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ABSTRACT

TOPICS ON MULTIPLE HYPOTHESES TESTING AND
GENERALIZED LINEAR MODEL

by
Yalin Zhu

In applications such as studying drug adverse events (AE) in clinical trials and

identifying differentially expressed genes in microarray experiments, the data of the

experiments usually consists of frequency counts. In the analysis of such data,

researchers often face multiple hypotheses testing based on discrete test statistics.

Incorporating this discrete property of the data, several stepwise procedures, which

allow to use the CDF of p-values to determine the testing threshold, are proposed for

controlling familiwise error rate (FWER). It is shown that the proposed procedures

strongly control the FWER and are more powerful than the existing ones for discrete

data. Through some simulation studies and real data examples, the proposed

procedures are shown to outperform the existing procedures in terms of the FWER

control and power. An R package “MHTdiscrete” and a web application are developed

for implementing the proposed procedures for discrete data.

Many complex biomedical studies, such as clinical safety studies and genome-wide

association studies, often involve testing multiple families of hypotheses. Most existing

multiple testing methods cannot guarantee strong control of appropriate type 1 error

rates suitable for such increasingly complex research questions. A novel two-stage

procedure based on the recently developed idea of selective inference for clinical safety

studies is introduced. In the first stage, some significant families are selected by using

some family-level global test, which guarantees control of generalized familywise error

rate (k-FWER) among the selected families. In the second stage, individual hypotheses

are tested for each selected families by using some multiple testing procedure, which

controls conditional false discovery rate (cFDR) based on the fact that the family is

selected. By applying the proposed procedure to clinical safety studies, one can not only



efficiently flag the significant clinical adverse events (AEs) but also select body systems

of interest (BSoI) as extra information for further research. The simulation studies

show that the proposed procedure can be more reliable than alternative methods such

as Mehrotra and Heyse’s double FDR procedure in the setting of clinical safety. The

proposed procedure for multiple families structure is implemented in the R package

“MHTmult”.

Categorical data arises in biomedical and healthcare experiments naturally. In

many of these cases, the outcome variables of interest are the numbers of special events.

At least one distinct special event category is observed, when the negative multinomial

and extended negative multinomial or generalized inverse sampling scheme-based

regression models are used. The new model, based on generalized inverse sampling

scheme for several special events, is developed in this dissertation. This research is

an adaption to the widely used multinomial logistic regression model. The resulting

equations of the proposed model, corresponding to the natural log of the ratio of the

expected responses, appears similar to the multinomial logistic regression. Using this

expected response ratio of a category to that of the special category, the maximum

likelihood estimator of the regression parameters can be computed by creating score

equations and the Hessian matrix of the likelihood. The covariance matrix of estimators

of the regression parameters for the new model can be estimated by inverting the

Hessian matrix to develop the inference. This research also develops model diagnostics

such as normality check with deviance and Pearson residuals, and likelihood based

computations. The proposed model is implemented in the R package “mvlogit”.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In the applications of clinical trials and genealogy study, multiple hypotheses testing

is a very useful statistical tool to analyze experimental data. Simultaneously testing

multiple hypotheses is often required in such applications. In single hypothesis testing,

a typical error measure which needs to be controlled is called type I error rate, the

probability of falsely rejecting the hypothesis while the hypothesis is true. There

are several possible measures for the overall type I error rate while testing multiple

hypotheses. A popular error rate is the familywise error rate (FWER), which is the

probability of making at least one false rejection. It is appropriate to control the

FWER when the number of hypotheses tested is small or moderate, but it is too

conservative when a large number of hypotheses are tested simultaneously which is

typically the case in large scale experiments like microarray or fMRI study. Benjamini

and Hochberg (1995) introduced false discovery rate (FDR) as an appropriate measure

to be controlled while simultaneously testing a large number of hypotheses. FDR is

defined as the expected proportion of false rejections among all rejections. To control

the FDR, it allows more hypotheses to be rejected while controlling the proportion

of false rejections, thus opening an opportunity for the development of more powerful

procedures than those using FWER as an error measure to control. For a review

of multiple testing procedures controlling the FWER, see Dmitrienko et al. (2009).

For a review of FDR controlling procedures, refer to Benjamini (2010). Most existing

procedures are constructed for continuous data, but these procedures may be highly

conservative when testing discrete data. Tarone (1990) proposed a modified Bonferroni

procedure to make it more powerful for discrete data. The modification is to reduce

the number of significance tests by eliminating those tests with relative large minimal
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attainable p-values. But the Tarone procedure lacks α-consistency, that is, a hypothesis

which is accepted at a given α level may be rejected at a lower α level (Roth, 1999). To

overcome this issue, two modified Tarone procedures were developed by Hommel and

Krummenauer (1998) and Roth (1999), which not only control FWER, but also have

the property of α-consistency. Hommel and Krummenauer (1998) improved the Holm

procedure to develop a step-down procedure for discrete data by using Tarone’s idea.

Roth (1999) presented a two-stage step-up procedure for improving Hochberg procedure

for discrete data based on the similar Tarone’s idea, but this step-up procedure lacks

α-consistency. Westfall and Wolfinger (1997) suggested a resampling based approach

to simulate the null distribution of minimal p-value, which uses the full set of attainable

p-values for each p-value. But this method is computationally complicated and only

ensure asymptotic control of the FWER. Gutman and Hochberg (2005) proposed new

stepwise procedures which use the Westfall and Wolfinger’s resampling algorithm and

the idea of Tarone procedure.

There are many adverse events (AE) classified by body systems (BS) in clinical

safety studies In clinical safety studies, there are many adverse events (AE) recorded

in one clinical trial. The goal for assessing the safety of an experimental drug is to

flag “reasonable” or “correct” AEs among these AE types. Most AE detecting or

flagging methods do not control for overall type 1 error rates, such as FWER or FDR.

Thus, similar as dealing with multiple endpoints in drug efficacy analysis, multiplicity

effect should be also considered in drug safety analysis. However, the number of AEs

in safety analysis is much larger than the number of endpoints in efficacy analysis

for the experimental drugs. Simply applying FWER controlling procedures such as

Bonferroni procedure may fail to flag more important AEs. Therefore, some FDR

controlling procedures such as BH procedure can be applied to detect the signals of

the AEs, since the number of AEs in clinical safety studies is usually large. Moreover,

searching for significant AEs, the AE types are often classified by several body systems

(BS). So the multiple-family structure should be considered for the drug safety data
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analysis. Recently, some structured BH-type procedures are developed for multiple

families of hypotheses (Mehrotra and Heyes, 2004; Mehrotra and Adewale, 2012; Hu et

al., 2010; Benjamini and Bogomolov, 2014). However, most existing methods do not

clearly separate the selection effect and multiplicity effect. To overcome this problem,

selective inference by using conditional inference such as conditional type 1 error rate

control, selection adjusted confidence interval is developed recently (Fithian et al., 2015;

Weinstein et al., 2013; Heller et al., 2016). By using the selective inference idea, the

second part of this dissertation introduces a multiple testing procedure for multiple

families structure in clinical safety studies.

In the last part of this dissertation, we highlight logistic-type model while

introducing generalized linear models for multi-level data. Logistic model is the most

important model for categorical response data. It is used increasingly in a wide variety

of applications, such as biomedical studies, social science researches, marketing, etc.

An area of increasing application of logistic model is genetics. For instance, Henshall

and Goddard (1999) used logistic regression to estimate quantitative trait loci effects,

modeling the probability that an offspring inherits an allele of one type instead of

another type as a function of phenotypic values on various traits for that offspring.

Levinson et al. (2000) used logistic regression for analysis of the genotype data of

affected sibling pairs (ASPs) and their parents from several research centers. The

model studied the probability that ASPs have identity-by-descent allele sharing and

tested its heterogeneity among the centers. In clinical trial experiments, the data are

usually collected as count data for several group/categories, where some categories are

classified as severe and rare diseases (or called “stages”), such as the data in Desmet

et al. (1994). We use this information in building our model, for more details, please

refer to Chapter 4.
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1.2 Basic Concepts of Multiple Hypotheses Testing

Consider simultaneously testing m hypotheses H1, . . . , Hm, based on the corresponding

p-values P1, . . . , Pm. Letm0 denote the number of true null hypotheses andm1 = m−m0

denote the number of false null hypotheses. Let I0 denote the set of indices of true null

hypotheses.

Let V denote the number of falsely rejected hypotheses, S denote the number of

correctly rejected hypotheses and R denote the total number of hypotheses rejected,

thus R = S + V . Table 1.1 summarizes the notations for all possible outcomes.

Table 1.1 Summary of the Outcomes while Simultaneously Testing m
Hypotheses

Number of
Hypotheses Not
Rejected

Number of
Hypotheses
rejected

Total
Number

True Null Hypotheses m0 − V V m0

False Null Hypotheses m1 − S S m1

Total m−R R m

Note that m and m0 are fixed but m0 is usually unknown, R, V and S are random but

only R is observable, and V and S are unobservable.

When dealing with multiple testing problems, it is essential to choose an

appropriate overall measure of error rate and power measure.

1.2.1 Error Rate Definition

The overall error rate measure for multiple testing is not unique. Several commonly

used error rates are defined as follows.
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• Per family error rate (PFER) is the expected number of incorrectly rejected

hypotheses, which is given by

PFER = E{V }.

• Comparisonwise error rate (CWER) is the proportion of falsely rejected hypotheses

among all tested hypotheses, which is given by

CWER =
E{V }
m

.

• Familywise error rate (FWER) is the probability of making at least one false

rejection, which is given by

FWER = P{V > 0}.

• False discovery rate (FDR) is the proportion of falsely rejected hypotheses among

all rejected hypotheses and is formally defined by Benjamini and Hochberg (1995)

as

FDR = E

{
V

R ∨ 1

}
= E

{
V

R
I(R > 0)

}
,

where R ∨ 1 = max{R, 1} and I(·) is indicator function. Note that when all null

hypotheses are true, that is m0 = m, FDR reduces to FWER. The relationship among

the above four error rate measures is CWER ≤ FDR ≤ FWER ≤ PFER.

1.2.2 Definition of Power

The power of a single test is defined as the probability of rejecting a false null

hypothesis. There are several types of power measure when testing multiple hypotheses

simultaneously, so it is important to use an appropriate power measure to evaluate

performance of a MTP. Several commonly used concepts of power are described below:
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• Minimal power is the probability of rejecting at least one false null hypothesis,

which is given by

Minimal Power = Pr(S > 0).

• Complete power is the probability of rejecting all false null hypotheses, which is

given by

Complete Power = Pr(S = m1).

• Average power is the expected proportion of rejected false null hypotheses among

all false null hypotheses, which is given by

Average Power =
E{S}
m1

.

• Another concept of power is from the false non-discovery rate (FNR), which is

given by

1− FNR = 1− E
{

m1 − S
(m−R) ∨ 1

}
.

Theoretically, the definition of “universally more powerful” can be used to

compare two procedures.

Definition 1.1. If procedure A rejects all hypotheses rejected by procedure B for every

possible configuration, then we can say procedure A is universally more powerful than

procedure B.

1.2.3 Strong Control and Weak Control

Strong control is to control type I error rate under any combination of true and false

null hypotheses, while weak control is to control type I error rate only when all null

hypotheses are true. Generally, strong control of type I error rate is desired, since the

combination of true and false hypotheses in the actual setting is unknown.
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In applications of clinical trials, strong control of the FWER for the primary

objects is mandated by regulators. For example, in drug safety studies, the FWER

control is needed for the adverse events related to the trial drugs. For all other adverse

events, it is reasonable to control the FWER or the FDR.

