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ABSTRACT

SUBSPACE METHODS FOR PORTFOLIO DESIGN

by
Onur Yilmaz

Financial signal processing (FSP) is one of the emerging areas in the field of signal

processing. It is comprised of mathematical finance and signal processing. Signal

processing engineers consider speech, image, video, and price of a stock as signals of

interest for the given application. The information that they will infer from raw

data is different for each application. Financial engineers develop new solutions

for financial problems using their knowledge base in signal processing. The goal

of financial engineers is to process the harvested financial signal to get meaningful

information for the purpose.

Designing investment portfolios have always been at the center of finance. An

investment portfolio is comprised of financial instruments such as stocks, bonds,

futures, options, and others. It is designed based on risk limits and return

expectations of investors and managed by portfolio managers. Modern Portfolio

Theory (MPT) offers a mathematical method for portfolio optimization. It defines

the risk as the standard deviation of the portfolio return and provides closed-form

solution for the risk optimization problem where asset allocations are derived from.

The risk and the return of an investment are the two inseparable performance metrics.

Therefore, risk normalized return, called Sharpe ratio, is the most widely used

performance metric for financial investments.

Subspace methods have been one of the pillars of functional analysis and

signal processing. They are used for portfolio design, regression analysis and noise

filtering in finance applications. Each subspace has its unique characteristics that may

serve requirements of a specific application. For still image and video compression

applications, Discrete Cosine Transform (DCT) has been successfully employed in



transform coding where Karhunen-Loeve Transform (KLT) is the optimum block

transform.

In this dissertation, a signal processing framework to design investment

portfolios is proposed. Portfolio theory and subspace methods are investigated and

jointly treated. First, KLT, also known as eigenanalysis or principal component

analysis (PCA) of empirical correlation matrix for a random vector process that

statistically represents asset returns in a basket of instruments, is investigated.

Auto-regressive, order one, AR(1) discrete process is employed to approximate such

an empirical correlation matrix. Eigenvector and eigenvalue kernels of AR(1) process

are utilized for closed-form expressions of Sharpe ratios and market exposures of

the resulting eigenportfolios. Their performances are evaluated and compared for

various statistical scenarios. Then, a novel methodology to design subband/filterbank

portfolios for a given empirical correlation matrix by using the theory of optimal

filter banks is proposed. It is a natural extension of the celebrated eigenportfolios.

Closed-form expressions for Sharpe ratios and market exposures of subband/filterbank

portfolios are derived and compared with eigenportfolios.

A simple and powerful new method using the rate-distortion theory to sparse

eigen-subspaces, called Sparse KLT (SKLT), is developed. The method utilizes

varying size mid-tread (zero-zone) pdf-optimized (Lloyd-Max) quantizers created for

each eigenvector (or for the entire eigenmatrix) of a given eigen-subspace to achieve

the desired cardinality reduction. The sparsity performance comparisons demonstrate

the superiority of the proposed SKLT method over the popular sparse representation

algorithms reported in the literature.
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CHAPTER 1

INTRODUCTION

Designing investment portfolios has always been at the center of the finance.

The term, portfolio, refers to any collection of financial assets such as stocks,

bonds, futures, options, and etc. Investment portfolios are managed by financial

professionals, hedge funds, banks or other financial institutions and designed based

on risk limits and return expectations of investors [2].

In a typical scenario, a portfolio manager creates a basket that is comprised

of assets and designs capital allocation vector for the given risk limits and return

expectations. Capital allocation vector includes the amount of money that will be

invested to individual assets in the basket. Portfolio manager dynamically rebalances

the allocations of the portfolio in order to minimize its risk for the targeted return

performance. The risk and the return of an investment are the two inseparable

performance metrics. Therefore, risk normalized return called Sharpe ratio is the

most widely used performance metric for financial investments [2]

Modern Portfolio Theory (MPT), introduced by Markowitz, offers a mathe-

matical method for portfolio optimization [32]. It models the return of an asset as

normal (Gaussian) random variable and defines the investment risk as its standard

deviation (volatility). Each asset in a portfolio has a weight, also called allocation

coefficient, and the return of a portfolio is calculated as the weighted sum of asset

returns. Portfolio volatility is shown to be a function of pairwise correlations among

asset returns. MPT provides closed-form solution for the risk optimization problem.

A portfolio with minimum risk for the targeted return is called efficient portfolio.

Efficient frontier is generated by efficient portfolios on the risk-return plane [32].
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Financial signal processing (FSP), is a relatively new area that is comprised of

mathematical finance and signal processing. Signal processing engineers and financial

professionals have been working on fundamentally similar problems for different

applications. Financial engineers (signal processing engineers specialized to finance)

offer possible improvements to the problems using the existing methods in signal

processing[2].

Subspace methods have been the pillars of many applications in signal

processing and finance. These applications exploit the signal properties in transform

domain that is hidden in signal domain. Subspace is basically a surface in higher

dimensional vector space. A given signal vector is projected onto the defined subspace

and processed in the new domain.

Each subspace method has its unique characteristics that may serve the

requirements of a specific application. The Fourier transform and its extensions

have been the dominant transform for signal analysis and representation. For

transform coding applications, Discrete Cosine Transform (DCT) has been employed

successfully due its compression and decorrelation properties. The availability of

fast implementation has made the DCT number of transform for image/video coding

standards. Karhunen Loeve Transform (KLT), also known as principal component

analysis (PCA) and eigenanalysis, is the optimal block transform with an orthonormal

basis that maximizes the gain of transform coding (GTC) over pulse code modulation

(PCM) and perfectly decorrelates the given signal in the subspace. Unlike DCT

and Fourier transforms, KLT is signal dependent. Whenever the signal statistics is

changed, its transform matrix has to be updated accordingly [1].

In block transforms (Fourier transform, DCT, KLT, etc.), the length of the

basis functions is equal to the size of the input signal vector. Although this property

brings many advantages such as easy and fast implementation, this structure limits
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the possible freedom in tuning the basis functions in the time domain. Some of the

requirements including orthogonality can be met.

If the length of these basis functions are extended in time, more freedom can

be achieved to tune the basis functions for the desired properties. In general, if the

arbitrary durations for these basis sequence filters is allowed, filter bank or subband

concept is reached. Thus, block transforms can be considered as a special case of

filter banks [1]. Due to arbitrary durations of basis sequences, the transform matrix

is no longer square. Therefore it is not invertible. The subband (filter bank) theory

provides mathematical requirements to design invertible subband subspaces (filter

banks) [1].

In this dissertation, a unified treatment of subspace methods and MPT is

proposed. Some of the subspace methods including KLT and subband transforms are

investigated using the framework of MPT for finance applications. Auto-regressive

order one, AR(1), process is utilized to model asset returns vector for all performance

evaluations and comparisons. Closed-form expressions are derived for Sharpe

ratio and market exposure of investment portfolios generated by the subspace

methods. Moreover, the problem of generating sparse subspaces is investigated in

this dissertation. Subspace sparsing framework, so called Sparse Karhunen Loeve

Transform (SKLT), based on the rate-distortion theory is proposed. It is also shown

that the proposed method outperform the popular algorithms in the literature.

Contributions of the dissertation include the following;

1. Unified treatment of subspace methods and MPT is proposed.

2. Eigenportfolios have been used in many investment strategies including statistical
arbitrage. This dissertation analytically evaluates their performance with
commonly used metrics such as Sharpe ratio and market exposure. Thus, it
offers a better understanding of eigenportfolios behaviour for different scenarios.

3. Design of optimized super eigenportfolio (OSEP) is introduced. It is created
by optimal allocation of investment capital among eigenportfolios based on
maximization of Sharpe ratio.
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4. Subband portfolios is introduced in this dissertation. Their performances are
also evaluated and compared with eigenportfolios.

5. A new eigen subspace sparsing method, namely Sparse Karhunen Loeve
Transform, based on the rate-distortion theory is proposed. Its performance
is compared with the popular methods in the literature. It is shown that SKLT
outperforms those methods for certain cases.

Further details on above points are given next. Outline of the dissertation is

discussed at the end of the chapter.

1.1 Eigenportfolios

KLT is the optimal orthonormal subspace method (block transform) that maps wide-

sense stationary (WSS) stochastic signals with correlations into non-stationary and

pairwise uncorrelated transform coefficients [1]. It repacks the signal energy in a way

that maximizes the GTC over PCM [1]. KLT basis functions are the eigenvectors

of the given signal covariance matrix that define the corresponding unique eigen

subspace.

N eigenportfolios with different risks and returns are created through the eigen

decomposition of empirical correlation matrix of asset returns for a given N -asset

basket. Each eigenvector is utilized as capital allocation vector. The returns of

eigenportfolios are the coefficents of KLT.

Closed-form expressions for Sharpe ratios and market exposures of eigen-

portfolios are derived. Their performances for discrete AR(1) signal model and

market data are calculated and compared. The proposed framework is extended to

design optimized super eigenportfolio (OSEP) where investment capital is optimally

allocated among multiple eigenportfolios based on maximization of Sharpe ratio. It

is showed through a five-stock investment basket that AR(1) approximation closely

mimics its empirical correlation matrix obtained from market data. The proposed

framework presents new insights for eigenportfolios and trading algorithms like

statistical arbitrage that utilize them.
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1.2 Subband Portfolios

Subband decomposition is an another multiresolution signal decomposition method

that has been widely used for data compression applications. In fact, block transforms

such as KLT can be viewed as a special filter banks [1].

The objective is to extend the length of the basis functions in time to achieve

freedom for tuning. Since the transform matrix is no longer square, it is not

invertible. The subband (filter bank) theory provides mathematical framework to

design invertible subband subspaces (filter banks) [1]

Optimal perfect reconstruction quadrature mirror filter (PR-QMF) that is

proposed in [15, 14], is one of methods to design the perfect reconstruction filter

banks. PR-QMF banks have been extensively used for splitting a signal into subbands

in the frequency domain and each subband can be processed independently.

Optimal perfect reconstruction filter banks are utilized to generate M subband

portfolios for a given N -asset basket where M < N . Closed-form expressions for

Sharpe ratios and market exposures of subband portfolios are also analyzed and

compared with eigenportfolios for discrete AR(1) signal model.

1.3 Quantization of Subspaces for Sparse Representations

KLT has been employed in multivariate data processing and dimension reduction,

although the application specific interpretation of principal components (eigenvectors)

is often difficult in some cases [13, 42, 49, 20]. Moreover, small but non-zero loadings

(elements) of each principal component (PC) (or eigenvector) bring implementation

cost that is hard to justify in applications such as generation and maintenance

(rebalancing) of eigenportfolios in finance [20, 41, 2]. This and other applications

that utilize loading coefficients have motivated researchers to study sparsity of PCs

in eigen analysis of matrices.
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The constrained optimization algorithms to generate sparse PCs are unable to

guarantee good performance for an arbitrary covariance matrix due to the non-convex

nature of the problem. A procedure to sparse subspaces is proposed in this disser-

tation. The proposed SKLT method utilizes the mathematical framework developed

in rate-distortion theory for transform coding using pdf-optimized quantizers. The

sparsity (cardinality reduction) is achieved through the pdf-optimized quantization

of basis function (vector) set. It may be considered an extension of the simple and

soft thresholding (ST) methods.

The merit of the proposed framework for sparse representation is presented for

AR(1) signal model and empirical correlation matrix of stock returns for NASDAQ-

100 index. The sparsity performance comparisons demonstrate the superiority of

SKLT over the popular algorithms in the literature. SKLT is theoretically tractable,

simple to implement and serves to sparse any subspace of interest.

1.4 Dissertation Outline

This dissertation is organized as follows. In Chapter 2, mathematical preliminaries

required for the discussions in the later chapters are given. Topics discussed in this

chapter include orthogonal transforms, discrete AR(1) signal model, eigenanalysis,

closed-form kernel for the discrete AR(1) process, and transform coding.

In Chapter 3, Modern Portfolio Theory (MPT) is summarized. How to calculate

normalized asset returns, portfolio risk and return are included in this chapter.

Portfolio optimization of MPT and Markowitz Bullet are also discussed.

Eigenportfolios are introduced in Chapter 4. The performance analysis of

eigenportfolios are included in this chapter. Sharpe ratio and market exposure

of eigenportfolios for different discrete AR(1) model parameters are displayed and

discussed. Moreover, the model is validated with real-market data.
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Chapter 5 presents the concept of subband portfolios. Similar to Chapter 4,

performance of subband portfolios are evaluated and compared with eigenportfolios.

Their advantages and disadvantages are stressed in this chapter.

A method, called Sparse Karhunen Loeve Transform (KLT) to sparse eigen

subspace is proposed in Chapter 6. The mathematical framework developed in rate-

distortion theory for transform coding using pdf-optimized quantizers is utilized in

this chapter. The merit of the proposed framework is evaluated and compared for

AR(1) signal model and empirical correlation matrix of stock returns for NASDAQ-

100 index. Discussions, concluding remarks, and future research plans are in Chapter

7.
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CHAPTER 2

MATHEMATICAL PRELIMINARIES

Preliminary mathematical background for the discussions in the dissertation is given

in this chapter. This chapter includes discrete auto-regressive one, AR(1), signal

model, block transforms, gain of transform coding (GTC), eigendecomposition,

closed-form kernel of KLT for AR(1) signal model and transform coding.

