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ABSTRACT

TOPICS ON MULTIPLE HYPOTHESES TESTING AND
GENERALIZED LINEAR MODEL

by
Yalin Zhu

In applications such as studying drug adverse events (AE) in clinical trials and
identifying differentially expressed genes in microarray experiments, the data of the
experiments usually consists of frequency counts. In the analysis of such data,
researchers often face multiple hypotheses testing based on discrete test statistics.
Incorporating this discrete property of the data, several stepwise procedures, which
allow to use the CDF of p-values to determine the testing threshold, are proposed for
controlling familiwise error rate (FWER). It is shown that the proposed procedures
strongly control the FWER and are more powerful than the existing ones for discrete
data. Through some simulation studies and real data examples, the proposed
procedures are shown to outperform the existing procedures in terms of the FWER
control and power. An R package “MHTdiscrete” and a web application are developed
for implementing the proposed procedures for discrete data.

Many complex biomedical studies, such as clinical safety studies and genome-wide
association studies, often involve testing multiple families of hypotheses. Most existing
multiple testing methods cannot guarantee strong control of appropriate type 1 error
rates suitable for such increasingly complex research questions. A novel two-stage
procedure based on the recently developed idea of selective inference for clinical safety
studies is introduced. In the first stage, some significant families are selected by using
some family-level global test, which guarantees control of generalized familywise error
rate (k-FWER) among the selected families. In the second stage, individual hypotheses
are tested for each selected families by using some multiple testing procedure, which
controls conditional false discovery rate (cFDR) based on the fact that the family is

selected. By applying the proposed procedure to clinical safety studies, one can not only



efficiently flag the significant clinical adverse events (AEs) but also select body systems
of interest (BSol) as extra information for further research. The simulation studies
show that the proposed procedure can be more reliable than alternative methods such
as Mehrotra and Heyse’s double FDR procedure in the setting of clinical safety. The
proposed procedure for multiple families structure is implemented in the R package
“MHTmult”.

Categorical data arises in biomedical and healthcare experiments naturally. In
many of these cases, the outcome variables of interest are the numbers of special events.
At least one distinct special event category is observed, when the negative multinomial
and extended negative multinomial or generalized inverse sampling scheme-based
regression models are used. The new model, based on generalized inverse sampling
scheme for several special events, is developed in this dissertation. This research is
an adaption to the widely used multinomial logistic regression model. The resulting
equations of the proposed model, corresponding to the natural log of the ratio of the
expected responses, appears similar to the multinomial logistic regression. Using this
expected response ratio of a category to that of the special category, the maximum
likelihood estimator of the regression parameters can be computed by creating score
equations and the Hessian matrix of the likelihood. The covariance matrix of estimators
of the regression parameters for the new model can be estimated by inverting the
Hessian matrix to develop the inference. This research also develops model diagnostics
such as normality check with deviance and Pearson residuals, and likelihood based

computations. The proposed model is implemented in the R package “mvlogit”.



TOPICS ON MULTIPLE HYPOTHESES TESTING AND
GENERALIZED LINEAR MODEL

by
Yalin Zhu

A Dissertation
Submitted to the Faculty of
New Jersey Institute of Technology
and Rutgers, The State University of New Jersey — Newark
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Mathematical Sciences

Department of Mathematical Sciences, NJIT
Department of Mathematics and Computer Science, Rutgers — Newark

August 2017



Copyright (© 2017 by Yalin Zhu
ALL RIGHTS RESERVED



APPROVAL PAGE

TOPICS ON MULTIPLE HYPOTHESES TESTING AND
GENERALIZED LINEAR MODEL

Yalin Zhu

Dr. Sunil Dhar, Dissertation Co-Advisor Date
Professor, Department of Mathematical Sciences, NJIT

Dr. Wenge Guo, Dissertation Co-Advisor Date
Associate Professor, Department of Mathematical Sciences, NJIT

Dr. Ji Meng Loh, Committee Member Date
Associate Professor, Department of Mathematical Sciences, NJIT

Dr. Sundarraman Subramanian, Committee Member Date
Associate Professor, Department of Mathematical Sciences, NJIT

Dr. Satrajit Roychoudhury, Committee Member Date

Senior Director, Statistical Research and Data Science Center, Pfizer, NY



BIOGRAPHICAL SKETCH

Author: Yalin Zhu
Degree: Doctor of Philosophy
Date: August 2017

Undergraduate and Graduate Education:

e Doctor of Philosophy in Mathematical Sciences,
New Jersey Institute of Technology, Newark, NJ, 2017

e Master of Science in Applied Statistics,
New Jersey Institute of Technology, Newark, NJ, 2017

e Bachelor of Science in Statistics,
Tianjin University of Finance and Economics, Tianjin, P. R. China, 2012

Major: Applied Statistics

Presentations:

Y. Zhu, “A Selective Inference-based Two-stage Procedure for Clinical Safety Studies,”
Joint Statistical Meeting (JSM’2017), Baltimore, MD, July 29-August 3, 2017.

Y. Zhu, “Multivariate Logistic Type Models Based on Inverse Sampling Scheme,” 14th
Annual Conference on Frontiers in Applied and Computational Mathematics
(FACM’2017), NJIT, Newark, NJ, June 24-25, 2017.

Y. Zhu, “A Selective Inference-based Two-stage Procedure for Clinical Safety
Studies,” ASA Biopharmaceutical Section Nonclinical Biostatistics Conference
(NCB’2017), Rutgers University, Piscataway, NJ, June 12-14, 2017.

Y. Zhu, “FWER Controlling Procedures for Discrete Data in Clinical Safety
Analysis,” ASA Biopharmaceutical Section Nonclinical Biostatistics Conference
(NCB’2017), Rutgers University, Piscataway, NJ, June 12-14, 2017.

Y. Zhu, “Generalized Inverse Sampling Scheme-Based GLM Package,” NJIT President’s
Forum and 2017 Innovation Day, NJIT, Newark, NJ, April 10, 2017.

Y. Zhu, “FWER Controlling Procedures for Discrete Data in Clinical Safety
Analysis,” 4th Annual ASA NJ Chapter/Bayer Statistics Workshop, Bayer
Pharmaceuticals, Whippany, NJ, November 11, 2016.

iv



Y. Zhu, “Statistical Designs for Phase II Oncology Clinical Trials,” Biostatistics and
Data Management Seminar, Regeneron Pharmaceuticals, Basking Ridge, NJ,
August 23, 2016.

Y. Zhu, “Metrics and Performance Response Functions for Assessment of Resilience of
Urban Infrastructure Systems,” 9th GSA Annual Graduate Students Research
Day, NJIT, Newark, NJ, October 31, 2013.

Publications:

Y. Zhu and W. Guo, “A Selective Inference-based Two-Stage Multiple Testing
Procedure in Clinical Safety Studies,” in preparation, 2017.

Y. Zhu and W. Guo, “FWER Controlling Multiple Testing Procedures for Discrete
Data,” in preparation, 2017.

Y. Zhu and S. Dhar, “Multivariate Logistic-Type Models Based on an Inverse Sampling
Scheme,” in preparation, 2017.

E. Inde, S. Zamudio, J. M. Loh, Y. Zhu, J. Woytanowski, L. Rosen, M. Liu and B.
Buckley, “Exposure to Bisphenol A and Common Substitutes Among Fasting
Mothers: Analysis of Fetal Cord Blood and Maternal Urine,” submitted for
publication, 2017.

Y. Zhu and W. Guo, “R package MHTmult: Multiple Hypotheses Testing for Multiple
Families/Groups Structure,” The Comprehensive R Archive Network (CRAN),
2017.

Y. Zhu and W. Guo, “R package FixSeqMTP: Fixed Sequence Multiple Testing
Procedures,” The Comprehensive R Archive Network (CRAN), 2017.

Y. Zhu and W. Guo, “R package MHTdiscrete: Multiple Hypotheses Testing for
Discrete Data,” The Comprehensive R Archive Network (CRAN), 2016.

Y. Zhu and R. Qin, “R package ph2bye: Phase II Clinical Trial Design Using Bayesian
Methods,” The Comprehensive R Archive Network (CRAN), 2016.

Y. Zhu, “Web Application: Multiple Testing Procedures Controlling FWER/FDR,”
https://allen.shinyapps.io/MTPs/, 2016. [Accessed August 25, 2017]

Y. Zhu, “Web Application: Bayesian Design for Binary Outcomes,”
https://allen.shinyapps.io/BayesDesign/, 2016. [Accessed August 25, 2017]



To my beloved God, for He being with me every second
and giving me wisdom and guidance throughout my life.
To my beloved parents, Yuzhang Zhu and Yanfen Chen,
for supporting me all the way.

vi



ACKNOWLEDGMENT

I am enormously grateful to my Co-advisors, Dr. Sunil Dhar and Dr. Wenge Guo,
who guided me in the right direction not only as academic advisors but also as true
well wishers and friends. It would not have been possible to complete this dissertation
without their help, guidance, support and constant encouragement.

I would like to extend my gratitude to the other members of my dissertation
committee, Dr. Ji Meng Loh, Dr. Sundarraman Subramanian and Dr. Satrajit
Roychoudhury for their encouragement and support throughout my PhD.

[ am grateful to Dr. Rui Qin, Dr. Anjana Grandhi, Dr. Zhiying Qiu and
Dr. Gavin Lynch for their guidance and extremely important insights throughout my
research. I would also like to thank all the other faculty, staff and PhD students in the
Department of Mathematical Sciences for all the help they have been giving me during
my studies.

Last, but not the least, I take this opportunity to mention the names of my
parents, Mr. Yuzhang Zhu and Mrs. Yanfen Chen, in an effort to convey my gratitude
to them for their unconditional love and continuous guidance, which made me achieve

this goal.

vii



TABLE OF CONTENTS

Chapter Page
1 INTRODUCTION . . . . . e e 1
1.1 Introduction . . . . . . . . ... 1
1.2 Basic Concepts of Multiple Hypotheses Testing . . . . . ... ... .. 4
1.2.1 Error Rate Definition . . . . . . .. .. ... ... 4
1.2.2 Definition of Power . . . . . . . ... oL 5
1.2.3 Strong Control and Weak Control . . . . . ... ... ... ... 6
1.2.4 Assumptions of p-values . . . . . . . .. ..o 7
1.2.5 Distributions of the p-values for Discrete Data . . . . . . . . .. 8
1.2.6 a-consistency . . . . . . ... 12
1.2.7 p-value Monotonicity . . . . . . .. ... oo 12
1.2.8 Adjusted p-value . . . . . . ... 13
1.3 Multiple Testing Procedures (MTPs) . . . . ... ... ... ... ... 13
1.3.1 Multiple Testing Procedures based on p-values . . . .. ... .. 14
1.3.2 FWER Controlling Procedures . . . . . .. ... ... ... ... 15
1.3.3 FDR Controlling Procedures . . . . . . .. ... ... ... ... 20
1.4 Research Motivation and Dissertation Outline . . . . .. .. ... ... 21
2 FWER CONTROLLING PROCEDURES FOR DISCRETE DATA . . . .. 24
2.1 Introduction . . . . . . . .. 24
2.2 Preliminary . . . . . . . .. . 25
2.3 A Single-step Procedure for Discrete Data . . . . . . ... ... .... 26
2.3.1 A New Single-step Procedure . . . . . ... .. ... ... ... .. 26
2.3.2 Applications for Single-step Procedures . . . . . . ... ... .. 30
2.3.3 Simulation Studies for Single-step Procedures Comparisons . . . 33

2.3.4 Extension for the Proposed Procedures for the Mixed Data

Structure of the Hypotheses . . . . . . . . ... ... .. ... 36
2.4 A Step-down Procedure for Discrete Data . . . . . . .. ... ... ... 38

viii



TABLE OF CONTENTS

(Continued)

Chapter Page
2.4.1 A New Step-down Procedure . . . . .. ... ... ... .. ... 38
2.4.2 Applications for Step-down Procedures . . . . .. ... ... .. 40
2.4.3 Simulation Study for Step-down Procedures Comparisons . . . . 42

2.5 A Step-up Procedure for Discrete Data . . . . . ... ... ... .... 42
2.5.1 A New Step-up Procedure . . . ... .. ... ... ... .... 42
2.5.2  Applications for Step-up Procedures . . . ... ... ... ... 47
2.5.3 Simulation Studies for Step-up Procedures Comparisons . . . . . 48
2.5.4 Simulation Studies for the Dependence Settings . . . . . . .. .. 48

2.6 Conclusions and Discussion . . . . . . . . . ... ... 52

2.7 Software . . . . . . . . 55

SELECTIVE INFERENCE IN CLINICAL SAFETY STUDIES . .. .. .. 57

3.1 Introduction . . . . . . . . . o7

3.2 Preliminaries . . . . . . . .. .o 60
3.2.1 Notations . . . . . . . . .. 60
3.2.2 Several Type 1 Error Rates . . . . . . ... .. ... ... .... 61
3.2.3 Several Existing Two-stage Multiple Testing Procedures . . . . . 63
3.2.4 Combining Functions and Conditional p-values . . . . . . .. .. 65

3.3 A Valid cFDR Controlling Procedure Using k-FWER Controlling Selection

Rule . . . . . 67

3.4 Theoretical Results . . . . . .. .. ... . 68

3.5 Selection Rule Comparisons . . . . . . . . ... ... ... ....... 70
3.5.1 [Inflation Factor . . . . . . . . . ... ... ... .. ... ... 70
3.5.2 Selection Rules Using MTP Controlling &-FWER . . . . . .. .. 75

3.6 Simulation Studies . . . . . .. .. 76
3.6.1 Simulations for the Independence Settings . . . . . . .. ... .. 7
3.6.2 Simulations for the Dependence Settings . . . . . .. .. .. .. 87

3.7 Real Data Analysis: Clinical Safety Studies . . . . . .. ... ... ... 87

ix



TABLE OF CONTENTS

(Continued)
Chapter Page

3.7.1 Example 3.1 . . . . ... 91
3.72 Example 3.2 . . . . ... 93
3.73 Example 3.3 . . . . . ... 94
3.74 Example 3.4 . . . . .o 95
3.8 Concluding Remarks . . . . ... ... ... ... .. 96
3.9 Software . . . . . . . 98

4 MULTIVARIATE LOGISTIC-TYPE MODELS BASED ON AN INVERSE
SAMPLING SCHEME . . . . . . .. .. .. 99
4.1 Introduction . . . . . . . ... 99
4.2 Preliminaries . . . . . . . . . .. L 100
4.2.1 Generalized Inverse Sampling Scheme . . . . . .. ... .. ... 101
4.2.2 Multivariate Exponential Family . . . . .. .. .. .. ... ... 102
4.2.3 A Motivating Example of ENMn and Data . . . ... ... ... 103
4.3 A Multivariate Logistic-type Model under the ENMn Distribution . . . 104
4.4 Model Inferences and Diagnostics . . . . . . .. .. ... .. ... ... 105
4.4.1 Maximum Likelihood Estimation . . . . . . . ... ... .. ... 105
4.4.2 Confidence Intervals and Tests . . . . . . . ... ... ... ... 108
4.4.3 Model Diagnostics . . . . . .. .. ... Lo 109
4.5 An Application for the Proposed Model . . . . . . . . . ... ... ... 110
4.6 Conclusion . . . . . . .. L 116
4.7 Software . . . . . .. 117
5 CONCLUSION AND FUTURE WORK . . .. ... ... ... .. ..... 118
APPENDIX A SIMULATION RESULTS IN CHAPTER 2 . . ... ... ... 120
A.1 Independent Simulation Results . . . . . . ... ... ... ... .... 120
A.2 Dependent Simulation Data Generation and Results . . . . .. .. .. 120
APPENDIX B PROOFSIN CHAPTER 3 . .. ... ... .. ... ...... 136
B.1 Proof of Theorem 3.1 . . . . . . . . . .. . ... ... ... . ...... 136



TABLE OF CONTENTS

(Continued)

Chapter Page
B.2 Proof of Lemma 3.1 . . . . . . . . . . 137
B.3 Proof of Theorem 3.2 . . . . . . . . . . . . 138

BIBLIOGRAPHY . . . . 140

xi



Table

1.1
2.1

2.2

2.3

24

2.5

2.6

3.1

3.2

3.3

3.4

LIST OF TABLES

Summary of the Outcomes while Simultaneously Testing m Hypotheses . .

A Comparison of Adjusted p-values for the Bonferroni Procedure, Sidak
Procedure, Modified Tarone Procedure and Procedure 2.1 when Testing
the Hypotheses in the cDNA Example from Hommel and Krummenauer

(1998) . . o o

A Comparison of Adjusted p-values for the Bonferroni Procedure, Sidak
Procedure, Procedure 1.2 and Procedure 2.1 when Testing the Hypotheses
for Nine AE types of Body System 10 in the Clinical Safety Data Example
from Mehrotra and Heyse (2004), where the Numbers of Patients for Two
Groups Are Ny =148 and No =132 . . . . . . . . . .. .. ... ....

A Comparison of Adjusted p-values for the Holm Procedure, Tarone-Holm
Procedure and Procedure 2.3 when Testing the Hypotheses in the cDNA
Transcript Example from Hommel and Krummenauer (1998) . . . . . .

A Comparison of Adjusted p-values for the Holm Procedure, Procedure 1.4
and Procedure 2.3 when Testing the Hypotheses for AE Types of Body
System 10 in the Clinical Safety Data Example from Mehrotra and Heyse
(2004), where the Numbers of Patients for Two Groups are N; = 148 and
No =132 . . .

A Comparison of Adjusted p-values for the Hochberg Procedure, Procedure
1.5 and Procedure 2.4 when Testing the Hypotheses in the cDNA
Transcript Example from Hommel and Krummenauer (1998) . . . . . .

A Comparison of Adjusted p-values for the Hochberg Procedure, Procedure
1.5 and Procedure 2.4 when Testing the Hypotheses for AE types of Body
System 10 in the Clinical Safety Data Example from Mehrotra and Heyse
(2004), where the Numbers of Patients for Two Groups Are N; = 148 and
No =132 . . .

Example of Clinical Safety Study from Mehrotra and Heyse (2001), where
“BS” is Abbreviate of “Body System” and “No.” is the Type of AEs in
Each Body System . . . . . . . .. ..

Flagging AE Types for Example 3.1 under a; = 0.05 for Selecting BSol and
a = 0.1 for Detecting AEs . . . . .. .. ..o

Flagging AE Types for Example 3.2 under ay = 0.05 for Selecting BSol and
a = 0.1 for Detecting AEs . . . . .. ...

Flagging AE Types for Example 3.3 under a; = 0.05 for Selecting BSol and
a = 0.1 for Detecting AEs . . .. ... ... ... .

xii

Page

31

32

41

41

47

48

92

93

94



LIST OF TABLES
(Continued)
Table Page

3.5 Flagging AE Types for Example 3.4 under a; = 0.05 for Selecting BSol and
a = 0.1 for Detecting AEs . . .. . .. ... ... o 96

3.6 Error Rates Control for Different MTPs with Multiple Families Structure . 97
4.1 Regression Results Applying Multinomial Logistic GLM . . . . . . . . .. 111
4.2 Fitted Multinomial Logistic GLM on Parsimonious Model . . . . . . . .. 112

4.3  MLE and 95% Two-sided Confidence Interval of the Regression Parameters
for Multinomial Logistic Regression Model . . . . . . .. ... .. ... 113

4.4 MLE and 95% Two-sided Confidence Interval of the Regression Parameters
for the Proposed Logistic-type GLM using ENMn Model . . . . . . . .. 114

A.1 Simulated FWER Comparisons for Single-step Procedures with Independent
p-values Generated from Fisher’s Exact Test Statistics . . . . . . . . .. 122

A.2 Simulated Minimal Power Comparisons for Single-step Procedures with
Independent p-values Generated from Fisher’s Exact Test Statistics . . . 123

A.3 Simulated FWER Comparisons for Single-step Procedures with Independent
p-values Generated from Binomial Exact Test Statistics . . . . . .. .. 124

A.4 Simulated Minimal Power Comparisons for Single-step Procedures with
Independent p-values Generated from Binomial Exact Test Statistics . . 125

A.5 Simulated FWER Comparisons for Step-down Procedures with Independent
p-values Generated from Fisher’s Exact Test Statistics . . . . . . .. .. 126

A.6 Simulated Minimal Power Comparisons for Step-down Procedures with
Independent p-values Generated from Fisher’s Exact Test Statistics . . . 127

A.7 Simulated FWER Comparisons for Step-up Procedures with Independent
p-values Generated from Fisher’s Exact Test Statistics . . . . . . . . .. 128

A.8 Simulated Minimal Power Comparisons for Step-up Procedures with Independent
p-values Generated from Fisher’s Exact Test Statistics . . . . . . .. .. 129

A9 Simulated FWER Comparisons for Single-step Procedures with Dependent
p-values Generated from Binomial Exact Test Statistics . . . . . .. .. 130

A.10 Simulated Minimal Power Comparisons for Single-step Procedures with
Dependent p-values Generated from Binomial Exact Test Statistics . . . 131

A.11 Simulated FWER Comparisons for Step-down Procedures with Dependent
p-values Generated from Binomial Exact Test Statistics . . . . . . . .. 132

xiii



LIST OF TABLES
(Continued)
Table Page

A.12 Simulated Minimal Power Comparisons for Step-down Procedures with
Dependent p-values Generated from Binomial Exact Test Statistics . . . 133

A.13 Simulated FWER Comparisons for Step-up Procedures with Dependent p-
values Generated from Binomial Exact Test Statistics . . . . . . . . .. 134

A.14 Simulated Minimal Power Comparisons for Step-up Procedures with Dependent
p-values Generated from Binomial Exact Test Statistics . . . . . .. .. 135

xXiv



LIST OF FIGURES

Figure Page
1.1  The values of the p-value P; versus the values of the CDF F; for v =1,...,4. 12
2.1  Simulated FWER comparisons for different single-step procedures based on
FET. . . . 35
2.2 Simulated minimal power comparisons for different single-step procedures
based on FET. . . . . . . . . . . .. 36
2.3 Simulated FWER comparisons for different step-down procedures based on
FET. . . . 43
2.4  Simulated minimal power comparisons for different step-down procedures
based on FET. . . . . . . . . . . . 44
2.5 Simulated FWER comparisons for different step-up procedures based on FET. 49
2.6 Simulated minimal power comparisons for different step-up procedures
based on FET. . . . . . . . . . .. 50
2.7  Simulated FWER comparisons for different single-step procedures based on
the blocking dependent BET. . . . . . . . .. ... ... ... ...... 51
2.8  Simulated minimal power comparisons for different single-step procedures
based on the blocking dependent BET. . . . . . .. ... ... .. ... 52
2.9 Simulated FWER comparisons for different step-down procedures based on
the blocking dependent BET. . . . . . . . . ... ... ... .. ..... 53
2.10 Simulated minimal power comparisons for different step-down procedures
based on the blocking dependent BET. . . . . . ... .. ... .. ... 54
2.11 Simulated FWER comparisons for different step-up procedures based on the
blocking dependent BET. . . . . . .. .. ... ... 55
2.12 Simulated minimal power comparisons for different step-up procedures
based on the blocking dependent BET. . . . ... ... ... .. .... 56
3.1 Comparison of inflation factor b; with respect to po for different values of
threshold ¢ using Fisher’s combining method with n = 2 hypotheses. . . 71
3.2 Comparison of inflation factor b; with respect to threshold t for different
values of py using Fisher’s combining method with n = 2 hypotheses. . . 71
3.3 Comparison of inflation factor b; with respect to py for different values of
threshold ¢ using using Stouffer’s combining method with n = 2 hypotheses. 72
3.4  Comparison of inflation factor b; with respect to threshold t for different

values of py using Stouffer’s combining method with n = 2 hypotheses. . 73

XV



LIST OF FIGURES
(Continued)

Figure Page

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

Comparison of inflation factor b; with respect to po for different values of
threshold ¢ using minP combining method with n = 2 hypotheses. . . . 74

Comparison of inflation factor b; with respect to threshold ¢ for different
values of py using minP combining method with n = 2 hypotheses. . . . 75

Comparisons of inflation factor b; with respect to py for equivalent
thresholds of Fisher’s, Stouffer’s and minP combining methods when n = 2. 76

From the left to right panels are simulated FWER across families, condi-
tional FDR for a null family and conditional FDR for a non-null family
versus proportion of null hypotheses in each non-null family (ng/n).
From the top to bottom panels, the numbers of true null families are
mo = 2,4,6,8 out of m = 10 families, there are n = 20 hypotheses in
each family, 1 =3, a =a; =0.05.. . . . . . . ... 78

From the left to right panels are simulated average FDR over selected
families, global FDR and average power versus proportion of null
hypotheses in each non-null family (ng/n). From the top to bottom
panels, the numbers of true null families are my = 2,4, 6, 8 out of m = 10
families, there are n = 20 hypotheses in each family, 1 = 3, a = a3 = 0.05. 79

From the left to right panels are simulated FWER across families, condi-
tional FDR for a null family and conditional FDR for a non-null family
versus proportion of null families (mg/m). From the top to bottom
panels, the numbers of true null hypotheses in each non-null family are
ng = H, 10, 15 out of n = 20 hypotheses, there are m = 10 families, p; = 3,
a=a;=0.05. . . .. 80

From the left to right panels are simulated average FDR over selected
families, global FDR and average power versus proportion of null families
(mo/m). From the top to bottom panels, the numbers of true null
hypotheses in each non-null family are ng = 5,10,15 out of n = 20
hypotheses, there are m = 10 families, 1y =3, a =a; =0.05. . . . . .. 81

Comparisons for different combining methods using Sidak selection rules
(k = 1) for independent structure, m = 10, n = 20, ny = 15, o = oy = 0.05. 82

Comparisons for different combining methods using generalized Sidak with
k = 3 selection rules for independent structure, m = 10, n = 20, ng = 15,
a=oa;=0.05. . . . e &3

Comparisons for different combining method for independent structure
using generalized Sidak with & = 3 selection rules versus different selection
significant level oy, . . . . . .o 84

XVi



LIST OF FIGURES
(Continued)

Figure Page

3.15

3.16

3.17

3.18

4.1

4.2

4.3

Comparisons for using generalized Bonferroni and generalized Sidak selection
rules with £ = 1,2, 3 under independence, the plots show the conditional
FDR for null or non-null family versus the proportion of null families,
m=10,n=20,np=15, a=a;=0.05.. . . . . . ... ... ... ... 85

Comparisons for using generalized Bonferroni and generalized Sidak selection
rules with £ = 1,2, 3 under independence, the plots show the average FDR
and average power versus the proportion of null families, m = 10, n = 20,
ng = 15, a = 1 = 0.05. . . . . 86

Comparisons of conditional FDR’s with respect to p for different dependent
structures and different numbers of null families (my = 4,8) by using
different multiple families testing procedures. « = a3 =0.05. . . . . .. 88

Comparisons of average FDR’s and powers with respect to p for different
dependent structures and different numbers of null families (my = 4, 8)
by using different multiple families testing procedures. a = oy = 0.05. . 89

MLE and confidence interval comparisons between the proposed model and
multinomial logistic regression model. . . . . . . ... ... 114

Normal probability plot for deviance residuals comparisons between multi-
nomial logistic regression model and the proposed model. . . . . . . .. 115

Normal probability plot for Pearson residuals comparisons between multi-
nomial logistic regression model and the proposed model. . . . . . . .. 116

xvii



CHAPTER 1

INTRODUCTION

1.1 Introduction
In the applications of clinical trials and genealogy study, multiple hypotheses testing
is a very useful statistical tool to analyze experimental data. Simultaneously testing
multiple hypotheses is often required in such applications. In single hypothesis testing,
a typical error measure which needs to be controlled is called type I error rate, the
probability of falsely rejecting the hypothesis while the hypothesis is true. There
are several possible measures for the overall type I error rate while testing multiple
hypotheses. A popular error rate is the familywise error rate (FWER), which is the
probability of making at least one false rejection. It is appropriate to control the
FWER when the number of hypotheses tested is small or moderate, but it is too
conservative when a large number of hypotheses are tested simultaneously which is
typically the case in large scale experiments like microarray or fMRI study. Benjamini
and Hochberg (1995) introduced false discovery rate (FDR) as an appropriate measure
to be controlled while simultaneously testing a large number of hypotheses. FDR is
defined as the expected proportion of false rejections among all rejections. To control
the FDR, it allows more hypotheses to be rejected while controlling the proportion
of false rejections, thus opening an opportunity for the development of more powerful
procedures than those using FWER as an error measure to control. For a review
of multiple testing procedures controlling the FWER, see Dmitrienko et al. (2009).
For a review of FDR controlling procedures, refer to Benjamini (2010). Most existing
procedures are constructed for continuous data, but these procedures may be highly
conservative when testing discrete data. Tarone (1990) proposed a modified Bonferroni
procedure to make it more powerful for discrete data. The modification is to reduce

the number of significance tests by eliminating those tests with relative large minimal



attainable p-values. But the Tarone procedure lacks a-consistency, that is, a hypothesis
which is accepted at a given « level may be rejected at a lower « level (Roth, 1999). To
overcome this issue, two modified Tarone procedures were developed by Hommel and
Krummenauer (1998) and Roth (1999), which not only control FWER, but also have
the property of a-consistency. Hommel and Krummenauer (1998) improved the Holm
procedure to develop a step-down procedure for discrete data by using Tarone’s idea.
Roth (1999) presented a two-stage step-up procedure for improving Hochberg procedure
for discrete data based on the similar Tarone’s idea, but this step-up procedure lacks
a-consistency. Westfall and Wolfinger (1997) suggested a resampling based approach
to simulate the null distribution of minimal p-value, which uses the full set of attainable
p-values for each p-value. But this method is computationally complicated and only
ensure asymptotic control of the FWER. Gutman and Hochberg (2005) proposed new
stepwise procedures which use the Westfall and Wolfinger’s resampling algorithm and
the idea of Tarone procedure.

