I1 = [10−3, 1], I2 = [10−3, 103], I3 = [10−5, 104].

ε I1 I2 I3

10−3 15 23 32

10−6 31 50 68

10−9 47 77 105

Remark 4.8. To obtain Table 4.1, we set α = 0.8, β = 0.7, θ = 0.9 for I1 and

θ = 0.95 for I2 and I3.

Remark 4.9. The coefficients wi are not positive (but complex) and thus stability is

an issue. It is difficult to bound the expression∑
|wi exp(sit)|

|
∑
wi exp(sit)|
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Figure 4.1 The location of the exponential nodes sk (k = ±1, · · · ,±n for n = 77)
used in equation (4.41) to approximate the 1D heat kernel for t ∈ [10−3, 103] with
9-digit accuracy. The left figure shows all nodes, while the right figure is a close-up of
the nodes near the origin. All nodes lie on the left branch of the hyperbola specified
in equation (4.2).

analytically for all time. However, we have checked the value of the expression

numerically for all cases presented in Table 4.1, and found that it is roughly 1.08.

This suggests that the sum-of-exponentials approximation is, indeed, well-conditioned.

Remark 4.10. If we make a further change of variable z =
√
s in equation (4.40),

we obtain

G(x, t) =
1

2πi

∫
Γ′
ez

2t−z|x|dz, (4.44)

where Γ′ is any contour lying in the sector {π
4
< | arg z| ≤ π

2
} of the complex plane.

In particular, if Γ′ is chosen to be the imaginary axis, then we essentially recover the

Fourier integral representation of the heat kernel (see, for example, [31]).

Finally, it is worth repeating that the number of terms required in the sum-of-

exponentials approximation does not depend on the spatial extent of the problem.
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4.3.1 Heat Kernels in Higher Dimensions

Suppose now that we are interested in heat flow in Rd, for d ≥ 2, where the heat

kernel is

Gd(x, t) =
1

(4πt)d/2
e−
|x|2
4t .

The following theorem describes an efficient sum-of-exponentials representation.

Theorem 4.3. For any 0.1 > ε > 0 and T ≥ 1000δ > 0, the heat kernel Gd(x, t)

admits the following approximation:

G̃d(x, t) =

N2∑
j=1

w̃je
−λjt

N1∑
k=−N1

wke
skte−

√
sk|x| (4.45)

such that

|Gd(x, t)− G̃d(x, t)| <
1

td/2
· ε (4.46)

for any x ∈ Rd, t ∈ [δ, T ] with N1 specified in equation (4.38) and N2 specified in

Remark 4.5.

Proof. We first rewrite the d dimensional heat kernel as a product of two functions:

Gd(x, t) = G1(x, t) · F (t), (4.47)

where

G1(x, t) =
1

(4πt)1/2
e−
|x|2
4t , F (t) =

1

(4πt)(d−1)/2
. (4.48)

Similarly, we rewrite G̃d as follows:

G̃d(x, t) = S1(x, t) · S2(t), (4.49)

where

S1(x, t) =

N1∑
k=−N1

wke
skte−

√
sk|x|, S2(t) =

N2∑
j=1

w̃je
−λjt. (4.50)
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Using the triangle inequality, we have

|Gd(x, t)− G̃d(x, t)| ≤ |G1 · F −G1 · S2|+ |G1 · S2 − S1 · S2|

≤ |G1| · |F − S2|+ (1 + ε)|F | · |G1 − S1|

≤ 3

td/2
· ε,

(4.51)

and the result follows.

4.3.2 Double Layer Heat Potential

Since we often rely on the double layer potential in integral equation methods, it is

worth writing down a sum-of-exponentials approximation for this case as well. We

denote the kernel of the double layer heat potential by

D(x, y; t) =
∂G(x− y, t)

∂ny
=

(x− y) · ny
(4πt)d/22t

e−
|x−y|2

4t .

Theorem 4.4. Let 0.1 > ε > 0 be fixed accuracy, R > 1 and T ≥ 1000δ > 0. Then

there exists a sum-of-exponentials approximation

DA(x, y; t) =

N2∑
j=1

w̃je
−λjt

N1∑
k=−N1

wke
skte−

√
sk|x−y|(x− y) · ny (4.52)

such that

|D(x, y; t)−DA(x, y; t)| < 1

t(d+2)/2
· ε (4.53)

for |x− y| ≤ R and t ∈ [δ, T ]. Here N1 and N2 are as follows:

N1 = O
(

log(
T

δ
)

(
log(

1

ε
) + log log

(
T

δ

)
+ logR

))
(4.54)

and

N2 = O

(
(log

(
1

ε

)
+ logR) ·

(
log

T

δ
+ log log

1

ε
+ logR

))
. (4.55)
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Proof. We first introduce ε̂ = ε/R. Then by Theorem 1, there exist N1 =

O
(
log(T

δ
) log(1

ε̂
)
)

= O
(
log(T

δ
)
(
log(1

ε
) + log log

(
T
δ

)
+ logR

))
, coefficients wk, and

nodes sk (k = 1, · · · , N1) such that

|G1(x, t)−
N1∑

k=−N1

wke
skte−

√
sk|x|| < 1√

t
· ε̂, (4.56)

for x ∈ R and t ∈ [δ, T ].

Changing x to x−y and multiplying both sides of equation (4.56) by (x−y) ·ny,

we obtain ∣∣∣∣∣(x− y) · ny
(4πt)1/2

e−
|x−y|2

4t −
N1∑

k=−N1

wke
skte−

√
sk|x−y| · ((x− y) · ny)

∣∣∣∣∣
≤ |(x− y) · ny|

(4πt)1/2
· ε̂

≤ R

(4πt)1/2
· ε
R

≤ 1

(4πt)1/2
· ε

(4.57)

for all |x− y| ≤ R and t ∈ [δ, T ].

Similarly, by Lemma 2, we have∣∣∣∣∣ 1

t(d+1)/2
−

N2∑
i=1

w̃ie
−λit

∣∣∣∣∣ ≤ 1

t(d+1)/2
· ε/R, δ ≤ t ≤ T, (4.58)

where N2 is given by equation (4.55).

The result is then obtained by an argument almost identical to that in the proof

of Theorem 4.3.

Remark 4.11. It is worth noting that the theorems above provide what are, in

essence, relative error estimates. Our numerical experiments also indicate that the

logR dependence in N1 and N2 and the restriction on x − y are somewhat artificial

since D(x, y; t) and DA(x, y; t) are exponentially small for large (x− y).
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CHAPTER 5

NUMERICAL ALGORITHMS

In this chapter, we present fast algorithms for the exterior and interior Dirichlet

problems governed by the heat equation (3.1). From Chapter 3, we need to solve the

density function σ in the integral equation

1

2
σ(x, t) +D(σ)(x, t) = f(x, t) (5.1)

for the exterior problem and the integral equation

−1

2
σ(x, t) +D(σ)(x, t) = f(x, t) (5.2)

for the interior problem.

5.1 Split of the Layer Potentials

It is convenient both analytically and numerically to decompose the double layer

potential into two pieces: a history part DH and a local part DL. Let δ be a small

positive parameter, we write

D(σ)(x, t) = DH(σ)(x, t) +DL(σ)(x, t),

where

DH(σ)(x, t) =

∫ t−δ

0

∫
Γ

∂

∂ny
G(x− y, t− τ)σ(y, τ)dsydτ (5.3)

and

DL(σ)(x, t) =

∫ t

t−δ

∫
Γ

∂

∂ny
G(x− y, t− τ)σ(y, τ)dsydτ . (5.4)
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The equation (5.1) can be written in the following form

1

2
σ(x, t) +DL(σ)(x, t) = f(x, t)−DH(σ)(x, t). (5.5)

5.2 Efficient 2D Heat Solver with Stationary Geometry Using SOE

5.2.1 Expressions of the Local Kernels

In order to evaluate the local part accurately, we switch the order of integration and

carry out the integration in time semi-analytically using product integration (see, for

example, [40, 44]). Since the density σ is smooth in time, we expand it on [t − δ, t]

for each y in the form

σ(y, τ) = σ0(y) + (t− τ)σ1(y) + · · ·+ (t− τ)k−1

(k − 1)!
σk−1(y) +O((t− τ)k).

The functions σ0(y), . . . , σk−1(y) are obtained from the function values σ(y, t− j∆t)

for j = 0, · · · , k − 1 via standard polynomial interpolation. In other words, we have

σ(y, τ) = [1
t− τ
∆t

...
(t− τ)k−1

∆tk−1
]Mk



σ(y, t)

σ(y, t−∆t)

...

σ(y, t− (k − 1)∆t)


+O((t− τ)k), (5.6)

where Mk is the coefficient matrices given by the formulas

M2 =

 1 0

−1 1

 , (5.7)

M3 =


1 0 0

−3
2

2 −1
2

1
2
−1 1

2

 , (5.8)
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M4 =



1 0 0 0

−11
6

3 −3
2

1
3

1 −5
2

2 −1
2

−1
6

1
2
−1

2
1
6


. (5.9)

Substituting the above expression into equation (5.4) and changing the order of

integration in time and space, we obtain

DL(σ)(x, t) =

∫
Γ

[DL0 DL1 ... DLk−1
]Mk



σ(y, t)

σ(y, t−∆t)

...

σ(y, t− (k − 1)∆t)


dsy (5.10)

where the local kernels DLk are given by the formulas

DLk(x, y) =

∫ t

t−δ

∂

∂ny
Gd(x− y, t− τ)(t− τ)k dτ

=
1

∆tk

∫ t

t−δ

(x− y) · ny
2d+1π

d
2 (t− τ)

d
2

+1−k
e−
|x−y|2
4(t−τ) dτ.

(5.11)

In two dimensions, we have the following explicit expressions for the local kernels

DLk(x, y) =



(x−y)·ny
2π|x−y|2 e

−ρ , k = 0,

(x−y)·ny
8π∆t

Ei(ρ) , k = 1,

(x−y)·nyδ
8π∆t2

(e−ρ − ρEi(ρ)) , k = 2,

(x−y)·nyδ2
16π∆t3

((1− ρ)e−ρ + ρ2Ei(ρ)) , k = 3,

(5.12)

where ρ = |x−y|2
4δ

and Ei is the exponential integral function given by

Ei(x) =

∫ ∞
x

e−t

t
dt.

36



5.2.2 Discretization and Compression of the Spatial Integrals in the Local

Part

The local kernels DLk(x, y) are logarithmically singular at the diagonal. There are

many high-order quadratures for discretizing such weakly singular integrals. Here

we use the Alpert quadrature [1] to discretize the spatial integrals involving these

local kernels. We would also like to avoid the O(N2
S) work that would be required

by direct evaluation of the matrix-vector product. A large number of fast algorithms

are now available to reduce the cost of this step to O(NS) or O(NS logNS). These

include fast multipole methods, kernel-independent fast multipole methods [68], HSS

and H-matrix methods [14, 33], and HBS or recursive skeletonization methods [35,

36, 22]. We use recursive skeletonization factorization developed in [36]. That is,

each of the operators DL,j(xm, yn) (j = 1, · · · , k − 1) will be compressed once, with

subsequent applications of the operator computed in optimal complexity with much

smaller prefactor than the FMMs.

