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ABSTRACT 

NORMAL-STRENGTH AND HIGH-STRENGTH CONCRETE COLUMNS  

UNDER CYCLIC AXIAL LOAD AND BIAXIAL MOMENT 

 

by 

Mehdi Zarei 

 

The technique of using Carbon Fiber Reinforced Polymer (CFRP) materials to repair and 

strengthen various concrete members has become popular in the structural retrofitting 

field  as an effective way to enhance the strength and ductility of concrete members due 

to its superior mechanical properties. In this study a method was introduced to study the 

behavior of concrete columns with and without CFRP jackets under constant axial load 

and variable lateral load. The lateral load was applied monotonically and cyclically. To 

predict the behavior of concrete columns under monotonic and cyclic compressive 

loadings, a computer code was developed to produce the moment-curvature diagram for 

concrete sections. The moment-curvature diagram was then input in SAP2000 to study 

the behavior of reinforced concrete columns. The result of this analysis was found to 

correlate with experimental data well. 

The behavior of high-strength concrete (HSC) columns having various properties 

and subjected to a variety of loading conditions has been the topic of considerable 

investigation. Of particular significance in this area is the behavior of HSC columns 

under cyclic compressive load with bidirectional eccentricity. For the experimental 

investigation, tests of six square slender HSC columns were conducted under stroke 

control to achieve both ascending and descending branches of the load-deformation 

curves.  



Analysis of HSC columns subjected to cyclic axial compression with bidirectional 

eccentricity was approached from the standpoint of a three-dimensional problem. A 

computer program based on the extended finite segment method and accounting for 

geometrical nonlinearity has been proposed here to predict the load-deflection curves of 

HSC columns under cyclical loading. The HSC stress-strain relationship obtained by 

parametric study and experimental investigation into the behavior of concrete under 

cyclical load history has been incorporated into the numerical procedure.  

The presented computer analysis results have been compared with the 

experimental data, and a satisfactory agreement was attained for both the ascending and 

descending branches of the load-deformation curves. 
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CHAPTER 1 

PRELIMINARIES AND LITERATURE REVIEW 

1.1 Introduction 

A large amount of research has been done in conjunction with the nonlinear behavior of 

reinforced concrete members for many years. Due to the locations of the structural 

members, the various framing of structures and the nature of the applied loads, many 

members are subjected to combined biaxial bending and axial compression. In the case of 

most structural members, reinforced concrete members are subjected to two main types 

of load, dead load and live load. For any member, the dead load is present throughout the 

life of the structure and can be considered to be constant. However, this is not the case for 

live load which has a cyclic form during the life of the structure. The behavior of any 

reinforced concrete column depends on many parameters including the material 

properties, section geometry, and history of moment and/or axial load to which the 

column is subjected. 

The behavior of concrete is dependent upon its load history. In most cases, 

quantitatively accurate predictions on the load-deformation history up to and beyond the 

ultimate load remain difficult to obtain. The highly nonlinear nature of the concrete 

stress-strain relationship under a cyclic loading cannot be easily described by 

mathematical formulas. Although a considerable amount of effort has been focused on 

the development of a concrete model under cyclic compressive loading, most original 

concrete models cannot be incorporated into the analysis of reinforced concrete 

structures. A reliable and substantial cyclic stress-strain relationship is thus needed for 

the analysis of structures subjected to repetitive loadings. 
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For members where stability and secondary effects influence the strength, such as 

eccentrically loaded reinforced concrete (RC) columns, the changes in live load may have 

either a beneficial or detrimental effect on the strength of a member. Therefore the 

influence of repeated cycles of live load on column behavior is of interest in this study. 

The cyclic compressive loading with bidirectional eccentricities considered in this study 

is in the longitudinal (vertical) direction, and not in the transverse direction, with respect 

to the column axis. Such a loading and member might be present in a bridge substructure 

or building which is subjected to repetitive loadings. In both cases, changes in live load 

can occur frequently (Bahn, 1994). 

In some cases, RC columns may not have been designed sufficiently or may have 

experienced excessive loads, such as those commonly associated with seismic activity.  

In these types of situations, the columns can be damaged. As a solution to these issues, 

Fiber Reinforced Polymer (FRP) or CFRP strengthening can be used for RC columns. 

Research has shown that closely spaced transverse reinforcement in the potential plastic 

hinge zone of concrete bridge columns substantially increases the compressive strength 

and effective ultimate compressive strain in the core concrete. The gain in the ultimate 

compressive strain significantly increases the ductility capacity of concrete columns. 

Thus, many recent research efforts on seismic retrofitting of concrete columns have been 

directed to providing additional confinement to the core concrete by means of external 

reinforcement (Saadatmanesh, Ehsani, & Jin, 1997). One recently developed and 

implemented strategy is to improve the strength of RC columns by wrapping them with 

CFRP. Fiber reinforced polymers (FRP) in the form of thin laminates or fabric, also 

known as composites, wrapped or epoxy-bonded to the tension side of a concrete member 
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have been used successfully in the aerospace and automotive industry for more than two 

decades. They are generally constructed of high performance fibers such as carbon, 

aramid, or glass, which are then placed in a resin matrix. By selecting among the many 

available fibers, geometry and polymers, the mechanical and durability properties can be 

tailored for particular application. This synthetic quality makes FRP a good choice for 

civil engineering application as well. The FRP offers the engineer an outstanding 

combination of properties, such as low weight (making them much easier to handle on 

site), resistance to corrosion, excellent mechanical strength and stiffness, and the ability 

of formation in very long length, thus eliminating the need for lapping at joints (Chen J. , 

2005). Although FRP is a relatively expensive material compared to steel, it has been 

found that total rehabilitation project costs can be about 20% lower by using FRP in place 

of steel due to the savings in construction expenses (Muffi, Erki, & Jaeger, 1991). Tests 

have shown that externally bonded CFRP composites are able to increase the strength and 

displacement ductility significantly and double the hysteretic energy dissipation of 

reinforced concrete pier bents. Composite jackets can be very efficient for flexural plastic 

hinges even though the jackets themselves have a low modulus. The in situ tests have 

provided strong evidence that seismic retrofit using CFRP composites is a viable option 

for improving the seismic performance of bridges comprised of RC members. 

Furthermore, the retrofit implementation takes significantly less time to complete than 

other traditional methods, which is important in reducing the overall retrofit costs 

(Mirmiran & Shahawy, 1997) (Pantelides & Gergely, 2002) (Seible, Priestley, Hegemier, 

& Innamorato, 1997). 



4 

 

In recent years, the applications of high-strength concrete have increased, and 

high-strength concrete is now being used in many parts of the world. The growth has 

been possible as a result of recent developments in material technology and a demand for 

higher-strength concrete. The construction of Chicago’s Water Tower Place and 311 

South Wacker Drive concrete buildings would not have been possible without the 

development of high-strength concrete. The use of concrete superstructures in long span 

cable-stayed bridges such as the East Huntington, W.V., bridge over the Ohio River 

would not be possible without the availability of high-strength concrete (ACI Committee 

363, 1992). 

Generally, normal strength concrete is specified with a compressive strength of 

3,000 psi to 6,000 psi. In recent years however, there is a trend to define it as a 

compressive strength of 3,000 psi to 8,000 psi. As the development of high strength 

concrete has been continued, the definition of high strength concrete varies in time and 

on a geographical basis (ACI Committee 363, 1992) due to lack of the standard criterion 

for high strength concrete (Chen D. , 1995). ACI committee 363 (1992) defines high-

strength concrete as a concrete with a specified compressive strength for design of 6,000 

psi (41MPa) or greater. At present, the definition doesn't include concrete made with 

exotic materials or techniques. 

The most important properties of high strength concrete used in building code are 

its high compressive strength and its high modulus of elasticity. The strength of high 

strength concrete is affected by several main factors: 

 Mixing proportioning and the selection of materials 

 The method of curing 

 The size of the specimen 
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The selection of materials and mixing proportions for high strength concrete are 

more crucial than those for normal strength concrete. Concrete is a two-phase composite 

material consisting of cement paste and aggregate. The methods of strength improvement 

of concrete can be classified into three parts: Strength improvement of cement matrix, 

aggregate, and bond between cement matrix and aggregate. 

According to ACI Committee 363 (1992), the strength of the cement matrix is 

based on the strength of the hydration structure and the porosity of the matrix. The 

increase of porosity will reduce the strength of the cement matrix. Because porosity 

increases with increasing water to cement ratio, high strength concrete generally has a 

low water-cement ratio. Therefore, reducing the water to cement ratio and adding other 

chemical admixtures are methods of attaining high strength concrete. Chemical 

admixtures, such as superplasticizers and water reducing products have been widely used 

in attaining high strength concrete. Silica fume has also been used to improve the strength 

of the cement matrix in a ultra-high-strength concrete with compressive strength over 

20,000 psi. 

As a heterogeneous material, the properties of concrete depend on both the 

properties of the individual component and the properties of the combined material. The 

quality and type of aggregate have a significant effect on the strength and behavior of 

high strength concrete. The characteristics of coarse aggregate, such as bond potential 

with the cement paste and low water absorption capacity, are a very important 

consideration in the production of high strength concrete. 

The methods of curing and the curing age are also important factors in developing 

the strength of concrete. Curing is mainly to promote the hydration of the cement, and is 
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extremely important in attaining a high strength concrete. The strength of concrete 

increases with the increase of its curing age. This has been proven by many researchers.  

Due to special properties such as high strength and high elastic modulus, high 

strength concrete is often used in the design and construction of high-rise buildings in 

order to achieve greater heights while reducing the total weight of concrete needed by 

reducing the sizes of column cross sections. Its high elastic modulus can also reduce 

deflections as well as creep deformation. The brittle property can be partly overcome by 

adding fibers and/or tie confinement. It has been shown that the addition of fibers to 

concrete increases the materials ductility and fatigue strength. Due to the higher amount 

of cement used to develop high strength concrete, it is inherently more resistant to 

chemical deterioration (Chen D. , 1995).  
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1.2 Description of the Proposed Research 

1.2.1 Research Objectives 

In this study, the behavior of concrete columns with and without CFRP jackets under 

constant axial load and variable lateral load is studied. A computer code will be 

developed to predict the moment-curvature diagram for concrete sections wrapped with 

CFRP. The moment-curvature diagrams for sections with different properties will be used 

in the finite element computer software SAP2000 to study the behavior of concrete 

columns.  

Secondly, tests on six four-feet-long square reinforced high-strength concrete 

columns under combined cyclical biaxial bending and axial compression will be 

performed. The displacement control loading and pinned-ended conditions will be used. 

The experimental ultimate load and load-deflection curves will be attained as well as 

discrete curvature readings. 

Finally, a non-linear computer analysis of slender reinforced high-strength 

concrete columns under combined cyclical biaxial bending and axial load will be 

developed. Both material and geometrical nonlinearity will be included in the computer 

analysis. The analysis procedures developed will also be applicable for any column cross 

section geometry. The computer analysis will evaluate the complete behavior of the load-

deflection and moment-curvature characteristics for cyclical biaxial loaded slender 

reinforced HSC columns with square sections. The presented computer analysis results 

will be compared with the experimental data.  
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1.2.2 Research Significance 

An accurate and rational analysis of reinforced concrete (R/C) structures requires 

satisfactory modeling of the behavior of concrete. The behavior of concrete is dependent 

upon its load history. Since the applications and usage of RC short and slender columns 

with CFRP has increased during past decades, behavior of these structural members 

under cyclical loading should be studied so that designs can be more efficiently 

performed and can result in more reliable structures. The proposed method will be 

significant because a broad range of CFRP wrapped concrete column behaviors from zero 

loading to the rupture point of the column under cyclical loading will be analyzed. 

The behavior of reinforced high-strength concrete columns having various 

properties and subjected to a variety of loading conditions has been the subject of 

considerable investigation. Despite this, there are still several important research topics 

which have been relatively unexplored. Of particular significance in the areas of 

unexplored topics are the factors affecting the HSC column behavior under cyclic 

loading. There are not any published experimental and theoretical studies of the cyclic 

axial loading on slender high-strength concrete columns subjected to biaxial bending. It 

should be noted that the cyclic compressive load with bidirectional eccentricities 

considered in this study is in the longitudinal direction, and not in the transverse 

direction, with respect to the column axis. 

For the present experimental study, six four-foot-long HSC columns were tested 

under cyclic axial compression with bidirectional eccentricities. The main parameter of 

the column test was the bidirectional eccentricity. Ultimate strength, load-deflection and 

moment-curvature characteristics of HSC columns under cyclic axial load with double 
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eccentricities were examined. Furthermore, a computer model based on the finite 

segment method was developed here to simulate the behavior of high-strength concrete 

columns under combined biaxial bending and cyclic axial compression. In the previous 

finite segment models in studies by others, the effect of first derivation of the deflection 

function was neglected in formulation of the computer code. In the present study, 

however, this term in the curvature equation has not been neglected. 

1.3 Literature Review 

1.3.1 Concrete Columns Retrofitted with FRP or CFRP 

The usage of carbon fiber reinforced polymer (CFRP) has increased significantly since it 

was first used in 1980s. CFRP has been utilized to retrofit existing RC members which do 

not meeting current code requirements or deficient/damaged members. The fact is that 

the strength of CFRP is high and it can be easily formed into every shape. Matsuda, Satu, 

Fujiwara, and Higashira (1990) tested a system for retrofit of reinforced concrete a bridge 

pier using unidirectional carbon fiber sheets wrapped longitudinally and transversely in 

the potential plastic hinge region or in the region of the main reinforcing bar cutoff. The 

carbon fiber sheets were bonded to the concrete surface using epoxy resin. 

Yamamoto (1992) performed two kinds of tests to clarify the effect of FRP 

strengthening on uniaxial concrete strength and shear-flexural behavior of existing RC 

columns. In that experiment FRP was made of either carbon or glass fiber and epoxy 

resin. Results showed that the uniaxial strength of FRP-strengthened concrete increases 

with the FRP strengthening ratio. Based on the experiments, empirical equations were 
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obtained for estimating the strength of FRP confined concrete. Also, a stress-strain 

relationship model for concrete confined with FRP was proposed. 

Saadatmanesh, Ehsani, and Li (1994) proposed a wrapping system using glass 

fiber composite straps for column retrofit. Analytical models were presented to quantify 

the gain in both strength and ductility of concrete columns externally confined by means 

of high-strength fiber composite straps. A parametric study was conducted to examine the 

effects of various design parameters. The results indicate that the strength and ductility of 

concrete columns can be significantly increased by wrapping high-strength fiber 

composite straps around the columns. It was also concluded that percent increase in the 

maximum moment capacity is less than the percent increase in the ultimate axial load and 

ductility factor. This behavior is desirable in seismic strengthening of concrete columns 

because the retrofitted columns behave in a ductile flexural failure mode rather than a 

brittle shear mode of failure. 

In another study, Saadatmanesh, Ehsani, and Jin (1996) conducted tests on 

reduced scale concrete specimens. In this experiment, the constant axial load was 

simulated with a pair of high strength steel rods which were bolted to the concrete floor. 

Also, an MTS hydraulic actuator was used to apply the reversing lateral forces.  It was 

summarized that retrofitted columns developed very stable load-displacement hysteresis 

loops up to a high level of displacement ductility without evidence of significant 

structural deterioration associated with the bond failure of lapped started bars or 

longitudinal reinforcement buckling. 