1.2.4 Assumptions of p-values

• The p-value is calculated from given test statistic, thus the distribution of p-value

could be continuous or discrete based on the distribution of the test statistic.

Assumption 1.1. True null p-values are stochastically greater than or equal to

the U [0, 1] distribution, that is,

Pr(Pi ≤ u) ≤ u, for i ∈ I0 and u ∈ [0, 1]. (1.2.1)

We should note that the equality does not always hold in the assumption. For

instance, for finite discrete p-values, when u takes the values except attainable

p-values, “≤” in the above assumption becomes “<”. Only when u takes the

value of the attainable p-values, Pr(Pi ≤ u) = u. In Chapter 2, we will use this

property of discrete null p-values to develop some more powerful MTPs.

• Another assumption is the joint dependence structures of the p-values for multiple

hypotheses. Several dependence structures while developing MTPs are used

including: independence, block dependence (Storey, 2003; Guo and Sarkar, 2012),

positive regression dependence on subset (PRDS) (Benjamini and Yekutieli,

2001; Sarkar 2002), arbitrary dependence, which allows any dependence structure

including previous ones. The PRDS property is defined as follows.

Assumption 1.2. A set of p-values {P1 . . . Pm} is said to be PRDS, if for

any non-decreasing function of the p-values φ, E{φ(P1, . . . , Pm)|Pi ≤ p} is

non-decreasing in p for each true null hypothesis Hi.
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1.2.5 Distributions of the p-values for Discrete Data

We will now look into several typical discrete p-value distributions, which include the

Binomial Distribution, Hypergeometric Distribution.

Binomial distribution Consider testing a single hypothesis H0 : θ = θ0 versus H1 :

θ < θ0. Suppose that under H0, the test statistic X ∼ Bin(n, θ0). Then the attainable

p-value for this test can be calculated by pi = Pr(X ≤ i|H0) for i = 0, 1, . . . , n.

If the probability mass function (PMF) of Pi is Pr(P = pi), then the cumulative

distribution function (CDF) of the Pi is F (p) = Pr(P ≤ p) =
∑
pi≤p

Pr(P = pi). For

example, suppose X ∼ Bin(5, 0.3) under H0. Then the set of the attainable p-values

are {0.16807, 0.52822, 0.83692, 0.96922, 0.99757, 1}. The PMF and CDF of the p-value

can be given as

Pr(P = 0.16807) = Pr(X = 0) = 0.16807,

P r(P = 0.52822) = Pr(X = 1) = 0.36015,

P r(P = 0.83692) = Pr(X = 2) = 0.3087,

P r(P = 0.96922) = Pr(X = 3) = 0.1323,

P r(P = 0.99757) = Pr(X = 4) = 0.02835,

P r(P = 1) = Pr(X = 5) = 0.00243
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and

F (p) =



0, 0 ≤ p < 0.16807

0.16807, 0.16807 ≤ p < 0.52822

0.52822, 0.52822 ≤ p < 0.83692

0.83692, 0.83692 ≤ p < 0.96922

0.96922, 0.96922 ≤ p < 0.99757

0.99757, 0.99757 ≤ p < 1

1, p = 1.

(1.2.2)

The test statistic in binomial exact test (BET) follows binomial distribution.

Hypergeometric distribution Another popular discrete distribution is hyper-

geometric distribution Ti ∼ Hypergeometric(x1i, n1i, x·i, n·i), which describes the

probability of x1i successes in n1i draws, without replacement, from a finite population

of size n·i that contains exactly x·i successes, wherein each draw is either a success or a

failure.

For instance, let us consider the test statistics of Westfall and Wolfinger (1997)

in Table 1. In that example,

T1 ∼ Hypergeometric(5, 48, 5, 98),

T2 ∼ Hypergeometric(3, 48, 7, 98),

T3 ∼ Hypergeometric(4, 48, 4, 98),

T4 ∼ Hypergeometric(4, 48, 10, 98).

Note that each p-value is matched with corresponding test statistic, then we can find

PMF of the corresponding p-value Pi for each given Ti. For example,

Pr(P1 = 0.02521) = Pr(T1 = 5) =

(
48
5

)(
50
0

)(
98
5

) = 0.02521,
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Pr(P1 = 0.16848) = Pr(T1 = 4) =

(
48
4

)(
50
1

)(
98
5

) = 0.14327.

Therefore, we can get CDF’s Fi of Pi, i = 1, . . . , 4, as follows:

F1(p) =



0, 0 ≤ p < 0.02521

0.02521, 0.02521 ≤ p < 0.16848

0.16848, 0.16848 ≤ p < 0.48047

0.48047, 0.48047 ≤ p < 0.80602

0.80602, 0.80602 ≤ p < 0.96880

0.96880, 0.96880 ≤ p < 1

1, p = 1,

(1.2.3)

F2(p) =



0, 0 ≤ c < 0.00532

0.00532, 0.00532 ≤ p < 0.04967

0.04967, 0.04967 ≤ p < 0.20129

0.20129, 0.20129 ≤ p < 0.47697

. . . , . . .

0.99278, 0.99278 ≤ p < 1

1, p = 1,

(1.2.4)
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F3(p) =



0, 0 ≤ p < 0.05387

0.05387, 0.05387 ≤ p < 0.29327

0.29327, 0.29327 ≤ p < 0.67580

0.67580, 0.67580 ≤ p < 0.93625

0.93625, 0.93625 ≤ p < 1

1, p = 1,

(1.2.5)

and

F4(p) =



0, 0 ≤ p < 0.00047

0.00047, 0.00047 ≤ p < 0.00645

0.00645, 0.00645 ≤ p < 0.03946

0.03946, 0.03946 ≤ p < 0.14250

. . . , . . .

0.99927, 0.99927 ≤ p < 1

1. c = 1.

(1.2.6)

Figure 1.1 shows the CDF’s of true null p-values for these four tests.

Fisher’s exact test (FET) is usually used to test association between two

variables of interest for a 2 × 2 contingency table. The test statistic in FET follows

hypergeometric distribution.

Remark 1.1. χ2 test and Fisher exact test are two popular approaches used for

analyzing Adverse Events (AEs) data. Fisher’s exact test is desired when the expected

draws (x1i) is small.
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Figure 1.1 The values of the p-value Pi versus the values of the CDF Fi for i =
1, . . . , 4.

1.2.6 α-consistency

In hypothesis testing, α-consistency is a type of desired statistical property in terms of

the significant level α, which is defined as follow:

Definition 1.2. A hypothesis that is rejected at a given α level must be rejected at a

higher α level. This property is called α-consistency.

For single hypothesis testing, it is trivial that this property is satisfied. For

multiple hypotheses testing, not all procedures have this property. Here α-consistency

means when α becomes larger, the set of rejections determined by the MTP will not

become smaller.

1.2.7 p-value Monotonicity

Another favorable property of a multiple testing procedure is monotonicity in terms of

p-values, which can be defined as follow:
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Definition 1.3. If one or more p-values are made smaller, then at least the same or

even more hypotheses would be rejected for the same procedure. We say such a procedure

is p-value monotone.

It is easy to see that the property of p-value monotone is always satisfied by

stepwise procedures. It is an essential requirement for multiple testing procedures.

1.2.8 Adjusted p-value

It is very useful to calculate adjusted p-value in multiple testing, since adjusted p-values

capture the degree of multiplicity adjustment, so that we can make decisions of rejection

and acceptance as in single hypothesis by comparing the adjusted p-values with the

given significance level. Decision rules based on adjusted p-values are equivalent to

ones based on original procedures.

A general definition of an adjusted p-value is given in Westfall and Young (1993):

the adjusted p-value for a hypothesis is the smallest significance level at which one

would reject the hypothesis using the given multiple testing procedure. Let P̃i denote

the adjusted p-value corresponding to Hi, which is given by

P̃i = inf{α : Hi is rejected using the given procedure at level α}. (1.2.7)

If this procedure controls FWER/FDR at level α, then

P̃i = inf{α : Hi is rejected when FWER/FDR is controlled at level α}. (1.2.8)

So we can make the decision based on adjusted p-values: reject Hi if P̃i ≤ α. This

calculation can help researchers make decisions easily and fast.

1.3 Multiple Testing Procedures (MTPs)

Several multiple testing procedures have been developed in the literature for various

scenario. They can be broadly classified as three main types: p-value based MTP,

parametric MTP and resampling based MTP.
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• p-value based MTP : These procedures do not make any assumptions about the

joint distribution of the test statistics and only rely on the univariate p-values.

Typical examples are Bonferroni (1936) procedure, Holm (1979) procedure, BH

(1995) procedure.

• parametric MTP : These procedures make specific assumptions about the distri-

bution of the test statistics. For instance, the joint distribution might be a

multivariate normal or a multivariate t-distribution. A typical procedure is

Dunnett procedure (1955).

• resampling based MTP : These procedures use resampling techniques like bootstrap,

permutation, etc., that make fewer assumptions about the data-generating process

while still exploiting the dependence structure of the underlying test statistics in

multiple testing procedures, see Westfall and Young (1993).

1.3.1 Multiple Testing Procedures based on p-values

The first two parts of this dissertation mainly focuses on p-value based MTPs.

Commonly, the p-value based MTPs test hypotheses step by step. According to the

order of p-values, the MTPs can be classified as single-step, step-down, and step-up

procedures.

Let P(1) ≤ · · · ≤ P(m) be the ordered p-values and H(1), . . . , H(m) be the

corresponding hypotheses. By using a sequence of non-decreasing critical constants

α1 ≤ · · · ≤ αm, the stepwise MTPs are described as follows:

• Single-step procedure compares p-values with the same critical constant c, that

is, reject Hi if Pi ≤ c for i = 1, . . . ,m. A widely used single-step procedure is

Bonferroni procedure, for which the critical constant is defined by c =
α

m
.

• Step-down procedure starts with the most significant hypothesis H(1) corre-

sponding to the smallest p-value P(1), If P(1) > α1, accept all m hypotheses;

otherwise, keep rejecting hypotheses until an acceptance is observed. The
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rest hypotheses are accepted automatically. That is, the procedure rejects

H(1), . . . , H(r), accept H(r+1), . . . , H(m), where r is the largest index satisfying

P(1) ≤ α1, . . . , P(r) ≤ αr. A typical example is Holm procedure (Holm, 1979),

which is a step-down procedure with the critical constant αi =
α

m− i+ 1
.

• Step-up procedure starts with the least significant hypothesis H(m) corresponding

to the largest p-value P(m). If P(m) ≤ αm, reject all m hypotheses; otherwise,

keep accepting hypotheses until a rejection is observed. The rest hypotheses

are rejected automatically. That is, the procedure rejects H(1), . . . , H(r), accept

H(r+1), . . . , H(m), where r is the largest index satisfying P(r) ≤ αr.

A typical example is Hochberg procedure (1988), which is a step-up procedure

with the same critical constants as Holm procedure.

1.3.2 FWER Controlling Procedures

A well known FWER controlling procedure is the Bonferroni procedure (1936), which

is a single-step procedure with the critical constant c =
α

m
. A more powerful single-step

procedure is the Sidak procedure (1967), which has the critical constant 1− (1− α)
1
m .