Rskelf requires the access of matrix entries and submatrix Ats, where t and s

are both set of indices. Although we could apply rskelf directly on the matrix A

resulted from the discretization of the spatial integrals using the Alpert quadrature,

the prefactore in the compression stage would be large since the Alpert quadrature

contains nonequispaced nodes near the diagonal. In order to reduce the prefactor in

the compression phase, we split the matrix A into three parts:

A = Aeq + Aalp − Aadj, (5.13)

where

• Aeq: the matrix obtained by using the equispaced trapezoidal rule to discretize

the spatial integral with diagonal entries set to 0. Only Aeq is compressed by

rskelf and the matrix entries of Aeq can be evaluated efficiently. The matrix
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compression and apply costs are both O(NS) with the apply step much faster

than the compression step (very often 100 times faster).

• Aalp: the matrix which contains the effect of the non-equispaced points in

the Alpert quadrature. This matrix is not sparse since we use global spectral

interpolation to interpolate the function values at those nonequispaced points to

equispaced points. However, since there are only 30 nonequispaced points near

the diagonal and one could apply NUFFT to speed up the global interpolation.

The cost of the matrix-vector product Aalpσ is O(30NS log(NS)).

• Aadj: a banded matrix which contains the effect of the adjacent 18 equispaced

points near the diagonal from the trapezoidal rule. We need to subtract them

since they are not in the Alpert quadrature. Evaluating Aadjσ costs O(18NS).

Remark 5.1. In the case of stationary boundary, one could also compress the matrix

inverse directly using the aforementioned fast direct solvers. This will lead to an

optimal algorithm for long-time simulations. When the number of time step is not

too large, our method is more efficient since (a) the compression cost is reduced by a

large factor; (b) the apply cost is much smaller than the compression cost; and (c) it

only takes about 6 iterations for GMRES to converge to 12-digit accuracy due to the

second kind Volterra structure of the integral equation.

5.2.3 Evaluation of the History Part

For the history part, approximating the kernel by DA(x, y; t − τ) (4.52) and

substituting equation (4.52) into equation (5.3), we obtain
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DH(σ)(x, t) ≈
∫ t−δ

0

∫
Γ

N2∑
j=1

w̃je
−λj(t−τ)

N1∑
k=−N1

wke
sk(t−τ)e−

√
sk|x−y|[(x− y) · ny]σ(y, τ)dsydτ

=

N2∑
j=1

w̃j

N1∑
k=−N1

wkHj,k(x, t),

(5.14)

where each history mode Hj,k is given by the formula

Hj,k(x, t) =

∫ t−δ

0

e(−λj+sk)(t−τ)Vk(x, τ)dτ, (5.15)

with Vk given by the formula

Vk(x, τ) =

∫
Γ

e−
√
sk|x−y|[(x− y) · ny]σ(y, τ)dsy. (5.16)

Here, we have interchanged the order of summation and integration.

For each fixed τ , Vk(x, τ) can be discretized using the trapezoidal rule to achieve

spectral accuracy. This is because although each integral is not smooth, the kernel of

the whole history part is smooth since the heat kernel is smooth for τ ∈ [0, t−δ]. The

resulting discrete summation can again be computed via rskelf The computational

cost for this step is O(NS) for each k. Once the Vk have been evaluated, each history

mode Hj,k can be computed recursively, as in [31, 40]:

Hj,k(x, t+ ∆t) = e(−λj+sk)∆tHj,k(x, t) +

∫ t+∆t−δ

t−δ
e(−λj+sk)(t+∆t−τ)Vk(x, τ)dτ. (5.17)

Similar to local kernels, Vk can be expressed as

Vk(x, τ) = [1
t− δ − τ

∆t
...

(t− δ − τ)k−1

∆tk−1
]Mk



Vk(x, t− δ)

Vk(x, t− δ −∆t)

...

Vk(x, t− δ − (k − 1)∆t)


+O(∆tk).

(5.18)
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Then ∫ t+∆t−δ

t−δ
e(−λj+sk)(t+∆t−τ)Vk(x, τ)dτ =

[DH0 DH1 ... DHk−1
]Mk



Vk(x, t− δ)

Vk(x, t− δ −∆t)

...

Vk(x, t− δ − (k − 1)∆t)


+O(∆tk),

(5.19)

where DHj(j = 0, ..., k − 1) are given by the formulas

DHj =

∫ t+∆t−δ

t−δ
e(−λj+sk)(t+∆t−τ) (t− δ − τ)j

∆tj
dτ

= (k − 1)j+1∆t



1−e−q
q

, j = 0

1−e−q−qe−q
q2

, j = 1

2−2e−q−2qe−q−q2e−q
q3

, j = 2

6−6e−q−6qe−q−3q2e−q−q3e−q
q4

, j = 3

(5.20)

where

q = (k − 1)(λj − sk)∆t.

The equation (5.20) suffers from catastrophic cancellation errors when q is small.

Therefore, for q < 10−3 we need to evaluate it with the Taylor expansions

DHj = (k − 1)j+1∆t



1− 1
2
q + 1

6
q2 − 1

24
q3 + 1

120
q4 , j = 0

1
2
− 1

3
q + 1

8
q2 − 1

30
q3 + 1

144
q4 , j = 1

1
3
− 1

4
q + 1

10
q2 − 1

36
q3 + 1

168
q4 , j = 2

1
4
− 1

5
q + 1

12
q2 − 1

42
q3 + 1

192
q4 , j = 3

(5.21)

Equivalently, each history mode Hj,k can be seen to satisfy a simple linear ODE.

The point is that each history mode can be computed in O(1) operations at each time
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step for each x. Since both N1 and N2 are O(log(T/δ)) = O(log(NT )) with NT the

total number of time steps, the net computational cost for the evaluation of the history

part at each time step is O(NS logNT + NS log2NT ), with storage requirements of

the order O(NS log2NT ). The computational cost for the entire simulation is

O(NSNT logNT +NSNT log2NT ) .

The algorithm is embarrassingly parallel in that the computation of each history

mode is independent. Furthermore, the hierarchical fast algorithms used for each

Vk(x, τ) are themselves amenable to parallelization, and there is already a substantial

body of research and software devoted to that task for large-scale problems.

5.2.4 The Full Algorithm

In this section, we present the full algorithm in details for solving two-dimensional heat

equation with stationary boundary using the sum-of-exponentials approximation.

First of all, we show the total number of local kernels required for the 4th order

scheme. During the time matching in the simulation, suppose we are at t = 4 dt as in

Figure 5.1. Then we are able to evaluate the Fourier mode (5.15) in the history part

with previous three steps by the equation (5.17). The local part consists of one time

step and δ = dt at this step. When the time proceeds to t = 5 dt as in Figure 5.2, we

treat the previous two steps as the local part and δ = 2 dt. The history mode at this

step is evaluated by

Hj,k(x, t+ ∆t) = e(−λj+sk)∆tHj,k(x, t) . (5.22)

Similarly at t = 6 dt as in Figure 5.3, we treat the previous three steps as the local

part and δ = 3 dt and the history mode is computed by the equation (5.22). Then

at the next time step t = 7 dt, we evaluate the Fourier mode by the equation (5.15)

again and δ = dt.
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Figure 5.1 Time matching at t = 4 dt.

Figure 5.2 Time matching at t = 5 dt.

Figure 5.3 Time matching at t = 6 dt.
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As a consequence, we have to evaluate local kernels with different δ (δ = 1, 2, 3.)

in the 4th order scheme. In each δ, we need to compute four kernels as in equation

(5.12). Furthermore, the 4th order simulation requires the 2nd order scheme to

initialize the first few steps, where we need to evaluate two additional kernels in

the 2nd order scheme. Hence, we need to evaluate 14 local kernels in the simulation

of the 4th order scheme in total.

As the boundary is stationary, we can precompute all local kernels. The local

kernel is split into three part Deq, Dalp, and Dadj as in the equation (5.13). Deq of

all local kernels will be compressed using rskelf. Algorithm 5.1 lists the steps of

evaluating the local part DL(σ).

Algorithm 5.1 Evaluation of the Local Part

Require: Suppose σ is the density function and the local kernel DL is split into three

parts: Deq, Dalp, and Dadj. Evaluate DL(σ).

1: Compress Deq and evaluate Deqσ via rskelf.

2: Evaluate Dalpσ via 1D NUFFT.

3: Evaluate Dadjσ directly.

4: DLσ = Deqσ +Dalpσ −Dadjσ.

The history kernels are approximated by the sum-of-exponentials and the spatial

integral is discretized by the trapezoidal rule. The resulting summation can be

accelerated using rskelf and its application. The integral with respect to time

can be represented by history modes (5.15) and evaluated through the recurrence

relation (5.17) in O(1) operations at each time step as described in Subsection 5.2.3.

Algorithm 5.2 shows how to evaluate the history part DH(σ).

Denote the density σ at time step j as σj. We give the integral equation for the

interior Dirichlet problem at the time step j during the time matching for the 4th

order scheme:

−1

2
σj +DL(σj) = bj −DH −DL(σj−1)−DL(σj−2)−DL(σj−3). (5.23)
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Algorithm 5.2 Evaluation of the History Part for 2D Heat Solver Using SOE

Approximation

Require: Suppose σ is the density function. Assume that we are at jth step in a

kth orde scheme. Evaluate DH(σ).

1: if mod(j − 2, k − 1) == 0 then

2: Evaluate the spatial integral (5.16) with rskelf.

3: Evaluate the recurrence relation (5.17) for the history mode.

4: else

5: Evaluate the history mode with the equation (5.22).

6: end if

7: Compute the equation (5.14) directly and obtain DH(σ).

In Algorithm 5.3, the computation cost for the compression of local kernels and

history kernels is

O(14NS +NS logNT ) .

The time complexity for solving the density σ is

O(3NSNT +(c+1)NT (NS +30NS log 30NS +18NS)+NSNT logNT +NSNT log2NT ) ,

where c is the average iterations of GMRES. Evaluating the solution U costs

O(NT (NS +Ntarg)(logNT + log2NT ) + (NS +Ntarg)(30 log 30NS)) ,

where Ntarg is the total number of target points.

Remark 5.2. For high-order schemes, the first few steps of σ would be initialized

with smaller time step in the 2nd order scheme.
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Algorithm 5.3 2D Heat Solver Using SOE Approximation

Require: Given the total discretization points NS, source points src, target points

targ, total number of time steps NT , time step dt in a kth order scheme. Solve

the density σ at all time steps and evaluate the solution U to the heat equation

at the final time for all target points.

1: Separate all local kernels into three parts Deq, Dalp, and Dadj. Compress Deq of

all local kernels and all history kernels approximated by the SOE approximation

using rskelf.

2: for j = k to NT + 1 do . Solving the density σ

3: Compute the right hand side of the linear system b.

4: if j > k then

5: Evaluate the history part DH using Algorithm 5.2.

6: end if

7: Evaluate the local part DL(σ) using Algorithm 5.1.

8: Use GMRES to solve the linear system (5.23) and obtain σj.