There are many adverse events (AE) classified by body systems (BS) in clinical
safety studies In clinical safety studies, there are many adverse events (AE) recorded
in one clinical trial. The goal for assessing the safety of an experimental drug is to
flag “reasonable” or “correct” AEs among these AE types. Most AE detecting or
flagging methods do not control for overall type 1 error rates, such as FWER or FDR.
Thus, similar as dealing with multiple endpoints in drug efficacy analysis, multiplicity
effect should be also considered in drug safety analysis. However, the number of AEs
in safety analysis is much larger than the number of endpoints in efficacy analysis
for the experimental drugs. Simply applying FWER controlling procedures such as
Bonferroni procedure may fail to flag more important AEs. Therefore, some FDR
controlling procedures such as BH procedure can be applied to detect the signals of
the AEs, since the number of AEs in clinical safety studies is usually large. Moreover,
searching for significant AEs, the AE types are often classified by several body systems

(BS). So the multiple-family structure should be considered for the drug safety data



analysis. Recently, some structured BH-type procedures are developed for multiple
families of hypotheses (Mehrotra and Heyes, 2004; Mehrotra and Adewale, 2012; Hu et
al., 2010; Benjamini and Bogomolov, 2014). However, most existing methods do not
clearly separate the selection effect and multiplicity effect. To overcome this problem,
selective inference by using conditional inference such as conditional type 1 error rate
control, selection adjusted confidence interval is developed recently (Fithian et al., 2015;
Weinstein et al., 2013; Heller et al., 2016). By using the selective inference idea, the
second part of this dissertation introduces a multiple testing procedure for multiple
families structure in clinical safety studies.

In the last part of this dissertation, we highlight logistic-type model while
introducing generalized linear models for multi-level data. Logistic model is the most
important model for categorical response data. It is used increasingly in a wide variety
of applications, such as biomedical studies, social science researches, marketing, etc.
An area of increasing application of logistic model is genetics. For instance, Henshall
and Goddard (1999) used logistic regression to estimate quantitative trait loci effects,
modeling the probability that an offspring inherits an allele of one type instead of
another type as a function of phenotypic values on various traits for that offspring.
Levinson et al. (2000) used logistic regression for analysis of the genotype data of
affected sibling pairs (ASPs) and their parents from several research centers. The
model studied the probability that ASPs have identity-by-descent allele sharing and
tested its heterogeneity among the centers. In clinical trial experiments, the data are
usually collected as count data for several group/categories, where some categories are
classified as severe and rare diseases (or called “stages”), such as the data in Desmet
et al. (1994). We use this information in building our model, for more details, please

refer to Chapter 4.



1.2 Basic Concepts of Multiple Hypotheses Testing
Consider simultaneously testing m hypotheses H, ..., H,,, based on the corresponding
p-values Py, ..., P,. Let mg denote the number of true null hypotheses and m; = m—m,
denote the number of false null hypotheses. Let Iy denote the set of indices of true null
hypotheses.
Let V denote the number of falsely rejected hypotheses, S denote the number of
correctly rejected hypotheses and R denote the total number of hypotheses rejected,

thus R =5 + V. Table 1.1 summarizes the notations for all possible outcomes.

Table 1.1 Summary of the Outcomes while Simultaneously Testing m

Hypotheses
Number of Number of Total
Hypotheses Not Hypotheses Number
Rejected rejected
True Null Hypotheses mo—V V mo
False Null Hypotheses mp — S S mi
Total m—R R m

Note that m and myq are fixed but my is usually unknown, R, V and S are random but
only R is observable, and V and S are unobservable.
When dealing with multiple testing problems, it is essential to choose an

appropriate overall measure of error rate and power measure.

1.2.1 Error Rate Definition
The overall error rate measure for multiple testing is not unique. Several commonly

used error rates are defined as follows.



e Per family error rate (PFER) is the expected number of incorrectly rejected

hypotheses, which is given by

PFER = E{V}.

e Comparisonwise error rate (CWER) is the proportion of falsely rejected hypotheses

among all tested hypotheses, which is given by

E{V}

m

CWER =

o Familywise error rate (FWER) is the probability of making at least one false

rejection, which is given by

FWER = P{V > 0}.

e Fualse discovery rate (FDR) is the proportion of falsely rejected hypotheses among
all rejected hypotheses and is formally defined by Benjamini and Hochberg (1995)

as

FDR:E{%} ZE{%I(R> 0)},

where RV 1 = max{R,1} and I(-) is indicator function. Note that when all null
hypotheses are true, that is my = m, FDR reduces to FWER. The relationship among
the above four error rate measures is CWER < FDR < FWER < PFER.

1.2.2 Definition of Power

The power of a single test is defined as the probability of rejecting a false null
hypothesis. There are several types of power measure when testing multiple hypotheses
simultaneously, so it is important to use an appropriate power measure to evaluate

performance of a MTP. Several commonly used concepts of power are described below:



e Minimal power is the probability of rejecting at least one false null hypothesis,
which is given by
Minimal Power = Pr(S > 0).

e Complete power is the probability of rejecting all false null hypotheses, which is
given by

Complete Power = Pr(S = my).

o Average power is the expected proportion of rejected false null hypotheses among

all false null hypotheses, which is given by

E{S
Average Power = { }
my

e Another concept of power is from the false non-discovery rate (FNR), which is

given by

g om-=5
1-FNR=1 E{(m—R)\/l}'

Theoretically, the definition of “universally more powerful” can be used to
compare two procedures.
Definition 1.1. If procedure A rejects all hypotheses rejected by procedure B for every

possible configuration, then we can say procedure A is universally more powerful than

procedure B.

1.2.3 Strong Control and Weak Control

Strong control is to control type I error rate under any combination of true and false
null hypotheses, while weak control is to control type I error rate only when all null
hypotheses are true. Generally, strong control of type I error rate is desired, since the

combination of true and false hypotheses in the actual setting is unknown.



In applications of clinical trials, strong control of the FWER for the primary
objects is mandated by regulators. For example, in drug safety studies, the FWER
control is needed for the adverse events related to the trial drugs. For all other adverse

events, it is reasonable to control the FWER or the FDR.

1.2.4 Assumptions of p-values
e The p-value is calculated from given test statistic, thus the distribution of p-value

could be continuous or discrete based on the distribution of the test statistic.

Assumption 1.1. True null p-values are stochastically greater than or equal to

the U0, 1] distribution, that is,

Pr(P,<u)<wu, forielyanduel0,1]. (1.2.1)

We should note that the equality does not always hold in the assumption. For
instance, for finite discrete p-values, when u takes the values except attainable
p-values, “<” in the above assumption becomes “<”. Only when u takes the
value of the attainable p-values, Pr(P; < u) = u. In Chapter 2, we will use this

property of discrete null p-values to develop some more powerful MTPs.

e Another assumption is the joint dependence structures of the p-values for multiple
hypotheses. Several dependence structures while developing MTPs are used
including: independence, block dependence (Storey, 2003; Guo and Sarkar, 2012),
positive regression dependence on subset (PRDS) (Benjamini and Yekutieli,
2001; Sarkar 2002), arbitrary dependence, which allows any dependence structure
including previous ones. The PRDS property is defined as follows.

Assumption 1.2. A set of p-values {P;...P,} is said to be PRDS, if for

any non-decreasing function of the p-values ¢, E{¢(Py,...,P,)|P < p} is

non-decreasing in p for each true null hypothesis H;.



1.2.5 Distributions of the p-values for Discrete Data
We will now look into several typical discrete p-value distributions, which include the

Binomial Distribution, Hypergeometric Distribution.

Binomial distribution Consider testing a single hypothesis Hy : 8 = 6y versus H :
0 < 6y. Suppose that under Hy, the test statistic X ~ Bin(n,fy). Then the attainable
p-value for this test can be calculated by p; = Pr(X < i|Hy) for ¢ = 0,1,...,n.
If the probability mass function (PMF) of P; is Pr(P = p;), then the cumulative

distribution function (CDF) of the P; is F(p) = Pr(P < p) = >, Pr(P = p;). For
Pisp

example, suppose X ~ Bin(5,0.3) under Hy. Then the set of the attainable p-values
are {0.16807,0.52822,0.83692,0.96922,0.99757,1}. The PMF and CDF of the p-value

can be given as

Pr(P = 0.16807) = Pr(X = 0) = 0.16807,
Pr(P = 0.52822) = Pr(X = 1) = 0.36015,
Pr(P = 0.83692) = Pr(X = 2) = 0.3087,
Pr(P =0.96922) = Pr(X = 3) = 0.1323,
Pr(P =0.99757) = Pr(X = 4) = 0.02835,

Pr(P=1)= Pr(X =5) = 0.00243



and

0, 0 < p < 0.16807

0.16807, 0.16807 < p < 0.52822

0.52822, 0.52822 < p < 0.83692

F(p) = 1083692, 0.83692 < p < 0.96922 (1.2.2)
0.96922, 0.96922 < p < 0.99757

0.99757, 0.99757 <p < 1

1

; p=1

The test statistic in binomial exact test (BET) follows binomial distribution.

Hypergeometric distribution Another popular discrete distribution is hyper-
geometric distribution 7; ~ Hypergeometric(xy;, ny;, x.4,n.;), which describes the
probability of x1; successes in nq; draws, without replacement, from a finite population
of size n.; that contains exactly x.; successes, wherein each draw is either a success or a
failure.

For instance, let us consider the test statistics of Westfall and Wolfinger (1997)

in Table 1. In that example,

T, ~ Hypergeometric(h,48,5,98),
Ty ~ Hypergeometric(3,48,7,98),
T3 ~ Hypergeometric(4,48,4,98),

Ty ~ Hypergeometric(4,48,10,98).

Note that each p-value is matched with corresponding test statistic, then we can find

PMF of the corresponding p-value P; for each given T;. For example,

(5) (%)
()

Pr(P, = 0.02521) = Pr(Ty = 5) =

= 0.02521,



Pr(P, = 0.16848) = Pr(Ty = 4) =

() ()

Therefore, we can get CDF’s F; of P, 1 =1,...,4, as follows:

Fi(p)

Fy(p)

;

\

0,

0.02521,
0.16848,
0.48047,
0.80602,

0.96880,

0.00532,
0.04967,
0.20129,
0.99278,

1,

0 <p<0.02521

0.02521 < p < 0.16848
0.16848 < p < 0.48047
0.48047 < p < 0.80602
0.80602 < p < 0.96830

0.96880 < p < 1

p=1,

0 <¢<0.00532
0.00532 < p < 0.04967
0.04967 < p < 0.20129

0.20129 < p < 0.47697

099278 <p <1

p=1,

10

= (0.14327.

(1.2.3)

(1.2.4)



;

0,

0.05387,
0.29327,
0.67580,

0.93625,

and

0.00047,
0.00645,
Fi(p) = { 0.03946,
0.99927,

1.

\

Figure 1.1 shows the CDF’s of true null p-values for these four tests.

0 <p < 0.05387

0.05387 < p < 0.29327
0.29327 < p < 0.67580
0.67580 < p < 0.93625

0.93625 < p < 1

p=1,

0 < p < 0.00047
0.00047 < p < 0.00645
0.00645 < p < 0.03946

0.03946 < p < 0.14250

0.99927 <p <1

c=1.

(1.2.5)

(1.2.6)

Fisher’s exact test (FET) is usually used to test association between two

variables of interest for a 2 x 2 contingency table. The test statistic in FET follows

hypergeometric distribution.

Remark 1.1. y? test and Fisher exact test are two popular approaches used for

analyzing Adverse Events (AFEs) data. Fisher’s exact test is desired when the expected

draws (r1;) s small.
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Figure 1.1 The values of the p-value P; versus the values of the CDF F; for i =
1,...,4.

1.2.6 «a-consistency

In hypothesis testing, a-consistency is a type of desired statistical property in terms of
the significant level «, which is defined as follow:

Definition 1.2. A hypothesis that is rejected at a given a level must be rejected at a

higher a level. This property is called c-consistency.

For single hypothesis testing, it is trivial that this property is satisfied. For
multiple hypotheses testing, not all procedures have this property. Here a-consistency
means when a becomes larger, the set of rejections determined by the MTP will not

become smaller.

1.2.7 p-value Monotonicity
Another favorable property of a multiple testing procedure is monotonicity in terms of

p-values, which can be defined as follow:

12



Definition 1.3. If one or more p-values are made smaller, then at least the same or
even more hypotheses would be rejected for the same procedure. We say such a procedure

15 p-value monotone.

It is easy to see that the property of p-value monotone is always satisfied by

stepwise procedures. It is an essential requirement for multiple testing procedures.

1.2.8 Adjusted p-value
It is very useful to calculate adjusted p-value in multiple testing, since adjusted p-values
capture the degree of multiplicity adjustment, so that we can make decisions of rejection
and acceptance as in single hypothesis by comparing the adjusted p-values with the
given significance level. Decision rules based on adjusted p-values are equivalent to
ones based on original procedures.

A general definition of an adjusted p-value is given in Westfall and Young (1993):
the adjusted p-value for a hypothesis is the smallest significance level at which one
would reject the hypothesis using the given multiple testing procedure. Let P, denote

the adjusted p-value corresponding to H;, which is given by

P, = inf{a : H; is rejected using the given procedure at level a}. (1.2.7)

If this procedure controls FWER/FDR at level «, then

P, = inf{a : Hj is rejected when FWER/FDR is controlled at level a}. (1.2.8)

So we can make the decision based on adjusted p-values: reject H; if P, < «. This

calculation can help researchers make decisions easily and fast.

1.3 Multiple Testing Procedures (MTPs)
Several multiple testing procedures have been developed in the literature for various
scenario. They can be broadly classified as three main types: p-value based MTP,

parametric MTP and resampling based MTP.

13



e p-value based MTP: These procedures do not make any assumptions about the
joint distribution of the test statistics and only rely on the univariate p-values.
Typical examples are Bonferroni (1936) procedure, Holm (1979) procedure, BH
(1995) procedure.

e parametric MTP: These procedures make specific assumptions about the distri-
bution of the test statistics. For instance, the joint distribution might be a
multivariate normal or a multivariate t-distribution. A typical procedure is

Dunnett procedure (1955).

e resampling based MTP: These procedures use resampling techniques like bootstrap,
permutation, etc., that make fewer assumptions about the data-generating process
while still exploiting the dependence structure of the underlying test statistics in

multiple testing procedures, see Westfall and Young (1993).

1.3.1 Multiple Testing Procedures based on p-values
The first two parts of this dissertation mainly focuses on p-value based MTPs.
Commonly, the p-value based MTPs test hypotheses step by step. According to the
order of p-values, the MTPs can be classified as single-step, step-down, and step-up
procedures.

Let Py < -+ < Py be the ordered p-values and Hy,..., Hq, be the
corresponding hypotheses. By using a sequence of non-decreasing critical constants

o < - <y, the stepwise MTPs are described as follows:

e Single-step procedure compares p-values with the same critical constant ¢, that
is, reject H; if P, < cfori =1,...,m. A widely used single-step procedure is

Q@
Bonferroni procedure, for which the critical constant is defined by ¢ = —.
m

o Step-down procedure starts with the most significant hypothesis H(;y corre-
sponding to the smallest p-value Py, If Py > a;, accept all m hypotheses;

otherwise, keep rejecting hypotheses until an acceptance is observed. The

14



rest hypotheses are accepted automatically. That is, the procedure rejects
Hay, ..., Hyy, accept H(41),..., Huy), where r is the largest index satisfying

Pay < ai,..., Py < a,. A typical example is Holm procedure (Holm, 1979),

Q@

which is a step-down procedure with the critical constant o; = S
m —i

o Step-up procedure starts with the least significant hypothesis H,,) corresponding

to the largest p-value P,). If Py, < a,, reject all m hypotheses; otherwise,

keep accepting hypotheses until a rejection is observed. The rest hypotheses

are rejected automatically. That is, the procedure rejects Hy), ..., H(,), accept

Hg 11y, ..., Heyy, where 7 is the largest index satisfying P,y < a.

A typical example is Hochberg procedure (1988), which is a step-up procedure

with the same critical constants as Holm procedure.

1.3.2 FWER Controlling Procedures

A well known FWER controlling procedure is the Bonferroni procedure (1936), which
is a single-step procedure with the critical constant ¢ = %. A more powerful single-step
procedure is the Sidak procedure (1967), which has the critical constant 1 — (1 — o).
The critical constant is slightly larger than that of the Bonferroni procedure. Holm
(1979) developed a step-down procedure we have defined in last subsection with the

«

critical constant a; = which strongly controls the FWER under arbitrary

m—i+1
dependence. Hochberg (1988) proposed a step-up procedure with the same critical
value as the Holm procedure, which controls the FWER under the PRDS property.
Taking discrete property of statistics into account, Tarone (1990) introduced a
modified Bonferroni procedure by using the smallest attainable p-values to eliminate
the non-significant tests. The critical constant of this modified procedure is larger

than that of Bonferroni procedure, which implies this procedure is more powerful than

Bonferroni procedure.
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Procedure 1.1 (Tarone procedure). Let p; be the smallest attainable p-values for H;,
My (k) = > I{p; < a/k} < m. Define K, = min{l < k < m : M,(k) < k} and
i=1

Rk, ={i:p; < K’i} Then reject H; if i € Rk, and P; < a/K,.

Remark 1.2. Note that in the definition of Procedure 1.1, since P; > pf, P < a/K,
implies i € Rk, = {i: pf < Ki} That means rejecting H; only needs P; < af K.

Note that for continuous p-values M, (k) = m for k = 1,...,m, so K, = m and
Procedure 1.1 reduces to Bonferroni procedure.

Unfortunately, the Tarone procedure lacks a-consistency. For example, suppose
we simultaneously test two hypotheses H; and H; with the corresponding actual p-
values being P, = 0.07 and P, = 0.1. The smallest attainable p-values for H; and H,
are p; = 0.06 and p3 = 0.08, respectively. When a = 0.1, M, (1) = 2 and M,(2) = 0,
so K, = 2. Thus, no any hypothesis is rejected since P, and P, are larger than
a/K, = 0.05. However, when a = 0.075, M,(1) = 1 and M,(2) = 0, so K, = 1
and a/K, = 0.075. Therefore H; is rejected since P, = 0.07 < 0.075. Thus, when «
becomes smaller, more hypotheses can be rejected. That is, the Tarone procedure does
not satisfy the property of a-consistency.

To overcome the issue of lacking a-consistency, Hommel and Krummenauer (1998)
developed a modified Tarone procedure, which is proved satisfying the property of
a-consistency.

Procedure 1.2 (77). Sgppose pi is the smallest attainable p-value for H; and let

v € (0,a] and M, (k) = > I{p; < v/k}. Define K, =min{l < k <m : M,(k) < k},
i=1
then reject H; if there exists a vy, such that P; < v/K,

In Procedure 1.1, k and K, can only take integer values from 1 to m, Roth (1999)
suggested another modified Tarone procedure allowing k and K, to take fractional
values. The critical constant «/X, introduced in the following procedure will be

continuous and monotone. Thus it retains a-consistency.
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Procedure 1.3. Suppose p; be the smallest attainable p-values for H;. For1 < x <m,

let Mo(z) = > I{p; < g}. Define X, = inf{l <x <m: M,(z) < x}, then reject H;
i=1 z

if P < afX,.

Roth (1999) showed that Procedure 1.3 is equivalent to Procedure 1.2 and these
two procedures are universally more powerful than Tarone procedure.
Hommel and Krummenauer (1998) also proposed a step-down procedure for

discrete data by incorporating Tarone’s idea into Holm procedure.
Procedure 1.4 (TH*).
1. Set I ={1,...,m}.

2. For k = 1,...,|1|, define My(k) = #{i € I : pf < a/k} as the number of

hypotheses with indices in I that can be rejected at level a/k. Let Ki(a) =

min{k =1,..., || : M;(k) <k} and define by(y) = KL(’)/)
I

3. Fori € I, reject H; if and only if P; < b;(7y) for some 0 < v < a.
4. Let J be the index set of hypotheses rejected in step 3.
5. If J 1s empty then stop, otherwise set I = I — J and return to step 2.
Note that if the test statistics is continuous, then Procedure 1.4 reduces to Holm
procedure.

Roth (1999) also introduced a two stage step-up procedure based on Hochberg
procedure (1998).

Procedure 1.5. Roth’s step-up procedure is consisted of the following two stages:
e Stage 1:

1. Accept all hypotheses outside of Ry = {H; : pf < a}.

2. For the M, (1) hypotheses in the set Ry, order their available p-values from
highest to lowest as Py 1y = -+ > Py (u.)) with corresponding hypotheses
Hyqy, oo Hi (a1 -

3. Define r = min{j : P ) < % and Hy ;) € Ri}.

17



4. Reject all of the H; € Ry, such that P; < g.
r
e Stage 2:

1. Consider only the hypotheses in Ry,, order their available p-values from
highest to lowest by Px 1y > -+ > Pgua(ky)- If Mo(K) < K, then let
Pr iy =0 fori=My(K)+1,...,K, where K is the same as K, defined in

Procedure 1.1.
2. Forj=1,... K, define P} = max{{P;}\U{P: H; € Rj — Rx}}.
3. Define r' = min{j : Pr < g}
J

4. Reject H; if P; < g/.
r

Then this procedure rejects H; if it was rejected in stage 1 or 2.

Adjusted p-value for several existing procedures
Based on (1.2.8), adjusted p-value for the Bonferroni procedure for each hypothesis H;

can be obtained by

P, pony = min{l,mP;}, wherei=1,...,m.

The adjusted p-value for the Sidak procedure is given by

P, sidgak =1 — (1 —P)™, wherei=1,...,m.

The adjusted p-values for Procedure 1.2 is defined by Hommel and Krummernauer

(1998) as follow.

Proposition 1.1. Adjusted p-value for Procedure 1.2 (T*)  Order the minimal
attainable p-values p; < --- < pk.. For each P;, determine q(F;), such that pj‘](Pi) <
P, < pZ(Pi)H, the adjusted p-value s

P, p« =min{l,q(P) - B}, fori=1,...,m. (1.3.1)

The adjusted p-value for Holm procedure (1979) can be obtained as follow:
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Proposition 1.2. The adjusted p-value of Holm procedure for each hypothesis H; is
defined by

. min {1, mPu}, i=1
P(z'),Holm = -
max {P(i_l),Holm, min {1, (m—i+ 1)P(Z»)}} , 1=2,...,m

Hommel and Krummenauer (1998) obtained an algorithm for computing the

adjusted p-values for Tarone-Holm Procedure 1.4 as follow:
Proposition 1.3. Adjusted p-value for Procedure 1.4 (TH™)

1. Set j = 1. Let indices iy, ..., i, according to ordered p-values Py < Pgy < -+ <
Pny. Determine q = q(Pqy) such that p; < Pay <pj ,,. Set

P(l),TH* = min{1, Q(P(l)) : P(l)}'

2. Setj=j+1,

3.8t I ={(),J+1),....,(m)} = {ir,...,it} witht =m—j+1 andi; < .. <iy.
Determine q = q(P(;)) such that pi, < Py <pi ., If PG > aiz, choose q(P;)) = t.

4. Compute
p(j),TH* = maX{P(j_1)7TH*7min{l, q(P(])) . P(])}}

5. If 7 = m, stop; otherwise go back to step 2.

The adjusted p-value of Hochberg procedure (1988) is derived as follow:

Proposition 1.4. The adjusted p-value of Hochberg procedure for each hypothesis H
s defined by

~ P(m), 1=m

P(i),Hochberg = ~
min {P('iJrl),Hochberga (m —1+ 1)P(,L)} 5 1=m — 1, cey 1

In addition, Gutman and Hochberg (2007) proposed single-step and stepwise
procedures by using the Westfall and Wolfinger procedure on the set Rg defined in

Procedure 1.1. Kulinskaya and Lewin (2009) proposed a fuzzy Bonferroni procedure
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based on the idea of randomized test, but the interpretation of the results is not very

straightforward.

1.3.3 FDR Controlling Procedures

In some experimental settings such as DNA microarray experiments, genome-wide
association studies (GWAS), functional Magnetic Resonance Imaging (fMRI) exper-
iments and adverse events detection in clinical trials, there are a large number
of hypotheses. Familywise Error Rate (FWER) controlling procedures are quite
conservative for such testing problems. Benjamini and Hochberg (1995) introduced
the False Discovery Rate (FDR) as an alternative error measure to the FWER. They
also introduced BH procedure for controlling FDR, which is a simple step-up procedure
with the critical constant of «a; = %a. Benjamini and Yekutieli (2001) show that
BH procedure controls the FDR under PRDS condition. They also introduced BY
procedure, which is another step-up procedure with the critical constant «o; = %a,
where C,, = >." 1/i. BY procedure controls FDR under arbitrary dependern;ce.
Benjamini and Liu (1999) and Romano and Shaikh (2006) proposed two different
step-down procedures which can control FDR under certain conditions. Storey (2002,
2004) introduced an estimation approach to FDR that is the opposite of stepwise
methods. In the stepwise methods, the rejection region (critical constants) is determined
based on the fixed FDR level, but Storey’s approach is to fix the rejection region and
estimate the FDR of the rejection region. For some other methods, see Sarkar (2008)

and Benjamini (2010).

Adjusted p-value for FDR controlling procedure

The adjusted p-value of BH procedure is derived as follow:
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Proposition 1.5. The adjusted p-value of BH procedure for each hypothesis H ;) is
defined by
- P(m), 1=m

min{ ~(i+1),BH7 ?P(i)} s 1=m — 1, ey 1

The BH procedure can be used for developing conditional FDR controlling

procedure in Chapter 3.

