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ABSTRACT

STRUCTURAL EXPLORATION AND INFERENCE OF THE
NETWORK

by
Ruihua Cheng

This dissertation consists of two parts. In the first part, a learning-based method for

classification of online reviews that achieves better classification accuracy is extended.

Automatic sentiment classification is becoming a popular and effective way to help

online users or companies to process and make sense of customer reviews. The

method combines two recent developments. First, valence shifters and individual

opinion words are combined as bigrams to use in an ordinal margin classifier. Second,

relational information between unigrams expressed in the form of a graph is used

to constrain the parameters of the classifier. By combining these two components,

it is possible to extract more of the unstructured information present in the data

than previous methods, like support vector machine, random forest, hence gaining

the potential of better performance. Indeed, the results show a higher classification

accuracy on empirical real data with ground truth as well as on simulated data.

The second part deals with graphical models. Gaussian graphical models are

useful to explore conditional dependence relationships between random variables

through estimation of the inverse covariance matrix of a multivariate normal

distribution. An estimator for such models appropriate for multiple graphs analysis

in two groups is developed. Under this setting, inferring networks separately ignores

the common structure, while inferring networks identically would mask the disparity.

A generalized method which estimates multiple partial correlation matrices through

linear regressions is proposed. The method pursues the sparsity for each matrix,

similarities for matrices within each group, and the disparities for matrices between

groups. This is achieved by a `1 penalty and a `2 penalty for the pursuit of sparseness



and clustering, and a metric that learns the true heterogeneity through optimization

procedure. Theoretically, the asymptotic consistency for both constrained `0 method

and the proposed method to reconstruct the structures is shown. Its superior

performance is illustrated via a number of simulated networks. An application to

polychromatic flow cytometry data sets for network inference under different sets of

conditions is also included.
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CHAPTER 1

INTRODUCTION

Text mining has become an important research area to automatically detect

information contained in large numbers of text documents. In business, sentiment

analysis, i.e., analyzing the positivity or negativity of text, has been applied to analyze

users’ comments, feedback or critiques towards a company’s products or services.

Due to ever-increasing amounts of such textual data, it is necessary to develop novel

methods for improving the predictive accuracy of reviews.

There are two main approaches for detecting sentiment automatically. One

approach uses lexicon-based methods to calculate a semantic orientation score of a

document [61, 58, 29, 55, 56]. A second approach uses machine learning methods such

as Support Vector Machine (SVM) classifiers on textual data using individual words

as features or predictors [43, 48, 6, 3]. A recent work, [67], combined both approaches,

using the lexicon-based method on the training data and a learning classifier on new

data.

However, as [65] noted, at the individual word level, these methods do not

distinguish differences in sentiment between words that have the same polarity, e.g.,

“good” and “great”. At the level of phrases, these methods also fail to account for

the modifying effects on sentiment of neighboring words, such as “very”, “absolutely”

or “extremely”, which we call intensifiers. Our proposed method for sentiment

classification aims to avoid the above two shortcomings.

To address the first shortcoming, we develop a statistic for polarity calculation

that can distinguish and measure the difference in sentiment strength between opinion

words or phrases. Furthermore, the relative sentiment between words or phrases are

characterized by capturing the direction of their sentiment polarity. In our work, a

1



graph is constructed to capture and express all the relative sentiment strengths of

opinion words or phrases.

To address the second shortcoming, motivated by the work of [44, 62, 33, 51], we

take into account the effects on sentiment of neighboring words by including negators,

valence intensifiers, and valence diminishers in our method. These three types of

words can change the degree of the expressed sentiment. For example, a negation

word like not reverses the sentiment of a opinion word. A valence intensifier like

deeply in the phrase deeply suspicious, increases the intensity of the word suspicious.

On the other hand, the valence diminisher rather in the phrase rather efficient, makes

the statement less positive.

We combine the above two proposed extensions into a learning-based model for

classification of sentiment. The main idea is to include valence shifters (intensifiers

or diminishers) in the features and then training a learning-based model while

simultaneously integrating the relative sentiments of features into the training

procedure. The latter is achieved by using the graph of relative sentiments to

provide constraints on the coefficients. By incorporating these two extensions, the

new procedure may offer improvement in predictive accuracy.

Inference for graphical model has attracted a lot of attention in recent years,

due to its advantage in gaining insights into patterns of association among observed

variables. Many problems from such fields as biology, computer vision, and medicine

[26, 31, 64], which often generate very high-dimensional data sets with moderate

sample sizes, can be solved by the estimation of the partial correlation matrix,

also known as the concentration or precision matrix. The goal is to discover

the conditional independence in graphical models from a set of independent and

identically distributed observations.

There are many methods in both statistics and computer science that have been

devoted to the study of graphical models. Classical approaches are the greedy forward

2



or backward stepwise selection methods [13]. The forward selection method starts by

adding the most significant edge into the empty set, and continues adding edges

until a suitable stopping criterion based on an individual partial correlation test is

satisfied. However, this procedure is computationally infeasible for high-dimensional

data. Furthermore, this method does not correctly account for multiple testing [12].

Drton and Perlman [15] proposed a simultaneous testing procedure to control the

overall error rate for the inclusion of incorrect edge. Nevertheless, it is too conservative

due to its applicability only on low-dimensional data sets with a large number of

observations. Other methods include Bayesian network modeling [21, 50] which

can effectively infer networks by extracting meaningful insights from data sets, and

Gaussian graphical modeling [49] which can determine which elements of the inverse

covariance matrix are zero by a thresholding and false discovery approach.

Recent methods take the potential sparsity into account in the estimation

step of the precision matrix. Since the network is sparse, the assumption that

most variable pairs are conditionally independent under normality is reasonable for

many real life problems. It has been shown in the literature that most genetic

networks contains many genes with few interactions, and therefore is intrinsically

sparse [57, 32, 24] . Representative examples in this category include Dobra et al. [14],

who presented a novel Bayesian framework for building Gaussian graphical models by

converting the dependency networks into compositional networks using the Cholesky

decomposition. Moreover, Bickel and Levina [4] proposed to regularize covariance

by banding the Cholesky factor and showed consistency of banded estimators in the

operator norm under mild conditions. Huang et al. [30] proposed adding an `1

penalty in the modified Cholesky decomposition step of the concentration matrix.

The implicit regularizing assumption underlying those approaches is that variables

which far apart have weak partial correlations [46]. But the Cholesky decomposition

naturally requires ordering restriction of the variables, which makes the procedure
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computationally intensive and even infeasible in that it has to determine the order of

variables [38]. There are also a lot of literature that focus on the general case when

the ordering of variables unavailable. A penalized maximum likelihood framework

with an `1 penalty imposed on the partial correlation estimation have been employed

by [66, 2, 11, 20, 46], who adapt different interior-point optimization methods for

computing the estimator. Li and Gui [38] considered a threshold gradient descent

regularization procedure, in which the sparsity is accounted for by defining a loss

function- the negative of the log likelihood function. Those approaches can be

applied to situations where the number of samples is small relative to the number of

dimensions.

The aforementioned literature mainly focused on estimating a single Gaussian

graphical model. Nevertheless, it is more realistic in many applications to have

multiple undirected graphs in a single group that observations correspond to distinct

categories. There are some prior studies on estimating multiple graphical models for

a single group. Guo et al. [26] proposed imposing an `1 penalty on the common

factors, which encourages the sparsity and similarity of edges across all individuals in

the group and a second `1 penalty on the category-specific features to allow edges to

be specifically set to zero. Danaher et al. [10] introduced the fused penalty and group

penalty simultaneously to encourage shared structure across all individuals. Zhu et

al. [68] ever proposed the regularized maximum likelihood estimation method with

nonconvex penalty for the pursuit of sparseness across all individuals and clustering

among individuals in the group. Yajima et al. [63] used a Bayesian approach with

stochastic simulation to jointly estimated the strength of association for the baseline

group and differential group.

In this article, extending the prior studies on single group network inference,

we consider the problem of two groups. As Friston [22] noted, such a situation

often arises in brain region connectivity patterns estimation. The patterns vary
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between different subjects both in healthy group and diseased group. In this case,

one might want to estimate multiple graphical models for the healthy group and

multiple graphical models for the diseased group. One would expect the graphical

models within each group to be similar to each other, while that in different groups

are allowed to vary from similar to unique since involved subjects not only share

many common demographic or other covariate features, but also have considerable

disparities arising from the fact that brain region connectivity patterns are often

dysregulated in patient. In such situations, inferring the networks separately for each

individual ignores the substantial commonality among the true graphical models.

Conversely, failing to consider either the disparities between individuals within specific

group or the heterogeneity among two groups in the graphical models may lead to

inconsistent results. In order to make better use of the data, we need a principled

method that jointly estimating two groups not only encourage common structure

within the specific group but also allows for group-wise differences or certain similarity.

In fact, the differences between the graphical models may be of scientific interest. To

the best of our knowledge, this problem has not been properly addressed before.

Meinshausen and Bühlmann [41] ever proposed neighboorhood selection for each

node separately by fiting LASSO model and showed that this is an approximation

to the exact problem [66, 2, 9]. Based this method for single network inference, we

propose extending it to the problem of estimating two groups of individual networks.

Unlike the separation of each LASSO regression, we merge all adaptive LASSO linear

regressions into a single learning model to simultaneously perform neighborhood

selection for all nodes and all individuals.

Our model goes beyond inferring each network separately, and is especially

useful when the sample size is relatively small. Based on prior knowledge of two

groups, we add `2 regularization into group-specific features. Borrowing information

across networks within each specific group can encourage common structures and
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reduce the variance of the estimates. Differing from the previous method for single

group network inference, we simultaneously add a weight parameter denoted a to

constrain the difference between the two groups. We propose using two different

ways to learn the value of a. First, consider a to be part of the `2 penalty and learn

its value through cross validation method. This parametric-model-free approach is

more commonly used in various statistics and machine learning literature. In this

way, the proposed method is considered to be the regularized method as described in

Sub-Section 3.1.2. We present the corresponding optimization procedure in Section

3.2 and theoretical properties in Section 3.3. The second way to tune this weight

parameter is using a data-driven based adaptive method as described in Section

3.4, where a represents the ratio of the expected network distance within the same

group to that between two groups. It is a critical method to explicitly detect the

underlying heterogeneity between two groups. By doing this, we gain the ability

to learn insights on how strongly the true graph structures for the two groups are

related. Our model is more flexible compared with previous methods. We use adaptive

LASSO, not only for yielding a sparse solution, but also to improve the learned

features by taking into account the prior knowledge through shared adaptive weights

to regularize all individuals. Moreover, we can learn the importance score of selected

features for differentiating the individuals which belong to different groups through

a feature selection indicator. Theoretically, we provide the grouping property and

derive finite-sample error bounds under certain conditions by the global minimizers

of `0-constrained method defined in (3.10) and its computationally surrogate, our

proposed two methods defined in (3.2) in Section 3.3 and Section 3.4. The `0 method is

most general and ideal, but is computationally intensive. Hence, we propose the `1 or

`2-penalized method, which is much more computationally effective to find solutions.

Both methods can consistently reconstruct the sparsity, group-specific commonality

and group-wise heterogeneity. Empirically, we demonstrate the effectiveness and
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stability of our methods especially the adaptive method compared against competing

methods, especially when the heterogeneity between two groups is large and present

an application of the proposed adaptive method to signaling network inference.

The dissertation is organized as follows. Chapter 2 contains the first proposed

project on sentiment analysis. Section 2.1 introduces related work on proposed

valence shifters, semantic relationship and the prevailing learning-based classifier.

We describe the methodology in detail in Section 2.2. The asymptotic consistency

of proposed method is shown in Section 2.3. A simulation study evaluating the

performance of the proposed method and comparing it with competing methods is

reported in Section 2.4. The proposed method is illustrated using three real datasets

in Section 2.5: hotel reviews from TripAdvisor.com, movies reviews from Internet

Movie Database (IMDb) archive and restaurant reviews from OpenTable.com.

Section 2.6 contains a discussion. Chapter 3 provides details for the estimation of

Gaussian graphical models. Section 3.1 first introduces the joint sparse regression

penalized method. Section 3.2 presents the optimization procedure for the proposed

method. Section 3.3 illustrates the group effect of proposed model and shows the

asymptotic consistency for the `0-constrained method and our proposed method.

Section 3.4 describes the proposed data-driven based adaptive method with its

theoretical results. Section 3.5 includes simulation results. Section 3.6 demonstrates

an application to signaling network inference. We briefly discuss the methods and

results in section 3.7. Finally, the appendix contains proofs.
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CHAPTER 2

PROPOSED LEARNING-BASED METHOD WITH VALENCE

SHIFTERS FOR SENTIMENT ANALYSIS

2.1 Background and Related Work

In this section, we provide some background and review related work on sentiment

analysis.

2.1.1 Contextual Valence Shift

The valence of a word used by an individual in say, a review, is defined as the degree

of positivity or negativity of that word in conveying how that individual feels toward

the subject of the review. Valence shifters are additional words that can modify the

degree to which the original word is positive or negative. Table 2.1 below lists some

examples of English words which can be used to intensify or diminish valence.

Table 2.1 Examples of Words with Valence

PART OF
SPEECH

Intensified Valence Diminished Valence

Adverbs definitely, very, extremely somewhat, barely, less

Adjectives bright, authentic worthless, weak, rough

Verbs ensure, improve, assure fail, discourage

Nouns benefit, favor disaster, bankruptcy

In a sentence like This hotel looked very good, the phrase very good combines an

adverb very with a polar adjective good. Here, the word very intensifies the valence

so that very good should be considered more positive than good even through very on
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its own, does not indicate any sentiment. Combining very with a negative adjective,

like expensive, i.e., very expensive, on the other hand, should be characterized as

more negative than expensive. To give another example, the sentence This hotel

is somewhat small, the term somewhat diminishes valence, making this statement

less negative. Hence, such valence shifters can play an important role in assessing

sentiment in reviews. Section 2.2 contains a more detailed discussion.

2.1.2 Determining Semantic Word Similarity

Since the phrase very good has a higher polarity than good, and the two words good

and great also have different positive polarities, we introduce two main methods to

measure semantic word similarity, Latent Semantic Analysis (LSA) and Pointwise

Mutual Information (PMI).

Latent Semantic Analysis (LSA) [37, 16] introduced LSA as a mathematical

learning method to infer the contextual similarity of words for a large corpus of text.