Seible, Priestley, Hegemier, and Innamorato (1997) proposed carbon jacket 

design criteria for various seismic column failure modes; they also proposed the usage of 
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CFRP to retrofit RC columns with circular and rectangular cross sections with different 

reinforcement ratios and detailing. The carbon jacket designs were validated through 

large-scale bridge column model tests. It has been demonstrated that advanced composite 

column retrofit jacket systems can be effective structurally in improving the seismic 

response characteristics of substandard reinforced concrete columns. In their study, 

design models for the composite jackets show that for shear and lap splice retrofits the 

required jacket thickness decreases with increasing jacket modulus in the hoop direction. 

For flexural plastic hinge confinement, even lower-modulus jackets can be very efficient 

as long as they exhibit large failure strain capacities. The effectiveness and accuracy of 

the established design models were validated by large-scale bridge column model tests 

for the three possible column failure modes of shear, plastic-hinge confinement, and lap 

splice debonding for both circular- and rectangular column geometries with different 

levels of column reinforcement ratios. 

Mirmiran and Shahawy (1997) compared the results from a series of uniaxial 

compression tests on concrete-filled FRP tubes with the available confinement models in 

the associated literature. The study indicates that those models generally result in 

overestimated strength and unsafe design. In their work, a total of thirty 152.5×305 mm 

(6×12 in.) cylindrical specimens were tested under uniaxial compression load, which 

included 24 concrete-filled FRP tubes with different layer thickness and six plain 

concrete specimens. For each experiment case, three LVDTs (linear variable 

displacement transducer) were equally spaced on the specimen at every 120° to measure 

the average axial strain. It was concluded in their paper that FRP curtails the dilation rate 

of the concrete core. 
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Saadatmanesh, Ehsani, and Jin (1997) conducted an investigation into the flexural 

behavior of earthquake-damaged reinforced concrete columns repaired with prefabricated 

fiber reinforced plastic (FRP) wraps. Four column specimens were tested to failure under 

reversed inelastic cyclic loading to a level that can be considered higher than would occur 

in a severe earthquake. Then, the columns were repaired with prefabricated FRP wraps 

and retested under simulated earthquake loading. Figure ‎1.1 shows the testing frame. 

Hydraulic rams at the base of the specimens were used to apply a constant axial load of 

445 kN (100 kips) to simulate the dead load. A typical loading sequence for one of the 

tested columns is shown in Figure ‎1.2. The loading cycles are divided into two phases: 

load control and displacement control. The load control phase is used up to yielding of 

the longitudinal bars; beyond that point, a displacement control loading sequence was 

used. In Figures 1.2 and 1.3, u, defined as the displacement ductility factor, is the ratio of 

the applied displacement at the top of the column over the displacement at first yield. 

 

 

Figure ‎1.1  Test setup. 
Source: Saadatmanesh, Ehsani, & Jin (1997). 
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The repair procedures consisted of chipping out loose concrete in the failure 

zones, filling the gap with fresh concrete, and using an active retrofit scheme. In this 

work, an active retrofit scheme consisted of wrapping the column with slightly oversized 

FRP straps and filling the gap between the column and the composite wrap with 

pressurized epoxy. The four repaired column specimens were subjected to the same 

loading sequences as those for the original columns approximately one week after the 

repair operation was completed. All repaired columns performed extremely well under 

the simulated earthquake loading. Figure ‎1.2 and Figure ‎1.3 show hysteresis loops for 

the first tested column before and after retrofitting with FRP. In these figures, δy indicates 

lateral displacement at the top of the column at first yielding of the longitudinal steel 

reinforcing bars and Vu is the calculated lateral strength of the column.  

 

Figure ‎1.2  Load-displacement responses of the first column before repair. 
Source: Saadatmanesh, Ehsani, & Jin (1997). 

As can be seen in Figure ‎1.2, the lateral load drops significantly at displacement 

ductility level of u = 1.5. In subsequent load cycles, the resistance to lateral load drops 
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until failure has reached. Figure ‎1.3 shows the hysteresis loops of the failed column. This 

column was wrapped with composite straps in the failure region, which consisted of a 

635 mm (25 in.) column length located above the footing and measured from the top 

surface of the footing. Clear improvements in the response to cyclic lateral loads can be 

seen from this figure. At the displacement ductility level of u = 3, where the original 

column has failed, no structural degradation was observed in the repaired column. In fact, 

the response of the repaired column has improved over the original, undamaged column. 

The three remaining columns had similar or even more improved responses when 

compared to the behavior of the first tested column. 

 

Figure ‎1.3  Load-displacement responses of the first column after repair.  
Source: Saadatmanesh, Ehsani, & Jin (1997). 

Mirmiran, Samaan, El Chary, Mastrapa, and Pico (1998) studied the effect of 

shape, length, and bond on FRP confined concrete on over 100 specimens subjected to 

uniaxial compression. Their studies showed that square sections are less effective in 

confining concrete that their circular counterparts. Also, they concluded that the effect of 
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length-to-diameter ratios within the range from 2:1 through 5:1 is not significant for 

either strength or ductility of circular sections. Both eccentricities and strength reductions 

were within the limits prescribed by ACI 318-95 for tied columns. Additionally, their 

study found that adhesive bond does not affect load-carrying capacity of FRP-confined 

concrete. However, mechanical bond (shear connectors) significantly improves the 

performance of the section by distributing the confinement pressure more effectively 

around the circumference of the tube. 

Rochette and Labossiére (2000) performed research which yielded experimental 

results for short concrete column models wrapped with composite materials. The concrete 

sections, in this investigation, were confined with either carbon or aramid sheets. The 

effect of the confinement stiffness was examined, as well as the effect of rounding off the 

specimens corners. For a given number of wraps around a section (or a given transverse 

reinforcement ratio), the confinement effect was directly related to the shape of the 

section. It was concluded that the most effective confinements are obtained for circular 

sections. Also, excessive confinement may lead to very sudden and destructive 

compressive failures, which must be avoided. 

Kachlakev (2002) developed a three-dimensional finite element model using 

ANSYS to examine the structural behavior of the Horsetail Creek Bridge in Oregon both 

before and after applying FRP laminates. In this study, truck loadings were applied to the 

finite elements (FE) bridge model at different locations to simulate the actual bridge tests. 

The comparisons between ANSYS predictions and field data were then made in terms of 

concrete strains. The FE bridge model analysis results were found to accurately predict 

the trends in the strains versus the various truck loading locations. In addition, effects of 
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FRP strengthening on the structural performance of the bridge were observed in the linear 

range. The trend in the strain results for the various truck positions obtained from the 

ANSYS model was similar to those gathered from the field test data. However, the 

ANSYS strain results differed from the field strain data from 60% to up to 130%. 

Kachlakev (2002) believes this discrepancy may be caused by inaccurate material 

properties for the concrete or an incorrect strain calibration in the field. 

Pantelides and Gregely (2002) presented an analysis and design procedure for a 

CFRP composite seismic retrofit of a RC three-column bridge bent. The CFRP jacket was 

designed using performance-based criteria to provide a target displacement ductility 

based on seismic retrofit measures for the columns, bent cap, and bent cap-column joints. 

In situ quasi-static cyclic tests of a bent in the as-built condition and a bent retrofitted 

with the CFRP jacket were previously carried out in 1998. It has been found that the 

seismic retrofit was successful, and the bridge bent retrofitted with CFRP composites had 

reached a displacement ductility level in excess of the target ductility and double the 

hysteretic energy dissipation of the as-built bent. A description of the CFRP composite 

layout and validation of the design assumptions from the experimental results was also 

presented in this study. 

Sheikh and Yau (2002) presented results from an experimental program in which 

twelve 356 mm diameter and 1473 mm long columns were tested under both constant 

axial load and reversed cyclic lateral load, which was intended to simulate seismic 

loading. Each specimen consisted of a column cast integrally with a 510 x 760 x 810 mm 

stub that represented a beam-column joint area or a footing (Figure ‎1.4). 
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Figure ‎1.4  Details of test specimen and test setup. 
Source: Sheikh and Yau (2002). 

The test specimens were divided into three groups. The first group consisted of 

four columns that were conventionally reinforced with longitudinal and spiral steel 

reinforcement. The second group contained six reinforced concrete columns that were 

strengthened with CFRP or glass fiber-reinforced polymers (GFRP) before testing. The 

last group included two columns that were damaged to a certain extent, repaired with 

FRP under axial load, and then tested to failure. The main variables investigated were 

axial load level, spacing of spirals, thickness, and type of FRP. From the results of the 

tests, it was concluded that carbon and glass FRP can be used effectively to strengthen 

deficient columns such that their strengthened behavior under simulated earthquake 

loading matches or exceeds the performance of columns designed according to the 

seismic provisions of the 1999 ACI Code. The use of FRP was confirmed to significantly 

enhance the strength, ductility, and energy absorption capacity of columns. 

An investigation into the long term behavior of FRP confined concrete columns 

was carried out by Naquib and Mirmiran (2002). Shrinkage, interface bond, creep, creep 

recovery, static, and reserve strength of a number of concrete-filled FRP tubes (CFFT) 

and fiber-wrapped concrete columns were measured. The study showed the shrinkage of 
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the concrete core in CFFT columns to be quite negligible. Bond strength at the interface 

of the concrete core and FRP tube was found to be lower than that in steel tubes, but still 

large enough to counteract the axial shrinkage of the concrete core. 

A stress–strain model was formed for concrete confined by FRP wraps with fibers 

exclusively or predominantly in the hoop direction by Lam and Teng (2003). Although 

this model was simple, it captured all the main characteristics of the stress–strain 

behavior of concrete confined by different types of FRP. 

Ye, Zhang, Zhao, and Feng (2003) tested eight specimens, including two 

strengthened after being loaded to the yield level to imitate strengthening with some 

damage and one strengthened under a sustained axial load to imitate strengthening under 

a service loading condition. The service loading condition consisted of constant axial 

load and lateral cyclic load and was used to investigate the seismic performance of RC 

columns strengthened with CFRP sheets. In this study, the ductility enhancement 

achieved with the confinement provided by the CFRP sheets was studied by reviewing 

the development and distribution of strain in the CFRP sheets. Moreover, an equivalent 

transverse reinforcement index was suggested in order to gain the amount of CFRP 

needed for the seismic strengthening of RC columns. 

In an investigation by Harajli and Rteil (2004), seismic behavior of reinforced 

concrete columns confined with CFRP flexible sheets were evaluated based on 

experiments.  To simulate gravity load design, the column reinforcement in all specimens 

was spliced at the column base. In this study, all specimens experienced significant slip 

of the column reinforcement and widening of one single crack located at the column-stub 

interface. Without confinement, the RC columns suffered significant deterioration of 
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bond resistance of the spliced reinforcement, accompanied with considerable reduction in 

strength and stiffness degradation in the initial few load cycles following yield. By 

confining a small percentage of the actual concrete column with CFRP sheets, the test 

specimens exhibited a reduction in bond deterioration, a considerable increase in the 

energy absorption and dissipation capabilities of the columns, and resulted in a 

significant improvement in seismic performance. 

Conclusions drawn on the basis of test results for twenty concrete column 

specimens wrapped with FRP were presented in a paper by Bousias, Triantafillou, Fardis, 

Spathis, and O’Regan (2004). In this study, unretrofitted columns exhibited a gradual loss 

of lateral and axial load resistance during the cycles that led to failure. Following ultimate 

deformation the tested specimens retained most of their axial load capacity but retained 

very little lateral load capacity. During the test, retrofitted columns successfully 

supported constant axial and lateral load capacity up to ultimate deformation, at which 

point the test columns failed explosively by fracture of the FRP wrap. They concluded 

that increasing the number of CFRP layers from two to five does not materially improve 

member deformation capacity and strength. 

In a study conducted by Sause, Harries, Walkup, Pessiki, and Ricles (2004) full-

scale column specimens with details and loading conditions based on the columns from 

the prototype structures were built and tested under combined axial and lateral loads. 

They concluded that the use of CFRP jackets to confine the inelastic hinge region of 

nonductile square building columns greatly enhances the deformation capacity of these 

columns without significantly increasing their strength or lateral stiffness. A fiber model 

cross section analysis of the prototype columns was carried out to show that the 
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deformation capacity increases with increasing jacket thickness. The out-of-plane 

stiffness of CFRP jackets can be sufficient to provide lateral support to the longitudinal 

bars under large displacement ductility demands. Column failure resulting from 

deterioration of the compression zone and longitudinal bar buckling in the hinge region 

can be delayed by using jackets with greater stiffness. 

In order to predict the stress-strain behavior of concrete confined by FRP wraps, 

Bisby, Dent, and Green (2005) evaluated various available analytical models by using a 

light of a large database of test results on FRP wrapped columns. Moreover, several of 

the existing stress-strain relationships were modified to provide the best fit to the 

experimental database for confined ultimate stress and strain. 

An experimental program consisting of testing of four series of RC columns with 

discrete wrapping arrangements and one series of fully wrapped RC columns was 

conducted by Barros, Ferreira, and Varma (2008). In this study, monotonic and cyclic 

tests were performed. Furthermore, a constitutive model to simulate FRP-confined RC 

elements subjected to cyclic compressive loading was developed and incorporated into a 

computer program based on the finite element method. They concluded that the results of 

partially confined specimens were slightly lower than that of the fully confined 

specimens. However, partial confinement arrangements were easier and faster to apply 

than full confinement arrangements. The obtained stress-strain curves indicated that the 

curve corresponding to the monotonic test can be considered to envelope the curve of the 

cyclic test. 

More experimental studies involving RC columns strengthened with CFRP have 

been performed from which it can be concluded that CFRP strengthening can enhance the 
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performance of both column strength and ductility. In all of these experiments by Wei, 

Wu, Guo, and Yi (2009), columns were subjected to either monotonic increasing axial 

load or constant axial load with uniaxial bending. Figure ‎1.5 illustrates the test setup and 

strain gauges for the experiments being done by Sadeghian, Rahai, and Ehsani (2010) and 

Bibsy and Ranger (2010). 

  

(a) (b) 

Figure ‎1.5  Details of test specimen by a) Sadeghian, Rahai, and Ehsani (2010), 

b) Bibsy and Ranger (2010). 

In recent years, Chen (2005) and Hsu and Punurai (2011) at New Jersey Institute 

of Technology (NJIT) have studied tension and compression strengthening of RC slender 

columns by CFRP composite fabrics under combined biaxial loading and axial 

compression. Based on their studies, strengthening the RC columns in both the 

longitudinal and transverse directions has a more significant effect on the strength and 

ductility of the column when compared to strengthening in one direction only. 
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1.3.2 High Strength Concrete Columns 

The empirical results of a test program studying the effects of rectilinear confinement in 

high-strength concrete subjected to monotonically increasing compressive axial load was 

reported by Yong, Nour, and Nawy (1988). Twenty four columns made of high-strength 

concrete with compressive strength fc′ ranging from 12,130 to 13,560 psi (83.6 to 93.5 

MPa) and rectilinearly confined with lateral ties and longitudinal reinforcement were 

tested. Additionally, the stress-strain behavior was studied with respect to the effects of 

the volumetric ratio of lateral ties, the thickness of the concrete cover, and the distribution 

of the longitudinal steel around the core perimeter. In this work, expected general 

improvements in the strength and ductility of the high-strength concrete with rectilinear 

confinement was observed. The lateral steel confinement in HSC was found to be not as 

effective as in low and normal-strength concrete. The stress-stain curve of rectilinearly 

confined high strength concrete was also presented in this study. 