2.1 Discrete AR(1) Signal Model

Autoregressive discrete process of order one, AR(1), is a widely used model in the

literature for performance analysis and comparison of signal processing methods. It

is the first approximation of many signals like images and price of an asset. AR(1)

process is expressed as [1]

x (n) = ρx (n− 1) + ξ (n) + c (2.1)

where ξ(n) is white noise sequence with zero-mean and variance σ2
ξ , E {ξ(n)ξ(n+ k)} =

σ2
ξδn−k, and c is a constant. The first order correlation coefficient ρ of AR(1) model

with −1 < ρ < 1 for wide-sense stationary process (WSS) is defined as

ρ = Rxx (1) /Rxx (0)

=
E {x (n)x (n+ 1)}
E {x (n) x (n)}

(2.2)

The mean of x(n) is calculated as

µx = E {x (n)} =
c

(1− ρ)
(2.3)
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And, its variance is found as

σ2
x = E

{
x (n)2

}
− µ2

x =
σ2
ξ

(1− ρ2)
(2.4)

The autocorrelation sequence for AR(1) process is expressed as

Rxx(k) = E {x(n)x(n+ k)} = σ2
xρ

|k|; k = 0,±1,±2, . . . (2.5)

The resulting Toeplitz correlation matrix of size N ×N is shown to be in the form

Rx = σ2
x



1 ρ ρ2 · · · ρN−1

ρ 1 ρ · · · ρN−2

ρ2 ρ 1 · · · ρN−3

...
...

...
. . .

...

ρN−1 ρN−2 ρN−3 · · · 1


(2.6)

AR(1) is a special WSS Gaussian process for −1 < ρ < 1. It has multivariate normal

distribution x ∼ N(µ,Rx) for finite dimensions where

µ = [µk] ; k = 1, 2, . . . , N

µk = µx (2.7)

2.2 Block Transforms

A discrete orthonormal transform (subspace) is described by a set of linearly

independent N sequences (vectors), {ϕk(n)} 0 ≤ n ≤ N − 1, satisfying the inner

product properties [1]

N−1∑
n=0

ϕk(n)ϕ
∗
l (n) = δk−l =

 1, k = l

0, otherwise
(2.8)
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where n is the index of random variables in the vector process (or discrete-time). In

matrix form, vectors (or basis sequences) ϕk = {ϕk(n)} are structured as the rows of

the transform matrix

Φ = [ϕk(n)] : k, n = 0, 1, ..., N − 1 (2.9)

with the subspace orthonormality stated as

ΦΦ−1 = ΦΦ∗T = I (2.10)

where ∗T indicates the conjugated and transposed version of a matrix, and I is the

N × N identity matrix. The projection (forward transform) of and arbitrary vector

x onto subspace is defined as

θ = Φx (2.11)

where θ is the representation (transform) coefficient vector. Similarly, the represen-

tation (inverse transform) of x in the orthogonal subspace is expressed as

x = Φ−1θ = Φ∗Tθ (2.12)

2.3 Eigendecomposition of Correlation Matrix

An eigenvalue λ and its paired eigenvector ϕ of an N × N correlation matrix Rx

satisfy the matrix equation [1]

Rxϕ = λϕ

Rxϕ− λIϕ = (Rx − λI)ϕ = 0 (2.13)

such that (Rx − λI) is singular. Namely,

det (Rx − λI) = 0 (2.14)
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Rx of AR(1) process, described next in (2.6), is a real and symmetric matrix, and its

eigenvectors are linearly independent. Thus, this determinant is a polynomial in λ of

degree N , (2.14) has N roots and (2.13) has N solutions for ϕ that result in eigenpair

set {λk,ϕk} ; 0 ≤ k ≤ N − 1. Therefore, the eigendecomposition of Rx is expressed

as [1]

Rx = AT
KLTΛAKLT =

N−1∑
k=0

λkϕkϕ
T
k (2.15)

where Λ = diag (λk) ; k = 0, 1, . . . , N − 1, and kth column of AT
KLT matrix is the kth

eigenvector ϕk of Rx with the corresponding eigenvalue λk. Note that

{
λk = σ2

k = ϕT
kRxϕk

}
∀k (2.16)

for the given Rx where σ2
k is the variance of the kth transform coefficient, θk.

Note that {λk} are sorted in descending order after the eigenvalues and

eigenvectors are calculated. Therefore, first principal component (PC1) is placed

in the first column of AKLT matrix where k = 0.

2.4 Closed-form Expressions for Eigenvectors and Eigenvalues of AR(1)

Process

The eigenvalues of Rx for an AR(1) process defined in (2.6) are expressed in the

closed-form as [40, 36]

σ2
k = λk =

1− ρ2

1− 2ρ cos(ωk) + ρ2
; 0 ≤ k ≤ N − 1 (2.17)

where {ωk} are the positive roots of the transcendental equation
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tan(Nω) = − (1− ρ2) sin(ω)

cos(ω)− 2ρ+ ρ2 cos(ω)
(2.18)

that is rewritten as

[
tan

(
ω
N

2

)
+ γ tan

(ω
2

)] [
tan

(
ω
N

2

)
− 1

γ
cot
(ω
2

)]
= 0

γ = (1 + ρ) / (1− ρ) , (2.19)

The resulting KLT kernel for matrix of size N ×N is expressed as [40, 36]

AKLT = [A(k, n)] = ck sin

[
ωk

(
n− N − 1

2

)
+

(k + 1)π

2

]
ck =

(
2

N + λk

)1/2

, 0 ≤ k, n ≤ N − 1 (2.20)

The roots of the transcendental tangent equation in (2.19), {ωk}, are required

in the KLT kernel expressed in (2.20). An efficient root finding method for explicit

solutions of transcendental equations including (2.19) was proposed in [40]. That

method leads to an explicit KLT matrix kernel for an AR(1) process as given in

(2.20).

2.5 Transform Coding

Historically speaking, transform coding (TC) of image and video signals has been one

of the most popular applications of subspace methods where the desired dimension

reduction is achieved through quantization of transform coefficients [1, 26, 17].

Original forward and inverse transform matrices are utilized in such a scenario.

Quantization of coefficients in the transform domain, called transform coding (TC),

is defined as
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θ̂ = Q {θ} (2.21)

Then, reconstructed signal with quantized coefficient vector θ̂ is expressed as

x̂ = Φ∗Tθ̂ (2.22)

The mean square error between the original and reconstructed signal due to

quantization of coefficients is written as [1]

σ2
ϵ,TC =

1

N
E
{
x̃Tx̃

}
(2.23)

for zero mean signal x where the quantization error x̃ = x − x̂. Similarly, the mean

square error between the original and quantized coefficients in the transform domain

is calculated as

σ2
q,TC =

1

N
E
{
θ̃Tθ̃

}
=

1

N

N−1∑
k=0

σ2
qk,TC (2.24)

where θ̃ = θ − θ̂, and σ2
qk,TC = E

{∣∣∣θ̃k

∣∣∣2} is the variance of the quantization error

for the kth coefficient. Hence, σ2
ϵ,TC = σ2

q,TC for an orthonormal transform (subspace)

[1].

Transform coding (TC) aims to achieve dimension reduction by repacking signal

energy unevenly among the minimum possible transform coefficients. The transform

coefficients of a signal are quantized for lossy compression (entropy reduction) where

most become negligible and replaced by zero in a typical scenario. The benefit of TC

over pulse code modulation (PCM) depends on the covariance properties of a given

random vector process and has been studied in the literature [1, 26, 17, 6, 23].
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Lloyd-Max [33, 29] quantizer is designed based on the mean square error (mse)

criterion for a given probability density function (pdf). In TC, it defines optimal

quantizer intervals (bins) and their bin representation (quanta) values according to the

pdf of the kth transform coefficient θk in order to minimize σ2
qk,TC with the constraint

σ2
qk

= σ2
ql
∀k, l. This quantization process is repeated for all transform coefficients [1].

pdf-Optimized Midtread Quantizer Quantizers (Q) may be categorized as

midrise and midtread [26]. Midtread quantizer is preferred for applications requiring

entropy reduction and noise filtering (or sparsity) simultaneously [23]. In this paper,

we utilize a midtread quantizer type to quantize each basis function (components of

each vector) of a transform to achieve sparse representation.

A celebrated design method to calculate optimum intervals (bins) and repre-

sentation (quanta) values of a quantizer for the given input signal pdf, so called

pdf-optimized quantizer, was independently proposed by Max and Lloyd [33, 29]. It

assumes a random information source X with zero-mean and a known pdf function

p(x). Then, it minimizes quantization error in the mse sense and also makes sure that

all bins of a quantizer have the same level of representation error. The quantization

error of an L-bin pdf-optimized quantizer is expressed as follows

σ2
q =

L∑
k=1

xk+1∫
xk

(x− yk)
2 p(x)dx (2.25)

where quantizer bin intervals, [xk, xk+1], and quanta values, yk, are calculated

iteratively. The necessary conditions for an mse based pdf-optimized quantizer are

given as [33, 29]
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∂σ2
q

∂xk

= 0; k = 2, 3, . . . , L

∂σ2
q

∂yk
= 0; k = 1, 2, 3, . . . , L (2.26)

leading to the optimal unequal intervals and resulting quanta values as

xk,opt =
1

2
(yk,opt + yk−1,opt) ; k = 2, 3, . . . , L (2.27)

yk,opt =

∫ xk+1,opt

xk
xp(x)dx∫ xk+1,opt

xk
p(x)dx

; k = 1, 2, . . . , L (2.28)

where x1,opt = −∞ and xL+1,opt = ∞. Sufficient condition to avoid local optimum in

(2.26) is the log-concavity of the pdf function p(x). Log-concave property holds for

Uniform, Gaussian and Laplacian pdf types [26]. The representation point (quantum)

of a bin in such a quantizer is its centroid that minimizes the quantization noise for

the interval. The focus is in pdf-optimized quantizers with adjustable zero-zone, odd

L or midtread quantizer, to sparse (quantize) the given input.

The discrepancy between input and output of a quantizer is measured by the

signal-to-quantization-noise ratio (SQNR) [6]

SQNR(dB) = 10 log10

(
σ2
x

σ2
q

)
(2.29)

where σ2
x is the variance of an input with zero-mean and known pdf type, and

expressed as

σ2
x =

∞∫
−∞

x2p(x)dx (2.30)

The first order entropy (rate) of the output for an L-level quantizer with such an

input is calculated as [6, 12]
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H = −
L∑

k=1

Pk log2 Pk (2.31)

Pk =

xk+1∫
xk

p(x)dx.

Optimum Bit Allocation Among Transform Coefficients In TC, the method

to allocate the allowable total bit rate R among multiple transform coefficients

(information sources) performs an important task. Transform coefficient variances

σ2
k (or eigenvalues λk in KLT) are desired to be maximally uneven in order to achieve

dimension reduction in TC. Hence, optimum bit allocation algorithm assigns bit rate

Rk for quantization of coefficient θk in a way that makes the quantization error for

each coefficient to be equal
(
σ2
q0
= σ2

q1
= . . . = σ2

qN−1

)
[1]. Then, the number of levels

for the kth quantizer, for coefficient θk, is found as

Lk = 2Rk (2.32)

Rate-distortion theory states that, the quantization error variance is expressed

as [6]

σ2
qk

= f (Rk)σ
2
k (2.33)

where f (Rk) = γk2
−2Rk and σ2

k are the quantizer distortion function for a unit

variance input and variance of the kth coefficient, respectively. γk depends on the

pdf type of information source θk and also called fudge factor. It is shown with

the assumption that all coefficients have the same pdf type, optimum bit rates Rk

allocated among multiple information sources for the given total bit budget of R are

calculated as [1]
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Rk = R +
1

2
log2

σ2
k(∏N−1

i=0 σ2
i

) 1
N

(2.34)

where R =
N−1∑
k=0

Rk. Optimum bit allocation for the coefficient θk may yield a negative

real number Rk. It implies that representing θk even by zero causes a quantization

error less than constrained coefficient distortion σ2
k = σ2

l . Hence, a reduction of

one dimension is achieved in the quantized signal representation. Note that Lk =

2Rk needs to be a positive integer number. Therefore, optimum bit allocation is an

iterative process in its implementation.

2.6 Gain of Transform Coding

The gain of transform coding over pulse code modulation (PCM) of N × N unitary

transform for a given input correlation is widely utilized in transform theory and

defined as

GN
TC =

1
N

∑N−1
k=0 σ2

k(∏N−1
k=0 σ2

k

) 1
N

(2.35)

where σ2
k is the variance of kth transform coefficient and N is the transform size.

2.7 Chapter Summary

Discrete AR(1) signal model has been widely used in signal processing and finance

for performance comparisons. Closed-form expressions for its mean, variance and

auto-correlation matrix are given in this chapter. Discrete AR(1) model forms the

foundations of modeling and theoretical performance comparisons in this dissertation.

Block transforms and basic operations such as forward and inverse transforms are

also discussed. Eigendecomposition of a given correlation matrix which is the most
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important step to generate eigenportfolios and closed-form expressions of eigenmatrix

and eigenvalues for AR(1) model are summarized in this chapter. They will be utilized

in Chapter 4 and Chapter 6. pdf-optimized midtread quantizer and optimum bit

allocation algorithm that will be used in Chapter 6 to sparse a given subspace are

also discussed. Lastly, gain of transform coding is revisited. It will be used in Chapter

5 to design subband portfolios.
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CHAPTER 3

MODERN PORTFOLIO THEORY

In this chapter, celebrated Modern Portfolio Theory (MPT) is revisited in order

to build the background of discussions about subspace methods and investment

portfolios. It offers a framework to create risk minimized portfolio for a given expected

return. Before the details of optimization problem, return and risk of a portfolio are

defined.