The critical constant is slightly larger than that of the Bonferroni procedure. Holm

(1979) developed a step-down procedure we have defined in last subsection with the

critical constant αi =
α

m− i+ 1
, which strongly controls the FWER under arbitrary

dependence. Hochberg (1988) proposed a step-up procedure with the same critical

value as the Holm procedure, which controls the FWER under the PRDS property.

Taking discrete property of statistics into account, Tarone (1990) introduced a

modified Bonferroni procedure by using the smallest attainable p-values to eliminate

the non-significant tests. The critical constant of this modified procedure is larger

than that of Bonferroni procedure, which implies this procedure is more powerful than

Bonferroni procedure.
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Procedure 1.1 (Tarone procedure). Let p∗i be the smallest attainable p-values for Hi,

Mα(k) =
m∑
i=1

I{p∗i < α/k} ≤ m. Define Kα = min{1 ≤ k ≤ m : Mα(k) ≤ k} and

RKα = {i : p∗i <
α

Kα

}. Then reject Hi if i ∈ RKα and Pi < α/Kα.

Remark 1.2. Note that in the definition of Procedure 1.1, since Pi ≥ p∗i , Pi < α/Kα

implies i ∈ RKα = {i : p∗i <
α

Kα

}. That means rejecting Hi only needs Pi < α/Kα.

Note that for continuous p-values Mα(k) = m for k = 1, . . . ,m, so Kα = m and

Procedure 1.1 reduces to Bonferroni procedure.

Unfortunately, the Tarone procedure lacks α-consistency. For example, suppose

we simultaneously test two hypotheses H1 and H2 with the corresponding actual p-

values being P1 = 0.07 and P2 = 0.1. The smallest attainable p-values for H1 and H2

are p∗1 = 0.06 and p∗2 = 0.08, respectively. When α = 0.1, Mα(1) = 2 and Mα(2) = 0,

so Kα = 2. Thus, no any hypothesis is rejected since P1 and P2 are larger than

α/Kα = 0.05. However, when α = 0.075, Mα(1) = 1 and Mα(2) = 0, so Kα = 1

and α/Kα = 0.075. Therefore H1 is rejected since P1 = 0.07 < 0.075. Thus, when α

becomes smaller, more hypotheses can be rejected. That is, the Tarone procedure does

not satisfy the property of α-consistency.

To overcome the issue of lacking α-consistency, Hommel and Krummenauer (1998)

developed a modified Tarone procedure, which is proved satisfying the property of

α-consistency.

Procedure 1.2 (T ∗). Suppose p∗i is the smallest attainable p-value for Hi and let

γ ∈ (0, α] and Mγ(k) =
m∑
i=1

I{p∗i < γ/k}. Define Kγ = min{1 ≤ k ≤ m : Mγ(k) ≤ k},

then reject Hi if there exists a γ, such that Pi ≤ γ/Kγ

In Procedure 1.1, k and Kα can only take integer values from 1 to m, Roth (1999)

suggested another modified Tarone procedure allowing k and Kα to take fractional

values. The critical constant α/Xα introduced in the following procedure will be

continuous and monotone. Thus it retains α-consistency.
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Procedure 1.3. Suppose p∗i be the smallest attainable p-values for Hi. For 1 ≤ x ≤ m,

let Mα(x) =
m∑
i=1

I{p∗i <
α

x
}. Define Xα = inf{1 ≤ x ≤ m : Mα(x) ≤ x}, then reject Hi

if Pi < α/Xα.

Roth (1999) showed that Procedure 1.3 is equivalent to Procedure 1.2 and these

two procedures are universally more powerful than Tarone procedure.

Hommel and Krummenauer (1998) also proposed a step-down procedure for

discrete data by incorporating Tarone’s idea into Holm procedure.

Procedure 1.4 (TH∗).

1. Set I = {1, . . . ,m}.

2. For k = 1, . . . , |I|, define MI(k) = #{i ∈ I : p∗i ≤ α/k} as the number of

hypotheses with indices in I that can be rejected at level α/k. Let KI(α) =

min{k = 1, . . . , |I| : MI(k) ≤ k} and define bI(γ) =
γ

KI(γ)
.

3. For i ∈ I, reject Hi if and only if Pi ≤ bI(γ) for some 0 < γ ≤ α.

4. Let J be the index set of hypotheses rejected in step 3.

5. If J is empty then stop, otherwise set I = I − J and return to step 2.

Note that if the test statistics is continuous, then Procedure 1.4 reduces to Holm

procedure.

Roth (1999) also introduced a two stage step-up procedure based on Hochberg

procedure (1998).

Procedure 1.5. Roth’s step-up procedure is consisted of the following two stages:

• Stage 1:

1. Accept all hypotheses outside of R1 = {Hi : p∗i < α}.

2. For the Mα(1) hypotheses in the set R1, order their available p-values from

highest to lowest as P1,(1) ≥ · · · ≥ P1,(Mα(1)) with corresponding hypotheses

H1,(1), . . . , H1,(Mα(1)).

3. Define r = min{j : P1,(j) <
α
j

and H1,(j) ∈ R1}.
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4. Reject all of the Hi ∈ R1, such that Pi <
α

r
.

• Stage 2:

1. Consider only the hypotheses in RK ,, order their available p-values from

highest to lowest by PK,(1) ≥ · · · ≥ PK,(Mα(K)). If Mα(K) < K, then let

PK,(i) = 0 for i = Mα(K) + 1, . . . , K, where K is the same as Kα defined in

Procedure 1.1.

2. For j = 1, . . . , K, define P ∗j = max{{Pj,(j)}
⋃
{Pi : Hi ∈ Rj −RK}}.

3. Define r′ = min{j : P ∗j <
α

j
}.

4. Reject Hi if Pi <
α

r′
.

Then this procedure rejects Hi if it was rejected in stage 1 or 2.

Adjusted p-value for several existing procedures

Based on (1.2.8), adjusted p-value for the Bonferroni procedure for each hypothesis Hi

can be obtained by

P̃i,Bonf = min{1,mPi}, where i = 1, . . . ,m.

The adjusted p-value for the Sidak procedure is given by

P̃i,Sidak = 1− (1− Pi)m, where i = 1, . . . ,m.

The adjusted p-values for Procedure 1.2 is defined by Hommel and Krummernauer

(1998) as follow.

Proposition 1.1. Adjusted p-value for Procedure 1.2 (T ∗) Order the minimal

attainable p-values p∗1 ≤ · · · ≤ p∗m. For each Pi, determine q(Pi), such that p∗q(Pi) ≤
Pi < p∗q(Pi)+1, the adjusted p-value is

P̃i,T ∗ = min{1, q(Pi) · Pi}, for i = 1, . . . ,m. (1.3.1)

The adjusted p-value for Holm procedure (1979) can be obtained as follow:
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Proposition 1.2. The adjusted p-value of Holm procedure for each hypothesis H(i) is

defined by

P̃(i),Holm =

min
{

1, mP(1)

}
, i = 1

max
{
P̃(i−1),Holm,min

{
1, (m− i+ 1)P(i)

}}
, i = 2, . . . ,m

Hommel and Krummenauer (1998) obtained an algorithm for computing the

adjusted p-values for Tarone-Holm Procedure 1.4 as follow:

Proposition 1.3. Adjusted p-value for Procedure 1.4 (TH∗)

1. Set j = 1. Let indices i1, . . . , im according to ordered p-values P(1) < P(2) < · · · <
P(m). Determine q = q(P(1)) such that p∗iq < P(1) < p∗iq+1

. Set

P̃(1),TH∗ = min{1, q(P(1)) · P(1)}.

2. Set j = j + 1,

3. Set I = {(j), (j + 1), . . . , (m)} = {i1, ..., it} with t = m − j + 1 and i1 < ... < it.

Determine q = q(P(j)) such that p∗iq < P(j) < p∗iq+1
If P(j) > αi∗t , choose q(P(j)) = t.

4. Compute

P̃(j),TH∗ = max{P̃(j−1),TH∗ ,min{1, q(P(j)) · P(j)}}

5. If j = m, stop; otherwise go back to step 2.

The adjusted p-value of Hochberg procedure (1988) is derived as follow:

Proposition 1.4. The adjusted p-value of Hochberg procedure for each hypothesis H(i)

is defined by

P̃(i),Hochberg =

P(m), i = m

min
{
P̃(i+1),Hochberg, (m− i+ 1)P(i)

}
, i = m− 1, . . . , 1

In addition, Gutman and Hochberg (2007) proposed single-step and stepwise

procedures by using the Westfall and Wolfinger procedure on the set RK defined in

Procedure 1.1. Kulinskaya and Lewin (2009) proposed a fuzzy Bonferroni procedure
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based on the idea of randomized test, but the interpretation of the results is not very

straightforward.

1.3.3 FDR Controlling Procedures

In some experimental settings such as DNA microarray experiments, genome-wide

association studies (GWAS), functional Magnetic Resonance Imaging (fMRI) exper-

iments and adverse events detection in clinical trials, there are a large number

of hypotheses. Familywise Error Rate (FWER) controlling procedures are quite

conservative for such testing problems. Benjamini and Hochberg (1995) introduced

the False Discovery Rate (FDR) as an alternative error measure to the FWER. They

also introduced BH procedure for controlling FDR, which is a simple step-up procedure

with the critical constant of αi =
i

m
α. Benjamini and Yekutieli (2001) show that

BH procedure controls the FDR under PRDS condition. They also introduced BY

procedure, which is another step-up procedure with the critical constant αi =
i

mCm
α,

where Cm =
∑m

i=1 1/i. BY procedure controls FDR under arbitrary dependence.

Benjamini and Liu (1999) and Romano and Shaikh (2006) proposed two different

step-down procedures which can control FDR under certain conditions. Storey (2002,

2004) introduced an estimation approach to FDR that is the opposite of stepwise

methods. In the stepwise methods, the rejection region (critical constants) is determined

based on the fixed FDR level, but Storey’s approach is to fix the rejection region and

estimate the FDR of the rejection region. For some other methods, see Sarkar (2008)

and Benjamini (2010).

Adjusted p-value for FDR controlling procedure

The adjusted p-value of BH procedure is derived as follow:
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Proposition 1.5. The adjusted p-value of BH procedure for each hypothesis H(i) is

defined by

P̃(i),BH =

P(m), i = m

min
{
P̃(i+1),BH ,

m

i
P(i)

}
, i = m− 1, . . . , 1

The BH procedure can be used for developing conditional FDR controlling

procedure in Chapter 3.

1.4 Research Motivation and Dissertation Outline

In this dissertation, we focus on developing some new methods for analyzing biomedical

or clinical data. In Chapter 2, several stepwise multiple testing procedures are proposed

for real data applications, that take the discreteness of the test statistics into account,

and control FWER as required by the problem of interest. In Chapter 3, by exploiting

selective inference idea, one class of two-stage multiple testing procedures are developed

for controlling type 1 error rates for different levels based on the multiple families

structure. The proposed procedure can efficiently select body system of interest and flag

adverse events in clinical safety studies. In Chapter 4, a logistic-type model considering

an inverse sampling scheme is established for modeling categorical data, which shares

common covariates in each sample. In the following, we discuss the motivation behind

the research.