1.4 Research Motivation and Dissertation Outline

In this dissertation, we focus on developing some new methods for analyzing biomedical
or clinical data. In Chapter 2, several stepwise multiple testing procedures are proposed
for real data applications, that take the discreteness of the test statistics into account,
and control FWER as required by the problem of interest. In Chapter 3, by exploiting
selective inference idea, one class of two-stage multiple testing procedures are developed
for controlling type 1 error rates for different levels based on the multiple families
structure. The proposed procedure can efficiently select body system of interest and flag
adverse events in clinical safety studies. In Chapter 4, a logistic-type model considering
an inverse sampling scheme is established for modeling categorical data, which shares
common covariates in each sample. In the following, we discuss the motivation behind
the research.

In clinical trials, discrete data often arise and FWER control is commonly required
while testing multiple hypotheses. In the literature, most FWER controlling procedures
are developed for continuous data. By fully exploiting the discrete information, we can
generally develop more powerful procedures than the usual ones. Previous researches on
FWER control procedures for discrete data are either based on the partial information
of p-values (minimal attainable p-value), or resampling and randomization methods
which needs intensive computation but only ensured asymptotic control of the FWER.
For example, Tarone procedure only uses the minimal attainable p-value to reduce the

number of tested hypotheses. In practice, the CDF of the null p-values are often known
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for discrete data. By using the distributional information of the null p-values, we can
develop more powerful FWER controlling procedures for discrete data.

In many modern applications, it may be more appropriate to apply a multiple
testing procedure that controls FDR. One such application is to study clinical safety for
drug development, which collect and monitor spontaneous reports of suspected adverse
events from health care providers. In order to detect new adverse drug reactions after
marketing approval, we can use multiple testing methods to test the association between
drugs and adverse events while controlling the FDR. Since the adverse events are
naturally classified by different body system, a two-stage multiple testing procedure is
considered, where the first stage is to select body systems for further research discovery,
and the second stage is to flag AE in selected body systems. It is desired to control type
1 error rates for both screening and testing stages. Since the selection and testing stages
use the same data, the selective (conditional) inference should be taken into account.

This application also motivates to develop a GLM model in Chapter 4. When
the response is categorical data, with several level as rare ones, but the covariates
are the same in each sample, the traditional logistic model or ENMn model is not
suitable any more. We suggest a logistic-type model with the response following ENMn
distributions. We can make corresponding inference, such as parameter estimation,
confidence interval, hypotheses testing, etc. Real data analysis and comparisons are
performed as well.

This dissertation is outlined as follows: Chapter 1 provides some basic concepts
on multiple testing and background on generalized linear model. In Chapter 2, several
stepwise FWER controlling procedures for discrete data are proposed. We also compare
our proposed procedures with some existing MTPs through real data analysis and
simulation studies. In Chapter 3, we develop a two-stage selective inference based
multiple testing procedures for multiple families structure, which can be well applied in
clinical safety data analysis. Simulation studies through which we compare the proposed

procedure with other procedures for multiple families are also presented. In Chapter
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4, a multivariate logistic-type model based on an inverse sampling scheme is developed
for modeling categorical data including several special and non-special event groups,
statistical inference and model diagnostics for the proposed model in comparison with

conventional logistic regression are also provided.
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CHAPTER 2

FWER CONTROLLING PROCEDURES FOR DISCRETE DATA

2.1 Introduction

In this chapter, we consider to develop several FWER controlling procedures for
discrete data. In the existing literature, most FWER controlling procedures are
developed for continuous data, such as Bonferroni procedure (1936), Holm procedure
(1979) and Hochberg procedure (1988), etc. These procedures control FWER under
various dependence condition. However, they might be highly conservative when
they are used to analyze discrete data. A few of researches have been devoted to
develop FWER controlling procedures for discrete data. Tarone (1990) improved
Bonferroni procedure by using the minimal attainable p-value, which reduces the actual
number of hypotheses by removing the non-significant ones. The modified Bonferroni
procedure controls the FWER under arbitrary dependence and is more powerful than
the original Bonferroni procedure for discrete test statistics. But Tarone’s procedure
lacks a-consistency (Roth, 1999). To overcome this problem, two types of improved
Tarone procedures were developed by Hommel and Krummenauer (1998) and Roth
(1999), which not only control FWER, but also maintain a-consistency. Furthermore,
Hommel and Krummenauer (1998) incorporated Tarone’s idea to improve the Holm
procedure for discrete data. By using the similar idea, Roth (1999) introduced a two
stage step-up procedure based on Hochberg procedure (1988). However, this procedure
lacks a-consistency.

In this chapter, we introduce several FWER controlling procedures that exploits
the discrete nature of test statistics. We first consider a single-step modified Bonferroni
procedure using CDF’s of p-values, which exploits enough information of discrete p-
values. Compared with existing single-step methods, the proposed procedure has several

good properties. It is more powerful than the existing single-step procedures for discrete
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data. By using similar idea, we also develop step-down and step-up procedures for
discrete data. The proposed procedures not only control the FWER, but also have
a-consistency and p-value monotonicity, which are desired properties in multiple testing.
Adjusted p-value of the proposed procedures can also be easily calculated, while closed-
forms of adjusted p-values are very difficult to obtain for resampling based methods
or randomized tests. We illustrate an application for detecting differentially expressed
c¢DNA transcripts among multiple nucleotides, where the experiments are conducted
by using discrete data. Through real data analysis and simulation studies, we compare
the performances of the proposed methods with those of the available procedures.
The rest of the chapter is organized as follows. Section 2.2 introduces some
basic notations, concepts and existing procedures for discrete data. In Section 2.3, the
new single-step procedure is proposed and some desired statistical properties of this
procedure are discussed. Section 2.4 and 2.5 respectively introduce new step-down and
step-up procedures for discrete data to control the FWER. Section 2.6 summarizes and
discusses some future work. Statistical computing tools such as R package and web

application are also developed.

2.2 Preliminary

Consider the problem of simultaneously testing m hypotheses Hy,..., H,,, suppose
there are mq true null hypotheses and m; false null hypotheses. Assume the test
statistics are discrete. Let P; denote the p-value for testing H; and P; denote the
full set of all attainable p-values for H; such that P, € P;. Suppose F; denote the
cumulative distribution function (CDF) of P; when H; is true, that is F;(u) = Pr(P; <
u|H; is true). For any u € P;, F;(u) = u; otherwise, F;(u) < u.

Typically, the hypotheses are ordered based on their p-values and are tested using
a single-step or stepwise procedure. Let Py < -+ < F,;,) denote the ordered p-values
and Hy),...,Hq, denote the corresponding hypotheses. Let F{;) denote the CDF of

P when H; is true, and Py denote the set of all attainable p-values of F;.
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2.3 A Single-step Procedure for Discrete Data
A simple and commonly used single-step procedure is Bonferroni procedure, which
rejects H; if P, < %. The Bonferroni procedure controls FWER under arbitrary
dependence. Taking discreteness of data into account, Tarone (1990) proposed a novel
single-step procedure (Procedure 1.1) controlling FWER, which is more powerful than
Bonferroni procedure. However, the procedure only use partial information of true null

distributions, so it might be conservative. In this section, we consider using full sets of

discrete p-values to develop a more powerful single-step procedure.

2.3.1 A New Single-step Procedure
In this subsection, we present a new single-step procedure for discrete data. The
proposed procedure fully exploits the marginal distribution of the true null p-values,

and is defined as follow:

Procedure 2.1 (Modified Bonferroni). Let t = max{p € UP; : . Fi(p) < a} and
i=1 i=1

o
set t = — if the maximum does not exist. Then reject H; if its corresponding p-value
m

P <t

Remark 2.1. It should be noted that the proposed modified Bonferroni procedure 2.1
for discrete data is a natural extension of the usual Bonferroni method for continuous
data. When all true null test statistics have continuous distributions, which implies
F; ~ U[0,1], Fi(p) = p, then t = max{p € (0,1] : mp < a} = % is exactly the
critical value of Bonferroni procedure. Thus, the above procedure reduces to Bonferroni

procedure.

In the following, we prove that Procedure 2.1 strongly controls the FWER, under

arbitrary dependence.

Theorem 2.1. Procedure 2.1 strongly controls the FWER at level a under arbitrary

dependence.
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Proof. Let V' denote the number of falsely rejected hypotheses, I, denote the index set
of true null hypotheses with |I| = my, then

FWER = Pr{V > 1} = Pr{U{R < t}}

1€l

<N Pr{p <t} =Y F(t) (2.3.1)

i€l i€lp

<Y R0 <a
=1

The first inequality follows from Bonferroni inequality.
If the maximum does not exist, by using the property of the CDF for discrete
p-value Fi(t) <t, > Fi(t) <> . t=m- 2 — 4. The proof is complete. O
j i=1 m

=1
In the following, we compare the proposed method with several existing single-
step procedures, and prove that the proposed procedure is more powerful than these
procedures. First of all, we want to show the proposed procedure is more powerful than

Tarone’s procedure, which is described in supplementary materials.
Proposition 2.1. Procedure 2.1 is universally more powerful than Procedure 1.1.

Proof. We firstly show that > Fz(i) < a.

=1 67

Since Ry, = {i : pt < Ki}, IRi.| = My (K,) < K,. Therefore,
" (6% (0] «
ZE(K_Q> = Z Fz’(z) < |Rk,|- Ko
=1 1€ERK,,

Let t = max{p € UP; : > Fi(p) < a}, and let t* be the smallest attainable
i=1 i=1

p-value greater than ¢, that is, t* = min {p eUP:p> t}, then > Fi(t*) > a. We
i=1 i=1

a a a
—) < a, so — < t*. Then there are two cases: (1) when — <,
KOC KOC 6

it is trivial the set of rejections using Tarone’s procedure is no more than the Procedure

2.1; (2) when t < Ki < t*, by the property of discreteness, {H; : P, <t} ={H;: P, <

}={H,;: P, <t*}. So based on (1) and (2) rejection set using Tarone’s procedure

have shown Y Fi(
i=1

a
K,
is less than or equal to the one using Procedure 2.1.
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Therefore, Procedure 2.1 always rejects as many hypotheses as Tarone’s procedure.

That is, Procedure 2.1 is universally more powerful than Tarone’s procedure. O

We can also show that the proposed procedure is more powerful than modified

Tarone’s Procedure.
Proposition 2.2. Procedure 2.1 is universally more powerful than Procedure 1.2.

Proof. We need to show that for Vy < a, > E(Kl) < a.
=1 o

Let Ry, = {i : pf < Kl}, then Ry, | = M, (K,) < K,. Therefore,
i

Y Y
ZE(—) = Z E(F)
i=1 R iGRK—Y v
gl
< |Rg.|- —=
< B | K, (2.3.2)
gl
= M’Y(KV) ) 78
Y
<7<

The rest of argument is similar as the proof of Proposition 2.1 and the conclusion
follows.

]

So far, we have shown the new single-step procedure is more powerful than the
Tarone’s procedure and its modified versions for discrete data. Next, we look into some

other good properties of this procedure.
a-consistency

Proposition 2.3. Procedure 2.1 is an a-consistent procedure.

Proof. Since t = max{p € JP; : > Fi(p) < a}. It is equivalent to show that the
i=1 i=1
threshold ¢ is a non-decreasing function in a. It is trivial.

]
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p-value monotonicity Based on (2.3.3), it is easy to show Procedure 2.1 has p-
value monotonicity. Since for each 4, true null CDF F;(-) is a non-decreasing function,
f: F;(+) is also a non-decreasing function. When some p-values become smaller, the
z;)lrresponding adjusted p-values will not become larger, thus the procedure will reject

the same hypotheses and possibly more. So we have the following proposition.

Proposition 2.4. Procedure 2.1 is p-value monotone.

Adjusted p-value Now, we can derive the adjusted p-value for our proposed

procedure as follow:

Proposition 2.5 (Modified Bonferroni Procedure 2.1).
If P; is the awvailable p-value for H;, then the adjusted p-value for corresponding
hypothesis is

P, pBons = min{l, ZFj(B)}, fori=1,...,m. (2.3.3)
j=1

It is easy to see that the adjusted p-value of the proposed modified Bonferroni
procedure is smaller than or equal to that of original Bonferroni procedure, since for

each fixed 7 and any j = 1,...,m, F;(P) < P, then ) F;(FP;) < mPFP;. Therefore,

7j=1
the Procedure 2.1 could have more rejections than Bonferroni procedure for the same

available p-values.
In the following, we compare the adjusted p-values of the proposed Procedure 2.1

with those of Bonferroni procedure and Procedure 1.2 through a simple example.

Example 2.1. Suppose there are m = 2 hypotheses H; and Hs, the attainable p-values
for Hy is Py = {0.05,1}; for Hy is Py = {0.1,1}. The actual p-values are P, = 0.05, P, =
0.1. Thus the minimal attainable p-values are p; = 0.05, p5 = 0.1. Now we can
calculate the adjusted p-values for Bonferroni procedure are ]517 Bonf = 2x P; = 0.1 and
Py pong =2 % Py =0.2.

To calculate the adjusted p-value of Procedure 1.2, firstly we need to determine
q. For P, = 0.05, p] < P, < p;3,s0q =1, ]51,T* =1x P =005 For P, = 0.1,
since P, > p5, then ¢ = m = 2, PZT* = 2 x P, = 0.2. The CDF of p-values for
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the two hypotheses can be expressed by Fi(c) = 0.05 x I{0.05 < ¢ < 1} + I{c = 1},
Fy(c) =0.1xI1{0.1 < ¢ < 1}+I{c = 1}, where [ is an indicator function. So pl’MBonf =
F1(0.05) 4 F»(0.05) = 0.0540 = 0.05, PZMB(mf = F1(0.1)+ F5(0.1) = 0.05+0.1 = 0.15,
which are smaller than those of the Bonferroni procedure and Procedure 1.2.

Now, suppose we set the significant level & = 0.06, then by comparing the adjusted
p-values of the above procedures with «, we can conclude the Bonferroni procedure
reject no hypothesis, Procedure 1.2 and Procedure 2.1 reject Hy. But if set a = 0.16, the
Bonferroni procedure and Procedure 1.2 only reject Hy, while the proposed Procedure

2.1 rejects Hy and H,.

2.3.2 Applications for Single-step Procedures

cDNA transcripts data Tarone (1990) analyzed an experiment in which comple-
mentary DNA (cDNA) transcripts were produced from transcribed RNA obtained from
cells grown under normal conditions and from cells grown under an unusual study
condition. The cDNA transcripts from a gene of interest were sequenced and compared
to the known nucleotide sequence to determine the number of individual nucleotide
changes in the transcripts. The frequencies of the changes were compared from the
control and study cells to evaluate differences in the transcribed RNA.

The data in Table 2.1 is from Hommel and Krummenauer (1998, Table 1), which
reports the frequencies of nucleotide changes observed at nine sites. The DNA sequences
examined in the experiment were 200 nucleotides in length. Our analysis includes nine
changed nucleotides, which are those with a sufficient number of changes to possibly
detect statistical significance at the significant level o = 0.05 using the Fisher’s Exact
Test (FET), conditional on the fixed marginal totals, and assuming independence
between sites. In the data, Nj; is the number of transcripts at nucleotide ¢ in group
j and Xj; is the observed number of change in transcripts, which is the events of
interest, where i = 1,...,9 and j = 0,1 (0 is control group and 1 is study group). The
first column shows the index of the ordered nucleotide p-values reported in Hommel
and Krummenauer (1998). The second and third columns are the frequencies of the

observed change in the control and study groups. The nucleotides available p-values P;
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in Table 2.1 are calculated by using one-sided FET:

o GO

where X ; = Xo; + X415, N; = No; + Ny;. For Tarone’s procedure, the minimal attainable

significance level at site ¢ is given by

(2.3.5)

Table 2.1 A Comparison of Adjusted p-values for the Bonferroni Procedure, Sidak
Procedure, Modified Tarone Procedure and Procedure 2.1 when Testing the Hypotheses
in the cDNA Example from Hommel and Krummenauer (1998)

[ Xoi/Noi | X1:/Nii | B P Bony P sidak P P vBony
1 1/10 8/11 0.0058 0.0522 0.0510 0.0116 0.0097
2 0/8 5/7 0.0070 0.0629 0.0612 0.0210 0.0167
3 0/11 4/10 0.0351 0.3158 0.2749 0.2100 0.1072
4 1/11 3/9 0.2167 1.0000 0.8890 1.0000 0.6184
5 2/11 4/10 0.2678 1.0000 0.9395 1.0000 1.0000
6 1/10 3/10 0.2910 1.0000 0.9547 1.0000 1.0000
7 2/9 2/8 0.6647 1.0000 1.0000 1.0000 1.0000
8 2/9 2/9 0.7118 1.0000 1.0000 1.0000 1.0000
9 2/9 2/9 0.7118 1.0000 1.0000 1.0000 1.0000
From Table 2.1, we can see that for nucleotide : = 1, ..., 4, the adjusted p-values

of Procedure 2.1 are smaller than those of other traditional procedures, which implies

these hypotheses are more likely to be rejected by the Procedure 2.1 than others.

Clinical safety data We can also apply the proposed single-step procedure for
clinical safety studies, since clinical safety data is usually based on the count of patients
to illustrate the adverse events exposures. The data in Table 2.2 (first three columns)

are from Mehrotra and Heyse (2004, Table 1), which reports the AE types for two groups
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of toddlers for Body System 10. For illustration purpose, we reorder the data based on
the corresponding p-values. The goal of this clinical safety study is to detect significant
AEs (so-called “flagging”). Our analysis includes nine AE types of No. 10 body system
(skin), which are those with a sufficient number of AE types to possibly detect statistical
significance at the significant level @ = 0.05 using the Fisher’s Exact Test (FET),
conditional on the fixed marginal totals, and assuming independence between sites. In
the data, N; is the total number of toddlers at group j, and Xj; is the observed number
of the j-th group toddlers experiencing the i-th AE, which is the events of interest,
where i =1,...,9 and j = 1,2 (1 is control group receiving MMR and 2 is study group
receiving the candidate vaccine MMRV). Here N7 = 148 and Ny = 132. The first
column shows the index of the AE types after reordering the data. The second and
third columns are the number of toddlers experiencing the corresponding AE in the
control and study groups. The available p-values P; for i-the AE type in Table 2.2 are
calculated by using two-sided FET.

Table 2.2 A Comparison of Adjusted p-values for the Bonferroni Procedure, Sidak
Procedure, Procedure 1.2 and Procedure 2.1 when Testing the Hypotheses for Nine AE

types of Body System 10 in the Clinical Safety Data Example from Mehrotra and Heyse
(2004), where the Numbers of Patients for Two Groups Are Ny = 148 and Ny = 132

? Xu | Xo | B P Bonf P sidak P 1 Pi vBonf
1 13 3 0.0209 0.1880 0.1731 0.0836 0.0534
2 8 1 0.0388 0.3490 0.2995 0.1551 0.1343
3 4 0 0.1248 1.0000 0.6986 0.8734 0.7134
4 0 2 0.2214 1.0000 0.8948 1.0000 1.0000
5 6 2 0.2885 1.0000 0.9533 1.0000 1.0000
6 2 0 0.4998 1.0000 0.9980 1.0000 1.0000
7 1 2 0.6033 1.0000 0.9998 1.0000 1.0000
8 4 2 0.6872 1.0000 1.0000 1.0000 1.0000
9 2 1 1.0000 1.0000 1.0000 1.0000 1.0000
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From Table 2.2, we can see that for the first three AE p-values Pi,..., Ps,
the adjusted p-values of Procedure 2.1 are smaller than those of other traditional
procedures, which implies these hypotheses are more likely to be rejected by the
Procedure 2.1 than others, that is, those AE are more easily flagged by using the

Procedure 2.1.

2.3.3 Simulation Studies for Single-step Procedures Comparisons
In the following, simulation studies were performed to investigate the performances
of the proposed Procedures 2.1 in terms of the FWER control and minimal power

compared with some existing single-step FWER, controlling procedures.

Basic settings of the simulation The simulations are conducted based on two

typical discrete tests: Fisher’s Exact Test (FET) and Binomial Exact Test (BET).

1. Fisher’s Exact Test: Suppose we have two groups, study (1) and control (2)
group. There are m independent binomial responses X;; observed for each of N
individuals in each group i, such as X;; ~ Bin(N,p;n), Xio ~ Bin(N, p;) for
t=1,...,m. The goal is to simultaneously test the m hypotheses H; : p;1 = pso,
where p;; is the success probability for the i-th response in group j, and i =
1,...,m, 5 =1,2. So there are m of 2 X 2 contingency tables in each simulation as
described in Chapter 1. We conduct the experiment using one-sided FET under
a = 0.05, then the test statistic T; ~ Hypergeometric(X;1, N, Xi1 + Xi2,2N).
Set the number of hypotheses m = {5,10,15}, with true null proportion mq =
{0.2,0.4,0.6,0.8} respectively. The sample size for the binomial response per
group used are N = {25,50, 75,100,125, 150}. For true null hypotheses, set the
success probability parameter of binomial response in each group as 0.1, and for
false null hypotheses set the success probability for study group as 0.1, and for
control group as 0.2. The observed individuals in the two groups are chosen

randomly from the Binomial distributions.
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2. Binomial Exact Test: Suppose we have two groups: study (1) and control (2)
group. There are m Poisson responses observed in each group, such as X;; ~
Poi(Ni1), Xia ~ Poi(N\g) for i =1,...,m. The goal is to simultaneously test the
m hypotheses H; : A\i; = Ag;, where );; is the mean parameter for the i-th response
in group j,and i =1,...,m, 7 = 1,2. We conduct the experiment using one-sided
BT under o« = 0.05 and o = 0.1 respectively, then the test statistic for reference

group follow binomial distribution. Here we assume group 1 as reference group,
Ait

i1+ Az

m = {5,10,15}, with true null proportion 7y = {0.2,0.4,0.6,0.8} respectively.

then T; ~ Bin(X;1 + X2, p;), where p; = . Set the number of hypotheses
For true null hypotheses set the mean parameter of Poisson response in each
group as \j; = Ay; = 2, and for false null hypotheses set the mean parameter for
group 1 as A;; = 2, and for group 2 as Ay; = 10. The study and control group

observed individual are chosen randomly from the Binomial distributions.

Using the FET or BET we can calculate the available p-value P; and all attainable
p-values in the set P;. Then we compute the simulated FWER, minimal power, number

of rejections by taking average of B = 2000 iterations.

Power = Pr{correctly rejecting at least one null hypotheses}.

Results of the simulation under independence Tables A.1 and A.2 in the
Appendix A show the simulated FWER levels and minimal powers of the compared
four procedures using the FET statistics. First, the proposed Modified Bonferroni
procedure (Procedure 2.1) always has higher FWER level, and more powerful than the
other three procedures. The simulation results also verify that two discrete FWER
controlling procedures (Modified Bonferroni and Tarone) have higher FWER levels
and provide more power than the other two classic procedures (Bonferroni and Sidak).
Second, the FWER levels are less conservative, and the power advantages are larger for
smaller size N, since the data was more discrete for smaller N, then the improvement

is more obvious. For example, when testing m = 10 hypotheses, 7y = 0.2, which
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implies there are 2 true nulls and 8 false nulls, the simulation result shows that the
FWER improvement of Procedure 2.1 (0.0020) is 300% higher than Tarone procedure
(0.0005) when the simulated data is from binomial with N = 5. But when sample size
N = 125, the improvement is only 35.7% (0.0095 versus 0.0070). Third, as the true
null proportion becomes bigger, the proposed procedures FWER is closer to nominal
significant level 0.05, but power becomes smaller. The power of Procedure 2.1 becomes
larger when testing more hypotheses or using larger sample size N. We also plot the

simulation results in Figures 2.1 and 2.2 for the FWER and minimal power comparisons.
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Figure 2.1 Simulated FWER comparisons for different single-step procedures based
on FET.

Tables A.3 and A.4 in the appendix show the simulated FWER levels and minimal

powers comparisons using the BET statistics. The results show the proposed Procedure
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Figure 2.2 Simulated minimal power comparisons for different single-step procedures
based on FET.

2.1 controls FWER and are more powerful than other three procedures under such

settings. For other findings, they are similar to the simulation results based on FET.

2.3.4 Extension for the Proposed Procedures for the Mixed Data Structure
of the Hypotheses

In practice, the hypotheses are commonly involved in a mixed structure for both discrete
and continuous data. then the proposed procedures can be naturally extended as
follows.

Suppose there are m hypotheses Hy,..., H,,. Let I. denote the index set of the
hypotheses for continuous data, so the number of continuous test statistics is m. = |I.|.

The corresponding available p-values under the null one uniformly distributed in [0, 1],
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that is, Fj(p) = p for ¢ € I. and any p € [0,1]. Let I; denote the index set of the
hypotheses for discrete data, the number of discrete test statistics is my = |I4| = m—m,

The corresponding available p-values are stochastically greater than or uniformly
distributed in [0, 1], that is, F;(p) = p for i € I; and p € P;; Fi(p) < p for i € I; and
p ¢ P;. The mixed CDF can be expressed by

Fi(p) = pl{i € L.} + Fi(p)I{i € 1.}.

Procedure 2.2 (Mixed Bonferroni procedure). Let the critical constant be t =

max{0 <p<1:mp+ > Fip) <a}, then reject H; if P; <t.

i€ly
Example 2.2. If there are only two hypotheses H; and Hs. The test statistics 77 of
Hj is continuous, then the corresponding p-value Py ~ Unif(0,1). The test statistics
Ty of Hy is discrete, let P, be the corresponding p-value with atom at 0.01,0.19,1 (eg:
Ty ~ Binomial(2,0.1), then the CDF of P, is

;

0 0<p<001

0.01 0.01 <p<0.19
Fy(p) = (2.3.6)

019 019<p<1

1 p=1

If the significant level a = 0.05, then the critical constant of mixed Bonferroni procedure
is t = max{0 < p < 1:p+ Fy(p) < 0.05} = 0.04. While the critical constant for
traditional Bonferroni procedure is ¢’ = 0.05/2 = 0.025, which is more conservative. If
we observe P, = 0.03, P, = 0.01, then only H, is rejected for Bonferroni procedure, but

H, and H, are rejected for mixed Bonferroni procedure.

So the mixed Bonferroni procedure could less conservative than Bonferroni

procedure.

Proposition 2.6 (Adjusted p-value for mixed Bonferroni procedure).
If P; s the available p-value for H;, then the adjusted p-value for corresponding
hypothesis is

Eﬂmﬂmf:rmn{l,WQR~F§:PKFD},ﬂWi:1V”,m. (2.3.7)

Jj€lq
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Since the mixed Bonferroni procedure is just a special case of Procedure 2.1 only
if some test statistics are continuous, the mixed procedure strongly controls the FWER
under arbitrary dependence and holds all desired properties such as a-consistency, p-

value monotonicity, etc.

2.4 A Step-down Procedure for Discrete Data
By exploiting the discreteness of data, Hommel and Krummenauer (1998) improved
Holm procedure as Procedure 1.4. This procedure could be further improved by utilizing

full sets of p-values.

2.4.1 A New Step-down Procedure
In the last section, we have proposed a new single-step procedure based on the marginal
CDEF’s of p-values, and now we develop a more powerful step-down procedure by

exploiting the the same distributional information of null p-values.

m

Procedure 2.3 (Modified Holm). Let o; = max{p € |J Py : > F;)(p) < a} with

J=t J=t

«
ag = 0. Set o, = maxq ;_1, —H} if the mazimum does not exist. Then
m—1
reject mo null hypotheses if Pyy > «y; otherwise, reject Hyy, ..., Hyy and retain
He 11y, ..., Heyy, where 1 is the largest index satisfying Py < aq, ..., Py < ;.

Remark 2.2. It should be noted that when the test statistics have continuous

distributions, which implies F; ~ U[0, 1], F;(p) = p, then

(07

ai:max{pe((),l]:(m—i—i—l)pﬁoé}:m_—m-

Thus, the procedure reduces to Holm procedure.

Theorem 2.2. Procedure 2.3 strongly controls the FWER at level a under arbitrary

dependence.