3.1 Asset Returns

The normalized return of the kth asset of an N -asset portfolio is defined as [2, 41]

rk(n) =
pk (n)

pk (n− 1)
− 1; k = 1, 2, . . . , N (3.1)

where pk (n) is its price in discrete time n. Although histograms of asset returns

for market data show fat-tails, excessive kurtosis and asymmetry properties, MPT

assumes that the returns follow a normal distribution. The normality assumption

makes statistical modeling and analysis tractable.

The mean and variance of rk(n) are calculated with the ergodicity assumption

for a measurement window of W samples

µk = E {rk(n)} =
1

W

W−1∑
m=0

rk(n−m) (3.2)

σ2
k = E

{
r2k(n)

}
− µ2

k =

[
1

W

W−1∑
m=0

r2k(n−m)

]
− µ2

k (3.3)

where σk is the volatility of the kth asset.
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3.2 Portfolio Return and Risk

The return vector of portfolio assets is defined as

r(n) = [rk(n)] ; k = 1, 2, . . . , N (3.4)

The sampling time index n is omitted for convenience in the following discussions.

Return of an N -asset portfolio is expressed as

rp = qTr (3.5)

where q = [qk] ; k = 1, 2, . . . , N is the investment allocation vector. Portfolio risk

(volatility) is defined as the standard deviation of portfolio return as follows [41]

σp =
(
E
{
r2p
}
− µ2

p

)1/2
=
(
qTCq

)1/2
=
(
qTΣTRΣq

)1/2
(3.6)

where

µp = E {rp} = qTE {r} = qTµ (3.7)

is the expected return of the portfolio, µ is an N × 1 vector populated with expected

returns of assets, Σ is an N ×N diagonal matrix with its elements {σk} as standard

deviations (volatilities) of asset returns, C is N×N covariance matrix of asset returns,

and R is N × N correlation matrix where [Pij] = ρij. Correlation and covariance

matrices are defined as

C = [C (k, l)] = cov [rk, rl] = E {rkrl} − µkµl (3.8)

R = [R (k, l)] =
cov [rk, rl]

σkσl

=
E {rkrl} − µkµl

σkσl

(3.9)
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The covariance matrix is estimated with the ergodicity assumption for a

measurement window of W samples as follows;

C(k, l) =
1

W

W−1∑
m=0

rk(n−m)rl(n−m) (3.10)

3.3 Sharpe Ratio and Market Exposure of Portfolio

Sharpe ratio of a portfolio is calculated as follows

S =
µp

σp

(3.11)

Sharpe ratio is the risk normalized return and it is an important metric in finance.

Market exposure is another important metric used in finance. It is the amount

of investment with market risk (unhedged against market trend) and defined as

Mp =
N∑
i=1

qi (3.12)

Note that this metric assumes that all asset returns in a basket have the same cross-

correlation (co-movement) with the market return and perfect correlation among each

other.

3.4 Portfolio Optimization

MPT provides a mathematical framework to create efficient portfolios from a basket

of instruments with minimum risk for the targeted portfolio return [32]. The portfolio

optimization problem in MPT is written as
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min qTCq

s.t. qTµ = µ

qT1 = 1 (3.13)

where µ is the targeted (expected) portfolio return. The closed-form solution for the

optimization problem in (3.13) is given as

q =

∣∣∣∣∣∣∣
µ 1TC−1µ

1 1TC−11

∣∣∣∣∣∣∣C−1µ+

∣∣∣∣∣∣∣
µTC−1µ µ

µTC−11 1

∣∣∣∣∣∣∣C−11

∣∣∣∣∣∣∣
µTC−1µ 1TC−1µ

µTC−11 1TC−11

∣∣∣∣∣∣∣
(3.14)

where |.| is the matrix determinant operator, andC−1 is the inverse of positive-definite

C matrix. 1 is the N × 1 unit vector where 1T =

[
1 1 · · · 1

]
. The set of

optimum portfolios for the desired returns in the range of −∞ < µ < ∞ form the

risk-return relationships for the basket, and it is called Markowitz Bullet and depicted

in Figure 3.1 for the case of three-asset portfolio. The portfolios that reside on the

upper half of the bullet shaped curve are called efficient frontier (Pareto frontier).

The minimum risk portfolio with zero return constraint is located on the left most

point of the curve and calculated as

q =
C−11

1TC−11
(3.15)

22



0.75 0.8 0.85 0.9 0.95 1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

µ

σ

 

 
Attainable Portfolios
Markowitz Bullet
Min. Risk Portfolio

Figure 3.1 Markowitz bullet. All the attainable portfolios (qT1 = 1) lie on and on
the right of the frontier. Portfolios that lie on the upper-half of the Markowitz bullet
are called efficient. Minimum risk portfolio is located at the far left tip of the bullet.
In this example ρ12 = 0.6, ρ13 = 0.2, ρ23 = 0.3, µ1 = 0.07, µ2 = 0.03, and µ3 = 0.02.

Source: [41].

3.5 Chapter Summary

The framework offered by Modern Portfolio Theory (MPT) is revisited in this

chapter. The equations for normalized return of an asset along with its volatility

are defined. Expected return and risk of a portfolio are given. Asset return vector

of a basket is often modeled as normal (Gaussian) random vector process [43]. The

normality assumption makes statistical modeling and analysis tractable although the

measurements show that the asset returns do not exactly follow normal distribution.

Expected return of a portfolio is defined as weighted combination of expected values

of normal random variables. Portfolio risk (volatility) of a portfolio is a function

of pair-wise correlations of normal random variables. MPT proposes a solution to

portfolio optimization problem that minimizes the risk of a portfolio for a given

expected return. In this dissertation, MPT is utilized to evaluate subspace methods

used in signal processing applications.
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CHAPTER 4

EIGENPORTFOLIOS

Eigenanalysis of covariance matrix describing a random vector process, also called

principal component analysis (PCA) or Karhunen-Loeve Transform (KLT) [1, 35, 27,

30, 44, 19], has been successfully employed in many fields including signal processing

and quantitative finance. In this chapter, eigenportfolios that are generated from

the empirical correlation matrix of asset returns in a basket are focused on. It is

emphasized that eigenportfolio returns are perfectly decorrelated. Each eigenvector

(EV) generated through the eigendecomposition of an empirical correlation matrix

that describes the cross-correlations between asset returns is utilized as an investment

allocation vector. For an N -asset basket, eigenanalysis of its empirical correlation

matrix for a predefined market history creates N eigenportfolios with their portfolio

risks (volatility) and returns. It is noted that signs of eigenvector components bear

significant information. A negative component value means a short position for the

corresponding asset while a positive one results in a long position.

Market exposure is an important metric for a portfolio and directly related to

its market risk. Hence, market-neutrality is a desired feature for lower risk portfolios.

Eigenportfolios are considered as a market-neutral investment strategy. They are

expected not to be highly affected from the market trend. For a basket of highly

correlated assets, its eigenportfolios are almost uncorrelated from the market moves.

Except the first eigenportfolio where all positions are long in most cases (high market

exposure), the remaining eigenportfolios of a basket with highly correlated assets

have relatively low market exposures. In other words, they have built-in self-hedging

against market momentum [3]. In contrast, momentum based strategies like index
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investing aim to mimic the market where an eigenportfolio with high market exposure

may serve the purpose.

It is common to build investment basket where asset returns exhibit high

cross-correlations. Portfolios exploit these correlations (co-movements) measured

from available market data for a time interval and expressed in empirical correlation

matrix of basket. Those correlations dynamically change in time. Hence, the

resulting eigenportfolios change in time as well. Asset return vector of a basket

is often modeled as normal (Gaussian) random vector process [43]. Although

histograms of asset returns for market data show fat-tails, excessive kurtosis and

asymmetry properties, the normality assumption makes statistical modeling and

analysis tractable. Eigen decomposition perfectly decorrelates given vector process

(represented by its covariance matrix) in the eigen subspace where representation

coefficients have zero cross-correlations. This property is important and leads to

statistical independence of eigen coefficients for Gaussian process. Thus, eigen

decomposition of empirical correlation matrix provides its N eigenportfolios with

perfectly decorrelated portfolio returns. Those uncorrelated returns are particularly

used as independent variables of regression for predictions of individual asset returns

in mean reversion based trading strategies [2, 3].

In this chapter, performances of eigenportfolio returns for autoregressive discrete

process of order one, AR(1) are analyzed, by using financial metrics like Sharpe ratio

(risk-adjusted return) and market exposure. Then, a method is proposed to design

optimized super eigenportfolio (OSEP) that is comprised of multiple eigenportfolios

with optimal weights that represent their investment allocations.

4.1 Eigenanalysis and Eigenportfolios of Empirical Correlation Matrix

PCA (KLT) is the optimal subspace (transform) method and also used to create

eigenportfolios [2, 1]. Eigenanalysis of covariance (empirical correlation) matrix C
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of asset returns in a basket yields a set of eigenportfolios with perfectly decorrelated

returns. The built-in decorrelation property of eigenportfolio returns is a desirable

feature since performance of a particular eigenportfolio has no effect on other

eigenportfolios. This property makes eigenportfolios to comply with the theory

(with the Gaussian assumption) and used as independent variables of regression

analysis employed in quantitative trading strategies like statistical arbitrage [3].

Moreover, except the first eigenportfolio with long only positions in a typical

scenario, eigenportfolios offer market-neutrality whenever their eigenvectors (capital

allocations with long and short positions) have zero mean. It is noted that a market

neural portfolio is self-hedged against market fluctuations and employed in low-risk

investment strategies. The design steps of eigenportfolios are summarized as follows.

Each asset return in asset return vector r is normalized to be zero mean and

unit variance as

r̂ = [r̂k] ; k = 1, 2, . . . , N

r̂k =
rk − µk

σk

(4.1)

where µk and σk are its mean and standard deviation, respectively. The covariance

(correlation) matrix (C = R due to normalization) of asset returns is expressed as

RE ,
[
E
{
r̂r̂T
}]

= [Rk,l] (4.2)

=



R1,1 R1,2 · · · R1,N

R2,1 R2,2 · · · R2,N

...
...

. . .
...

RN,1 RN,2 · · · RN,N
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where its elements

Rk,l = E {r̂kr̂l} =
1

W

W−1∑
m=0

r̂k(n−m)r̂l(n−m) (4.3)

represent measured cross-correlations for an observation (time) window of W

samples. RE is assumed to be a real, symmetric and positive definite matrix. The

eigendecomposition of RE as defined in (2.15) is written as [1, 44]

RE = AT
KLTΛAKLT =

N∑
k=1

λkϕkϕ
T
k (4.4)

where {λk,ϕk} are eigenvalue-eigenvector pairs.

Since asset returns are not variance stationary in real life, it is common to

normalize asset risks during the creation of eigenportfolios. Hence, eigenportfolio

returns with such a normalization are calculated as [41, 3]

rep = θ = ÃT
KLT r (4.5)

where ÃKLT is comprised of eigenvectors defined as

ϕ̃k =
[
ϕ̃

(i)
k

]
; i = 1, 2, . . . , N

ϕ̃
(i)
k =

ϕ
(i)
k

σi

(4.6)

Eigenportfolio risks (volatilities) are expressed as [41]

σep = σθ = [σθk ] ; k = 1, 2, . . . , N

σep
k = σθk =

√
λk =

(
ϕT

k REϕk

)1/2
(4.7)

Therefore, the Sharpe ratio of the kth eigenportfolio is calculated as follows
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Sep = Sθ = [Sθk ] ; k = 1, 2, . . . , N

Sep
k = Sθk =

µθk

σθk

(4.8)

where µθk = E {θk}. Market exposure (unhedged against market fluctuations) of

eigenportfolios are defined as

M ep = [M ep
k ] ; k = 1, 2, . . . , N

M ep
k =

N∑
i=1

ϕ
(i)
k (4.9)

where M ep
k is the market exposure of the kth eigenportfolio.

4.2 Eigenportfolio Returns for AR(1) Process

In this section, eigenportfolio returns are formulated and expressions are derived for

their performance. Although asset returns have mean and variance non-stationarity

in reality, stationarity is assumed [43]. Asset return vector r of a basket at time n

is modeled as autoregressive discrete vector process with order one, AR(1). AR(1)

with finite dimension and −1 < ρ < 1 is considered as Gaussian random process with

constant mean and variance [21]. For simplicity, it is assumed to have unit variance.

It has a kernel for its eigenportfolios [40]. Rx is an N ×N correlation matrix defined

in (2.6) for a given ρ. The resulting eigenportfolio returns are calculated as

rep = θ = AT
KLT r (4.10)

Therefore, each KLT coefficient is equivalent to the return of its corresponding

eigenportfolio with independent normal distribution, {θk ∼ N (µθk , λk)} ∀k where λk

is the kth eigenvalue. Its mean, µθk , is defined as
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µθk = E {θk} =
N∑
i=1

E {ri}ϕ(i)
k (4.11)

The components of θ have the inherent perfect decorrelation property written as [1]

E {θjθk} = σ2
θj
δ (j − k) (4.12)

When the random vector process has multivariate normal distribution with zero mean

and unit variance, the representation (transform) coefficients {θk} are statistically

independent normal random variables [28]. Thus, their joint probability density

function (pdf) is defined as

fθ1,θ2,...,θN (θ1, θ2, . . . , θN) = fθ1 (θ1) fθ2 (θ2) . . . fθN (θN) (4.13)

where fθk (θk) =
1

σ2
θk

√
2π

e
−
(θk−µθk)

2

2σ2
θk

 ∀k (4.14)

It is noted that signal dependent KLT optimally repacks signal energy in the subspace.