In clinical trials, discrete data often arise and FWER control is commonly required

while testing multiple hypotheses. In the literature, most FWER controlling procedures

are developed for continuous data. By fully exploiting the discrete information, we can

generally develop more powerful procedures than the usual ones. Previous researches on

FWER control procedures for discrete data are either based on the partial information

of p-values (minimal attainable p-value), or resampling and randomization methods

which needs intensive computation but only ensured asymptotic control of the FWER.

For example, Tarone procedure only uses the minimal attainable p-value to reduce the

number of tested hypotheses. In practice, the CDF of the null p-values are often known
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for discrete data. By using the distributional information of the null p-values, we can

develop more powerful FWER controlling procedures for discrete data.

In many modern applications, it may be more appropriate to apply a multiple

testing procedure that controls FDR. One such application is to study clinical safety for

drug development, which collect and monitor spontaneous reports of suspected adverse

events from health care providers. In order to detect new adverse drug reactions after

marketing approval, we can use multiple testing methods to test the association between

drugs and adverse events while controlling the FDR. Since the adverse events are

naturally classified by different body system, a two-stage multiple testing procedure is

considered, where the first stage is to select body systems for further research discovery,

and the second stage is to flag AE in selected body systems. It is desired to control type

1 error rates for both screening and testing stages. Since the selection and testing stages

use the same data, the selective (conditional) inference should be taken into account.

This application also motivates to develop a GLM model in Chapter 4. When

the response is categorical data, with several level as rare ones, but the covariates

are the same in each sample, the traditional logistic model or ENMn model is not

suitable any more. We suggest a logistic-type model with the response following ENMn

distributions. We can make corresponding inference, such as parameter estimation,

confidence interval, hypotheses testing, etc. Real data analysis and comparisons are

performed as well.

This dissertation is outlined as follows: Chapter 1 provides some basic concepts

on multiple testing and background on generalized linear model. In Chapter 2, several

stepwise FWER controlling procedures for discrete data are proposed. We also compare

our proposed procedures with some existing MTPs through real data analysis and

simulation studies. In Chapter 3, we develop a two-stage selective inference based

multiple testing procedures for multiple families structure, which can be well applied in

clinical safety data analysis. Simulation studies through which we compare the proposed

procedure with other procedures for multiple families are also presented. In Chapter
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4, a multivariate logistic-type model based on an inverse sampling scheme is developed

for modeling categorical data including several special and non-special event groups,

statistical inference and model diagnostics for the proposed model in comparison with

conventional logistic regression are also provided.
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CHAPTER 2

FWER CONTROLLING PROCEDURES FOR DISCRETE DATA

2.1 Introduction

In this chapter, we consider to develop several FWER controlling procedures for

discrete data. In the existing literature, most FWER controlling procedures are

developed for continuous data, such as Bonferroni procedure (1936), Holm procedure

(1979) and Hochberg procedure (1988), etc. These procedures control FWER under

various dependence condition. However, they might be highly conservative when

they are used to analyze discrete data. A few of researches have been devoted to

develop FWER controlling procedures for discrete data. Tarone (1990) improved

Bonferroni procedure by using the minimal attainable p-value, which reduces the actual

number of hypotheses by removing the non-significant ones. The modified Bonferroni

procedure controls the FWER under arbitrary dependence and is more powerful than

the original Bonferroni procedure for discrete test statistics. But Tarone’s procedure

lacks α-consistency (Roth, 1999). To overcome this problem, two types of improved

Tarone procedures were developed by Hommel and Krummenauer (1998) and Roth

(1999), which not only control FWER, but also maintain α-consistency. Furthermore,

Hommel and Krummenauer (1998) incorporated Tarone’s idea to improve the Holm

procedure for discrete data. By using the similar idea, Roth (1999) introduced a two

stage step-up procedure based on Hochberg procedure (1988). However, this procedure

lacks α-consistency.

In this chapter, we introduce several FWER controlling procedures that exploits

the discrete nature of test statistics. We first consider a single-step modified Bonferroni

procedure using CDF’s of p-values, which exploits enough information of discrete p-

values. Compared with existing single-step methods, the proposed procedure has several

good properties. It is more powerful than the existing single-step procedures for discrete
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data. By using similar idea, we also develop step-down and step-up procedures for

discrete data. The proposed procedures not only control the FWER, but also have

α-consistency and p-value monotonicity, which are desired properties in multiple testing.

Adjusted p-value of the proposed procedures can also be easily calculated, while closed-

forms of adjusted p-values are very difficult to obtain for resampling based methods

or randomized tests. We illustrate an application for detecting differentially expressed

cDNA transcripts among multiple nucleotides, where the experiments are conducted

by using discrete data. Through real data analysis and simulation studies, we compare

the performances of the proposed methods with those of the available procedures.

The rest of the chapter is organized as follows. Section 2.2 introduces some

basic notations, concepts and existing procedures for discrete data. In Section 2.3, the

new single-step procedure is proposed and some desired statistical properties of this

procedure are discussed. Section 2.4 and 2.5 respectively introduce new step-down and

step-up procedures for discrete data to control the FWER. Section 2.6 summarizes and

discusses some future work. Statistical computing tools such as R package and web

application are also developed.

2.2 Preliminary

Consider the problem of simultaneously testing m hypotheses H1, . . . , Hm, suppose

there are m0 true null hypotheses and m1 false null hypotheses. Assume the test

statistics are discrete. Let Pi denote the p-value for testing Hi and Pi denote the

full set of all attainable p-values for Hi such that Pi ∈ Pi. Suppose Fi denote the

cumulative distribution function (CDF) of Pi when Hi is true, that is Fi(u) = Pr(Pi ≤

u|Hi is true). For any u ∈ Pi, Fi(u) = u; otherwise, Fi(u) < u.

Typically, the hypotheses are ordered based on their p-values and are tested using

a single-step or stepwise procedure. Let P(1) ≤ · · · ≤ P(m) denote the ordered p-values

and H(1), . . . , H(m) denote the corresponding hypotheses. Let F(i) denote the CDF of

P(i) when H(i) is true, and P(i) denote the set of all attainable p-values of P(i).
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2.3 A Single-step Procedure for Discrete Data

A simple and commonly used single-step procedure is Bonferroni procedure, which

rejects Hi if Pi ≤
α

m
. The Bonferroni procedure controls FWER under arbitrary

dependence. Taking discreteness of data into account, Tarone (1990) proposed a novel

single-step procedure (Procedure 1.1) controlling FWER, which is more powerful than

Bonferroni procedure. However, the procedure only use partial information of true null

distributions, so it might be conservative. In this section, we consider using full sets of

discrete p-values to develop a more powerful single-step procedure.

2.3.1 A New Single-step Procedure

In this subsection, we present a new single-step procedure for discrete data. The

proposed procedure fully exploits the marginal distribution of the true null p-values,

and is defined as follow:

Procedure 2.1 (Modified Bonferroni). Let t = max{p ∈
m⋃
i=1

Pi :
m∑
i=1

Fi(p) ≤ α} and

set t =
α

m
if the maximum does not exist. Then reject Hi if its corresponding p-value

Pi ≤ t.

Remark 2.1. It should be noted that the proposed modified Bonferroni procedure 2.1

for discrete data is a natural extension of the usual Bonferroni method for continuous

data. When all true null test statistics have continuous distributions, which implies

Fi ∼ U [0, 1], Fi(p) = p, then t = max{p ∈ (0, 1] : mp ≤ α} =
α

m
is exactly the

critical value of Bonferroni procedure. Thus, the above procedure reduces to Bonferroni

procedure.

In the following, we prove that Procedure 2.1 strongly controls the FWER under

arbitrary dependence.

Theorem 2.1. Procedure 2.1 strongly controls the FWER at level α under arbitrary

dependence.
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Proof. Let V denote the number of falsely rejected hypotheses, I0 denote the index set

of true null hypotheses with |I0| = m0, then

FWER = Pr{V ≥ 1} = Pr

{⋃
i∈I0

{Pi ≤ t}

}
≤
∑
i∈I0

Pr{Pi ≤ t} =
∑
i∈I0

Fi(t)

≤
m∑
i=1

Fi(t) ≤ α.

(2.3.1)

The first inequality follows from Bonferroni inequality.

If the maximum does not exist, by using the property of the CDF for discrete

p-value Fi(t) ≤ t,
m∑
i=1

Fi(t) ≤
m∑
i=1

t = m · α
m

= α. The proof is complete.

In the following, we compare the proposed method with several existing single-

step procedures, and prove that the proposed procedure is more powerful than these

procedures. First of all, we want to show the proposed procedure is more powerful than

Tarone’s procedure, which is described in supplementary materials.

Proposition 2.1. Procedure 2.1 is universally more powerful than Procedure 1.1.

Proof. We firstly show that
m∑
i=1

Fi(
α

Kα

) ≤ α.

Since RKα = {i : p∗i <
α

Kα

}, |RKα| = Mα(Kα) ≤ Kα. Therefore,

m∑
i=1

Fi(
α

Kα

) =
∑
i∈RKα

Fi(
α

Kα

) ≤ |RKα | ·
α

Kα

≤ α.

Let t = max{p ∈
m⋃
i=1

Pi :
m∑
i=1

Fi(p) ≤ α}, and let t∗ be the smallest attainable

p-value greater than t, that is, t∗ = min

{
p ∈

m⋃
i=1

Pi : p > t

}
, then

m∑
i=1

Fi(t
∗) > α. We

have shown
m∑
i=1

Fi(
α

Kα

) ≤ α, so
α

Kα

< t∗. Then there are two cases: (1) when
α

Kα

≤ t,

it is trivial the set of rejections using Tarone’s procedure is no more than the Procedure

2.1; (2) when t <
α

Kα

< t∗, by the property of discreteness, {Hi : Pi ≤ t} = {Hi : Pi <

α

Kα

} = {Hi : Pi < t∗}. So based on (1) and (2) rejection set using Tarone’s procedure

is less than or equal to the one using Procedure 2.1.
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Therefore, Procedure 2.1 always rejects as many hypotheses as Tarone’s procedure.

That is, Procedure 2.1 is universally more powerful than Tarone’s procedure.

We can also show that the proposed procedure is more powerful than modified

Tarone’s Procedure.

Proposition 2.2. Procedure 2.1 is universally more powerful than Procedure 1.2.

Proof. We need to show that for ∀γ ≤ α,
m∑
i=1

Fi(
γ

Kγ

) ≤ α.

Let RKγ = {i : p∗i <
γ

Kγ

}, then |RKγ | = Mγ(Kγ) ≤ Kγ. Therefore,

m∑
i=1

Fi(
γ

Kγ

) =
∑
i∈RKγ

Fi(
γ

Kγ

)

≤ |RKγ | ·
γ

Kγ

= Mγ(Kγ) ·
γ

Kγ

≤ γ ≤ α.

(2.3.2)

The rest of argument is similar as the proof of Proposition 2.1 and the conclusion

follows.

So far, we have shown the new single-step procedure is more powerful than the

Tarone’s procedure and its modified versions for discrete data. Next, we look into some

other good properties of this procedure.

α-consistency

Proposition 2.3. Procedure 2.1 is an α-consistent procedure.

Proof. Since t = max{p ∈
m⋃
i=1

Pi :
m∑
i=1

Fi(p) ≤ α}. It is equivalent to show that the

threshold t is a non-decreasing function in α. It is trivial.
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p-value monotonicity Based on (2.3.3), it is easy to show Procedure 2.1 has p-

value monotonicity. Since for each i, true null CDF Fi(·) is a non-decreasing function,
m∑
i=1

Fi(·) is also a non-decreasing function. When some p-values become smaller, the

corresponding adjusted p-values will not become larger, thus the procedure will reject

the same hypotheses and possibly more. So we have the following proposition.