9: end for

10: Evaluate the solution U at the final time for all target points.
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5.3 Efficient 2D Heat Solver with Moving Geometry Using NUFFT

5.3.1 Accurate Evaluation of the Local Part

We follow the treatment in [44] and use the double layer potential to illustrate the

idea. When the boundary is function of time, i.e., Γ = Γ(τ), the kernel of the double

layer potential has the following explicit expression:

∂G2(x(t),y(τ); t− τ)

∂ny(τ)

=
e−
‖x(t)−y(τ)‖2

4(t−τ)

8π(t− τ)2
[(x(t)− y(τ)) · ny(τ)]. (5.24)

The local part of the double layer potential is given by the formula

DL[σ](x, t) =

∫ t

t−δ

∫
Γ(τ)

∂G2(x(t),y(τ); t− τ)

∂ny(τ)

σ(y(τ), τ)dsy(τ)dτ

=

∫ t

t−δ

∫
Γ(τ)

e−
‖x(t)−y(τ)‖2

4(t−τ)

8π(t− τ)2
[(x(t)− y(τ)) · ny(τ)]σ(y(τ), τ)dsy(τ)dτ,

(5.25)

where one has to carry out the integration in space first since the boundary is now

a function of time as well. We now switch the order of integration by using the

boundary at the current time Γ(t) for spatial integration. That is,

DL[σ](x, t) =

∫ t

t−δ

∫
Γ(τ)

∂G2(x(t),y(τ); t− τ)

∂ny(τ)

σ(y(τ), τ)dsy(τ)dτ

=

∫
Γ(t)

∫ t

t−δ

∂G2(x(t),y(τ); t− τ)

∂ny(τ)

σ(y(τ), τ)
dsy(τ)

dsy(t)

dτdsy(t)

=

∫
Γ(t)

∫ t

t−δ

e−
‖x(t)−y(τ)‖2

4(t−τ)

8π(t− τ)2
[(x(t)− y(τ)) · ny(τ)]σ(y(τ), τ)

dsy(τ)

dsy(t)

dτdsy(t).

(5.26)

In order to carry out the product integration in time as in the stationary case, we

decompose the exponential function as follows:

e−
‖x(t)−y(τ)‖2

4(t−τ) = e−
‖x(t)−y(t)‖2

4(t−τ) · e−
‖y(t)−y(τ)‖2

4(t−τ) · e−
(x(t)−y(t))·(y(t)−y(τ))

2(t−τ) . (5.27)

The first term on the right hand side of (5.27) is the same as the stationary

case, while the second and third terms both contain the factor (y(t)−y(τ))
(t−τ)

, which is a
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smooth function of τ when the boundary undergoes a smooth motion. Let

µ(τ) = e−
‖y(t)−y(τ)‖2

4(t−τ) · e−
(x(t)−y(t))·(y(t)−y(τ))

2(t−τ) [(x(t)− y(τ)) · ny(τ)]σ(y(τ), τ)
dsy(τ)

dsy(t)

. (5.28)

Then (5.26) can be written as follows:

DL[σ](x, t) =

∫
Γ(t)

∫ t

t−δ

e−
‖x(t)−y(t)‖2

4(t−τ)

8π(t− τ)2
µ(τ)dτdsy(t). (5.29)

We may now proceed as in the stationary case. That is, approximate µ(τ) by a

polynomial of τ , convert the integration in time to a sum of products of local kernels

Di and µ(t− i∆t), and then use proper quadrature to discretize the spatial integrals.

Remark 5.3. One will need the value of µ(t), which may be obtained by replacing

(y(t)−y(τ))
(t−τ)

with its limiting value y′(t) as τ → t.

5.3.2 Evaluation of the History Part

For the history part, we use the spectral Fourier approximation of the heat kernel.

Unlike [28] in which a tensor product is applied to obtain the spectral Fourier

approximation of the heat kernel in higher dimensions, we first write the Fourier

representation of G2(x, t) in polar coordinates:

G2(x, t) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

e−(k21+k22)tei(k1x1+k2x2)dk1dk2

=
1

4π2

∫ 2π

0

∫ ∞
0

e−k
2teik(x1 cos(θ)+x2 sin(θ))kdkdθ.

(5.30)

We then use the generalized Gaussian quadrature to construct an optimal quadrature

along the radial direction, and the trapezoidal rule discretize the integration along the

azimuthal direction which achieves spectral accuracy for smooth periodic integrals.

Altogether, we need 21600 Fourier modes to achieve 13-digit accuracy for t ≥ δ = 103

and ‖x‖ ≤ R = 1. If the tensor product in [28] were used, one would need about 700

for each direction in the Fourier domain and 7002 (i.e., about half million) Fourier
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nodes to approximate G2 in the same region. In any case, we have the following

spectral Fourier representation for G2:

G2(x, t) ≈ 1

4π2

NF∑
j=1

wje
−‖ξj‖2teiξj ·x. (5.31)

The Fourier representation of the double layer kernel can be obtained by replacing

t, x with t− τ , x− y, respectively, and then differentiating the resulting expression

with respect to y. We have

∂G2(x(t),y(τ); t− τ)

∂ny(τ)

≈ − i

4π2

NF∑
j=1

wje
−‖ξj‖2(t−τ)eiξj ·(x−y)

(
ξj · ny(τ)

)
. (5.32)

Substituting the above approximation into the history part of the double layer

potential, we obtain

DH [σ](x, t) =

∫ t−δ

0

∫
Γ(τ)

∂G2(x(t),y(τ); t− τ)

∂ny(τ)

σ(y(τ), τ)dsy(τ)dτ

≈ − i

4π2

NF∑
j=1

∫ t−δ

0

∫
Γ(τ)

wje
−‖ξj‖2(t−τ)eiξj ·(x−y)

(
ξj · ny(τ)

)
σ(y(τ), τ)dsy(τ)dτ

= − i

4π2

NF∑
j=1

wje
iξj ·x(t)

∫ t−δ

0

e−‖ξj‖
2(t−τ)Hj(τ)dτ,

(5.33)

where Hj is defined by the formula

Hj(τ) =

∫
Γ(τ)

e−iξj ·y(τ)
(
ξj · ny(τ)

)
σ(y(τ), τ)dsy(τ), j = 1, . . . , NF . (5.34)

The integrals in (5.34) can be discretized via the trapezoidal rule with spectral

accuracy. After that, all Hj (j = 1, . . . , NF ) can be evaluated via type-3 NUFFT

with O((NS + NF ) log(NS + NF )) cost. The temporal integral can be evaluated via

standard recurrence relation as in the stationary case with O(NF ) cost for each time

step. Finally, we may apply type-3 NUFFT again to evaluate the summation in (5.33)

with O((NS +NF ) log(NS +NF )) cost. The algorithm is spectrally accurate and has

O(NT (NS +NF ) log(NS +NF )) complexity for the whole simulation.
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5.3.3 The Full Algorithm

The algorithm is very similar to Algorithm 5.3 in Section 5.2 except that the history

part is approximated by the spectral Fourier approximation and accelerated using

NUFFT, and the local kernels need to be compressed at every time step. Local

kernels are still split into three parts Deq, Dalp, Dadj and they will be applied the

density σ separately during the time matching as in Algorithm 5.3.

Algorithm 5.4 2D Heat Solver Using Spectral Fourier Approximation

Require: Given the total discretization points NS, source points src, target points

targ, total number of time steps NT , time step dt in a kth order scheme. Solve

the density σ at all time steps and evaluate the solution U to the heat equation

at the final time for all target points.

1: for j = k to NT + 1 do . Solving the density σ

2: Compute the right hand side of the linear system b.

3: if j > k then

4: Evaluate the history part DH using NUFFT as in Subsection 5.3.2.

5: end if

6: Split the local kernels described in Subsection 5.3.1 into three parts

Deq, Dalp, Dadj. Compress Deq of all local kernels using rskelf.

7: Evaluate the local part DL(σ) using Algorithm 5.1.

8: Use GMRES to solve the linear system (5.23) and obtain σj.

9: end for

10: Evaluate the solution U at the final time for all target points.

In Algorithm 5.4, the computation cost for solving the density σ is

O(4NSNT + (c+ 1)NT (4NS + 30NS log 30NS + 18NS) +NT (NS +NF ) log(NS +NF )) ,
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where c is the average iterations of GMRES. The time complexity for evaluating the

solution U is

O(NT (NS +NF +Ntarg) log(NS +NF +Ntarg) +Ntarg +NS + 30NS log 30NS + 18NS) ,

where Ntarg is the total number of target points.

5.4 High-order 3D Heat Solver with Stationary Geometry Using SOE

Approximations

5.4.1 High-order Discretization of the Singular Integrals in the Local Part

For three dimensions, the local kernels in (5.11) become

DLk =



(x−y)·ny
4π

3
2 δ

1
2 |x−y|2

e−λ
2

+ (x−y)·ny
4π|x−y|3 [1− erf(λ)] , k = 0,

1
∆t

(x−y)·ny
8π|x−y| [1− erf(λ)] , k = 1,

1
∆t2

{ (x−y)·ny
√
δ

8π
3
2

e−λ
2 − (x−y)·ny |x−y|

16π
[1− erf(λ)]

}
, k = 2,

1
∆t3

{ (x−y)·nyδ
3
2

24π
3
2

e−λ
2 − (x−y)·nyδ

1
2 |x−y|2)

48π
3
2

e−λ
2
+ k = 3,

(x−y)·ny |x−y|3)

96π
e−λ

2
[1− erf(λ)]

}
(5.35)

where λ = |x−y|
2
√
δ

and erf(x) is the error function given by

erf(x) =
2√
π

∫ x

0

e−t
2

dt.

The error function erf(x) is an entire function and the Taylor expansion of erf(x) is

erf(x) =
2

π

∞∑
n=0

(−1)nx2n+1

n!(2n+ 1)
=

2

π
(x− x3

3
+
x5

10
− x7

42
+ · · · ) . (5.36)

In addition, it is well known that

(x− y) · ny = O(|x− y|2) . (5.37)
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From equations (5.36) and (5.37), we can see the local kernels have the 1
r

singularity

along the diagonal when x = y and the local part cannot be evaluated using regular

quadrature for discretizing the boundary surface.

Without loss of generality, the spatial integral of the local kernel can be

expressed as ∫
Γ

1

|x− y|
f(y) + g(y)dsy , (5.38)

where f(y) and g(y) are smooth over the boundary surface. Suppose the boundary

is an unit sphere and is parametrized by spherical coordinates (θ, φ). Assume

that x = (0, 0, 1) locates at the north pole of the spherical coordinates and y =

(sin θ cosφ, sin θ sinφ, cos θ). Then

|x− y| =
√

(1− cos θ)2 + sin2 θ =
√

2(1− cos θ) (5.39)

and ∫
Γ

1

|x− y|
f(y)dsy =

∫ 2π

0

∫ π

0

1√
2(1− cos θ)

f(θ, φ) sin θdθdφ

=

∫ 2π

0

∫ 1

−1

1√
2(1− z)

f(cos−1 z, φ)dzdφ ,

(5.40)

where z = cos θ. Similarly, we get∫
Γ

g(y)dsy =

∫ 2π

0

∫ 1

−1

g(cos−1 z, φ)dzdφ . (5.41)

Since φ can be discretized accurately with equispaced nodes {φk} in (0, 2π) with

φk =
2πk

2p+ 2
, (5.42)

we would focus on the integral with respect to z and simply the equation (5.38) as∫ 1

−1

1√
1− z

p(1)(z) + p(2)(z)dz , (5.43)
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where p(1)(z) and p(2)(z) are both polynomials. Let s =
√

(1−z)
2

, the above equation

(5.43) becomes ∫ 1

0

q(1)(s) + sq(2)(s)ds , (5.44)

where q(1)(s) and q(2)(s) are both polynomials. Note that the integral (5.44) does

not have singularities and can be discretized using the classical Gauss-Legendre

quadrature. Thus, the quadrature for θ in the original spatial integral (5.38) can be

obtained by mapping back the variables with the quadrature nodes and weights for the

integral (5.44). For the boundary surface that is smooth and topologically equivalent

to a sphere, we can apply the similar techniques as in [25]. Furthermore, if the target

point does not lie on the north pole, we may rotate the quadrature grid using the

algorithm in [24]. The quadrature is spectrally accurate and the computation cost for

the local kernels at each time step is O(p4 log p), which leads to O(NTp
4 log p) work

for the entire simulation.