Proof. Let Iy be the indices of the true null hypotheses and V' denote the number of
falsely rejected hypotheses. If |Iy] = 0, then V = 0, FWER = 0 < « is trivial.
When [ly] = mo > 1, let ]3(1) < ... < P(mo) denote the mq true null p-values, and
P(l) <. < P(ml) denote the m; false null p-values.
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Let %k be the smallest random index of whole p-values satisfying Py = ]5(1), that

is Py = min P;. It implies Py, ..., Py, include all true null p-values, that is,
(k) = 225 (k) - (m)

Therefore,
FWER=Pr{V >1} = Pr{minR < oy}

(2.4.1)
<Y Pr{P <oy} < ZFJ) )

i€lp

The last inequality follows by the definition of a, = max{p € |J P, : > F(;)(p) < a}.
j=k

j=k
If the maximum for £ does not exist, then «; = max {ak_l, ++1}
fa,, < m—LkﬁLl’ that is, o = m—Lkan by the property of CDF for discrete
p-value, the last inequality will become ) Fijj(ag) < > o= e
= = j=km— k41
If ag_q > L, and if the maximum as definition exists for £ — 1, that is,
m—k+1
a1 =max{p € |J Py : Z Fij)(p) < a}, then the last inequality will become
j=k—1 j=k-1

> Fiylow) = Y Fijy(og—1) < Z Fijy(og—1) < . If the maximum as definition
=k j=k j=k—1

does not exist for £ — 1, then o = a1 = max < ag_s, _c . By the similar
m—k+ 2
argument, FWER < o« when ap = a1 = L.
m—k+ 2

By iteration, we can prove until for some [ — 1, the maximum exists, then

Qp = Qp_1 =+ =q; = qq_1, then

ZF(J)(ak> = Z ]) 07 1 Z F(] Qg 1 Oé,
j=k

j=k j=l—1

which completes the proof. O
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a-consistency Based on Definition 1.2, we can also explore this desired property for
Procedure 2.3. This property can be proved by using the similar argument in the proof

of Proposition 2.3.

Proposition 2.7. Procedure 2.3 is an a-consistent procedure.

Adjusted p-value We can directly calculate the adjusted p-value of Procedure 2.3
based on the Definition 1.2.8.
Proposition 2.8 (Adjusted p-value for Procedure 2.3).

If Py < --+ < Py are the available p-value for Hgyy, ..., Hqy), then the adjusted
p-value of Procedure 2.3 for corresponding hypothesis H is

min{l, ZF(j)(P(l))}, 1=1
~ j:1

Py vHotm = . (2.4.2)
max {P(i—l),MHolmy min {1, Z F(j)(P(i))}} .1 = 27 oo,

J=i

p-value monotonicity According to the calculation of the adjusted p-value Eq.
(2.4.2), we can show that Procedure 2.3 is also p-value monotone using similar argument,

of Proposition 2.4.

Proposition 2.9. Procedure 2.3 is p-value monotone.

2.4.2 Applications for Step-down Procedures
cDNA transcripts data We compare the proposed Procedure 2.3 with Holm
procedure and Tarone-Holm Procedure 1.4 using the previous c¢cDNA transcripts
example. We also use their adjusted p-values to make decisions of rejection and
acceptance.

Table 2.3 shows for hypotheses Hyy, ..., H), the adjusted p-values of Procedure
2.3 are smaller than those of Holm and Tarone-Holm procedures. That means Procedure
2.3 has more chances to reject Hyy,..., H) than the other two procedures, which

implies our proposed Procedure 2.3 could be more powerful than other two.
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Table 2.3 A Comparison of Adjusted p-values for the Holm Procedure, Tarone-Holm
Procedure and Procedure 2.3 when Testing the Hypotheses in the cDNA Transcript
Example from Hommel and Krummenauer (1998)

(7) Xoi/Noi | X1i/Nvi | Py Py Hoim Py i Py Mol
M 110 |81 00058 | 0.0552 0.0116 0.0097
(2) 0/8 5/7 0.0070 0.0559 0.0140 0.0109
3) | o/ 4/10 0.0351 | 0.2456 0.1404 0.1072
@) 111 | 3/9 0.2167 | 1.0000 1.0000 0.4268
5)  |2/11 |4/10  |0.2678 | 1.0000 1.0000 0.6347
6 | 1/10  |3/10  |0.2910 | 1.0000 1.0000 1.0000
7| 2/9 2/8 0.6647 | 1.0000 1.0000 1.0000
8) | 2/9 2/9 0.7118 | 1.0000 1.0000 1.0000
(9) 2/9 2/9 0.7118 1.0000 1.0000 1.0000

Clinical safety data We also compare these step-down procedures using the previous

clinical safety data example.

Table 2.4 A Comparison of Adjusted p-values for the Holm Procedure, Procedure 1.4
and Procedure 2.3 when Testing the Hypotheses for AE Types of Body System 10 in
the Clinical Safety Data Example from Mehrotra and Heyse (2004), where the Numbers
of Patients for Two Groups are N1 = 148 and Ny = 132

() X | Xa | P Py, moim Py ra- Py M Holm
(1) 13 3 0.0209 0.1880 0.0836 0.0534
(2) 8 1 0.0388 0.3103 0.1163 0.0982
(3) 4 0 0.1248 0.8734 0.6238 0.5050
@ o |2 02214 |1.0000 1.0000 1.0000
(5) 6 2 0.2885 1.0000 1.0000 1.0000
© |2 |o 04998 |1.0000 1.0000 1.0000
M |1 |2 06033 |1.0000 1.0000 1.0000
(8) 4 2 0.6872 1.0000 1.0000 1.0000
(9) 2 1 1.0000 1.0000 1.0000 1.0000
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Table 2.4 shows for hypotheses Hyy, ..., H), the adjusted p-values of Procedure
2.3 are smaller than those of Holm and Tarone-Holm procedures. It means Procedure
2.3 has more chances to reject Hyy,..., H) than the other two procedures, which

implies our proposed Procedure 2.3 could be more powerful than other two.

2.4.3 Simulation Study for Step-down Procedures Comparisons

In this section, simulation studies were performed to investigate the performances of
the proposed Procedure 2.3 in terms of the FWER level and minimal power compared
with two existing step-down procedures: Holm procedure and Tarone-Holm procedure
in Hommel and Krummenauer (1998). The step-down procedures simulations are
conducted by using Fisher’s Exact Test only, since using binomial exact test produces
similar patterns. The same simulation settings in Section 2.3.3 are used for this
comparison. The simulations results are shown in the Tables A.5 and A.6 in the
Appendix A.

The results show that Procedure 2.3 always controls FWER and are more powerful
than other procedures. Moreover, by comparing the results in the Tables A.1 and
A.2, the proposed step-down Procedure 2.3 is more powerful than proposed single-step
Procedure 2.1. We also plot the simulation results in Figures 2.3 and 2.4 for the FWER

and minimal power comparisons.

2.5 A Step-up Procedure for Discrete Data
2.5.1 A New Step-up Procedure

By using the same critical constants of Procedure 2.3, we can develop a new step-up

procedure for discrete data.

Procedure 2.4 (Modified Hochberg). Let o; = max{p € |J P, : > F(;)(p) < a} with

Jj=t Jj=t

ag = 0. Set a; = max {ail, L’%—l if the mazimum does not exist. Then reject
m—1i

all hypotheses Hyy, ..., Himy if Piny < iy, otherwise, reject Hyy, ..., Hyy and retain

He 11y, ..., Hiyy, where 1 is the largest index satisfying Py < o,
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Figure 2.3 Simulated FWER comparisons for different step-down procedures based
on FET.

Remark 2.3. It should be noted that when the true null test statistics have continuous
distributions, which implies that all true null p-values are uniformly distributed in [0, 1],

the above procedure will reduce to conventional Hochberg procedure.

Theorem 2.3. If the true null test statistics are identically distributed, (i) then
Procedure 2.4 strongly controls the FWER at level o under the Assumption 1.2.
(i1) Moreover, the Procedure 2.4 rejects the same number of hypotheses as Hochberg

procedure.
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Figure 2.4 Simulated minimal power comparisons for different step-down procedures
based on FET.

Proof. Since the test statistics have the same distribution, then true null p-values have

the same domain P and CDF F'(-), then for each 1,

a; = max{p € UIP’(]') : Z Fiy(p) < o}
=i

j=i

=max{p eP:(m—i+1)F(p) <a} (2.5.1)
«
= < — b
max{pGIP’ p_m—i—l-l}

The last equation follows from the Assumption 1.1. Obviously, «; < m+m' Then
Procedure 2.4 also controls the FWER since Hochberg procedure controls the FWER.

To prove (ii), let R = max{i : P; < m+m} be the number of rejections using
Hochberg procedure, then the critical p-value Pg) of the Hochberg procedure can be
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written as

(0% (0%

Pgy = max{Pp) : Py < —————} =max{P,: P, < ————
(r) = max{ Py : Py < ————} = max{ TR

2

which is the critical value ar of Procedure 2.4. That is, Procedure 2.4 has the same

number of rejections as Hochberg procedure. O]

Theorem 2.4. If the true null p-values only take two attainable values between 0 and

1, then Procedure 2.4 controls the FWER under arbitrary dependence.

Proof. Since the true null p-values only take two attainable values between 0 and 1, the

domain of each p-value is

P; = {p;, 1}, where 0 < p; < 1.

Suppose there are only two hypotheses H; and Hs, the corresponding available p-values
are P; and Py, where P, € {p1,1} and P> € {ps,1}. Without loss of generality, assume

p1 < po. Then the critical values of Procedure 2.4 based on the definition are computed

as:
a2, a<p
a1 =93P, P1Sa<pr+pr
p2, mtp<as<l
and
o, «<Dpy
g =
P2, P2 < a >l
There are three cases containing rejections based on the values of attainable p-
values.

Case 1: If P, =p, P, =1, since P, =1 > «, accept Hs. To reject Hy, one need
to check P, < oy if and only if p; < a. Case 2: If P, = 1, P, = po, similarly, accept
H,. To reject Hy, one need to check P, < « if and only if p; + py < a. Case 3: If

P, = p1, P, = py, only need to check whether P, < a; to ensure at least one rejection.
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Then the maximum FWER is
FWERmaI :PI'(Pl :pl,PQ = 1)+PI‘(P1 :pl,PQ :p2)+Pr(P1 = ]_,Pg :pz)
< Pr(Py =p1) + Pr(P, = p)

=N + b2 S «,
which completes the proof. O]

This step-up procedure has similar properties as those of Procedure 2.1 and
Procedure 2.3 such as a-consistency and p-value monotonicity. But it provides a higher
power, since a step-up procedure is uniformly more powerful than the corresponding
step-down procedure using the same threshold. Real data analysis and simulation

studies also show this procedure outperforms the others.

a-consistency Procedure 2.4 is an a-consistent procedure, since the critical values

of these procedures are non-decreasing in a. So we have the following propositions:

Proposition 2.10. Procedure 2.4 is an a-consistent procedure.

Adjusted p-value The adjusted p-value of Procedure 2.4 can be obtained based on

Definition 1.2.8.

Proposition 2.11 (Adjusted p-value for Procedure 2.4).
If Phy < -+ < Py are the available p-value for Hgyy, ..., Hqy), then the adjusted

p-value ]5(,-)7 MHoch for corresponding hypothesis H ;) is
Fony(Pimy) i=m

min {ﬁ(i—o—l),MHocha ZF(j)(P(i)>} .ot =m— 1, ey 1

J=t

p(i),MHoch =

p-value monotonicity Similar as previous argument in Proposition 2.4, we can show

that Procedure 2.4 are p-value monotone.
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2.5.2 Applications for Step-up Procedures

cDNA transcripts We also compare the proposed step-up Procedure 2.4 with
traditional Hochberg procedure using the previous cDNA transcripts example. We
also use their adjusted p-values to make decisions. The results are shown in Table 2.5.
Table 2.5 A Comparison of Adjusted p-values for the Hochberg Procedure, Procedure

1.5 and Procedure 2.4 when Testing the Hypotheses in the cDNA Transcript Example
from Hommel and Krummenauer (1998)

(7) Xoi/Noi | X1i/Nvi | Py Py Hoehverg | Pliy.Roth Py a Hoch
(1) 1/10 8/11 0.0058 0.0552 0.0117 0.0097
(2) 0/8 5/7 0.0070 0.0559 0.0140 0.0109
(3) 0/11 4/10 0.0351 0.2456 0.1765 0.0944
(4) 1/11 3/9 0.2167 0.7118 0.7118 0.4268
(5) 2/11 4/10 0.2678 0.7118 0.7118 0.6347
(6) 1/10 3/10 0.2910 0.7118 0.7118 0.7118
(7) 2/9 2/8 0.6647 0.7118 0.7118 0.7118
(8) 2/9 2/9 0.7118 0.7118 0.7118 0.7118
9) 2/9 2/9 0.7118 0.7118 0.7118 0.7118
The results in Table 2.5 show that for hypotheses Hy),..., H), the adjusted

p-values of Procedure 2.4 are smaller than those of Hochberg and Roth procedure.
It means Procedure 2.4 has more chances to reject H(yy, ..., H) than Hochberg and
Roth procedure, which implies our proposed Procedure 2.4 could be more powerful than

Hochberg procedure.

Clinical safety data We also compare these step-up procedures using the previous
clinical safety data example.

Table 2.6 shows for each AE with the hypotheses H(y,..., H), the adjusted
p-values of Procedure 2.3 are smaller than those of Holm and Tarone-Holm procedures.

It means Procedure 2.3 has more chances to reject Hy,..., H) than the other two
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Table 2.6 A Comparison of Adjusted p-values for the Hochberg Procedure, Procedure
1.5 and Procedure 2.4 when Testing the Hypotheses for AE types of Body System 10 in
the Clinical Safety Data Example from Mehrotra and Heyse (2004), where the Numbers
of Patients for Two Groups Are N; = 148 and Ny = 132

(2) X | Xo | P Py, Hochberg | Pla),Roth Py v Hoch
(1) 13 3 0.0209 0.1880 0.0836 0.0534
(2) 8 1 0.0388 0.3103 0.1552 0.0982
@) |4 |0 |o01248 |0.8734 0.7246 0.5050
4 o |2 |o224 | 1.0000 1.0000 1.0000
(5) 6 2 0.2885 1.0000 1.0000 1.0000
(6) 2 0 0.4998 1.0000 1.0000 1.0000
(7) 1 2 0.6033 1.0000 1.0000 1.0000
(8) 4 2 0.6872 1.0000 1.0000 1.0000
9) 2 1 1.0000 1.0000 1.0000 1.0000

procedures, which implies our proposed Procedure 2.3 could be more powerful than

other two.

2.5.3 Simulation Studies for Step-up Procedures Comparisons

We now present simulation studies comparing the new step-up FWER controlling
procedure (Proc 2.4) with Hochberg procedure. We only show the simulations based on
Fisher’s Exact Test, since simulations using Binomial Exact Test have similar patterns.
The results of comparisons are shown in Tables A.7 and A.8. The results show
that Procedure 2.4 controls FWER and is universally more powerful than Hochberg
Procedure. We also plot the simulation results in Figures 2.5 and 2.6 for the FWER

and minimal power comparisons

2.5.4 Simulation Studies for the Dependence Settings
We have performed the simulation studies for stepwise FWER controlling procedures

when p-values are independent. Now we focus on the dependence case. Since it is
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Figure 2.5 Simulated FWER comparisons for different step-up procedures based on
FET.

not easy to construct an arbitrary dependence structure for discrete test statistics, we
construct a special blocking dependence for the simulation.

Let Poi()\) denote the Poisson distribution with mean A\, Bin(n,p) denote the
binomial distribution with probability of success p and number of trials n. For the BET,
let x1; and x9; be the observed counts from two independent Poisson distributions with
mean Ay; and Ag;, where i = 1,...,m. Then test H; : A\;; = Ay; versus H] : A\j; < Mg,
where i = 1, ..., m. The test statistic T; for each ¢ is based on the total ¢; = x1; + xo;
is Bin(c;,0;), where 6; = A\1;/(A1; + Ag;). (Lehman and Romano, 2005) Then, under
the null hypothesis H; : A\j; = Ag;, T; follows binomial distribution Bin(c;, 0.5) and its

distribution only depends on ¢;. Then the following simulations are conducted based
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Figure 2.6 Simulated minimal power comparisons for different step-up procedures
based on FET.

on dependent binomial exact test (BET) statistics. The details for generating the
dependent simulation data can be found in Appendix A.

In the simulation, set the number of hypotheses m = {5,10}, with true null
proportion my = {0.4,0.6, 0.8} respectively. Set the mean parameter of Poisson response
in each group as \j; = \o; = 2 for i = 1,...,myp, and set the mean parameter for group
1 as A\y; = 2, and for group 2 as Ay; = 10 for i = my+1,...,m , where my = mym. Then
compute the simulated FWER, minimal power to compare the different procedures by

taking average of B = 2000 iterations.

Remark 2.4. Note that the above simulated p-values have joint dependence within the

group of true null hypotheses, but the p-values corresponding to true null hypotheses
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are independent of the false ones, which is the same as condition (3.5) in Romano and

Shaikh [58]. This setting also satisfies PRDS condition.

The simulation results comparisons for stepwise procedures (single-step, step-
down, and step-up) are displayed in Figures 2.7 to 2.12. More simulation results for

different scenarios can be found in Appendix A.
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Figure 2.7 Simulated FWER comparisons for different single-step procedures based
on the blocking dependent BET.

From the simulation results, we can see Procedure 2.1, 2.3 and 2.4 control FWER
under the significant level o = 0.05. Under different settings of the correlation

among the p-values, Modified Bonferroni procedure is more powerful than Tarone’s and
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Figure 2.8 Simulated minimal power comparisons for different single-step procedures
based on the blocking dependent BET.

Bonferroni procedures, Modified Holm procedure is more powerful than Tarone-Holm
and Holm procedures, and Modified Hochberg procedure is more powerful than Roth’s

and Hochberg procedures.

2.6 Conclusions and Discussion
In this chapter, we have developed several FWER controlling procedures for discrete
data by exploiting the information of discreteness for test statistics. The proposed

Procedure 2.1 and Procedure 2.3 control FWER under arbitrary dependence, Procedure
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Figure 2.9 Simulated FWER comparisons for different step-down procedures based
on the blocking dependent BET.

2.4 controls FWER under PRDS condition for some specific distributions settings.
Real data analysis in both clinical safety studies and ¢cDNA transcript data reveals
that the proposed procedures have more rejections than conventional procedures. The
simulation studies show that when the proportion of true null hypotheses is large,
which is usually the case in practical applications, the proposed stepwise procedures
can outperform the corresponding Bonferroni, Holm and Hochberg procedures and
even better than some existing discrete procedures, such as Tarone and Tarone-Holm

procedures in terms of minimal power.
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Figure 2.10 Simulated minimal power comparisons for different step-down procedures

based on the blocking dependent BET.

A possible future work is to explore optimality of the suggested Procedure 2.1
and 2.3 under arbitrary dependence, which means for some joint distribution of the
discrete p-values, one cannot increase even one of the critical constants while keeping
the remaining fixed without losing control of the FWER. Another possible future work

is to incorporate some data driven weights into the proposed procedures to develop

more powerful FWER controlling procedures for discrete data.
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Figure 2.11 Simulated FWER comparisons for different step-up procedures based on
the blocking dependent BET.

2.7 Software
The FWER controlling procedures for discrete data described in this chapter have
been implemented as a part of the MHTdiscrete R package [Zhu and Guo, 2017], which
is available online at https://cran.r-project.org/web/packages/MHTdiscrete. A web
application for the proposed procedures and most existing FWER and FDR controlling

procedures is developed at https://allen.shinyapps.io/MTPs.
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Figure 2.12 Simulated minimal power comparisons for different step-up procedures
based on the blocking dependent BET.

56



CHAPTER 3

SELECTIVE INFERENCE IN CLINICAL SAFETY STUDIES

3.1 Introduction

In clinical safety studies, there are many adverse events (AE) recorded in one clinical
trial. The goal for assessing the safety of an experimental drug is to flag “reasonable” or
“correct” AEs among these AE types. Chen et al. (2015) [13] summarized most existing
signal detection methods, such as proportional reporting ratios [19], reporting odds
ratios [60], and the maximum likelihood ratio test [41], Bayesian confidence propagation
neural network method [2] and multi-item Gamma Poisson shrinker [66] for spontaneous
reporting data, and Pearsons chi-square test, Fishers exact test, and the chi-square test
for rates comparison for flagging safety signal in clinical trials. The above detecting
or flagging methods do not control for overall type 1 error rates, such as FWER or
FDR. In fact, the number of possible AEs is usually very large (see TCTAE v4.03 and
MedDRA® v19.1). Thus, similar as dealing with multiple endpoints in drug efficacy
analysis, multiplicity effect should be also considered in drug safety analysis. However,
the number of AEs in safety analysis is much larger than the number of endpoints in
efficacy analysis for the experimental drugs. Therefore, FWER controlling procedures
such as Bonferroni procedure may fail to flag more important AEs. Benjamini and
Hochberg (1995) introduced the concepts of false discovery rate (FDR), which is defined
as the expected proportion of the false rejections among all discoveries. Their proposed
BH step-up procedure becomes the most popular multiple testing procedure (MTP) for
the large-scale multiple hypotheses testing in the last two decades. The BH procedure
can be applied to detect the signals of the AEs, since the number of AEs in clinical
safety studies is usually large.

Searching for significant AEs, the AE types (Preferred Term (PT) in MedDRA®)

are often classified by several body systems (BS) (System Organ Classes (SOC) in
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MedDRA®). Each AE can be regarded as a hypothesis, and the hypotheses of AEs from
the same body system naturally forms a family. So the multiple-family structure should
be considered for the drug safety data analysis. Recently, some structured BH-type
procedures are developed for multiple families of hypotheses (Mehrotra and Heyes,
2004; Mehrotra and Adewale, 2012; Hu et al., 2010; Benjamini and Bogomolov, 2014).
Mehrotra and Heyes (2004) proposed a two-stage double FDR (DFDR) procedure,
which firstly uses BH procedure on the minimum original p-values of each family under
level ap, then applies the BH procedure on the hypotheses in the selected families under
level ae. The problem is this procedure cannot guarantee FDR control. It is also not
clear for how to choose the significant level «; in the first step. Mehrotra and Adewale
(2012) modified the DFDR procedure by using BH procedure in the first step on the
minimum BH-adjusted p-value under the same significant level a as the second step.
The DFDR2 procedure still cannot guarantee FDR control. The main reason is the
procedure does not consider the selection effect for the first step. Other recent references
also examined related questions for multiple-family multiple hypotheses testing. Hu et
al. (2010) introduced a p-value weighting group BH procedure (GBH) by estimating the
true null proportion for each group, the method asymptotically controls global FDR.
Benjamini and Bogomolov (2014) provides a general framework for multiple families
multiple testing considering selection effect, and defined average FDR and average
FWER over the selected families as desired type 1 error rates. Their proposed procedure
(BB) can guarantee the average FDR control. Actually, the DFDR2 procedure and
original BB procedure select the same families by using the same selection rule in the
first step, the main difference between these two procedures is original BB procedure
uses Ra/m to conduct individual test in each selected family. Barber and Ramdas
(2016) proposed a multilayer FDR, controlling procedure, which can guarantee FDR
control on family level and control global FDR, but they do not consider any error
rate control within selected families. The above methods do not clearly separate the

selection effect and multiplicity effect. To overcome this problem, selective inference
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by using conditional inference such as conditional type 1 error rate control, selection
adjusted confidence interval is developed recently (Fithian et al., 2015; Weinstein et al.,
2013; Heller et al., 2016).

In practice, especially in clinical safety studies, we may not only need to flag the
AE, but also want to investigate the body systems for the further research (Berry and
Berry, 2004). For example, if some body systems are selected, but there is no AE
flagged in these selected body systems, we can also use the body system information
to conduct follow-up studies. Thus controlling some type 1 error in family level is also
necessary. Since the number of body systems is not very large (commonly 5-50), and
sometimes we may allow more than one type 1 errors made when doing selection. Thus,
the generalized familywise error rate (k-FWER) is a suitable error measure in practice,
which is the probability of making at least k false rejections. Some existing k-FWER
controlling procedure include Lehmann and Romano (2005), Guo and Romano (2007),
Sarkar (2006, 2007). And this selection rule using k-FWER controlling procedure is
also a simple selection rule. We can conclude some similar conclusions for selective
inference within the selected families as Benjamini and Bogomolov (2014) and Heller
et al. (2016).

So far, there are growing literature of approaches for testing multiple hypotheses
with multiple families structure. But very few valid methods were used in clinical safety
adverse events. So this chapter aims to develop a selective inference-based two-stage
procedure in the settings of clinical safety studies. We consider using combining
methods on the conditional p-values, as described in the preliminaries in Section 3.2.
Some existing multiple testing procedures for multiple families are introduced for clinical
safety settings as well. The valid two-stage procedure is proposed in Section 3.3.
Theoretical results of our proposed procedures are provided in Section 3.4. Then we
discuss the selection rules effect in Section 3.5. In Section 3.6, simulation studies are
also conducted to compare the proposed procedure with other existing procedures and

compared the proposed procedure for different selection rules regarding choices for
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combining methods and generalized FWER fold k. Section 3.7 explores several clinical
safety examples to illustrate the proposed procedure and compare the outcomes with
other existing multiple families multiple testing procedures. Some concluding remarks
are made in Section 3.8 and one R package “MHTmult” is implemented in Section 3.9.

Proofs of some results are given in the Appendix B.

3.2 Preliminaries
In this section, some necessary notations and basic concepts are introduced. In clinical
safety studies, several body systems contain amount of AE types, the body systems
are regarded as multiple families, AE types classified by body systems forms individual
hypotheses. Therefore, flagging significant AE in some body systems can be formulated

as a multiple testing problem with hierarchical multiple families structure.

3.2.1 Notations

Suppose that there are n = 3 n; AE types, denoted by AE;;, i = 1,...,m, j =
1,...,n;, appearing in m bodyzg}lfstems denoted by BSi,. .., BS,,. The hypotheses H;;
to flag AE;; are to be simultaneously tested based on their corresponding p-values P;j,
1=1,....m,7=1,...,n;. Let H; be the global null hypothesis for ¢-th body system,
that is, H; = ﬁ1 H;j. The global hypothesis is true only if all H;; in this body system are
true. Let P, ii_enote the p-value of the corresponding global hypothesis H;.We use the
global test to select body systems. Let § denote the index set of selected hypotheses,
that is, S = {i : H; is rejected}

Assume individual p-values are stochastically greater than Uniform(0,1), that is,

P;; satisfies

Pr{P; <t} <t, fort € (0,1), (3.2.1)

then the global p-value P; satisfies

Pr{P, <t} <t fort € (0,1). (3.2.2)
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3.2.2 Several Type 1 Error Rates
The most commonly used type 1 error rates are familywise error rate (FWER) and false
discovery rate (FDR), which are defined in Chapter 1. Here we specifically introduce

some type 1 error rates for multiple families structure.

Type 1 error rate for family level In the clinical safety studies, the number of
body systems is often moderate (5-50). Based on the requirement of future research,
the error measurement is usually not as strict as allowing to make only one type I
error (falsely selecting one body system). Sometimes, the clinical studies would like
to control the probability of falsely selecting at least k& body systems under 5%-10%,
where 1 < k < m. Thus when selecting body systems of interest (BSol), controlling
the generalized FWER for body system level is desired. Let V denote the number of
false selections when selecting BSol using global p-values, then generalized FWER is
defined as
k-FWER = Pr(V > k)

If k=1, k-FWER will become FWER. The commonly used k-FWER procedures are

generalized Bonferroni and generalized Sidak procedure.