It maximizes the ratio [1]

GTC =
1
N

∑N
k=1 σ

2
θk(∏N

k=1 σ
2
θk

)1/N
(4.15)

This property implies maximized unevenness among squared volatilities of eigenport-

folios.
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Since the mean of AR(1) process is constant, the mean, volatility, and Sharpe

ratio, Sk, for the return of the kth eigenportfolio (transform coefficient) are calculated

as follows

µθk = E {θk} = Mkµx = ϕA
k µx = ϕA

k

c

1− ρ
(4.16)

σθk =
(
E
{
θ2k
}
− µ2

θk

)1/2
=
√

λk =
(
ϕT

kRxϕk

)1/2
(4.17)

Sk =
µθk

σθk

(4.18)

where

Mk = ϕA
k =

N∑
i=1

ϕ
(i)
k (4.19)

It is emphasized that the mean of the kth eigenportfolio return, {µθk}, for AR(1)

process depends on the constant c (market trend), correlation coefficient ρ, and

its market exposure, Mk, as shown in (4.16). Note that Mk is also a function of

ρ. This expression suggests that one should form a basket of assets with highly

correlated historical returns in order to generate eigenportfolios with good returns.

(4.16) shows that market trend, c, and market exposure of an eigenportfolio, Mk, are

also important factors for its return. Moreover, this equation shows that the expected

values of eigenportfolio returns are zero, {µθk = 0} ∀k, whenever there is no trend in

the market, c = 0, or eigenportfolio has no market exposure, Mk = 0. On the other

hand, for Mk ̸= 0 and c ̸= 0, means of eigenportfolio returns are dictated by their

market exposures and the market trend. The market exposure Mk and the market
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trend c dominate the return of an eigenportfolio for a given correlation coefficient ρ. It

is an interesting observation from (2.20) that the even indexed eigenvectors of AR(1)

process have zero-mean when ρ > 0, hence, Mk = 0. The odd indexed eigenvectors

have also zero-mean when ρ < 0. Thus, the returns of these eigenportfolios are zero

regardless of the values of c and ρ.

In a real world scenario, the means of asset returns are varying in time and

not the same for all assets in the basket. In order to make the model more realistic,

the constant c in AR(1) model, (2.1), is also assumed as a random variable with

normal distribution, c ∼ N (µc, σ
2
c ). Therefore, µx has normal distribution as well,

µx ∼ N
(

µc

1−ρ
, σ2

c

(1−ρ)2

)
. The mean values and Sharpe ratios of eigenportfolio returns

defined in (4.16) and (4.18), respectively, are considered as random variables. The

mean of the kth eigenportfolio return for constant ρ has the normal distribution as

follows

µθk ∼ N
(
µµθk

, σ2
µθk

)
(4.20)

where µµθk
and σ2

µθk
are defined as

µµθk
= E {µθk}

= ϕA
kE {µx}

= ϕA
k

µc

1− ρ
(4.21)

and

σ2
µθk

= E
{
µ2
θk

}
− µ2

µθk

=
(
ϕA

k

)2 (
E
{
µ2
x

}
− µ2

x

)
=
(
ϕA

k

)2 σ2
c

(1− ρ)2
(4.22)
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Sharpe ratio of each eigenportfolio also has normal distribution as

Sk ∼ N
(
µSk

, σ2
Sk

)
(4.23)

where µSk
and σ2

Sk
are calculated as follows

µSk
= E {Sk}

=

(
ϕA

k√
λk

)
E {µx}

=

(
ϕA

k√
λk

)
µc

1− ρ
(4.24)

σ2
Sk

= E
{
S2
k

}
− µ2

Sk

=

(
ϕA

k√
λk

)2 (
E
{
µ2
x

}
− µ2

x

)
=

(
ϕA

k√
λk

)2
σ2
c

(1− ρ)2
(4.25)

It is validated in Section 4.4 that the proposed framework to calculate eigenportfolio

performance for AR(1) model through an example where actual market data is used.

4.3 Super Eigenportfolio

The design of eigenportfolios for AR(1) process is extended in this section. Herein,

the problem of allocating the total investment among eigenportfolios is looked into in

order to maximize the overall financial performance. Hence, the resulting investment

portfolio is called as super eigenportfolio (SEP). Although a simple way to allocate

total investment among eigenportfolios is to assign even amount (Talmudic allocation)

to each eigenportfolio (
{
αk =

1
N

}
∀k), the task is stated as an optimal capital

allocation problem and it is presented in the next section.
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With the assumptions that all eigenportfolios are considered for investment

and r has multivariate normal distribution of unit variance, the return of a super

eigenportfolio, θSEP , is defined as

θSEP =
N∑
k=1

αkθk =
N∑
k=1

N∑
i=1

αkϕ
(i)
k ri (4.26)

where
∑N

k=1 αk = 1. θSEP is a linear combination of independent normal random

variables (eigenportfolio returns). Thus, it has a normal distribution, θSEP ∼

N
(
µθSEP

, σ2
θSEP

)
. The mean, volatility and Sharpe ratio of the resulting super

eigenportfolio is defined as [28]

µθSEP
= E {θSEP} =

N∑
k=1

αkµθk (4.27)

σθSEP
=
(
E
{
θ2SEP

}
− µ2

θSEP

)1/2
=

(
N∑
k=1

α2
kσ

2
θk

)1/2

(4.28)

SSEP =
µθSEP

σθSEP

(4.29)

Similarly, the market exposure of SEP is calculated as

MSEP =
N∑
k=1

αkϕ
A
k (4.30)

4.3.1 Optimized Super Eigenportfolio (OSEP)

The Sharpe ratio of super eigenportfolio, SSEP , is used as the metric for optimal

allocation of the total investment among eigenportfolios. The formulation of the

problem is given as follows
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max SSEP

s.t.
N∑
k=1

αk = 1 (4.31)

Maximizing Sharpe ratio is a multiobjective optimization problem (Pareto optimization).

Risk (volatility) defined in (4.28) has to be minimized while the mean, (4.27), is

maximized. There is no single solution that simultaneously optimizes both objective

functions. In such a case, Pareto optimal (Pareto efficient) solutions or efficient

frontier are generated in order to obtain the solution that maximizes SSEP . Pareto

optimal solutions are the ones that none of the objective functions can be improved

without making at least one of the objective functions worsening [18]. One way to

generate Pareto optimal solutions for this problem is to convert the multiobjective

problem into a single objective optimization problem by assigning only positive

weights to each objective function [18]. The standard method is defined as

min F (x) =
N∑
k=1

νkfk (x) (4.32)

where νk > 0; k = 1, 2, . . . , N . By tuning the weights, {νk}, the Pareto optimal

solutions can be generated.

The multiobjective optimization problem defined in (4.31) is converted into a

single objective optimization problem and expressed as

min ν1

(
N∑
k=1

α2
kσ

2
θk

)1/2

− ν2

N∑
k=1

αkµθk

s.t.
N∑
k=1

αk = 1 (4.33)
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where 0 ≤ ν1, ν2 ≤ 1 and ν1 + ν2 = 1. Among the Pareto optimal solutions, the

one that maximizes the Sharpe ratio is selected as the solution for the optimization

problem of (4.31). The optimization problem in (4.33) can be solved by use of

numerical methods currently available.

If the problem is modified to minimize variance (similar to MPT) rather than

standard deviation and stated as

min ν1

N∑
k=1

α2
kσ

2
θk
− ν2

N∑
k=1

αkµθk

s.t.
N∑
k=1

αk = 1 (4.34)

an analytical solution is derived. The multiobjective optimization of (4.34) is a

quadratic optimization problem stated as

min ν1α
TVα− ν2α

Tµθ

s.t. 1Tα = 1 (4.35)

where
{
σ2
θk

}
and {µθk} populate the diagonal matrix V and vector µθ, respectively.

ν1 and ν2 are the tuning parameters for Pareto frontier. In quadratic programming,

the optimization problem is convex when V is a positive-definite matrix [10]. Since

V is diagonal with positive elements, it is a positive-definite matrix. Hence, the

optimization problem in (4.35) is convex.

Using Lagrangian multiplier, the multiobjective optimization problem is modified

as follows

L (α, β) = ν1

N∑
k=1

α2
kσ

2
θk
− ν2

N∑
k=1

αkµθk + β

(
N∑
k=1

αk − 1

)
(4.36)

35



Then,

∂L (α, β)

∂αk

= 0 (4.37)

−ν2µθk + 2ν1σ
2
θk
αk + β = 0 (4.38)

αk =
(ν2µθk − β) σ−2

θk

2ν1
(4.39)

α =
V−1 [ν2µθ − β]

2ν1
(4.40)

To solve the Lagrangian multiplier, we substitute (4.39) in the constraint of (4.35)

N∑
k=1

(ν2µθk − β)σ−2
θk

2ν1
= 1 (4.41)

N∑
k=1

ν2µθkσ
−2
θk

2ν1
−

N∑
k=1

βσ−2
θk

2ν1
= 1 (4.42)

N∑
k=1

ν2µθkσ
−2
θk

2ν1
− 1 = β

N∑
k=1

σ−2
θk

2ν1
(4.43)

β =

(∑N
k=1 ν2µθkσ

−2
θk

)
− 2ν1∑N

i=1 σ
−2
θk

(4.44)
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β =
ν21

TV−1µθ − 2ν1
1TV−11

(4.45)

α =
V−1 [ν2µθ − β]

2ν1

β =
ν2V

−1µθ − 2ν1
V−11

(4.46)

where
{
σ2
θk

}
and {µθk} populate the diagonal elements of matrix V and components

of vector µθ, respectively. ν1 and ν2 are the tuning parameters for Pareto frontier. 1

is the N × 1 unit vector, 1T =

[
1 1 · · · 1

]
.

4.4 Performance of Eigenportfolios for AR(1) Process

Eigenportfolios of AR(1) process are evaluated with respect to Sharpe ratios of their

returns and also their market exposures. Moreover, the empirical correlation matrix

for a basket of four stocks is measured from market data and approximated it by an

AR(1) process to validate the proposed framework.

4.4.1 Eigenportfolios of AR(1) Process

The market exposures, ϕA, and expected values of Sharpe ratios, µS, for the first and

the last five odd indexed eigenportfolios of AR(1) process, with µc = 1 bps and size

N = 30, as a function of ρ are displayed in Figure 4.1a and 4.1b, respectively. ϕA and

µS of optimized super eigenportfolio (OSEP) are also included in these figures. First

eigenportfolio has long positions for all assets. Therefore, it has the highest market

exposure and its expected Sharpe ratio increases when ρ gets higher. In contrast,

an eigenportfolio with the zero sum of its long and short positions has no market

exposure. It is observed from Figure 4.1a that odd indexed eigenportfolios have zero

market exposure for ρ < 0. Hence, their Sharpe ratios are zero. Similarly, Figure 4.2a
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Figure 4.1 (a) Market exposures, ϕA, and (b) expected values of Sharpe ratios,
µS, for the first and the last five odd indexed eigenportfolios (EPs) of AR(1) process
along with optimized super eigenportfolio (OSEP) for µc = 1 bps and N = 30 with
respect to ρ.
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Figure 4.2 (a) Market exposures, ϕA, and (b) expected values of Sharpe ratios,
µS, for the first and the last five even indexed eigenportfolios (EPs) of AR(1) process
along with optimized super eigenportfolio (OSEP) for µc = 1 bps and N = 30 with
respect to ρ.
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Figure 4.3 (a) Market exposures, ϕA, and (b) expected values of Sharpe ratios,
µS, for the first and the last four odd indexed eigenportfolios (EPs) of AR(1) process
along with optimized super eigenportfolio (OSEP) for µc = 1 bps and ρ = 0.9 with
respect to the size N .

and 4.2b display the ϕA and µS of the first and last five even indexed eigenportfolios,

respectively. The last eigenportfolio performs the best for ρ < 0. It is noted that the

market exposure of OSEP decreases as ρ goes to one. Moreover, it provides the best

Sharpe ratio among all eigenportfolios for all the cases considered.

The market exposures, ϕA, and expected values of Sharpe ratios, µS, for the

first and the last four odd indexed eigenportfolios of AR(1) process, with µc = 1

bps and ρ = 0.9, and OSEP as a function of size N are displayed in Figure 4.3a

and 4.3b, respectively. The expected Sharpe ratios of eigenportfolios with non-zero

market exposures increase with portfolio size where OSEP performs the best among
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Figure 4.4 Normalized histogram of end of day (EOD) returns for the first
eigenportfolio (EP1) derived from empirical correlation matrix of the basket {MMM,
UTX, PFE, UNH}, N = 4, with W = 600 days ending on January 24, 2014 along
with the Gaussian pdf of the mean and standard deviation calculated from (4.16)
and (4.17), respectively. The AR(1) model parameters of (2.1) for this set of market
data are estimated as c = 0.02 bps and ρ = 0.75. The mean, standard deviation
and Sharpe ratio of the histogram are calculated as µm

θ1
= 0.081 bps, σm

θ1
= 1.06 bps,

and Sm
1 = 1.122, respectively, for the AR(1) model. Similarly, they are calculated as

µd
θ1

= 0.082 bps, σd
θ1

= 0.98 bps, and Sd
1 = 1.328 for the market data. It is noted that

the same eigenportfolio is used to calculate its in-sample EOD returns for the entire
duration of W = 600 days.

all the cases considered. Similar trend is observed for various ρ values. On the other

hand, the market exposure is significantly less sensitive to the size in particular when

N >200.