Remark 5.4. The above algorithm is suitable for the case where there are many

small objects and each small object may be discretized by a small number p so that

the overall cost is O(Nobjp
4 log p) as in, say, [64]. When there are few objects which

need large p for each object, one may switch to other high-order discretization schemes

that are more amenable to fast algorithms. For instance, the FMM accelerated QBX

(Quadrature by Expansion) scheme in [41] can be used to discretize the spatial integral

and accelerate the evaluation of the resulting discrete summation. The algorithm will

be high-order and of optimal complexity.

5.4.2 Evaluation of the History Part

The heat kernels are approximated again by sum-of-exponentials. As discussed in the

2D case, even though each history kernel is not smooth, what we need is the whole

history part whose kernel is actually smooth. Thus we may use standard quadratures
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for smooth integrals to discretize each spatial integral in the history part. There is

no need to use the expensive integrator as in the local part. The total computational

cost is O(NTNSNH), where NT is the total number of time steps, NS is the total

number of discretization points in space, and NH is the number of history modes.

The whole algorithm is very similar to the 2D algorithm and thus we omit the details

here.

5.4.3 The Full Algorithm

The algorithm is similar to Algorithm 5.3 where we approximate the history part by

sum-of-exponentials and evaluate it using the high-order quadrature. However, the

local part is treated very differently since we need to rotate the spherical grid for

targeting points that do not locate at the north pole to evaluate the local part with

the quadrature described in Subsection 5.4.1.

Algorithm 5.5 High-order 3D Heat Solver Using SOE

Require: Given the degree of the spherical harmonic expansion p, source points src,

target points targ, total number of time steps NT , time step dt in a kth order

scheme. Solve the density σ at all time steps and evaluate the solution U to the

heat equation at the final time for all target points.

1: for j = k to NT + 1 do . Solving the density σ

2: Compute the right hand side of the linear system b.

3: if j > k then

4: Evaluate the history part DH similar to Algorithm 5.2.

5: end if

6: Evaluate the local part DL(σ) as in Subsection 5.4.1.

7: Use GMRES to solve the linear system (5.23) and obtain σj.

8: end for

9: Evaluate the solution U at the final time for all target points.
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In Algorithm 5.5, the time complexity for solving the density σ is

O(NTNobjp
4 log p+NTNSNH) ,

where Nobj is the total number of objects, O(p2) is the number of discretization points

for the boundary of each object, NS = Nobjp
2 is the number of discretization points

in space, NT is the total number of time steps.
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CHAPTER 6

NUMERICAL RESULTS

In this chapter, we illustrate the performance of the three algorithms outlined in the

preceding chapter via extensive numerical examples. We have implemented 2nd, 3rd,

and 4th order schemes in time (defined by the number of terms taken in the local

Taylor expansion of σ in Chapter 5), with numerical experiments carried out using

the fourth order version with OpenMP.

The following notations are used in the examples shown subsequently:

• ∆t: time step;

• NT : total number of time steps;

• NS: total number of discretization points in space;

• NF : total number of Fourier modes;

• Nθ: total number of discretization points in the θ direction;

• Nφ: total number of discretization points in the φ direction;

• E: relative L2 error of the numerical solution at the final time;

• T̄Lf : average factorization time of all local kernels in seconds;

• T̄La : average application time of all compressed local kernels in seconds;

• T̄LD: average direct computation time of all local kernels in seconds;

• T̄LF : average computation time with fast algorithms of all local kernels in

seconds;

• T̄Hf : average factorization time of all history kernels in seconds;
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• T̄Ha : average application time of all compressed history kernels in seconds;

• T̄HD : average direct computation time of all history kernels in seconds;

• T̄HF : average computation time with fast algorithms of all history kernels in

seconds;

• THD : total evaluation time for the history part directly in seconds;

• T : total simulation time in seconds;

• Tm: total matching time in seconds;

• Tf : total factorization time in seconds.

• THfft: total evaluation time for the history part using NUFFT in seconds.

It is worth noting that direct computations in the examples below involve

constructing NS × NS matrices explicitly, which is extremely slow during the

simulations when NS is very large. The available computer memory might also be

insufficient for very large NS. Therefore, we only build 20×NS matrices and record

the time to. And the direct computation time for NS ×NS matrices is estimated by

to ∗NS/20.

6.1 2D Heat Solver Using SOE Approximations

Example 1: Exterior Dirichlet Problem with the Boundary Consisting of

a 32-gram.

We consider the exterior Dirichlet problem with the boundary consisting of a

32-gram shown in Figure 6.1. Here the boundary curve is roughly of size R = 4 and

the center locates at (0, 0).

We generate boundary data by placing heat sources inside the boundary and test

the accuracy of our numerical solution by comparing it with the analytical solution

at 20 target points on a circle of radius 6.
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Figure 6.1 32-gram boundary curve for Example 1.

We first check the spatial accuracy of our algorithm. The table on the left

panel of Figure 6.2 lists the relative L2 error versus the total number of discretization

points NS in space; and the figure on the right panel plots out these data points.

Here NT = 80 and dt = 0.0125 are fixed throughout the simulation and the error due

to temporal discretization is negligible. We observe that the algorithm has very high

order convergence rate in space.

NS 125 250 500 1000

E 3.37e-2 1.35e-4 4.02e-6 2.48e-9
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Figure 6.2 Relative L2 errors versus NS for Example 1. Here NT = 80 and dt =
0.0125 are fixed. The figure on the right uses logarithmic scale for both axes.
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Next, we check the convergence order in time. The table on the left panel of

Figure 6.3 lists the time step dt, the relative L2 error E, and the ratio r of the relative

errors of two consecutive runs. For all these simulations, NS is set to 6250 so that the

error due to spatial discretization is negligible. The figure on the right panel plots

out E versus dt and a curve with the ideal fourth order scheme. We observe the

convergence rate is roughly consistent with the fourth order accuracy (Slightly better

because of the smoothing behavior of the heat equation).

dt E r

2.00e-1 1.07e-2

1.00e-1 6.65e-4 16.1

5.00e-2 1.76e-5 37.5

2.50e-2 2.73e-7 64.7

1.25e-2 2.47e-9 110
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Figure 6.3 Convergence order in time for Example 1. The figure on the right is
log-log plot for dt and E. The red solid line is the numerical results and the blue
dashed line represents the relation of dt and E in an ideal 4th order scheme.

We now check the complexity of our algorithm with respect to the spatial

variable. Here we fix NT = 80 and dt = 0.0125. In Table 6.1, the first column lists

the total number of discretization points in space; the second column lists the average

factorization time for the local kernels; the third column lists the average apply time

for the local kernels; the fourth column lists the average time for the matrix-vector

product of local kernels by direct computation; the fifth, sixth, and seventh columns

list the corresponding values for the history kernels; the eighth column lists the total

computational time of our algorithm; and the last column lists the ratio of T of two

consecutive runs.
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Table 6.1 Timing Results with Respect to the Spatial Variable

NS T̄Lf T̄La T̄LD T̄Hf T̄Ha T̄HD T r

6250 2.10 4.11e-3 1.32 3.36 1.15e-2 1.54 67.0

12500 3.05 6.73e-3 5.31 4.03 1.69e-2 6.19 120 1.79

25000 4.32 1.61e-2 23.1 4.78 2.73e-2 24.7 208 1.73

50000 6.55 3.69e-2 106 5.95 6.92e-2 144 390 1.87

100000 10.8 8.29e-2 558 8.11 1.36e-1 581 804 2.06

The figure on the left panel of Figure 6.4 shows the total computational time

T versus NS, while that on the right panel shows the factorization time and direct

computational time for both local and history kernels.
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Figure 6.4 Timing results with respect to the spatial variable for Example 1. In
the left figure, the red solid line is numerical results of NS and T . The blue dashed
line represents O(NS) scaling. The right figure shows the log-log plot of NS and T̄LD,
T̄HD , T̄LF and T̄HF , including reference scalings (black dashed lines) of O(N2) and O(N)
(from top to bottom).

Both Table 6.1 and Figure 6.4 demonstrate clearly that while the direct

calculation clearly exhibits quadratic complexity, our algorithm has linear complexity.

Finally, we examine the complexity of our algorithm with respect to the

temporal variable. The table on the left panel of Figure 6.5 lists the time step size
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dt, the total number of time steps NT , and the total matching time Tm with fixed

NS, while the figure on the right panel shows the total factorization time, the total

marching time versus dt. Since the geometry is stationary, the factorization needs to

be carried out once and its cost is thus independent of NT . On the other hand, we

observe that the matching time is almost linear with respect to time steps.

dt NT Tm

1.00e-1 16 9.72

5.00e-2 26 14.6

2.50e-2 46 24.5

1.25e-2 86 43.8

6.25e-3 166 82.4
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Figure 6.5 Timing results with respect to the temporal variable for Example 1.
NS = 6250 in all simulations. The total factorization time Tf = 21.9 is the same
for all different time steps. In the right figure, the red line represents the total
matching time; the green line represents the total factorization time; the blue dashed
line represents O(N) scaling.

Example 2: Exterior Dirichlet Problem with the Boundary Consisting

of Nine Circles.

We consider the exterior Dirichlet problem with the boundary consisting of nine

circles shown in Figure 6.6. Here the radius of each circle is 2 and the centers of the

circles locate at

(−6, 6), (0, 6), (6, 6), (−6, 0), (0, 0), (6, 0), (−6,−6), (0,−6), (6,−6).

We generate boundary data by placing heat sources inside the nine circles and test

the accuracy of our numerical solution by comparing it with the analytical solution
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Figure 6.6 Nine-circle boundary curve for Example 2.

at 20 target points on a circle of radius 10. Moreover, refer to Example 1 for all

notations and explanations for the figures and tables below.

From Figure 6.7, we observe that the algorithm has very high order convergence

rate in space for Example 2. Figure 6.8 shows the convergence order is very close to

the theoretical value for Example 2. Both Table 6.2 and Figure 6.10 demonstrate

clearly that while the direct calculation clearly exhibits quadratic complexity, our

algorithm has linear complexity for Example 2. Finally, from Figure 6.10, we observe

that the matching time is almost linear with respect to time steps for Example 2.