Procedure 3.1 (Generalized Sidak procedure). Reject H; if p; < t, where t satisfies

S (M1 - = .

Type 1 error rate for individual level Considering the selection effect, it is valid
to use conditional inference for flagging AEs in testing step. Then define the FWER
and FDR measures conditional on the selected BSol as follows.

Let V; denote the number of false rejections for i-th body system, and R; denote
the number of total rejections for i-th family. Then the conditional FWER, selected

i-th family is defined as

cFWER; = Pr(V; > 0i € S) = E{I(V; > 0)]i € S},
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and the conditional FDR for a selected body system is defined as

ieS}.

The advantage of conditional error measure is it can distinguish the selection

Vi
R, V1

effect introduced in the first stage from the multiplicity effect in the second stage. We
can use this information to develop more powerful procedure than existing procedure.
In practice, t is preferred to control cFDR for flagging AE within the selected body
systems in clinical safety studies, since the number of AEs is very large, cFWER control

18 too strict.

Overall type 1 error rate An overall error measure addressing selective inference

is the average FDR over selected families, which is defined as

ZV%

es i V1

average-FDR = F W ,

which is expected average of false rejection proportions across selected families.

Another overall error measure is global FDR, which is used in several references

such as Hu et al. (2010), Guo and Sarkar (2016), Barber and Ramdas (2016).
> Vi

1€S
> R; V1

1€S

global-FDR = F

Remark 3.1. We can observe if the numbers of total rejections are the same, the
average-FDR and global-FDR are equivalent. Otherwise, these two overall FDR
measures are different. The procedures considering average FDR control often give
up the global FDR control (Benjamini and Bogomolov (2014)). It makes more sense
to consider average FDR control if the selected families are heterogeneous, such as
the body systems in clinical safety studies are functionally different regarding the AE

response for the experimental drugs.
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3.2.3 Several Existing Two-stage Multiple Testing Procedures
The original double FDR (DFDR) procedure and modified double FDR (DFDR2)
procedure are proposed in clinical safety settings, but original Benjamini and Bogomolov
(BB) procedure and its modification are proposed in GWAS settings, which are much
larger scale settings.

The original double FDR (DFDR) procedure proposed by Mehrotra and Heyse
(2004) is described as follows.

Procedure 3.2 (DFDR).
Step 1: (a) For each body system, find the minimum p-value p; = 1Lni<n {pij}-
SIS
(b) Apply BH procedure on pu,...,pm at level ay to select BSol.

Step 2: In the i-th selected body system, apply BH procedure on p;, ..., P, at level o
to flag AFEs.

Note that the minimum p-values p; are not uniformly distributed any more, so
the BH procedure applying on those minimum p-values cannot strongly control FDR.
The modified double FDR (DFDR2) procedure developed by Mehrotra and Adewale
(2012) replaces the minimum p-value by minimum BH-adjusted p-value for each body

system.
Procedure 3.3 (DFDR2).

Step 1: (a) For each body system, compute the minimum BH-adjusted p-value as p; =

. BH-adj
in {p;; "%},

(b) Apply BH procedure on pu, ..., Py at level a to select BSol.

Step 2: In the i-th selected body system, apply BH procedure on pi1, . .., P, at level o
to flag AEs.

However, since it still uses o as in Step 2, which brings selection bias in testing
step. Then the DFDR2 still cannot control average FDR or global FDR under «.
In R software, use p.adjust() function to compute the BH-adjusted p-values within

each body system, and find the minimum one. Note that the minimum BH-adjusted
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p-value is equivalent to Simes global null p-value ) gjugr:l i{%pi(j)}7 which is a valid global
p-value uniformly distributed in [0,1].

Benjamini and Bogomolov (2014) recommended to use the BH procedure on the
set of minimum BH-adjusted p-values as a simple selection rule, then in each selected
family apply BH procedure at an selection-adjusted level which is less than the nominal

significant level, and determined by number of selected families.
Procedure 3.4 (Original BB: BB-a-BH-«).

Step 1: (a) For each body system, compute the minimum BH-adjusted p-value as p; =

. BH-adj
| Inin l_{pij }.

(b) Apply BH procedure on py,...,Dy at level o to select BSol.
Step 2: (a) Count the number of selected body systems as |S]|.

(b) In the i-th selected body system, apply BH procedure on p;1, ..., pim, at level
fl—‘a to flag AFEs.

It can be seen that the original BB procedure proceeds the same selecting step

(Step 1) as DFDR2 procedure, the only difference is in testing step (Step 2), original

BB procedure uses a adjusted significant level %Oz, which is smaller than a.

Peterson et al. (2016) modified the original BB procedure (BB-a-BH-«;), which
applies BH procedure at level a; to select BSol. The selection level a4 is not necessarily
equal to testing level a.

Although original BB procedure and its modification guarantee average FDR
control, they both select body systems using BH procedure, which is too liberal for

moderate number of body systems in clinical safety studies.
Procedure 3.5 (Group BH-TST estimation).

Step 1: (a) For each body system, using Benjamini et al. (2006) two-stage estimator,
compute the estimated true null proportion 7ro; = noi/n; for i-th body

system.

(b) Compute weighted p-value for each AE as pjj = min{ i gy, 1} )

1—7o;
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Step 2: (a) Compute the pooled estimated true null proportion 7o =

(b) Pool the weighted p-value together as p¥',...,pY, then apply BH procedure

a
0T o)1 =70 to flag AFEs.

on the pooled p-values at level

3.2.4 Combining Functions and Conditional p-values

Since we are dealing with a selected family of hypotheses based on the global test, we
will omit the index ¢ for family to simplify the notation. Also use n replace n; to denote
the number of hypothesis within a family.

Let f : R® — R be a combining function for testing the global null on each
family. Here we require f is a monotone function of each p;. Let ¢ denote the fixed
hypothesis/family selection threshold, i.e. f(P,...,P,) > t for non-increasing f or
f(Pr,...,P,) <t for non-decreasing f. Let b; be an inflation factor to determine

the conditional p-value p) satisfying f(P b)) =t for b; € (0,1], where pt=) =

Pis- -+ Pj—1,Pj+1, - - -, Pn. Then we can define conditional p-value as
y P,
Pi= P, Py <t =
J

The following are three typical examples for calculating inflation factor and
conditional p-values using Fisher’s, Stouffer’s and Tippet’s combining methods.

For Fisher’s combining method, the family will be selected if and only if the
p-values of this family satisfy —2 Zn:llog p; > t, which implies p; ﬁ p < e /2, then

J I=1(#5)
within the family, the inflation factor of p; will be

(/)2 n
€n if H P> e /2
H pl l:l(;éj)
b = 4 =)
1 otherwise.

So the conditional p-value can be calculated as follow,

65



=1 : " —t/2
it [ m>e
=9 e

Dj otherwise.

For Stouffer’s combining method, the family will be selected if and only if the
Sz S p)
Vn NZD

p;j)+ > =1 @11 —p;) > y/nt. Then within the selected family, the inflation factor of
(#9)

p-values of this family satisfy > t, which implies ®~*(1 —

p; will be b; =1 —®(y/nt — > 11 7'(1 —p;)). Therefore, the conditional p-value can
(#9)

be calculated as

;o by
L R Yy Sy @0 = p)
¥

For Tippet’s (minP) combining method, the family will be selected if and only if
the p-values of this family satisfy min{py,...,p,} < t, that is, min{p;, p=?} < t. So
we call this method as minP combining method. Then within the selected family, the

inflation factor of p; will be

t if min{p=} >t

1 otherwise.

The conditional p-value can be calculated as

b if min{p(} >t
/ J— t
p; =

p;  otherwise.

Remark 3.2. If there is only one hypothesis with the p-value P in selected family,
the conditional p-value follows Pr{P < p|P < t} = p/t for any ¢ > p. According to
the inflation factor b satisfies b = ¢, the conditional p-value will be p’ = p/b = p/t.
Similarly, for Fisher’s combining method, the inflation factor b satisfies —2logb = ¢,

2

then b = e~%/2, so the conditional p-value is p’ = p/e~/2. For Stouffer’s combining
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method, the inflation factor b has to satisfy =t, then b =1 — ®(t), so the

p

conditional p-value is p' = 1——<I>(t)

3.3 A Valid cFDR Controlling Procedure Using k-FWER Controlling

Selection Rule
When we conduct the two-stage procedure, the first stage (selecting step) selects
some significant body systems based on the global null p-values Pi,...,P,. Let
S C{1,...,m} denote the set of selected body systems. Selecting body systems could
be controlled for generalized familywise error rate (denoted by k-FWER) with £ > 1
folds under « level. A simple example is to consider generalized Bonferroni procedure
selection rule, then S = {i : P; < ka}

The second stage (testing step) simultaneously tests the individual hypotheses in
the selected body systems based on the individual p-values P;;,¢ € S,j =1,...,n;, to
flag significant AEs, which is the final goal for the safety studies. Since testing individual
hypothesis is conditional on their body systems being selected, the procedure could
guarantee conditional FDR control. The two-stage selective inference-based procedure

is described as follows.
Procedure 3.6 (cFDR-a-minP-k-Sidak-ay).

Step 1: (a) For each body system, compute the global p-value p; = n; 1I<n,i<n {pij}-
SISng

(b) Apply generalized Sidak procedure on py,...,pm at level ay to select body
systems of interest (BSol), that is, select the i-th body system if p; < t,
where t satisfies Y (7)TH(1 — )" = oy,

Step 2: (a) In the i-th selected body system, calculate the conditional p-value for H;;:

Pij . . . . 7
Py = - if 1<5@$ns¢j{pi8} > t;; otherwise, p;; = pij, where t; = o
7 >OxTg,

(b) Apply BH procedure on pj, ..., pj, at level a to flag AEs.
Remark 3.3. The selection rule: p; < t is equivalent to minP combining function

fi, - Piny) = lg%%{ng} <t.
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Remark 3.4. A modified BB procedure using the same minP combining k-FWER
controlling selection rule as Procedure 3.6 can be naturally developed. That is, the
procedure uses Step 1 of the Procedure 3.6 to select body systems, and Step 2 of the
Procedure 3.4 to flag AEs (BB-a-minP-k-Sidak-c; ). Such a procedure still uses a simple
selection rule, so it strongly controls average FDR as the Theorem 1 in Benjamini and
Bogomolov (2014) stated. We compare this modified BB procedure using the same

selection rule as the proposed procedure in the simulation studies.

3.4 Theoretical Results

Since conditional p-values can be easily obtained using the above combination methods,
it is natural to conduct MTPs for individual hypothesis (AE type) in the selected
families (BSol). The followings are some theoretical results for the two-stage procedure
controlling conditional FDR within the selected families. Theorem 3.1, Lemma 3.1 and
Theorem 3.2 still omit the index ¢ for family to simplify the notation. Also use identical
number of hypothesis within each family n replace n;.

Theorem 3.1 (Fisher’s combining selection rule). Let Pi,..., P, be independent

p-values with U(0,1) under true null. If

f(p1,-...pn) = —2> logp; > t, then the BH procedure on conditional p-values
j=1

n
Py, ....pl, controls the cFDR at level —a < a.
n
Some desired properties for conditional p-values can be found.
Note that for Fisher’s combing method, we have the following desired statistical
property of the conditional p-values.
Lemma 3.1 (conditional p-value monotonicity). For Fisher’s combining function, if

the unconditional p-value py < -+ < p,, then the conditional p-value p| < --- < pl.

Remark 3.5. Note that the conditional p-values using minP selection rule does not
always satisfy monotone property. Here is a counterexample: suppose use minP
selection rule with ¢ = 0.05 to select two hypotheses p; = 0.04 < p, = 0.06, Since
po >t, p} = p1/t =0.8. Since p; < t, ph = py = 0.06. So p| > ph.

Remark 3.6. For minP combining method, based on the assumption min{p;, ..., p,} <

t, at least one inflation factor should be 1, which means at least one hypothesis will not
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be inflated. The fewer inflated p-values, the smaller selective effect the MTP produces.
Actually, for minP combing method, except for the minimum p-value, other p-values

do not need to be inflated.

For minP combining method, the conditional FDR can also be controlled under

« level.

Theorem 3.2 (minP combining selection rule). Let P, ..., P, be independent p-values
with U(0,1) under true null. If f(p1,...,pn) = min{py,...,pn} <t and a <t < 1,
then the BH procedure on conditional p-values pl,...,p. controls the cFDR at level
1o

—a < .
n

Note that the threshold t is the same as the t; = ni in Procedure 3.6. In Procedure

3.6, pi = n; min {p;;} <tisequivalent to min {p;;} <1—(1—1)"/" where ¢ satisfies
1<j<n,; 1<j<n;

S (M)t (1 —t)™ " = ay. Since 1 — (1 —t)'/" can be regarded as a fixed threshold for

each body system ¢, thus we have the following result.

Theorem 3.3 (cFDR control). For each selected body system F;, if individual p-values
P, ..., Py, are mutually independent with U(0,1) under true null, then Procedure 3.6
strongly controls the conditional FDR at level o for flagging AEs within the selected
body systems.

Now we have the following result for selecting families.

Theorem 3.4 (k-FWER control). If global p-values P, ..., P, are mutually independent
with U(0, 1) under true null, then Procedure 3.6 strongly controls the k-FWER at level

ay across body systems.

This theorem follows from the proof of Theorem 2.2 in Guo and Romano (2007).

Corollary 3.1 (average FDR control). Under the independence assumption of Theorem
3.3 and 3.4, Procedure 3.6 strongly controls the average FDR over selected body systems
at level o for flagging AFEs.

Theorem 3.3, Theorem 3.4 and Corollary 3.1 imply the proposed procedure can

strongly control various type 1 error rates for selecting body systems (k-FWER),
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flagging AE within each selected body system (condition FDR) and overall flagging
AEs average on all selected body systems (average FDR). Next we will look into how

the selections rules affect the proposed procedure.

3.5 Selection Rule Comparisons

As illustrated in Procedure 3.6, using a multiple testing procedure (MTP) on the
combined p-values (global p-values), and selecting the families accordingly, is a natural
approach in selective inference. In the following, we will compare some different
selection rules regarding p-value combining methods and selection procedures.

We start from a simple example. Suppose we have selected a family of n = 2
hypotheses, since conditional p-value is based on inflation factor, which is relevant to
other p-values and selection cutoff, we want to look into how the other p-values and

selection cutoff affect inflation factor under the examples iin the Section 3.2.4.

3.5.1 Inflation Factor
Firstly, for Fisher’s combining function, suppose the family will be selected if and only if
—2(log p1 +log py) > tp, that is, p1py < e /2. Within the selected family, the inflation

factor of p; is
o—t/2

if pa > €_tF/2
b, = P2

1 otherwise.

Figure 3.1 is to show b; versus po, set t = {0,1,...,10}; Figure 3.2 is to show b,
versus t, set po = {0,0.02,0.04,0.06,0.1,...,1}.

For Stouffer’s combining function, suppose the family will be selected if and only

if o 1(1—p;)+ > @11 —p) > +/nt, then by =1 — ®(y/nt — Z?;l) (1 —p)).
=1 y

(#7)
Figure 3.3 is to show by versus po, set t = {—3,—2.5,...,3}; the second plot of

Figure 3.4 is to show by versus t, set p, = {0,0.1,0.2,...,1}.
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inflation factor versus the other p-value
for Fisher's combining method
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Figure 3.1 Comparison of inflation factor b; with respect to ps for different values of
threshold ¢ using Fisher’s combining method with n = 2 hypotheses.

inflation factor versus selection cutoff
for Fisher's combining method
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Figure 3.2 Comparison of inflation factor b; with respect to threshold ¢ for different
values of py using Fisher’s combining method with n = 2 hypotheses.
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inflation factor versus the other p-value
for Stouffer's combining method
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Figure 3.3 Comparison of inflation factor b; with respect to ps for different values of
threshold ¢ using using Stouffer’s combining method with n = 2 hypotheses.

For minP combining function, suppose the family will be selected if and only if
min{py, po} < tpy. Within the selected family, the inflation factor of p; is

by =

1 otherwise.

Figure 3.5 is to show b; versus po, set t = {0,0.1,...,1}; the Figure 3.6 is to show
by versus t, set po = {0,0.1,0.2,...,1}.

Remark 3.7. Since the p-values are exchangeable, the inflation factor by has the same

tendency as b;.

Now, we want to compare the different selection rules using Fisher’s, minP and
Stouffer’s combining methods. Suppose given the threshold ¢ € [« 1] for minP selection
rule such that the hypotheses/family is selected if min{p < ¢}. A simple way to make
them comparable is to find equivalent cutoffs ¢tz for Fisher’s method or tg for Stouffer’s
method satisfying

Pr{—2210gpj > tF} = Pr{min{p,...,pn} < t},

Jj=1

72



inflation factor versus selection cutoff
for Stouffer's combining method
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Figure 3.4 Comparison of inflation factor b; with respect to threshold ¢ for different
values of py using Stouffer’s combining method with n = 2 hypotheses.

or

b, { > @71 = py)

NG Zts} = Pr{min{py,...,p.} < t}.

It means the chances of the family is selected are the same for these methods.

We use the following calculations find equivalent selection threshold for Fisher’s
and minP combining methods. Here, assume the p-values are identical and independent.
In order to compare Fisher’s method with minP method, let

Pr{—QZlogpj > tp} = Pr{min{py,...,pn} < t},

Jj=1

which is equivalent to

Pr(T > tp) =1— (1 1),

where T~ x3,. Then
Pr(T <tp)=(1-1)".
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inflation factor versus the other p-value
for minP combining method
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Figure 3.5 Comparison of inflation factor b; with respect to ps for different values of
threshold ¢ using minP combining method with n = 2 hypotheses.

We can also compare Stouffer’s method with minP method. Let

o {z;‘_l (1 -p)

NG Zts} = Pr{min{py,...,p.} < t},

which is equivalent to

Pr(Z >ts) =1— (1—1)",

where Z ~ N(0,1). Then
Pr(Z <tg)=(1—1t)".

It means for the minP threshold ¢, we can always find somehow equivalent threshold
tr and tg for Fisher’s and Stouffer’s combining method.

We can also plot the comparison for three combining methods when combining
two hypotheses. From Figure 3.7, we can observe the cross points for different two lines
is the equivalent point for the inflation factor and the other p-value. We also compare

different combining methods by conducting the simulations studies in Section 3.6.1.

74



inflation factor versus selection cutoff
for minP combining method
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Figure 3.6 Comparison of inflation factor b; with respect to threshold ¢ for different
values of py using minP combining method with n = 2 hypotheses.
3.5.2 Selection Rules Using MTP Controlling k.-FWER
It has been discussed that controlling generalized FWER is more suitable than
controlling either FWER or FDR for selecting body systems in clinical safety studies.
Since FWER is too strict and FDR is too liberal in such setting, k-FWER is an error
measure between these two conventional error measures. Using k-FWER controlling
procedure to select BSol brings two questions. Which procedure should be used for
selecting more signals? How to choose a suitable k7?7

For multiple hypotheses testing without family structure, it has been shown that
the generalized Sidak procedure is much more powerful than generalized Bonferroni
procedure (Guo and Romano , 2007) under independence. In Section 3.6.1, we will also
compare generalized Sidak and generalized Bonferroni selection rules in the simulation
studies.

Another factor which affects the selection rule is how many fold we need to
choose for k-FWER control for family level. On one hand, choosing k£ depends on
the requirement of practice, such as clinicians’ experience or clinical research interest.

For example, if there are many body systems in the trial, and we are interested in
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inflation factor versus the other p—value
for equivalent threhsolds
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Figure 3.7 Comparisons of inflation factor b; with respect to p, for equivalent
thresholds of Fisher’s, Stouffer’s and minP combining methods when n = 2.

selecting more body systems, then we can choose k = 2 or k£ = 3 to allow to make two
or three type 1 errors for the selection. On the other hand, we can also optimize the k

by doing simulations, which will be discussed in Section 3.6.

3.6 Simulation Studies

This section investigates the performance of the proposed two-stage procedure using
simulations under various dependence settings: (i) the p-values are independent both
within body system and across body system; (ii) the p-values are dependent within each
body system and independent of the p-values in other body systems; (iii) the p-values
are independent within each body system and dependent of the p-values in other body
systems.

Since the families contains true nulls and false nulls, it is more reasonable to
use average FDR over selected families (average-FDR) and conditional FDR (cFDR)

for all true null and non-null families respectively to evaluate the performance of the
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procedures, rather than use global FDR or simple FDR of one family. We use analogous

average power over selected families as average power.

3.6.1 Simulations for the Independence Settings
Numerical comparisons for various number of true null families (m() and true
null individual hypotheses (ny) First of all, we conduct simulations to compare
the proposed procedure using Sidak procedure (similar as Bonferroni procedure) for
global test of minP combination to select families (cFDR-minP-Sidak) with (I) average
FDR controlling procedure using the same selection rule (BB-minP-Sidak), (II) original
double FDR procedure (DFDR) and (III) modified double FDR procedure (DFDR?2).
All the simulations are conducted for 2000 times. Set level v = 0.05 for both selection
for family level and testing for individual hypotheses level. Each simulated data set is
based on one-sided one sample Z-test for testing H;; : p =0 versus H; : p = p1 > 0.

Set the number of families m to be 10, in each family set the number of hypotheses
n to be 20. We vary the number of all true null families mg as 2, 4, 6 and 8, and the
number of true null hypotheses in each non-true null family ny as 5, 10 and 15. Set
p =3, a=a; =0.05

From Figures 3.8 to 3.11, we can see the cFDR-minP and BB procedures using
Sidak selection rule can control FWER for family level, and control average FDR and
conditional FDR under all scenarios. But DFDR and DFDR2 procedure fail to control
average FDR when ng and my become bigger. For example, in Figure 3.10, when
ng = 15, both DFDR and DFDR2 lines are above 0.05 when the proportion of null
families is greater than 0.4. DFDR and DFDR2 also fail to control conditional FDR as

well.

Numerical comparisons for various combining methods In this section, we
compare the procedures using different combining methods, here we mainly compare

Fisher’s and minP methods. The selection threshold here we used generalized Sidak
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Figure 3.8 From the left to right panels are simulated FWER across families,
conditional FDR for a null family and conditional FDR for a non-null family versus
proportion of null hypotheses in each non-null family (ny/n). From the top to bottom
panels, the numbers of true null families are mg = 2,4,6,8 out of m = 10 families,
there are n = 20 hypotheses in each family, y; = 3, a = a; = 0.05.
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Figure 3.9 From the left to right panels are simulated average FDR over selected
families, global FDR and average power versus proportion of null hypotheses in each
non-null family (ny/n). From the top to bottom panels, the numbers of true null families
are mgo = 2,4,6,8 out of m = 10 families, there are n = 20 hypotheses in each family,
w1 =3, a=a; = 0.05.
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Figure 3.10 From the left to right panels are simulated FWER across families,
conditional FDR for a null family and conditional FDR for a non-null family versus
proportion of null families (mg/m). From the top to bottom panels, the numbers of
true null hypotheses in each non-null family are ng = 5, 10, 15 out of n = 20 hypotheses,
there are m = 10 families, u; = 3, a = a; = 0.05.
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Figure 3.11 From the left to right panels are simulated average FDR over selected
families, global FDR and average power versus proportion of null families (mg/m).
From the top to bottom panels, the numbers of true null hypotheses in each non-null
family are ng = 5,10, 15 out of n = 20 hypotheses, there are m = 10 families, p; = 3,
a = a1 = 0.05.
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Figure 3.12 Comparisons for different combining methods using Sidak selection rules
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(k = 1) for independent structure, m = 10, n = 20, ng = 15, @ = a3 = 0.05.

threshold. In Figure 3.12, we can see the proposed procedure using Fisher’s combining
method as FWER selection rule is more powerful than using minP combining method.

But BB procedure using Fisher’s combining method is slightly less powerful than the

one using minP combining method.

However, when considering generalized Sidak procedure with a slightly larger
k, the proposed procedure using minP combining method is still less powerful than
the one using Fisher’s combining method, but the two lines are very close. The BB

procedure using these two combining methods are also almost the same regarding the

power performance, see Figure 3.13.
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Figure 3.13 Comparisons for different combining methods using generalized Sidak
with & = 3 selection rules for independent structure, m 10, n 20, ng = 15,
a = a; = 0.05.

Now we also consider the simulated average power, average FDR, conditional FDR
for a null family and a non-null family versus different significant level «; for selecting
families, set a; = 0.05,0.1,0.15,0.2,0.25,0.3, simulate the proportion of containing
signals among the selected families and proportion of detecting signals among selected
families containing signals. From Figure 3.14, we can observe similar results as Figure
3.13. However, from the real data analysis in the later section, in some cases using
minP combing method can find more signals in selecting step. And minP combining is

more convenient to calculate in practice.
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Figure 3.14 Comparisons for different combining method for independent structure
using generalized Sidak with k£ = 3 selection rules versus different selection significant
level o.
Numerical comparisons for various k-FWER selection procedures For
different k-FWER selection rule, such as generalized Bonferroni versus generalized
Sidak; choice of k, we also perform some simulation to investigate the differences.

In Figure 3.16, when k becomes larger, the power for ckDR or BB will become
higher, since the procedure allows to make more than one type 1 error in selecting stage,
more families containing signals could be selected. Moreover, the proposed procedures

(cFDR-minP-k-Sidak and cFDR-minP-k-Bonf) are more powerful than BB procedures

(BB-minP-k-Sidak and BB-minP-k-Bonf) when proportion of null families is greater
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Figure 3.15 Comparisons for using generalized Bonferroni and generalized Sidak
selection rules with £ = 1,2,3 under independence, the plots show the conditional
FDR for null or non-null family versus the proportion of null families, m = 10, n = 20,
ng = 15, a = a3 = 0.05.
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Figure 3.16 Comparisons for using generalized Bonferroni and generalized Sidak
selection rules with k£ = 1,2,3 under independence, the plots show the average FDR
and average power versus the proportion of null families, m = 10, n = 20, ng = 15,
a = a; = 0.05.
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than 0.4. When k becomes larger, the procedures using generalized Sidak selection rule

are more powerful than the procedures using generalized Bonferroni rule.

3.6.2 Simulations for the Dependence Settings

We also perform the simulations under two types of dependence settings: (I) the p-values
are dependent within each body system and independent of the p-values in other body
systems; (II) the p-values are independent within each body system and dependent of
the p-values in other body systems. We consider equal correlated dependence setting
with p =0,0.1,...,0.9 in the following simulation studies.

From Figures 3.17 and 3.18, we can observe when mg = 4 out of total 10 families,
the proposed procedure can control average FDR and maintain high powers. When
and correlation p is less than 0.4 for mg = 8 out of total 10 families, the proposed
cFDR controlling procedure can control the average FDR and more powerful than
BB procedure by using generalized Sidak selection rule with fold £ = 3. But when
correlation becomes larger, the proposed procedure using generalized Sidak selection
rule cannot control the average FDR, while modified BB procedure using the same
selection rule can control average FDR. Therefore, we recommend to use the cFDR
controlling procedure when proportion of true null families is small (about 40%) and

use the modified BB procedure when proportion of true null families is large (about

80%).

3.7 Real Data Analysis: Clinical Safety Studies
In this section, we apply the proposed cFDR-minP-k-FWER controlling procedure
(Procedure 3.6) in the clinical safety studies to flag the significant AE types. The data
analysis is conducted in the following three steps.
Step 1 (Select body systems) Selecting body system BS; if f(pi1, ..., Din;) <

t;, where t; can be the same value for any ¢ or a sequence of thresholds.
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Figure 3.17 Comparisons of conditional FDR’s with respect to p for
dependent structures and different numbers of null families (mg = 4,8) by using
different multiple families testing procedures. a = a; = 0.05.
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Figure 3.18 Comparisons of average FDR’s and powers with respect to p for different
dependent structures and different numbers of null families (mg = 4,8) by using
different multiple families testing procedures. a = a; = 0.05.
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We want to control some error rate when selecting the body systems. In different
phases of clinical trials, the adverse experience (AEs) usually are across 5-50 body
systems, and the trials allow to more than one false discoveries on body systems
selection when there are more classified body systems. Thus, we suggest if the number
of body systems is no more than 30, consider generalized FWER (k-FWER) controlling
procedure to select body systems. Otherwise we can consider FDR controlling
procedures. Note for generalized FWER selection rule, k£ can be decided based on
clinicians’ experience or protocol information.