LSA word similarity relies on the distributional hypothesis that words occurring in

the same contexts tend to have similar meanings. Table 2.2 shows a summary of the

algorithm for LSA. Given a large corpus of text, LSA first creates a term-document

matrix to capture the occurrences of terms in the documents (Step 1). Then local

and global weighting functions are defined (Steps 2 and 3, respectively) and combined

(Step 4) to reflect each word’s importance. Singular value decomposition is applied

to the reweighted matrix to obtain a new matrix with smaller dimensionality (Steps 5

and 6), where each word is represented by a vector in this new matrix. The similarity

between two words is defined as cosine angle between their corresponding vectors.

Pointwise Mutual Information (PMI) A second method measuring semantic

word similarity is PMI. [58] estimated word similarities by calculating PMI scores

based on AltaVista’s NEAR operator. For any two words, A and B, the NEAR
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Table 2.2 A Description of LSA

1. Compute the matrix C of word-by-document occurrences: C[i, j],

which represents how many times word i occurs in document j.

2. Compute LC from C such LC[i, j] = log(1 + C[i, j]).

3. Compute the entropy H[i] of word i as

H[i] = Σi − C[i, j]logC[i, j].

4. Normalize the entries in LC: N [i, j] = LC[i, j]/H[i].

5. Use singular value decomposition on LC to obtain a matrix Q of

dimensionality k.

6. A word i is represented as the vector Q[i] and the similarity

between words i and j is cos(Q[i], Q[j]).
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operator finds the number of documents (as determined by an AltaVista search) that

contains these two words separated by at most a few words apart. The PMI between

two words A and B captures how likely it is to find B in a text given that the text

contains A. It is a co-occurrence metric, in that it normalizes the probability of

co-occurrence of two words with their individual probabilities of occurrence. The

PMI between A and B can be calculated as:

PMI(A,B) = log
p(A,B)

p(A)p(B)
.

The similarity between words A and B is then taken to be their PMI score.

Comparison between LSA and PMI [45] conducted a comparison of PMI with

LSA and found that LSA outperforms PMI on a wide variety of evaluation tasks.

Later, [27] showed that a combination of LSA and WordNet [18] performed well at

measuring Semantic Textual Similarity for the Stanford Webbase corpus. WordNet is

a large electronic database of English, where nouns, verbs, adjectives and adverbs are

organized into synonyms, each expressing a distinct concept. The Stanford Webbase

corpus is a dataset containing a collection of English paragraphs with more than three

billion words obtained from the Stanford WebBase project in Feb 2007. It is one of

the largest collections of textual data with balanced text and contains 100 million

web pages from more than 50,000 websites. [45] also showed the Stanford Webbase

Corpus is a good representation of everyday use of the English language.

The method proposed by [27] for measuring word similarity first uses LSA to

obtain basic word similarity scores. Then it adjusts the scores by incorporating

WordNet’s information about synonyms so that the final similarity score between

words x and y given by

sim(x, y) = simLSA(x, y) + 0.5e−αD(x,y), (2.1)
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where D(x, y) ∈ {0, 1, 2, 3} is the minimal path distance between x and y. The

path distance is based on WordNet information about synonyms illustrated by [39]

in Figure 2.1, which is a fragment of the semantic hierarchy of WordNet. The closer

x and y are related, the smaller the value of D(x, y). For example, the shortest path

between boy and girl is boy-male-person-female-girl, so the minimum length of path

is 4. [39] suggests setting α to be 0.2, based on their experimental results. We will

use this method to construct our graph of relational information between words or

phrases.

Figure 2.1: Hierarchical semantic knowledge base. “· · · ” indicates that some words in the

class were omitted to save space.

2.1.3 Random Forests (RF)

The Random Forests (RF) method was introduced by [5] for feature (variable)

selection by ranking the importance of variables and improved predictions for decision

tree models. RF feature selection is a combination of variable subset selection and

bootstrapping with variable ranking. The main idea is to generate a vast number

of decision trees, which are used to determine the most popular variables based on

performance. Similarly, to classify a new object from an input vector, the input vector

is passed down each tree in the forest. Each tree yields a classification, referred to
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as a “vote” for that class. The forest chooses the classification having the most votes

(over all the trees in the forest).

Each tree is grown as follows: First, if the number of cases in the training set is

N , sample N cases at random with replacement from the original data. The sample

will be the training set for growing the tree. Second, if there are M input variables,

m variables with m�M , are randomly selected at each node and used to determine

the best split at that node. The value of m is held constant throughout the procedure.

Each tree is grown to the largest extent possible, without any pruning.

2.1.4 Machine Learning Methods: SVM and LMOC

Support Vector Machine (SVM) Support Vector Machine [8] is a discriminative

classifier by finding the best hyperplane that separates all data points of one class

from those of another class. Most learning techniques do not perform well on datasets

where the number of features is large compared to the sample size. SVMs are believed

to be an exception [23]. To understand our methodology, familiarity with linear SVMs

is required, and a brief introduction follows.

Two-class SVM Consider the simplest case: two class-classification, that is given

training data {X1, ..., Xn} that are vectors in some feature space X ⊆ Rd, we use

hyperplanes to separate the data according to their labels {y1, .., yn} where yi falls

within two classes, yi ∈ {−1, 1}. The idea is to find hyperplanes that separate the

training data by as wide a margin as possible, see Figure 2.2.

All vectors lying on one side of the hyperplane as labeled as -1, and all vectors

lying on the other side are labeled as 1, hence the decision function is

f(x) = sign(βTx+ β0). (2.2)
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Figure 2.2: A simple linear support vector machine.

The training instances that lie closest to the hyperplane are called support vectors.

The SVM optimization criterion is

minβ
||β||2

2
subject to yi(β

Txi + β0) ≥ 1, for all i. (2.3)

In practice, one allows for error terms in case there is no hyperplane:

minβ,β0,ξi

(
||β||2

2
+ C

∑
i

ξi

)
subject to yi(β

Txi + β0) ≥ 1− ξi, for all i, (2.4)

where C is a regularization parameter that balances between margin size and training

error. The quantities ξi, called slack variables, measure the degree of misclassification.

One can solve this with Lagrange multipliers so that β is given by β =
∑

i αiyixi.

The vectors xi for which αi are non-zero are the support vectors. Optimization

criterion thus becomes

maxαiLd =
∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyjx
T
i xj subject to

∑
i

αiyi = 0 and 0 ≤ αi ≤ C.

(2.5)

The SVM finds the αi that correspond to the maximal margin hyperplane.

In general, the dot product can be replaced by a kernel matrixK(i, j) = φ(xi)·φ(xj) or

14



a positive definite matrix K. Then the decision function can equivalently be expressed

as

f(x) = sign(
∑
i

αiyiK(xi, x) + β0). (2.6)

By choosing different kernel functions, the training data X can be projected

onto a different space such that hyperplanes in the new space correspond to more

complex decision boundaries in the original space X.

Multi-class SVM To perform SVM where there are more than two classes or

labels, a popular method is called the one-against-one method, introduced in [34],

where k(k − 1)/2 classifiers are constructed. Each classifier is trained on data from

two classes. For training data from the i-th and the j-th classes, the optimal criterion

is to solve the binary classification problem:

min
βij ,bij ,ξij

(
||βij||2

2
+ C

∑
t

ξij

)

(βij)Tφ(xt) + βij0 ≥ 1− ξij, if yt = i,

(βij)Tφ(xt) + βij0 ≥ −1 + ξij, if yt = j,

ξijt ≥ 0,

(2.7)

where the first term measures the margin size and the second term is the training

error. The quantities ξij measures the degree of misclassification.

There are different methods for using the k(k − 1)/2 constructed classifiers for

predicting new labels. One method is to use a voting strategy suggested in [19]: if the

i− j classifier sign((βij)Tφ(x) + βij0 ) indicates that x is in the i-th class (as opposed

to the j-th class), then the vote for the i-th class is increased by one. Otherwise, the

j-th is increased by one. All the votes are added and the decision is to predict x to
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be in the class with the largest vote. The implementation and the application on real

data is shown in Sections 2.3 and 2.4.

Large Margin Ordinal Classifier (LMOC) Like SVM, the Large Margin

Ordinal Classifier [60] also seeks a maximal margin hyperplane to separate classes.

However, there are two differences: (1) LMOC uses parallel hyperplanes to separate

data points with different labels, hence only the different intercepts for the hyper-

planes are needed to categorize new data instances; (2) LMOC integrates the

relationships between features (predictors) into a set of linear constraints on the

classification coefficients, resulting in a large reduction in the parameter space. The

following is a brief introduction of the model.

Suppose we have training data x1, ..., xn that are vectors in some space x ⊆ Rd,

with labels {c1, .., cn}. Assume we have K outcomes with an ordering 1≺ · · · ≺ K,

so that ci ∈ {1, ..., K}. Let f = (f1, ..., fK−1)
T be a classification function with

fk(x) = βTx + β0k representing the ordered classes up to class k, i.e., {1, ..., K}, for

k = 1, ..., K − 1 with the constraint that β01 ≤ β02 ≤ · · · ≤ β0,K−1. This functional

representation yields K − 1 parallel hyperplanes, where f1, ..., fK−1 differ only in

intercepts β0j’s, and {x : fk(x) = 0} is the partition boundary separating classes

{1, ..., k} and {k + 1, ..., K}. In this situation, fk(x) < 0 implies that fj(x) < 0 for

all j ≤ k, which indicates that the predictor vector x has a response c larger than k.

Therefore, the decision function rule for x is:

Φ(x) =


K if fk(x) < 0 for all k = 1, ..., K − 1.

min{k : fk(x) ≥ 0} otherwise.

(2.8)

Similar with SVM (as shown in Figure 2.2), for each of the K − 1 hyperplanes, the

geometric margin separating any two classes should be at least 2/||β||2 in L2 norm.

In other words, the L2 norm distance between two hyperplanes with fk(x) = ±1
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is 2/||β||2. The optimal criterion is to maximize the margin, and simultaneously

minimize the misclassification. Hence the classification problem can be formulated as

min
β

(
||β||2

2
+ λ

n∑
i=1

K−1∑
k=1

ξik

)

subject to β ∈ B, sign(k − ci)(xTi β + β0k) ≥ 1− ξik,

ξik ≥ 0,β01 ≤ β02 ≤ ... ≤ β0,K−1,

(2.9)

where λ is the regularization parameter that trades off margin size and training error,

ξik the slack variables measuring degrees of misclassification, and B represents the

relational constraints on the coefficients.

Figure 2.3 is an illustration of the Large Margin Ordinal Classification with

K = 5, with L2 norm distance between f3(x) = ±1 being the geometric margin

separating the ordered classes {1,2,3} and {4,5}. The decision boundary occurs at

f3(x) = 0. In this figure, there are three misclassified instances by f3(x), denoted

as slack variables ξ13, ξ23, ξ33. More details and numerical studies on real data are

provided in Sections 2.3 and 2.4.

Figure 2.3: An illustration plot of LMOC.

2.1.5 Statistical Test for Two Classifiers

There are many different tests to compare the performance of two classifiers. One

way is the k-fold Cross-Validated paired t test [40].
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Let the accuracy scores of the test folds for classifier A be SA1, ..., SAk, and

SB1, ..., SBk for classifier B, where each test set is independent of the others. Assume

that the two classifiers have the same variance. The k-fold Cross-Validated paired t

test is simply a paired t test on the paired differences

di = SAi − SBi, i = 1, 2, ...k,

for the hypotheses

H0 : µ = 0

H1 : µ > 0.

on k−1 degrees of freedom. A significant result indicates that classifier A has greater

accuracy than classifier B.

2.2 Methodology

This section presents the proposed approach. Figure 2.4 gives an overview of the

structure of our sentiment analysis procedure.

Figure 2.4: Structure of sentiment analysis procedure.
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2.2.1 Reviews Data

Reviews are obtained from websites and the raw data set consists of a large number

of reviews, each with a set of sentences and a rating score. For example, hotel reviews

at TripAdvisor.com is a 5-star rating system, where customers describe their hotel

experience with regards to criteria such as location, environment and food services,

and finally give their rating score.

Before performing sentiment analysis, the raw data has to be processed. More

specifically, this involves word and sentence and word segmentation, i.e., breaking

down each review into a sequence of sentences and breaking down the sentences into

an unordered list of meaningful words, disregarding grammatical structure.

2.2.2 Dictionary System

A dictionary system is needed to provide meaning, in our case positive or negative

sentiment. Our dictionary system consists of two parts. One is a basic opinion

dictionary (OD), which contains the list of positive and negative words. We

use the English opinion lexicon dictionary [28] which contains 6,790 positive and

negative words commonly used in opinion surveys. For example, the dictionary lists

“good”,“great”,“nice”,“friendly” as positive words, and “bad”, “absurd”, “affront”

as negative words.

The second is a valence-shifter dictionary (VSD), which contains the list of

words that are negations, valence intensifiers, or valence diminishers. In ordinary

language, we generally use words to modify the sentiment expressed by other words.

For example, in a hotel review we might use expressions such as not satisfied, less

satisfied, satisfied or very satisfied to show different levels of satisfaction with a hotel.

Note that there are generally three ways of modifying sentiment expressed in the

original word (satisfied in the example above). These are either negations (e.g., not),

valence-intensifiers (e.g., very) or valence-diminishers (e.g., less). Negations are terms
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that reverse the sentiment of a certain word [44]. Valence-intensifiers and valence-

diminishers are terms that strengthen or weaken the degree of the expressed sentiment.

In order to accurately capture sentiment, we need to identify the presence of

such terms in the sentiment analysis process. We do this using the General Inquirer

system(GI) [54] which is available at http://www.wjh.harvard.edu/ inquirer/homecat.

htm. In the GI system, valence-intensifiers and diminishers are known as overstatements

and understatements respectively. The GI system contains 696 overstatements and

319 understatements. However, some words have several different definitions and

so appear multiple times in the GI system. Also, a few of the words appear

as overstatements and understatements. In these cases, we assign the word to

the category it appears most often. Finally, we obtain 578 overstatements as

valence-intensifiers, and 266 understatements as valence-diminishers.

The processed data for each review is matched with the two parts of the

dictionary system to find the number of occurrences of each positive/negative word

as well as any valence-shifters attached to these words. This is done through semantic

parsing, described below.

Semantic Parsing The preprocessed reviews are parsed using the Stanford parser

[7] to obtain the list of opinion words and valence shifters present in the data, often

referred to as the “scope”. The Stanford parser takes each word of the input text and

works out any dependency information between words. As an example, consider the

following review: The room is not fancy, but very clean. Figure 2.5 shows how parser

works on this sentence1. Here not fancy is a negation of the opinion word fancy. The

parser detects and assigns to it the neg dependency type. Similarly, very increases

the degree of the sentiment word clean, and the parser identifies it as the dependency

type, advmod.