Hsu L. at NJIT (1992) performed tests on high strength concrete slender columns 

containing steel fibers under combined biaxial bending and axial compression load. 

Empirical equations were proposed to represent the complete stress-strain relationships of 

high strength and high strength fibrous concretes with compressive strength exceeding 

10,000 psi. Various parameters were studied and their relationships were experimentally 

determined. Comparisons between the experimental and analytical results were found to 

have good agreement. 

Results from four high-strength concrete specimens (HSC), three nonprismatic 

and one prismatic, tested under constant axial load and cyclic lateral loads (simulating 

earthquake forces) were presented and compared with similar specimens of normal 
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strength concrete (NSC) by Sheikh, Shah, and Khory (1994). In this study, the concrete 

strength varied between 4,500 and 8,500 psi (31 and 59 MPa). They concluded that the 

increase in the lateral steel reinforcement resulted in an almost proportional increase in 

the ductility and energy absorption capacity of confined high-strength concrete, just as in 

the case of normal strength concrete. For the same amount of tie steel, the flexural 

ductility of HSC columns was found to be significantly less than that of comparable NSC 

specimens. For the same level of axial load measured as a fraction of Po (the ultimate 

axial load capacity), HSC and NSC columns behaved similarly in terms of energy 

absorption characteristics when the amount of tie steel in the columns was in proportion 

to the unconfined concrete strength. 

Azizinamini, Kuska, Brungardt, and Hatfied (1994) investigated the flexural 

capacity and ductility of square high strength concrete columns. In this work, nine 2/3-

scale test columns were subjected to constant axial loads and cyclic lateral loads. They 

concluded in this study that HSC [fc′ exceeding 10,000 psi (69MPa)] columns with 

applied axial load levels below 20 percent of the column’s axial capacity that are 

designed based on the seismic provisions of ACI 318 (circa 1994) possess adequate 

curvature and displacement ductilities. Moreover, the ductility of the HSC columns 

decreased as the level of axial load increased and the volume of transverse reinforcement 

increased. 

The following conclusions were drawn based on the research reported by Bae and 

Bayrak (2003). For the 224 HSC columns considered in this study, the use of ACI 318-02 

specified stress block parameters resulted in progressively increasing overestimations of 

the moment capacities as the concrete strength increased. The fact that these 
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overestimations are systematical suggests that a physical phenomenon that does not affect 

NSC column capacity does affect HSC column capacity. This phenomenon was identified 

by the authors to be the early cover spalling in HSC columns. Having recognized the 

early cover spalling problem for HSC columns, new stress block parameters, α1 and β1, 

were proposed based on the reported research. The proposed parameters are as follows: 

 

𝛼1 = 0.85 − 0.004(𝑓𝑐
′ − 70)  (𝑓𝑐

′ in MPa) (1.1) 

where 

 

0.67 ≤ 𝛼1 ≤ 0.85 

 

 

𝛽1 = 0.85 − 0.004(𝑓𝑐
′ − 30)  (𝑓𝑐

′ in MPa) (1.2) 

where 0.67 ≤ 𝛽1 ≤ 0.85  

It should be noted that the proposed stress block parameters are based on the 

analysis in which ɛcu = 0.0025 is employed for maximum useful compressive strain in 

concrete prior to early cover spalling in HSC (fc' ≥ 55 MPa). 

A paper which presents an experimental and analytical investigation of reinforced 

concrete columns subjected to unequal load eccentricities is authored by Sarker and 

Rangan (2003). The experimental results of 18 HSC columns and a computer-aided 

method to analyze reinforced concrete columns subjected to unequal load eccentricities 

were presented. Figure ‎1.6 shows the configuration used to apply eccentric load. 

 



25 

 

 

Figure ‎1.6  Configuration used to apply eccentric load. 
Source: Sarkeret and Rangan (2003). 

In some cases of this experimental setup, uniaxial eccentricity varied at the top 

and bottom of the columns. For instance, for column C18, eccentricity in bottom of the 

column was 65 mm whereas the eccentricity in top of the column was -65 mm. It was 

found that analytical and test strengths correlated well in this investigation. The analytical 

method, therefore, was concluded by the authors to be useful to analyze reinforced 

concrete columns subjected to any combination of load eccentricities. 

In a paper by Légerona and Paultre (2003), a new confinement model based on 

strain compatibility and transverse force equilibrium was presented. This approach, as 

suggested by the authors, was capable of predicting the effectiveness of transverse 

reinforcement, which is a key in modeling the behavior of high-strength concrete 

confined with high strength steel. The model was validated on test results from more than 

200 circular and square large-scale columns tested under slow and fast concentric 

loading. In addition, results from about 50 square and circular large-scale columns tested 

under constant axial load and reversed cyclic bending were also used in the assessment of 
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the models adaptability to seismic-type loading. It was shown that all the hypotheses 

were in very good agreement with the experimental results. 

Lu (2005) studied the stress-strain behavior of high strength concrete with and 

without steel fibers under uniaxial and triaxial compression. According to this research, 

under triaxial compression, there was no apparent advantage of steel fiber reinforced high 

strength concrete (SFHSC) over high strength concrete (HSC) in terms of triaxial 

strength, ductility and stress-strain behavior. The compressive median and the peak 

octahedral shear stress versus peak octahedral shear strain relationships for the two types 

of concrete can be expressed by a single expression. The results from the model analysis 

correlate with the experimental data fairly well under moderate confining pressures. 

In an investigation by Pallarés, Bonet, Miguel, and Prada (2008), experimental 

research on high strength concrete columns subjected to compression and biaxial bending 

forces was presented. The considered parameters in this research were eccentricity, skew 

angle and slenderness of the test specimen, from which a total of 56 columns had been 

tested. The cross-sectional dimensions are 200 × 100 mm, the lengths of the columns 

were 1, 2 and 3 m, and the average compression strength was 103 MPa (15 ksi). 

To study the properties of high-strength concrete (HSC) circular columns 

confined by aramid fiber-reinforced polymer (AFRP) sheets under axial compression, a 

total of 60 specimens were tested by Wu, Wang, Yu, and Li (2009). In this study, the 

compressive strength of concrete, the number of AFRP layers, and the form of AFRP 

wrapping were presented. An analytical model to predict the stress–strain curves was also 

proposed based on the experimental results. Furthermore, a three-dimensional nonlinear 

finite element model with a Drucker–Prager plasticity model for the concrete core and an 
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elastic model for the AFRP sheets was developed using the finite-element code ANSYS. 

It was demonstrated that the strength and ductility of the columns with continuous AFRP 

wrapping were increased greatly. The strength of the columns with discontinuous AFRP 

wrapping was also increased, but the ductility was not always significantly increased. The 

analytical model and the finite-element model were validated against the experimental 

results. 

A new concept was investigated in the study by Hadi and Zhao (2011) in order to 

reduce the cover spalling of high-strength concrete columns. To decrease the cover 

spalling, relatively cheap materials such as household fly screen and wire mesh were 

installed in the formwork of RC columns. Three materials were chosen in this study, and 

a total of 16 cylindrical specimens with a length of 36.4 in (925 mm) and a diameter of 8 

in (205 mm) were cast and tested under concentric, eccentric, and pure bending loading. 

The testing results showed that the load-carrying capacity and ductility improved under 

both concentric and eccentric loading. 

In an investigation by Ozbakkaloglu and Akin (2011) results of experimental tests 

of FRP-confined normal and high-strength concrete under axial compression were 

studied. A total of 24 aramid and carbon FRP-confined concrete cylinders with different 

concrete strengths and FRP jacket thicknesses were tested under monotonic and cyclic 

loading. They concluded that the residual plastic strain of FRP-confined concrete was 

linearly related to the unloading strain envelope, and this relationship did not appear to be 

influenced significantly by: i) the amount of confinement; ii) the type of FRP; and iii) the 

unconfined concrete strength. They also concluded that the presence of 

unloading/reloading cycles leads to an increase in the ultimate strength and strain of FRP-
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confined concrete. Additionally, direct application of the existing FRP-confined NSC 

stress-strain models to FRP-confined HSC can lead to significant overestimation of the 

ultimate condition of FRP-confined HSC. 

1.4 Summary of Literature Review 

By studying the literature, it can be concluded that the behavioral analysis of cyclically 

loaded RC columns strengthened by CFRP composite fabrics requires further 

investigation. Additionally, the behavior of CFRP strengthened concrete columns under 

cyclic loading in biaxial directions has not been studied. 

Analysis of both reinforced NSC columns and HSC columns wrapped with CFRP 

have been the subject of a number of research studies. Further, the application of CFRP 

on high-strength concrete columns can be found in the literature. Concrete columns in 

those works were subjected to monotonic axial load with unidirectional eccentricity. 

Therefore, there is a lack of studies with regard to the analysis of high-strength concrete 

columns under cyclic axial load and biaxial bending. 
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CHAPTER 2 

BEHAVIOR OF NSC COLUMNS WITH CFRP 

2.1 Introduction 

In this chapter, a simplified method is introduced to study the behavior of concrete 

columns with and without CFRP jackets while subjected to constant axial load and 

variable lateral load. The lateral load will be applied in monotonic and cyclic form. This 

method can be utilized to analyze the strength and flexibility of concrete columns which 

are subject to considerable moment such as bridge substructure columns during 

earthquake events. To predict the behavior of concrete columns under monotonic and 

cyclic compressive loadings, a computer code has been developed to produce the 

moment-curvature diagram of any arbitrary concrete section. This code must be able to 

represent the general behavior of concrete columns based upon different stress-strain 

relationships so that sections with and without CFRP wraps can be analyzed. Then, the 

moment-curvature diagram can be input as a plastic hinge property in the commercial 

software package SAP2000 to study the behavior of concrete columns with different 

properties under monotonic and cyclic load patterns. The result of this method has been 

compared with test results which shows acceptable compliance with experimental results. 

2.2 Moment-Curvature Diagram of Concrete Sections 

With the development of performance-based design methods, there is an increasing need 

for simplified but reliable analytical tools capable of predicting the flexural behavior of 

reinforced concrete members. Design offices will be faced more and more with the need 

to predict the deformation capacity of concrete members. The most fundamental 
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requirement in predicting the moment curvature behavior of a flexural member is the 

knowledge of the behavior of its constituents (Srikanth, Rajesh Kumar, & Giri, 2007). 

Reinforced concrete design calculations normally assume a simple material model for the 

concrete and reinforcement to determine the moment capacity of a section. The Whitney 

stress block for concrete along with an elasto-plastic reinforcing steel behavior is the 

most widely used material model in American codes (Figure ‎2.1). However, the actual 

behavior of concrete is nonlinear and can be described by idealized stress-strain models 

(Figure ‎2.2).  

 

Figure ‎2.1  Whitney stress block. 

Moment curvature analysis is a method to accurately determine the load-

deformation behavior of a concrete section using nonlinear material stress-strain 

relationships. For a given axial load there exists an extreme compression fiber strain and 

a section curvature (𝜙 = 𝜀/𝑐) at which the nonlinear stress distribution is in equilibrium 

with the applied axial load. A unique bending moment can be calculated at this section 

curvature from the stress distribution. The extreme concrete compression strain and 

section curvature can be iterated until a range of moment-curvature values are obtained. 
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Figure ‎2.2  Real stress block. 

In deriving the expressions of the moments and curvatures for concrete sections 

with and without CFRP wrapping, the following assumptions are made: 

1. Plane sections remain plane before and after bending. 

 

2. The strain variation across the section is linear. 

 

3. A bilinear stress-strain relationship is considered for steel in tension and compression. 

 

4. The reinforcing steel is perfectly bonded to the concrete. 

 

5. The effect of creep and any direct tension stresses due to shrinkage are neglected. 

 

6. Shear deformation is neglected. 

 

To determine the moment-curvature graph of a concrete section, a wide variety of 

extreme fiber concrete strains (εc) are selected to capture corresponding moments for 

each selected strain. These moment values are obtained by satisfying three basic 

relationships: equilibrium of forces, compatibility of strains, and the stress-strain 

relationship of steel and concrete. 

Analysis is based on fiber modeling in which the section is divided into uniaxially 

stressed fibers along the longitudinal axis. This model has been used efficiently by many 
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in analysis of reinforced concrete columns subjected to different loading paths (Esmaeily 

& Xiao, 2005). It is assumed that the stress in a fiber varies linearly and stress at the 

center of a fiber represents the fiber’s equivalent stress. The stresses in concrete and steel 

fibers are determined from the stress-strain curves and are taken as the stress 

corresponding to the average strain of the fiber (Figure ‎2.3). Hence, utilizing a sufficient 

number of fibers for the compression zone of the concrete member will provide a more 

compatible compressive stress distribution with the assumed stress-strain model. This, 

consequently, will lead to more accurate results (Dundar, Tokgoz, Tanrikulu, & Baran, 

2008). 

 

Figure ‎2.3  Section strain and stress distribution for concrete and steel. 
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Section forces are determined from stresses and areas of the concrete and steel in 

each fiber, after performing iterations to satisfy equilibrium (Saadeghvaziri, 1997). The 

axial force and corresponding moments can be obtained as follows:   

 𝑓𝑐,𝑖 = 𝜎𝑐,𝑖 × 𝑏 × 𝑑ℎ𝑖 (‎2.1) 

 𝑓𝑠,𝑗 =  𝜎𝑠,𝑗 × 𝐴𝑗 (‎2.2) 

 𝑃 = ∑ 𝑓𝑐,𝑖
𝑛
𝑖=1 +∑ 𝑓𝑠,𝑗

𝑘
𝑗=1   (‎2.3) 

 𝑀 = ∑ 𝑓𝑐,𝑖 × ℎ𝑐,𝑖
𝑛
𝑖=1 +∑ 𝑓𝑠,𝑗 × ℎ𝑠,𝑗

𝑘
𝑗=1   (‎2.4) 

 

Where σc,i is the concrete stress in the i
th

 fiber, σs,j is the steel stress in the j
th

 row 

of reinforcement, b is the width of the section, dhi is the height of the i
th

 fiber, Aj is the 

total area of the reinforcement in the j
th

 fiber, hc,i is the distance of the i
th

 concrete fiber 

from the neural axis, hs,j is the distance of the j
th

 row of reinforcement from the neutral 

axis, P is total axial load, and M is total moment of the section. 

2.3 Material Models 

2.3.1 Stress-Strain Model for Steel 

A bilinear elastic-plastic material model is developed for the monotonic stress-strain 

relationship of steel. This model is detailed with 4 variables of fy, εy, E, and Ep which are 

yield stress, yield strain, modulus of elasticity, and after yield slope, respectively. 

Figure ‎2.4 depicts the assumed stress-strain model for steel. 
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Figure ‎2.4  Steel stress-strain relationship. 

 

2.3.2 Stress-Strain Model for Plain Concrete 

The model for the monotonic stress-strain relationship of concrete proposed by Carreira 

and Chu (1985) has been used for obtaining the moment-curvature diagram of the 

section. The numerical expression of this model is: 

 
𝑌 =

𝛽𝑋

𝛽 − 1 + 𝑋𝛽
 (‎2.3) 

 𝑋 =
𝜀𝑐
𝜀𝑜

 (‎2.4) 

 
𝑌 =

𝑓𝑐
𝑓𝑐′

 (‎2.5) 

 
𝛽 = 

1

1 −
𝑓𝑐′

𝜀𝑜𝐸𝑖𝑡

 
(‎2.6) 

Where: 

εc = concrete strain 

fc = concrete stress 
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f'c = maximum compressive strength of concrete 

εo = strain corresponding to peak stress, f'c 

β = material parameter 

Eit = initial tangent modulus of concrete, which is determined from the equation 

suggested in the ACI code (2011):  

 𝐸𝑖𝑡 = 57000√𝑓𝑐′ (‎2.7) 

 

Figure ‎2.5  Stress-strain model for unconfined concrete. 