Proposition 2.4. Procedure 2.1 is p-value monotone.

Adjusted p-value Now, we can derive the adjusted p-value for our proposed

procedure as follow:

Proposition 2.5 (Modified Bonferroni Procedure 2.1).

If Pi is the available p-value for Hi, then the adjusted p-value for corresponding

hypothesis is

P̃i,MBonf = min

{
1,

m∑
j=1

Fj(Pi)

}
, for i = 1, . . . ,m. (2.3.3)

It is easy to see that the adjusted p-value of the proposed modified Bonferroni

procedure is smaller than or equal to that of original Bonferroni procedure, since for

each fixed i and any j = 1, . . . ,m, Fj(Pi) ≤ Pi, then
m∑
j=1

Fj(Pi) ≤ mPi. Therefore,

the Procedure 2.1 could have more rejections than Bonferroni procedure for the same

available p-values.

In the following, we compare the adjusted p-values of the proposed Procedure 2.1

with those of Bonferroni procedure and Procedure 1.2 through a simple example.

Example 2.1. Suppose there are m = 2 hypotheses H1 and H2, the attainable p-values

for H1 is P1 = {0.05, 1}; for H2 is P2 = {0.1, 1}. The actual p-values are P1 = 0.05, P2 =

0.1. Thus the minimal attainable p-values are p∗1 = 0.05, p∗2 = 0.1. Now we can

calculate the adjusted p-values for Bonferroni procedure are P̃1,Bonf = 2×P1 = 0.1 and

P̃2,Bonf = 2× P2 = 0.2.

To calculate the adjusted p-value of Procedure 1.2, firstly we need to determine

q. For P1 = 0.05, p∗1 ≤ P1 < p∗2, so q = 1, P̃1,T ∗ = 1 × P1 = 0.05. For P2 = 0.1,

since P2 ≥ p∗2, then q = m = 2, P̃2,T ∗ = 2 × P2 = 0.2. The CDF of p-values for
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the two hypotheses can be expressed by F1(c) = 0.05 × I{0.05 ≤ c < 1} + I{c = 1},
F2(c) = 0.1×I{0.1 ≤ c < 1}+I{c = 1}, where I is an indicator function. So P̃1,MBonf =

F1(0.05)+F2(0.05) = 0.05+0 = 0.05, P̃2,MBonf = F1(0.1)+F2(0.1) = 0.05+0.1 = 0.15,

which are smaller than those of the Bonferroni procedure and Procedure 1.2.

Now, suppose we set the significant level α = 0.06, then by comparing the adjusted

p-values of the above procedures with α, we can conclude the Bonferroni procedure

reject no hypothesis, Procedure 1.2 and Procedure 2.1 reject H1. But if set α = 0.16, the

Bonferroni procedure and Procedure 1.2 only reject H1, while the proposed Procedure

2.1 rejects H1 and H2.

2.3.2 Applications for Single-step Procedures

cDNA transcripts data Tarone (1990) analyzed an experiment in which comple-

mentary DNA (cDNA) transcripts were produced from transcribed RNA obtained from

cells grown under normal conditions and from cells grown under an unusual study

condition. The cDNA transcripts from a gene of interest were sequenced and compared

to the known nucleotide sequence to determine the number of individual nucleotide

changes in the transcripts. The frequencies of the changes were compared from the

control and study cells to evaluate differences in the transcribed RNA.

The data in Table 2.1 is from Hommel and Krummenauer (1998, Table 1), which

reports the frequencies of nucleotide changes observed at nine sites. The DNA sequences

examined in the experiment were 200 nucleotides in length. Our analysis includes nine

changed nucleotides, which are those with a sufficient number of changes to possibly

detect statistical significance at the significant level α = 0.05 using the Fisher’s Exact

Test (FET), conditional on the fixed marginal totals, and assuming independence

between sites. In the data, Nji is the number of transcripts at nucleotide i in group

j and Xji is the observed number of change in transcripts, which is the events of

interest, where i = 1, ..., 9 and j = 0, 1 (0 is control group and 1 is study group). The

first column shows the index of the ordered nucleotide p-values reported in Hommel

and Krummenauer (1998). The second and third columns are the frequencies of the

observed change in the control and study groups. The nucleotides available p-values Pi

30



in Table 2.1 are calculated by using one-sided FET:

Pi =

X·i∑
k=X1i

(
N1i

k

)(
N0i

X·i−k

)(
N·i
k

) , (2.3.4)

where X·i = X0i+X1i, N·i = N0i+N1i. For Tarone’s procedure, the minimal attainable

significance level at site i is given by

p∗i =

(
N1i

X·i

)(
N·i
X·i

) . (2.3.5)

Table 2.1 A Comparison of Adjusted p-values for the Bonferroni Procedure, Sidak
Procedure, Modified Tarone Procedure and Procedure 2.1 when Testing the Hypotheses
in the cDNA Example from Hommel and Krummenauer (1998)

i X0i/N0i X1i/N1i Pi P̃i,Bonf P̃i,Sidak P̃i,T ∗ P̃i,MBonf

1 1/10 8/11 0.0058 0.0522 0.0510 0.0116 0.0097

2 0/8 5/7 0.0070 0.0629 0.0612 0.0210 0.0167

3 0/11 4/10 0.0351 0.3158 0.2749 0.2100 0.1072

4 1/11 3/9 0.2167 1.0000 0.8890 1.0000 0.6184

5 2/11 4/10 0.2678 1.0000 0.9395 1.0000 1.0000

6 1/10 3/10 0.2910 1.0000 0.9547 1.0000 1.0000

7 2/9 2/8 0.6647 1.0000 1.0000 1.0000 1.0000

8 2/9 2/9 0.7118 1.0000 1.0000 1.0000 1.0000

9 2/9 2/9 0.7118 1.0000 1.0000 1.0000 1.0000

From Table 2.1, we can see that for nucleotide i = 1, . . . , 4, the adjusted p-values

of Procedure 2.1 are smaller than those of other traditional procedures, which implies

these hypotheses are more likely to be rejected by the Procedure 2.1 than others.

Clinical safety data We can also apply the proposed single-step procedure for

clinical safety studies, since clinical safety data is usually based on the count of patients

to illustrate the adverse events exposures. The data in Table 2.2 (first three columns)

are from Mehrotra and Heyse (2004, Table 1), which reports the AE types for two groups
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of toddlers for Body System 10. For illustration purpose, we reorder the data based on

the corresponding p-values. The goal of this clinical safety study is to detect significant

AEs (so-called “flagging”). Our analysis includes nine AE types of No. 10 body system

(skin), which are those with a sufficient number of AE types to possibly detect statistical

significance at the significant level α = 0.05 using the Fisher’s Exact Test (FET),

conditional on the fixed marginal totals, and assuming independence between sites. In

the data, Nj is the total number of toddlers at group j, and Xji is the observed number

of the j-th group toddlers experiencing the i-th AE, which is the events of interest,

where i = 1, ..., 9 and j = 1, 2 (1 is control group receiving MMR and 2 is study group

receiving the candidate vaccine MMRV). Here N1 = 148 and N2 = 132. The first

column shows the index of the AE types after reordering the data. The second and

third columns are the number of toddlers experiencing the corresponding AE in the

control and study groups. The available p-values Pi for i-the AE type in Table 2.2 are

calculated by using two-sided FET.

Table 2.2 A Comparison of Adjusted p-values for the Bonferroni Procedure, Sidak
Procedure, Procedure 1.2 and Procedure 2.1 when Testing the Hypotheses for Nine AE
types of Body System 10 in the Clinical Safety Data Example from Mehrotra and Heyse
(2004), where the Numbers of Patients for Two Groups Are N1 = 148 and N2 = 132

i X1i X2i Pi P̃i,Bonf P̃i,Sidak P̃i,T ∗ P̃i,MBonf

1 13 3 0.0209 0.1880 0.1731 0.0836 0.0534

2 8 1 0.0388 0.3490 0.2995 0.1551 0.1343

3 4 0 0.1248 1.0000 0.6986 0.8734 0.7134

4 0 2 0.2214 1.0000 0.8948 1.0000 1.0000

5 6 2 0.2885 1.0000 0.9533 1.0000 1.0000

6 2 0 0.4998 1.0000 0.9980 1.0000 1.0000

7 1 2 0.6033 1.0000 0.9998 1.0000 1.0000

8 4 2 0.6872 1.0000 1.0000 1.0000 1.0000

9 2 1 1.0000 1.0000 1.0000 1.0000 1.0000
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From Table 2.2, we can see that for the first three AE p-values P1, . . . , P3,

the adjusted p-values of Procedure 2.1 are smaller than those of other traditional

procedures, which implies these hypotheses are more likely to be rejected by the

Procedure 2.1 than others, that is, those AE are more easily flagged by using the

Procedure 2.1.

2.3.3 Simulation Studies for Single-step Procedures Comparisons

In the following, simulation studies were performed to investigate the performances

of the proposed Procedures 2.1 in terms of the FWER control and minimal power

compared with some existing single-step FWER controlling procedures.

Basic settings of the simulation The simulations are conducted based on two

typical discrete tests: Fisher’s Exact Test (FET) and Binomial Exact Test (BET).

1. Fisher’s Exact Test: Suppose we have two groups, study (1) and control (2)

group. There are m independent binomial responses Xij observed for each of N

individuals in each group i, such as Xi1 ∼ Bin(N, pi1), Xi2 ∼ Bin(N, pi2) for

i = 1, . . . ,m. The goal is to simultaneously test the m hypotheses Hi : pi1 = pi2,

where pij is the success probability for the i-th response in group j, and i =

1, . . . ,m, j = 1, 2. So there are m of 2×2 contingency tables in each simulation as

described in Chapter 1. We conduct the experiment using one-sided FET under

α = 0.05, then the test statistic Ti ∼ Hypergeometric(Xi1, N,Xi1 + Xi2, 2N).

Set the number of hypotheses m = {5, 10, 15}, with true null proportion π0 =

{0.2, 0.4, 0.6, 0.8} respectively. The sample size for the binomial response per

group used are N = {25, 50, 75, 100, 125, 150}. For true null hypotheses, set the

success probability parameter of binomial response in each group as 0.1, and for

false null hypotheses set the success probability for study group as 0.1, and for

control group as 0.2. The observed individuals in the two groups are chosen

randomly from the Binomial distributions.
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2. Binomial Exact Test: Suppose we have two groups: study (1) and control (2)

group. There are m Poisson responses observed in each group, such as Xi1 ∼

Poi(λi1), Xi2 ∼ Poi(λi2) for i = 1, . . . ,m. The goal is to simultaneously test the

m hypotheses Hi : λ1i = λ2i, where λij is the mean parameter for the i-th response

in group j, and i = 1, . . . ,m, j = 1, 2. We conduct the experiment using one-sided

BT under α = 0.05 and α = 0.1 respectively, then the test statistic for reference

group follow binomial distribution. Here we assume group 1 as reference group,

then Ti ∼ Bin(Xi1 +Xi2, pi), where pi =
λi1

λi1 + λi2
. Set the number of hypotheses

m = {5, 10, 15}, with true null proportion π0 = {0.2, 0.4, 0.6, 0.8} respectively.