1A demo is available at http://nlp.stanford.edu:8080/parser/index.jsp
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Figure 2.5: An example of the Stanford parser in action.

2.2.3 Candidate Feature Selection, and Numericalization

We describe here the construction of features using individual words (called unigrams)

and combinations of words and valence shifters (called bigrams), and of the

numericalization process of converting the features into numerical vectors.

Candidate Feature Selection The unigrams consist of individual words from the

opinion dictionary OD, which has 6,790 words. The bigrams are combination of

valence shifter with individual opinion word, such as “not good” or “rather efficient”.

The number of bigrams is the opinion dictionary size multiplied by the size of the

valence shifter dictionary VSD, resulting in a total of about 6 million bigrams.

However, if all these unigrams and bigrams are used as candidate features in the

classification model, the resulting matrix will be very large but also very sparse.

To reduce the amount of noise, we need to perform additional feature

integration. We follow the procedure proposed by [44]. First, we retain all the

unigrams as basic candidate features. Instead of using all the bigrams, for each specific

unigram word w, we construct 3 bigrams, denoted by neg w, more w, less w. Here

neg w represents any negations of opinion word w, more w any intensifier of w and

less w any diminisher of w. This greatly reduces the number of bigrams, since e.g.,
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all negations are treated as identical etc. In this way, the final candidate feature set

consists of 6,790 units (corresponding to the opinion dictionary size), with each unit

having four terms, 1 unigrams and 3 bigrams, (w, neg w, less w, w, more w). Hence,

the total feature size is 27,160.

Candidate Feature Detection and Numericalization Candidate feature detection

and numericalization consists of going through the actual data and identifying which

of the 27,160 elements in the candidate feature set are present, so that numerical

vectors for the features are generated for use in the classification model.

We first use the semantic parser to detect all unigrams the opinion dictionary

found in the reviews. For each review where a unigram w occurs, we assign a value

of 1 to this feature, otherwise it is set to 0. If the unigram is found, a further step is

performed to check if there are valence shifters around this unigram. If for example,

a valence intensifier belonging to the VSD is detected with this unigram, we assign

a value of 1 to the bigram more w, otherwise we set it 0. This is done similarly for

negations and diminishers. Note that we make our features binary. [43] showed that

using the frequency of word occurrence instead may actually degrade the performance

of the learning-based model.

2.2.4 Directed Graph Construction

The proposed method integrates the sentiment relations among words or phrases

into the classification process, and we use a directed graph to express the relative

sentiment strengths among candidate features.

The nodes of the graph represent sentiment candidate features including

unigrams and bigrams, while the the directed edges→ indicates the relative sentiment

strength between two nodes. For example, a bigram more beautiful, representing an

increasing sentiment, has a higher polarity than beautiful. Then we use more beautiful
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→ beautiful in the graph to indicate that the former has a higher strength than the

latter.

In our setup, the bigrams are not a specific phrase but represents the general

notion of negation, intensified or diminished valence. In other words, we only know

they have different strength with unigrams (i.e., reversing, increasing or decreasing),

but cannot directly measure their polarity. Hence, we construct the graph in two

stages. The first proposed stage is to find a reliable statistic of polarity for any word

or phrase. The second stage is to use the information contained in the two dictionary

systems, the opinion dictionary and the valence shifter dictionary, to get the polarity

of bigrams in nodes.

Stage I: Sentiment Polarity for Word or Phrase The sentiment polarity

SP (w) of a word or phrase w is based on the difference of its semantic word similarity

with two reference words, “good” and “bad”:

SP (word) =
sim(word, good)− sim(word, bad)

sim(good, bad)
. (2.10)

It essentially measures where each word/phrase w stands on the spectrum between

“good” and “bad”. The semantic word similarity, in turn, is obtained using a statistic

developed by [27], given in (2.1), which combines the results of two semantic analysis

methods, LSA and Wordnet, applied on the Stanford Webbase Corpus. Therefore,

based on the textual data contained in the corpus, each word w can be measured for

its similarity with “good” and with “bad”, denoted as sim(w, good) and sim(w, bad)

respectively.

We use their online service to obtain sim(w, good) and sim(w, bad) for every

word or phrase w in our candidate feature set and hence compute the sentiment

polarity SP (w).
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Stage II: Sentiment Polarity for Candidate Features The sentiment polarity

for each word can be computed using the procedure described above. To compute

the sentiment polarity for our candidate features, we need to determine the polarity

of each word w as well as its associated bigrams, i.e., more w, less w, neg w.

In their linguistic analysis study, [44] proposed to do the following: all positive

sentiment terms are assigned a value of 2, i.e., w=2 if w is a positive word. If the word

is preceded by an valence-intensifier in the same clause then a value of 3 is assigned,

i.e., more w=3. If a valence-diminisher is in the same clause instead, then less w is

set to 1. On the other hand, negative sentiment terms are given a value of -2, i.e.,

w=-2 if w is a negative word, and less w is set to -1, or more w set to -3 if w is

preceded by a valence-diminisher or a valence-intensifier respectively.

However, this method cannot recognize a difference in sentiment between words

like “nice” and “good” which are both assigned the same polarity. Hence, we use

the following method which avoids this drawback, and can provide different values

for different opinion words. We do this using the dictionary systems and the polarity

statistics given in (2.10).

We first introduce some notation. If intv denotes a valence-intensifier, then

the phrase with intv combined with an opinion word w is denoted by intv w, and

its polarity by SP (intv w). Similarly, the phrase dimv w consisting of a valence-

diminisher dimv and the opinion word w has polarity SP (dim w).

We explain the scoring procedure using an example. For the word good,

we compute the polarity of the bigram more good, denoted by SP(more good), by

averaging the polarities of the phrases which are valence-intensifiers combined with

the word good. That is, the polarity of more good is

SP (more good) = E(SP (intv good)).

24



Similarly,

SP (less good) = E(SP (dimv good)).

In addition, as [44] indicates, since a negation of a word is to reverse the sentiment

of that word, the polarity of neg good is the negative of the value of the polarity of

good. i.e.,

SP (neg good) = −SP (good).

With the above procedure, we can compute the polarities of all the nodes in

the graph, and the graph can be constructed by the partial orderings of each pair of

different words or phrases as follows

phrase1 → phrase2 if SP (phrase1) ≥ SP (phrase2).

For example, the graph will have more satisfied → satisfied. In the next section,

we use the graph in a classification system to reduce the parameter space and improve

predictive accuracy.

2.2.5 Machine Learning Classifier

In our sentiment analysis, we use the candidate features together with the graph

information in a learning-based model, like LMOC, SVM or RF to classify the reviews.

In order to evaluate the effectiveness of adding contextual valence shifters and graph

information into a classifier, we consider six classification systems. They are the basic

LMOC, enhanced LMOC, basic SVM and enhanced SVM, basic RF, enhanced RF.

Basic LMOC The basic LMOC uses only unigrams as features, but incorporates

the relational information between the unigrams as expressed in a graph.

Here we use only the unigrams from reviews that appear in opinion dictionary

D = {w1, .., wd} as positive or negative terms. Given n textual documents si, i =
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1, . . . , n and their sentiment scores ci, i = 1, . . . n, we convert si to a numerical vector

x(si) = (x1(si), ..., xd(si))
T , where xj(si) = I(wj ∈ si) indicates absence and presence

of wj in si. The English opinion lexicon dictionary has 6,790 words. To incorporate

the relational information expressed in graph into the classification system, we write

the relational constraints as β ∈ {β : Bβ ≥ 0}, where B is a constant matrix

with 6,790 by 6,790 containing partial orderings between features. Then (2.9) can be

formulated to solve:

min
β

(
||β||2

2
+ λ

n∑
i=1

K−1∑
k=1

ξik

)

subject to Bβ ≥ 0, sign(k − ci)(xTi β + β0k) ≥ 1− ξik,

ξik ≥ 0,β01 ≤ β02 ≤ ... ≤ β0,K−1.

(2.11)

Enhanced LMOC The Enhanced LMOC classifier extends the basic LMOC

classifier by including bigrams which are combinations of valence shifters with the

single words, as described in Sub-Section 2.2.4. That is, the candidate feature includes

6,790 units, each of which consists of four terms, neg w, less w, w, and more w.

The total feature size is 27,160. This classification system also uses the relational

information expressed in the graph, so the optimization procedure is formulated as

function (2.11) as well, except that the matrix B is 27,160 by 27,160 instead.

Basic SVM The feature set of the basic SVM classifier is the same as the basic

LMOC, i.e., the features are only the 6,790 unigrams of all the positive and negative

terms in the opinion dictionary. The values of the features are boolean, with a value of

1 if the feature word appears in the review, and 0 otherwise. However, any relational

information in the graph is not used. The SVM optimization criterion is formulated

in function (2.7).
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Table 2.3 Evaluation System Setup

Parameters Enhanced

LMOC

Basic

LMOC

Enhanced

SVM

Basic

SVM

Enhanced

RF

Basic

RF

Unigrams Yes Yes Yes Yes Yes Yes

Bigrams Yes No Yes No Yes No

Graph Yes Yes No No No No

Enhanced SVM The feature set of the enhanced SVM classifier like that of the

enhanced LMOC, consist of unigrams and their corresponding bigrams for a total of

27,160 features. However, the relational information is not used. Hence, the SVM

optimization criterion is given by function (2.7) as well.

Basic Random Forest (RF) The feature set of the basic RF classifier is the same

as the basic LMOC, i.e., the features are only the 6,790 unigrams of all the positive

and negative terms in the opinion dictionary. The values of the features are boolean,

with a value of 1 if the feature word appears in the review, and 0 otherwise. Similarly,

any relational information in the graph is not used. The RF optimization criterion is

given in Sub-Section 2.1.3.

Enhanced RF The feature set of the enhanced RF classifier like that of the

enhanced LMOC, consist of unigrams and their valence shifting bigrams for a

total of 27,160 features, but relational information is not used. Therefore, the RF

optimization criteration is given by Sub-Section 2.1.3 as well.

Hence, Tables 2.3 and 2.4 summarize the components of these methods.

27



Table 2.4 Evaluation System Setup for LMOC

Systems Graph Node Graph Edge

Enhanced

LMOC

Unigram +

Bigram

semantic relationship between unigram and valence

shifting bigram

Basic LMOC Unigram semantic relationship between unigram

2.2.6 Test Error

In order to compare the classification methods, we need a method to evaluate the

classification results. Suppose there are K categories. The test error TE is given by

TE =
1

ntest

ntest∑
1

l(Ci, C
predicted
i ), where

l(Ci, C
predicted
i ) =

1

K − 1
|Ci − Cpredicted

i |.
(2.12)

Here, ntest is the size of the test sample, Ci is the true label for instance xi. For SVM,

Cpredicted
i is obtained using the voting strategy described in Sub-Section 2.1.4. The

quantity l(Ci, C
predicted
i ) represents the evaluation loss.

For LMOC, Cpredicted
i can be represented by the function f(xi), and so can be

expressed in a more specific form:

TE =
1

ntest

ntest∑
1

l(Ci, f(xi)) where

l(Ci, f(xi)) =
1

K − 1

K−1∑
k=1

EI[fk{xi}sign(k − Ci) ≤ 0].

(2.13)

Here, fk{x}sign(k − Ci) ≤ 0 implies that x is misclassified by fk.

2.3 Asymptotic Property

In this section, we give a finite-sample sentiment error bound for the proposed method,

which is obtained by the minimizer of function (2.11) with both bigrams and unigrams

as features.
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The general form of (2.11) is

min
β

(
1

n(K − 1)

n∑
i=1

K−1∑
k=1

V (sign(k − ci)fk(x(si))) + λJ(β)

)

subject to β ∈ B, β01 < β02 < · · · < β0,K−1,

(2.14)

where V (z) = min(1, (1 − z)+) is the large-margin loss. Before proceeding, we

introduce some notation. Let L(y,f(x(s))) = (K − 1)−1
∑K−1

k=1 V (ykfk(x(s))) be

the cost function in function (2.14) with yk = sign(k − c). Let ev(f ,f
0) =

(K − 1)−1
∑K−1

k=1 (EV (Ykfk(x(S))))−EV (Ykf
0
k (x(S))) be the error induced by using

a margin loss V. Denote by FB = {f = (f1, · · · , fK−1) : fk(x(s)) = βTx(s)+β0k,β ∈

B, β01 < β02 < · · · < β0,K−1} the parameter space, where the sentiment strength

graph is built into the parameter space through relational constraints β ∈ B = {β :

Bβ ≥ 0}. The following technical assumptions are made.

Assumption 1. For some positive sequence ξn,d,K → 0, there exists f ∗ =

(f ∗1 , · · · , f ∗K−1) ∈ FB with f ∗k (x(s)) = (β̃∗k)
T
x̃T(s) such that eV (f ∗,f 0) ≤ ξn,d,k.

Assumption 1 requires that the ideal sentiment prediction function f 0 can be

well-approximated by FB.

Next, we define a truncated V T(ykfk(x(s))) = min(V (ykfk(x(s))), T ) for some

constant T ≥ 0 such that max(V (Ykf
0
k (x(S))), V (Ykf

∗
k (x(S)))) ≤ T almost surely.

Further, let LT(y,f(x(s))) = (K − 1)−1
∑K−1

k=1 V
T(ykfk(x(s))) and eLT(f ,f 0) =

ELT(Ykfk(x(S)))− ELT(Ykf
0
k (x(S))).

Assumption 2. There exist constants α > 0, γ > 0, a1 > 0 and a2 > 0 such that for

any sufficiently small δ > 0 and FB,δ = {f ∈ FB : eLT(f ,f 0) ≤ δ},

sup
f∈FB,δ

e(f ,f 0) ≤ a1δ
a, (2.15)

sup
f∈FB,δ

Var
(
LT(Yk, fk(x(S)))− L(Yk, f

0
k (x(S)))

)
≤ a2δ

γ. (2.16)
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Assumption 2 describes the local smoothness of e(f ,f 0) and Var(LT(Yk, fk(x(S)))

−L(Yk, f
0
k (x(S)))) within a neighborhood of f 0. The exponents α and γ depend on

the joint distribution of (S,C) as well as the loss function L. Moreover, inequality

(2.16) is implied by the low noise assumption [36].

Let HB(ε,FB) be defined as the logarithm of the cardinality of the smallest

ε-bracketing function set of FB.