Table 6.2 Timing Results with Respect to the Spatial Variable

NS T̄Lf T̄La T̄LD T̄Hf T̄Ha T̄HD T r

6750 0.69 2.63e-3 1.37 1.01 4.67e-3 1.96 21.0

13500 1.31 6.48e-3 5.32 1.36 8.37e-3 8.24 44.8 2.03

27000 2.66 2.05e-2 26.8 1.97 1.71e-2 31.2 88.6 1.97

54000 5.04 2.75e-2 99.5 3.11 3.03e-2 140 174 1.96

108000 9.71 5.05e-2 433 5.33 6.11e-2 544 363 2.08
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Figure 6.7 Relative L2 errors versus NS for Example 2. Here NT = 80 and dt =
0.0125 are fixed. The figure on the right uses logarithmic scale for both axes.
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Figure 6.8 Convergence order in time for Example 2. The figure on the right is
log-log plot for dt and E. NS = 54000 is fixed. The red solid line is the numerical
results and the blue dashed line represents the relation of dt and E in an ideal 4th
order scheme.
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Figure 6.9 Timing results with respect to the spatial variable for Example 2. In
the left figure, the red solid line is numerical results of NS and T . The blue dashed
line represents O(NS) scaling. The right figure shows the log-log plot of NS and T̄LD,
T̄HD , T̄LF and T̄HF , including reference scalings (black dashed lines) of O(N2) and O(N)
(from top to bottom).

dt NT Tm

1.00e-1 16 28.1

5.00e-2 26 44.6

2.50e-2 46 73.1

1.25e-2 86 137

6.25e-3 166 279
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Figure 6.10 Timing results with respect to the temporal variable for Example 2.
NS = 54000 in all simulations. The total factorization time Tf = 31 is the same for
all different time steps. In the right figure, the red line represents the total matching
time; the green line represents the total factorization time; the blue dashed line
represents O(N) scaling.
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Example 3: Interior Dirichlet Problem with the Boundary Enclosed

by One Outer Circle and Sixteen Inner Hexagrams.

We consider the interior Dirichlet problem with the boundary enclosed by one

outer circle and sixteen inner hexagrams shown in Figure 6.11. Here the radius of

the outer circle is 5.5 and the center of the circle locates at (0, 0). Each hexagram is

roughly of the size R = 0.5. The centers of the hexagrams are

(−3, 3), (−1.5, 3), (1.5, 3), (3, 3), (−3, 1.5), (−1.5, 1.5), (1.5, 1.5), (3, 1.5),

(−3,−1.5), (−1.5,−1.5), (1.5,−1.5), (3,−1.5), (−3,−3), (−1.5,−3), (1.5,−3), (3,−3).

Figure 6.11 Boundary enclosed by one circle and sixteen hexagrams for Example
3.

We generate boundary data by placing heat sources outside the boundary region

on a circle of radius 7.5 and test the accuracy of our numerical solution by comparing

it with the analytical solution at 30 target points. The first ten target points are on

a circle of radius 0.2 with center (0, 4). The second ten target points are on a circle

of radius 0.2 with center (0, 0). The last ten target points are on a circle of radius 0.2
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with center (0,−4). Finally, refer to Example 1 for all notations and explanations for

the figures and tables below.

From Figure 6.12, we observe that the algorithm has very high order convergence

rate in space for Example 3. Figure 6.13 shows that although the ratio r fluctuates

somewhat widely, the overall convergence order is actually close to the theoretical

value (Slightly better because of the smoothing behavior of the heat equation) for

Example 3. Both Table 6.3 and Figure 6.14 demonstrate clearly that while the direct

calculation clearly exhibits quadratic complexity, our algorithm has linear complexity.

Finally, from Figure 6.15, we observe that the matching time is almost linear with

respect to time steps for Example 3.
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Figure 6.12 Relative L2 errors versus NS for Example 3. Here NT = 80 and
dt = 0.0125 are fixed. The figure on the right uses logarithmic scale for both axes.

Example 4: Interior Dirichlet Problem with the Boundary Enclosed

by One Outer Circle and Sixty-four Inner Ellipses.

We consider the interior Dirichlet problem with the boundary enclosed by one

outer circle and sixty-four inner ellipses shown in Figure 6.16. Here the radius of the

circle is 6.5 and the center of the circle locates at (0, 0). The major axis a and minor

axis b of each ellipse are 0.3 and 0.2, respectively. The centers (c1, c2) of the ellipses

are all permutations chosen from ±4,±3,±2,±1.
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dt E r

2.00e-1 6.93e-3

1.00e-1 4.69e-4 14.7

5.00e-2 4.11e-5 11.4

2.50e-2 1.49e-7 274

1.25e-2 6.52e-9 22.9
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Figure 6.13 Convergence order in time for Example 3. The figure on the right is
log-log plot for dt and E. NS = 12750 is fixed. The red solid line is the numerical
results and the blue dashed line represents the relation of dt and E in an ideal 4th
order scheme.

0 2 4 6 8 10 12

x 10
4

0

100

200

300

400

500

600

700

800

T
im

e

N
S

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

N
S

T
im

e

 

 

T̄
L

D

T̄
H

D

T̄
L

F

T̄
H

F

Figure 6.14 Timing results with respect to the spatial variable for Example 3. In
the left figure, the red solid line is numerical results of NS and T . The blue dashed
line represents O(NS) scaling. The right figure shows the log-log plot of NS and T̄LD,
T̄HD , T̄LF and T̄HF , including reference scalings (black dashed lines) of O(N2) and O(N)
(from top to bottom).
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dt NT Tm

1.00e-1 16 11.8

5.00e-2 26 17.4

2.50e-2 46 29.1

1.25e-2 86 49.3

6.25e-3 166 84.1
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Figure 6.15 Timing results with respect to the temporal variable for Example
3. NS = 12750 in all simulations. The total factorization time Tf = 106.4 is the
same for all different time steps. In the right figure, the red line represents the total
matching time; the green line represents the total factorization time; the blue dashed
line represents O(N) scaling.

Figure 6.16 Boundary enclosed by one outer circle and sixty-four inner ellipses for
Example 4.
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Table 6.3 Timing Results with Respect to the Spatial Variable

NS T̄Lf T̄La T̄LD T̄Hf T̄Ha T̄HD T r

6350 6.17 7.07e-3 1.33 11.0 1.43e-2 1.56 104

12750 8.72 1.19e-2 5.35 13.0 2.06e-2 6.41 143 1.37

25500 11.3 2.37e-2 22.0 14.6 2.88e-2 25.7 191 1.33

51000 14.9 6.57e-2 100 15.9 4.90e-2 144 286 1.49

102000 20.3 7.65e-2 589 18.5 9.64e-2 599 476 1.66

We generate boundary data by placing heat sources outside the boundary region

on a circle of radius 8.5 and test the accuracy of our numerical solution by comparing

it with the analytical solution at 30 target points. The first ten target points are on

a circle of radius 0.2 with center (0, 5). The second ten target points are on a circle

of radius 0.2 with center (0, 0). The last ten target points are on a circle of radius 0.2

with center (0,−5). Finally, refer to Example 1 for all notations and explanations for

the figures and tables below.

From Figure 6.17, we observe that the algorithm has very high order convergence

rate in space for Example 4. Figure 6.18 shows the overall convergence order is

actually close to the theoretical value for Example 4. Both Table 6.4 and Figure

6.19 demonstrate clearly that while the direct calculation clearly exhibits quadratic

complexity, our algorithm has linear complexity for Example 4. Finally, from Figure

6.20, we observe that the matching time is almost linear with respect to time steps

for Example 4.

6.2 2D Heat Solver Using the Spectral Fourier Approximation

Example 5: Interior Dirichlet Problem with the Boundary Enclosed by

One Outer Circle and One Inner Moving Decagram.
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Figure 6.17 Relative L2 errors versus NS for Example 4. Here NT = 80 and
dt = 0.0125 are fixed. The figure on the right uses logarithmic scale for both axes.
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Figure 6.18 Convergence order in time for Example 4. The figure on the right is
log-log plot for dt and E. NS = 26000 is fixed. The red solid line is the numerical
results and the blue dashed line represents the relation of dt and E in an ideal 4th
order scheme.
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Figure 6.19 Timing results with respect to the spatial variable for Example 4. In
the left figure, the red solid line is numerical results of NS and T . The blue dashed
line represents O(NS) scaling. The right figure shows the log-log plot of NS and T̄LD,
T̄HD , T̄LF and T̄HF , including reference scalings (black dashed lines) of O(N2) and O(N)
(from top to bottom).

dt NT Tm

1.00e-1 16 17.8

5.00e-2 26 26.1

2.50e-2 46 43.6

1.25e-2 86 74.8

6.25e-3 166 141
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Figure 6.20 Timing results with respect to the temporal variable for Example
4. NS = 26000 in all simulations. The total factorization time Tf = 112.6 is the
same for all different time steps. In the right figure, the red line represents the total
matching time; the green line represents the total factorization time; the blue dashed
line represents O(N) scaling.
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Table 6.4 Timing Results with Respect to the Spatial Variable

NS T̄Lf T̄La T̄LD T̄Hf T̄Ha T̄HD T r

6500 4.13 5.52e-3 1.32 9.66 1.39e-2 1.68 95.8

13000 5.69 7.92e-3 5.34 11.4 1.82e-2 6.84 124 1.29

26000 7.90 2.50e-2 22.2 13.2 2.61e-2 27.2 176 1.41

52000 11.0 5.64e-2 97.2 14.8 5.21e-2 168 268 1.52

104000 16.1 6.87e-2 592 17.3 9.08e-2 641 444 1.65

We consider the interior Dirichlet problem with the boundary enclosed by one

outer circle and one inner moving decagram shown in Figure 6.21. Here, the radius of

the outer circle is 0.7 and the centers of the circle and decagram are both at (0, 0) at

the initial time. The size of the inner decagram is roughly 0.1 and it moves towards

the positive y-axis with the velocity of 0.01. At the final time, the center of the

decagram is at (0, 0.1).

Figure 6.21 Boundary enclosed by one outer circle and one inner moving decagram
for Example 5.

We generate boundary data by placing heat sources outside the boundary region

on a circle of radius 1 and test the accuracy of our numerical solution by comparing it
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with the analytical solution at 20 target points on a moving circle inside the boundary

region. In addition, refer to Example 1 for all notations and explanations for the

figures and tables below.

From Figure 6.22, we observe that the algorithm has very high order convergence

rate in space for Example 5. Figure 6.23 shows the overall convergence order is

actually close to the theoretical value for Example 5.
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Figure 6.22 Relative L2 errors versus NS for Example 5. Here NT = 80 and
dt = 0.0125 are fixed. The figure on the right uses logarithmic scale for both axes.
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Figure 6.23 Convergence order in time for Example 5. The figure on the right is
log-log plot for dt and E. NS = 20000 is fixed. The red solid line is the numerical
results and the blue dashed line represents the relation of dt and E in an ideal 4th
order scheme.
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In Table 6.5, the fifth column lists the time for evaluating the history part using

NUFFT and the sixth column lists the time for evaluating the history part directly.

The meanings of all other columns refer to Example 1. The figure on the left panel of

Figure 6.24 shows the total computational time T versus NS, while that on the right

panel shows the factorization time and direct computational time for the local kernel

and the time for evaluating the history part with and without NUFFT. Note that

the complexity of evaluating the history part without NUFFT is O(NFNS), which

is linear in terms of NS with fixed NF . With NUFFT, the computation cost for the

history part is O((NF +NS) log(NS +NF )). Moreover, NF = 21600 in the numerical

example and the computation involving Fourier modes would dominate for evaluating

the history part using NUFFT when NS is much smaller than NF . Both Table 6.5

and Figure 6.24 demonstrate clearly that while the direct calculation of local kernels

clearly exhibits quadratic complexity, our algorithm has linear complexity. They also

show NUFFT has significantly reduced the evaluation time for the history part.