4.4.2 Eigenportfolios of a Basket

A basket of four stocks {MMM, UTX, PFE, UNH} is created to validate the proposed

framework by evaluating its eigenportfolio returns. Their end of day (EOD) returns

are used in this study. The empirical correlation matrix is calculated and its

eigenanalysis is performed. Large window sizes resulted in comparable values for

mean and variance of asset returns, and a good AR(1) approximation to market data
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Table 4.1 Mean, Standard Deviation and Annual Sharpe Ratios of End of Day
(EOD) Returns for In-Sample Eigenportfolios

EP1 EP2 EP3 EP4

µθk(bps)
AR(1) 0.081 0.0 -0.005 0.00

Data 0.082 -0.002 -0.012 -0.003

σθk(bps)
AR(1) 1.06 0.54 0.32 0.27

Data 0.98 0.66 0.48 0.37

Sk (annual)
AR(1) 1.122 0.00 -0.251 0.00

Data 1.328 -0.068 -0.411 -0.14

Table 4.2 Mean, Standard Deviation and Annual Sharpe Ratios of End of Day
(EOD) Returns for Out-Sample Eigenportfolios

EP1 EP2 EP3 EP4

µθk(bps)
AR(1) 0.074 0.0 -0.003 0.00

Data 0.072 -0.003 -0.0 -0.012

σθk(bps)
AR(1) 0.93 0.4 0.23 0.19

Data 0.75 0.62 0.54 0.34

Sk (annual)
AR(1) 1.27 0.00 -0.23 0.00

Data 1.54 -0.085 -0.007 -0.57
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Figure 4.5 Profit and Loss (PNL) curves of end of day (EOD) returns for (a)
the first eigenportfolio, and (b) the four eigenportfolios, generated from empirical
correlation matrix of the basket {MMM, UTX, PFE, UNH}, N = 4, with W = 600
days ending on January 24, 2014. The linear PNL curve generated for the first
eigenportfolio of AR(1) process per (4.16) and for the parameters c = 0.02 bps and
ρ = 0.75 is also displayed in (a) to highlight the model fit.
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Figure 4.6 (a) Profit and Loss (PNL) curves of end of day (EOD) returns for the

out-sample first eigenportfolio generated from empirical correlation matrix of the basket

{MMM, UTX, PFE, UNH}, N = 4, with W = 200 days ending on June 19, 2012 and

556 days out of sample market data ending on September 5, 2014. The linear PNL curve

generated for the first eigenportfolio of AR(1) process per (4.16) and for the parameters

c = 0.013 bps and ρ = 0.81 is also displayed to highlight the model fit. (b) Profit and Loss

(PNL) curves of end of day (EOD) returns for all eigenportfolios.
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Figure 4.7 Normalized histogram of in-sample annual Sharpe ratios measured
between January 24, 2014 and June 18, 2014 for the EOD returns of the first
eigenportfolio created for the empirical correlation matrix of a basket {MMM, UTX,
PFE, UNH}, N = 4, for the measurement window of W = 600 days along with
Gaussian pdf of mean and standard deviation calculated from (4.24) and (4.25),
respectively. The AR(1) model parameters of (2.1) are estimated as µc = 1.73 bps
and ρ = 0.77. The mean and standard deviation of the histogram are calculated as
µd
Sk

= 1.59 and σd
Sk

= 0.108, respectively. Similarly, they are calculated as µm
Sk

= 1.47
and σm

Sk
= 0.09 for the AR(1) model. It is noted that c in (2.1) is itself a Gaussian

random variable with N (µc = 1.73 bps, σ2
c = 0.0001 bps) for this market data.

with W=600 is obtained for that stock basket. It is assumed that $1 investment in

each eigenportfolio and no transaction cost is considered.

Figure 4.7a displays the normalized histogram of the EOD returns for the first

eigenportfolio (EP1) generated from the empirical correlation matrix, W = 600,

of four-stock basket {MMM, UTX, PFE, UNH} for the market data ending on

January 24, 2014. In addition, Gaussian pdf with µm
θ1

= 0.081 bps, σm
θ1

= 1.06

bps is also displayed in this figure. c in AR(1) model is assumed to be constant.

AR(1) model parameters are measured from market data as c = 0.02 bps and

ρ = 0.75. It is observed from the figure that the histogram and pdf are in agreement.

Similarly, Table 4.1 tabulates the mean, standard deviation and annual Sharpe ratio
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Table 4.3 Mean and Standard Deviation of Annual Sharpe Ratios of the Four
In-Sample Eigenportfolios

EP1 EP2 EP3 EP4

µµθk

AR(1) 1.473 0 -0.32 0

Data 1.598 -0.073 -0.24 -0.44

σµθk

AR(1) 0.099 0 -0.021 0

Data 0.108 0.098 0.299 0.265

Table 4.4 Mean and Standard Deviation of Annual Sharpe Ratios of the Four
Out-Sample Eigenportfolios

EP1 EP2 EP3 EP4

µµθk

AR(1) 1.65 0 -0.34 0

Data 1.92 -0.06 -0.08 0.13

σµθk

AR(1) 0.108 0 -0.022 0

Data 0.118 0.339 0.448 0.261
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values of eigenportfolio EOD returns obtained from market data measurements and

their counterparts for AR(1) model as calculated from (4.16), (4.17), and (4.18),

respectively. It is observed from the table that the model mimics measurements

closely for this case where c is constant. However, eigenportfolio returns also show

fat-tails, excessive kurtosis and asymmetry properties similar to asset returns. Normal

distribution is used due to its simplicity. Figure 4.5a displays the profit and loss

(PNL) curves of the first eigenportfolio generated from market data and AR(1) model.

Similarly, Figure 4.5b displays PNL curves of the four eigenportfolios generated from

market data. It is noted that the same eigenportfolio is used to calculate its in-sample

EOD returns for the entire duration of W = 600 days. The Share ratio results with

the out of sample EOD returns for measurement window W = 200 days ending on

June 19, 2012 and 556 days of out of sample market data ending on September 5,

2014 are tabulated in Table 4.2. The results with the out of sample data has higher

discrepancy between model and data than the results with in-sample data as expected.

Figure 4.7 displays normalized histogram for annual Sharpe ratio using EOD

market returns of the first eigenportfolio (EP1) obtained from the empirical corre-

lation matrix of four stocks {MMM, UTX, PFE, UNH}, N = 4, for the interval

between January 24, 2014 and June 18, 2014 with the measurement window of

W = 600 days. Normal pdf, with µm
Sk

= 1.47 and σm
Sk

= 0.09 calculated from

(4.24) and (4.25), respectively, that approximates the histogram is also displayed in

this figure. It is noted that the parameter c is a random variable and modeled as

N (µc = 1.73 bps, σ2
c = 0.0001 bps) in this case. Therefore, AR(1) model parameters

for this market data are estimated as µc = 1.73 bps, σ2
c = 0.0001 bps and ρ = 0.77.

Figure 4.7 highlights the discrepancy between the means of these two distributions.

Its main reason is the fact that market data is not mean stationary. The mean and

variance of Sharpe ratio for the first eigenportfolio are calculated, from (4.24) and

(4.25), respectively, as µm
Sk

= 1.47 and σm
Sk

= 0.09. In contrast, they are measured
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from market data as µd
Sk

= 1.59 and σd
Sk

= 0.108. Similarly, Table 4.3 tabulates

the mean and standard deviation of annual Sharpe ratios for the four eigenportfolio

returns obtained from market data along with for AR(1) model as calculated from

(4.24) and (4.25), respectively. Table 4.3 tabulates the mean and standard deviation

of annual Sharpe ratios for the same experiment where the eigenportfolio returns are

calculated using out of sample data. The results with the out of sample data has

higher discrepancy between model and data than the results with in-sample data as

expected.

This section validates the proposed framework to evaluate eigenportfolio

returns. It utilizes AR(1) process as the statistical model for returns of assets in

a basket to approximate market data due to its simplicity where the analysis is

tractable.

4.5 Chapter Summary

Sharpe ratios for eigenportfolio returns of discrete AR(1) process are derived. The

design of optimized super eigenportfolio (OSEP) is introduced. It is created by

optimal allocation of investment capital among eigenportfolios based on maximization

of Sharpe ratio. Eigenportfolio performance with respect to various parameters and

metrics is investigated. It is showed through a four-stock investment basket that

AR(1) approximation closely mimics its empirical correlation matrix obtained from

market data. The proposed framework presents new insights for eigenportfolios and

trading algorithms like statistical arbitrage that utilize them.
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CHAPTER 5

SUBBAND PORTFOLIOS

In Chapter 4, performance analysis of eigenportfolios, that are generated through

the eigendecomposition of empirical correlation matrix for asset returns for a basket,

is given. In block transforms, the length of the basis functions is equal to the size

of the input signal vector. Hence, transform and inverse transform matrices are

square. Although this subspace structure provides simplicity to design transform

and inverse transform matrices, it allows least possible mathematical freedom in

tuning the orthonormal basis functions in the time and frequency domains for the

desired requirements. KLT is the optimal orthonormal block transform that perfectly

decorrelates the input signal in the subspace and maximally repacks its energy leading

to dimensionality reduction [1].

In order to achieve more freedom for flexible subspace design, the length of

the basis functions are extended in time. In general, if the arbitrary length for the

basis sequences is allowed, filter bank or subband transform framework is utilized.

Indeed, block transforms are interpreted as special filter banks [1]. The tradeoff is

the fact that subband the transform matrix is rectangular and therefore, it is not

invertible. The subband (filter bank) theory provides mathematical requirements to

design invertible subband transform subspaces (filter banks) [1].

Low-pass quadrature mirror filter (QMF) is a filter where its magnitude response

is the mirror image (around π/2) of another filter (high-pass) in a two-band filter

bank. PR-QMF has perfect reconstruction properties imposed on these filters in a

two-band filter bank structure. PR-QMF bank has been extensively used to split

a signal spectrum into its various subbands (sub-spectra) in the frequency domain

through subband tree structures [1].
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In this chapter, optimal perfect reconstruction filter banks [15, 1, 14] to design

subband portfolios are investigated. It is an extension of eigenportfolios. The goal

is to exploit the freedom provided by longer basis sequences subband (vectors) than

eigenvectors in order to design portfolios with various characteristics.

Similar to eigenportfolios, subband filter sequences (coefficients) of M -band

optimal filter banks are used as capital allocation coefficients forM subband portfolios

of N−asset basket where M < N . Sharpe ratios and market exposures of subband

portfolios are calculated by using the framework developed in Chapter 4. They are

compared with eigenportfolios for AR(1) signal model.

5.1 Optimal PR-QMF Design

For an N -asset basket, eigenanalysis of empirical correlation matrix for a predefined

market history creates N eigenportfolios with their portfolio risks (volatility) and

returns. The first eigenportfolio has the highest risk and full market exposure in a

typical case. On the other hand, rest of the eigenportfolios may have lower risk levels

and market exposures.

The main goal of generating subband subspace is to design a group of portfolios

for the given empirical correlation matrix that have good performance. Therefore,

self-hedged portfolios (less market exposure) with reasonable risk levels may be

generated while preserving the desired properties like perfect decorrelation among

subband portfolio returns.

Optimal PR-QMF banks are utilized to generate such subband portfolios [15,

1, 14]. The design details of PR-QMF banks are given in the following subsection.

5.1.1 Optimization Parameters for Optimal PR-QMF Design

An eigen subspace has the following properties,

1. Orthonormality.

2. Perfect reconstruction.
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3. Energy compaction or gain of transform coding (GTC) over PCMmaximization.

4. Perfect decorrelation of transform coefficients.

Eigendecomposition of N × N covariance (or correlation) matrix generates a

N ×N subspace that inherently satisfies these conditions. Another way of generating

eigenvectors for a given covariance matrix is to solve the following optimization

problem based on least squares [1]

max ϕT
kCϕk

s.t. ϕT
kϕn = δk−n (5.1)

where C is the covariance matrix, ϕk is the kth eigenvector, and δk−n is the Kronecker

delta sequence. Optimal M -band PR-QMF bank with N -taps is designed by solving

optimization problem given in (5.1) with additional constraints of desired features.

The following performance metrics for the design optimal PR-QMFs were reported

in the literature [15, 1, 14].

Orthonormal Perfect Reconstruction For M -bands PR-QMFs with N -taps,

the orthonormal PR condition is defined as [15, 1, 14]

∑
n

hi (n)hj (n− kM) = δkδi−j (5.2)

where filter lengths are integer multiples of the number of bands in PR-QMF bank.

Energy Compaction For paraunitary transformation, the Parseval theorem states

the energy preservation constraint [1, 14]

σ2
x =

1

2

(
σ2
L + σ2

H

)
(5.3)
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where σ2
x is the variance of zero-mean input with correlation matrix R. σ2

L and σ2
H

are variances of the low-pass and high-pass filter outputs, respectively. They can also

be calculated as

σ2
L = hT

LRhL

σ2
H = hT

HRhH (5.4)

where hL and hH is the low-pass and high-pass filters in vector form, respectively.