Let FB(t) = {f ∈ FB : J(β̃) ≤ J∗d,Kt}, FLB (t) = {(K − 1)−1
∑K−1

k=1 V
T(ykf(x(s))) :

f ∈ FB(t)}, and J̄d,K = max(J(β̃∗), 1) that may depend on (d,K).

Assumption 3. For some constants ai > 0; i = 3, · · · , 5 and εn,d,K > 0,

sup
t≥2

φ(εn,d,K , t) ≤ a5n
1/2, (2.17)

where φ(ε, t) =
∫ a1/22 Dβ/2

a4D
H

1/2
B (w,FLB (t))dw/D, and D = D(ε, λ, t) = min(ε2 +λ(t/2−

1)J̄d,K , 1).

Theorem 1. Under Assumptions 1-3, for any large margin sentiment prediction rule

φ̂ defined by function (2.8), there exists a constant a6 > 0 such that, for any η ≥ 1,

P
(
e(φ̂, φ0) ≥ a2ηδ

2α
n,d,K

)
≤ 3.5 exp(−a6η2−min(β,1)n(λJ̄d,K)

2−min(β,1)
), (2.18)

provided that λ−1 ≥ 2δ−2n,d,K J̄d,K, where δ2n,d,K = min(ε2n,d,K + 2ξn,d,K , 1), and

α,β, εn,d,K, ξn,d,K are defined in Assumptions 1-3.

The proof of Theorem 1 is similar to that in [60] and is given in Appendix A.

The upper bound indicates the importance of the imposed relational constraints since

they may reduce the size of the candidate function class FB. Hence, we expect to

realize better sentiment prediction accuracy than its alternative like SVM which does

not incorporate such a graph among the words.

2.4 Simulation Study

Here, we describe our simulation study to compare the six classification systems,

LMOC, SVM, RF and their enhanced versions, and report the results.
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We consider a dictionary of size d, and each simulated review is represented by

a 4d-element vector x consisting of 0’s and 1’s to represent the absence or presence

of each word w in the dictionary as well as its 3 associated bigrams, neg w, less w,

and more w. We generate these values from the Bernoulli distribution independently,

with probability 0.1 of getting a 1. The resulting matrix X is n× 4d in size.

Next, we set the coefficients that capture the polarity of each word w as a value

in (−1, 1). Without loss of generality, we assume that for the d unigrams we have

β1 ≥ ... ≥ βd. Then, for each coefficient βi, we generate three more coefficients

βi1, βi2, βi3 for its corresponding bigrams, whose values would be constrained by the

value of βi. Specifically, we set


βi1 = −βi

1 ≥ βi3 ≥ βi ≥ βi2 ≥ 0 if βi ≥ 0

−1 ≤ βi3 ≤ βi ≤ βi2 ≤ 0 otherwise.

(2.19)

That is, the polarity of neg wi is opposite sign to wi, indicating that it represents

the opposite sentiment. From the second line of function (2.14), if βi is a positive

value, implying the unigram wi is a positive word, then the more wi bigram has

a higher polarity βi3 than wi, while less wi has a lower polarity βi2 than wi. These

values are positive, since both of these latter bigrams still represent postive sentiment.

Similarly, from the third line of (2.14), if βi is negative, implying that the unigram

wi is a negative word, then more wi has a lower polarity value than wi, and less wi

has a higher polarity value than wi, both less than 0.

We consider both binary ratings as well as ratings with ordinal categories. For

the binary case, the rating score ci is given by sign(xTi β). For ordinal categories,

we need to generate intercepts to separate the categories. For example, for K = 5

categories, we have four intercepts β01, β02, β03, β04 such that −2 ≤ β01... ≤ β04 ≤ 2.

31



The rating score ci is then determined according to the following formulation:

ci = min{k : xTi β ≥ −β0k},

which corresponds the decision rule function (2.8) for LMOC.

The full data then consists of (xi, ci), i = 1, ..., n, and we use xi to predict ci. In

the simulation study we use (n, 4d) = (1000, 2000), and (4000, 16000) for binary and

ordinal sentiment analysis, respectively, so that the number of unigrams, d is 500,

and 4000, respectively. We classify the data using the six classification systems and

measure their performance using functions (2.12) and (2.13). We use an independent

sample of size n for cross-validation with categories equally distributed to obtain the

value of the tuning parameter λ in function (2.11), minimizing the test error functions

(2.12) and (2.13) over a set of values of λ given by λ = {10−3+t}, t = 0, ..., 10. We

then use this value of λ with another independent sample of size 104. Each test error

is averaged over 100 simulation replications. Table 2.5, Figure 2.6, and Figure 2.7

show the test error obtained from our study.

Figure 2.6: Test Error for binary case in simulation study.

From Table 2.5, Figure 2.6 and Figure 2.7, comparing basic SVM system

with enhanced SVM system for each experiment, and comparing basic RF system

with enhanced RF system for each experiment, we find that the enhanced SVM
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Figure 2.7: Test Error for ordinal case in simulation study.

Table 2.5 The Mean Test Errors as well as their Standard Errors (in parentheses) Over

100 Simulation Replications in Simulated Examples for 6 Classification Systems: Enhanced

LMOC (proposed), Basic LMOC, Enhanced SVM, Basic SVM, Enhanced Random Forest,

Basic Random Forest.

Test Error (Simulation)

Dim

(4d)

Enhanced

LMOC

Basic

LMOC

Enhanced

SVM

Basic

SVM

Enhanced

RF

Basic

RF

Binary 2000
0.144

(0.0050)

0.200

(0.0070)

0.303

(0.0022)

0.310

(0.0010)

0.314

(0.0034)

0.318

(0.0030)

Binary 16000
0.181

(0.0050)

0.217

(0.0090)

0.352

(0.0007)

0.362

(0.0008)

0.358

(0.0025)

0.361

(0.0031)

Ordinal 2000
0.066

(0.0004)

0.070

(0.0007)

0.225

(0.0007)

0.244

(0.0006)

0.205

(0.0011)

0.206

(0.0009)

Ordinal 16000
0.075

(0.0008)

0.100

(0.0005)

0.308

(0.0003)

0.320

(0.0005)

0.305

(0.0009)

0.322

(0.0007)
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and enhanced RF systems which use valence shifting bigrams for classification have

better performance (lower test error) than the corresponding basic classifier system.

Moreover, the improvement is statistically significant at the level α = 0.05. Similarly,

comparing the basic LMOC with the enhanced LMOC systems, the enhanced LMOC

has lower test error, with an improvement of at least 5%, which suggests that using

bigrams based on valence shifters can improve classification accuracy. In addition,

comparing the LMOC system with the SVM and RF system, we find that the

LMOC system, which uses relational information as represented by constraints in the

β’s, performs better than SVM and RF, for both the basic and enhanced versions.

This suggests that using relational information can offer a statistically significant

improvement in classification accuracy.

2.5 Real Data Analysis

2.5.1 Data Set

In order to better evaluate the performance of proposed method, we use 3 different

data sets of reviews with their corresponding rating system.

Hotel Reviews The first data set we use consists of TripAdvisor reviews obtained

from the website described in [1], with 15,763 hotel reviews. For each textual review,

an integer rating between 1 and 5 represents the degree of customer satisfaction.

Movie Reviews The second data set is classified movie reviews prepared by [42].

This data set contains 2000 movie reviews: 1000 positive and 1000 negative. The

reviews were originally collected from the Internet Movie Database (IMDb) archive

rec.arts.movies.reviews. Their classification as positive or negative is automatically

extracted from the ratings, as specified by the original reviewer. They are

currently available at http://www.cs.cornel.edu/people/pabo/movie-review-data/.
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Only reviews where the author indicated the movie’s rating with either stars or some

numerical system were included.

Restaurant Reviews Another data set is classified restaurant reviews collected

from OpenTable.com. This data set contains 21,000 reviews. This website aggregates

user opinions on various restaurants including a text-based review and 5-star ratings.

The restaurant reviews are provided exclusively by customers who have used the site

to make a reservation at a particular restaurant. Since the reviews are voluntary, the

comments are more likely to be unbiased.

2.5.2 Classification Analysis

We first extracted the valence words and shifters from the above data sets and formed

unigrams and bigrams to use as potential features for prediction. We then used the

statistic (2.10) to obtain the relative polarities of these features and construct the

corresponding directed graph. In total there were 27,160 features when referred to

the opinion dictionary. In addition, to consider the impact of dictionary system

on the performance of proposed method, we use another dictionary, the General

Inquirer for comparison. The General Inquirer contains 1,915 positive words and

2,291 negative words. Hence, in total there were 16,824 features with GI system.

The evaluation system setup was the same as that used in the simulation study. The

reviews were classified using LMOC, with coefficients constrained according to the

directed graph. Finally, to compare the effectiveness of using the directed graph,

we also classified the reviews using SVM as well as RF on unigrams alone and with

unigrams and bigrams under each dictionary. For classification, reviews were chosen

randomly with categories equally distributed in the training data. The same tuning

scheme as described Section 2.3 was applied to optimize the performance of each

method. The experiment was replicated 100 times. Test error for each classifier
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system and each dictionary system were computed as described in Section 2.2.6 and

the result are shown in Figure 2.8 - Figure 2.10 and in Table 2.6.

Figure 2.8: Test Error for hotel reviews using different dictionary systems. Note: OD is

Opinion dictionary. GI is General Inquirer.

Feature Effectiveness From the numerical result, the proposed enhanced LMOC

method yields about a 4%-32% improvement over standard SVM and RF in terms of

test error, with relatively small standard errors both under Opinion Dictionary and

General Inquirer. The improvement, however, appears to be less substantial than

in the simulated examples, partially due to incomplete dictionary information, ie.,

words used by reviewers that are not in the dictionary. In addition, as shown in

Figures 2.8 -2.10, the Opinion Dictionary with 6.790 opinion words, provided more

accurate classification compared with the GI system, which has only 4,206 opinion

words.

Although the Opinion dictionary and General Inquirer dictionary contain a

large number of common positive words and negative words, they are not complete

and may not cover important keywords in different domains. This is especially

so with the restaurant reviews - although there were obvious differences between
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Figure 2.9: Test Error for movie reviews using different dictionary systems. Note: OD is

Opinion dictionary. GI is General Inquirer.

Figure 2.10: Test Error for restaurant reviews using different dictionary systems. Note:

OD is Opinion dictionary. GI is General Inquirer.
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Table 2.6 The Mean Test Errors as well as their Standard Errors (in parentheses) over 100

Simulation Replications for 6 Classification Systems: Enhanced LMOC (proposed), Basic

LMOC, Enhanced SVM, Basic SVM, Enhanced Random Forest, Basic Random Forest Using

three Different Real Datasets and Two Different Dictionary Systems (Opinion Dictionary,

General Inquirer).

Test Error (Real Data)

Dictionary

System

Enhanced

LMOC

Basic

LMOC

Enhanced

SVM

Basic

SVM

Enhanced

RF

Basic

RF

Hotels
OD

0.139

(0.0003)

0.144

(0.0004)

0.150

(0.0008)

0.152

(0.0007)

0.155

(0.0006)

0.156

(0.0008)

GI
0.146

(0.0008)

0.153

(0.0006)

0.157

(0.0009)

0.162

(0.0009)

0.163

(0.0004)

0.179

(0.0015)

Movies
OD

0.131

(0.0005)

0.157

(0.0009)

0.192

(0.0007)

0.199

(0.0008)

0.185

(0.0005)

0.193

(0.0003)

GI
0.150

(0.0004)

0.189

(0.0008)

0.297

(0.0007)

0.312

(0.0006)

0.283

(0.0004)

0.308

(0.0004)

Restaurant
OD

0.291

(0.0004)

0.289

(0.0007)

0.297

(0.0011)

0.302

(0.0010)

0.366

(0.0011)

0.352

(0.0009)

GI
0.344

(0.0003)

0.350

(0.0007)

0.352

(0.0008)

0.349

(0.0011)

0.361

(0.0003)

0.355

(0.0007)
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methods for the hotel and movie reviews, (Figure 2.8 and Figure 2.9), there was

little difference between methods for restaurants. However, when we added 100 high

frequency opinion words such as “fresh”,“tasty”,“filling” and “spicy” found in the

reviews that were not in the Opinion Dictionary or General Inquirer System, there

was marked improvement in test error for all methods, especially for our proposed

Enhanced LMOC method, where test error fell from 0.305 to 0.210 (Figure 2.11).

Figure 2.11: Test Error for restaurant reviews using different dictionary systems. Note:

New OD is Opinion Dictionary after adding top 100 high frequency words. Old OD is

original Opinion Dictionary system.

To explore the importance of valence shifting bigrams, we also ran the same

system for hotel reviews on a smaller set of 1,000 features pre-selected using random

forest. The results are shown in Tables 2.7 and 2.8.

Of the 1000 features selected by Random Forest, almost 400 of them were

bigrams. In the SVM system, the pre-selected feature sets including these 400 bigrams

provided better performance even than the one with the complete set of unigrams and

bigrams. Moreover, in the LMOC system, the pre-selected feature sets with these

bigrams achieved the same level of performance as the one with full unigram and

bigrams. Hence, we believe that the use of bigrams in the form of valence shifters with
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Table 2.7 Mean Test Errors as well as Their Standard Errors (in parentheses) over 100

Simulation Replications for the TripAdvisor.com Data Example. Results are All Systems

with SVM classifier. The Basic System Counts Positive and Negative Terms with Full

Feature Size of 6,790 and Reduced Feature Size of 1,000 Selected Using Random Forest.

The Enhanced System Adds Contextual Valence Shifters.

System Feature size Test Errors

Basic: SVM, full unigrams 6,790 0.152(0.0007)

Basic: SVM, selected unigrams 1,000 0.152(0.0012)

Enhanced: SVM,

full unigrams+bigrams
27,160 0.150(0.0008)

Enhanced: SVM,

selected unigrams+bigrams
1,000 0.149(0.0009)

Table 2.8 Mean Test Errors as well as their Standard Errors (in parentheses) Over 100

Simulation Replications for the TripAdvisor.com Data Example. Results for All Systems

with Large Margin Ordinal Classifier. The Basic System Counts Positive and Negative

Terms with Full Feature Size of 27,160 and Reduced Feature Size of 1,000 Selected Using

Random Forest. The Enhanced System Adds Contextual Valence Shifters.