2.3.3 Stress-Strain Model for Concrete Confined with FRP 

The design-oriented stress-strain model for FRP-confined concrete by Teng, Jiang, Lam, 

and Luo (2009) has been selected. This model is the result of a study conducted to refine 

the design-oriented stress-strain model originally established by Lam and Teng (2003) for 

FRP-confined concrete under axial compression based on an interpretation of test data 

and observations. This model is simple, which makes it suitable for direct use in design. 

Also, it captures all the main characteristics of the stress-strain behavior of concrete 

confined by different types of FRP. In the development of this model, a number of 

important issues were examined and resolved, including the actual hoop strains in FRP 

𝑌 =
𝑓𝑐
𝑓𝑐′

 

𝑋 =
𝜀𝑐
𝜀𝑜
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jackets at ruptures, the sufficiency of FRP confinement for a significant strength 

enhancement, and the effect of jacket stiffness on the ultimate axial strain. It should be 

noted that this model is also applicable to stress-strain curves with a descending branch. 

This model is described by the following expressions: 

 
𝜌𝑘 =

2𝐸𝐹𝑅𝑃𝑡

(𝑓𝑐𝑜
′ 𝜀𝑐𝑜⁄ )𝐷

 (‎2.8) 

 𝜌𝜀 =
𝜀ℎ,𝑟𝑢𝑝
𝜀𝑐𝑜

 (‎2.9) 

where 𝜌𝑘  is the confinement stiffness ratio which represents the stiffness of the FRP 

jacket relative to that of the concrete core and 𝜌𝜀 is the strain ratio which is a measure of 

the strain capacity of the FRP jacket. Additionally: 𝐸𝐹𝑅𝑃  = elastic modulus of FRP in the 

hoop direction; 𝑡 = thickness of FRP jacket; D = diameter of the confined concrete 

cylinder; 𝑓𝑐𝑜
′  = unconfined concrete strength; 𝜀𝑐𝑜 = corresponding axial strain to 

unconfined concrete strength; 𝜀ℎ,𝑟𝑢𝑝 = hoop rupture strain of the FRP jacket. 

The parabolic first portion and linear second portion of Lam and Teng’s model is 

expressed as: 

 

𝜎𝑐 =

{
 
 

 
 𝐸𝑐𝜀𝑐 −

(𝐸𝑐 − 𝐸2)
2

4𝑓𝑐𝑜′
𝜀𝑐
2                                              (0 ≤ 𝜀𝑐 ≤ 𝜀𝑡)

{

𝑓𝑐𝑜
′ + 𝐸2𝜀𝑐                                  𝑖𝑓 𝜌𝑘 ≥ 0.01

𝑓𝑐𝑜
′ −

𝑓𝑐𝑜
′ − 𝑓𝑐𝑢

′

𝜀𝑐𝑢 − 𝜀𝑐𝑜
(𝜀𝑐 − 𝜀𝑐𝑜)    𝑖𝑓 𝜌𝑘 < 0.01

   (𝜀𝑡 < 𝜀𝑐 ≤ 𝜀𝑐𝑢)

         (‎2.10) 

where 𝜎𝑐 and 𝜀𝑐  = axial stress and the axial strain respectively; 𝐸𝑐  = elastic modulus of 

unconfined concrete; and 𝐸2 = slope of the linear second portion. The parabolic first 

portion meets the linear second portion with a smooth transition at 𝜀𝑡, which is given by  

  
𝜀𝑡 =

2𝑓𝑐𝑜
′

𝐸𝑐 − 𝐸2
 (‎2.11) 
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The slope of the linear second portion 𝐸2 is given by 

 

 
𝐸2 =

𝑓𝑐𝑢
′ − 𝑓𝑐𝑜

′

𝜀𝑐𝑢
 (‎2.12) 

 

This model allows the use of test values or values specified by design codes for 

the elastic modulus of unconfined concrete 𝐸𝑐 . Based on the ACI code, equation (‎2.7) can 

be used to estimate 𝐸𝑐 . 

The following equation is proposed to predict the ultimate axial strain 𝜀𝑐𝑢 if the 

concrete is confined: 

 

 𝜀𝑐𝑢
𝜀𝑐𝑜

= 1.75 + 6.5𝜌𝑘
0.8𝜌𝜀

0.8 (‎2.13) 

 

where the strain at the unconfined concrete strength 𝜀𝑐𝑜 was taken to be 0.002. 

This model’s compressive strength equation, 𝑓𝑐𝑢
′ , takes the following form: 

 

  𝑓𝑐𝑢
′

𝑓𝑐𝑜′
= 1 + 3.5(𝜌𝑘 − 0.01)𝜌𝜀             𝑖𝑓 𝜌𝑘 ≥ 0.01  

𝑓𝑐𝑢
′

𝑓𝑐𝑜′
= 1                                               𝑖𝑓 𝜌𝑘 < 0.01 

(‎2.14) 

 

Figure ‎2.6 illustrates a schematic stress-strain model based on Lam and Teng’s model. 
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Figure ‎2.6  Schematic Lam and Teng’s stress-strain model for FRP-confined 

concrete. 

2.4 Experimental Study 

In a work by Seible, Priestley, Hegemier, and Innamorato (1997) the development, 

validation, and implementation of carbon fiber jackets as a retrofit system for reinforced 

concrete columns was described. This study included experimental results of circular and 

rectangular columns with variable carbon fiber thicknesses along the column height 

based on design models. The columns were loaded under constant axial load and 

monotonic and cyclic horizontal load at the tip of the column. Also, jacket design criteria 

for different seismic column failure modes were described. Large-scale bridge column 

models were tested and it was found that carbon fiber jacketing is effective in providing 

inelastic deformation capacity. The specimen geometry and reinforcement detailing are 

depicted in Figure ‎2.7 while column section properties and jacket material properties are 

summarized in Table ‎2.1. 
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Table ‎2.1  Summary of Column Specifications and Details 

Element Specification Column #1 Column #2 

Column 
geometry 

Column height, H 
Shear span, L 

Column depth, D 

Column width, B 

Concrete cover, cc 

Concrete strength, fc' 

2.438 m (96 in) 
1.219 m (48 in) 

0.610 m (24 in) 

0.406 m (16 in) 

19 mm (0.75 in) 

34.45 MPa (5 ksi) 

3.658 m (144 in) 
3.658 m (144 in) 

0.730 m (28.75 in) 

0.489 m (19.25 in) 

19 mm (0.75 in) 

34.45 MPa (5 ksi) 

Longitudinal 

reinforcement 

Bar diameter, db 

 

Bar area, As 

Yield strength, fsy 

22 x 19 mm (#6) 

 

284 mm2 (0.44 in2) 

303.16 Mpa (44 ksi) 

14 x 25 mm (#8) 

28 x 22 mm (#7) 

510 mm2 (0.79 in2) 

303.16 Mpa (44 ksi) 

Column 

section 

properties 

Axial load, P 

Moment capacity, Myi 

Yield curvature, Φy 

Neutral axis depth, Cu 

507 kN (114 kip) 

619 kN.m (457 kip.ft) 

5.47e-3 1/m (2.15e-4 1/in) 

116 mm (4.57 in) 

1,780 kN (400 kip) 

2,165 kN.m (1,597 kip.ft) 

4.69 e-3 1/m (1.84e-4 1/in) 

208 mm (8.19 in) 

Jacket 

material 

properties 

Jacket modulus, Ej 

Ultimate strength, fju 

Ultimate strain, εju 

Jacket thickness, tj 

124 Gpa (17,980 kip) 

1.3 GPa (188.5 kip) 

1.0% 

2.0 mm (0.0787 in) 

124 Gpa (17,980 kip) 

1.3 GPa (188.5 kip) 

1.0% 

10.2 mm (0.4016 in) 

 

  

(a) (b) 

Figure ‎2.7  Test column geometry and reinforcement: (a) Specimen 1, column in 

double bending; (b) Specimen 2, cantilever column. 
Source: Seible, Priestley, Hegemier, and Innamorato (1997). 
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2.4.1 Moment-Curvature of the Experiment Column Section 

In this section, concrete stress-strain curves of the columns which were tested by Seible, 

Priestley, Hegemier, and Innamorato (1997) have been depicted. These graphs include 

stress-strain behavior for both plain concrete and concrete confined with CFRP 

(Figure ‎2.8, Figure ‎2.9, Figure ‎2.10, and Figure ‎2.11).  

Moment-curvature graphs for both column sections show that the CFRP jacket 

can enhance the flexibility and strength of the column. This enhancement is more 

pronounced for sections which are retrofitted with thicker layers of CFRP. Column #1 

has a moment capacity of 483 kip-ft without CFRP jacket, whereas adding a CFRP jacket 

can increase this capacity to 714 kip-ft (48% increase in moment capacity). Column #2 

without the CFRP jacket has a moment capacity equal to 1,522 kip-ft. This capacity is 

increased to 3,039 kip-ft (100% increase in moment capacity) when the section is 

wrapped with a 0.4 in (10 mm) thick layer of CFRP. 
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Figure ‎2.8  Stress-strain relationship of Column #1’s concrete with and without a 

CFRP jacket. 

 

Figure ‎2.9  Moment-curvature for Column #1’s section with and without a CFRP 

jacket. 
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Figure ‎2.10  Stress-strain relationship of Column #2’s concrete with and without 

a CFRP jacket. 

 

Figure ‎2.11  Moment-curvature for Column #2’s section with and without a 

CFRP jacket. 
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2.5 Monotonic and Cyclic Pushover Analysis 

After obtaining the moment-curvature of column sections with and without CFRP, these 

graphs were input as plastic hinge properties in the commercial software package 

SAP2000 in order to study column behavior under constant axial load plus monotonic or 

cyclic lateral load applied at the top of the column. This behavior is shown with the mean 

of the load-displacement graph. The columns have been modeled in this software in 

accordance with the boundary conditions and loading applied in the tests done by Seible, 

Priestley, Hegemier, and Innamorato (1997). In the model, columns were divided into 10 

segments. Division of the columns into segments facilitates the assignment of plastic 

hinge properties to the individual zone that yields first due to the maximum moment. 

Although tested columns are wrapped with CFRP jackets with different thicknesses along 

the full height of the column, the plastic hinge property is only assigned to one segment 

in the computer model in order to avoid convergence issues. Additionally, moment-

curvature diagrams have been simplified with a bilinear graph rather than a curve prior to 

assignment as the plastic hinge property in the model. A second assumption is made 

regarding the unloading behavior of the columns in the second and fourth quadrants of 

load-displacement graph. In these quadrants, a line which connects the point with residual 

deformation and zero horizontal load to the point with zero deformation and intersection 

of “Y” axis represents the unloading behavior of the column. Figure ‎2.12 to Figure ‎2.17 

illustrate test results for columns #1 and #2. 
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Figure ‎2.12  Monotonic load-displacement response of column #1. 

 

Figure ‎2.13  Cyclic load-displacement response of column #1 without CFRP. 
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Figure ‎2.14  Cyclic load-displacement response of column #1 with CFRP. 

 

Figure ‎2.15  Monotonic load-displacement response of column #2. 



   46 

 

 

 

 

Figure ‎2.16  Cyclic load-displacement response of column #2 without CFRP. 

 

Figure ‎2.17  Cyclic load-displacement response of column #2 with CFRP. 

In the following figures (Figures 2.18 through 2.21), the results of the computer 

analysis from SAP2000 are compared to experimental graphs. 
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Figure ‎2.18  Load-displacement response of column #1 without CFRP. 

 

Figure ‎2.19  Load-displacement response of column #1 with CFRP. 
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Figure ‎2.20  Load-displacement response of column #2 without CFRP. 

 

Figure ‎2.21  Load-displacement response of column #2 with CFRP. 
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In Figure ‎2.18, which illustrates the result of monotonic and cyclic loading for 

column #1 without CFRP wrapping, the result of the computer analysis was compared 

with experimental results. The experimental load-displacement results yield a parabolic 

curve whereas the SAP2000 results were similar to a bilinear behavior. The slope within 

the elastic limit was found to be slightly greater for computer analysis than the test. 

However, the maximum horizontal loads determined from both the experimental testing 

and SAP2000 analysis were similar. The SAP2000 results for cyclic loading had the same 

trend as the monotonic results, and was similarly repeated for different load cycles. The 

test results of this column when wrapped with CFRP showed bilinear behavior as the 

computer analysis predicted. In this case, the slopes of these graphs in the elastic linear 

range were approximately the same. The maximum lateral load in SAP2000, however, 

was found to be slightly more than the value determined from the experimental tests. As 

was the case without a CFRP jacket, column behavior under cyclic load was found to be 

the same as monotonic loading and was similarly repeated for different cycles 

(Figure ‎2.19). 

Computer analysis and test results for column #2 without CFRP wrapping were in 

good agreement when column was subjected to monotonic load (Figure ‎2.20). These 

results formed quasi bilinear graphs with almost equal slopes for the first portions or 

elastic region. The SAP2000 analysis results yielded  3 inches of deformation for the case 

of cyclic loading which was 33% less that determined through testing (4.5 inches 

approximately). Testing and SAP2000 results for column #2 when wrapped with CFRP 

also showed bilinear behavior (Figure ‎2.21). Slopes for the elastic region were identical 

as well as the start points of the second lines (yield points) . The SAP2000 analysis 
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predicted a steeper line with respect to the test results for the plastic portion of the graph. 

The cyclic result of the computer analysis showed a maximum deformation of 8 inches 

whereas the test cyclic loading had a maximum deformation of 10 inches (20% 

difference).  

It can be said that there is an acceptable compliance between the computer 

analysis and test results. For CFRP wrapped sections under monotonic increasing lateral 

loading, SAP2000 slightly overestimates the column capacity. However, this software 

shows less flexibility for jacketed columns under cyclic lateral load. In conclusion, this 

proposed analysis method of concrete columns with or without CFRP jackets can 

accurately predict the load-deformation behavior of such columns under a combination of 

constant axial load and variable lateral load and can be utilized in design of these 

columns.  
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CHAPTER 3 

EXPERIMENTAL PROGRAM 

3.1 Introduction 

An experimental investigation was carried out on slender RC columns to compare the 

ultimate load, load-deflection, and moment-curvature predicted by the proposed 

numerical method with those obtained experimentally. For the present study, six slender 

R/C columns were tested under cyclic axial compression with bidirectional eccentricities. 

3.2 Experimental Scheme 

3.2.1 Design of Concrete Columns 

All the columns to be tested were designed to be slender columns. In basic terms, that 

means the cross- sectional dimensions of the columns have to be small relative to column 

length. Generally, the degree of slenderness is expressed in terms of the slenderness ratio 

𝑙/𝑟, where 𝑙 is the unbraced length of the column and 𝑟 is the radius of gyration of its 

cross section. Based on this concept, the same column dimensions from the experimental 

works of Tsao (1991), Bahn (1994), and Chen J. (2005) have been adopted for this 

research. Due to the size limitations of the testing machine, the total length of the column 

was set to 4 ft.  Based on this column length, the nominal square cross section was set at 

3.0 in.×3.0 in., which resulted in a slenderness ration of 55. Two 7.0 in.×7.0 in.×8.0 in. 

concrete loading brackets were provided at the column ends to assist with the application 

of the biaxially eccentric load. All the columns were designed to resist a combination of 

both axial compression and biaxial bending. Based on the investigations by Tsao (1991), 

Bahn (1994), and Chen J. (2005),  the  column  which  has the  same eccentricities at both  
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coordinate axes will have the most critical secondary moment. Therefore, eccentricities 

used in this research varied from 1.0 inch in the X and Y directions to 1.5 inches in the X 

and Y directions. The details of the test specimens can be seen in Table ‎3.2 and 

Figure ‎3.2. 