Table 6.5 Timing Results with Respect to the Spatial Variable

NS T̄Lf T̄La T̄LD THfft THD T r

2500 1.30 3.16e-3 0.33 0.32 11.8 179.6

5000 1.92 4.99e-3 1.30 0.35 23.4 268.5 1.49

10000 4.39 8.99e-3 6.71 0.40 47.4 413.7 1.54

20000 5.14 2.26e-2 24.7 0.51 93.9 659.6 1.59

40000 5.84 3.46e-2 96.8 0.73 195 1109 1.68

Finally, from Figure 6.25, we observe that the computational time is almost

linear with respect to time steps for Example 5.

Example 6: Interior Dirichlet Problem with the Boundary Enclosed

by One Outer Circle and Sixteen Inner Expanding Circles.
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Figure 6.24 Timing results with respect to the spatial variable for Example 5. In
the left figure, the red solid line is numerical results of NS and T . The blue dashed
line represents O(NS) scaling. The right figure shows the log-log plot of NS and T̄LD,
THD , T̄LF and THfft, including reference scalings (black dashed lines) of O(N2) and O(N)
(from top to bottom).

dt NT T

1.00e-1 16 25.2

5.00e-2 26 42.4

2.50e-2 46 80.3

1.25e-2 86 153

6.25e-3 166 308
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Figure 6.25 Timing results with respect to the temporal variable for Example 5.
NS = 2000 in all simulations. In the right figure, the red line represents the total
computational time; the blue dashed line represents O(N) scaling.
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We consider the interior Dirichlet problem with the boundary enclosed by one

outer circle and sixteen inner expanding circles shown in Figure 6.26. Here, the radius

of the outer circle is 0.5 and the center of the outer circle locates at (0, 0). The radius

of each inner circle is 0.01 at the initial time and the radius is expanding at the speed

of 0.001. At the final time, the radius of each inner circle is 0.02. The centers of the

inner circles are

(−0.25, 0.25), (−0.125, 0.25), (0.125, 0.25), (0.25, 0.25),

(−0.25, 0.125), (−0.125, 0.125), (0.125, 0.125), (0.25, 0.125),

(−0.25,−0.125), (−0.125,−0.125), (0.125,−0.125), (0.25,−0.125),

(−0.25,−0.25), (−0.125,−0.25), (0.125,−0.25), (0.25,−0.25).

Figure 6.26 Boundary enclosed by one circle and sixteen inner expanding circles
for Example 6.

We generate boundary data by placing heat sources outside the boundary region

on a circle of radius 1 and test the accuracy of our numerical solution by comparing
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it with the analytical solution at 20 target points on an expanding circle of radius

0.02 with center at the origin and expanding velocity of 0.001. In addition, refer to

Example 1 and Example 5 for all notations and explanations for the figures and tables

below.

From Figure 6.27, we observe that the algorithm has very high order convergence

rate in space for Example 6. Figure 6.28 shows the overall convergence order is

actually close to the theoretical value for Example 6. Both Table 6.6 and Figure 6.29

demonstrate clearly that while the direct calculation of local kernels clearly exhibits

quadratic complexity, our algorithm has linear complexity for Example 6. They

also show NUFFT has significantly reduced the evaluation time for the history part.

Finally, from Figure 6.30, we observe that the computational time is almost linear

with respect to time steps for Example 6.
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Figure 6.27 Relative L2 errors versus NS for Example 6. Here NT = 80 and
dt = 0.0125 are fixed. The figure on the right uses logarithmic scale for both axes.

Example 7: Interior Dirichlet Problem with the Boundary Enclosed

by One Outer Circle and Thirty-six Inner Shrinking Circles.

We consider the interior Dirichlet problem with the boundary enclosed by one

outer circle and thirty-six inner shrinking circles shown in Figure 6.31. Here, the

radius of the outer circle is 0.5 and the center of the outer circle locates at (0, 0). The
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dt E r
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Figure 6.28 Convergence order in time for Example 6. The figure on the right is
log-log plot for dt and E. NS = 6800 is fixed. The red solid line is the numerical
results and the blue dashed line represents the relation of dt and E in an ideal 4th
order scheme.
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Figure 6.29 Timing results with respect to the spatial variable for Example 6. In
the left figure, the red solid line is numerical results of NS and T . The blue dashed
line represents O(NS) scaling. The right figure shows the log-log plot of NS and T̄LD,
THD , T̄LF and THfft, including reference scalings (black dashed lines) of O(N2) and O(N)
(from top to bottom).
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Table 6.6 Timing Results with Respect to the Spatial Variable

NS T̄Lf T̄La T̄LD THfft THD T r

3400 1.15 1.87e-3 0.56 0.30 14.4 157.2

6800 1.92 3.27e-3 2.24 0.33 27.9 242.3 1.54

13600 3.07 5.93e-3 9.12 0.40 58.7 390.3 1.61

27200 5.12 1.13e-2 39.2 0.55 124 699.0 1.79

54400 8.98 2.74e-2 194 0.84 240 1208 1.72

dt NT T

1.00e-1 16 42.3

5.00e-2 26 72.0

2.50e-2 46 131

1.25e-2 86 247

6.25e-3 166 482
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Figure 6.30 Timing results with respect to the temporal variable for Example 6.
NS = 6800 in all simulations. In the right figure, the red line represents the total
computational time; the blue dashed line represents O(N) scaling.

radius of each inner circle is 0.03 at the initial time and the radius is shrinking at the

speed of 0.001. At the final time, the radius of each inner circle is 0.02. The centers

of the inner circles are all permutations chosen from ±0.3,±0.2,±0.1.

We generate boundary data by placing heat sources outside the boundary region

on a circle of radius 1 and test the accuracy of our numerical solution by comparing

it with the analytical solution at 20 target points on a shrinking circle of radius 0.03
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Figure 6.31 Boundary enclosed by one outer circle and thirty-six inner shrinking
circles for Example 7.

with center at the origin and shrinking velocity of 0.001. In addition, refer to Example

1 and Example 5 for all notations and explanations for the figures and tables below.

From Figure 6.32, we observe that the algorithm has very high order convergence

rate in space for Example 7. Figure 6.33 shows the overall convergence order is

actually close to the theoretical value for Example 7. Both Table 6.7 and Figure 6.34

demonstrate clearly that while the direct calculation of local kernels clearly exhibits

quadratic complexity, our algorithm has linear complexity for Example 7. They

also show NUFFT has significantly reduced the evaluation time for the history part.

Finally, from Figure 6.35, we observe that the computational time is almost linear

with respect to time steps for Example 7.

Example 8: Interior Dirichlet Problem with the Boundary Enclosed

by One Outer Circle and Sixty-four Inner Oscillating Circles.

We consider the interior Dirichlet problem with the boundary enclosed by one

outer circle and sixty-four inner oscillating circles shown in Figure 6.36. Here, the

radius of the outer circle is 0.5 and the center of the outer circle locates at (0, 0). The

radius of each inner circle is 0.01. The centers of the inner circle are all permutations
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Figure 6.32 Relative L2 errors versus NS for Example 7. Here NT = 80 and
dt = 0.0125 are fixed. The figure on the right uses logarithmic scale for both axes.
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Figure 6.33 Convergence order in time for Example 7. The figure on the right is
log-log plot for dt and E. NS = 7400 is fixed. The red solid line is the numerical
results and the blue dashed line represents the relation of dt and E in an ideal 4th
order scheme.

80



0 0.5 1 1.5 2 2.5 3

x 10
4

0

500

1000

1500

2000

T
im

e

N
S

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

10
3

N
S

T
im

e

 

 

T̄ L
D

T H
D

T̄ L
F

T H
f f t

Figure 6.34 Timing results with respect to the spatial variable for Example 7. In
the left figure, the red solid line is numerical results of NS and T . The blue dashed
line represents O(NS) scaling. The right figure shows the log-log plot of NS and T̄LD,
THD , T̄LF and THfft, including reference scalings (black dashed lines) of O(N2) and O(N)
(from top to bottom).

dt NT T

1.00e-1 16 81.4

5.00e-2 26 128

2.50e-2 46 281

1.25e-2 86 535

6.25e-3 166 941
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Figure 6.35 Timing results with respect to the temporal variable for Example 7.
NS = 7400 in all simulations. In the right figure, the red line represents the total
computational time; the blue dashed line represents O(N) scaling.
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Table 6.7 Timing Results with Respect to the Spatial Variable

NS T̄Lf T̄La T̄LD THfft THD T r

1850 2.19 4.16e-3 0.17 0.29 8.69 208.1

3700 3.67 8.16e-3 0.71 0.32 17.7 388.8 1.86

7400 4.97 9.99e-3 2.82 0.35 42.5 542.5 1.39

14800 6.98 1.86e-2 11.9 0.43 65.1 744.4 1.37

29600 9.78 3.09e-2 49.2 0.59 149 1035 1.39

chosen from ±0.25,±0.185,±0.125,±0.0625 at the initial time and then changed to

(c1 + v ∗ cos(τ), c2 + v ∗ sin(τ)), where τ ∈ (0, 10] is the matching time, v = 0.001 and

(c1, c2) is the center of each inner circle at the initial time.

Figure 6.36 Boundary enclosed by one outer circle and sixty-four inner oscillating
circles for Example 8.

We generate boundary data by placing heat sources outside the boundary region

on a circle of radius 1 and test the accuracy of our numerical solution by comparing it

with the analytical solution at 20 target points on an oscillating circle of radius 0.03.
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In addition, refer to Example 1 and Example 5 for all notations and explanations for

the figures and tables below.

From Figure 6.37, we observe that the algorithm has very high order convergence

rate in space for Example 8. Figure 6.38 shows the overall convergence order is

actually close to the theoretical value for Example 8. Both Table 6.8 and Figure 6.39

demonstrate clearly that while the direct calculation of local kernels clearly exhibits

quadratic complexity, our algorithm has linear complexity for Example 8. They

also show NUFFT has significantly reduced the evaluation time for the history part.

Finally, from Figure 6.40, we observe that the computational time is almost linear

with respect to time steps for Example 8.
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Figure 6.37 Relative L2 errors versus NS for Example 8. Here NT = 80 and
dt = 0.0125 are fixed. The figure on the right uses logarithmic scale for both axes.

6.3 3D Heat Solver Using SOE Approximations

Example 9: Interior Dirichlet Problem with the W-shape Boundary

We consider the interior Dirichlet problem with the w-shape boundary shown

in Figure 6.41. Here the boundary surface is roughly of size R = 1.

We generate boundary data by placing heat sources outside the boundary surface

and test the accuracy of our numerical solution by comparing it with the analytical
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dt E r

2.00e-1 1.58e-4

1.00e-1 3.68e-6 42.9

5.00e-2 6.83e-8 53.9

2.50e-2 7.76e-9 8.79

1.25e-2 1.29e-9 6.01
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Figure 6.38 Convergence order in time for Example 8. The figure on the right is
log-log plot for dt and E. NS = 6500 is fixed. The red solid line is the numerical
results and the blue dashed line represents the relation of dt and E in an ideal 4th
order scheme.
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Figure 6.39 Timing results with respect to the spatial variable for Example 8. In
the left figure, the red solid line is numerical results of NS and T . The blue dashed
line represents O(NS) scaling. The right figure shows the log-log plot of NS and T̄LD,
THD , T̄LF and THfft, including reference scalings (black dashed lines) of O(N2) and O(N)
(from top to bottom).
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dt NT T

1.00e-1 16 211.6

5.00e-2 26 365.6

2.50e-2 46 681.0

1.25e-2 86 1307

6.25e-3 166 2622
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Figure 6.40 Timing results with respect to the temporal variable for Example 8.
NS = 7400 in all simulations. In the right figure, the red line represents the total
computational time; the blue dashed line represents O(N) scaling.