System Feature size Test Errors

Basic LMOC,

full unigrams
6,790 0.144(0.0004)

Basic LMOC,

selected unigrams
1,000 0.144(0.0009)

Enhanced LMOC,

full unigrams+bigrams
27,160 0.139(0.0003)

Enhanced LMOC,

selected unigrams+bigrams
1,000 0.139(0.0004)
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Table 2.9 Top Words with Large Absolute Coefficients

Positive more awesome, awesome, more comfortable, comfortable, more

recommended, more impressed, appreciated, more good, good, nice

Negative ignorant, more pitiful, tainted, more desolate, desolate, more

insulting, more appalling, appalling, crafty, false

opinion words better captures the sentiment of the reviews, improving classification

performance.

Graph Effectiveness For all three sets of hotel, movie and restaurant reviews,

we find that the proposed Enhanced LMOC method performs better than enhanced

SVM or enhanced RF, especially after including additional high frequency words

into the dictionary system. In Table 2.9 we list the top 20 unigrams and valence

shifting bigrams with the largest absolute coefficients in the sentiment function for

hotel reviews. These words tend to have strong sentiment polarity, which contributed

more to the classification of overall polarity of hotel reviews.

2.5.3 Discussion

In this chapter, we propose combining valence shifters and individual opinion words

into bigrams to use in an ordinal margin classifier. The classifier is designed to

utilize the relational information between features expressed in the form of directed

graph. This is achieved by constructing relational constraints from an existing

Semantic similarity measure statistic. Our numerical experiment suggests that the

proposed method performs well and compares favorably with strong competitors in

the literature. An application to hotel reviews, movie data, and restaurant data

demonstrate the utility of the proposed method.
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CHAPTER 3

PROPOSED PENALIZED AND DATA-DRIVEN BASED METHOD

FOR THE ESTIMATION OF TWO GROUPS OF INDIVIDUAL

NETWORKS

3.1 Method

In this study, we consider the problem of estimating two groups of individual networks

simultaneously. We assume that the individual networks in the same group tend to

have similar structure, while individuals from different groups are allowed to exhibit

quite different structures. Such scenarios have been frequently seen in practice. For

example, a group of healthy individuals and a group of patients. Our goal is to

infer the structure of a graph and obtain an estimate of the partial correlation matrix

describing the relationship among random variables within each of samples in healthy

group and each of samples in diseased group. We first introduce the basic framework

for estimating one group of individual networks, then we extend it to jointly estimate

two groups of individual networks.

3.1.1 Single Group Multiple Networks Estimation

For one group of K samples, we denote that the k-th sample Y k = (Y k
1 , · · · ,Y k

P )

contains nk observations, which are independently sampled from a P -dimensional

multivariate normal distribution with mean µk and covariance Σk. The structure

of each distribution can be conveniently represented by an undirected graph Gk =

(Γ, Ek) with its nodes in Γ = {1, · · · , P}, and edges in Ek ⊆ Γ × Γ. We denote the

k-th sample of the p-th variable as Y k
p = (ykp1, · · · , ykpnk)

T ∈ Rnk×1; p = 1, · · · , P ;

k = 1, · · · , K.

To estimate the partial correlation matrix is to explore the conditional

independence structure for every pair of variables, given all other remaining variables.

42



We propose to perform cyclic linear regression, that is, for each node p, consider

that variable Y k
p is the response, and {Y k

q ; 1 ≤ q ≤ P, q 6= p} are the predictor

variables. Namely, P linear regressions are needed for each matrix. It is related to

the neighborhood selection approach proposed by Meinshausen and Bühlmann [41],

where LASSO regression for each node is performed separately on the remaining of

the variables. Here, we denote the design matrix for the p-th regression of the k-th

matrix to be Xk
p = (Y k

1 , · · · ,Y k
p−1,Y

k
p+1, · · · ,Y k

P ) ∈ Rnk×(P−1), excluding the p-th

column of Y k. We define the model coefficients for the p-th linear regression to be

βkp =
(
βkp1, · · · , βkp(p−1), βkp(p+1), · · · , βkpP

)T
∈ R(P−1)×1. Then, the partial correlation

matrices are defined by Bk = (βk1 , · · · ,βkP )
T

; k = 1, · · · , K. To encourage sparsity

and to account for the networks relatedness we introduce the adaptive lasso penalty

[69] into the least squares approach. To encourage the commonality of individual

networks in the group, we consider element-wise clustering of matrices via `2 penalty.

When P is large, the number of extracted features for each node through function

(3.1) is typically huge. Chances are high that many of generated features may

be non-discriminative across all individuals. Therefore, it is better to impose a

feature selection indicator to make the learned features discriminative only on some

dimensions in the regression for each node. We denote the feature selection indicator,

αp = (αp1, · · · , αp(p−1), αp(p+1), · · · , αpP )T where αij ≥ 0, i, j = 1, · · · , P , i 6= j to be

the learned importance score of the remaining variables in the regression for the p-th

node. This yields the following general penalized loss function

min
B1···BK

K∑
k=1

P∑
p=1

(‖Xk
pβ

k
p − Y k

p ‖22 + λ1‖w−γp
T
βkp‖1) + λ2

K∑
k,k′=1

P∑
p=1

‖βkp − βk
′

p ‖2Ap , (3.1)

where Ap = diag(αp). We denote ‖β‖M = (βTMβ)
1/2

for a vector β ∈ Rd, and a

symmetric d × d positive definite matrix M . There are two tuning parameters, λ1

which controls the sparsity acrossB1, · · · ,BK , and λ2 which encouragesB1, · · · ,BK

to share common structure. The adaptive weights are wp ∈ R(P−1); p = 1, · · · , P . We
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use shared adaptive weights W = (w1, w2, · · · , wP ) ∈ R(P−1)×P to regularize over all

the K samples to obtain their partial correlation matrix B1, · · · ,BK , simultaneously.

3.1.2 Two Groups Joint Penalized Estimation

Suppose we are given K1 samples in healthy group and K2 samples in diseased group.

Within each specific group, we consider element-wise clustering of matrices using `2

penalty to encourage the common structure. Between two groups, we restrict the

element-wise distance of matrices in a different degree to identity and reconstruct the

heterogeneity. The prior knowledge concerning group is specified in an undirected

graph U = (V, E), where V = {1, · · · , (K1 +K2)} is a set of individual networks from

two groups, and E denote a set of edges that represent the connection between two

networks. The corresponding two nodes are connected if two individuals are in the

same group. In the model of estimating two groups of individual networks, we consider

adding the feature selection indicator as well, which is crucial for differentiating the

network pattern of each individual between different groups. To estimate and improve

this model, we propose the following joint sparse regression penalized method through

incorporating one penalized criterion into (3.1),

minB

K1+K2∑
k=1

P∑
p=1

(‖Xk
pβ

k
p − Y k

p ‖22 + λ1‖w−γp
T
βkp‖1)

+ λ2

K1+K2∑
µ,v=1

sµv

P∑
p=1

‖βµp − βvp‖2Ap

s.t. wp ≥ 0, wp · 1 = ωp;
P∑
p=1

tr(Ap) = 1,

(3.2)

where B = (B1 · · ·BK1+K2). The two tuning parameters, λ1 controls the sparsity

across B1, · · · ,BK1+K2 , and λ2 encourages B1, · · · ,BK1+K2 belonging to the same

group to share certain characteristics. We set sµv = 1 if (µ, v) ∈ E , otherwise sµv = a;

0 ≤ a ≤ 1. Specifically, as a = 1, which indicates the network distance of individuals
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between groups is the same with that within group, we believe that the model for

single group networks estimation defined in function (3.1) is the special case of our

proposed model. The weight parameter a is used to detect the heterogeneity between

two groups. We propose two different ways to tune the value of a. The first commonly

used way is combining λ2 as `2 penalty. That is, the identification of heterogeneity

is learned through the cross-validation, which is the most popular approach for the

regularized model to select the value of penalty. The second way is using a data-driven

based adaptive method to tune the value of a, which is set to be the ratio of expected

network distance within each group to that between two groups. We update it by

continuously training the data and the obtained updated partial correlation matrices.

We expect it to favorably reconstruct the true heterogeneity via learning the ratio

based on fixed λ2. The detailed description about this adaptive method is presented

in Section 3.4.

3.2 Optimization Algorithm

We now detail an iterative optimization procedure for the first proposed method

which takes a as the part of the `2 penalty by interactively performing the feature

learning and feature screening by learning the importance of features.

3.2.1 Fix Ap and Iteratively Solve for wp and βkp

Suppose we have an initial Ap, which states that some features for the p-th regression

are more important. Then we can solve wp and βkp iteratively, such that features are

discriminative on selected dimensions specified by Ap.

In this step, the P sub-problems can be separated. Therefore, we can optimize

over p = 1, · · · , P , independently:

minB

K∑
k=1

(‖Xk
pβ

k
p − Y k

p ‖22 + λ1‖w−γp
T
βkp‖1) + λ2

∑
µv

sµv‖βµp − βvp‖2Ap

s.t. w ≥ 0, wp · 1 = ωp.

(3.3)
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For this problem, we need to solve it iteratively among the two sets of variables, wp

and βkp .

(a). Fix wp and optimize βkp One needs to repeatedly optimize over the two

groups of individual network k until convergence, k = 1, · · · , K1 +K2. To derive this,

suppose we want to update βkp . Then the objective function can be written as

minB‖Xk
pβ

k
p − Y k

p ‖22 + λ1‖w−γp
T
βkp‖1 + 2λ2

∑
i 6=k

ski‖βkp − βip‖2Ap

+ const.

(3.4)

Then this can be turned to

min
(
βkp

T
Qk
pβ

k
p − 2(bkp)

T
βkp + λ1‖w−γp

T
βkp‖1

)
(3.5)

where

Qk
p = (Xk

p )
T
Xk

p +Ap · 2λ2
∑
i 6=k

ski

bkp = (Xk
p )

T
ykp + 2λ2

∑
i 6=k

skiApβ
k
p .

Solving (3.5) can be converted to a standard adaptive LASSO problem by taking

singular value decomposition of the Gram matrix Qk
p. We suppose Qk

p = Uk
pΣk

pU
k
p
T

.

Let Hk
p = Σk

p
1/2
Uk
p
T

and Zk
p = (Hk

pH
k
p
T

)
−1
·Hk

p · bkp, then (3.5) can be written as

‖Hk
p · βkp − Zk

p‖22 + λ1‖w−γp
T
βkp‖1,

which is the adaptive LASSO.

(b). Fix βkp and optimize wp Our optimization problem becomes

min

K1+K2∑
k=1

‖w−γp
T · βkp‖1

s.t. wp ≥ 0, wp · 1 = ωp,

(3.6)
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which has a closed form solution,

wp =

 θ
1

γ+1
p

‖θ
1

γ+1
p ‖1

ωp,

where θp =
∑K1+K2

k=1 |βkp |.

3.2.2 Fix W , B and Solve A

Let A = diag(A1, · · · ,AP ). We can fix W and B, and then solve for A by solving

the objective function

minA

K1+K2∑
µ,v=1

sµv(B
µ −Bv)TA(Bµ −Bv)

s.t. tr(A) = 1,

(3.7)

which is a simple linear programming problem.

3.2.3 Algorithm

Putting them together, we have Algorithm 1.

Algorithm 1: Joint Sparse Regression Penalized Method

Input: Y 1, · · · ,Y K1+K2 , λ1, λ2, a, ω1, · · · , ωP
Output: solution B = (B1, · · · ,BK1+K2) to (3.2)

1 Initialize A(0) to be identity matrices and w
(0)
p with equal entries for

p = 1, · · · , P ;

2 for i = 1, 2, · · · do

3 for p = 1, · · · , P do

4 Fix A(i−1) and update β1
p
(i)
, · · · ,βK1+K2

p
(i)

and w
(i)
p via solving

problem (3.3)

5 Fix B(i),W (i) and update A(i) via solving problem (3.7);

6 if converge then

7 return B = B(i),A = A(i),W = W (i);
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3.2.4 Model Selection

In practice, the choice of the tuning parameter is important for balancing between

the goodness-of-fit and complexity of the model and optimizing the predictive

power. Commonly used approaches are Bayesian Information Criterion (BIC), Akaike

Information Criterion (AIC) and cross validation. Here, we propose using the

cross-validation method to select the tuning parameter, which is expected to be more

accurate based on the result of Guo et al. [26] who compared the performance for

different approaches. We define the predictive criterion as

CV(λ) =

K1+K2∑
k=1

P∑
p=1

n∑
i=1

(xkpiβ
k
p(λ)− ykpi)2, (3.8)

where λ = (λ1, λ2, a) and βkp(λ) is the estimated partial correlation for the p-th node

on the k-th network using the fixed tuning parameter λ. The quantities ykpi and xkpi

are the corresponding response and predictors for the i-th observation. A grid search

can be performed to select λ over its domain through λ? = argminλCV(λ).

3.3 Properties of the Proposed Procedure

3.3.1 The Grouping Effect

We show in this section that the estimates of (3.2) can lead to desirable grouping

effects for individual networks that are in the same group. If we consider the simple

case when only two individual networks are in the same group and the rest are in the

another group, the following theorem provides an upper bound on the difference of

the estimates between these two networks from (3.2).

Theorem 2. Given dataset Y k for each k = 1, · · · , K1 + K2 and three fixed scalars

(λ1, λ2, a), the response Y k
p for each p and k is centered and predictors Xk

p for each

p and k are standardized. Let B̂(λ1, λ2, a) be the solution to (3.2). Suppose that

for j ∈ {1, · · · , p − 1, p + 1, · · · , P}, β̂µpj(λ1, λ2, a)β̂vpj(λ1, λ2, a) > 0, and in a group,

individual networks µ and v are linked only to each other. Define

Dλ1,λ2,a(µ, v, p, j) =
1

‖y‖2
|β̂µpj(λ1, λ2, a)− β̂vpj(λ1, λ2, a)|,
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then

Dλ1,λ2,a(µ, v, p, j) ≤
1

(2λ2 + λ2aK2)αpj

√
2(1− ρ), (3.9)

where ‖y‖2 =
√∑

k

∑
p

∑n
i=1 |ykpi|2 and ρ = xµpj

Txvpj. x
k
pj is the j-th feature for the

p-th regression on the k-th individual network.

The upper bound in (3.9) gives a quantitative description for the grouping effect

of method (3.2). For the simple case where xµpj and xvpj are highly correlated, i.e.,

ρ = 1, then the difference between the coefficient paths of features j of the p-th

node for network µ and v is almost 0. Furthermore, if Theorem 2 holds for any

j ∈ {1, · · · , p−1, p+1, · · · , P}, the difference of estimated matrices between network

µ and network v is approximately 0.

3.3.2 Asymptotic Property

In this section, we investigate the theoretical aspects of the ideal version, `0-

constrained method and its computationally surrogate, our proposed method.