Four No. 3 steel reinforcing bars were designed as the main compression bars. 

The concrete cover of 0.5 in. thickness measured to the face of the longitudinal bars was 

provided to protect the steel bars. Twelve-gauge plain steel wire was also used at a 3 inch 

spacing for the lateral ties. The two brackets at each column end were heavily reinforced 

with No. 3 steel rebar to prevent any premature failure. The details of steel rebar can be 

found in Figure ‎3.2. 

3.2.2 Materials 

3.2.2.1 Concrete. The concrete used in the columns consisted of Type I cement 

satisfying ASTM 150, sand from a local source, crushed stone with a maximum 

aggregate size of 3/8 in., tap water, silica fume (SF) in powder form to achieve a higher 

strength, and a superplasticizer (SP) to maintain good workability. The mix designs of the 

columns used in this research are listed in Table ‎3.1. 

 

Table ‎3.1  Mix Design of Concrete Columns 

Batch 

Water/

Cement 

ratio 

Cement 

(lbs) 

Stones 

(lbs) 

Sand 

(lbs) 

Water 

(lbs) 

Silica 

Fume 

SP 

(mL) 

Concrete 

Compressive 

Strength (psi) 

1 0.48 52.44 128 87.7 25.18 N/A N/A 7,250 

2 0.28 64.32 141.02 90.2 18.1 3.25 375 18,100 

3 0.29 64.48 141.8 90.2 18.48 3.25 375 21,100 

4 0.29 64.48 141.8 90.2 18.48 3.25 375 18,450 
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3.2.2.2 Reinforcement. Four No. 3 bars were used in the columns to resist the 

combined force due to the axial compression and biaxial bending. The tensile tests for 

No. 3 steel bars were performed with the use of a material testing system (MTS) 

machine. An average yielding stress of 56.9 ksi was identified for the reinforcement with 

a modulus of elasticity of 28,670 ksi. The complete stress-strain behavior of the No. 3 bar 

is shown in Appendix A.  The stirrups consist of 12-gauge steel wires. Six U-shape No. 3 

steel bars were used to reinforce the loading brackets. The detailed steel arrangement can 

be seen in Figure ‎3.1.  

 

 

 

Figure ‎3.1  Steel reinforcement for test columns. 
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Figure ‎3.2  Column configuration. 

3.2.3 Cast and Cure of the Concrete Columns 

To minimize scatter, all specimens followed the same procedures for material mixing, 

casting, and curing. A total of six slender RC columns were cast at the concrete 

laboratory of NJIT. They were divided into four batches. Wooden forms (Figure ‎3.3) and 

steel rebars (Figure ‎3.1 and Figure ‎3.2) were prepared before the concrete was mixed.  

All concrete materials described in the previous section were mixed by a rotary 

mixer. The 4 in. by 8 in. cylinder molds were prepared and lubricated with oil before the 

concrete was poured. The mixing sequence used was as follows: Firstly, the coarse and 

fine aggregates were loaded into the mixer and dry mixed for 2 to 3 minutes. Next, the 
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cement and silica fume were added and mixed for another 1 to 2 minutes. Then, 80% of 

the water was added to the cementitious material. The remainder of the water was first 

mixed with the superplacticizers and later was added to the cementitious material over a 2 

minute period to form a uniform mixture. After all the materials were added, the small 

rotary mixer continued mixing for a few minutes until a homogeneous mixture was 

achieved. The resulting mixture was then molded into the wooden forms and 4 in. by 8 

in. cylindrical specimens. 

During casting, both electrical (table vibrator) and manual (steel bar) methods 

were used to compact the specimens. All specimens were demolded after 48 hours and 

cured in a standard curing room to achieve the desired strength. For each batch of 

concrete, multiple 4 in. × 8 in. cylinders were made at the same time to aid in the 

determination of the compressive strength of the concrete columns. The average stresses 

for the cylinders are listed in Table ‎3.1. 

Table ‎3.2  Test Outline of Column Specimens 

Specimen 𝑓𝑐
′ (psi) Main Bars 

ex (ey) 

(in.) 
l (in.) 

C1 7,250 4#3 1.5 48 

C2 18,450 4#3 1.5 48 

C3 21,100 4#3 1.5 48 

C4 18,100 4#3 1.5 48 

C5 18,450 4#3 1.0 48 

C6 21,100 4#3 1.0 48 

Where 𝑓𝑐
′ = Compressive strength of concrete. 

ex, ey = Eccentricity along X-Axis and Y-Axis, respectively. 

l = Total length of column specimens. 
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Figure ‎3.3  Wooden forms used for the test columns. 

3.2.4 Experimental Setup 

The column tests were performed using an electro-hydraulic closed loop servo controlled 

MTS under stroke control. To obtain the complete ascending and descending branches of 

the biaxial load-deflection curve, loads were applied at very small increments of 0.05 in. 

per minute for stroke control.  

In order to achieve the desired hinged end conditions, steel ball bearings were 

utilized at each end of the column. The desired eccentricities were obtained by moving 

the ball bearings to the proper positions relative to the center of the cross section. The 

column specimens were adjusted so that the centerline of the end bearing facing the load 

cell coincided with its center line. Subsequently, a small load was applied to keep the 

specimens in place. A typical test setup is shown in Figure ‎3.4.  
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Three linear voltage differential transducers (LVDT) were used to measure the 

deflections at mid-height of the column specimens in both X, Y, and 45° (respect to X 

and Y) directions. The LVDTs were connected to a computerized data acquiring system 

that was connected directly to the MTS machine. Then the deflections from LVDTs as 

well as axial load from the load cell were recorded to the computer at a rate of 10 times 

per second until the specimen failed. The LVDTs needed to be adjusted during the test 

process because the deflection in each direction could potentially exceed the limit of the 

reading range. Six mechanical strain gauges were provided to measure the vertical strain 

at the central portion of the column so that the average curvature in both the X and Y 

directions at mid-height could be attained. Figure ‎3.5 shows the arrangement of 

mechanical gauges for the present slender column specimens. At maximum and 

minimum of every loading cycle, the strain values for each pair of mechanical gauges 

were recorded. If the concrete failed outside the 6 in. measured range, further 

measurements were not recorded. Measurements were not recorded in these cases 

because the plastic hinge rotated outside of the measured areas at mid-height. 
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Figure ‎3.4  Test setup. 
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Figure ‎3.5  Arrangement of mechanical strain gauges. 
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3.2.5 Test Procedures 

3.2.5.1 Column C1. The first column tested was column C1. The eccentricities in both 

the X and Y directions for this column were 1.5 inches. When the load reached 8.1 kips, 

the first flexural crack occurred at the mid-height of the column. As the load increased, 

more cracks developed around the initial crack and at the top of the column. The plastic 

hinge occurred almost at the mid-height. When the load reached 11.1 kips, the load 

decreased as the deflection began to increase. When the load decreased to approximately 

9 kips, the specimen failed due to crushing of the concrete in the compression zone 

(Figure ‎3.6). The test was terminated at a vertical displacement of 0.6 inches.  

 
Column C1 at failure 

  
Tension face Compression face 

Figure ‎3.6  Failure of column C1.  
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3.2.5.2 Column C2. Column C2 was tested with eccentricities in both the X and Y 

directions equal to 1.5 inches. When the load reached approximately 12 kips, the initial 

crack occurred on the tension face around the center of the column. Another three 

flexural cracks developed near the top of the column as the load increased (Figure ‎3.7). 

The plastic hinge occurred at the top of the column. The load started to decrease after it 

reached 15.5 kips. There was no obvious buckling of the steel reinforcing bars. The test 

was terminated at a vertical displacement of 0.5 inches. 

 
Column C2 at failure 

  
Tension face Compression face 

Figure ‎3.7  Failure of column C2.  



62 

 

3.2.5.3 Column C3. The next tested column was C3. The eccentricities in both the X 

and Y directions were 1.5 inches. The initial crack occurred on the tension face at the 

mid-height of the column at a load of 12.5 kips. As the load increased, more cracks 

developed around the initial crack which caused the formation of the plastic hinge almost 

at the mid-height. When the load reached 12.8 kips, the load started to decrease as the 

deflection started to increase. When the load decreased to approximately 11 kips, the 

specimen failed due to crushing of the concrete in the compression zone (Figure ‎3.8). 

The test was terminated at a vertical displacement of 0.6 inches. 

 
Column C3 at failure 

  
Tension face Compression face 

Figure ‎3.8  Failure of column C3.  
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3.2.5.4 Column C4. The next column was C4. The eccentricities in both the X and Y 

directions were 1.5 inches. When the load reached approximately 12.5 kips, the initial 

crack occurred on the tension face, slightly below the mid-height of the column. As the 

load increased, more cracks developed which caused the formation of a plastic hinge 

below the lower mechanical gages. When the load reached 15.2 kips, the load started to 

decrease as the deflection started to increase. When the load decreased to approximately 

10 kips, the specimen failed due to crushing of the concrete in the compression zone 

(Figure ‎3.9) and buckling of one of the reinforcing bars. The test was terminated at a 

vertical displacement of 0.6 inches. 

 
Column C4 at failure 

  
Tension face Compression face 

Figure ‎3.9  Failure of column C4.  
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3.2.5.5 Column C5. The next column was C5. The eccentricities in both the X and Y 

directions were 1.0 inch. Initial cracks occurred on the tension face below the mid-height 

of the column when the load reached approximately 12.8 kips. As the load increased, 

additional cracks developed between the lower mechanical gages and the foot of the 

column. When the load reached 22.7 kips, the load started to decrease as the deflection 

started to increase. When the load decreased to approximately 14 kips, the specimen 

failed due to crushing of the concrete in the compression zone (Figure ‎3.10). The 

increase in the displacement resulted in buckling of the one of the reinforcing bars. The 

test was terminated at a vertical displacement of 0.4 inches. 

 
Column C5 at failure 

  
Tension face Compression face 

Figure ‎3.10  Failure of column C5.  
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3.2.5.6 Column C6. The last column was C6. The eccentricities in both the X and Y 

directions were 1.0 inch for this column. In this test, when load reached approximately 15 

kips, initial cracks occurred on the tension face above the upper mechanical gages. As the 

load increased, more cracks developed at this location. The load started to decrease as the 

deflection started to increase following a maximum axial load of 23.8 kips. The column 

specimen failed due to crushing of the concrete in the compression zone (Figure ‎3.11) 

and buckling of one of the reinforcing bars. The test was terminated at a vertical 

displacement of 0.4 inches. 

 
Column C6 at failure 

  
Tension face Compression face 

Figure ‎3.11  Failure of column C6.  
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Table ‎3.3  Condition of Column Specimens at Failure 

Specimen Location of Plastic Hinge 

Exposed 

Steel 

Bars 

Buckled 

Bars 

C1 Mid-height Yes None 

C2 Below the top bracket None None 

C3 Mid-height Yes None 

C4 Below the lower mechanical gauges Yes Yes 

C5 Below the lower mechanical gauges Yes Yes 

C6 Above the upper mechanical gauges Yes Yes 

 

 

 
(From right to left: C1 to C6) 

Figure ‎3.12  Final conditions of column specimens.  
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3.3 Results and Discussions 

3.3.1 Analysis of Test Results 

Six test columns (C1 to C6) are discussed in this research study. The applied load, P, can 

be determined directly from both the MTS system and the data acquisition system. The 

vertical and horizontal (dx, dy, and ddiagonal) deflections were also recorded directly from 

the data acquisition system that was connected to three LVDTs. Load-vertical deflection 

curves and load-deflection curves for columns C1 to C6 are presented in Appendix C. 

Since the eccentricities used were exactly the same for both the X and Y directions, the 

experimental results for both directions are expected to be similar. The minor differences 

in the results are attributed to measurement errors during testing. Therefore, only the 

results of one direction are discussed in this chapter. As an illustration, the load-vertical 

deflection curve and load-deflection curve for both the X and Y directions for column C5 

are depicted in Figures 3.13 and 3.14, respectively.  

The experimental values of bending moments in the X and Y directions, Mx and 

My, were computed using the experimental axial load values and the load eccentricities, 

(ex and ey) which were corrected for the mid-height deflections of the column (i.e., Mx = P 

(ey + dy) and My = P (ex + dx)). The experimental ultimate load and moment capacities for 

all six columns are summarized in Table ‎3.4. 

The longitudinal strain, ɛ, can be calculated by ɛ = ( li - l0 ) / l0, when l0 represents 

the initial distance between mechanical strain gauges at zero loading and li represents the 

distance between the mechanical strain gauges at each loading. At present study, l0 = 6 in 

(152mm) as shown in Figure ‎3.5. After determining the strain from the mechanical strain 

gauge points located at 1, 2, and 3 for the X direction and at 4, 5, and 6 for the Y 
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direction (Figure ‎3.5), the strain-position curves can be drawn. These curves are shown 

in Appendix B. Figure ‎3.15 shows a typical strain-position curve for column C5 in the X 

direction. The slope of the strain-position curve can be used to calculate its corresponding 

curvature. Usually, a strain distribution curve is linear. If the strain distribution curve is 

not linear, a straight line by a linear regression method is used to compute its curvature 

value. 

 

 

Figure ‎3.13  Typical load-vertical deflection curve for column C5. 
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Figure ‎3.14  Typical load-deflection curves for column C5. 

 

 
Figure ‎3.15  Typical strain-position curve for column C5 in X direction. 
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Table ‎3.4  Experimental Results of Test Columns 

Tested 

Column 

Ultimate 

Load P 

(kips) 

Ultimate 

Moment Mx 

(My) (lb-in) 

Corresponding 

Deflection dx 

(dy) (in) 

C1 11,100 21,809 0.46 

C2 15,450 30,915 0.50 

C3 12,846 26,348 0.55 

C4 15,192 28,299 0.36 

C5 22,652 29,549 0.30 

C6 23,765 31,813 0.34 
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CHAPTER 4 

ANALYSIS OF RC CONCRETE COLUMNS UNDER AXIAL LOADING WITH 

BIDIRECTIONAL ECCENTRICITIES 

4.1 Introduction 

A numerical method was developed to study the behavior of bi-axially loaded slender RC 

columns, made of NSC and HSC, under monotonic and cyclic loads. This numerical 

procedure followed the study by Bahn (1994). In this approach, both material non-

linearity (concrete) and geometrical non-linearity were considered. The latest concrete 

time-dependent models were also adopted. It is a generalized method in terms of loading 

history, column supports, material (concrete) stress-strain behavior and shapes of column 

sections (unchanged through length of column). Except for basic dimensions, loading 

history, support conditions, and material properties, no further manually input data are 

needed. 