For true null hypotheses set the mean parameter of Poisson response in each

group as λ1i = λ2i = 2, and for false null hypotheses set the mean parameter for

group 1 as λ1i = 2, and for group 2 as λ2i = 10. The study and control group

observed individual are chosen randomly from the Binomial distributions.

Using the FET or BET we can calculate the available p-value Pi and all attainable

p-values in the set Pi. Then we compute the simulated FWER, minimal power, number

of rejections by taking average of B = 2000 iterations.

Power = Pr{correctly rejecting at least one null hypotheses}.

Results of the simulation under independence Tables A.1 and A.2 in the

Appendix A show the simulated FWER levels and minimal powers of the compared

four procedures using the FET statistics. First, the proposed Modified Bonferroni

procedure (Procedure 2.1) always has higher FWER level, and more powerful than the

other three procedures. The simulation results also verify that two discrete FWER

controlling procedures (Modified Bonferroni and Tarone) have higher FWER levels

and provide more power than the other two classic procedures (Bonferroni and Sidak).

Second, the FWER levels are less conservative, and the power advantages are larger for

smaller size N , since the data was more discrete for smaller N , then the improvement

is more obvious. For example, when testing m = 10 hypotheses, π0 = 0.2, which
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implies there are 2 true nulls and 8 false nulls, the simulation result shows that the

FWER improvement of Procedure 2.1 (0.0020) is 300% higher than Tarone procedure

(0.0005) when the simulated data is from binomial with N = 5. But when sample size

N = 125, the improvement is only 35.7% (0.0095 versus 0.0070). Third, as the true

null proportion becomes bigger, the proposed procedures FWER is closer to nominal

significant level 0.05, but power becomes smaller. The power of Procedure 2.1 becomes

larger when testing more hypotheses or using larger sample size N . We also plot the

simulation results in Figures 2.1 and 2.2 for the FWER and minimal power comparisons.
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Figure 2.1 Simulated FWER comparisons for different single-step procedures based
on FET.

Tables A.3 and A.4 in the appendix show the simulated FWER levels and minimal

powers comparisons using the BET statistics. The results show the proposed Procedure
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Figure 2.2 Simulated minimal power comparisons for different single-step procedures
based on FET.

2.1 controls FWER and are more powerful than other three procedures under such

settings. For other findings, they are similar to the simulation results based on FET.

2.3.4 Extension for the Proposed Procedures for the Mixed Data Structure

of the Hypotheses

In practice, the hypotheses are commonly involved in a mixed structure for both discrete

and continuous data. then the proposed procedures can be naturally extended as

follows.

Suppose there are m hypotheses H1, . . . , Hm. Let Ic denote the index set of the

hypotheses for continuous data, so the number of continuous test statistics is mc = |Ic|.

The corresponding available p-values under the null one uniformly distributed in [0, 1],
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that is, Fi(p) = p for i ∈ Ic and any p ∈ [0, 1]. Let Id denote the index set of the

hypotheses for discrete data, the number of discrete test statistics is md = |Id| = m−mc

. The corresponding available p-values are stochastically greater than or uniformly

distributed in [0, 1], that is, Fi(p) = p for i ∈ Id and p ∈ Pi; Fi(p) < p for i ∈ Id and

p /∈ Pi. The mixed CDF can be expressed by

Fi(p) = pI{i ∈ Ic}+ Fi(p)I{i ∈ Id}.

Procedure 2.2 (Mixed Bonferroni procedure). Let the critical constant be t =

max{0 ≤ p ≤ 1 : mcp+
∑
i∈Id

Fi(p) ≤ α}, then reject Hi if Pi ≤ t.

Example 2.2. If there are only two hypotheses H1 and H2. The test statistics T1 of

H1 is continuous, then the corresponding p-value P1 ∼ Unif(0, 1). The test statistics

T2 of H2 is discrete, let P2 be the corresponding p-value with atom at 0.01, 0.19, 1 (eg:

T2 ∼ Binomial(2, 0.1), then the CDF of P2 is

F2(p) =



0 0 ≤ p < 0.01

0.01 0.01 ≤ p < 0.19

0.19 0.19 ≤ p < 1

1 p = 1

(2.3.6)

If the significant level α = 0.05, then the critical constant of mixed Bonferroni procedure

is t = max{0 ≤ p ≤ 1 : p + F2(p) ≤ 0.05} = 0.04. While the critical constant for

traditional Bonferroni procedure is t′ = 0.05/2 = 0.025, which is more conservative. If

we observe P1 = 0.03, P2 = 0.01, then only H2 is rejected for Bonferroni procedure, but

H1 and H2 are rejected for mixed Bonferroni procedure.

So the mixed Bonferroni procedure could less conservative than Bonferroni

procedure.

Proposition 2.6 (Adjusted p-value for mixed Bonferroni procedure).

If Pi is the available p-value for Hi, then the adjusted p-value for corresponding

hypothesis is

P̃i,MixBonf = min

{
1, mcPi +

∑
j∈Id

Fj(Pi)

}
, for i = 1, . . . ,m. (2.3.7)
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Since the mixed Bonferroni procedure is just a special case of Procedure 2.1 only

if some test statistics are continuous, the mixed procedure strongly controls the FWER

under arbitrary dependence and holds all desired properties such as α-consistency, p-

value monotonicity, etc.

2.4 A Step-down Procedure for Discrete Data

By exploiting the discreteness of data, Hommel and Krummenauer (1998) improved

Holm procedure as Procedure 1.4. This procedure could be further improved by utilizing

full sets of p-values.

2.4.1 A New Step-down Procedure

In the last section, we have proposed a new single-step procedure based on the marginal

CDF’s of p-values, and now we develop a more powerful step-down procedure by

exploiting the the same distributional information of null p-values.

Procedure 2.3 (Modified Holm). Let αi = max{p ∈
m⋃
j=i

P(j) :
m∑
j=i

F(j)(p) ≤ α} with

α0 = 0. Set αi = max

{
αi−1,

α

m− i+ 1

}
if the maximum does not exist. Then

reject no null hypotheses if P(1) > α1; otherwise, reject H(1), . . . , H(r) and retain

H(r+1), . . . , H(m), where r is the largest index satisfying P(1) ≤ α1, . . . , P(r) ≤ αr.

Remark 2.2. It should be noted that when the test statistics have continuous

distributions, which implies Fi ∼ U [0, 1], Fi(p) = p, then

αi = max{p ∈ (0, 1] : (m− i+ 1)p ≤ α} =
α

m− i+ 1
.

Thus, the procedure reduces to Holm procedure.

Theorem 2.2. Procedure 2.3 strongly controls the FWER at level α under arbitrary

dependence.

Proof. Let I0 be the indices of the true null hypotheses and V denote the number of

falsely rejected hypotheses. If |I0| = 0, then V = 0, FWER = 0 ≤ α is trivial.

When |I0| = m0 ≥ 1, let P̂(1) ≤ · · · ≤ P̂(m0) denote the m0 true null p-values, and

P̌(1) ≤ · · · ≤ P̌(m1) denote the m1 false null p-values.
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Let k be the smallest random index of whole p-values satisfying P(k) = P̂(1), that

is P(k) = min
i∈I0

Pi. It implies P(k), . . . , P(m) include all true null p-values, that is,

{
P̂(1), . . . , P̂(m0)

}
⊆
{
P(k), . . . , P(m)

}
.

Therefore,

FWER = Pr{V ≥ 1} = Pr{min
i∈I0

Pi ≤ αk}

≤
∑
i∈I0

Pr{Pi ≤ αk} ≤
m∑
j=k

F(j)(αk) ≤ α
(2.4.1)

The last inequality follows by the definition of αk = max{p ∈
m⋃
j=k

P(j) :
m∑
j=k

F(j)(p) ≤ α}.

If the maximum for k does not exist, then αk = max

{
αk−1,

α

m− k + 1

}
.

If αk−1 ≤
α

m− k + 1
, that is, αk =

α

m− k + 1
, by the property of CDF for discrete

p-value, the last inequality will become
m∑
j=k

F(j)(αk) ≤
m∑
j=k

αk =
m∑
j=k

α

m− k + 1
= α.

If αk−1 >
α

m− k + 1
, and if the maximum as definition exists for k − 1, that is,

αk−1 = max{p ∈
m⋃

j=k−1
P(j) :

m∑
j=k−1

F(j)(p) ≤ α}, then the last inequality will become

m∑
j=k

F(j)(αk) =
m∑
j=k

F(j)(αk−1) ≤
m∑

j=k−1
F(j)(αk−1) ≤ α. If the maximum as definition

does not exist for k − 1, then αk = αk−1 = max

{
αk−2,

α

m− k + 2

}
. By the similar

argument, FWER ≤ α when αk = αk−1 =
α

m− k + 2
.

By iteration, we can prove until for some l − 1, the maximum exists, then

αk = αk−1 = · · · = αl = αl−1, then

m∑
j=k

F(j)(αk) =
m∑
j=k

F(j)(αl−1) ≤
m∑

j=l−1

F(j)(αl−1) ≤ α,

which completes the proof.
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α-consistency Based on Definition 1.2, we can also explore this desired property for

Procedure 2.3. This property can be proved by using the similar argument in the proof

of Proposition 2.3.

Proposition 2.7. Procedure 2.3 is an α-consistent procedure.

Adjusted p-value We can directly calculate the adjusted p-value of Procedure 2.3

based on the Definition 1.2.8.

Proposition 2.8 (Adjusted p-value for Procedure 2.3).

If P(1) ≤ · · · ≤ P(m) are the available p-value for H(1), . . . , H(m), then the adjusted

p-value of Procedure 2.3 for corresponding hypothesis H(i) is

P̃(i),MHolm =


min

{
1,

m∑
j=1

F(j)(P(1))

}
, i = 1

max

{
P̃(i−1),MHolm,min

{
1,

m∑
j=i

F(j)(P(i))

}}
. i = 2, . . . ,m

(2.4.2)

p-value monotonicity According to the calculation of the adjusted p-value Eq.

(2.4.2), we can show that Procedure 2.3 is also p-value monotone using similar argument

of Proposition 2.4.

Proposition 2.9. Procedure 2.3 is p-value monotone.

2.4.2 Applications for Step-down Procedures

cDNA transcripts data We compare the proposed Procedure 2.3 with Holm

procedure and Tarone-Holm Procedure 1.4 using the previous cDNA transcripts

example. We also use their adjusted p-values to make decisions of rejection and

acceptance.

Table 2.3 shows for hypotheses H(1), . . . , H(5), the adjusted p-values of Procedure

2.3 are smaller than those of Holm and Tarone-Holm procedures. That means Procedure

2.3 has more chances to reject H(1), . . . , H(5) than the other two procedures, which

implies our proposed Procedure 2.3 could be more powerful than other two.
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Table 2.3 A Comparison of Adjusted p-values for the Holm Procedure, Tarone-Holm
Procedure and Procedure 2.3 when Testing the Hypotheses in the cDNA Transcript
Example from Hommel and Krummenauer (1998)

(i) X0i/N0i X1i/N1i P(i) P̃(i),Holm P̃(i),TH∗ P̃(i),MHolm

(1) 1/10 8/11 0.0058 0.0552 0.0116 0.0097

(2) 0/8 5/7 0.0070 0.0559 0.0140 0.0109

(3) 0/11 4/10 0.0351 0.2456 0.1404 0.1072

(4) 1/11 3/9 0.2167 1.0000 1.0000 0.4268

(5) 2/11 4/10 0.2678 1.0000 1.0000 0.6347

(6) 1/10 3/10 0.2910 1.0000 1.0000 1.0000

(7) 2/9 2/8 0.6647 1.0000 1.0000 1.0000

(8) 2/9 2/9 0.7118 1.0000 1.0000 1.0000

(9) 2/9 2/9 0.7118 1.0000 1.0000 1.0000

Clinical safety data We also compare these step-down procedures using the previous

clinical safety data example.