`0-Constrained version First consider a `0-constrained version of (3.2):

minβQ(β) =

K1+K2∑
k=1

P∑
p=1

(‖Xk
pβ

k
p − Y k

p ‖22, subject to

K1+K2∑
k=1

P∑
p=1

1(|βkp | 6= 0) ≤ C1,
∑

{(µ,v)∈E}

P∑
p=1

1(|βµp − βvp | 6= 0) ≤ C2,

∑
{(µ,v)6∈E}

P∑
p=1

1(|βµp − βvp | = 0) ≤ C3,

(3.10)

where β ∈ Rd and C1, C2, C3 are the three non-negative tuning parameters. Similarly,

C1 controls the sparsity across all individual networks in two groups. C2 encourages

the clustering across individual networks from the same group. C3 encourages the

differentiating among individuals in two groups.
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With regards to simultaneous separating and grouping pursuit and feature

selection, we will prove that the global minimizer of function (3.10) recovers the

“oracle estimator” provided that sparseness, grouping and differentiating structures

are known ahead. We adopt the similar setup of [68] for the asymptotic analysis.

Oracle Estimator and Consistent Graph To define the oracle estimator,

let G(β) denote a partition of I ≡ {1, · · · , d} by the parameter β containing the

clustering of individual networks in the same group and the differentiating of networks

in two groups, that is, G(β) = {I0(β), · · · , IS(β)(β)}, with I0(β) = I\A(β) and

Is(β) satisfying βj = βj′ ; j, j
′ ∈ Is(β); s = 1, · · · , S(β), where S(β) is the number

of nonzero groups and A(β) ≡ {i : βi 6= 0} is the support of β. Let (µ, v) ∈ E

denote that all the entries of the partial correlation matrices for network µ and v are

correspondingly grouped. Let G0 = G(β0) be the true partition induced by β0, the

true parameter value and β0 ∈ Rd.

Definition 3.3.1. Given G0, the oracle estimator is defined as: β̂ol = argminβ:G(β)=G0Q(β),

the corresponding ordinary least square estimator.

Definition 3.3.2. An undirected graph U = (I, E) is consistent with the true group

G0 = {I00 , · · · , I0s0}, if the subgraph restricted on node set I0j is connected; j =

1, · · · , S0.

Given a graph U = (I, E), let M = {β : C1(β) ≤ d0, C2(β) ≤ c2, C3(β) ≤

c3,G(β) 6= G(β0)}, where d0 = |A0| with A0 = A(β0). Given a partition G, let

MG = {β ∈ M : G(β) = G}. For an given index set A ⊆ I, let MA = {β ∈

M : A(β) = A}. Let Mi = ∪A:|A0\A|=iMA, M∗
i = max

A:|A0\A|=i|{G(β) : β ∈ MA}|;

i = 0, · · · , d0, and M∗ = exp(max0≤i≤d0
logM∗i
max(i,1)

). M∗ quantifies the complexity of

the space of candidate partial correlation matrices denoted by the number of nonzero

entries. The degree-of-separation condition is stated as follows,

Cmin(β0) ≥ c1
logd+ logM∗

n
, (3.11)
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where c1 > 0, Cmin(β0) ≡ infβ∈M
e(β,β0)

n·max(|A0\A|,1) and e(β,β0) = EQ(β) − EQ(β0) is

the excess risk. The measure Cmin denotes the degree of separation between A0 and

a least favorable candidate model for feature selection, clustering within the same

group and differentiating among two groups pursuit. We now define a complexity

measure for the size of a space F . The bracketing metric entropy of F , H(·,F), is

defined by logarithm of the cardinality of the ε-bracketing (of F) of the smallest size.

That is, for a bracket covering S(ε,m) = {f l1, fu1 , · · · , f lm, fum} ⊂ L2, which satisfies

max1≤j≤m ‖f lj − fuj ‖2 ≤ ε and for f ∈ F , there exists a j such that f lj ≤ f ≤ fuj ,

a.e.P, i.e., H(ε,F) is denoted by log(min{m : S(ε,m)}), where ‖f‖2 = (
∫
f 2dµ)

1/2
.

Denote FG = {f = (fkp )
1≤k≤K,1≤p≤P : fkp = Xk

pβ
k
p ,G(β) = G} by any subset

G ∈ {G(β) : β ∈M}.

Assumption 4. (uniformly subGaussian) For each each k = 1, · · ·K, p = 1 · · ·P ,

we assume that ε1, · · · , εn are uniformly subGaussian: For some α > 0, Λ > 0,

sup
n

max
1≤i≤n

E(exp |αεi|2) ≤ Λ <∞. (3.12)

Assumption 5. (size of parameter space) For any 0 < t < ε ≤ 1, H(t,BG(ε)) ≤
O(|A| log(c′ε/t)) for some constant c′, where BG(ε) = FG ∩ {e(β,β0) ≤ ε2} is a local

parameter space.

The next theorem describes that a global minimizer of (3.10) β̂L0 can

consistently recover the oracle estimator at a degree of separation level that is slightly

higher than the lower bound in (3.11). Without loss of generality, we assume that

the global minimizer of function (3.10) exists.

Theorem 3 (Global minimizer of (3.10)). Under Assumption 4 and 5, if E is

consistent with respect to G0, then for a global minimizer of (3.10) β̂L0 with estimated

clustering within the same group and differentiating among the two groups ĜL0 =

G(β̂L0) at (C1, C2, C3) = (d0, c2, c3), with d0 = C1(β), c2 = C2(β, E), c3 = C3(β, E).

P(β̂L0 6= β̂o) ≤ 2 exp

(
−C0Cmin(β0) + 2 log(

d+ 1

2
) + logM∗

)
(3.13)
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Under (3.11), P(ĜL0) 6= G0) = P(β̂L0 6= βo)→ 0 as n, d→∞.

Constrained penalization In a high-dimensional situation, it is computationally

infeasible to minimize a discontinuous cost fuction involving the `0-function in (3.10).

As a surrogate, we investigate the asymptotic property of our proposed method.

Under the assumption that p is fixed and the sample size n → ∞, we derive

results of asymptotic property for the estimates of our proposed method defined in

(3.2), which is computationally efficient surrogate of `0-constrained version. We adopt

the setup of [35] for the asymptotic analysis. In the two groups of individual networks,

for each network k and each node p, we assume two conditions:

(a) ykpi = Xk
piβ

k
pi
0

+ εkpi, where εkp1, · · · , εkpn are independent identically distributed

(iid) random variables with mean 0 and variance σkp
2
;

(b) 1
n
Xk

p
T
Xk

p → Ck
p , where Ck

p is a positive definite matrix.

Let oracle M0 = {j : β0
j 6= 0}, and without loss of generality, assume that M0 =

{1, · · · , p0} and Mk
p
0

= {1, · · · , nkp},
∑

k

∑
p n

k
p = p0. For each p and k, let

Ck
p =

C11
k
p C12

k
p

C21
k
p C22

k
p


where C11

k
p is nkp × nkp matrix. Recall that the penalized least squares criterion for

two groups of individual networks is

K1+K2∑
k=1

P∑
p=1

(‖Xk
pβ

k
p − Y k

p ‖22 + λ(1)n ‖w−γp Tβkp‖)

+ λ(2)n
∑

(µ,v)∈E

P∑
p=1

‖βµp − βvp‖2Ap + λ(3)n
∑

(µ,v)6∈E

P∑
p=1

‖βµp − βvp‖2Ap

(3.14)

where the Lagrange multipliers λ
(1)
n , λ

(2)
n , and λ

(3)
n are functions of the sample size n.

We have the following asymptotic theorem for the estimates:
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Theorem 4. Suppose that λ
(l)
n /
√
n→ 0 for l = 1, · · · , 3 and λ

(1)
n n(γ−1)/2 →∞, Then

√
n(β̂n − β0)

d−→ argmin(V ),

where

V (u) =


∑

k

∑
p u

k
pMk

p
C11

k
pu

k
pMk

p
− 2ukpMk

p

T
W k

p if ukpj = 0 ∀j 6∈Mk
p

∞ otherwise,

and W k
p ∼ N(0, σkp

2
Ck
p ).

3.4 Adaptive Method

In the sections above, we mainly investigate using the commonly regularized approach

to tune the value of a. In this section, we propose a data-driven based adaptive

method to tune the value of a. In order to detect the true heterogeneity between two

groups, we need to learn the value of a from the K1 +K2 samples.

Definition 3.4.1. the oracle a is defined as:

a0 = h(B0), (3.15)

where h(B0) = E{d(Bµ0,Bv0)1((µ,v)∈E)}
E{d(Bµ0,Bv0)1((µ,v)6∈E)} the proportion of the expected networks distance

within the same group to that between two groups and Bk0 is the true partial

correlation matrix for network k. Here d(·) is the Euclidean distance.

In the optimization, we learn the value of â in terms of estimated β̂n obtained

from each last iteration. Then we have ân = h(β̂n). By the condition of Theorem 4,

we have the following proposition on consistency of β̂.

Proposition 3.4.1. Suppose that λ
(l)
n /
√
n → 0 for l = 1, 2 and λ

(1)
n n(γ−1)/2 → ∞,

Then
√
n
(
β̂n(λ(1)n , λ(2)n , λ(2)n ân)− β0

)
d−→ argmin(V )
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where

V (u) =


∑

k

∑
p u

k
pMk

p
C11

k
pu

k
pMk

p
− 2ukpMk

p

T
W k

p if ukpj = 0 ∀j 6∈Mk
p

∞ otherwise,

and W k
p ∼ N(0, σkp

2
Ck
p ).

3.4.1 Algorithm

Based on the second definition of a, following Algorithm 1, we directly derive

Algorithm 2 via adding the learning procedure for a after each iteration of estimation

of β̂. The choice of tuning parameters in this adaptive method is the same as

(3.8) except that the value of a is learned systematically from the estimated network

matrices B̂ at each iteration.

Algorithm 2: Adaptive Method

Input: Y 1, · · · ,Y K , λ1, λ2, ω1, · · · , ωP
Output: solution B = (B1, · · · ,BK) to (3.2)

1 Initialize B(0) with Bk(0) = (βk1(ols), · · · ,βkp(ols))
T

for k = 1, · · · , K; A(0)

to be identity matrices; w
(0)
p with equal entries for p = 1, · · · , P ;

a(0) = h(B(0));

2 for i = 1, 2, · · · do

3 for p = 1, · · · , P do

4 Fix A(i−1), a(i−1) and update β1
p
(i)
, · · · ,βKp

(i)
, w

(i)
p via solving

problem (3.3)

5 Update a(i) = h(B(i)) ;

6 Fix B(i),W (i) and update A(i) via solving problem (3.7);

7 if converge then

8 return B = B(i),A = A(i),W = W (i);
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3.5 Numerical Evaluation

We investigate the numerical performance of our proposed framework on two types

of simulated networks: a chain network and a nearest-neighbor network. In each

example, we compare our two proposed methods against three different methods.

M1: classical graphical LASSO with `1 penalty that estimates single network (Lasso);

M2: inverse of the sample covariance matrix (Sample);

M3: regularized MLE with noncovex penalty for pursuit of sparseness and clustering

by [68] (SC);

M4: our proposed joint sparse regression model in (3.2) with `1 penalty for sparsity

and two `2 penalties for clustering and separating through cross-validation

(Joint);

M5: our proposed adaptive model with `1 penalty for sparsity, `2 penalty for

clustering and a, the learned metric for detecting the heterogeneity as described

in Section 5 (Adaptive).

The Lasso method is the popular approach in estimating individual network,

which pursues the sparsity of the network structure. The Sample method directly

uses the inverse of the sample covariance matrix to estimate the network structure of

the sample. The SC method is an approach to estimate a single group of individual

networks. This method defines the nonconvex penalty in the form

Jij(ω
1
ij, · · · , ωKij ) = λ1

K∑
k=1

Jτ (|ωkij|) + λ2
∑

{(µ,v)∈E}

Jτ (|ωµij − ωvij|),

where J(z) = min(|z|, τ) is the truncated `1 penalty of [52]. The precision matrix is

estimated by solving

max
Ω>0

S(Ω) =
K∑
k=1

nk
(
log(det(Ωk))− tr(SkΩk)

)
−
∑
i 6=j

Jij(ω
1
ij, · · · , ωKij )

(3.16)
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using difference convex programming with block-wise coordinate descent method.

The optimal estimate is obtained through a grid search over the domain of the tuning

parameters.

In the simulation study, each method described above is used in different

ways to estimate two groups of individual networks. We apply the graphical Lasso

method separately to fit each individual network of two groups as well as the

procedure of Sample method. We use SC method to estimate each single group

of individual networks separately. Our two proposed methods are performed to

jointly estimate multiple graphical models corresponding to two groups of individual

networks simultaneously.

In our experiment, we apply two metrics to evaluate the performance of

competing methods.

Metric 1: area under the ROC curve (AUC) for the specific number of edges;

Metric 2: sensitivity with the false positive rate controlled at 5%.

The AUC area measures discrimination, that is, the ability of the test to

correctly classify those with and without an edge. Metric 2 assesses the variability of

the competing methods.

3.5.1 Simulation Settings

Example 1: Chain networks In this example, we generate tridiagonal precision

matrices for estimation, which follows the simulation in Fan [17]. The covariance

matrices Σk is AR(1)-structured with ij-element σkij = exp(−|ski − skj |/2) and

sk1 < sk2 < · · · < skp. Here, ski − ski−1 ∼ Unif(0.5, 1); i = 2, · · · , p, k = 1, 2, · · · , K.

Further, let the partial correlation matrix Ω−1
k

= Σk. Initially, we generate two

partial correlation matrices Ω′ and Ω′′ by this procedure, so that they share a common

structure (pattern of zeros) as shown in Figure 3.1, but with possibly different

off-diagonal non-zero elements. There are twelve situations to be considered: nk = 60,
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Figure 3.1: Chain Network by Guo et al. [26]

100, 300; P = 50, 100; K = 50, 100 initially with Ω1 = · · · = ΩK/2 = Ω′ and

ΩK/2+1 = · · · = ΩK = Ω′′. That is, we generated two groups of equal number

of samples. Within each group, the samples are initially generated independently

and identically from a multivariate normal distribution N(0,(Ω)−1) with the same

generated partial correlation matrix. To study the performance of competing methods

as the heterogeneity between the two groups varies, we gradually create additional

individual links in the common structure. For Ω′ and Ω′′, we generate values

uniformly from [-1,-0.5]∪[0.5,1] to replace the same number of randomly selected

off-diagonal symmetric zero elements. Moreover, to fit the problem that the individual

networks within each group are slightly different as well, we use the same method to

randomly replace 1%-2% selected off-diagonal symmetric zero elements of each partial

correlation matrix. Through this procedure, the true values of a, representing the

ratio of expected network distance within each group to that between two groups as

defined in function (3.15), can be set to vary from 1 down to 0. In the simulations,
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Figure 3.2: Nearest-neighbor Network by Guo et al. [26]

we consider the performance of the five different methods with respect to a over 100

repetitions at the aforementioned twelve situations.