Once the low-pass filter is generated, its mirror high-pass filter is obtained as

hH (n) = (−1)n hL (n) (5.5)

The energy compaction metric is [1]

GTC =
σ2
x

(σ2
Lσ

2
H)

1/2
(5.6)

It is clear from (5.6) that the maximization of σ2
L in (5.4) is sufficient condition for

energy compaction [1].

Correlation Between Subband Signals Let ASB be a matrix that PR-QMFs

are placed as column-wise. Then, p is defined as [1]

p =
N−1∑
i=1

N−1∑
j=1,i̸=j

|Rθ (i, j) | (5.7)

where

Rθ = AT
SBRASB (5.8)
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For perfect decorrelation condition, p = 0.

Zero-Mean Most energy of real world signals like image frames is concentrated

around the DC frequency. Practical signal decomposition techniques are expected to

be able to represent the DC component by only one basis function of the orthonormal

set. Therefore, except low-pass filter, all filters of the subband filter bank should have

zero-mean [15, 1, 14],

N−1∑
n=1

h (n) = 0 (5.9)

This requirement implies that there should be at least one zero of the low-pass filter

H (ejω) at ω = π. From investment portfolio design point of view, it means zero

market exposure condition for a basket of assets with similar correlation to the overall

market.

Energy Compaction The optimization problem to generate optimal PR-QMFs

that maximizes the energy compaction with the constraints is defined as [15, 1, 14];

max hT
i Rhi

s.t.
∑
n

hi (n)hj (n− kM) = δkδi−j

p = 0

N−1∑
n=1

hi (n) = 0

N−1∑
n=1

(−1)n hi (n) = 0 (5.10)

Note that zero-mean condition for low-pass filter is not included.
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Figure 5.1 (a) Market exposures, ϕA, and (b) expected values of Sharpe ratios, µS,
for the subband portfolios (SPs) of AR(1) process generated by optimal M = 2 band
perfect reconstruction filter bank with zero-mean constraint along with optimized
super subband portfolio (OSSP) for µc = 1 bps, N = 30, and with respect to ρ.

5.2 Performance of Subband Portfolios for AR(1) Process

Sharpe ratio and market exposure of subband portfolios for AR(1) random vector

process are calculated using Equations (4.24) and (4.19) derived in Chapter 4, respec-

tively. Their performances are evaluated and compared with the eigenportfolios.

Moreover, the empirical correlation matrix for a basket of four stocks is measured

from market data and approximated by an AR(1) process to validate the proposed

framework.
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Figure 5.2 (a) Market exposures, ϕA, and (b) expected values of Sharpe ratios,
µS, for the subband portfolios (SPs) of AR(1) process generated by optimal M = 2
band perfect reconstruction filter bank along with optimized super subband portfolio
(OSSP) for µc = 1 bps, N = 30, and with respect to ρ.
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Figure 5.3 (a) Market exposures, ϕA, and (b) expected values of Sharpe ratios, µS,
for the subband portfolios (SPs) of AR(1) process generated by optimal M = 3 band
perfect reconstruction filter bank with zero-mean constraint along with optimized
super subband portfolio (OSSP) for µc = 1 bps, N = 30, and with respect to ρ.
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Figure 5.4 (a) Market exposures, ϕA, and (b) expected values of Sharpe ratios,
µS, for the subband portfolios (SPs) of AR(1) process generated by optimal M = 3
band perfect reconstruction filter bank along with optimized super subband portfolio
(OSSP) for µc = 1 bps, N = 30, and with respect to ρ.
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Figure 5.5 (a) Market exposures, ϕA, and (b) expected values of Sharpe ratios,
µS, for the subband portfolios (SPs) of AR(1) process generated by optimal M = 5
band perfect reconstruction filter bank along with optimized super subband portfolio
(OSSP) for µc = 1 bps, N = 30, and with respect to ρ.
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5.2.1 Subband Portfolios of AR(1) Process

The market exposures, ϕA, and expected values of Sharpe ratios, µS, for M = 2

bands and N = 30 taps (portfolio size) subband portfolios of AR(1) process, with

µc = 1 bps, as a function of ρ are displayed in Figure 5.1a and 5.1b, respectively. ϕA

and µS of optimized super subband portfolio (OSSP) that is generated using (4.46) is

also included in these figures. Same simulation parameters set for eigenportfolios in

Section 4.4.1 are also used for performance comparisons. Figure 5.2a and 5.2b display

the market exposures, ϕA, and expected values of Sharpe ratios for the same scenario

without zero-mean condition. A similar simulation with M = 3 and M = 5 with and

without zero-mean condition are displayed in Figure 5.3a, 5.3b 5.4a, 5.4b, 5.5a, 5.5b,

respectively.

Figures for expected values of Sharpe ratios display that OSSP has the best

performance among subband portfolios. SP1 has the highest market exposure as

expected. Performance of the other subband portfolios depend on whether zero-

mean condition is enforced or not. When zero-mean condition is not included in the

optimization, they have small market exposure and lower value for expected Sharpe

ratio.

The market exposures, ϕA, and expected values of Sharpe ratios, µS, for the

odd indexed eigenportfolios of AR(1) process with same simulation parameters are

displayed in Figure 4.1a and 4.1b, respectively. Similarly, Figure 4.2a and 4.2b display

the ϕA and µS of the even indexed eigenportfolios, respectively. When subband

portfolios are compared with eigenportfolios of AR(1) random vector process, it

is observed that eigenportfolios deliver slightly better Sharpe ratio. On the other

hand, market exposure of eigenportfolios are higher than subband portfolios. In

particular, EP1 has full market exposure and the highest risk. Subband portfolios

offer significantly less market exposure than eigenportfolios. SP1 has 40% − 50%

market exposure and delivers smaller levels of risk compared to EP1.
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Table 5.1 Mean, Standard Deviation and Annual Sharpe Ratios of End of Day
(EOD) Returns for In-Sample Subband Portfolios

SP1 EP1 SP2 EP2 EP3 EP4

µθk(bps)
AR(1) 0.081 0.081 0.0 0.0 -0.005 0.00

Data 0.081 0.082 0.001 -0.002 -0.012 -0.003

σθk(bps)
AR(1) 1.16 1.06 0.44 0.54 0.32 0.27

Data 1.03 0.98 0.007 0.66 0.48 0.37

Sk (annual)
AR(1) 1.11 1.122 0.0 0.00 -0.251 0.00

Data 1.25 1.328 0.032 -0.068 -0.411 -0.14

5.2.2 Subband Portfolios of a Basket

A basket of four stocks {MMM, UTX, PFE, UNH} is created to validate the proposed

framework to design subband portfolios. End of day (EOD) returns are used in this

study. The empirical correlation matrix for the measurement window of W = 600

days ending on January 24, 2014, is calculated and optimization problem in (5.10)

is solved. Note that only M = 2 band PR-QMF bank can be generated due to PR

conditions. Large window sizes resulted in comparable values for mean and variance

of asset returns, and a good AR(1) approximation to market data with W=600 is

obtained for that basket. One dollar investment in each subband portfolio and no

transaction cost are considered. It is noted that in-sample measurements are utilized

in this experiment.

Table 5.1 tabulates the mean, standard deviation and annual Sharpe ratio values

for two subband portfolios and four eigenportfolios of the EOD returns generated from

the empirical correlation matrix, W = 600, of four-stock basket {MMM, UTX, PFE,

UNH} for the market data ending on January 24, 2014 and their counterparts for

AR(1) model as calculated from (4.16), (4.17), and (4.18), respectively. It is observed

from the table that the model mimics measurements closely for this case where c is
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Figure 5.6 Profit and Loss (PNL) curves of end of day (EOD) returns for (a) the
first subband portfolio, and (b) the two subband portfolios, generated from empirical
correlation matrix of the basket {MMM, UTX, PFE, UNH}, N = 4 with W = 600
days ending on January 24, 2014. The linear PNL curve generated for the first
eigenportfolio of AR(1) process per (4.16) and for the parameters c = 0.02 bps and
ρ = 0.75 is also displayed in (a) to highlight the model fit.
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Table 5.2 Mean, Standard Deviation and Annual Sharpe Ratios of End of Day
(EOD) Returns for Out-Sample Subband Portfolios

SP1 EP1 SP2 EP2 EP3 EP4

µθk(bps)
AR(1) 0.074 0.074 0.0 0.0 -0.003 0.00

Data 0.065 0.072 -0.012 -0.003 -0.0 -0.012

σθk(bps)
AR(1) 0.89 0.93 0.70 0.4 0.23 0.19

Data 0.99 0.75 0.31 0.62 0.54 0.34

Sk (annual)
AR(1) 1.18 1.27 0.0 0.00 -0.23 0.00

Data 1.16 1.54 -0.27 -0.085 -0.007 -0.57

Table 5.3 Mean and Standard Deviation of Annual Sharpe Ratios of the In-Sample
Subband and Eigen Portfolios

SP1 EP1 SP2 EP2 EP3 EP4

µµθk

AR(1) 0.86 1.473 0.0 0 -0.32 0

Data 1.511 1.598 0.6 -0.073 -0.24 -0.44

σµθk

AR(1) 0.04 0.099 0.0 0 -0.021 0

Data 0.08 0.108 0.04 0.098 0.299 0.265

Table 5.4 Mean and Standard Deviation of Annual Sharpe Ratios of the Out-
Sample Subband and Eigen Portfolios

SP1 EP1 SP2 EP2 EP3 EP4

µµθk

AR(1) 0.93 1.65 0.0 0.0 -0.34 0.0

Data 1.90 1.92 0.15 -0.06 -0.08 0.13

σµθk

AR(1) 0.06 0.108 0.0 0.0 -0.022 0.0

Data 0.14 0.118 0.19 0.339 0.448 0.261
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Figure 5.7 (a) Profit and Loss (PNL) curves of end of day (EOD) returns for the
out-sample first subband portfolio generated from empirical correlation matrix of the
basket {MMM, UTX, PFE, UNH}, N = 4, with W = 200 days ending on June
19, 2012 and 556 days out of sample market data ending on September 5, 2014. The
linear PNL curve generated for the first subband portfolio of AR(1) process per (4.16)
and for the parameters c = 0.013 bps and ρ = 0.81 is also displayed to highlight the
model fit. (b) Profit and Loss (PNL) curves of end of day (EOD) returns for all
subband and eigen portfolios.
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constant. Figure 5.6a displays PNL curves of the first subband portfolio generated

from market data and AR(1) model. Similarly, Figure 5.6b displays PNL curves of

the two subband and four eigen portfolios generated from market data. It is noted

that the same eigenportfolio is used to calculate its in-sample EOD returns for the

entire duration of W = 600 days. The Share ratio results with the out of sample

EOD returns for measurement window W = 200 days ending on June 19, 2012 and

556 days of out of sample market data ending on September 5, 2014 are tabulated in

Table 5.2. The results with the out of sample data has higher discrepancy between

model and data than the results with in-sample data as expected.

Table 5.3 tabulates the mean and standard deviation of annual Sharpe ratios of

the two in-sample two subband and four eigen portfolios created for the empirical

correlation matrix of the basket {MMM, UTX, PFE, UNH}, N = 4, with the

measurement window W = 600 days of market data for the interval between January

24, 2014 and June 18, 2014. The AR(1) model parameters of (2.1) are estimated

from market data as µc = 1.73 bps and ρ = 0.77. There is a the discrepancy

between the model and the data. Its main reason is the fact that market data is

not mean stationary. The mean and standard deviation of annual Sharpe ratios of

same experiment with out of sample EOD returns for measurement window W = 200

days ending on June 19, 2012 and 400 days of out of sample market data tabulated

in Table 5.4.

5.3 Chapter Summary

In this chapter, subband portfolios generated by using the theory of optimal

PR-QMF banks are introduced. Their Sharpe ratio and market exposure performance

are evaluated and compared with eigenportfolios for AR(1) signal model. The

performance results show that subband portfolios offer less market exposure (less

risk) with slightly less expected Sharpe ratio.
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CHAPTER 6

QUANTIZATION OF SUBSPACES FOR SPARSE REPRESENTATION

KLT has been employed in multivariate data processing and dimension reduction

although the application specific interpretation of principal components (eigenvectors)

is often difficult in some cases [13, 42, 49, 20]. Moreover, small but non-zero loadings

(elements) of each principal component (PC) (or eigenvector) bring implementation

cost that is hard to justify in applications such as generation and maintenance

(rebalancing) of eigen portfolios in finance [20, 41, 2]. This and other applications

that utilize loading coefficients have motivated researchers to study sparsity of PCs

in eigen analysis of matrices. Furthermore, unevenness of signal energy distributed

among PCs in eigen subspace is reflected in eigenvalues (coefficient variances)

that lead to dimension reduction. The latter is the very foundation of transform

coding successfully used in visual signal processing and data compression [1, 26, 17].

Therefore, both dimension reduction and sparsity of basis functions (vectors) are

significant attributes of orthogonal transforms widely utilized in many applications.

This recent development has paved the way for our study where a rate-distortion

based framework to sparse basis functions of subspaces including eigen subspace of a

given covariance matrix is proposed. The challenge is to maximize explained variance

by minimum number of PCs, also called energy compaction [1], while replacing the

less significant samples (loading coefficients) of basis functions with zero to achieve

the desired level of sparsity in signal representation.

Regularization methods have been used to make an ill-conditioned matrix

invertible or to prevent overfitting [7, 22]. It is achieved by adding an ℓ1 (norm-1)

or ℓ2 constraint in the optimization. As an example, ridge regression exploits an ℓ2

penalty for stabilization in the least squares problem [7]. Eigenfiltering is another
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popular method employed for regularization [7, 22]. More recently, regularization

methods have been also utilized for sparsity. ℓ0 regularizer leads to a sparse solution.