Figure 6.41 W-shape boundary surface for Example 9.
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Table 6.8 Timing Results with Respect to the Spatial Variable

NS T̄Lf T̄La T̄LD THfft THD T r

3250 6.42 9.16e-3 0.52 0.30 15.2 688.7

6500 11.9 1.66e-2 2.06 0.33 29.8 1310 1.90

13000 17.7 3.39e-2 8.39 0.41 66.2 1925 1.46

26000 24.4 4.96e-2 36.2 0.55 120 2696 1.40

52000 32.5 7.64e-2 173 0.82 265 3788 1.40

solution at 25 target points inside the boundary surface. In addition, refer to Example

1 for all notations and explanations for the figures and tables below.

Figure 6.42 shows the algorithm has very high order convergence rate in space for

Example 9. From Figure 6.43, we observe the convergence rate is roughly consistent

with fourth order accuracy for Example 9. Figure 6.44 clearly demonstrates the

matching time is almost linear with respect to time steps for Example 9.

Nθ Nφ NS E

12 24 288 7.39e-2

48 96 4608 7.08e-4

84 180 15120 5.38e-6

120 240 28800 5.47e-8

10
2

10
3

10
4

10
5

10
−8

10
−6

10
−4

10
−2

10
0

N
S

E
rr

o
r

Figure 6.42 Relative L2 errors versus NS for Example 9. Here NT = 160 and
dt = 0.00625 are fixed. The figure on the right uses logarithmic scale for both axes.

Example 10: Interior Dirichlet Problem with the Bowl Boundary
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dt E r

1.00e-1 1.18e-4
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Figure 6.43 Convergence order in time for Example 9. The figure on the right is
log-log plot for dt and E. NS = 35640 is fixed. The red solid line is the numerical
results and the blue dashed line represents the relation of dt and E in an ideal 4th
order scheme.
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Figure 6.44 Timing results with respect to the temporal variable for Example 9.
NS = 23328 (Nθ = 108 and Nφ = 216) in all simulations. In the right figure, the
red line represents the total matching time and the blue dashed line represents O(N)
scaling.
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We consider the interior Dirichlet problem with the bowl boundary shown in

Figure 6.45. Here the boundary surface is roughly of size R = 1.

Figure 6.45 Bowl boundary surface for Example 10.

We generate boundary data by placing heat sources outside the boundary surface

and test the accuracy of our numerical solution by comparing it with the analytical

solution at 16 target points inside the boundary surface. In addition, refer to Example

1 for all notations and explanations for the figures and tables below.

From Figure 6.46, we observe that the algorithm has very high order convergence

rate in space for Example 10. Figure 6.47 shows the convergence rate is roughly

consistent with the theoretical value for Example 10. Finally, Figure 6.48 clearly

demonstrates the matching time is almost linear with respect to time steps for

Example 10.

Example 11: Interior Dirichlet Problem with the Starfish Boundary

We consider the interior Dirichlet problem with the starfish boundary shown in

Figure 6.49. Here the boundary surface is roughly of size R = 2.
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Figure 6.46 Relative L2 errors versus NS for Example 10. Here NT = 160 and
dt = 0.00625 are fixed. The figure on the right uses logarithmic scale for both axes.
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Figure 6.47 Convergence order in time for Example 10. The figure on the right is
log-log plot for dt and E. NS = 40320 is fixed. The red solid line is the numerical
results and the blue dashed line represents the relation of dt and E in an ideal 4th
order scheme.
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dt NT Tm
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Figure 6.48 Timing results with respect to the temporal variable for Example 10.
NS = 15120 (Nθ = 84 and Nφ = 180) in all simulations. In the right figure, the
red line represents the total matching time and the blue dashed line represents O(N)
scaling.

Figure 6.49 Starfish boundary surface for Example 11.
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We generate boundary data by placing heat sources outside the boundary surface

and test the accuracy of our numerical solution by comparing it with the analytical

solution at 16 target points inside the boundary surface. In addition, refer to Example

1 for all notations and explanations for the figures and tables below.

From Figure 6.50, we observe that the algorithm has very high order convergence

rate in space for Example 11. Figure 6.51 shows the convergence rate is roughly

consistent with the theoretical value for Example 11. Finally, Figure 6.52 clearly

demonstrates the matching time is almost linear with respect to time steps for

Example 11.
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Figure 6.50 Relative L2 errors versus NS for Example 11. Here NT = 160 and
dt = 0.00625 are fixed. The figure on the right uses logarithmic scale for both axes.

Example 12: Exterior Dirichlet Problem with the Four-sphere

Boundary

We consider the exterior Dirichlet problem with the boundary consisting of four

spheres shown in Figure 6.53. Here the radius of each sphere is 1.2. The centers of

the spheres are

(−3,−3, 3), (−3, 3, 3), (−3,−3,−3), (3, 3,−3).
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dt E r
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Figure 6.51 Convergence order in time for Example 11. The figure on the right is
log-log plot for dt and E. NS = 15120 is fixed. The red solid line is the numerical
results and the blue dashed line represents the relation of dt and E in an ideal 4th
order scheme.
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Figure 6.52 Timing results with respect to the temporal variable for Example 11.
NS = 15120 (Nθ = 84 and Nφ = 180) in all simulations. In the right figure, the
red line represents the total matching time and the blue dashed line represents O(N)
scaling.
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Figure 6.53 Four-sphere boundary surface for Example 12.

We generate boundary data by placing heat sources inside spheres and test the

accuracy of our numerical solution by comparing it with the analytical solution at 25

target points outside the boundary surface. In addition, refer to Example 1 for all

notations and explanations for the figures and tables below.

From Figure 6.54, we observe that the algorithm has very high order convergence

rate in space for Example 12. Figure 6.55 shows the convergence rate is roughly

consistent with theoretical value for Example 12. Finally, Figure 6.56 clearly

demonstrates the matching time is almost linear with respect to time steps for

Example 12.

Example 13: Exterior Dirichlet Problem with the Four-ellipsoid

Boundary

We consider the exterior Dirichlet problem with the boundary consisting of four

ellipsoids shown in Figure 6.57. The lengths of the three simi-principle axes a, b, c are

1.1, 1.0, 0.9, respectively. The centers of the ellipsoids are

(−3.5,−3.5, 3.5), (−3.5, 3.5, 3.5), (−3.5,−3.5,−3.5), (3.5, 3.5,−3.5).
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Figure 6.54 Relative L2 errors versus NS for Example 12. Here NT = 320 and
dt = 0.003125 are fixed. NS = 4 ·Nθ ·Nφ as there are four spheres. The figure on the
right uses logarithmic scale for both axes.
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Figure 6.55 Convergence order in time for Example 12. The figure on the right is
log-log plot for dt and E. NS = 20000 is fixed. The red solid line is the numerical
results and the blue dashed line represents the relation of dt and E in an ideal 4th
order scheme.
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Figure 6.56 Timing results with respect to the temporal variable for Example 12.
NS = 20000 in all simulations. In the right figure, the red line represents the total
matching time and the blue dashed line represents O(N) scaling.

Figure 6.57 Four-ellipsoid boundary surface for Example 13.
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We generate boundary data by placing heat sources inside ellipsoids and test

the accuracy of our numerical solution by comparing it with the analytical solution

at 25 target points outside the boundary surface. In addition, refer to Example 1 for

all notations and explanations for the figures and tables below.

From Figure 6.58, we observe that the algorithm has very high order convergence

rate in space for Example 13. Figure 6.59 shows the convergence rate is roughly

consistent with the theoretical value for Example 13. Finally, Figure 6.60 clearly

demonstrates the matching time is almost linear with respect to time steps for

Example 13.
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Figure 6.58 Relative L2 errors versus NS for Example 13. Here NT = 320 and
dt = 0.003125 are fixed. NS = 4 · Nθ · Nφ as there are four ellipsoids. The figure on
the right uses logarithmic scale for both axes.
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Figure 6.59 Convergence order in time for Example 13. The figure on the right is
log-log plot for dt and E. NS = 17280 is fixed. The red solid line is the numerical
results and the blue dashed line represents the relation of dt and E in an ideal 4th
order scheme.
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Figure 6.60 Timing results with respect to the temporal variable for Example 13.
NS = 17280 in all simulations. In the right figure, the red line represents the total
matching time and the blue dashed line represents O(N) scaling.
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CHAPTER 7

CONCLUSIONS AND FURTHER DISCUSSIONS

In this dissertation, we have constructed an efficient separated sum-of-exponentials

approximation for the heat kernel in arbitrary dimensions. The approximation relies

on the SOE approximation for the 1D heat kernel and power functions. We have

developed fast and high-order numerical algorithms for solving the boundary value

problems of the heat equation in both two and three dimensions. For two-dimensional

problems with stationary complex geometries, we use the SOE approximation for

the heat kernel and compress all local and history kernels only once. The resulting

algorithm is very efficient with quasilinear complexity and is capable of dealing

with both the interior and the exterior problems. For two-dimensional problems

with moving complex geometries, we apply the spectral Fourier approximation for

the heat kernel and NUFFT to speed up the evaluation of the history part of the

heat potentials. The algorithm does require the compression of the local kernels at

each time step due to the facts that the boundary is moving and the local kernels

change correspondingly. The algorithm also has the restrictions that the physical

domain shall not be very large and the time step size shall not be very small and

is only applicable for interior problems. Nevertheless, the overall complexity of the

algorithm is quasilinear in both space and time. Furthermore, the algorithm achieves

high order for moving complex geometries. We expect that the algorithm will have

some applications in applied physics and engineering such as dislocation dynamics in

materials science.

For three-dimensional problems, we have used the SOE approximations to speed

up the evaluation of the history part. The integrals involving the local kernels are

treated via the spectrally accurate integrator. The algorithm is applicable for both
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interior and exterior problems and has quasilinear complexity with respect to the

temporal variable. The algorithm is expected to have applications on the diffusion

process of nanoparticle assembly where there are a large number of particles with

the surface of each nanoparticle requiring very small number of discretization points.

Moreover, it is more or less straightforward to use some other high order integrator for

the spatial integrals and apply fast algorithms to compress or speed up the evaluation

of the corresponding discrete summation in the spatial variable. One candidate is the

FMM accelerated QBX - “Quadrature by Expansion” scheme. By this, we will have

near optimal algorithm in both space and time.