Example 2: Nearest neighbor networks In this example, we consider using

the data generating scheme described in Li and Gui [38], which is a general sparse

partial correlation matrix. In particular, we generate P points randomly on a unit

square, and compute all P (P − 1)/2 pairwise Euclidean distances. For each point,

we find the m nearest neighbors based on the distances and link the corresponding

points to construct the nearest neighbor network. The integer value of m controls

the degree of sparsity. In our study, we choose m=5. For each“edge” in the network,

the corresponding off-diagonal element in the partial correlation matrix is generated

uniformly over [-1,-0.5]∪[0.5,1]. The i-th diagonal value is defined as a multiple of the

sum of the absolute values of the off-diagonal entries in the i-th row. Here the multiple

chosen is 2, to ensure that the partial correlation matrix is positive definite. Finally,

each row of the matrix is divided by the corresponding diagonal element so that the
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value of the diagonal entries of the final partial correlation matrix is 1. The final

common structure of the nearest-neighbor network is shown in Figure 3.2. Similarly

to our procedure for adding heterogeneity mechanism to generate two different groups

of individual networks in example 1, we add some individual links to the common

structure for Ω′ and Ω′′. Then we study the performance of the five different methods

with respect to a over 100 replications under twelve different settings of nk, P and

K.

3.5.2 Simulation Results

In our experiment, the obtained estimated value of a in the proposed adaptive model is

much more close to the oracle value of a than the obtained value via cross validation

method. This domination also can be seen from the Figures 3.3 and 3.4, which

show the estimated area under ROC curves (AUC) averaged over 100 repetitions

for the two simulated examples. The AUC for a method shows its performance

over all choices of the tuning parameter. The model selection procedure is better

the closer its AUC value approaches 1. The results suggest that our two proposed

methods, which both simultaneously estimate two groups of individual networks,

especially the adaptive method does better than the other competing methods in

making the trade off between the false positive rate and the true positive rate across

all cases considered, especially when the value of a is low. As a becomes lower, the

heterogeneity between two groups becomes larger. The SC method, which separately

performing the networks estimation for each single group does not consider the

differences between two groups only in its pursuit of clustering within the same group,

performs increasingly worse than our proposed methods as a gets smaller. Meanwhile,

separated LASSO method becomes gradually closer to SC, but still performs poorly.

That is just because separate LASSO method both ignores the common information

shared within each group and the detection of difference between two groups. As a
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increases, the overall structure of the networks across two groups become more and

more similar, and we find that the SC method and our proposed methods perform

more similarly, with the SC method close to ours at a=1 in most cases. On the other

hand, the separate LASSO continues to do worse. This is expected, because the Joint,

Adaptive and SC methods can take advantage of the greater overlap in the structures.

Over all of the simulations, we find that the Sample method performs worse than any

of the other four methods. We believe that is due to its lack of shrinkage toward

the partial correlation matrix leading to a much more complicated network than the

regularized ones.

In the twelve situation settings, we can examine how AUC changes with respect

to a, n, P and L, respectively. With the other quantities fixed, the methods perform

better with larger a, n, and L, and with smaller P . Therefore, we further explore their

stability under the settings where the performance is worst and best, i.e., n = 60,

P = 100, L = 50 and n = 300, P = 50, L = 200. Figures 3.5 and 3.6 show the

variability of sensitivity when the false positive rate is fixed at 5% under these two

settings based on 100 simulations in each of the two examples. The results suggest

our methods are more stable and significantly different than others.

3.6 Application

In the real data analysis, we apply the proposed adaptive method to the polychromatic

flow cytometry data. Polychromatic flow cytometry allows the simultaneous

measurement of many different proteins within thousands of individual cells. Sachs

and coworkers [47] originally presented this experiment to infer a signaling network

by quantitatively measuring protein expression levels in Figure 3.7. In this study, the

amounts of eleven well-studied proteins were simultaneously measured from single

cells after imposing a series of perturbations (stimulatory cues or inhibition) on the

network. There were nine different stimuli to target specific proteins in the selected
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Figure 3.3: Average AUC based on 100 simulations for estimating networks in example 1.

pathway, the effects of which are summarized in Table 3.1. If a protein is stimulated

or inhibited, then the downstream proteins of the corresponding pathway including

this protein would grow or drop, but there would be no effect on the uncorrelated

proteins. Sachs [47] employed nine experimental conditions to collect data from 7466

cells for model inference and also used another five experimental conditions to collect

data from 4206 cells. Each of these two sets of conditions both consist of one stimulus

or a combination of two or three different stimulus as described in Table 3.1. Based on

these data, the structure of inferred networks are expected to be similar in some edges

due to common stimuli, with some variation due to differences between conditions.

To explore the performance of our method in detecting the heterogeneity between
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Figure 3.4: Average AUC based on 100 simulations for estimating networks in example 2.

the networks under different sets of conditions, we consider the two networks that

belong in two groups. Moreover, within each group we specifically add extra sample

of data sets for the networks inference. The extra sample in the first group is collected

under eight conditions selected from the aforementioned nine conditions and the extra

sample in the second group is collected under four conditions selected from the above

five conditions. Hence, under those four sets of conditions, we finally obtain two

groups of data sets on quantities amounts for 11 proteins, where the first group

contains two samples with sample size n1 = 7466 and n2 = 6667, the second group

contains two samples with sample size n3 = 4206 and n4 = 3338.
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Figure 3.5: Boxplot of sensitivity under the false positive rate controlled at 5% in example

1. The parenthesis are the possible values of (n, P, L).

We apply the proposed adaptive method to the two groups of normalized data

using 10-fold cross validation to jointly estimate the two groups of individual networks.

The four reconstructed undirected graphs are shown in Figure 3.8. For the estimated

two graphs in the first group, we get twelve edges and eleven edges respectively among

eleven protein nodes. For the estimated two graphs in the second group, we obtain

nine edges and eight edges respectively. They are both the subset of the edges of

currently accepted cell-signaling network [47] as shown in Figure 3.7. It can be seen

that Figure 3.8.a and Figure 3.8.b both show the common network structure within

each group. Moreover, the results also shows the detected heterogeneity between two

groups. The inferred networks in the second group miss some edges compared with

the first group. For instance, the links from protein “PKA” to “Erk”, “Erk” to “Mek”

and “PKA” to “Mek”. This is possibly caused by inadequate information in the data
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Figure 3.6: Boxplot of sensitivity under the false positive rate controlled at 5% in example

2. The parenthesis are the possible values of (n, P, L).

brought about by not imposing direct specific perturbations on “PKA” in the five

experimental settings. Specifically, our model also allows the commonality between

two groups since the experimental settings in the two groups overlap to some degree.

Altogether, our model appears to work well in that it can automatically capture the

basic common structure of the proteins under different conditions, but also identify

and recover their unique partial correlations among eleven proteins in two different

groups.

3.7 Discussion

We proposed a joint sparse regression penalized model and an adaptive model

that both jointly infer two groups of individual networks structure by obtaining

the estimator of the partial correlations among random variables for each network
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Figure 3.7: The directed graph shows the currently accepted cell-signaling network,

reproduced from Sachs and coworkers [47]

Table 3.1 A Summary of Nine Different Experimental Stimuli on Different Targets

Stimulus Effect

CD3, CD28 General stimulation

ICAM-2 General stimulation

β2cAMP Specific stimulation: Actives PKA

AKT-inhibitor Specific perturbation: Inhibits Akt

U0126 Specific perturbation: inhibits Mek

PMA Specific perturbation: actives PKC

G06976 Specific perturbation: inhibits PKC

Psitectorigenin Specific perturbation: inhibits PIP2

LY294002 Specific perturbation: inhibits PI3K
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(a) Under nine conditions (left) and Under eight selected conditions (right)

(b) Under five conditions (left) and Under four selected conditions (right)

Figure 3.8: The reconstructed undirected graph by our proposed adaptive model. The

blue lines are the links appearing in both groups, and red lines are the the links only

appearing in one group compared with another group. The dash lines are the missing links

compared with another inferred network within group.
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simultaneously. The former utilizes the `2 penalty to accommodate changes in

network structure over two groups. The adaptive model explicitly employs a

metric to iteratively learn the ratio of network distances within each group to

that between two groups in the optimization procedure to detect the heterogeneity.

Theoretically, under appropriate regularity conditions, we show asymptotic property

both for the ideal `0-constrained model and our proposed computationally surrogate

model in consistently reconstructing the sparsity, group-specific commonality and

heterogeneity between two groups. We expect to obtain some improvement over

previous methods that do not include any group-wise learning procedure. With

extensive simulation studies in finite samples, we demonstrate that our methods

especially the data-driven adaptive method dominate other competing models in

nonzero partial correlation selection, performing favorably with less variability. The

application to polychromatic flow cytometry data sets also demonstrate the feasibility

and effectiveness of the proposed adaptive method.
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APPENDIX A

TECHNICAL PROOFS

Proof of Theorem 1

Proof 1. The proof is similar to that in [60]. We provide some key steps. Consider

the case when η = 1 for simplicity. Denote L̃(y,f(x(s))) = L(y,f(x(s)))+λJ(β̃) and

L̃T(y,f(x(s))) = LT(y,f(x(s)))+λJ(β̃), and En

(
L̃T(y,f ∗(x(s))))− L̃T(y,f(x(s)))

)
=

n−1
∑n

i=1

(
L̃T(yi,f

∗(x(si)))− L̃T(yi,f(x(si)))
)
−E

(
L̃T(Y ,f ∗(x(S)))− L̃T(Y ,f(x(S)))

)
be a scaled empirical process.

First, by assumption 2, {|e(f̂ ,f 0)| ≥ a1δ
2α
n,d,K} ⊂ {eLT(f ,f 0) ≥ δ2n,d,K} is a

subset of{
sup

f∈F :e
LT (f ,f0)≥δ2n,d,K

n∑
i=1

(L̃T(yi,f
∗(x(si)))− L̃T(yi,f(x(si)))) ≥ 0

}

Therefore, P(|e(f̂ ,f 0)| ≥ a1δ
2α
n,d,K) is upper-bounded by

I ≡ P∗
(

sup
f∈F :e

LT (f ,f0)≥δ2n,d,K

n∑
i=1

n−1s(L̃T(yi,f
∗(x(si)))− L̃T(yi,f(x(si)))) ≥ 0

)
≤ I1+I2

where P∗ is the outer probability, and

I1 =
∑
i,j≥1

P∗
(

sup
f∈Aij

En

(
L̃T(y,f ∗(x(s))))− L̃T(y,f(x(s)))

)
≥M(i, j)

)

I2 =
∞∑
i=1

P∗
(

sup
f∈Ai0

En

(
L̃T(y,f ∗(x(s))))− L̃T(y,f(x(s)))

)
≥M(i, 0)

)

Here Aij = {f ∈ F : 2i−1δ2n,d,K ≤ eLT(f ,f 0) ≤ 2iδ2n,d,K , 2
j−1max(J̄d,K , 1) ≤ J(β̃) ≤

2jmax(J̄d,K , 1)}, and Ai0 = {f ∈ F : 2i−1δ2n,d,K ≤ eLT(f ,f 0) ≤ 2iδ2n,d,K , J(β̃) ≤
max(J̄d,K , 1)} for i = 1, 2, · · · and j = 1, 2, · · · , and Assumption 1 and λ−1 ≥
2δ−2n,d,K J̄d,K imply that

inf
f∈Aij

E
(
L̃T(Y ,f(x(S)))− L̃T(Y ,f ∗(x(S)))

)
≥ 2i−1δ2n,d,K + λ2j−1J(β̃∗) ≡M(i, j)
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for i = 1, 2, · · · and j = 0, 1, 2, · · · . Similarly, for the variance, it follows from
Assumption 2 that

sup
f∈Aij

var
(
L̃T(Y ,f(x(S)))− L̃T(Y ,f ∗(x(S)))

)
≤ 4a2M

γ(i, j),

for i = 1, 2, · · · and j = 0, 1, 2, · · · .
Next, an application of Theorem 3 of [53] yields, by Assumption 3 that

I1 ≤
∑

i,j:M(i,j≤T )

3 exp

(
− (1− ε)n(M(i, j))2

2(4MγM(i, j) +M(i, j)T/2)

)

≤
∞∑
i=1

∞∑
j=1

3 exp(−c6nM(i, j)2−min(1,γ))

≤ 3 exp(−a6n(λJ̄d,K)
2−min(1,γ)

)/[(1− exp(−a6n(λJ̄d,K)
2−min(1,γ)

))]

(A.1)

Similarly, I2 can be bounded, and the desired result follows after some simple algebra.

Proof of Theorem 2

Proof 2. Since β̂µpj(λ1, λ2, a)β̂vpj(λ1, λ2, a) > 0, we have

sgn{β̂µpj(λ1, λ2, a)} = sgn{β̂vpj(λ1, λ2, a)}. Because of (3.2),

β̂(λ1, λ2, a) satisfies

∂S(β)

∂βk

∣∣∣∣
β=β̂(λ1,λ2,a)

= 0 if β̂(λ1, λ2, a) 6= 0.

Hence we have

− 2xµpj
T{yµp − xµp β̂µp}+ λ1w

−γ
pj sgn{β̂

µ
pj}+

2λ2
∑
s∼µ

(β̂µpj − β̂spj)αpj + 2λ2a
∑
s�µ

(β̂µpj − β̂spj)αpj = 0 (A.2)

and
− 2xvpj

T{yvp − xvpβ̂vp}+ λ1w
−γ
pj sgn{β̂vpj}+

2λ2
∑
t∼v

(β̂vpj − β̂tpj)αpj + 2λ2a
∑
t�v

(β̂vpj − β̂tpj)αpj = 0 (A.3)

By assumption, sgn{β̂µpj(λ1, λ2, a)} = sgn{β̂vpj(λ1, λ2, a)}, and µ and v are only linked
to each other. Substracting equation (A.2) from equation (A.3)) gives

−xµpj
Tr̂µp + xvpj

Tr̂vp + (2λ2 + λ2a(K − 2))αpj(β̂
µ
pj − β̂vpj) = 0,
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where rkp = ykp−Xk
pβ

k
p is the residual vector of the p− th model for the k− th subject.