On the other hand, it makes the optimization problem non-convex.

ℓ1 regularizer, so called lasso, is a widely used approximation (convex relaxation)

to ℓ0 case [42, 38]. Another ℓ1 based method was proposed in [11] for sparse

portfolios. SCoTLASS [42] and SPCA [49] utilize the ℓ1 and ℓ2 regularizers for

sparse approximation to principal components (PCs), respectively. The sparse PCA is

modeled in [42, 49] as an explained variance maximization problem where number of

non-zero elements in the PCs considered as a basis design constraint. These methods

suffer from potentially being stuck in local minima due to the non-convex nature of

the optimization. A convex relaxation method called SDP Relaxations for Sparse

PCA (DSPCA) using semidefinite programming (SDP) was proposed to deal with a

simpler optimization [20]. Empirical performance results for certain cases indicate

that DSPCA may generate sparse PCs that preserve slightly more explained variance

than SCoTLASS [42] and SPCA [49] for the same sparsity level. A nonnegative

variant of the sparse PCA problem that forces the elements of each principal

components (PCs) to be nonnegative, is introduced in [47]. Nonnegative sparse

PCA (NSPCA) offers competitive performance to SCoTLASS, SPCA and DSPCA

in terms of explained variance for a given sparsity. However, sign of the PC elements

bear specific information for the applications of interests such as eigenportfolios.

Thus, NSPCA is not applicable for all types of applications. Another lasso based

approach, so called sparse PCA via regularized SVD (sPCA-rSVD), is proposed in

[37]. Simulation results for certain cases show that sPCA-rSVD provides competitive

results to SPCA. A variation of sPCA-rSVD, so called sparse principal components

(SPC), that utilizes the penalized matrix decomposition (PMD) is proposed in [45].

PMD that computes the rank K approximation of a given matrix is proposed in [45].

It utilizes the lasso penalty for sparsity. Unfortunately, none of these methods result
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in guaranteed sparsity regardless of their prohibitive computational cost for high

dimensions. Moreover, the lack of mathematical framework to measure distortion,

or explained variance loss, for a desired sparsity level makes sparse PCA methods

of this kind quite ad-hoc and difficult to use. On the other hand, the simple

(hard) thresholding technique is easy to implement [13]. It performs better than

SCoTLASS and slightly worse than SPCA [49]. Although simple thresholding is

easy to implement, it may cause unexpected distortion levels as called variance loss.

Soft thresholding (ST) is another technique that is utilized for sparse representation

in [49]. Certain experiments show that ST offers slightly better performance than

simple thresholding [49]. Therefore, threshold selection plays a central role in sparsity

performance.

In this chapter, a subspace sparsing framework based on the rate-distortion

theory [1, 33, 29, 6] is proposed. It may be considered as an extension of the

simple or soft thresholding method to unify sparse representation problem with an

optimal quantization method widely used in the source coding field [1, 13, 26, 17, 6].

The method employs a varying size mid-tread (zero-zone) pdf-optimized (Lloyd-Max)

quantizer designed for component histogram of each eigenvector (or the entire eigen

matrix) to achieve the desired level of distortion (sparsity) in the subspace with

reduced cardinality [33, 29, 24]. Although eigen subspace is focused in this chapter,

the proposed method is applicable to sparse any subspace. There are studies in the

literature that jointly examine compressed sensing (CS) and quantization [9], this

is the first attempt to utilize pdf-optimized quantization based methods for sparse

PCA problem. Eigen subspace of autoregressive order one, AR(1), discrete process

is focused due to the availability of closed form expressions for its eigenvectors and

eigenvalues. It is known that AR(1) process approximates well many real world signals

[1]. Eigenportfolios of NASDAQ-100 index is also sparsed by using this method.

It is noted that the proposed method to sparse a subspace through quantization
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of its basis functions is a marked departure from the traditional transform coding

where transform coefficients, in the subspace, are quantized for dimension reduction

also called zonal sampling in the literature [1, 26, 17]. Therefore, the trade-off

between subspace orthogonality and sparsity is investigated from the rate-distortion

perspective for the case where original values of transform coefficients are employed.

Then, a comparative performance of the proposed method is provided along with the

various methods reported in the literature such as ST [49], SPCA [49], DSPCA [20],

and SPC [45] with respect to the metrics of non-sparsity (NS) and variance loss (VL).

6.1 Subspace Quantization

In transform coding (TC), sparsity in transform coefficients is desired. In contrast,

any sparse transform including KLT aims to sparse subspace (transform matrix) where

values of basis vector components are important and interpreted as loading coefficients

in some applications [34, 31, 8, 39, 16, 40]. Quantization of a given subspace with

an optimally designed single quantizer Q, or a set of quantizers {Qk} in the case of

quantizing each basis function (vector) independently, is defined as

Φ̂ = Q(Φ) (6.1)

In this case, Q is a pdf-optimized midtread quantizer designed for the entire transform

matrix. Then, transform coefficients are obtained by using the quantized matrix

θ̂ = Φ̂x (6.2)

Unlike in transform coding (TC), coefficients are not quantized in sparse represen-

tation methods unless desired for the given application. Instead, coefficients of the

projection onto quantized subspace for a given signal vector are obtained. As in TC,
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quantization error equals to reconstruction error, both in mse, when the signal is

reconstructed as (2.22). Mean squared quantization error due to sparsity of subspace

is expressed as

σ2
q,S =

1

N2

N−1∑
k=0

ϕ̃k

T
ϕ̃k (6.3)

where ϕ̃k = ϕk − ϕ̂k.

6.2 Quantization of Eigen Subspace for AR(1) Process

In this section, modelling probability density function (pdf) (or histogram) of

eigenvector components (PC loadings) for the Toeplitz correlation matrix of AR(1)

source expressed in (2.20) is investigated. A pdf-optimized zero-zone quantizer

is designed for each eigenvector that is being sparsed. One might also use a

single quantizer for the entire eigen matrix in order to reduce implementation

cost. Rate-distortion performance of such quantizers is evaluated. Performance

comparisons of the proposed sparse KLT (SKLT) method with ST [49], SPCA [49],

DSPCA [20], and SPC [45] methods is presented in terms of non-sparsity (NS) and

variance loss (VL) metrics in the following section.

6.2.1 Probability Density Functions (pdf) of Eigenvector Components

Arcsine Distribution of Continuous Sinusoidal Function In this section, the

probability density of eigenvector components is modeled in order to design pdf-

optimized quantizers to sparse them. Each eigenvector of AR(1) process is generated

by a sinusoidal function as expressed in (2.20). Probability density function (pdf),

with arbitrary support, of a continuous sinusoidal function is modeled as [25, 5]
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Figure 6.1 Probability density function of arcsine distribution for a = −0.0854 and
b = 0.0854. Loadings of second PC for AR(1) signal source with ρ = 0.9 and N = 256
are fitted to arcsine distribution by finding minimum and maximum values in the PC.

p (x) =
1

π
√
(x− a) (b− x)

(6.4)

where a and b define the support, a ≤ x ≤ b. Cumulative distribution function (cdf)

of such a function type is of arcsine distribution and expressed as

P (x) =
2

π
arcsin

(√
x− a

b− a

)
(6.5)

Mean and variance of the arcsine distribution are calculated as

µ =
a+ b

2
(6.6)

σ2 =
(b− a)2

8
(6.7)
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The pdf of arcsine distribution is symmetric and U-shaped. Figure 6.1 shows

the pdf of arcsine distribution with parameters a = −0.0854 and b = 0.0854. Log-

concavity of a pdf p (x) is the sufficient condition for the uniqueness of a pdf-optimized

quantizer. However, arcsine distribution type has the log-convex property [4]. It is

stated in [46] that for exponential sources and the sources with strictly log-convex

pdfs, the quantizer intervals (bins) and their bin representation (quanta) values are

globally optimum and unique. Therefore, pdf-optimized quantizers can be designed

for arcsine distribution [33, 29]. Second principal component, ϕ1, of AR(1) source

for ρ = 0.9 and size of N = 256 is shown to be fit by arcsine distribution with

a = min (ϕ1) = −0.0854 and b = max (ϕ1) = 0.0854, respectively. Minimum and

maximum valued components of the kth eigenvector depend on ρ, ωk and N as stated

in (2.20). In order to maintain equal distortion levels among quantizers to sparse

eigenvectors, optimal intervals are calculated for zero-zones of pdf-optimized midtread

quantizers. Thus, most of the small valued eigenvector components are likely to be

quantized as zero.

Eigenvector Component Histograms for AR(1) Process Figure 6.2a and 6.2b

display the normalized histograms of the first and second eigenvector components

(PC1 and PC2 loading coefficients) for AR(1) process with ρ = 0.9 and N = 1, 024.

The value of N is selected large enough to generate proper histograms. The intervals

of the histograms, ∆k, are set as ∆k = max(ϕk)−min(ϕk)
N

where ϕk is kth eigenvector.

The dashed lines in each normalized histogram show the probability that is calculated

by integrating the pdf of arcsine distribution in (6.4) for each bin interval. The

histogram displayed in Figure 6.2a has only one side of the arcsine pdf as expected

from (2.20). In contrast, Figure 6.2b displays the histogram with complete arcsine

pdf shape. These figures confirm arcsine distribution type for eigenvector components

of an AR(1) process.
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Figure 6.2 Normalized histograms of (a) PC1 and (b) PC2 loadings for AR(1)
signal source with ρ = 0.9 and N = 1, 024. The dashed lines in each histogram show
the probability that is calculated by integrating arcsine pdf for each bin interval.
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Figure 6.3 Rate (bits)-distortion (SQNR) performance of zero mean and unit
variance arcsine pdf-optimized quantizer for L = 65 bins. Distortion level is increased
by combining multiple bins around zero in a larger zero-zone.

6.2.2 Rate-Distortion Performance of Arcsine pdf-Optimized Zero-Zone

Quantizer

In this section, the rate-distortion performance of arcsine pdf-optimized zero-zone

quantizer is investigated. Rate of quantizer output is calculated by using first order

entropy as defined in (2.31). Distortion caused by the quantizer is calculated in mse

and represented in SQNR as defined in (2.29). Figure 6.3 displays rate-distortion

performance of such a quantizer with L = 65. It is observed that the performance

of such a quantizer does not improve significantly for L > 65. Therefore, as a design

step, L = 65 is used for the baseline quantizer where original zero-zone was widened

by combining the adjacent bins. Hence, distortion level is increased by increasing the

zero-zone of the quantizer for more sparsity where rate decreases, accordingly. One

may design a midtread quantizer with zero-zone for each eigenvector (PC) or for the

entire eigen matrix to achieve the desired level of matrix (subspace) sparsity [33, 29].
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Table 6.1 Relevant Parameters of SKLT Method for the First Eleven PCs of AR(1)
Source

ω λ a b σ2 R Lk Sk

PC1 0.0114 18.77 -0.0853 0.0853 0.0036 5.6546 51 26

PC2 0.0229 18.14 -0.0853 0.0853 0.0036 5.6563 51 28

PC3 0.0344 17.17 -0.0856 0.0856 0.0037 5.6588 51 40

PC4 0.0459 15.97 -0.0857 0.0857 0.0037 5.6620 51 34

PC5 0.0575 14.64 -0.0860 0.0860 0.0037 5.6655 51 36

PC6 0.0691 13.29 -0.0862 0.0862 0.0037 5.6691 51 38

PC7 0.0808 11.97 -0.0864 0.0864 0.0037 5.6725 51 42

PC8 0.0925 10.73 -0.0866 0.0866 0.0037 5.6754 51 42

PC9 0.1043 9.60 -0.0868 0.0868 0.0038 5.6790 51 40

PC10 0.1162 8.58 -0.0869 0.0869 0.0038 5.6819 51 36

PC11 0.1281 7.67 -0.0871 0.0870 0.0038 5.6835 51 44
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6.2.3 A Simple Method for Sparse KLT

In this section, the proposed method to sparse eigen subspace of AR(1) process

is explained through a design example. The values of relevant parameters for the

example are tabulated in Table 6.1.

The steps of design are summarized as follows.

1. First order correlation coefficient ρ is calculated from available data set as
described in (2.2). Assume that ρ = 0.9 for the given example with N = 256.

2. Correlation matrix Rx for the measured ρ is constructed by using (2.6).

3. Eigenvalues {λk} and corresponding eigenvectors {ϕk} of Rx are calculated
from (2.17) and (2.20), respectively. Then, eigenvalues are sorted in descending
order and corresponding eigenvectors are placed in the eigenmatrix. Thus, ϕ0

is the first eigenvector (PC1) and ϕ1 is the second one (PC2), and so forth.
Eigenvalues of first eleven eigenvectors (principal components) are listed in
Table 6.1. These eigenvectors explain 57.2% of the total variance. Due to limited
space, only the variable values of SKLT for these eigenvectors are tabulated.
Values of {ωk} that are used to calculate each eigenvalue and corresponding
eigenvector also shown in Table 6.1. The root finding algorithm reported in [40]
was used.

4. PC loading coefficients (eigenvector components) are fitted to arcsine distri-
bution by calculating {ak = min (ϕk)} ∀k and {bk = max (ϕk)} ∀k. Then,

variances
{
σ2
k = (bk−ak)

2

8

}
∀k are calculated by using (6.7). Table 6.1 also

tabulates {ak}, {bk} and {σ2
k} of eigenvectors.