Step 2 (Conditional inference for flagging AEs) Within each selected body

system F; : i € S, calculate the conditional p-value for each hypothesis P/;, and calculate

ij>
corresponding BH adjusted conditional p-value PUBH'adj.

Step 3 (Make decision) For i € S and j = 1,...,n;. If Pi’jBH'adj < «, then
reject H;;, that is, flag the j-th AE type in the i-th body system.

We consider the following two cases in reality to select body systems of interest,
then flag the significant AE types within the selected body systems.

Case 1: Fixed selection rule and different combining methods are considered. For
instance, let ¢; = 0.1 for minP combining method. Such a fixed selection rule cannot
guarantee type 1 error rate control across family level.

Case 2: A sequence of data-adaptive thresholds ¢; to select body systems. For
instance, for i-th family F;, ¢ = 1,...,m, we set the global null p-value as p; =1 — (1 —
1%121 {p”})” for minP combining method. If the p-values in the family are uniformly
distributed in (0, 1), then p; ~ U(0,1) for ¢ = 1, ..., m. Consider generalized Bonferroni
procedure on the global null p-values. The family is selected if p; < %, where k €
{1,...,m}. If £ = 1, the procedure reduces to Bonferroni procedure, which controls
FWER on family level. We can also apply generalized Sidak procedure on the global
null p-values. For fixed k € {1,...,m}, the family is selected if p; < = t;,,(c), where

t satisfies S /(1 — )™~ = a.
i=k
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Besides considering different selection rules for proposed procedure (fixed selection
threshold t; = 0.1, generalized Sidak with £ = 1 and & = 3, minP and Fisher’s
combining methods), we also compare them with (I) simply applying BH procedure
on pooled p-values (Naive BH); (II) ad-hoc version of original double FDR procedure
(DFDR, ay = 0.05, @ = 0.1); (III) modified double FDR procedure (DFDR2); (IV)

average FDR controlling procedure (Original BB) and (V) group BH procedure (GBH).

3.7.1 Example 3.1

This example is from Mehrotra and Heyse (2001). The trial involved a quadrivalent
vaccine containing measles, mumps, rubella, and varicella (MMRYV). Participants were
296 healthy toddlers aged 12-18 months who were randomly assigned to two groups (148
for treatment group, 132 for control group). The treatment group received MMRV on
day 0 and controls received MMR on day 0 followed by V on day 42. All participants
received PedvaxHIB on day 0. Safety follow-up used standard AE reporting and the
primary question was to assess local and systemic reactions for the varicella component.
The comparison of AEs was between the treatment group during days 0-42 with the
control group during days 42-84. There are 40 AE types across eight body systems.
The Fisher’s exact test two-sided p-values are calculated based on the counts.

If the selection threshold is fixed ¢ = 0.05, the 5th body system are selected but
there is no AE in this body system detected. If ¢ = 0.1, the 2nd, 5th and 7th body
system are selected and there is one AE in the 5th family is flagged. Even consider an
extreme case, set ¢ = 1, then all families are selected to make the inference, that is,
there is no selection effect on families and no conditional inference. Still only the AE
in the 7th family are detected.

In Example 3.1, there are 40 AE types across eight body systems. The AE types
in the result details are denoted by BS+AE, for example, 503 means Body system No.
5, the third AE. The no multiplicity adjustment approach flags only four AE types

(204, 503, 704, 706) with p < 0.05. The numbers in the parenthesis are numbers of
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Table 3.1 Example of Clinical Safety Study from Mehrotra and Heyse (2001), where
“BS” is Abbreviate of “Body System” and “No.” is the Type of AEs in Each Body

System
BS Family No. AE name X; Xi/Ni Xs X3/Ny p-value
1 1 1 Asthenia/fatigue 57 0.385 40  0.303  0.167
1 1 2 Fever 34 0230 26 0.197 0.561
1 1 3 Infection.fungal 2 0014 0 0.000 0.500
1 1 4 Infection.viral 3 0.020 1 0.008 0.625
1 1 5  Malaise 27 0.182 20  0.152 0.525
3 2 1 Anorexia 7 0.047 2 0.015 0.179
3 2 2 Candidiasis.oral 2 0.014 0 0.000 0.500
3 2 3  Constipation 2 0.014 0 0.000 0.500
3 2 4  Diarrhea 24 0.162 10 0.076 0.029
3 2 5  Gastroenteritis 3 0.020 1 0.008 0.625
3 2 6  Nausea 2 0.014 7 0.053 0.089
3 2 7 Vomiting 19 0.128 19  0.144 0.730
5 3 1 Lymphadenopathy | 3  0.020 2 0.015 1.000
6 4 1 Dehydration 0 0.000 2 0.015 0.221
8 5 1 Crying 2 0.014 0 0.000 0.500
8 5 2 Insomnia 2 0.014 2 0.015 1.000
8 5 3 Irritability 75 0.507 43  0.326 0.002
9 6 1  Bronchitis 4  0.027 1 0.008 0.375
9 6 2 Congestion.nasal 4 0.027 1 0.008 0.375
9 6 3 Congestion.resp 1 0.007 2 0.015 0.603
9 6 4 Cough 13 0.088 8 0.061 0.497
9 § 5  Infection.resp 28 0.189 20 0.152 0.431
9 6 6 Laryn 2 0.014 1 0.008 1.000
9 6 7  Pharyngitis 13 0.088 8 0.061 0.497
9 6 8  Rhinorrhea 15  0.101 14  0.106 1.000
9 6 9  Sinusitis 3 0.020 1 0.008 0.625
9 6 10 Tonsillitis 2 0.014 1 0.008 1.000
9 6 11 Wheezing 3 0.020 1 0.008 0.625
10 7 1  Bite/sting 4 0.027 0 0.000 0.125
10 7 2  Eczema 2 0.014 0 0.000 0.500
10 7 3 Pruritus 2 0.014 1 0.008 1.000
10 7 4  Rash 13 0.088 3 0.023 0.021
10 7 5  Rash.diaper 6 0.041 2 0.015 0.288
10 7 6  Rash.measles 8 0.054 1 0.008 0.039
10 7 7  Rash.varicella-like 4  0.027 2 0.015 0.687
10 7 8  Urticaria 0 0.000 2 0.015 0.221
10 7 9  Viral.exanthema 1 0.007 2 0.015 0.603
11 8 1 Conjunctivitis 0 0.000 2 0.015 0.221
11 8 2 Otitis.media 18 0.122 14  0.106 0.711
11 8 3 Otorrhea 2 0.014 1 0.008 1.000
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Table 3.2 Flagging AE Types for Example 3.1 under a; = 0.05 for Selecting BSol
and a = 0.1 for Detecting AEs

Approach BSol Flagging AE Types
Naive BH NA 503 (1)
DFDR 5 (1) 503 (1)
DFDR2 5 (1) 503 (1)
GBH NA 503 (1)
Original BB 5 (1) 503 (1)
cFDR-minP-0.1 2,5,7 (3) | 503 (1)
cFDR-minP-Sidak 0 0
cFDR-minP-3-Sidak | 5 (1) 0
cFDR-Fisher-Sidak | 0 0
cFDR-Fisher-3-Sidak | 5,7 (2) |0

selected body systems and numbers of flagging AE Types. Note that Naive BH and
GBH procedure do not provide selection function, so by using these two procedures the
BSol selections are not applicable (NA).

cFDR-minP-Sidak and cFDR-Fisher-Sidak procedures do not select any body
systems and flag no AE, but cFDR-minP-3-Sidak procedure selects the 5th body system
and cFDR-Fisher-3-Sidak select the 5th and 7th body systems. There is still no AE
flagged. DFDR, DFDR2 and Original BB procedures select the 5th body system and

flag one AE in the body system.

3.7.2 Example 3.2

This example is from Example 4.1 in Mehrotra and Adewale (2012), there are 42 AE
types across six body systems. Figure 1 in that paper shows typical summaries of
tier 2 AE counts from a (hypothetical) clinical trial. The p-values and corresponding
95% confidence intervals for a difference between two independent binomial proportions
using the Miettinen and Nurminen method. The no multiplicity adjustment approach

flags nine AE types (101-106, 305, 404 and 507)
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Table 3.3 Flagging AE Types for Example 3.2 under a; = 0.05 for Selecting BSol
and a = 0.1 for Detecting AEs

Approach BSol Flagging AE Types
Naive BH NA 106 (1)

DFDR 1,3,4,5 (4) | 101-106, 305, 404 (8)
DFDR2 1(1) 101-106 (6)

GBH NA 101-106, 305, 404, 507 (9)
Original BB 1(1) 106 (1)
cFDR-minP-0.1 1,3,4,5 (4) | 101-106 (6)
cFDR-minP-Sidak 1(1) 101-106 (6)
cFDR-minP-3-Sidak | 1,3,4 (3) 101-106 (6)
cFDR-Fisher-Sidak 1(1) 101-106 (6)
cFDR-Fisher-3-Sidak | 1 (1) 101-106 (6)

From Table 3.3, we can see the the naive BH procedure only flags one AE types.
Although double FDR and modified double FDR methods flag eight and six AE types,
but it cannot guarantee FDR control. GBH method can only ensure FDR control
under asymptotic case, but not finite number of AE types. Average FDR controlling
procedure only select one body system and flag one AE type, which is too conservative.

The cFDR with fixed threshold ¢ = 0.1 cannot provide any error control on
body system level, although it selected four body systems. Our proposed cFDR using
generalized Sidak selection rule and minP combining method can select one body system
with £ = 1 and three body systems with £ = 3. When using Fisher combining method,
the procedures with £ = 1 and k = 3 select one body system, which guarantee FWER

control and 3-FWER control at a; = 0.05 across the body systems.

3.7.3 Example 3.3
This example is from Example 4.2 in Mehrotra and Adewale (2012), there are 49 AE
types across nine body systems. Figure 2 in that paper shows tier 2 AE counts and

related summaries for a double-blind, randomized clinical trial that was designed, in

94



Table 3.4 Flagging AE Types for Example 3.3 under a; = 0.05 for Selecting BSol
and a = 0.1 for Detecting AEs

Procedures BSol Flagging AE Types
Naive BH NA 703 (1)

DFDR 3,7 (2) 301, 704 (2)
DFDR2 7 (1) 703, 704 (2)

GBH NA 301, 401, 703, 704 (4)
Original BB 7 (1) 703 (1)
cFDR-minP-0.1 1,2,3,4,6,7(6) | 301, 703, 704(3)
cFDR-minP-Sidak 7(1) 703, 704 (2)
cFDR-minP-2-Sidak | 3, 7 (2) 703, 704 (2)
cFDR-minP-3-Sidak | 3, 4, 7 (3) 703, 704 (2)
cFDR-Fisher-Sidak 7(1) 703, 704 (2)
cFDR-Fisher-2-Sidak | 7 (1) 703, 704 (2)
cFDR-Fisher-3-Sidak | 3, 4, 6, 7 (4) 703, 704 (2)

part, to compare the safety and efficacy of two medical treatments. The no multiplicity
adjustment approach flags nine AE types (101, 209, 301, 305, 401, 602, 703, and 704).

Table 3.4 shows that the naive BH and original BB procedures flag one AE type
(703), and double FDR and modified double FDR the other methods flag five AE types
(203, 206, 211, 604 and 702).

3.7.4 Example 3.4
This example is from Example 4.3 in Mehrotra and Adewale (2012), there are 64 AE
types across eight body systems. Figure 3 in that paper shows tier 2 AE counts and
related summaries for another clinical trial, using the same format as in the previous
three examples.The no multiplicity adjustment approach flags eight AE types (203, 206,
211, 213, 305, 603, 604, and 702).

From Table 3.5, we can see the naive BH and average FDR methods flag four AE
types (203, 211, 604 and 702), and the other methods flag five AE types (203, 206, 211,
604 and 702).
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Table 3.5 Flagging AE Types for Example 3.4 under a; = 0.05 for Selecting BSol
and a = 0.1 for Detecting AEs

Approach BSol Flagging AE Types

Naive BH NA 203, 211, 604, 702 (4)
DFDR 2,3,6,7(4) 203, 206, 211, 604, 702 (5)
DFDR2 2,6,7(3) 203, 206, 211, 604, 702 (5)
GBH NA 203, 206, 211, 604, 702 (5)
Origianl BB 2,6,7(3) 203, 211, 604, 702 (4)
cFDR-minP-0.1 1,2,3,6,7(5) | 203, 206, 211, 604, 702 (5)
cFDR-minP-Sidak 2,6,7(3) 203, 206, 211, 604, 702 (5)
cFDR-minP-3-Sidak | 2, 6, 7 (3) 203, 206, 211, 604, 702 (5)
cFDR-Fisher-Sidak | 2, 6, 7 (3) 203, 206, 211, 604, 702 (5)
cFDR-Fisher-3-Sidak | 2, 6, 7 (3) 203, 206, 211, 604, 702 (5)

3.8 Concluding Remarks

Most existing approaches for two-stage multiple families procedures such as double
FDR, modified double FDR, BB and GBH procedures do not consider the type 1 error
control in both family level and individual level. Selection bias is always existing in those
procedures. In the past, it is also challenge to separate selection effect and multiplicity
effect if the test statistics and select statistics are dependent. In this chapter, by using
conditional inference, we can make valid selective inferences. In clinical safety studies,
the existing double FDR and modified double FDR procedure fail to control FDR based
on our simulation studies. However, similar as these two procedures, by using minimum
p-values, the proposed procedure can guarantee overall FDR control. The procedure
also guarantee k-FWER control for Body System level and conditional FDR for Adverse
Event level.

We summarize the comparisons for different approaches used for multiple families
multiple testing procedures (MTPs) in the Table 3.6. In practice, based on the clinical
safety experience, discoveries across body systems are considerable important and

should be given more attentions for future research. The proposed procedure can
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Table 3.6 Error Rates Control for Different MTPs with Multiple Families Structure

Approach Family level | Within selected family | Overall
Original DFDR X X X

DFDR2 FDR X X

GBH X X global-FDR
p-filter FDR X global-FDR
Original BB FDR X average-FDR
cFDR-minP-t (fixed) | x cFDR average-FDR
cFDR-minP-k-Sidak k-FWER cFDR average-FDR

provide suitable type 1 error controls across family level, within selected families and
overall on all families. Based on the simulation studies, the proposed procedures using
specific selection rules can outperform other existing procedures. In clinical safety
studies, the proposed procedures can select some body systems of interest and efficiently
flag the AEs in these body systems.

In this chapter, the recommended procedure using conditional p-value based
on minP combination and generalized Sidak selection rule, which requires p-value
within body system must be independent. But for dependent p-values within body
system, minP or Fisher’'s combining method cannot be used. We can consider
Brown’s combining method, which is an extension of Fisher combination, but for
dependent p-values combination. For any dependent global p-values across body system,
generalized Bonferroni or generalized Holm procedure can be considered for selecting the
body systems; for positive dependent global p-values, the generalized step-up k-FWER
procedures in Sarkar (2006) can also be considered. Moreover, we can also consider
applying adaptive procedures (Storey et al., 2004; Sarkar, 2008) on the conditional
p-values to get more powerful procedures. Other problems related to how selection rule
affects the procedures are also interest to solve, such as estimating the proportion of
non-null families (containing signals) among the selected families, and the proportion

of true rejections (detecting signals) among the selected non-null families.
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3.9 Software
The multiple families error rate control methods described in this chapter have been
implemented as a part of the MHTmult R package [Zhu and Guo, 2017|, which is

available online at https://cran.r-project.org/web/packages/ MHTmult.
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CHAPTER 4

MULTIVARIATE LOGISTIC-TYPE MODELS BASED ON AN
INVERSE SAMPLING SCHEME

4.1 Introduction

In the past half a century there have been many contributions to generalized linear
models (GLMs). The logistic model with the logit link function developed by Cox
(1958) is a very popular generalized linear model. This model is applicable when the
response variable is binary, such as taking two qualitative values (e.g. male/female,
low /high, dead/survived). It is the simplest classification model. A natural extension
here is the multinomial logistic model, where the dependent variable is more than
two categories. The multinomial logistic regression model has been a fundamental
model for developing research in deep learning or softmax regression. The moments
and properties of the negative binomial (NB) distribution are given in Johnson et
al. (1992). In the generalized linear model, when the response variable follows NB
distribution, the variable measures the number of failures until £ successes have been
observed. Johnson et al. (1997) describes and analyzes a generalization of the NB
distribution called the negative multinomial distribution (NMn), which can be used to
develop GLM models. Bringing this distribution in GLM, Bonett (1985) proposes NMn
GLM models with linear link and logit link. The GLM considered by Evans and Bonett
(1989) defines a log-linear model for the multilevel contingency tables with negative
multinomial frequency counts and also gives the maximum likelihood estimators.

Dhar (1995) introduces the concept of a generalized inverse sampling scheme
which can be used to study several special events at a time. He derives the Extended
Negative Multinomial distribution (ENMn), the distribution of the frequency counts
under a generalized inverse sampling scheme. Zelterman (1997) proposes an estimate
of the shape parameter based on the mean and quartiles of Pearson’s x? statistic.

They also show that the maximum likelihood estimator (MLE) of the shape parameter
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of the negative multinomial distribution cannot be obtained by directly maximizing
the log-likelihood function. Using the EM algorithm, Adamidis (1999) derives the
MLE of the NB distribution’s shape parameter. Dhar and Lahiri (2014) proposes a
log-linear GLM under the ENMn distribution used to study the incidence of cancer.
The parameters of this new model are estimated by the quasi-likelihood method and the
corresponding score function gives a close form estimate of the regression parameters.

Subsequently, the chapter is organized starting with Section 4.2 that introduces
basic notations, concepts and desired statistical properties for the inverse sampling
scheme and multivariate GLM models. In Section 4.3, a new multivariate logistic-
type model is proposed based on the inverse sampling scheme and desired statistical
properties of this model are discussed. Maximum likelihood estimation of the regression
parameters and further inferences, such as confidence intervals, are derived in Section
4.4. Section 4.5 provides model diagnostics and application of this new model. Section

4.6 summarizes findings and discusses potential future work.

4.2 Preliminaries
Basic notations and definitions are introduced to present the multivariate logistic-type
model. Many types of multivariate discrete models are seen in clinical trial and
biomedical research. In particular, categorical data can arise in the experiments where
the distinct outcomes are classified by factors at several levels that consists of the
count number of experimental units formed by these categories. Under these settings,
consider the multinomial (Mn) distribution with exactly G distinct categories and let
the probability of a sample falling in the j-th category in a trial be p;(j = 1,...,G)
where XG: p; = 1. Further, for a fixed number of independent identically distributed
trials (51:1> 1), the probability of observing exactly y1,...,yg_1 occurrences of category
1,...,G — 1, respectively, is given by Mn(n,pi,...,pc—1). In this multinomial trials

setting, consider the G-th category to be of special interest. With this background,

consider the model that counts the number of individuals that fall in each of the 1 to
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G — 1 categories until exactly k individuals of the G-th category have been observed.
Then the probability of exactly ui,...,ys_1 individuals of categories 1...,G — 1,
receptively, is given by the negative multinomial distribution NMn(k,py,...,pc-1).
This model is also known as the inverse sampling scheme.

This model was further generalized by Dhar(1995) introducing the extended
negative multinomial (ENMn) model, which is a generalized inverse sampling scheme.
Several special events can be simultaneously analyzed using ENMn. To see its definition,
draw samples until a pre-determined total number of £ > 1 special events of different
types that occur are observed out of total distinct types of events G > k. So the
model is called ENMn(k, py, ... pg) model. What is interesting is that the ENMn model
also deals with the response vector that counts the various categories. Bringing this
feature of the ENMn distribution into the logistic model, one can propose a GLM of
the logistic-type with random samples of response vector that follows this generalized
inverse sampling scheme. The new GLM developed in this chapter considers log
ratio of expected counts of response categories equal to the linear regression similar
to the multinomial logistic model. The properties of the ENMn distribution within
the multinomial logistic-type model framework makes it applicable to analyze more
practical data sets in the health field. The following section formally introduces the

ENMn distribution.

4.2.1 Generalized Inverse Sampling Scheme

The ENMn distribution also known as generalized inverse sampling scheme, Dhar
(1995), is formally introduced. Consider a multivariate response variable to be
the G-categories Mn distribution. In these multinomial categories, without loss of
generality, consider the first G groups of events (F1, ..., Fg,) as common (non-special)
events, and the remaining G; = G — Gy groups of events (Fg,11,-- -, Fg) as special
events. Then in the multinomial trials, keep observing events until k£ events from the

special group 1,..., Gy are observed. The count vector of different groups (special or
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non-special), denoted by y is distributed as ENMn with parameters (k, p1, p2, . .., Do—1)-

The mean vector of the ENMn distribution with parameters pi;,pa;,...,pa,: and
a
ki= > wj,is given by
j=Go+1
/ kl /
E{(y1i: v, -2 ¥6a)'t = —5——Pris P2 - - -1 DG)- (4.2.1)
> Di
j=Go+1

Lahiri et al. (2008) also give the variance-covariance of y;, which is a blocking diagonal
matrix. Generalized inverse sampling scheme distribution is part of the exponential

family as can be seen in the following section.

4.2.2 Multivariate Exponential Family
Jorgensen (1983) studies the response variable y follows the distribution from an

exponential family. The exponential family of distribution has the following form

fy,0,K) = c(y, k) exp{a(x)t(y,0)},

where y, 60,k can be vectors. Thus, the above exponential family can be viewed as
a multivariate generalization of the univariate case. Here a(k) > 0 and € is an m-
dimensional parameter.

The ENMn distribution belongs to the exponential family since its probability

distribution function can be expressed as

f(?/l,i, <oy Ya-1,iy P1is - - -y PG—1,i» kz)
(yLi + -+ yGo,i + kl - 1)']{:2 Y1,i Ya,i

- il ye! Pre t*"Pey (4.2.2)
G
(Y1 + -+ Ygo + ki — Dk {
=== : exp 4 > yiiln(psi) ¢
T ]
Y1,i+ Yai- =1

where yg,; = ki — Z;’:éo 1Y and pg; =1 — Z]C.’:ll pji- Thus, the logistic-type GLM
under ENMn is the class of GLM as considered by Jorgensen (1983). The following
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section introduces a motivating example for the ENMn distribution and describes the

data structure used in a logistic-type GLM under this distribution.

4.2.3 A Motivating Example of ENMn and Data
Therefore, keeping a concrete example in mind when reading this research makes it
easier, consider a sequence of independent trials, which contains several kinds of liver
disease diagnosis as described in Plomteux (1980). This data set is in the form of
multinomial records of one set of liver disease group followed by that of another,
along with the covariates. The study includes 57 cases of acute viral hepatitis (Group
1), 44 cases of persistent chronic hepatitis (Group 2), 40 cases of aggressive chronic
hepatitis (Group 3), and 77 cases of post-necrotic cirrhosis (Group 4). Further, this
data set consists of enzymatic activity measured for the 218 patients giving four liver
enzymes as covariates: aspartate aminotransferase (AST), alanine aminotransferase
(ALT), glutamate dehydrogenase (GLDH) and ornithine carbamyltransferase (OCT).
The four liver disease groups naturally form the categories of the Mn distribution.
Then GLM with response vector following ENMn distribution is simulated as follows.
The four groups counts are aggregated until either Group 3 or Group 4 is observed and
the covariate for a sample here is taken to be that corresponding to average covariate
of the Mn samples involved in it. The independent samples are achieved by randomly
reordering the Plomteux (1980) data. The counts of different groups give rise to a
sample of ENMn distribution with parameters (k = 1,p1,ps2, p3, p4) and k = y3 + y4 =
1. Since the available data was randomly reordered, one observes that this reordered
data contains n = 117 independent observations from ENMn(k = 1,p1,p2,p3). In
the following section, the multivariate logistic-type GLM under ENMn distribution is

formally introduced.
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4.3 A Multivariate Logistic-type Model under the ENMn Distribution
Now suppose there are m covariates and G = G+ G, distinct attributes for a response,
where Gy attributes are of special interest and the remaining are not. Then the

multivariate logistic-type model under the ENMn distribution is defined as follows.

Definition 4.1 (Multivariate Logistic-type GLM). Without loss of generality, let the
last G-th group be a reference group. Then,

explz;3Y)]
7 1 + eXp[w;:I@(G—l)] )

j=1,....,G—1,

Bly;:) = Z, | (431)
1+ exp[w;,@(c_l)]’ Jj=G,
/
where vector x; = <1,$i,1,$i,2,"' 7$i,m> consists of the m covariates and “1” gives
rise to the intercept regression parameter in the vector product, © = 1,...,n. Here,
BY) = (5éj),ﬁ§j)7 e ,(ﬂ;)), j=1,...,G —1, are the regression coefficients.

Then the estimated response for the i-th sample and j-th category is given by

using the estimators BU) = B, j=1,....,G—1.

exp[:c;B(j)]
. ‘14 exp[x;B(G_l)] ’
Yji = 5
1+ exp[m;B(G_l)] )

(4.3.2)
j=a.

Remark 4.1. The model in Definition 4.1 and (4.2.1) gives rise to the equations

E(y»} [p} |
In |25 | =1n | 221 | = 239, 4.3.3
{E (Ya.i) PG ’ ( )
where 7 = 1,...,G —1. Note that these equations are also used to define the traditional

multinomial logistic model. Further, note that in the proposed model, the regression
part is equal to the log ratio of the expectation of a response category to that of the

baseline response category G, which is a log odds ratio.

Remark 4.2. The reference group can be any group in the categories, so it can be either

a common or a special event group in the ENMn model. Without loss of generality,
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in the following equations we use the last G-th group from special categories as the

reference.
Hence, using (4.3.3),

( explz!BY)]

G-1
L+ 3 explz;BY)]
=1

Pji = (4.3.4)
L =G
G—1 i j — )
1+ 3 explz; 8]
\ =1
el
which satisfies Y p;; = 1,4 = 1,...,n, similar to the multinomial logistic regression.
j=1
In this case, the plugin estimator of p;; is given by
( 1 3()
exp|x’
I S CE !
1+ 3 expla;BW)]
pji = = (4.3.5)
1 G
G-1 R . ) j - )
1+ 37 expla;BW)]

\ =1

which is used to describe the model diagnostic procedure in Section 4.3. Note that by
(4.3.2) and (4.3.5) pj; = U;:/ki, and a straightforward fact is that when k; = 1, then
Pji = Yji-

So far, the logistic-type GLM model based on an inverse sampling scheme has
been defined. Omne can now develop the inference and diagnostics for the proposed

model.