4.2 Analysis Strategies 

4.2.1 Description of Column Analysis 

The numerical procedures of the previous studies by Wang & Hsu (1990) and Tsao 

(1991) are based on the incremental deflection approach, where a deflection is assumed 

to be in a specific direction. This analytical procedure was effective only to increase the 

strain at the divided areas of steel and concrete in the column section under 

monotonically increasing load. The unloading in curvatures was not considered because 

the analytical formulations were expressed in terms of cross-sectional stiffness, strain at 

the coordinate origin, and deflection along the column. The convergencies were only 

confirmed for the strain at the coordinate origin, axial force and deflection. After the 
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deflections were determined, the corresponding curvatures were calculated from the finite 

difference method. Furthermore, the convergence criteria were difficult to reach the 

desired accuracy due to the assumption of increasing deflection for the subsequent stage 

of analysis. Thus, it can be concluded that a simple modification of the previous 

numerical procedure cannot handle the different loading paths needed in the present 

study. 

Variations in loading can affect the stiffness and strength of the RC column, 

especially when loading and unloading occur. In addition, the axial load acting on a 

column section influences the flexural stiffness, the moment capacity, and the ductility of 

RC columns. 

A finite segment method of analysis is extended here to predict the behavior of 

slender RC columns under cyclic loading with bidirectional eccentricities. The numerical 

procedure is designed to consider increasing or decreasing of the strain at discrete 

elements in the column under cyclic loading. The rate of convergence of the analysis 

depends on the proposed values of deflection and strain. The convergence of iterative 

procedures can be improved through either the interpolation or extrapolation method 

which utilizes the previous solutions. 

The load-deflection curve, moment-curvature curve and ultimate load are 

predicted through the developed computer program. The computer model developed for 

the present study has the following capabilities: 

1. General cross sections are possible to enable consideration of any arbitrary 

shapes. 

 

2. Complex loading conditions, including cyclic compression with bidirectional 

eccentricities, can be considered. 
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3. Both material and geometrical nonlinearities can be considered. 

4. Various end conditions can be considered, however, in this case, both ends of the 

column are assumed to be pinned-ended. 

 

4.2.2 Idealized Stress-Strain Relations for Column Analysis 

Once the strain in any discrete element is proposed, the corresponding stress can be 

obtained provided idealized stress-strain relationships are available. Therefore, a 

complete stress-strain curve for each column material is necessary for analysis. 

Generally, the complexity of the finite segment method in column analysis is a direct 

function of the material stress-strain relationships. The secant stiffness is defined as the 

secant slope of the stress-strain curve for a given strain. Here, the secant stiffness is used 

to study the column behavior for both ascending and descending branches. It should be 

noted that, in the case of stress computation, the stiffness must be derived by considering 

the strain history at certain elements along either the loading or unloading paths in the 

stress-strain curve. 

To determine a reasonable result, the element stiffness should be updated 

whenever an event occurs at an individual element. This, however, can be 

computationally unfeasible especially if a highly complex material model is adopted. For 

this reason, material models should be idealized to be as simple as possible. 

4.2.2.1 Stress-Strain Relationship for Concrete. An idealized concrete model should 

be able to represent the physical characteristics of stiffness on the envelope curve. In 

addition, the definition of stiffness on the unloading or reloading stress-strain paths must 

be reasonably established. Since the slope change of the unloading curve varies in the 

range from the envelope unloading point to the zero stress level, the stiffness cannot be 

adequately defined on the unloading stress-strain path. It can be concluded that the 
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stiffness on the unloading or reloading stress-strain paths is defined primarily by the 

slope on the reloading path of the cyclic stress-strain curve. The change in the slope of 

the reloading stress path is more stable than the change in the slope of unloading path. 

In this study, a hysteretic stress-strain behavior of HSC under reversed cyclic 

loading by Konstantinidis, Kappos, and Izzuddin (2007) was employed to describe the 

cyclic stress-strain relationships for concrete. The envelope curve in this stress-strain 

behavior was derived from the results of uniaxial, monotonic, compression loading tests 

of 108 large-scale specimens. This model explicitly accounts for the effects of concrete 

compressive strength, the volumetric ratio of transverse reinforcement, the yield strength 

of the ties, tie spacing, and tie pattern. Comparisons with test results show that the 

proposed model provides a good fit for a wide range of experimentally established 

hysteresis loops. 

Previous experimental investigations have concluded that the envelope (known 

also as a skeleton) stress-strain curve of NSC under repeated or cyclic compressive 

loading nearly coincides with the stress-strain response under uniaxial loading. A similar 

conclusion has also been drawn for HSC columns confined with high strength steel. 

A three-branch stress-strain curve (Figure ‎4.1) to model the response of HSC 

under uniaxial loading forms an envelope curve to the cyclic loading stress–strain 

response, both for confined and unconfined HSC: 
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Figure ‎4.1  Envelope curves for unconfined and confined HSC, Konstantinidis, 

Kappos, and Izzuddin (2007).  

 

Ascending branch: 0 < 𝜀𝑐 ≤ 𝜀𝑐𝑐𝑙 ,   𝜎𝑐 =
𝑓𝑐𝑐

𝜀𝑐
𝜀𝑐𝑙𝑙

 
𝐸𝑐

𝐸𝑐 − 𝐸𝑐𝑙

𝐸𝑐
𝐸𝑐 − 𝐸𝑐𝑙

− 1 + (
𝜀𝑐
𝜀𝑐𝑙𝑙
)

𝐸𝑐
𝐸𝑐−𝐸𝑐𝑙

 (‎4.1) 

 

Descending branch: 𝜀𝑐 > 𝜀𝑐𝑙𝑙 ,   𝜎𝑐 = 𝑓𝑐𝑐 [1 − 0.5
𝜀𝑐 − 𝜀𝑐𝑙𝑙

𝜀0.50𝑓𝑐𝑐 − 𝜀𝑐𝑙𝑙
] ≥ 0.3𝑓𝑐𝑐  (‎4.2) 

 

where 𝜀𝑐 is the axial concrete strain, 𝜎𝑐 is the concrete stress, 𝜀𝑐𝑙𝑙 is the axial concrete 

strain at peak stress of the confined concrete, 𝑓𝑐𝑐  is the maximum compressive strength of 

the concrete, 𝐸𝑐  is the tangent modulus of elasticity of concrete, 𝐸𝑐𝑙 is the secant modulus 

of elasticity, and 𝜀0.50𝑓𝑐𝑐 is the strain at which the stress in the confined concrete drops to 

0.5𝑓𝑐𝑐. The modulus of elasticity of concrete is given by the following relationship: 

 
𝐸𝑐 =  22,000(

𝑓𝑐
10
)
0.3

 (MPa) (‎4.3) 
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Whereas the secant modulus of elasticity at peak stress is 

  
𝐸𝑐𝑙 =

𝑓𝑐𝑐
𝜀𝑐𝑐𝑙

 (MPa) (‎4.4) 

In the case of confined HSC members, the peak stress is given by the following 

equation, which assumes that the compressive strength in a full size member is 15% 

lower than the corresponding strength of a shorter test cylinder. 

 
𝑓𝑐𝑐 = 0.85𝑓𝑐 + 10.3(𝛼𝜌𝑤𝑓𝑦𝑤)

0.4 (MPa) (‎4.5) 

This assumption is a result of the difference in size and shape, less effective 

compaction, water segregation, etc., which more commonly occur in a full size member. 

The maximum stress for unconfined HSC is assumed to be that corresponding to the 

strength specified in standard sized cylinders (i.e., 150×300 mm). In equation (‎4.5), 𝛼 is a 

factor which takes into account the effectiveness of confinement, and which is 

represented by the following formula:  

 𝛼 = (1 −
∑𝑏𝑖

2

6 𝑏𝑐  𝑑𝑐
) (1 −

𝑠

2 𝑏𝑐  
) (1 −

𝑠

2 𝑑𝑐  
) (‎4.6) 

where 𝑏𝑖  = center-to-center distance between laterally supported longitudinal bars; 𝑏𝑐 =

 center-to-center width of the perimeter tie; 𝑑𝑐 = center-to-center height of the perimeter 

tie; and 𝑠 = spacing between the ties. The strain at peak stress of the confined HSC (𝜀𝑐𝑙𝑙) 

is assumed to be given by 

 
𝜀𝑐𝑙𝑙
𝜀𝑐𝑙

=  1 + 32.8(𝛼𝜔𝑤)
1.9 (‎4.7) 
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where the mechanical ratio of transverse reinforcement is given by 

 𝜔𝑤 = 
𝜌𝑤  𝑓𝑦𝑤
𝑓𝑐

 (‎4.8) 

and the strain at peak stress for unconfined HSC (𝜀𝑐𝑙) is given by 

 𝜀𝑐𝑙 = 
0.70 𝑓𝑐

0.31

1,000
 (‎4.9) 

The strain corresponding to a drop in maximum stress by 50%, which determines 

the slope of the descending branch, is given by Equation (‎4.10) for confined HSC 

 𝜀0.50𝑓𝑐𝑐 =  𝜀𝑐𝑙 + 0.091(𝛼𝜔𝑤)
0.8 (‎4.10) 

whereas for unconfined concrete, Equation (‎4.11) is adopted 

 𝜀0.50𝑓𝑐 = [
𝐸𝑐
2𝐸𝑐𝑙

+ 1 +√(
𝐸𝑐
2𝐸𝑐𝑙

+ 1)
2

− 2 ] (‎4.11) 

Figure ‎4.1 illustrates the envelope curves for confined and unconfined HSC. The 

“plastic” strain 𝜀𝑝𝑙, better referred to (in the case of concrete) as the non-recoverable 

strain, is the strain corresponding to zero stress along the compressive unloading or 

reloading curves reflecting the accumulation of damage in a member and defining the 

strength and stiffness degradation due to cyclic loading.  

The response of concrete is essentially elastic when unloading occurs within the 

range of strains from the origin up to the strain corresponding to a stress equal to 35% of 

maximum strength (𝜀0.35𝑓𝑐𝑐) along the ascending branch (Figure ‎4.2). Therefore, plastic 

strains can be obtained by 



78 

 

 

 

 0 ≤ 𝜀𝑢𝑛 ≤ 𝜀0.35𝑓𝑐𝑐    , 𝜀𝑝𝑙 =  𝜀𝑢𝑛 −
𝜎𝑢𝑛
𝐸𝑐

 (‎4.12) 

 

 

Figure ‎4.2  Plastic strain in the low strain range. 
Source: Konstantinidis, Kappos, & Izzuddin (2007). 

Figure ‎4.3 shows the proposal for the determination of plastic strain for the 

intermediate strain range, i.e., for 𝜀0.35𝑓𝑐𝑐 ≤ 𝜀𝑢𝑛 ≤ 2.5 𝜀𝑐𝑐𝑙. It is seen from the figure that 

point (𝜀𝑝𝑙  , 0) lies on the line connecting the reversal point from the envelope (𝜀𝑢𝑛 , 𝜎𝑢𝑛) 

and the focal point (𝜀𝑎 , 𝜎𝑓). In addition, the focal point lies on the line passing through the 

origin with a slope equal to the tangent modulus (𝐸𝑐). By combining the equations for the 

two lines, plastic strain can be specified as follows: 

 
𝜀0.35𝑓𝑐𝑐 < 𝜀𝑢𝑛   , 𝜀𝑝𝑙 = 𝜀𝑢𝑛 −

𝜎𝑢𝑛(𝜀𝑢𝑛 + 𝜀𝑎)

𝜎𝑢𝑛 + 𝐸𝑐  𝜀𝑎
 (‎4.13) 

where 𝜀𝑎 is given by the following equation: 

 𝜀𝑎 =  𝑎√𝜀𝑢𝑛𝜀𝑐𝑐𝑙 (‎4.14) 

where 𝑎 = maximum value of the two ratios presented in Equation 4.15, which, in the 

absence of more refined values, are also adopted for HSC. 
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Figure ‎4.3  Plastic strain in the intermediate and high-strain range. 
Source: Konstantinidis, Kappos, & Izzuddin (2007). 

 

 

 

𝑎 =  𝑚𝑎𝑥

{
 

 
𝜀𝑐𝑐𝑙

𝜀𝑐𝑐𝑙 + 𝜀𝑢𝑛
0.09 𝜀𝑢𝑛
𝜀𝑐𝑐𝑙

 (‎4.15) 

The equation describing the unloading branch is a second-degree parabola passing 

through the reversal point from the envelope (𝜀𝑢𝑛 , 𝜎𝑢𝑛) and the current plastic strain point 

(𝜀𝑝𝑙  , 0), as shown in Figure ‎4.3. 

 
𝜎𝑐 = 𝜎𝑢𝑛 (

𝜀𝑐 − 𝜀𝑝𝑙
𝜀𝑢𝑛 − 𝜀𝑝𝑙

)

2

 (‎4.16) 

Reloading is assumed to occur along a straight line passing through the reloading 

point from the unloading curve (𝜀𝑟0, 𝜎𝑟0) and the returning point (𝜀𝑟𝑒, 𝜎𝑟𝑒), which 

coincides with the unloading from the envelope point (𝜀𝑢𝑛 , 𝜎𝑢𝑛). For strains smaller than 

the strain 𝜀𝑢𝑛 at which unloading from the envelope commences, a straight line is fitted 

between the reloading point (𝜀𝑟0, 𝜎𝑟0) and the degrading strength point (𝜀𝑛𝑒𝑤 , 𝜎𝑛𝑒𝑤). For 
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strains larger than 𝜀𝑢𝑛, a straight line is fitted between the reduced strength point 

(𝜀𝑛𝑒𝑤 , 𝜎𝑛𝑒𝑤) and the returning point (𝜀𝑟𝑒, 𝜎𝑟𝑒). The inconvenience of such a formulation 

(i.e., significant increase in computer based computation time when modeling involves a 

large number of elements) and the fact that empirical data used have not been verified for 

HSC, led to simplification of the reloading branch, as illustrated in Figure ‎4.4. 

 

Figure ‎4.4   Reloading branches. 
Source: Konstantinidis, Kappos, & Izzuddin (2007). 

The relationship for tensile concrete stress (𝜎𝑐𝑡), when unloading from a 

compressive branch is given by 

 𝜎𝑐𝑡 =  𝑓𝑐𝑡
′ (1 −

𝜀𝑝𝑙
𝜀𝑐𝑐𝑙

) (‎4.17) 

where 𝑓𝑐𝑡
′  is the tensile concrete strength. If 𝜀𝑝𝑙 > 𝜀𝑐𝑐𝑙 then 𝜎𝑐𝑡 = 0 and when𝜀𝑝𝑙 < 𝜀𝑐𝑐𝑙, 

the stress-strain relation becomes  

 𝜎𝑐 = 𝐸𝑡(𝜀𝑐 − 𝜀𝑝𝑙) (‎4.18) 

where  

 𝐸𝑡 =
𝜎𝑐𝑡
𝜀𝑡

 (‎4.19) 
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𝜀𝑡 =

𝑓𝑐𝑡
′

𝐸𝑐
 

(‎4.20) 

When the tensile strain is exceeded for any corresponding tensile strength, i.e., 

𝜀𝑡  > (𝜀𝑡 − 𝜀𝑝𝑙), cracks open and the tensile strength of the concrete for the subsequent 

loading is assumed to be zero (Figure ‎4.5). 

 

Figure ‎4.5  Deterioration in tensile concrete strength due to prior compression 

loading. 
Source: Konstantinidis, Kappos, & Izzuddin (2007). 