In this dissertation, we have dealt only with the boundary value problems of

the heat equation. The SOE approximation can obviously be applied to speed up

the evaluation of the history part of the heat volume potential. When combined

with the Fast Gauss Transform, we will be able to build an efficient and high-order

solver for solving the general initial-boundary value problem for the inhomogeneous

heat equation in both two and three dimensions. We are currently working on these

projects and will report our findings on a later date.
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APPENDIX A

SUM-OF-EXPONENTIALS WEIGHTS AND NODES FOR THE 1D

HEAT KERNEL

We give the weights and nodes for the sum-of-exponentials approximation for the 1D

heat kernel G1 = e−x
2/4t/
√

4πt. G1 ≈
∑N1

k=N1
wke

skte−
√
skx. Here N1 = 47 and only

the exponentials in the lower half of the complex plane are listed. The relative error

is 10−9 for t ∈ [10−3, 1]. In Table A.1, the first column lists the values of sk and the

second column lists the values of wk.
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Table A.1 Weights and Nodes for the Sum-of-exponentials Approximation for the
1D Heat Kernel

sk wk

+5.2543538566883130D-001 -1.5355921434143971D-001i 3.3406450069243053D-002 + 7.8694879334856565D-004i

+4.5124072851051300D-001 -4.6901795847816991D-001i 3.3858524697168449D-002 + 2.3714958079918535D-003i

+2.9882165376338349D-001 -8.0995063945421741D-001i 3.4768791677853524D-002 + 3.9881352204446229D-003i

+5.9899770775166200D-002 -1.1948744535190035D+000i 3.6149569249415578D-002 + 5.6587442927134319D-003i

-2.7850156846250274D-001 -1.6446959027588257D+000i 3.8019542860491549D-002 + 7.4059306342027370D-003i

-7.3476207454759612D-001 -2.1838462972755117D+000i 4.0404018032102237D-002 + 9.2533381404359474D-003i

-1.3336627843342230D+000 -2.8416087014987785D+000i 4.3335262806011098D-002 + 1.1225966955375540D-002i

-2.1077320020767232D+000 -3.6537083955326728D+000i 4.6852944413778977D-002 + 1.3350511787250059D-002i

-3.0990120206246341D+000 -4.6642532348208814D+000i 5.1004666075762921D-002 + 1.5655723156165313D-002i

-4.3613425792163030D+000 -5.9281292955658031D+000i 5.5846611194320855D-002 + 1.8172796462103385D-002i

-5.9632850801149733D+000 -7.5139819214310553D+000i 6.1444303658802629D-002 + 2.0935794138393353D-002i

-7.9918463880908517D+000 -9.5079440821622647D+000i 6.7873494551196165D-002 + 2.3982106603468702D-002i

-1.0557204464776218D+001 -1.2018314543775274D+001i 7.5221187251822183D-002 + 2.7352958248766927D-002i

-1.3798692502929331D+001 -1.5181439937409575D+001i 8.3586814817376690D-002 + 3.1093965310080390D-002i

-1.7892366578989638D+001 -1.9169120201715121D+001i 9.3083585564254306D-002 + 3.5255753171782450D-002i

-2.3060567848491313D+001 -2.4197939613161662D+001i 1.0384001506633338D-001 + 3.9894641457634002D-002i

-2.9583998639207351D+001 -3.0541030203791603D+001i 1.1600166529906714D-001 + 4.5073406179197625D-002i

-3.7816968335105827D+001 -3.8542906477049684D+001i 1.2973311446494412D-001 + 5.0862129255676444D-002i

-4.8206637106159420D+001 -4.8638177144812161D+001i 1.4522018415709023D-001 + 5.7339146901350516D-002i

-6.1317302675453163D+001 -6.1375150182749685D+001i 1.6267245400022495D-001 + 6.4592109714717016D-002i

-7.7861049219288773D+001 -7.7445613273673700D+001i 1.8232609779849215D-001 + 7.2719168815048321D-002i

-9.8736423044743205D+001 -9.7722407114526959D+001i 2.0444707957048894D-001 + 8.1830304077826238D-002i

-1.2507723565031891D+002 -1.2330683231921709D+002i 2.2933475272201531D-001 + 9.2048812443472808D-002i

-1.5831414482743193D+002 -1.5558846474502963D+002i 2.5732591106254793D-001 + 1.0351297643999625D-001i

-2.0025235847869459D+002 -1.9632062801341692D+002i 2.8879934648604044D-001 + 1.1637793549892739D-001i

-2.5316968150772374D+002 -2.4771562239065099D+002i 3.2418097499311860D-001 + 1.3081778538823258D-001i

-3.1994023103558078D+002 -3.1256488222792592D+002i 3.6394960042284941D-001 + 1.4702793417289575D-001i

-4.0419053933177224D+002 -3.9439058811408586D+002i 4.0864339389209720D-001 + 1.6522774658533385D-001i

-5.1049652293304160D+002 -4.9763696830499521D+002i 4.5886717662584403D-001 + 1.8566351259073638D-001i

-6.4463201600277023D+002 -6.2791167965116256D+002i 5.1530060473377282D-001 + 2.0861178031960287D-001i

-8.1388236661047688D+002 -7.9229037823057672D+002i 5.7870736669405309D-001 + 2.3438309847056926D-001i

-1.0274401283961181D+003 -9.9970102193834418D+002i 6.4994551800979161D-001 + 2.6332621882780033D-001i

-1.2969043389592882D+003 -1.2614087777944171D+003i 7.2997909289244700D-001 + 2.9583281576374076D-001i

-1.6369105024555524D+003 -1.5916278709100643D+003i 8.1989115010796476D-001 + 3.3234278659416305D-001i

-2.0659254928655710D+003 -2.0082936066805410D+003i 9.2089842952925771D-001 + 3.7335020451285178D-001i

-2.6072505517969930D+003 -2.5340364973160094D+003i 1.0343678177356390D+000 + 4.1941000466434852D-001i

-3.2902868569904354D+003 -3.1974114007865637D+003i 1.1618348454808407D+000 + 4.7114549383439813D-001i

-4.1521323987955984D+003 -4.0344484308358847D+003i 1.3050244673476217D+000 + 5.2925678538340226D-001i

-5.2395968963294799D+003 -5.0906098731829061D+003i 1.4658744047907917D+000 + 5.9453027356908161D-001i

-6.6117441901645352D+003 -6.4232593945873459D+003i 1.6465613684596623D+000 + 6.6784927547013706D-001i

-8.3431001974123810D+003 -8.1047776557969619D+003i 1.8495305146549577D+000 + 7.5020598452333265D-001i

-1.0527700663992231D+004 -1.0226493547754852D+004i 2.0775285345412993D+000 + 8.4271489743589800D-001i

-1.3284198561072539D+004 -1.2903644569677639D+004i 2.3336408238968738D+000 + 9.4662789617368170D-001i

-1.6762308525499571D+004 -1.6281635763758291D+004i 2.6213332364019597D+000 + 1.0633511891228977D+000i

-2.1150938363365654D+004 -2.0543937150208803D+004i 2.9444989854949983D+000 + 1.1944643406826623D+000i

-2.6688449265921696D+004 -2.5922048598801452D+004i 3.3075113294981566D+000 + 1.3417416468073389D+000i

-3.3675602004538763D+004 -3.2708073362471001D+004i 3.7152827529767691D+000 + 1.5071761457643933D+000i
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APPENDIX B

SUM-OF-EXPONENTIALS WEIGHTS AND NODES FOR THE

POWER FUNCTION 1
T 3/2

We give the weights and nodes for the sum-of-exponential approximation for the

power function 1
t3/2

. 1
t3/2
≈
∑N

k=1 wke
skt. Here N = 22. The relative error is 10−9

for t ∈ [10−3, 1]. In Table B.1, the first column lists the values of sk and the second

column lists the values of wk.
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Table B.1 Weights and Nodes for the Sum-of-exponentials Approximation for the
Power Function 1

t3/2

sk wk

-7.2906159549928551D-001 1.4185610815528382D+000

-3.0048118783719833D+000 6.1168393596966855D+000

-7.1264765899586058D+000 1.5711472927135111D+001

-1.3711947176886415D+001 3.4005632951162106D+001

-2.3888158541731844D+001 6.9073954353680932D+001

-3.9552395196025927D+001 1.3693587825572760D+002

-6.3705812577837150D+001 2.6803903557553036D+002

-1.0092380540293159D+002 5.1918775664556608D+002

-1.5806801843263241D+002 9.9539106627427793D+002

-2.4535153453758187D+002 1.8891680379043360D+003

-3.7789560121839855D+002 3.5504717885763807D+003

-5.7797736857567725D+002 6.6101535364473611D+003

-8.7825970527795960D+002 1.2196709015044245D+004

-1.3264302774624159D+003 2.2315687874782194D+004

-1.9919031777954062D+003 4.0515943857625483D+004

-2.9756729573498451D+003 7.3077757126301352D+004

-4.4253961362173968D+003 1.3121449467706907D+005

-6.5602925574528726D+003 2.3547202449444451D+005

-9.7174072351500563D+003 4.2563843229579012D+005

-1.4450262425240786D+004 7.8639206472664094D+005

-2.1750443538417538D+004 1.5127774335123657D+006

-3.3020803685636522D+004 2.6486986425576657D+006
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APPENDIX C

SUM-OF-EXPONENTIALS WEIGHTS AND NODES FOR THE

POWER FUNCTION 1
T 2

We give the weights and nodes for the sum-of-exponentials approximation for the

power function 1
t2

. 1
t2
≈
∑N

k=1wke
skt. Here N = 44. The relative error is 10−13

for t ∈ [10−3, 1]. In Table C.1, he first column lists the values of sk and the second

column lists the values of wk.
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Table C.1 Weights and Nodes for Sum-of-exponentials Approximation for the
Power Function 1

t2

sk wk

0.49816097852842284D+00 0.41792329598969274D+00

0.16806708242710908D+01 0.25719203841494926D+01

0.35700113350143514D+01 0.80519010424116875D+01

0.62085182228220503D+01 0.18821621650994373D+02

0.96562475448359066D+01 0.37436959522664253D+02

0.13991619685598669D+02 0.67296131023505851D+02

0.19309793473336615D+02 0.11285259165079646D+03

0.25715313814472559D+02 0.17957517576121185D+03

0.33303378796019885D+02 0.27315383201452903D+03

0.42121854797631435D+02 0.39703175011879631D+03

0.52106071142751006D+02 0.54707777032875265D+03

0.62984741623253626D+02 0.70304122728005905D+03

0.74174333691048986D+02 0.82007948871433530D+03

0.84713745902110603D+02 0.83065511203111600D+03

0.93325793081081102D+02 0.67093386655665483D+03

0.98679955988816687D+02 0.33100272862403295D+03

0.10199025144253839D+03 0.52225373626928115D+03

0.11060150326402565D+03 0.13473849887749343D+04

0.12657537623995276D+03 0.25200712706100153D+04

0.15078496058776398D+03 0.43323174394854796D+04

0.18457111644199449D+03 0.72265575565852496D+04

0.22981916123749966D+03 0.11895748493955531D+05

0.28905196478122900D+03 0.19438296284932647D+05

0.36555007134723945D+03 0.31599396998625918D+05

0.46350713949880992D+03 0.51148389314505665D+05

0.58822867300627013D+03 0.82468749135566322D+05

0.74638314253071064D+03 0.13247930955776412D+06

0.94631702749702401D+03 0.21207060224239426D+06

0.11984490699616354D+04 0.33834255087831256D+06

0.15157646626332562D+04 0.53809202744656312D+06

0.19144400634407839D+04 0.85326116343166889D+06

0.24146405441750503D+04 0.13494938898270358D+07

0.30415614681794937D+04 0.21297038566261446D+07

0.38268260827182398D+04 0.33559325502733039D+07

0.48104374194145830D+04 0.52854357377097402D+07

0.60436434932699267D+04 0.83324354655784611D+07

0.75934011812903973D+04 0.13179211949340181D+08

0.95498164632420521D+04 0.20989730727789059D+08

0.12039510889823023D+05 0.33857166768530093D+08

0.15251770298672704D+05 0.55848629821905211D+08

0.19495260483786209D+05 0.95807184891746387D+08

0.25338803210820472D+05 0.17639430143426201D+09

0.34030470435410687D+05 0.37157326630489612D+09

0.48885715098457906D+05 0.97155900985648072D+09
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