4.4 Model Inferences and Diagnostics

4.4.1 Maximum Likelihood Estimation
Estimation of the regression parameters of the proposed model using MLE theory is
developed in this section. The calculation of the MLE for the regression parameter

Fisher’s scoring method is equivalent to an iterative weighted least squares procedure

is proved by Nelder and Wedderburn (1972). Moreover, calculation of the MLE of the
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regression parameter by Fisher’s scoring method is equivalent to the generalized Gauss-
Newton method for calculation of the least squares estimator is shown by Jorgensen
(1983). These approaches are used to do inference for the regression parameter under
multivariate logistic regression models by Glonek and McCullagh (1995). Similar ideas
to obtain the MLE of regression parameter in the proposed model are used. The

likelihood function of the ENMn model is

E(ﬁ(l)a s 7/6(G_1)7k17 < '7kn7y1’ e 7yn)

3

= ];Il:f(yl,ia-"7yG,i7ki7p1i7"'7pGi> (441)
n G
_ H (Zj:ol Yji + kl o 1)'k1 Yiio . YGi
ylz'sz| 14 pG’i ’
=1 ’ ’

where yg; = ki — Zf;éwl y;ji and pg; = 1— ZjG:_ll pji- In the special case k; = 1, that
is, one stops Mn trials when one observes an event from either one of the special events

group. Then, the likelihood function becomes

‘C( a"')/B(G_l)7y17"'7y’n)

I
= 3

f(yl,i» s 7yG,i7p1i7 ce apGi)
1

<.
Il

G-1

1_ y.’.
e Y1, YG—1,i “ j:GZO“ "
Ji —1,4
> Yi | pe i | 1= 20 pii
=1 j=1

G-1
Yl yg-1a! (1 - yj,i>!

j=Go+1

(4.4.2)

I

@
Il
—

The score equations can be derived by taking first-order derivative of In £ in (4.4.2)

with respect to 3, giving
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OolnL n G ) }
W ~ {yl,z (1221 yl,z pl,z x;
Oln L Oln L n G
o3 = —816(j) = 1:21 {y]z - (lzl yl,i) pj,z'} L4 ) (4.4.3)
oln L n G
E)B(G‘l) & {yG—l,i - (lZl yl,z') pG—u} Z;

where p;; is as expressed in (4.3.4).

Setting the derivative in (4.4.3) as equal to O(g_1)x1 gives the score equations.
MLE ,é is now obtained by solving these score equations. MLE of B can also be
iteratively obtained by the Newton-Raphson’s algorithm. This algorithm is described

as follows.
Algorithm 4.1.

N R R R /
Step 1: Start with an initial estimate B = (ﬁfé;,ﬁ%, a ,BE8_1)> . For example,
one can set initial estimate as the MLE of the multinomial logistic regression

parameter.

Step 2: Take

A . L\ oL
By = B — { ( ,) } B (4.4.4)
0803 o3 6.8,

. N . N /
where B; is the i-th iterated vector (ﬂéil)), ﬁg))’ e 75&();_1)) :

Step 3: Iterate Steps 1 and 2 until the sequence in (4.4.4) convergence.
Remark 4.3. The estimators of the proposed model are the same as the conventional
multinomial logistic model estimators of the regression parameters. Since the kernel

of the likelihood function (4.4.1) and equations in (4.3.5) are the same as multinomial

logistic regression. Additional inference is developed in the following section.
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4.4.2 Confidence Intervals and Tests

The Fisher scoring method is used to develop the inference. Using this method, the
asymptotic variance-covariance matrix of the 3 for logistic-type GLM under ENMn is
derived Thus, second-order partial derivatives of the log likelihood with respect to 3 is
computed to obtain the Hessian matrix. The components of Hessian matrix is given by

the expectations of

PInL u {( ¢ >
a2 Yii [pj,i(l - p]z)]mzwi ) (4.4.5)
0B3@)? Z; —
and
RInL u {(i ) }
'—:Z Yii (pj,ipl,ipG,i)wiwi ) (4.4.6)
0B9oBY i=1 =1

where j=1,...,G—1,l=1,...,G —1,j #[. Since x; is (m + 1)-dimensional vector,
each component as described in (4.4.5) and (4.4.6) of the Hessian is (m + 1) x (m + 1)

matrix. Thus, the Hessian H in (4.4.7) is (m + 1)(G — 1) x (m + 1)(G — 1) matrix.

[ 9*InL 0?In L FPInL
6ﬁ(1)2 28MpBR) 9pMppRE-1
PInL 0?In L 0?In L
082 oa3M (2)2 0812 Ha3(G-1)
H=F FoB o8 FoB (4.4.7)
PInL 0?In L 0?In L
opE—1oaM  §pE-1y3(2) 86((;’—1)2

Therefore, the estimator of the variance-covariance matrix based on the MLE is

S=—_-H! (4.4.8)

1B —3G) -

The diagonal elements of the matrix 3 are used to get the estimate of the individual
variances of 8. The confidence interval and hypothesis test for each regression

parameter can be now developed.
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Further, the fact that B is asymptotically multivariate Gaussian is used. Then, the

two-sided 100(1 — )% confidence intervals of the regression parameters can be derived

from (4.4.8) as B(j)j:zl_a/g\/diag{V;zr(ﬁ(j))}, where j = 1,...,G—1. Similarly, to test
8Y — 55|

Hy: B = B(()j) versus H, : 30 +£ ﬁéj) for each component, Z = —
\/dz'ag{Var(ﬁ(j))}

component-wise is used.

Remark 4.4. The variance-covariance matrix of ,é of the proposed model is different
from that of the traditional logistic model. So, confidence intervals, tests of the
regression parameters and model diagnostics are also different. Moreover, when the
proposed model’s distribution is correctly specified as the ENMn distribution, the model

fitting will benefit from the information of special events and the stopping rule.

The goodness-of-fit of the multivariate GLM is developed in the next section.

4.4.3 Model Diagnostics

Similar to Myers et al. (2012), the deviance of the proposed model is computed as

follows.
D = 21n L(Satuated Model) — 21n £(Full Model)
- (ZG_Ol Yii + k; — 1)!/67; ‘ , )
— 2 1n J= ’ Nyl',z ~y2',7, ..... ~yGZz
E yl,i! o yG’,i! pl,z p2,z pG,z
- (ZG_Ol Yii+ k; — 1)!]@ _ _ ' (4.4.9)
—921n J= ’ ﬁyli,@pyijz ..... ﬁyGi,z
Zl:! yl,i! e yG,i! Li 72, G,
n G ~ yj,i
=2In H H (@) ,
im1 j=1 \Pii
where p;; = Gyj’i is MLE of p;;, Dhar (1995), and p;; is as in (4.3.5). A new model

> Vi
j=1
fitting diagnostic based on deviance residuals is now proposed. The deviance residual

for the i-th sample is

djﬂ‘ = sgn(ﬁjji _ﬁj,i) = ]_,,n,] = 1,...,G. (4410)
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The normality of the deviance residuals d;; is used to diagnose the model fit, similar
to Myers et al. (2012). Another approach is to do the model fitting diagnostic based
on the Pearson residuals, instead that of the deviance, which is also used in Dhar et al.

(2014). The Pearson residual is defined as

rp= —EB 1= 1,...,G, (4.4.11)
Var(gj,i)

where g;,; is obtained from (4.3.2). These model fitting are used in the application
described in Section 4.5 to compare the proposed model with the multinomial logistic

regression model. Also, the confidence intervals for the different models are computed.

4.5 An Application for the Proposed Model

The multivariate logistic-type GLM under ENMn is fitted to the data explained
in Section 4.2.3. This section demonstrates the virtues of the proposed model in
comparison with the multinomial logistic regression model. In the example, there are
G = 4 groups (Groups 1 to 4), including Gy = 2 (Groups 1 and 2) common event groups
and the rest of G; = 2 (Groups 3 and 4) special event groups. Denote the covariates in
the proposed model as x1, x9, z3 and x4 which are averages of the enzymes: AST, ALT,
GLDH and OCT corresponding to an ENMn sample as described in Section 4.2.3. Set
the last group (Group 4) as a reference group.

In order to do the model comparison, the Section 4.2.3 data is further reduced
as follows. The multinomial logistic regression model is fitted to the data in Plomteux
(1980) (n=218). Covariates based on large p-values are eliminated. In Tables 4.1 and
4.2 “j:covariate” represents the description of the regression parameter for the j-th

category and corresponding covariate. The analysis result is shown as follows.
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Table 4.1 Regression Results Applying Multinomial Logistic GLM

Estimate Std. Error t-value  Pr(>]t|)

1:(intercept) | -10.734182 3.058415 -3.509721 0.000449
2:(intercept) 5.804643 2598270  2.234041 0.025480
3:(intercept) | -6.276608 1.773263 -3.539580 0.000401
L:log(X1) | -5.171071 1.131643 -4.569525 0.000005
2:log(X1) | -6.369987 1.098285 -5.799940 0.000000
3:log(X1) | -1.439686  0.648000 -2.221736 0.026301
1:log(X2) 9.300834 1.346797  6.905891 0.000000
2:log(X2) 6.506386 1.073560  6.060569 0.000000
3:log(X2) 2.081067 0.618276  3.365919 0.000763
L:log(X3) | -2.025177 1.124202 -1.801434 0.071634
2:log(X3) | -1.880089 1.035320 -1.815949 0.069378
3:log(X3) 1.192963  0.590522  2.020183 0.043364
L:log(X4) | -1.275437 1.007589 -1.265830 0.205574
2:log(X4) | -0.671354 0.795664 -0.843766 0.398800
3:log(X4) 0.010497 0.500557  0.020971 0.983269

From Table 4.1, one can observe the covariate of In(z4) is not significant at
all categories, so the predictor x4 is eliminated. Thus, keeping the three covariates

In(z),In(zs) and In(z3), that is, m = 3, the parsimonious model is obtained.
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Table 4.2 Fitted Multinomial Logistic GLM on Parsimonious Model

Estimate Std. Error t-value  Pr(>]t|)

1:(intercept) | -11.589083  3.087192 -3.753924 0.000174
2:(intercept) 5.509834 2577567  2.137610 0.032548
3:(intercept) | -6.186569  1.591427 -3.887435 0.000101
L:log(X1) | -5.544992 1.139901 -4.864450 0.000001
2:log(X1) | -6.533954 1.076117 -6.071785 0.000000
3:log(X1) | -1.425277  0.639885 -2.227395 0.025921
1:log(X2) 8.784099 1.228232  7.151826 0.000000
2:log(X2) 6.217821 1.007456  6.171801 0.000000
3:log(X2) 2.063563 0.603589  3.418822 0.000629
1:log(X3) | -2.728094 0.980222 -2.783138 0.005384
2:log(X3) | -2.377281 0.786379 -3.023075 0.002502
3:log(X3) | 1.185168  0.407927 2.905341 0.003669

Table 4.2 shows the three covariates are all significant. The results indicate

that 3 = (—11.59,5.51, —6.19, —5.55, —6.53, —1.43,8.78, 6.22, 2.06, —2.73, —2.38, 1.19).
The MLE of regression parameters for the proposed model are the same as that of
multinomial logistic model as mentioned in Remark 4.3. The confidence interval results

for the multinomial logistic regression model are shown in Table 4.3.
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Table 4.3 MLE and 95% Two-sided Confidence Interval of the Regression Parameters
for Multinomial Logistic Regression Model

Index of the parameter MLE Lower bound Upper bound
1 -11.589083  -17.639172 -5.540112
2 5.509834 0.433103 10.529090
3 -6.186569 -9.304570 -3.067024
4 -5.544992 -7.786518 -3.314742
5 -6.533954 -8.643587 -4.424091
6 -1.425277 -2.678925 -0.170815
7 8.784099 6.383295 11.202516
8 6.217821 4.249069 8.203398
9 2.063563 0.880889 3.247565
10 -2.728094 -4.656752 -0.812217
11 -2.377281 -3.923184 -0.838680
12 1.185168 0.383946 1.982532

In order to estimate confidence interval of the parameters for the proposed model,
one needs to calculate the variance-covariance matrix based on (4.4.7) and (4.4.8), the

results are shown in (4.5.1).

[ 9.65 —0.01 —1.39 —0.67 0.11 0.00 —0.01 —0.03 0.12 —0.01 —0.00 70401_
—0.01 0.48 —0.45 0.05 —0.01 0.01 —0.01 —0.00 —0.02 0.01 —0.00 —0.01
—1.39 —-0.45 0.74 —-0.19 —-0.00 —0.01 0.01 0.00 0.00 —0.00 —0.00 0.01
—0.67 0.05 —0.19 0.57 —0.01 —0.00 —0.00 0.01 —0.01 —0.00 0.00 0.01

0.11 —0.01 —0.00 —0.01 7.22 —2.07 0.86 —0.84 0.14 —-0.02 —-0.00 -—0.01
0.00 0.01 —0.01 —0.00 —-2.07 0.96 —0.58 0.24 0.00 0.01 —0.00 —0.01 (4.5.1)
—0.01 —0.01 0.01 —0.00 0.86 —0.58 0.49 -0.30 —-0.03 —0.00 0.00 0.00
—0.03 —0.00 0.00 0.01 —0.84 0.24 —0.30 0.52 0.00 —0.01 0.00 0.01
0.12 —0.02 0.00 —0.01 0.14 0.00 —0.03 0.00 2.43 —0.32 —0.03 —0.24
—0.01 0.01 —-0.00 —-0.00 —0.02 0.01 —0.00 —0.01 —0.32 0.24 —-0.15 —0.03
—0.00 —0.00 —0.00 0.00 —0.00 —0.00 0.00 0.00 —0.03 —0.15 0.16 —0.01
| —0.01 —0.01 0.01 0.01 —0.01 —0.01 0.00 0.01 —0.24 —0.03 —0.01 0.17 |

Now one can derive the 95% two-sided confidence interval for the regression

parameters of the proposed model, which is shown in Table 4.4.
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Table 4.4 MLE and 95% Two-sided Confidence Interval of the Regression Parameters
for the Proposed Logistic-type GLM using ENMn Model

Index of parameters MLE Lower bound Upper bound
1 -11.589083  -17.678111 -5.500056
2 5.509834 4.158039 6.861628
3 -6.186569 -7.868941 -4.504198
4 -5.544992 -7.021851 -4.068132
5 -6.533954  -11.801088 -1.266820
6 -1.425277 -3.348624 0.498070
7 8.784099 7.411104 10.157095
8 6.217821 4.806222 7.629419
9 2.063563 -0.991926 5.119052
10 -2.728094 -3.678583 -1.777606
11 -2.377281 -3.157388 -1.597175
12 1.185168 0.381420 1.988916

To compare the above two models, the MLE and corresponding 95% two-sided

confidence interval are plotted side-by-side in Figure 4.1. From Figure 4.1, one can
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Index of parameters

Figure 4.1 MLE and confidence interval comparisons between the proposed model
and multinomial logistic regression model.

see most confidence intervals for the proposed model are shorter than the multinomial
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logistic model except the (’s with indices 5, 6 and 9, whose covariates are In(x;) for
Group 2, In(z;) for Group 3 and In(x) for Group 3, respectively. Please note here
that the confidence intervals for both fGg and B9 show that the parameters are not
significant different from zero at level 0.05. If one therefore takes zero for these two
regression parameters, the proposed GLM model under the inverse sampling scheme
can produce more accurate estimation than conventional model when the true response
distribution is ENMn. To illustrate the deviance calculation as shown in (4.4.9), using
the implemented R package, the deviance is 231.1164 for conventional multinomial
logistic model and 226.7065 for the proposed model. The proposed model again shows
to be a better fit than conventional one since the latter has a smaller deviance.

To make comparisons between models, the normal probability plots of the
deviance residual is used. We can compare the models using normal probability or

QQ-plot for deviance residuals and Pearson residuals.

Q-Q Plot for Deviance Residuals

Deviance Residuals
0
|

A ENMn
™ © Multinomial

T T T T T T T
-3 -2 -1 0 1 2 3

Normal Quantiles

Figure 4.2 Normal probability plot for deviance residuals comparisons between
multinomial logistic regression model and the proposed model.

From Figures 4.2 and 4.3, one can see that the deviance and Pearson residuals for
the proposed model are spreads closer to the diagonal line than that for the multinomial

logistic model, indicating the former shows a better fit. Since Pearson residual is
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Q-Q Plot for Pearson Residuals

Deviance Residuals

A ENMnN
o0 Multinomial

T T T T T T T
-3 -2 -1 0 1 2 3

Normal Quantiles

Figure 4.3 Normal probability plot for Pearson residuals comparisons between
multinomial logistic regression model and the proposed model.

standardized, ideally it should be well spread from -3 to 3. However, from Figures
4.2 and 4.3, the Pearson residuals are spread out from —1 to 1 for the multinomial

logistic regression model, again indicating a better fit for the proposed model.

4.6 Conclusion

This chapter presents an applicable generalized linear model using extended negative
multinomial distribution (inverse sampling scheme) with the known multiple categories
and log odds ratio of expected counts. The proposed model is suitable for the data
that is described by recordings of count of different categories of special or non-special
type occurrences and corresponding covariates. By comparison with the multinomial
logistic regression, the proposed model has several benefits such as more accurate
estimation (providing shorter confidence intervals), providing better goodness-of-fit,
model diagnostics, and deviance.

The estimation algorithms currently uses Newton-Raphson’s method to calculate
the estimator of the proposed model. This method is not the only one, Qaqish and

Ivanova (2006) presented an efficient algorithm for parameter estimation. A potential
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work would be to develop an efficient algorithm using similar ideas, which will result
in an alternative inference and model diagnostic. If the inverse sampling scheme
is implemented in clinical settings, then the health industry can benefit from the

optimality of the sampling design that is incorporated in the proposed model.

4.7 Software
The proposed GLM model in this chapter has been implemented in mvlogit R
package [Zhu and Dhar, 2017], which will be available online at https://cran.r-

project.org/web /packages/mvlogit.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this dissertation, we considered testing multiple hypotheses with discrete data and
multiple families structure and developed novel methods which exploit these inherent
data structures. We also considered categorical data which contains several special
events of interest and developed a logistic-type multivariate model by using inverse
sampling scheme. Those multiple testing and generalized linear model methodology
can be applied in clinical trial and biomedical health care research.

In Chapter 2, we have developed several FWER controlling procedures for discrete
data by exploiting the information of discreteness for test statistics. The proposed
procedures control FWER under various dependence structure. Real data analysis
in both clinical safety studies and cDNA transcript data reveals that the proposed
procedures have more chance to detect signals than conventional procedures in terms of
adjusted p-values. The simulation results imply that the proposed stepwise procedures
outperform the discrete procedures in terms of minimal power. A future work is to
explore optimality of the suggested Procedure 2.1 and 2.3 under arbitrary dependence,
which means for some joint distribution of the discrete p-values, one cannot increase
even one of the critical constants while keeping the remaining fixed without losing
control of the FWER. Another possible future work is to incorporate some data
driven weights into our current proposed procedures to develop more powerful FWER
controlling procedures for discrete data, such as weighted Hochberg type procedure.

In Chapter 3, by using conditional inference and tool of conditional p-value,
we can make valid selective inferences. In clinical safety studies, the existing double
FDR and modified double FDR procedure fail to control average and conditional FDR
based on our simulation studies. However, by using similar screening with minimum

p-values, the proposed procedure can guarantee overall FDR control. In this chapter, we
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recommend a two-stage procedure using conditional p-value based on minP combination
and generalized Sidak selection rule, which requires p-value within body system must
be independent. But for dependent p-values within body system, minP or Fisher’s
combining method cannot be used. We can consider Brown’s combining method, which
is an extension of Fisher combination, but for dependent p-values combination. For
any dependent global p-values across body system, generalized Bonferroni or generalized
Holm procedure can be considered for selecting the body systems; for positive dependent
global p-values, the generalized step-up k-FWER procedures in Sarkar (2006) [62] can
also be considered. Moreover, we can also consider applying adaptive procedures
(Storey et al., 2004; Sarkar, 2008) on the conditional p-values to get more powerful
procedures. Other problems related to how selection rule affects the procedures such as
estimating the proportion of non-null families (containing signals) among the selected
families, the proportion of true rejections (detecting signals) among the selected non-null
families, are also interesting.

In Chapter 4, we present a novel generalized linear model using extended negative
multinomial (inverse sampling scheme) with the known multiple categories log ratio
of expected count. The proposed model is suitable for different categories in several
samples, the observations of each sample share common covariates information. By
comparing with the conventional multinomial logistic regression model, the proposed
model have several benefits such as more accurate estimation (providing shorter
confidence intervals), have a better goodness-of-fit in model diagnostics. A potential
work is to apply the inverse sampling scheme on ordinal multinomial logistic regression
model, which is also widely used in social science research, such as marketing survey.
One can compare the new model with the conventional ordinal multinomial logistic

model in terms of MLE, confidence interval and model diagnostics.

119



APPENDIX A

SIMULATION RESULTS IN CHAPTER 2

This appendix contains the simulation results stated but not shown in Chapter 2.

A.1 Independent Simulation Results
The simulation results under independent setting for stepwise procedures comparisons
are shown in this section. Table A.1 and Table A.2 are single-step procedures
comparisons using Fisher Exact Test, and Table A.3 and Table A.4 are single-step
procedures comparisons Binomial Exact Test. Table A.5 and Table A.6 are step-down
procedures comparisons using Fisher Exact Test. Table A.7 and Table A.8 are step-up

procedures comparisons using Fisher Exact Test.

A.2 Dependent Simulation Data Generation and Results
Step 1: Generate dependent Poisson observed counts for each group
In order to generate m dependent EBT statistics 7;, we use the following algorithm
to generate m dependent Poisson random variables within each group, note the Poisson

random variables between two groups are independent.

1. Generate m independent Poisson random variable Yj; ~ Poi((1 — p)Ay;) =

Poi(2(1 — p)) and one Yy ~ Poi(pAy;) = Poi(2p).

2. Let Xy; = Yy; + Y10, then Xy; ~ Poi(2) are dependent for i = 1,...,m, and the

Cov(X1i, X Var(Y; 2
correlation between X;; and Xj; is ov(X1i, Xjn) = ar (Y1) _ P _

VVar(Xy)/Var(X;) V2V/2 2

fori,j=1,...,mand i # j.

3. For « = 1,...,mg, generate my independent Poisson random variable Y5; ~
Poi((1 — p)rg;) = Poi(2(1 — p)) and one Yy ~ Poi(phy;) = Poi(2p). For
t = mgo + 1,...,m, generate m — my independent Poisson random variable

Ys; ~ Poi((1 — p)Ag;) = Poi(10(1 — p)) and one Yy, ~ Poi(pAs;) = Poi(10p).
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4. Let Xo; = Yo; + Yoo for i = 1,...,myg, then Xy ~ Poi(2) are dependent for i =

Cov(Xq;, Xo;
1,...,my, and the correlation between Xo; and Xy; is (Xoi, Xaj) =

\/VCLT(XQi)\/V@T(XQj)
Var(Y: 2
% = ?p =pfori,j =1,...,mo and i # j; let Xo; = Yo, + Yy, for

i=mgo+1,...,m, then Xy ~ Poi(10) are dependent for i = mg+1,...,m, and

Cov(Xo;, Xo; Var(Y)
the correlation between Xy; and Xy; is ou(Xai, X)) = ar (Yy) -

VVar(Xa)\/Var(Xs;) V1010
10p

E:pfor@',j:7710—1—1,...,771andi;ﬁéj.

Step 2: Obtain the conditional test statistics

Since the generated Poisson random variables between two groups are independent,
we can directly conduct EBT for each hypothesis. after generating Poisson observed
counts x1; and xq;, let ¢; = x1; + x2; be the total observed count for two groups. Then
the test statistics 7T} is conditional test statistics X;; given Xi; + Xo; = ¢;. Then the
critical value is observed count zy;.

Step 3: Conditional distribution of the test statistics

Based on the conditional inference in Lehman and Romano (2005). which is the

EBT in our paper, the conditional distribution of Xy; given Xy; + X5, = ¢; is binomial
At

i + Ao

Step 4: Calculate available p-value P, and attainable p-values When H;

Bin(c;, p;), where p; =

is true, )\11' = )\Qi, then Pi = 0.5. That iS, Xli’Xli + Xgi = C; ~~ BZTL(CZ,O5) under null

H;. Therefore, the available conditional p-value for H; can be calculated by

_ Z (j) 0.5(1 — 0.5)% (A.2.1)

J=r1;

_ Z (j) 0.5¢.

J=w14

P, = Pry, {X1; > x| X1 + X0y = ¢}

The corresponding attainable p-values can be calculated by

PI'Hi {Xh > I|X11 + Xgi = Ci} = Z <?)O5CZ for x = O, 1, ..., G (A22)

j=z
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Table A.1 Simulated FWER Comparisons for Single-step Procedures with
Independent p-values Generated from Fisher’s Exact Test Statistics

N=25 N=50 N=7 N=100 N =125 N =150
MBonf 0.0025 0.0060  0.0035 0.0075 0.0075 0.0095

m=5 Tarone 0.0015  0.0030  0.0015 0.0055 0.0045 0.0085
Bonf 0.0010  0.0030  0.0015 0.0055 0.0045 0.0085
mo = 0.2 Sidak 0.0010  0.0030  0.0015 0.0055 0.0045 0.0085
MBonf 0.0045 0.0130 0.0120 0.0170 0.0135 0.0145
m=35 Tarone 0.0030  0.0060  0.0065 0.0140 0.0090 0.0100

Bonf 0.0015  0.0060  0.0065 0.0140 0.0090 0.0100
mo = 0.4 Sidak 0.0015 0.0060  0.0065 0.0140 0.0090 0.0100

MBonf 0.0085  0.0200  0.0195 0.0235 0.0225 0.0245

m=5 Tarone 0.0060 0.0105  0.0105 0.0180 0.0155 0.0170
Bonf 0.0025  0.0100  0.0105 0.0180 0.0155 0.0170
m = 0.6 Sidak 0.0025  0.0100  0.0105 0.0180 0.0160 0.0175
MBonf 0.0140  0.0265  0.0270 0.0340 0.0315 0.0370
m=5 Tarone 0.0110 0.0140  0.0155 0.0245 0.0215 0.0220
Bonf 0.0045 0.0135 0.0155 0.0245 0.0215 0.0220
mo = 0.8 Sidak 0.0045 0.0135 0.0155 0.0245 0.0220 0.0230
MBonf 0.0020  0.0060  0.0100 0.0115 0.0095 0.0110
m =10 Tarone 0.0005  0.0040  0.0065 0.0060 0.0070 0.0060
Bonf 0.0005  0.0040  0.0065 0.0060 0.0070 0.0060
mo = 0.2 Sidak 0.0005  0.0040  0.0065 0.0060 0.0070 0.0060
MBonf 0.0050 0.0145  0.0165 0.0190 0.0215 0.0190
m =10 Tarone 0.0025  0.0090  0.0120 0.0100 0.0140 0.0125
Bonf 0.0025  0.0090 0.0120 0.0100 0.0140 0.0125
mo = 0.4 Sidak 0.0025  0.0090 0.0120 0.0110 0.0145 0.0130

MBonf 0.0090 0.0245  0.0260 0.0265 0.0300 0.0255
Tarone 0.0055 0.0150  0.0185 0.0150 0.0180 0.0155
Bonf 0.0045 0.0140 0.0185 0.0150 0.0180 0.0155
mo = 0.6 Sidak 0.0045 0.0140 0.0185 0.0160 0.0195 0.0155

MBonf 0.0175  0.0335  0.0345 0.0370 0.0390 0.0360

m =10 Tarone 0.0090 0.0215  0.0225 0.0190 0.0220 0.0200
Bonf 0.0055  0.0190  0.0225 0.0190 0.0220 0.0200
m = 0.8 Sidak 0.0055  0.0190 0.0225 0.0210 0.0240 0.0200
MBonf 0.0040  0.0060  0.0065 0.0120 0.0080 0.0100
m =15 Tarone 0.0020  0.0030  0.0030 0.0065 0.0045 0.0070

Bonf 0.0005  0.0030  0.0030 0.0065 0.0045 0.0070
mo = 0.2 Sidak 0.0005  0.0030  0.0030 0.0075 0.0045 0.0070

MBonf 0.0090 0.0150  0.0140 0.0240 0.0210 0.0200

m =15 Tarone 0.0060 0.0075  0.0065 0.0125 0.0150 0.0105
Bonf 0.0010  0.0070  0.0065 0.0125 0.0150 0.0105
mo = 0.4 Sidak 0.0010  0.0070  0.0065 0.0145 0.0150 0.0105
MBonf 0.0165 0.0250  0.0210 0.0325 0.0320 0.0280
m =15 Tarone 0.0090 0.0130  0.0095 0.0170 0.0205 0.0180
Bonf 0.0020  0.0105  0.0095 0.0170 0.0205 0.0180
mo = 0.6 Sidak 0.0020  0.0105  0.0095 0.0190 0.0205 0.0180
MBonf 0.0210 0.0345  0.0315 0.0400 0.0460 0.0360
m =15 Tarone 0.0115 0.0170  0.0155 0.0215 0.0285 0.0240