4.2.2.2 Stress-Strain Relationship for Steel. In this study, a kinematic hardening 

model (Bahn (1994)) was employed to describe the cyclic stress-strain relationships for 

steel reinforcement. The elastic range was assumed to be unchanged during strain 

hardening. The center of the elastic region moved along the straight line aa' (see 

Figure ‎4.6). The envelope curve was determined by subjecting the steel reinforcement to 

a tensile test under a monotonically increasing load until failure. The unloading and 

reloading curves follow along a stress-strain path that is generally assumed to be parallel 

to the initial elastic portion of the curve. Thus, it is assumed that no stiffness degradation 

occurs as seen in Figure ‎4.6. 
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Figure ‎4.6  Idealized cyclic stress-strain curve for steel. 
Source: Bahn (1994). 

4.2.3 Extended Finite Segment Method for Analysis 

The original numerical procedures proposed by Tsao (1991) have been modified in this 

Chapter. In this modified computer analysis, the column was considered as a three 

dimensional structure after segmentation. The column section was divided into small 

elements of reinforcement and concrete in order to calculate the cross-sectional stiffness 

at different levels of strain. The analysis was based on the behavior of the cross-section at 

each segment point along the column. The modified computer analysis was based on the 

following assumptions:  

1. Plane sections remain plane before and after bending. 

 

2. There exists a perfect bond between concrete and steel. 

 

3. No twisting occurs and the effects of axial and shear deformation are ignored. 

4. Effects of creep and shrinkage are neglected. 

 

5. There is no initial deflection in the undeformed columns. 

The cross section of any slender column can be divided into several small 

elements as shown in Figure ‎4.7. Using the assumption that plane sections remain plane 
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during bending, the strained plane in the cross-section can be described by the strain at 

the coordinate origin εo, as well as curvatures ϕx, and ϕy about both axes, respectively. 

Thus the strain εk at any element k under combined biaxial bending and axial 

compression is given by [Hsu (1974), Wang and Hsu (1990)]: 

 
0k x k y ky x     (‎4.21) 

where  

εo: strain at the coordinate origin. 

ϕx: curvature produced by bending moment Mx. 

ϕy: curvature produced by bending moment My. 

Mx and My: moment about the x-axis and y-axis, respectively.  

xk and yk: coordinates of the centroid of an element k relative to both principal axes X and 

Y, respectively.  

 

Figure ‎4.7  Cross section and coordinate system. 
Source: Chen, J. (2005). 

For any value of strain εk, a value of the secant modulus of elasticity Esk can be 

found by an idealized stress-strain relationship of the steel reinforcement or concrete 

elements. The equilibrium equations for a in the cross section with n elements subjected 
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to axial load Pc, and bending moments Mxc, and Myc can be expressed in the following 

forms:  

 

1

n

c sk k k

k

P E a


  (‎4.22) 

 

1

n

xc sk k k k

k

M E a y


  (‎4.23) 

 

1

n

yc sk k k k

k

M E a x


  (‎4.24) 

where ak is a small area of a discrete element k where subscript c denotes the calculated 

values in an iteration cycle.  

Considering Equations (‎4.23) and (‎4.24) for calculated moments Mxc, and Myc, the 

formulas are only valid when the areas of divided elements are comparatively small. This 

implies that the mechanical behavior of a unit element should be estimated more 

accurately. Thus, Equations (‎4.25) and (‎4.26) have been used here to reduce an 

accumulation of error when at coarse mesh is used for analyzing the column section. 

 

0

'

1 1

n n

xc sk k k k x sk x k

k k

M E a y E I
 

    (‎4.25) 

 

0

'

1 1

n n

yc sk k k k y sk y k

k k

M E a x E I
 

    (‎4.26) 

where 𝐼𝑥0𝑘
′  and 𝐼𝑦0𝑘

′  are the moments of inertia (second moment) of an element k about 

the elemental centroidal xo and yo axes which are parallel to both reference x and y axes, 

respectively (Figure ‎4.8). 
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Figure ‎4.8  Strain plane of combined biaxial bending and axial load. 
Source: Bahn (1994). 

Substituting Equation (‎4.21) in Equations (‎4.22), (‎4.25), and (‎4.26), one has the 

following matrix form: 

 

 

 

0

0

1 1 1

0

2 '

1 1 1

2 '

1 1 1

n n n

sk k sk k k sk k k

k k k

n n n

sk k k k k x k sk sk k k k x

k k k

yn n n

sk k k sk k k k k k y k sk

k k k

c

xc

yc

E a E a y E a x

E a y a y I E E a x y

E a x

P

M

E a x y a x E

M

I





  

  

  





 
 
    
    

    
    
    

 
 

  

  

  

 (‎4.27) 

and let  

 
11

1

n

sk k

k

C E a


  (‎4.28) 
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12 21

1

n

sk k k

k

C C E a y


   (‎4.29) 

 

13 31

1

n

sk k k

k

C C E a x


   (‎4.30) 

 
 

0

2 '

22

1

n

k k x k sk

k

C a y I E


  (‎4.31) 

 

23 32

1

n

sk k k k

k

C C E a x y


   (‎4.32) 

 
 

0

2 '

33

1

n

k k y k sk

k

C a x I E


   (‎4.33) 

 

For a short column, we can directly use Equation (‎4.27) due to the negligible 

effects of deflection. For a slender column, however, second order effects must be taken 

into account. Let dx and dy represent the deflections of the column in the x and y axis, 

respectively. Equation (‎4.27) becomes: 

 

 

 
 

11 12 13

21 22 23

31 32 33

0c

c y y

c x
y

x

x

P C C C

P e d C C C

C C CP e d





    
      

     
         

 (‎4.34) 

 

The general formula of the graph curvature relates the curvature of the column to 

its lateral displacement derivations: 

  

 
3

221

y

y



 


 (‎4.35) 
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In previous studies, the lateral displacements of the column were assumed to be 

small, so that the total curvature in the two major bending planes could be represented in 

the form of second derivatives of the displacement (𝑦′′ = −∅). In this study, however, 

the first derivative of the displacement in the denominator of the curvature has been 

considered. This results in more accurate results, especially due to the large deflection at 

the center of the column following crack development. 

By defining A and B as functions of y' with respect to y and x directions 

 

 

   
( )

3/2

1
iyi

A y    (‎4.36) 

 
   

( )

3/2

1
ixi

B y    (‎4.37) 

 

Equation (‎4.35) can be written as:  

 

 
y xy A    (‎4.38) 

 
x yy B    (‎4.39) 

 

The finite difference method is hereby introduced to solve the three dimensional 

behavior of columns. As shown in Figure ‎4.9, slender columns have been divided into 

several segments. The fundamental basis of this method is to replace the differential 

equation of the deflection curve by its finite difference approximation, and then to 

algebraically solve the finite difference equations obtained at several segments along the 

column. For the segment (i) with a length of SL: 
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   

 
1 1

( )2

i i

i

y y

y

d d
y

SL

 


  (‎4.40) 

 
   

 
1 1

( )2

i i

ix

x xd d
y

SL

 


  (‎4.41) 

 
     

 

1 1

( )2

2
i i i

i

y y y

y

d d d
y

SL

 
 

  (‎4.42) 

 
     

 

1 1

( )2

2
i i i

i

x x x

x

d d d
y

SL

 
 

  (‎4.43) 

 

Figure ‎4.9  Column divided into n segments. 

Substituting Equations (‎4.38) and (‎4.39) into Equations (‎4.42) and (‎4.43), one has 

the following: 

 
     

   
 

1 1

2

2
i i iy y y

x i

i

d d d

A SL


 
 

   (‎4.44) 
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     

   
 

1 1

2

2
i i i

i

x

i

x x

y

d d d

B SL


 
 

   (‎4.45) 

 

Incorporating Equations (‎4.44) and (‎4.45) into Equation (‎4.34), one has  

 

 

 
 

     

   

     

   

1 1

1 1

11 12 13

2

0

21 22 23

3 33

2

1 32

2

2

i i i

i i i

y

c

c y y

c x x

x x

y

i

i

x

y

P C C C

P e d C C C
d d d

A SL

d d

C

d

B S

C CP e d

L

 

 

 


 
 
 
    
      

     
         

 
 




 






 (‎4.46) 

By expanding and rearranging Equation (‎4.46) for segment (i), it can be written 

as: 

  

   
 

 

 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

11 12 13 12 13 12 13

21 22 23 22 23 22 23

31 32 33 32 3

2

2 33

2

3

2

3

2

2 2

2 2

2 2

i i i i i i i

i i i i i i i

i i i i i i i

c

c y y

c x x

C C C C C C CP

P e d C C C C

SL

SL SL C C C

P e d C C C C C C CSL

     
           
 

 
         

 

 

 

 

 

 

 

 

 

 

 

 

1

1

1

1

0

i

i

i

i

i

i

y

i

i
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x

i

i

i

i

x

y

x

d

A

d

B

d

A

d

B

d

A

d

B









 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
    

(‎4.47) 

    
 

2

c

c y y

c x x

P

P e d

P e d

SL

 
  

  
 

  

(‎4.48) 
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The boundary conditions for the pinned-ended column are 𝑑𝑦(1) = 𝑑𝑥(1) = 0 and 

𝑑𝑦(𝑛+1) = 𝑑𝑥(𝑛+1) = 0. Adding i = 2 to i = n, one has  
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(‎4.51) 

 

For the symmetrical  case, the analysis can  be simplified by letting NC = (n / 2) 

+ 1(where n is the number of column segments and NC is the node number at the middle 

of the column), 𝑑𝑦(𝑁𝐶+1) = 𝑑𝑦(𝑁𝐶−1), 𝑑𝑥(𝑁𝐶+1) = 𝑑𝑥(𝑁𝐶−1), and 𝜀0(𝑁𝐶+1) = 𝜀0(𝑁𝐶−1). 

Equation (‎4.51) can be expressed as the following: 
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(‎4.52) 

Select the deflection 𝑑𝑦(𝑁𝐶)as the control increment for each iteration step and 

interchange 𝑑𝑦(𝑁𝐶)  and 𝑃𝑐 from Equation (‎4.52), thus yielding 
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(‎4.53) 

 

Define vectors F and X and the matrix K: 
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Equation (‎4.52) becomes: 

 

 𝐹 = 𝐾 𝑋 (‎4.57) 

 

 

4.2.4 Incremental Procedure and Flowchart 

In Equation (‎4.57), matrix K and vector F are functions of the displacement vector X due 

to first and second order effects of the slender column and nonlinear constitutive 

relationships of the column materials. An incremental approach using the secant modulus 

was used to solve the member stiffness equation. One reason to adopt the secant-modulus 

approach instead of the tangent-modulus approach is based on the fact that the secant-

modulus approach allows for a more stable computation process and avoids divergence 

due to a small tangent stiffness of the section. In order to determine the entire load-

deflection or moment-curvature curves, displacement or deformation may be chosen as 
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the incremental parameter. The complete, incremental path consists of many steps which 

correspond to individual points in plotting the entire curves (Wang, 1995).  

The large deformation effect was taken into account by incorporating the first 

derivation of the slender column’s lateral deformations into the curvature formula. 

Therefore, vector F and matrix K have to be updated not only for arrays that are affected 

by changes in element strain but also for changes in the segment lateral deformation. 

Thus, a more robust numerical solver was needed for this study than was available via 

previously available computer codes.  

There was a need to develop a forecasting procedure to determine a more 

reasonable proposed starting value for the strain and displacement. Thus, the initial 

values for strain and deformation of the column segments at each step were calculated by 

extrapolation of the results of the previous steps. It should be noted that an inadequate 

difference in the strain components may cause a considerable change in the stress of the 

stress-strain curve. The extrapolated values are likely to be the answers of the next step in 

the iteration, especially when the column is still behaving linearly. In each step, an 

iterative process was repeatedly used until it reached convergence. The convergence was 

checked for three variables at each segment (one strain value and two lateral deformation 

values). Thus, at each iteration there were (3 × 𝑁𝐶) − 1 equations needed in order to 

converge, with a determination of the solution following after convergence of all these 

equations. The differences between the result values and initial assumptions were 

calculated for each iteration. These differences must be smaller than the considered error 

limit. This guaranteed sufficient accuracy of the present computed solution. After 

satisfying the convergence criteria, the load 𝑃𝑐, deflections 𝑑𝑥(𝑖) , 𝑑𝑦(𝑖) and strain at the 



97 

 

 

 

origin 𝜀0(𝑖)  were obtained. The biaxial bending moment 𝑀𝑥(𝑁𝐶)
, 𝑀𝑦(𝑁𝐶)

 at the middle 

segment can be calculated as follows: 

 

 𝑀𝑥(𝑁𝐶)
= 𝑃𝑐  (𝑒𝑦 + 𝑑𝑦(𝑁𝐶)) (‎4.58) 

 𝑀𝑦(𝑁𝐶)
= 𝑃𝑐  (𝑒𝑥 + 𝑑𝑥(𝑁𝐶)) (‎4.59) 

 

In order to deal with loading or reloading and unloading, it is necessary to 

maintain a strain history for all the discrete elements along the column segments. As each 

successive solution is found, the strain in each element should be calculated and 

compared with the latest value in the strain history. If the current magnitude of strain is 

less than the strain history value, the unloading has occurred. If the magnitude of 

calculated strain is greater than the strain history value, the loading has occurred and the 

strain history is replaced by the current strain.  

The incremental procedure was terminated when the strain at the point of extreme 

compressive bar reached the strain that corresponded to crushing of concrete. This was 

based on the assumption that crushing of the concrete at that moment was immediately 

followed by concrete spalling. Subsequently, buckling of the compression reinforcement 

occurred in a region where the concrete had spalled.  

The flowchart of the present computational process used for RC slender columns 

is shown in Appendix E. 

4.2.5 Accuracy and Convergence 

Numerical solutions are approximate, thus their accuracy and convergence must be 

studied thoroughly. There are several possibilities that may cause computational errors. 
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Some of them affect the results very slightly and may be ignored. But some of these 

errors significantly affect the results and must be taken into account in the model. 

Modeling errors refer to the difference between a physical system and its mathematical 

model. It should be noted that, due to the small change of strain and deformation in this 

study, model components have to be sufficiently small in order to satisfy convergence 

criteria. The present slender RC column model was established based on assumptions 

given in Section ‎4.2.3. Previous studies from many researchers have shown that the errors 

due to these assumptions are minor and can be ignored. Therefore, discretization of the 

cross section and along the column represents the major sources of computational errors.  

Errors can arise from the idealization of the cross section into elements in which 

the stress distribution pattern is approximately assumed. This error can be reduced by 

increasing the number of elements in the cross section.  

Analysis of a slender column involves first and second order effects, so that the 

column has to be divided into finite segments for analysis. Accuracy can be improved as 

more segments are introduced to model the column.  

Two reinforced concrete loading brackets, monolithic with the column and 

heavily reinforced to prevent premature failure, were provided at each end of the tested 

columns to assist with the application of biaxially eccentric loads. The effect of these 

brackets on the behavior of slender column was neglected in the present computer 

analysis. 

In general, the present proposed procedures converge rapidly, especially where 

solutions being sought are in the ascending branch of load-deformation curve. However, 

there were occasions where the determinant of the matrix K approached zero which 
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caused numerical problems in determining the vector X. This was more likely to occur at 

the instance in which loading changed to unloading or vice versa. The determinant of the 

matrix K was calculated after this matrix was assembled in each iteration in the 

developed computer code. If this value was close to zero, new values for the strain and 

deformation components were considered. Another issue was that the number of 

iterations were not initially sufficient for some steps. As a solution to this problem, the 

steps were divided into smaller substeps to assure convergence. 
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4.3 Procedure of Numerical Analysis 

The present computer program was written in MATLAB. This software utilizes a high-

level programming language which is used by scientists and engineers worldwide. The 

developed computer model consisted of a main routine and two subroutines for concrete 

and steel stress-strain behavior. 