5. For a given total rate R, {Rk} are calculated by plugging {σ2
k} in optimum bit

allocation equation given in (2.34). Then, quantizer levels {Lk} are calculated
as
{
Lk = 2Rk

}
∀k and rounded up to the closest odd integer number. R is the

sparsity tuning parameter of SKLT. As in all of the sparse PCA methods, R for
a given sparsity has to be determined with cross-validation. Table 6.1 displays
calculated rates and quantizer levels for the total rate of R = 5.7.

6. For this design example, L = 65 level pdf-optimized zero-zone quantizer of
arcsine distribution with zero mean and unit variance is used as the starting
point. Then, several adjacent bins around zero are combined to adjust zero-
zone for the desired sparsity level. For kth eigenvector, pre-designed L = 65
level pdf-optimized zero-zone quantizer is converted to Lk ≤ L level zero-zone
quantizer.

7. PC loadings (eigenvector components) are normalized to have zero mean and

unit variance,
{
ϕk =

(ϕk−mean(ϕk))
std(ϕk)

}
∀k where mean and std are the mean

and standard deviation of eigenvector components, respectively. Quantized
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(sparsed) eigenvectors are generated by applying quantization on eigenvectors

of the original eigen subspace
{
ϕ̂k = Qk (ϕk)

}
∀k. Number of zero components

or sparsity level {Sk} of quantized PCs for this example are also given in Table
6.1.

Number of bins for pre-designed pdf-optimized quantizer is selected based on the

quantization noise and implementation cost. The increase in signal-to-quantization

noise (SQNR) of pdf-optimized zero-zone quantizer optimized for arcsine pdf with

L > 65 is found not to be that significant.

Orthogonality Imperfectness and Subspace Sparsity Sparsity achieved by

quantization of PCs leads to orthogonality imperfectness. Orthogonality imper-

fectness ϵ in mse is presented with respect to allowable total rate R (desired sparsity

level) for various AR(1) sources as defined

ϵ =
1

N2

N−1∑
i=0

N−1∑
i=0

[I (i, j)−K (i, j)]2 (6.8)

where I is N ×N identity matrix and K = AA∗T.

Figure 6.4 displays the trade-off between subspace sparsity and loss of orthogo-

nality for various AR(1) sources and N = 256. It is observed from the figure that the

orthogonality imperfectness decreases almost linearly with increasing R as expected.

6.3 Sparsity Performance

Now, performance of the proposed SKLT method with the ST [49], SPCA [49],

DSPCA [20], and SPC [45] methods is compared for AR(1) process, and also for

empirical correlation matrix of stock returns in NASDAQ-100 index in the following

subsections. In order to provide a fair comparison, sparsity levels of all methods

considered here are tuned in a way that compared PCs have almost same number of

non-zero components. In most cases, number of non-zero components of each PC in
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Figure 6.4 Orthogonality imperfectness-rate (sparsity) trade-off of sparse eigen
subspaces of three AR(1) sources with N = 256.

SKLT method are kept slightly lower than the others in order to show its merit under

mildly disadvantageous test conditions.

6.3.1 Sparsity of Eigen Subspace for AR(1) Process

The sparsity imposed on PCs may degrade the explained variance described in [20].

The explained variances (eigenvalues) of the PCs are calculated as

{
λk = σ2

k = ϕT
kRxϕk

}
∀k (6.9)

where ϕk is the kth eigenvector for a given Rx. For the sparsed PCs, new explained

variances (eigenvalue) are calculated as

{
λ̂k = σ̂2

k = ϕ̂k

T
Rxϕ̂k

}
∀k (6.10)
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Figure 6.5 Variance loss (VL) measurements of sparsed first PC generated by
SKLT, SPCA, SPC, ST and DSPCA methods with respect to non-sparsity (NS) for
AR(1) source with ρ = 0.9 and N = 256.
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Figure 6.6 Non-sparsity (NS) and variance loss (VL) measurements of sparsed
eigenvectors generated by SKLT method and SPCA algorithm for AR(1) source with
ρ = 0.9 and N = 256.
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where ϕ̂k is the kth sparse eigenvector. Then, the percentage of explained variance

loss (VL) as a performance metric is defined as

V k =

(
λk − λ̂k

)
λk

× 100

 ∀k (6.11)

Cumulative explained variance loss of first L number of PCs is also defined as

CL =
N∑
k=1

λk −
L∑

k=1

λ̂k (6.12)

In addition, non-sparsity (NS) performance metric is also used for comparison. It

is defined as the percentage of non-zero components in a given sparsed eigenvector.

Thus, the performance is measured as the variance loss for the given non-sparsity

level [49, 20, 48]. Their comparative rate-distortion performance cannot be provided

due to the lack of models to generate sparse PCs for all methods reported here.

Figure 6.5 displays the variance loss (VL) measurements of sparsed first PC

generated by SKLT, SPCA, SPC, ST and DSPCA methods with respect to non-

sparsity (NS) for AR(1) source with ρ = 0.9 and N = 256. For SKLT, L = 65

level quantizer optimized for arcsine pdf with zero-mean and unit variance is used

as the initial quantizer. The zero-zone width of the initial quantizer is adjusted for

required sparsity as explained earlier. Then, the generated quantizer is employed.

Figure 6.5 shows that SKLT offers less variance loss than the other methods. SPCA

provides competitive performance to SKLT. Figure 6.6 displays non-sparsity (NS)

and variance loss (VL) performance comparisons of sparse PCs generated by SKLT

and by SPCA for the same AR(1) process. The original eigenvectors that explain

90% of the total variance are selected for sparsity comparison. Figure 6.6 shows that

the VL performance of SKLT is slightly better than SPCA. Note that NS of SKLT is

slightly lower than SPCA in this comparison.
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Figure 6.7 Normalized histogram of eigenmatrix elements for empirical correlation
matrix of end of day (EOD) returns for 100 stocks in NASDAQ-100 index with W =
30-day measurement window ending on April 9, 2014.

6.3.2 Sparsity of Eigenportfolios for NASDAQ-100 Index

In this section, proposed method is used to sparse eigenportfolios that may lead to

trading cost reduction. Empirical correlation matrix for the end of day (EOD) stock

returns for NASDAQ-100 index with W = 30 day time window ending on April 9,

2014 is measured [41, 2].

The original eigenvectors that explain almost 90% of the total variance are

selected for sparsity comparison. Due to simplicity, a single quantizer is employed

for the SKLT method to sparse the entire eigenmatrix AKLT. It is optimized for

the histogram of its elements as displayed in Figure 6.7. It is observed to be a

Gaussian pdf. Figure 6.8 displays the variance loss (VL) measurements of sparsed

first PC generated by SKLT, SPCA, SPC, ST and DSPCA methods with respect to

non-sparsity (NS). Figure shows that SKLT offers less variance loss than compared

methods. Similarly, Figure 6.9 and 6.10 display the cumulative explained variance

loss of first sixteen sparsed PCs generated from daily empirical correlation matrix

of EOD returns during the time interval between April 9, 2014 and May 22, 2014
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Figure 6.8 Variance loss (VL) measurements of sparsed first PC generated by
SKLT, SPCA, SPC, ST and DSPCA methods with respect to non-sparsity (NS) for
empirical correlation matrix of end of day (EOD) returns for 100 stocks in NASDAQ-
100 index with W = 30-day measurement window ending on April 9, 2014.
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Figure 6.9 Cumulative explained variance loss of first sixteen sparsed PCs generated
from daily empirical correlation matrix of EOD returns during the time interval
between April 9, 2014 and May 22, 2014 for 100 stocks in NASDAQ-100 index by
using KLT, SKLT, SPCA and ST methods. Non-sparsity levels of 85% for each PC
is forced with W = 30-days.
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Figure 6.10 Cumulative explained variance loss of first sixteen sparsed PCs
generated from daily empirical correlation matrix of EOD returns during the time
interval between April 9, 2014 and May 22, 2014 for 100 stocks in NASDAQ-100
index by using KLT, SKLT, SPCA and ST methods. Non-sparsity levels of and 75%
for each PC is forced with W = 30-days.

for 100 stocks in NASDAQ-100 index by using KLT, SKLT, SPCA and ST methods.

The measurement window of the last 30 days, W = 30, is used to calculate empirical

correlation matrix for each day. Non-sparsity levels of 85% and 75% for each PC

are forced in experiments displayed in Figure 6.9 and 6.10, respectively. The superior

performance of the SKLT method is observed for this scenario as well where empirical

correlation matrix of EOD returns changes every day.

The difference between the original RE(n) and the modified correlation matrix

R̂E(n) due to sparsed eigenvectors is defined as

dR =
∥∥∥RE(n)− R̂E(n)

∥∥∥
2

(6.13)

where ∥.∥2 is the norm-2 of a matrix. dRSKLT = 10.35, dRSPCA = 17.15, and dRST =

17.38 are measured for empirical correlation matrix of EOD returns for 100 stocks in

NASDAQ-100 index withW = 30-days ending on April 9, 2014 with 85% non-sparsity
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level. Similarly, the distance between the original and the sparsed eigenmatrices is

expressed as

dA =
∥∥∥AKLT − ÂKLT

∥∥∥
2

(6.14)

The measured distances for the same experiment are dASKLT = 0.23, dASPCA = 1.99,

and dAST = 2.00 for SKLT and ST methods, respectively. These objective measures

also show that the proposed SKLT sparses eigen subspace of NASDAQ-100 index

better than the ST and SPCA methods for the experiments presented here.

As explained in Chapter 4, the component values of eigenvector {ϕk} are

repurposed as the capital allocation coefficients to create the kth eigenportfolio for

a group of stocks where the resulting coefficients {θk} are pairwise uncorrelated.

These coefficients represent eigenportfolio returns in this application. It is required

to buy and sell certain stocks in amounts defined by the loading (capital allocation)

coefficients in order to build and rebalance eigenportfolios in time. Some of the

loading coefficients may have relatively small values where their trading cost becomes

a practical concern for portfolio managers. Therefore, sparsing eigen subspace of an

empirical correlation matrix RE(n) may offer cost reductions in desired portfolio

creation, maintenance and trading activity. In contrast, although theoretically

appealing, the optimization algorithms like SPCA, DSPCA and SPC with constraints

for forced sparsity (cardinality reduction of a set) may substantially alter intrinsic

structures of the original eigenportfolios and their assets. Therefore, such a forced

sparse representation might cause to significantly deviate from the measured empirical

correlation matrix. Hence, financial performance degradations may happen in

eigenportfolios generated by sparsity constrained optimization.
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6.4 Chapter Summary

The constrained optimization algorithms to generate sparse PCs are unable to

guarantee good performance for an arbitrary covariance matrix due to the non-convex

nature of the problem. In this paper, we propose a procedure to sparse subspaces.

The proposed SKLT method utilizes the mathematical framework developed in

rate-distortion theory for transform coding using pdf-optimized quantizers. The

sparsity performance comparisons demonstrate the superiority of SKLT over the

popular algorithms including ST, SPCA, DSPCA and SPC. SKLT is theoretically

tractable, simple to implement and serves to sparse any subspace of interest.
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

In this dissertation, a signal processing framework to design investment portfolios

is proposed. Modern Portfolio Theory and subspace methods are investigated

and jointly treated. The goal is to understand the behaviour of these subspace

methods for finance applications and compare each other for discrete AR(1) signal

model. Experiments with real-market data have also been conducted to validate the

consistency of the analysis. Moreover, a new method is proposed to sparse a given

subspace. It is also compared with the popular methods in the literature.

7.1 Contributions

Contributions of this dissertation are summarized as follows;

1. Eigen and subband subspaces are analytically evaluated and compared using
MPT for finance applications. A unified treatment is offered in this dissertation.

2. Closed-form expressions for Sharpe ratio and market exposure of eigenportfolios
for discrete AR(1) signal model are derived to evaluate their advantageous and
disadvantageous analytically. Performance of eigenportfolios with respect to
various model parameters are investigated. The proposed framework presents
new insights for trading algorithms like statistical arbitrage that utilize them.

3. Finance application of subband subspace, called subband portfolios, is introduced.
Perfect reconstruction filter banks are utilized to generate subband portfolios.
Their advantages and disadvantages in terms of Sharpe ratio and market
exposure against eigenportfolios are emphasized using the same framework
developed to analyze eigenportfolios. It is shown that subband portfolios offer
less market exposure with slightly less Sharpe ratio for a given basket.

4. The design of optimized super eigenportfolio (OSEP) is introduced. It is created
by optimal allocation of investment capital among eigenportfolios based on
maximization of Sharpe ratio. It is shown that OSEP delivers the best Sharpe
ratio among eigenportfolios with reasonable market exposure. Same method is
applied to generate optimized super subband portfolios (OSSP).
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5. A new eigen subspace sparsing method that utilizes the rate-distortion theory
is proposed in this dissertation. Its performance is compared with the popular
methods in the literature. It is shown that SKLT outperforms those methods
for certain cases. The proposed method is also applied to generate sparse
eigenportfolios.

7.2 Future Work

1. In the dissertation, discrete AR(1) signal model is used for performance
evaluations and comparisons. More sophisticated signal models such as vector
auto-regressive, VAR(p), that may give better approximation to financial signals
can be used.

2. Although the proposed subspace sparsing method is applicable to any subspace,
it is only applied to sparse eigen subspace. Same method should be applied to
generate sparse subband subspace. Moreover, the performance evaluations and
comparison should be performed for the subband subspace.
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