Bonf 0.0020 0.0135 0.0155  0.0215  0.0285  0.0240
mo = 0.8 Sidak  0.0020  0.0135 0.0155  0.0240  0.0285  0.0240
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Table A.2 Simulated Minimal Power Comparisons for Single-step Procedures with
Independent p-values Generated from Fisher’s Exact Test Statistics

N=25 N=50 N=7 N=100 N =125 N =150
MBonf 0.2550  0.5060  0.6855 0.8195 0.9145 0.9505

m=5 Tarone 0.1945 0.3900  0.5775 0.7680 0.8655 0.9275
Bonf 0.1125  0.3825  0.5765 0.7680 0.8655 0.9275
mo = 0.2 Sidak 0.1125  0.3825  0.5850 0.7680 0.8710 0.9340
MBonf 0.2110 0.4085  0.5785 0.7405 0.8375 0.9025
m=5 Tarone 0.1605 0.3110 0.4715 0.6705 0.7695 0.8625

Bonf 0.0880  0.3000  0.4700 0.6705 0.7695 0.8625
mo = 0.4 Sidak 0.0880  0.3000  0.4770 0.6705 0.7765 0.8680

MBonf 0.1550  0.3130  0.4320 0.5835 0.7025 0.7845

m =5 Tarone 0.1180  0.2365 0.3370  0.5145  0.6255  0.7245
Bonf 0.0605 0.2190 0.3355  0.5145  0.6255  0.7245
o = 0.6 Sidak  0.0605 0.2190 0.3420  0.5145  0.6330  0.7345
MBonf 0.0945 0.1800 0.2570  0.3595  0.4660  0.5505
m=35 Tarone 0.0740 0.1330 0.1920  0.2955  0.3950  0.4850
Bonf 0.0330  0.1190  0.1920  0.2955  0.3950  0.4850
m = 0.8 Sidak  0.0330 0.1190 0.1955  0.2955  0.4025  0.5005
MBonf 0.3155 0.6130 0.8090 0.9110  0.9765  0.9930
m =10 Tarone 0.2075 0.4695 0.7220  0.8550  0.9415  0.9820
Bonf 0.1575  0.4660 0.7220  0.8550  0.9415  0.9820
o = 0.2 Sidak  0.1575  0.4660 0.7220  0.8595  0.9425  0.9830
MBonf 0.2700 0.5220 0.7180  0.8455  0.9440  0.9750
m =10 Tarone 0.1770  0.3905 0.6065  0.7720  0.8905  0.9505
Bonf 0.1235 0.3795 0.6065  0.7720  0.8905  0.9505
m = 0.4 Sidak  0.1235  0.3795 0.6065  0.7775  0.8920  0.9575

MBonf 0.2005 0.4030  0.5615 0.7300 0.8450 0.9035
Tarone 0.1330  0.2990  0.4525 0.6315 0.7590 0.8525
Bonf 0.0800  0.2825  0.4525 0.6315 0.7590 0.8525
mo = 0.6 Sidak 0.0800  0.2825  0.4525 0.6375 0.7615 0.8585

MBonf 0.1115 0.2440  0.3500 0.4775 0.6140 0.6935

m =10 Tarone 0.0760 0.1680 0.2645  0.3810  0.5165  0.6060
Bonf 0.0390 0.1555 02645  0.3810  0.5165  0.6060
m = 0.8 Sidak  0.0390  0.1555 0.2645  0.3880  0.5170  0.6185
MBonf 0.3370 0.6715 0.8820  0.9495  0.9915  0.9965
m =15 Tarone 0.2520  0.4995  0.7530  0.8910  0.9765  0.9895

Bonf 0.1390  0.4870  0.7515 0.8910 0.9765 0.9895
mo = 0.2 Sidak 0.1390  0.4870  0.7515 0.8960 0.9765 0.9895

MBonf 0.2880  0.5815  0.7910 0.9025 0.9635 0.9830

m =15 Tarone 0.2110 0.4105 0.6475  0.8050  0.9335  0.9745
Bonf 0.1030  0.3870  0.6460  0.8050  0.9335  0.9745
mo = 0.4 Sidak  0.1030  0.3870 0.6460 0.8125  0.9335  0.9745
MBonf 0.2135  0.4485 0.6570  0.7925  0.8840  0.9500
m =15 Tarone 0.1495  0.3070 0.5085  0.6730  0.8315  0.9140
Bonf 0.0700  0.2760 0.5065  0.6730  0.8315  0.9140
mp = 0.6 Sidak  0.0700 0.2760 0.5065  0.6790  0.8315  0.9140
MBonf 0.1205 0.2635 0.4270  0.5490  0.6710  0.7780
m =15 Tarone 0.0830 0.1785  0.3050  0.4295  0.5890  0.7020

Bonf 0.0335  0.1480  0.3040 0.4290 0.5890 0.7020
mo = 0.8 Sidak 0.0335 0.1480  0.3040 0.4345 0.5895 0.7020
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Table A.3 Simulated FWER Comparisons for Single-step Procedures with
Independent p-values Generated from Binomial Exact Test Statistics

U 0.2 U 0.4 Ty = 0.6 Ty = 0.8

MBonf  0.0020 0.0060 0.0075 0.0165
m = Tarone  0.0010 0.0030 0.0055 0.0105
a = 0.05 Bonf 0.0010 0.0020 0.0025 0.0030
Sidak 0.0010 0.0020 0.0025 0.0030

MBonf  0.0010 0.0045 0.0130 0.0160
m = 10 Tarone  0.0000 0.0010 0.0050 0.0115
a=0.05 Bonf 0.0000 0.0005 0.0025 0.0025
Sidak 0.0000 0.0005 0.0025 0.0025

MBonf  0.0010 0.0065 0.0045 0.0150
m =15 Tarone  0.0000 0.0010 0.0020 0.0070
a=0.05 Bonf 0.0000 0.0005 0.0000 0.0000
Sidak 0.0000 0.0005 0.0000 0.0000

MBonf  0.0070 0.0125 0.0200 0.0365
m=>5 Tarone  0.0020 0.0065 0.0110 0.0285
a=0.1 Bonf 0.0020 0.0055 0.0065 0.0130
Sidak 0.0020 0.0055 0.0065 0.0130

MBonf  0.0040 0.0080 0.0275 0.0350
m = 10 Tarone  0.0000 0.0030 0.0165 0.0195
a=0.1 Bonf 0.0000 0.0015 0.0055 0.0060
Sidak 0.0000 0.0015 0.0055 0.0060

MBonf  0.0060 0.0155 0.0185 0.0315
m = 15 Tarone  0.0005 0.0060 0.0045 0.0200
a=0.1 Bonf 0.0000 0.0010 0.0020 0.0025
Sidak 0.0000 0.0010 0.0020 0.0025
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Table A.4 Simulated Minimal Power Comparisons for Single-step Procedures with
Independent p-values Generated from Binomial Exact Test Statistics

U 0.2 U 0.4 Ty = 0.6 Ty = 0.8

MBonf  0.9205 0.8805 0.7845 0.5565
m = Tarone  0.8815 0.8240 0.7395 0.5235
a=0.05 Bonf 0.8735 0.8055 0.6610 0.4045
Sidak 0.8735 0.8055 0.6610 0.4045

MBonf  0.9850 0.9635 0.9035 0.7390
m = 10 Tarone  0.9470 0.9240 0.8630 0.6855
a=0.05 Bonf 0.9315 0.8635 0.7050 0.4775
Sidak 0.9315 0.8635 0.7050 0.4775

MBonf  0.9925 0.9810 0.9555 0.8210
m =15 Tarone  0.9825 0.9500 0.9095 0.7845
a=0.05 Bonf 0.9820 0.9475 0.8560 0.6135
Sidak 0.9820 0.9475 0.8560 0.6135

MBonf  0.9680 0.9415 0.8615 0.6330
m=2> Tarone  0.9410 0.9140 0.8240 0.5920
a=0.1 Bonf 0.9050  0.8375 0.7040 0.4520
Sidak 0.9050 0.8375 0.7040 0.4520

MBonf  0.9965 0.9875 0.9620 0.8315
m = 10 Tarone  0.9885 0.9660 0.9170 0.7835
a=0.1 Bonf 0.9870 0.9565 0.8690 0.6600
Sidak 0.9870 0.9565 0.8690 0.6600

MBonf  0.9995 0.9970 0.9830 0.9030
m = 15 Tarone  0.9960 0.9930 0.9605 0.8400
a=0.1 Bonf 0.9880 0.9615 0.8830 0.6515
Sidak 0.9895 0.9635 0.8880 0.6590
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Table A.5

Simulated FWER Comparisons
Independent p-values Generated from Fisher’s Exact Test Statistics

for

Step-down Procedures

with

N =25 N =50

N=75 N=100 N =125 N =150

- MHolm 0.0030  0.0090 0.0065  0.0115  0.0150  0.0150
- TH* 0.0015 0.0045 0.0030  0.0075  0.0090  0.0140
o = 0.2 Holm  0.0010 0.0045 0.0030  0.0075  0.0090  0.0140
N MHolm 0.0055 0.0155 0.0135  0.0230  0.0225  0.0225
B TH* 0.0030  0.0080 0.0080  0.0185  0.0140  0.0180
o = 0.4 Holm  0.0020 0.0075 0.0080 0.0185  0.0140  0.0180
s MHolm 0.0100 0.0215 0.0215  0.0290  0.0305  0.0320
- TH* 0.0065 0.0115 0.0115  0.0220  0.0185  0.0205
70 = 0.6 Holm  0.0030 0.0110 0.0115 0.0220  0.0185  0.0205
N MHolm 0.0155 0.0285 0.0285  0.0360  0.0375  0.0440
- TH* 0.0115 0.0145 0.0160  0.0260  0.0240  0.0270
=08 Holm  0.0050 0.0140 0.0160 0.0260  0.0240  0.0270
10 MHolm 0.0020 0.0070 0.0125  0.0130  0.0160  0.0185
- TH* 0.0005 0.0040 0.0070  0.0080  0.0115  0.0125
o= 0.2 Holm  0.0005 0.0040 0.0070  0.0080  0.0115  0.0125
10 MHolm 0.0050 0.0155 0.0200  0.0215  0.0280  0.0265
- TH* 0.0025 0.0090 0.0125  0.0125  0.0200  0.0175
0 =04 Holm  0.0025 0.0090 0.0125  0.0125  0.0200  0.0175
10 MHolm 0.0095 0.0250 0.0285  0.0200  0.0360  0.0350
- TH* 0.0060 0.0150 0.0185  0.0155  0.0220  0.0215
70 = 0.6 Holm  0.0045 0.0140 0.0185  0.0155  0.0220  0.0215
10 MHolm 0.0175 0.0340 0.0360  0.0380  0.0420  0.0405
- TH* 0.0090 0.0215 0.0235  0.0195  0.0255  0.0230
0 =08 Holm  0.0055 0.0190 0.0225  0.0195  0.0255  0.0230
1 MHolm 0.0045 0.0070 0.0070  0.0140  0.0125  0.0120
- TH* 0.0025 0.0035 0.0030  0.0090  0.0060  0.0085
o = 0.2 Holm  0.0005 0.0030 0.0030  0.0090  0.0060  0.0085
15 MHolm 0.0095 0.0165 0.0145  0.0255  0.0255  0.0285
- TH* 0.0060 0.0080 0.0075  0.0160  0.0175  0.0165
o =04 Holm  0.0010 0.0070 0.0075 0.0160  0.0175  0.0165
1 MHolm 0.0165 0.0260 0.0215  0.0345  0.0350  0.0345
- TH* 0.0090 0.0130 0.0105 0.0190  0.0215  0.0195
70 = 0.6 Holm  0.0020 0.0105 0.0100 0.0190  0.0215  0.0195
15 MHolm 0.0215 0.0350 0.0315  0.0415  0.0465  0.0390
- TH* 0.0120 0.0170  0.0165  0.0225  0.0290  0.0260
0= 0.8 Holm  0.0020 0.0135 0.0165 0.0225  0.0290  0.0260
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Table A.6 Simulated Minimal Power Comparisons for Step-down Procedures with
Independent p-values Generated from Fisher’s Exact Test Statistics

N=25 N=50 N=7 N=100 N =125 N =150

MHolm  0.2555  0.5070  0.6855 0.8200 0.9145 0.9505
TH* 0.1945 0.3905  0.5780 0.7680 0.8660 0.9280
mo = 0.2 Holm 0.1130  0.3830  0.5770 0.7680 0.8660 0.9280

MHolm 0.2120  0.4090  0.5790 0.7405 0.8375 0.9030
TH* 0.1605  0.3115  0.4725 0.6705 0.7695 0.8630
o = 0.4 Holm 0.0880  0.3005  0.4710 0.6705 0.7695 0.8630

MHolm  0.1555  0.3150  0.4330  0.5855 0.7035 0.7855
TH* 0.1185 0.2365 0.3375  0.5160 0.6265 0.7260
7o = 0.6 Holm 0.0605 0.2190 0.3360  0.5160 0.6265 0.7260

MHolm  0.0950  0.1815  0.2585 0.3615 0.4690 0.5530

m=5 TH* 0.0745  0.1330  0.1920 0.2965 0.3960 0.4860
T = 0.8 Holm 0.0330  0.1190  0.1920 0.2965 0.3960 0.4860
m =10 MHolm 0.3160  0.6130  0.8095 0.9120 0.9765 0.9930

TH* 0.2075  0.4700  0.7220 0.8550 0.9415 0.9820
7m0 = 0.2 Holm 0.1575  0.4660  0.7220 0.8550 0.9415 0.9820

MHolm 0.2705  0.5220  0.7185 0.8455 0.9445 0.9750
TH* 0.1770  0.3905  0.6065 0.7720 0.8905 0.9505
mo = 0.4 Holm 0.1235 0.3795  0.6065 0.7720 0.8905 0.9505

MHolm 0.2010  0.4035  0.5615 0.7300 0.8450 0.9035
TH* 0.1330  0.2990  0.4525 0.6315 0.7590 0.8525
7o = 0.6 Holm 0.0800  0.2825  0.4525 0.6315 0.7590 0.8525

MHolm  0.1115  0.2440  0.3500 0.4780 0.6145 0.6935

m =10 TH* 0.0760  0.1680  0.2645 0.3810 0.5175 0.6065
T = 0.8 Holm 0.0390  0.1555  0.2645 0.3810 0.5175 0.6065
m=15 MHolm 0.3375  0.6715  0.8820 0.9495 0.9915 0.9965

TH* 0.2520 0.4995 0.7530  0.8910 0.9765 0.9895
o = 0.2 Holm 0.1390 0.4870 0.7515  0.8910 0.9765 0.9895

MHolm  0.2885  0.5825  0.7915 0.9025 0.9635 0.9830
TH* 0.2110  0.4105  0.6475 0.8055 0.9335 0.9745
o = 0.4 Holm 0.1030  0.3870  0.6460 0.8055 0.9335 0.9745

MHolm 0.2135  0.4495  0.6575 0.7930 0.8840 0.9500
TH* 0.1495  0.3070  0.5085 0.6730 0.8315 0.9140
o = 0.6 Holm 0.0700  0.2760  0.5065 0.6730 0.8315 0.9140

MHolm  0.1205  0.2645  0.4280  0.5495 0.6730 0.7780
TH* 0.0835 0.1785 0.3055  0.4295 0.5890 0.7030
o = 0.8 Holm 0.0335 0.1480 0.3045  0.4290 0.5890 0.7030
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Table A.7 Simulated FWER Comparisons for Step-up Procedures with Independent
p-values Generated from Fisher’s Exact Test Statistics

N=25 N=50 N=7 N=100 N=125 N =150

MHoch 0.0030  0.0090  0.0070 0.0115 0.0150 0.0155
Roth 0.0020  0.0045  0.0040 0.0085 0.0115 0.0155
mo = 0.2 Hoch 0.0015  0.0045 0.0040 0.0085 0.0115 0.0155

MHoch 0.0060  0.0155  0.0140 0.0235 0.0230 0.0245
Roth 0.0035  0.0080  0.0085 0.0185 0.0160 0.0200
mo = 0.4 Hoch 0.0025  0.0075  0.0085 0.0185 0.0160 0.0200

MHoch 0.0105  0.0215  0.0215  0.0290 0.0305 0.0325
Roth 0.0065 0.0115 0.0115  0.0220 0.0195 0.0215
o = 0.6 Hoch 0.0030  0.0110 0.0115  0.0220 0.0195 0.0215

MHoch 0.0160  0.0285  0.0285 0.0360 0.0380 0.0445

m=5 Roth 0.0115 0.0145 0.0160 0.0265 0.0245 0.0280
7m0 = 0.8 Hoch 0.0050  0.0140  0.0160 0.0265 0.0245 0.0280
m =10 MHoch 0.0025  0.0070  0.0125 0.0140 0.0170 0.0200

Roth 0.0005 0.0040 0.0070  0.0080 0.0120 0.0135
7m0 = 0.2 Hoch 0.0005  0.0040  0.0070  0.0080 0.0120 0.0135

MHoch 0.0055  0.0155  0.0200 0.0225 0.0290 0.0275
Roth 0.0025  0.0090 0.0125 0.0125 0.0200 0.0185
mo = 0.4 Hoch 0.0025  0.0090 0.0125 0.0125 0.0200 0.0185

MHoch  0.0095  0.0250  0.0285 0.0290 0.0360 0.0350
Roth 0.0060  0.0150  0.0185 0.0155 0.0220 0.0215
o = 0.6 Hoch 0.0045 0.0140 0.0185 0.0155 0.0220 0.0215

MHoch  0.0180  0.0340  0.0360  0.0380 0.0420 0.0405

m =10 Roth 0.0095  0.0210 0.0235 0.0195 0.0255 0.0235
7m0 = 0.8 Hoch 0.0055  0.0190  0.0225 0.0195 0.0255 0.0235
m=15 MHoch 0.0045  0.0070  0.0070 0.0140 0.0125 0.0130

Roth 0.0020  0.0035 0.0030  0.0090 0.0060 0.0095
mo = 0.2 Hoch 0.0005 0.0030  0.0030  0.0090 0.0060 0.0095

MHoch 0.0100  0.0165  0.0145 0.0255 0.0255 0.0290
Roth 0.0060  0.0080  0.0075 0.0160 0.0175 0.0165
mo = 0.4 Hoch 0.0010  0.0070  0.0075 0.0160 0.0175 0.0165

MHoch 0.0175  0.0260  0.0215 0.0345 0.0350 0.0345
Roth 0.0090 0.0130 0.0105 0.0190 0.0220 0.0195
o = 0.6 Hoch 0.0020  0.0105  0.0100 0.0190 0.0220 0.0195

MHoch 0.0215  0.0350  0.0315  0.0415 0.0465 0.0390
Roth 0.0120  0.0170  0.0165  0.0225 0.0290 0.0265
mo = 0.8 Hoch 0.0020 0.0135 0.0165  0.0225 0.0290 0.0265
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Table A.8 Simulated Minimal Power Comparisons for Step-up Procedures with
Independent p-values Generated from Fisher’s Exact Test Statistics

N=25 N=50 N=7 N=100 N=125 N =150

MHoch 0.2600  0.5075  0.6885 0.8240 0.9170 0.9525
Roth 0.1975  0.3915  0.5820 0.7685 0.8695 0.9300
mo = 0.2 Hoch 0.1170  0.3845 0.5810 0.7685 0.8695 0.9300

MHoch 0.2155  0.4105  0.5810 0.7410 0.8400 0.9055
Roth 0.1630  0.3115  0.4755 0.6705 0.7715 0.8660
mo = 0.4 Hoch 0.0885  0.3010  0.4740 0.6705 0.7715 0.8660

MHoch  0.1580  0.3155  0.4340  0.5860 0.7045 0.7875
Roth 0.1200 0.2365 0.3380  0.5165 0.6280 0.7275
o = 0.6 Hoch 0.0605 0.2190 0.3365  0.5165 0.6280 0.7275

MHoch 0.0955  0.1815  0.2585 0.3615 0.4695 0.5535

m=5 Roth 0.0745  0.1330  0.1920 0.2970 0.3965 0.4870
7m0 = 0.8 Hoch 0.0330  0.1190  0.1920 0.2970 0.3965 0.4870
m =10 MHoch 0.3215 0.6155  0.8110 0.9130 0.9765 0.9930

Roth 0.2080 0.4685  0.7225 0.8555 0.9420 0.9820
7m0 = 0.2 Hoch 0.1580  0.4660  0.7225 0.8555 0.9420 0.9820

MHoch 0.2735  0.5245  0.7200 0.8465 0.9450 0.9755
Roth 0.1770  0.3840  0.6070 0.7720 0.8920 0.9510
mo = 0.4 Hoch 0.1240  0.3795  0.6065 0.7720 0.8920 0.9510

MHoch 0.2030  0.4045  0.5615 0.7310 0.8450 0.9045
Roth 0.1335  0.2910  0.4525 0.6315 0.7600 0.8530
o = 0.6 Hoch 0.0800  0.2825  0.4525 0.6315 0.7600 0.8530

MHoch  0.1135 0.2440  0.3500  0.4780 0.6150 0.6935

m =10 Roth 0.0765  0.1625  0.2645 0.3810 0.5175 0.6075
7m0 = 0.8 Hoch 0.0390 0.1555  0.2645 0.3810 0.5175 0.6075
m=15 MHoch 0.3405 0.6720  0.8830 0.9505 0.9915 0.9965

Roth 0.2520  0.5010 0.7545  0.8910 0.9765 0.9900
mo = 0.2 Hoch 0.1390 0.4875 0.7535  0.8910 0.9765 0.9900

MHoch  0.2895  0.5830  0.7925 0.9025 0.9635 0.9830
Roth 0.2110  0.4115  0.6485 0.8060 0.9335 0.9745
mo = 0.4 Hoch 0.1030  0.3870  0.6470 0.8060 0.9335 0.9745

MHoch 0.2150  0.4500  0.6595 0.7935 0.8845 0.9505
Roth 0.1495  0.3080  0.5095 0.6730 0.8320 0.9150
7m0 = 0.6 Hoch 0.0700  0.2760  0.5075 0.6730 0.8320 0.9150

MHoch 0.1210  0.2645  0.4285  0.5500 0.6730 0.7780
Roth 0.0835 0.1785  0.3055  0.4295 0.5895 0.7035
mo = 0.8 Hoch 0.0335 0.1480 0.3045  0.4290 0.5895 0.7035
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APPENDIX B

PROOFS IN CHAPTER 3

This appendix contains the proofs of the theorems and lemmas stated but not proved

in Chapter 3.

B.1 Proof of Theorem 3.1
Proof. Let Iy denote the index of true null hypothesis, ny = |Iy| denote the number of
true nulls, R denote the the number of rejected hypothesis. Denote I = 1 if the first
true null hypothesis H; is rejected.
Without loss of generality, replace first true null p-value by 0 and order the p-values
such that p; = 0 < py < -+ < p,. Let J = max{k : p < %a}. Since the number
of rejections R is a non-increasing function of each p-values, R = R(p},ph,...,p,) <

R(p17p27"'7pn) < J(Oap27"'7pn> =J.

) ) J
So I = 1 implies p; < pj} < —a < —a. For 1 < r < J, there are three cases as
n n

the inflation factor b, and b, vary as follows.

e Case 1: b, = 1.

J J J
Since p; < —a, p, < —a for r < J. Hence p. = p, < —a.
n n n
o—t/2
e Case 2: b =1,b, = ———— < 1.
H o)
=1(#r)

—t/2 H b H b

Since by = 1 implies —— > 1, p! = p, /b, = le:jt/z = pl% <p =p, < >a

H ygj €
=2

<

3

ot/ ot/
o Case 3: by = — < 1,b, = —; <1,
[1p [T »
=2 I=1(#r)
/ / ll;llpl : / J / J
then p/ =p} = . Since p} < —a, p. < —a.
" e~t/2 n """ n
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J
Based on the above analysis, we can conclude I = 1 implies p/, < —a for r < J,
n

J
that is, at least J conditional p-values are no more than —a. Since R is the maximal
n

,

number r satisfying p/. < —a, so J < R. Therefore, we can conclude J = R since
n

J > R.

Therefore,

y
¢cFDR=E (m‘f(P) > t)

— noE {zn: I(Hyis rejected , R =r|f(P) > t) }

.
r=1
"\ I(H,is rejected , R = r|f(P, PCY = ptb) > ¢
= noEp,.. pn{EP1|P2 ..... o [Z (Hls rej !J;( I p)>1)
r=1

r=1

"1
=noEp,, P, {Z - Pr(I =1,R=r|f(P,PCY =pV) > t)}
{1 J

(6%

~ B, { PP < Zal (PP = ) )
n
o
=—F <
" (o) <
(B.1.1)
Then the proof is complete. O

B.2 Proof of Lemma 3.1
Proof. For any 1 < j <n —1, we have p; < pj;;1, and

4

n
H bi
=1

if T p > e */?

R e =
(#4)
Dj otherwise.

\

n
[1p
Pj41 can only take the value of lez_lw Or Pjii-

H bi
=1
e—t/2’

which implies [] p > e /2.
=1
(#5+1)

e Case 11fp),, =
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So [[m = Pj+1 I »m> Dj IH »w= 11 »m > 67t/2, where the first
=1 =1 =1 =1
(#9) (#4,3+1) (#5,5+1) (#5+1)

=1 o
e—t/2 Jj+1-

inequality follows from p;; > p;. Thus p} =

H bi
I=1

e Case 2 If p;,, = pj;1, which implies H1 p < e 2, p; can be p; or —iz

1=
(#5+1)
If p); = p;, then it is trivial that p}; < p’., since p; < pji1.
n
n II »
LLr FitD) "
. = J . _

Otherwise, p = =5 = pja 5 < pje = Py, since I p < e,

=1

(#5+1)

Therefore, for any 1 < j < n — 1, if p; < pjyy, then p} < pl,y, the proof is

complete. O

B.3 Proof of Theorem 3.2
Proof. By using similar arguments as the proof of Theorem 1, we can conclude reject

J
Hy,ie. I =1, implies p; < p} < —a < —a. For 1 < r < J, we also consider the
n n

following three cases.
e Case 1: b, = 1.

Q.

S|

J J
Since p; < p) < —a, p, < —a for r < J. Hence p,. = p, <
n n
e Case 2: b, =t < 1.
b, = t implies min{p1,pa, ..., Pr—1,Prit,---,Pn} = Min{py, po} > t, which means
p1 > t. Since p; < —a < «a and a < t, p; <t, which leads to a contradiction.
n

J
Based on the above analysis, we can conclude I = 1 implies p/. < —a for some
n

r < J, that is, at least J conditional p-values less than or equal to —«. Since R is the
n

r
maximal number r satisfying p/. < —a, then J < R. So J = R since J > R.
n

Therefore,
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cFDR=FE ( vl‘mm{P} < t)

r

n . . — . <
o {Z I(Hyis rejected , R = r|min{P} <) }

r=1

~~~~~~~~~~
r

"\ I(Hiis rejected , R = r|min{ P, PtV = p-b1 < ¢
Pn{EP1|P2 Pn[z (Hi ) | {P )

1
= noEp2 ..... P, {Z ;PI‘(I = 1,R = 7’| min{PhP(*l) — p(*l)} < t)}

r=1

1
~tarp, {3 PP S Salmin{R, POV = p0) <0}
(0%
— ) <
kb (3) <a
(B.3.1)
O
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