Hence

β̂µpj − β̂vpj =
xµpj

Tr̂µp − xvpjTr̂vp
(2λ2 + λ2a(K − 2))αpj

. (A.4)

Since Xk
p are standarized for each p and k, ‖xµpj−xvpj‖22 = 2(1−ρ) where ρ = xµpj

Txvpj.
By problem (3.2), we much have

S(λ1, λ2, a, β̂(λ1, λ2, a)) ≤ S(λ1, λ2, a, β̂ = 0).

i.e.,

‖r̂µp‖22 + ‖r̂vp‖22 + λ1‖β̂‖1 + λ2(
∑
µ∼v

‖β̂µ − β̂v‖
2

A + a
∑
µ�v

‖β̂µ − β̂v‖
2

A)

≤ ‖y‖22
(A.5)

So
√
‖r̂µp‖22 + ‖r̂vp‖22 ≤ ‖y‖2 Then equation (A.4) implies that

Dλ1,λ2,a(µ, v, p, j) ≤
‖xµpj − xvpj‖2(‖r̂

µ
pj‖22 + ‖r̂vpj‖22)1/2

‖y‖2(2λ2 + λ2(K − 2))αpj

≤ 1

(2λ2 + λ2a(K − 2))αpj

√
2(1− ρ).

(A.6)

Proof of Theorem 3

Proof 3. The part of setup in this proof is similar with that of [68]. M = {β :
C1(β) ≤ d0, C2(β) ≤ c2, C3(β) ≤ c3,G(β) 6= G(β0)}. MA = {β ∈ M : A(β) = A}.
Let a class of candidate subsets be {A : A 6= A0, |A| ≤ d0} for feature selection.
Note that A ⊂ {1, · · · , d} can be partitioned into (A \ A0) ∪ (A0 ∩ A). Let Bkj =
{A : A 6= A0, |A0 ∩ A| = k, |A \ A0| = j, k = 0, · · · , d0 − 1, j = 1, · · · , d0 − k}.
Note that Bkj consists of

(
d0
k

)(
d−d0
j

)
different elements A’s of sizes |A0 ∩ A| = k and

|A \ A0| = j. MA = ∪G∈{G(β):β∈MA}MG, where MG = {β ∈ M : G(β) = G}. So

M = ∪d0−1k=0 ∪
d0−k
j=1 ∪A∈BkjMA = ∪d0−1k=0 ∪

d0−k
j=1 ∪A∈Bkj ∪G∈{G(β):β∈MA}MG. For A ∈ Bkj,

under degree-of-separation condition (3.11), MG ⊆ MG
′ = {β : (d0 − k)Cmin(β0) ≤

e(β,β0)/n} for G ∈ {g(β) : β ∈ MA}. To bound the error probability, note that if

ĜL0 = G0, then β̂L0 = β̂ol. Thus { ˆGL0 = G0} = {β̂L0 = β̂ol}. So {β̂L0 6= β̂ol} ⊆
{Q(β̂L0)−Q(β̂ol) ≤ 0} ⊆ {Q(β̂L0)−Q(β0) ≤ 0}. This together with {β̂L0 6= β̂ol} ⊆
{β̂L0 ∈ M} implies that {β̂L0 6= β̂ol} ⊆ {Q(β̂L0) − Q(β0) ≤ 0} ∩ {β̂L0 ∈ M}.
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Consequently, P(β̂L0 6= β̂ol)

≤ P∗β∈M(Q(β)−Q(β̂ol) ≤ 0)

≤ P∗β∈M(Q(β)−Q(β0 ≤ 0)

≤
d0−1∑
k=0

d0−k∑
j=1

∑
A∈Bkj

∑
G∈{G(β):β∈MA}

P∗β∈M(Q(β)−Q(β0) ≤ 0)

≤
d0−1∑
k=0

d0−k∑
j=1

∑
A∈Bkj

∑
G∈{G(β):β∈MA}

P∗β∈MG′(Q(β)−Q(β0) ≤ 0)

where P∗ is the outer measure and Q(β̂ol) < Q(β0) by definition.

Let Vn(β − β0) =
√
n[Q(β0)

n
− EQ(β0)

n
] −
√
n[Q(β)

n
− EQ(β)

n
]. Thus {Q(β̂L0) −

Q(β0) ≤ 0} ⊂ {Vn(β̂L0 − β0) ≥
√
ne(β̂L0 ,β0)/n}. Then we have

P(β̂L0 6= β̂ol) ≤
d0−1∑
k=0

d0−k∑
j=1

∑
A∈Bkj

∑
G∈{G(β):β∈MA}

P∗β∈MG′
(
Vn(β − β0) ≥

√
n
e(β,β0)

n

)
≡ I

For I, we apply Lemma 3.4 and Theorem 4.1 of [59] to bound it. Towards this
end, we verify the entropy condition (11) for the local entropy over BG. Note under
Assumption 5, then for L > 0, δ > 0,

√
nδ ≥ 1, there some constant c0 > 0, such that

H (µLδ,BG(Lδ)) ≤ c0(logd)|A|log( c
′

µ
). Then for δ = δn,d0,d = (c′c0)

1
2 log

1
2d(d0

n
)
1
2 and n

sufficiently large satisfy∫ 1

0

√
H (µLδn,d0,d,BG(Lδn,d0,d))dµ√

nLδn,d0,d
→ 0, as L→∞ (A.7)

By (3.11), Cmin(β0) ≥ L2δ2n,d0,d implies that (A.7), provided that c1 ≥ c0c
′L2d0.

Using the facts about binomial coefficients:
∑d0−k

j=0

(
d−d0
j

)
≤ (d− d0 + 1)d0−k,(

d0
k

)
≤ dd0−k0 and (d0(d− d0 + 1)))d0−k ≤ (d+1

2

2
)
d0−k

. Let M∗
i = maxA∈B(d0−i)j

1≤j≤i

|{G(β) :

β ∈MA}| and logM∗ = max1≤i≤d0
log(M∗i )

i
. By Assumption 4, Lemma 3.4 and Theorem

4.2 of [59], we obtain, that for C0 > 0 and L0 > 0 depending on (α,Λ), I is upper
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bounded by

I ≤
d0−1∑
k=0

(
d0
k

) d0−k∑
j=0

(
d− d0
j

)
M∗

(d0−k) exp(−C0n(d0 − k)Cmin(β0))

≤
d0−1∑
k=0

(
d+ 1

2

2

)

d0−k

M∗
(d0−k) exp(−C0n(d0 − k)Cmin(β0))

≤
d0∑
k=0

(
d+ 1

2

2

)

i

M∗
i exp(−C0niCmin(β0))

=

d0∑
k=0

exp(−i(C0nCmin(β0)− 2log(
d+ 1

2
)− logM∗))

= R(exp(−C0nCmin(β0) + 2log(
d+ 1

2
) + logM∗))

where R(x) = x/(1 − x). Note I ≤ 1, hence x/(1 − x) ≤ 1 implies x ≤ 1
2
. Thus we

have x/(1− x) ≤ 2x. Then

I ≤ 2 exp(−C0nCmin(β0) + 2log(
d+ 1

2
) + logM∗).

Proof of Theorem 4

Proof 4. Let βkp = βkp
0

+
ukp√
n

and ψ(u) =
∑

k

∑
p ‖ykp − Xk

p (βkp
0

+
ukp√
n
)‖22 +

λ
(1)
n

∑
k

∑
p ‖βkp

0
+

ukp√
n
‖1 + λ

(2)
n

∑
µ∼v

∑
p ‖βµp

0 +
uµp√
n
− βvp0 +

uvp√
n
‖2Ap + λ

(3)
n

∑
µ�v

∑
p ‖βµp

0 +

uµp√
n
− βvp0 +

uvp√
n
‖2Ap. Let ûn =

(
ûkp
)
1≤k≤K,1≤p≤P = argminψn(u). Then β̂n = β0 + ûn√

n

or ûn =
√
n× (β̂n − β0). Note that ψn(u)− ψn(0) = Vn(u), where

Vn(u) =
∑
k

∑
p

(
ukp

T
(
1

n
Xk

p

T
Xk

p )ukp − 2
εkp

T
Xk

p√
n
ukp

)

+
λ
(1)
n√
n

∑
k

∑
p

P−1∑
j=1

ŵ−γpj
√
n(‖βkpj

0
+
ukpj√
n
‖1 − ‖βkpj

0‖1)

+ λ(2)n
∑
µ∼v

∑
p

(
‖βµp

0 − βvp
0 +

uµp√
n
−
uvp√
n
‖2Ap − ‖β

µ
p
0 − βvp

0‖2Ap

)
+ λ(3)n

∑
µ�v

∑
p

(
‖βµp

0 − βvp
0 +

uµp√
n
−
uvp√
n
‖2Ap − ‖β

µ
p
0 − βvp

0‖2Ap

)
(A.8)

We know that 1
n
Xk

p
T
Xk

p → Ck
p , and

εkp
T
Xk
p√

n

d−→ W k
p ∼ N(0, σkp

2
Ck
p ). Now

consider the limiting behavior of the second term of (A.8). If βkpj
0 6= 0, then
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√
n(‖βkpj

0
+

ukpj√
n
‖1 − ‖βkpj

0‖1) → ukpjsgn(βkpj
0
). By λ

(1)
n√
n

p−→ 0 and ŵpj
p−→ |βkpj

0|,

hence λ
(1)
n√
n

∑
k

∑
p

∑P−1
j=1 ŵ

−γ
pj

√
n(‖βkpj

0
+

ukp√
n
‖1 − ‖βkpj

0‖1)
p−→ 0. If βkpj

0
= 0, then

√
n(‖βkpj

0
+

ukpj√
n
‖1 − ‖βkpj

0‖1) = |ukpj| and λ
(1)
n√
n
ŵ−γpj = λ

(1)
n√
n
nγ/2(

∑
k

√
n|β̂kpj|)

−γ
, where

√
nβ̂kpj = O(1) for all k. Next we consider the third term of (A.8).

λ(2)n
∑
µ∼v

∑
p

(
‖βµp

0 − βvp
0 +

uµp√
n
−
uvp√
n
‖2Ap − ‖β

µ
p
0 − βvp

0‖2Ap

)

= 2
λ
(2)
n√
n

∑
µ∼v

∑
p

(βµp
0 − βvp

0)
T
Ap(

uµp√
n
−
uvp√
n

) +
λ
(2)
n

n

∑
µ∼v

∑
p

‖
uµp√
n
−
uvp√
n
‖2Ap

→ 0 as λ
(2)
n√
n
→ 0. Similarly, the last term of (A.8) goes to zero as λ

(3)
n√
n
→ 0. Thus, we

see that Vn(u)
d−→ V (u) for every u. Since Vn(u) is convex and V (u) has a unique

minimum, it follows [25] that

argmin(Vn(u)) =
√
n(β̂n − β0)

d−→ argmin(V (u)).

Proof of Proposition

Proof 5. The proof is similar to that of Theorem 4 with minor modifications. Since

ân = E{d(β̂µ0 ,β̂v0 )1(µ∼v)}
E{d(B̂µ0 ,B̂v0)1(µ�v)}

≤ 1, then we satisfy the condition of Theorem 4 that λ
(3)
n√
n

=

λ
(2)
n ân√
n
→ 0 as n → 0. Hence by Theorem (4), the adaptive method achieves the

properties of the oracle estimator.
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APPENDIX B

VERIFICATION OF ASSUMPTIONS

Verification of Assumption 5

Proof 6. Since e(β,β0) = EQ(β) − EQ(β0) =
∑K

k

∑P
p ‖Xk

pβ
k
p − Xk

pβ
k
p
0‖22 ≤∑K

k=1

∑P
p=1 ‖Xk

p‖2‖βkp − βkp
0‖2. Hence e(β,β0) ≤ ε2 implies that ‖βkp − βkp

0‖ ≤ c′ε

for some constant c′ > 0, for p = 1, · · · , P ; k = 1, · · · , K. Next we bound H(t,BG).

Let Fkp G = {fkp (X) = XTβkp : G(β) = G}. Evidently, |fkp (X) − fkp
0
(X)| ≤

‖Xk
p‖2‖β

k
p − βkp

0‖
2
. Hence, the number of brackets needed to bracket Fkp ∩{e(β,β0) ≤

ε2} is no greater than that of balls of radius t/2 to cover the set {β : G(β) =
G, e(β,β0) ≤ ε2}. Therefore, H(t,Fkp G ∩ {e(β,β

0) ≤ ε2}) ≤ O((P − 1)log( c
′ε
t

)).

To connect FG with Fkp G, note that FG = {f : f ∈ ΠK
k=1Π

P
p=1Fkp G,G(β) = G}.

Hence, H(t,FG ∩ {e(β,β0) ≤ ε2}) ≤ O((P − 1)PKlog( c
′ε
t

)). Since the number of

nonzero β is |A|, then we have H(t,FG∩{e(β,β0) ≤ ε2}) ≤ O(|A|log( c
′ε
t

)). Therefore,

H(t,BG) ≤ O(|A|log( c
′ε
t

))) for some constant c′ > 0.
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[34] Stefan Knerr, Léon Personnaz, and Gérard Dreyfus. Single-layer learning revisited:
a stepwise procedure for building and training a neural network. In Neurocomputing:
Algorithms, Architectures and Applications. Sprintger-Verlag. Springer, 1990.

[35] Keith Knight and Wenjiang Fu. Asymptotics for LASSO-type estimators. Annals of
statistics, pages 1356–1378, 2000.

[36] Vladimir Koltchinskii et al. Local rademacher complexities and oracle inequalities in
risk minimization. The Annals of Statistics, 34(6):2593–2656, 2006.

[37] Thomas K Landauer and Susan T Dumais. A solution to platos problem: The latent
semantic analysis theory of acquisition, induction, and representation of knowledge.
Psychological Review, 104:211–240, 1997.

[38] Hongzhe Li and Jiang Gui. Gradient directed regularization for sparse Gaussian
concentration graphs, with applications to inference of genetic networks. Biostatistics,
7(2):302–317, 2006.

[39] Yuhua Li, Zuhair A Bandar, and David McLean. An approach for measuring semantic
similarity between words using multiple information sources. Knowledge and Data
Engineering, IEEE Transactions on, 15(4):871–882, 2003.

[40] Christopher D Manning and Hinrich Schütze. Foundations of statistical natural
language processing. MIT Press, 1999.
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