The input data was created in an Excel file. This simplified changes in geometry 

and material properties values. The code then wrote the results of the analysis to a few 

output files. The analysis procedure is described in detail below: 

1. Define all the variables used in the code. 

 

2. Read the input file and save all the input values to corresponding variables. 

 

3. Generate the coordinates and areas of discrete elements for each segment point 

along the column. 

 

4. Estimate the initial deformations and strain of each segment point based on 

incremental deformation. 

 

5. Calculate the first and second derivations of deformation with respect to each X 

and Y axes.  

 

6. Calculate each elements strain based on the segments strain and curvatures. 

 

7. Find element stresses and secant modulus corresponding to the calculated strains 

by calling the concrete and steel stress-strain behavior subroutines. 

 

8. Calculate arrays of matrices C, J, and H. 

 

9. Assemble matrix K and vector F. 

 

10. Solve for vector X. 

 

11. Calculate differences (errors) between the assumed and solved values of strains 

and components of deformation for each segment point. 

 

12. Proceed to stage 13 if the calculated errors are less than the maximum permitted 

error; otherwise perform another iteration starting at stage 6 and using recently 

solved values of strains and components of deformation.  
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13. Save strain, stress, components of deformation, Pc, Mx, and My for this step. 

 

14. Assume the saved values as initial values of the next stage and proceed to stage 5. 
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4.4 Comparison of Experimental and Analytical Results 

In this section, the validity of the developed computer model is confirmed by the 

comparison with the experimental results of the columns for the present study. Load-

deflection and moment-curvature curves were computed using the proposed computer 

program. Based on the analysis results from Bahn (1994) and Tsao (1991), the number of 

segments selected only had a slight influence on the stress-strain curve of the slender 

column. They suggested that a column with eight segments would have the most 

satisfactory results. Therefore, a total of 16 segments along the column were used in this 

program. In previous studies, cross sections were divided into 64 members. In this 

computer code, however, 100 elements in the cross section were used. The representative 

stress in each element has been based upon the stress at the center of that element. Thus, 

a section with more elements resulted in higher accuracy due to the nonlinearity of the 

stress-strain behavior of the involved materials. Figure ‎4.10 shows a general cross 

section of the slender column for computer analysis.   

 

Figure ‎4.10  Cross section of slender column for computer analysis. 
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Figure ‎4.11  Comparison of load-vertical deflection curves for column C6. 

 

Figure ‎4.12  Comparison of load-deflection curves in the X-direction for column 

C6. 
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Figure ‎4.13  Comparison of load-deflection curves in the Y-direction for column 

C6. 

 

Figure ‎4.14  Moment-curvature curve in the X-direction for column C6. 
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Figure ‎4.11 to Figure ‎4.14 gives the experimental versus analytical results for a 

typical column specimen (column C6). The comparisons for other specimens are listed in 

Appendix D. From the figures, the predicted curves from the present computer analysis 

are in an excellent agreement with the experimental results. The major difference 

between the experimental and analytical load-displacement graphs occurs at the 

descending branch. This discrepancy may be due to the bond deterioration in the column 

specimens. Additionally, the proposed stress-strain equation for high-strength concrete 

predicted a constant stress (0.3fcc) for strain values higher than the failure strain which 

caused the analytical results to be slightly higher than the experimental results for the 

descending branch. Also, the brittle failure of the column makes the measurement of the 

deflection and curvature a very difficult task after the peak load.  

Four cycles of unloading and reloading have been considered for the present 

column experiments. Two of these cycles were within the linear portion of the column 

behavior which occurred before the peak load. The other two cycles occurred after the 

peak load. In the analysis, however, only three cycles were induced due to the fact that all 

the concrete elements surrounding the compression rebar crushed prior to the last cycle of 

loading-reloading. This is the criterion that indicates the failure of the column since the 

compression rebar begins to buckle at this point. The buckling of the compression rebar 

was observed in all tested columns.  

The overall trend of experimental results in unloading-reloading cycles was 

satisfactorily simulated. For cycles that occur after the peak load, the unloading-reloading 

lines have a greater slope compared to the experimental results. 
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Tables 4.1 and 4.2 present a comparison of maximum loads and moments 

between the experimental and analytical results. The comparison shows that the proposed 

analysis closely predicts the experimental maximum loads. The predicted ultimate loads 

were essentially equal to the experimental values with a 4% tolerance. The tolerance for 

the maximum predicted moments was 6%. It should be mentioned that the theoretical 

values of the maximum moments which were obtained through analysis need not 

necessarily be equal to the ultimate load due to second order effects. Therefore, one can 

conclude that the proposed computer analysis is valid and effective in analyzing high-

strength reinforce concrete columns under combined cyclic axial loading with biaxial 

bending. 
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Table ‎4.1  Maximum Axial Load and Corresponding Deflection Results  

Tested Column 

Experimental Analytical 

P Exp. / 

PAna. P 

(lb) 

dx (dy) 

(in) 

P 

(lb) 

dx (dy) 

(in) 

C1 11,100 0.46 10,659 0.40 1.04 

C2 15,450 0.50 14,931 0.43 1.03 

C3 12,846 0.52 15,688 0.47 0.82 

C4 15,192 0.36 14,832 0.43 1.02 

C5 22,652 0.31 22,639 0.37 1.00 

C6 22,765 0.34 22,783 0.38 1.00 

 

Table ‎4.2  Maximum Moment Results 

Tested Column 

Experimental Analytical 

M Exp. / MAna. 
Mx (My)  

(lb.in) 

Mx (My)  

(lb.in) 

C1 21,809 20,485 1.06 

C2 30,915 29,118 1.06 

C3 26,348 30,820 0.85 

C4 28,299 28,910 0.98 

C5 29,549 31,209 0.95 

C6 31,813 33,082 0.96 
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CHAPTER 5 

CONCLUSION 

 

A review of literature indicated that the behavior of CFRP strengthened concrete columns 

under cyclic loading had not been the subject of any previous work. Monotonic axial load 

with unidirectional eccentricity had been applied to predict the behavior of high-strength 

concrete columns in previous studies. The analysis of such columns under cyclic axial 

load and biaxial bending therefore needed to be carried out. 

A simplified method was introduced to study the behavior of concrete columns 

with and without CFRP jackets under constant axial load and variable lateral load. The 

lateral load was applied both monotonically and cyclically. A computer code was 

developed to produce the moment-curvature diagram of any arbitrary section and which 

accounted for the nonlinear stress-strain relationship of concrete. The code assumed a 

bilinear behavior for reinforcing steel. The design-oriented stress-strain model for FRP-

confined concrete by Teng, Jiang, Lam, and Luo (2009) was selected for use in this 

investigation. This model captures all the main characteristics of the stress-strain 

behavior of concrete confined by different types of FRP. Important factors including the 

actual hoop strains in FRP jackets at rupture, the sufficiency of FRP confinement for a 

significant strength enhancement, and the effect of jacket stiffness on the ultimate axial 

strain were examined and resolved in this model. Moment-curvature graphs of circular 

and rectangular columns tested by Seible, Priestley, Hegemier, and Innamorato (1997) 

have been depicted. These columns were wrapped with variable carbon fiber thicknesses 

along the column height. Moment-curvature graphs for tested columns sections showed 
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that CFRP jackets can increase the flexibility and strength of the column. Sections which 

were retrofitted with thicker layers of CFRP showed a more pronounced enhancement in 

the behavior of the concrete section. Additionally, the moment capacities of jacketed 

columns were increased 48% to 100% when the section was wrapped with 0.4 in-thick 

layer of CFRP. 

Six 4-ft long slender columns were tested under combined axial load and biaxial 

bending. Silica fume was added to the mix to produce high-strength concrete. The 

compressive strength of the concrete in five of the columns was more than 18,000 psi 

while the remaining column was made of concrete with 7,250 psi compressive strength. 

The columns were reinforced with 4 - #3 longitudinal reinforcing bars with 12 gage wire 

stirrups spaced at 3 inches. The tests were performed using an MTS machine under stroke 

control. Steel ball bearings were placed at each end of the columns to simulate a pin-

ended condition. The axial load was applied with the same eccentricities in both the X 

and Y directions. LVDTs were installed to determine the horizontal displacement at mid-

height of the column. Additionally, six mechanical strain gages were mounted at two 

perpendicular sides of the column to measure vertical strains and curvature. The strain 

measurements were performed at the beginning of each loading or unloading ramp. Both 

the load-vertical deflection of the stroke and load-deflection of LVDTs of the specimens 

were recorded in this study. The failure occurred at the mid-height of the column due to 

concrete crushing and subsequent exposure and buckling of the longitudinal reinforcing 

bars.  

A finite segment method of analysis was also developed to predict the behavior of 

RC slender columns under cyclic loading with bidirectional eccentricities. The 
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computational method considered the nonlinear behavior of the materials and included 

the second order effects due to the additional eccentricity of the applied axial load when 

the columns deformed laterally. In this study, a hysteretic stress-strain behavior of high-

strength concrete (HSC) under reversed cyclic loading by Konstantinidis, Kappos, and 

Izzuddin (2007) was employed in order to describe the cyclic stress-strain relationships 

for concrete. This model explicitly accounted for the effects of concrete compressive 

strength, volumetric ratio of transverse reinforcement, yield strength of ties, tie spacing, 

and tie pattern. The envelope stress-strain curve of HSC under repeated or cyclic 

compressive loading nearly coincided with the stress-strain response under uniaxial 

loading. Thus, this computer code can be readily used for analysis of HSC columns under 

monotonic load as well. A kinematic hardening model was employed to describe the 

cyclic stress-strain relationships for steel reinforcement. Geometrical non-linearity was 

more accurately modeled by taking into account the first derivation of the column 

deflection in the curvature formula (Equation 4.35).  

Compared to the actual experimental results, the proposed computer analysis was 

reasonably accurate in predicting the actual load-deformation behavior of the HSC 

slender column under combined axial loading and biaxial bending. Both the ascending 

and descending branches of the analytical curves have achieved a satisfactory agreement 

with the experimental results. It can be concluded that the proposed computer analysis is 

valid and can be used in practical engineering designs. 
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APPENDIX A 

STRESS-STRAIN CURVES OF STEEL BARS 

In Appendix A, each figure presents the experimental tensile stress-strain curves of steel 

bars used in this research. A total of three tests were conducted in the NJIT Structural 

Laboratory. 
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Figure A.1  Stress-Strain curve of No. 3 bar (test1). 

 

 

Figure A.2  Stress-Strain curve of No. 3 bar (test2).  
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Figure A.3  Stress-Strain curve of No. 3 bar (test3). 
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APPENDIX B 

STRAIN-POSITION CURVES FOR COLUMN SPECIMENS 

In Appendix B, Figures B.1-B.12 present the experimental strain-position curves for the 

concrete column specimens. 
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Figure B.1  Strain-position curve for control column C1 in the X direction. 

 

Figure B.2  Strain-position curve for control column C1 in the Y direction.  
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Figure B.3  Strain-position curve for control column C2 in the X direction. 

 

 

Figure B.4  Strain-position curve for control column C2 in the Y direction. 
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Figure B.5  Strain-position curve for control column C3 in the X direction. 

 

 

Figure B.6  Strain-position curve for control column C3 in the Y direction.
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Figure B.7  Strain-position curve for control column C4 in the X direction. 

 

 

Figure B.8  Strain-position curve for control column C4 in the Y direction. 
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Figure B.9  Strain-position curve for control column C5 in the X direction. 

 

 

Figure B.10  Strain-position curve for control column C5 in the Y direction. 
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Figure B.11  Strain-position curve for control column C6 in the X direction. 

 

 

Figure B.12  Strain-position curve for control column C6 in the Y direction. 
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APPENDIX C 

LOAD-DEFLECTION CURVES OF COLUMN SPECIMENS  

In Appendix C, Figures C.1-C.12 present the experimental load-deflection curves of the 

concrete column specimens. 
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Figure C.1  Experimental load-vertical deflection for column C1. 

 

Figure C.2  Experimental load-vertical deflection for column C2. 
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Figure C.3  Experimental load-vertical deflection for column C3. 

 

Figure C.4  Experimental load-vertical deflection for column C4. 
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Figure C.5  Experimental load-vertical deflection for column C5. 

 

Figure C.6  Experimental load-vertical deflection for column C6. 
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Figure C.7  Experimental load-deflection in the X direction for column C1. 

 

Figure C.8  Experimental load-deflection in the X direction for column C2. 
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Figure C.9  Experimental load-deflection in the X direction for column C3. 

 

Figure C.10  Experimental load-deflection in the X direction for column C4. 
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Figure C.11  Experimental load-deflection in the X direction for column C5. 

 

Figure C.12  Experimental load-deflection in the X direction for column C6. 
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APPENDIX D 

ANALYTICAL LOAD-DEFLECTION AND MOMENT-CURVATURE CURVES 

In Appendix D, Figures D.1-D.18 present the analytical load-deflection and moment-

curvature curves of the concrete column specimens. Figures D.19-D.33 compare the 

experimental results to the results computed from the proposed computer program.  
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Figure D.1  Analytical load-vertical deflection for column C1. 

 

Figure D.2  Analytical load-vertical deflection for column C2. 
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Figure D.3  Analytical load-vertical deflection for column C3. 

 

Figure D.4  Analytical load-vertical deflection for column C4. 
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Figure D.5  Analytical load-vertical deflection for column C5. 

 

Figure D.6  Analytical load-vertical deflection for column C6. 
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Figure D.7  Analytical load-deflection in the X direction for column C1. 

 

Figure D.8  Analytical load-deflection in the X direction for column C2. 
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Figure D.9  Analytical load-deflection in the X direction for column C3. 

 

Figure D.10  Analytical load-deflection in the X direction for column C4. 
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Figure D.11  Analytical load-deflection in the X direction for column C5. 

 

Figure D.12  Analytical load-deflection in the X direction for column C6. 
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Figure D.13  Analytical moment-curvature curve at X-direction for column C1. 

 

Figure D.14  Analytical moment-curvature curve at X-direction for column C2. 
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Figure D.15  Analytical moment-curvature curve at X-direction for column C3. 

 

Figure D.16  Analytical moment-curvature curve at X-direction for column C4. 
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Figure D.17  Analytical moment-curvature curve at X-direction for column C5. 

 

Figure D.18  Analytical moment-curvature curve at X-direction for column C6. 
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Figure D.19  Load-vertical deflection for column C1. 

 

Figure D.20  Load-vertical deflection for column C2. 
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Figure D.21  Load-vertical deflection for column C3. 

 

Figure D.22  Load-vertical deflection for column C4. 
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Figure D.23  Load-vertical deflection for column C5. 
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Figure D.24  Load-deflection in the X direction for column C1. 

 

Figure D.25  Load-deflection in the X direction for column C2. 
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Figure D.26  Load-deflection in the X direction for column C3. 

 

Figure D.27  Load-deflection in the X direction for column C4. 
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Figure D.28  Load-deflection in the X direction for column C5. 
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Figure D.29  Moment-curvature curve at X-direction for column C1. 

 

Figure D.30  Moment-curvature curve at X-direction for column C2. 
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Figure D.31  Moment-curvature curve at X-direction for column C3. 

 

Figure D.32  Moment-curvature curve at X-direction for column C4. 
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Figure D.33  Moment-curvature curve at X-direction for column C5. 
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