Table 2.4 A Comparison of Adjusted p-values for the Holm Procedure, Procedure 1.4
and Procedure 2.3 when Testing the Hypotheses for AE Types of Body System 10 in
the Clinical Safety Data Example from Mehrotra and Heyse (2004), where the Numbers
of Patients for Two Groups are N1 = 148 and N2 = 132

(i) X1i X2i P(i) P̃(i),Holm P̃(i),TH∗ P̃(i),MHolm

(1) 13 3 0.0209 0.1880 0.0836 0.0534

(2) 8 1 0.0388 0.3103 0.1163 0.0982

(3) 4 0 0.1248 0.8734 0.6238 0.5050

(4) 0 2 0.2214 1.0000 1.0000 1.0000

(5) 6 2 0.2885 1.0000 1.0000 1.0000

(6) 2 0 0.4998 1.0000 1.0000 1.0000

(7) 1 2 0.6033 1.0000 1.0000 1.0000

(8) 4 2 0.6872 1.0000 1.0000 1.0000

(9) 2 1 1.0000 1.0000 1.0000 1.0000
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Table 2.4 shows for hypotheses H(1), . . . , H(3), the adjusted p-values of Procedure

2.3 are smaller than those of Holm and Tarone-Holm procedures. It means Procedure

2.3 has more chances to reject H(1), . . . , H(3) than the other two procedures, which

implies our proposed Procedure 2.3 could be more powerful than other two.

2.4.3 Simulation Study for Step-down Procedures Comparisons

In this section, simulation studies were performed to investigate the performances of

the proposed Procedure 2.3 in terms of the FWER level and minimal power compared

with two existing step-down procedures: Holm procedure and Tarone-Holm procedure

in Hommel and Krummenauer (1998). The step-down procedures simulations are

conducted by using Fisher’s Exact Test only, since using binomial exact test produces

similar patterns. The same simulation settings in Section 2.3.3 are used for this

comparison. The simulations results are shown in the Tables A.5 and A.6 in the

Appendix A.

The results show that Procedure 2.3 always controls FWER and are more powerful

than other procedures. Moreover, by comparing the results in the Tables A.1 and

A.2, the proposed step-down Procedure 2.3 is more powerful than proposed single-step

Procedure 2.1. We also plot the simulation results in Figures 2.3 and 2.4 for the FWER

and minimal power comparisons.

2.5 A Step-up Procedure for Discrete Data

2.5.1 A New Step-up Procedure

By using the same critical constants of Procedure 2.3, we can develop a new step-up

procedure for discrete data.

Procedure 2.4 (Modified Hochberg). Let αi = max{p ∈
m⋃
j=i

P(j) :
m∑
j=i

F(j)(p) ≤ α} with

α0 = 0. Set αi = max

{
αi−1,

α

m− i+ 1

}
if the maximum does not exist. Then reject

all hypotheses H(1), . . . , H(m) if P(m) ≤ αm; otherwise, reject H(1), . . . , H(r) and retain

H(r+1), . . . , H(m), where r is the largest index satisfying P(r) ≤ αr.
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Figure 2.3 Simulated FWER comparisons for different step-down procedures based
on FET.

Remark 2.3. It should be noted that when the true null test statistics have continuous

distributions, which implies that all true null p-values are uniformly distributed in [0, 1],

the above procedure will reduce to conventional Hochberg procedure.

Theorem 2.3. If the true null test statistics are identically distributed, (i) then

Procedure 2.4 strongly controls the FWER at level α under the Assumption 1.2.

(ii) Moreover, the Procedure 2.4 rejects the same number of hypotheses as Hochberg

procedure.
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Figure 2.4 Simulated minimal power comparisons for different step-down procedures
based on FET.

Proof. Since the test statistics have the same distribution, then true null p-values have

the same domain P and CDF F (·), then for each i,

αi = max{p ∈
m⋃
j=i

P(j) :
m∑
j=i

F(j)(p) ≤ α}

= max{p ∈ P : (m− i+ 1)F (p) ≤ α}

= max

{
p ∈ P : p ≤ α

m− i+ 1

}
.

(2.5.1)

The last equation follows from the Assumption 1.1. Obviously, αi ≤
α

m− i+ 1
. Then

Procedure 2.4 also controls the FWER since Hochberg procedure controls the FWER.

To prove (ii), let R = max{i : P(i) ≤
α

m− i+ 1
} be the number of rejections using

Hochberg procedure, then the critical p-value P(R) of the Hochberg procedure can be
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written as

P(R) = max{P(i) : P(i) ≤
α

m− i+ 1
} = max{Pi : Pi ≤

α

m−R + 1
},

which is the critical value αR of Procedure 2.4. That is, Procedure 2.4 has the same

number of rejections as Hochberg procedure.

Theorem 2.4. If the true null p-values only take two attainable values between 0 and

1, then Procedure 2.4 controls the FWER under arbitrary dependence.

Proof. Since the true null p-values only take two attainable values between 0 and 1, the

domain of each p-value is

Pi = {pi, 1}, where 0 < pi < 1.

Suppose there are only two hypotheses H1 and H2, the corresponding available p-values

are P1 and P2, where P1 ∈ {p1, 1} and P2 ∈ {p2, 1}. Without loss of generality, assume

p1 ≤ p2. Then the critical values of Procedure 2.4 based on the definition are computed

as:

α1 =


α/2, α < p1

p1, p1 ≤ α < p1 + p2

p2, p1 + p2 ≤ α ≤ 1

and

α2 =

α, α < p2

p2, p2 ≤ α ≥ 1.

There are three cases containing rejections based on the values of attainable p-

values.

Case 1: If P1 = p1, P2 = 1, since P2 = 1 > α2, accept H2. To reject H1, one need

to check P1 ≤ α1 if and only if p1 ≤ α. Case 2: If P1 = 1, P2 = p2, similarly, accept

H1. To reject H2, one need to check P2 ≤ α1 if and only if p1 + p2 ≤ α. Case 3: If

P1 = p1, P2 = p2, only need to check whether P1 ≤ α1 to ensure at least one rejection.
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Then the maximum FWER is

FWERmax = Pr(P1 = p1, P2 = 1) + Pr(P1 = p1, P2 = p2) + Pr(P1 = 1, P2 = p2)

≤ Pr(P1 = p1) + Pr(P2 = p2)

= p1 + p2 ≤ α,

which completes the proof.

This step-up procedure has similar properties as those of Procedure 2.1 and

Procedure 2.3 such as α-consistency and p-value monotonicity. But it provides a higher

power, since a step-up procedure is uniformly more powerful than the corresponding

step-down procedure using the same threshold. Real data analysis and simulation

studies also show this procedure outperforms the others.

α-consistency Procedure 2.4 is an α-consistent procedure, since the critical values

of these procedures are non-decreasing in α. So we have the following propositions:

Proposition 2.10. Procedure 2.4 is an α-consistent procedure.

Adjusted p-value The adjusted p-value of Procedure 2.4 can be obtained based on

Definition 1.2.8.

Proposition 2.11 (Adjusted p-value for Procedure 2.4).

If P(1) ≤ · · · ≤ P(m) are the available p-value for H(1), . . . , H(m), then the adjusted

p-value P̃(i),MHoch for corresponding hypothesis H(i) is

P̃(i),MHoch =


F(m)(P(m)), i = m

min

{
P̃(i+1),MHoch,

m∑
j=i

F(j)(P(i))

}
. i = m− 1, . . . , 1

p-value monotonicity Similar as previous argument in Proposition 2.4, we can show

that Procedure 2.4 are p-value monotone.
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2.5.2 Applications for Step-up Procedures

cDNA transcripts We also compare the proposed step-up Procedure 2.4 with

traditional Hochberg procedure using the previous cDNA transcripts example. We

also use their adjusted p-values to make decisions. The results are shown in Table 2.5.

Table 2.5 A Comparison of Adjusted p-values for the Hochberg Procedure, Procedure
1.5 and Procedure 2.4 when Testing the Hypotheses in the cDNA Transcript Example
from Hommel and Krummenauer (1998)

(i) X0i/N0i X1i/N1i P(i) P̃(i),Hochberg P̃(i),Roth P̃(i),MHoch

(1) 1/10 8/11 0.0058 0.0552 0.0117 0.0097

(2) 0/8 5/7 0.0070 0.0559 0.0140 0.0109

(3) 0/11 4/10 0.0351 0.2456 0.1765 0.0944

(4) 1/11 3/9 0.2167 0.7118 0.7118 0.4268

(5) 2/11 4/10 0.2678 0.7118 0.7118 0.6347

(6) 1/10 3/10 0.2910 0.7118 0.7118 0.7118

(7) 2/9 2/8 0.6647 0.7118 0.7118 0.7118

(8) 2/9 2/9 0.7118 0.7118 0.7118 0.7118

(9) 2/9 2/9 0.7118 0.7118 0.7118 0.7118

The results in Table 2.5 show that for hypotheses H(1), . . . , H(5), the adjusted

p-values of Procedure 2.4 are smaller than those of Hochberg and Roth procedure.

It means Procedure 2.4 has more chances to reject H(1), . . . , H(5) than Hochberg and

Roth procedure, which implies our proposed Procedure 2.4 could be more powerful than

Hochberg procedure.

Clinical safety data We also compare these step-up procedures using the previous

clinical safety data example.

Table 2.6 shows for each AE with the hypotheses H(1), . . . , H(3), the adjusted

p-values of Procedure 2.3 are smaller than those of Holm and Tarone-Holm procedures.

It means Procedure 2.3 has more chances to reject H(1), . . . , H(3) than the other two
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Table 2.6 A Comparison of Adjusted p-values for the Hochberg Procedure, Procedure
1.5 and Procedure 2.4 when Testing the Hypotheses for AE types of Body System 10 in
the Clinical Safety Data Example from Mehrotra and Heyse (2004), where the Numbers
of Patients for Two Groups Are N1 = 148 and N2 = 132

(i) X1i X2i P(i) P̃(i),Hochberg P̃(i),Roth P̃(i),MHoch

(1) 13 3 0.0209 0.1880 0.0836 0.0534

(2) 8 1 0.0388 0.3103 0.1552 0.0982

(3) 4 0 0.1248 0.8734 0.7246 0.5050

(4) 0 2 0.2214 1.0000 1.0000 1.0000

(5) 6 2 0.2885 1.0000 1.0000 1.0000

(6) 2 0 0.4998 1.0000 1.0000 1.0000

(7) 1 2 0.6033 1.0000 1.0000 1.0000

(8) 4 2 0.6872 1.0000 1.0000 1.0000

(9) 2 1 1.0000 1.0000 1.0000 1.0000

procedures, which implies our proposed Procedure 2.3 could be more powerful than

other two.

2.5.3 Simulation Studies for Step-up Procedures Comparisons

We now present simulation studies comparing the new step-up FWER controlling

procedure (Proc 2.4) with Hochberg procedure. We only show the simulations based on

Fisher’s Exact Test, since simulations using Binomial Exact Test have similar patterns.

The results of comparisons are shown in Tables A.7 and A.8. The results show

that Procedure 2.4 controls FWER and is universally more powerful than Hochberg

Procedure. We also plot the simulation results in Figures 2.5 and 2.6 for the FWER

and minimal power comparisons

2.5.4 Simulation Studies for the Dependence Settings

We have performed the simulation studies for stepwise FWER controlling procedures

when p-values are independent. Now we focus on the dependence case. Since it is
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Figure 2.5 Simulated FWER comparisons for different step-up procedures based on
FET.

not easy to construct an arbitrary dependence structure for discrete test statistics, we

construct a special blocking dependence for the simulation.

Let Poi(λ) denote the Poisson distribution with mean λ, Bin(n, p) denote the

binomial distribution with probability of success p and number of trials n. For the BET,

let x1i and x2i be the observed counts from two independent Poisson distributions with

mean λ1i and λ2i, where i = 1, . . . ,m. Then test Hi : λ1i = λ2i versus H ′i : λ1i < λ2i,

where i = 1, . . . ,m. The test statistic Ti for each i is based on the total ci = x1i + x2i

is Bin(ci, θi), where θi = λ1i/(λ1i + λ2i). (Lehman and Romano, 2005) Then, under

the null hypothesis Hi : λ1i = λ2i, Ti follows binomial distribution Bin(ci, 0.5) and its

distribution only depends on ci. Then the following simulations are conducted based

49



pi0=0.2 pi0=0.4 pi0=0.6 pi0=0.8

M
=

5
M

=
10

M
=

15

40 80 120 40 80 120 40 80 120 40 80 120

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

N

S
im

ul
at

ed
 M

in
im

al
 P

ow
er

Methods MHoch Roth Hochberg

Figure 2.6 Simulated minimal power comparisons for different step-up procedures
based on FET.

on dependent binomial exact test (BET) statistics. The details for generating the

dependent simulation data can be found in Appendix A.

In the simulation, set the number of hypotheses m = {5, 10}, with true null

proportion π0 = {0.4, 0.6, 0.8} respectively. Set the mean parameter of Poisson response

in each group as λ1i = λ2i = 2 for i = 1, . . . ,m0, and set the mean parameter for group

1 as λ1i = 2, and for group 2 as λ2i = 10 for i = m0 +1, . . . ,m , where m0 = π0m. Then

compute the simulated FWER, minimal power to compare the different procedures by

taking average of B = 2000 iterations.

Remark 2.4. Note that the above simulated p-values have joint dependence within the

group of true null hypotheses, but the p-values corresponding to true null hypotheses
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are independent of the false ones, which is the same as condition (3.5) in Romano and

Shaikh [58]. This setting also satisfies PRDS condition.

The simulation results comparisons for stepwise procedures (single-step, step-

down, and step-up) are displayed in Figures 2.7 to 2.12. More simulation results for

different scenarios can be found in Appendix A.
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Figure 2.7 Simulated FWER comparisons for different single-step procedures based
on the blocking dependent BET.

From the simulation results, we can see Procedure 2.1, 2.3 and 2.4 control FWER

under the significant level α = 0.05. Under different settings of the correlation

among the p-values, Modified Bonferroni procedure is more powerful than Tarone’s and
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Figure 2.8 Simulated minimal power comparisons for different single-step procedures
based on the blocking dependent BET.

Bonferroni procedures, Modified Holm procedure is more powerful than Tarone-Holm

and Holm procedures, and Modified Hochberg procedure is more powerful than Roth’s

and Hochberg procedures.

2.6 Conclusions and Discussion

In this chapter, we have developed several FWER controlling procedures for discrete

data by exploiting the information of discreteness for test statistics. The proposed

Procedure 2.1 and Procedure 2.3 control FWER under arbitrary dependence, Procedure
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Figure 2.9 Simulated FWER comparisons for different step-down procedures based
on the blocking dependent BET.

2.4 controls FWER under PRDS condition for some specific distributions settings.

Real data analysis in both clinical safety studies and cDNA transcript data reveals

that the proposed procedures have more rejections than conventional procedures. The

simulation studies show that when the proportion of true null hypotheses is large,

which is usually the case in practical applications, the proposed stepwise procedures

can outperform the corresponding Bonferroni, Holm and Hochberg procedures and

even better than some existing discrete procedures, such as Tarone and Tarone-Holm

procedures in terms of minimal power.
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Figure 2.10 Simulated minimal power comparisons for different step-down procedures
based on the blocking dependent BET.

A possible future work is to explore optimality of the suggested Procedure 2.1

and 2.3 under arbitrary dependence, which means for some joint distribution of the

discrete p-values, one cannot increase even one of the critical constants while keeping

the remaining fixed without losing control of the FWER. Another possible future work

is to incorporate some data driven weights into the proposed procedures to develop

more powerful FWER controlling procedures for discrete data.
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Figure 2.11 Simulated FWER comparisons for different step-up procedures based on
the blocking dependent BET.

2.7 Software

The FWER controlling procedures for discrete data described in this chapter have

been implemented as a part of the MHTdiscrete R package [Zhu and Guo, 2017], which

is available online at https://cran.r-project.org/web/packages/MHTdiscrete. A web

application for the proposed procedures and most existing FWER and FDR controlling

procedures is developed at https://allen.shinyapps.io/MTPs.
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Figure 2.12 Simulated minimal power comparisons for different step-up procedures
based on the blocking dependent BET.
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CHAPTER 3

SELECTIVE INFERENCE IN CLINICAL SAFETY STUDIES

3.1 Introduction

In clinical safety studies, there are many adverse events (AE) recorded in one clinical

trial. The goal for assessing the safety of an experimental drug is to flag “reasonable” or

“correct” AEs among these AE types. Chen et al. (2015) [13] summarized most existing

signal detection methods, such as proportional reporting ratios [19], reporting odds

ratios [60], and the maximum likelihood ratio test [41], Bayesian confidence propagation

neural network method [2] and multi-item Gamma Poisson shrinker [66] for spontaneous

reporting data, and Pearsons chi-square test, Fishers exact test, and the chi-square test

for rates comparison for flagging safety signal in clinical trials. The above detecting

or flagging methods do not control for overall type 1 error rates, such as FWER or

FDR. In fact, the number of possible AEs is usually very large (see TCTAE v4.03 and

MedDRA
R©

v19.1). Thus, similar as dealing with multiple endpoints in drug efficacy

analysis, multiplicity effect should be also considered in drug safety analysis. However,

the number of AEs in safety analysis is much larger than the number of endpoints in

efficacy analysis for the experimental drugs. Therefore, FWER controlling procedures

such as Bonferroni procedure may fail to flag more important AEs. Benjamini and

Hochberg (1995) introduced the concepts of false discovery rate (FDR), which is defined

as the expected proportion of the false rejections among all discoveries. Their proposed

BH step-up procedure becomes the most popular multiple testing procedure (MTP) for

the large-scale multiple hypotheses testing in the last two decades. The BH procedure

can be applied to detect the signals of the AEs, since the number of AEs in clinical

safety studies is usually large.

Searching for significant AEs, the AE types (Preferred Term (PT) in MedDRA
R©

)

are often classified by several body systems (BS) (System Organ Classes (SOC) in
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MedDRA
R©

). Each AE can be regarded as a hypothesis, and the hypotheses of AEs from

the same body system naturally forms a family. So the multiple-family structure should

be considered for the drug safety data analysis. Recently, some structured BH-type

procedures are developed for multiple families of hypotheses (Mehrotra and Heyes,

2004; Mehrotra and Adewale, 2012; Hu et al., 2010; Benjamini and Bogomolov, 2014).

Mehrotra and Heyes (2004) proposed a two-stage double FDR (DFDR) procedure,

which firstly uses BH procedure on the minimum original p-values of each family under

level α1, then applies the BH procedure on the hypotheses in the selected families under

level α. The problem is this procedure cannot guarantee FDR control. It is also not

clear for how to choose the significant level α1 in the first step. Mehrotra and Adewale

(2012) modified the DFDR procedure by using BH procedure in the first step on the

minimum BH-adjusted p-value under the same significant level α as the second step.

The DFDR2 procedure still cannot guarantee FDR control. The main reason is the

procedure does not consider the selection effect for the first step. Other recent references

also examined related questions for multiple-family multiple hypotheses testing. Hu et

al. (2010) introduced a p-value weighting group BH procedure (GBH) by estimating the

true null proportion for each group, the method asymptotically controls global FDR.

Benjamini and Bogomolov (2014) provides a general framework for multiple families

multiple testing considering selection effect, and defined average FDR and average

FWER over the selected families as desired type 1 error rates. Their proposed procedure

(BB) can guarantee the average FDR control. Actually, the DFDR2 procedure and

original BB procedure select the same families by using the same selection rule in the

first step, the main difference between these two procedures is original BB procedure

uses Rα/m to conduct individual test in each selected family. Barber and Ramdas

(2016) proposed a multilayer FDR controlling procedure, which can guarantee FDR

control on family level and control global FDR, but they do not consider any error

rate control within selected families. The above methods do not clearly separate the

selection effect and multiplicity effect. To overcome this problem, selective inference
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by using conditional inference such as conditional type 1 error rate control, selection

adjusted confidence interval is developed recently (Fithian et al., 2015; Weinstein et al.,

2013; Heller et al., 2016).

In practice, especially in clinical safety studies, we may not only need to flag the

AE, but also want to investigate the body systems for the further research (Berry and

Berry, 2004). For example, if some body systems are selected, but there is no AE

flagged in these selected body systems, we can also use the body system information

to conduct follow-up studies. Thus controlling some type 1 error in family level is also

necessary. Since the number of body systems is not very large (commonly 5-50), and

sometimes we may allow more than one type 1 errors made when doing selection. Thus,

the generalized familywise error rate (k-FWER) is a suitable error measure in practice,

which is the probability of making at least k false rejections. Some existing k-FWER

controlling procedure include Lehmann and Romano (2005), Guo and Romano (2007),

Sarkar (2006, 2007). And this selection rule using k-FWER controlling procedure is

also a simple selection rule. We can conclude some similar conclusions for selective

inference within the selected families as Benjamini and Bogomolov (2014) and Heller

et al. (2016).

So far, there are growing literature of approaches for testing multiple hypotheses

with multiple families structure. But very few valid methods were used in clinical safety

adverse events. So this chapter aims to develop a selective inference-based two-stage

procedure in the settings of clinical safety studies. We consider using combining

methods on the conditional p-values, as described in the preliminaries in Section 3.2.

Some existing multiple testing procedures for multiple families are introduced for clinical

safety settings as well. The valid two-stage procedure is proposed in Section 3.3.

Theoretical results of our proposed procedures are provided in Section 3.4. Then we

discuss the selection rules effect in Section 3.5. In Section 3.6, simulation studies are

also conducted to compare the proposed procedure with other existing procedures and

compared the proposed procedure for different selection rules regarding choices for
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combining methods and generalized FWER fold k. Section 3.7 explores several clinical

safety examples to illustrate the proposed procedure and compare the outcomes with

other existing multiple families multiple testing procedures. Some concluding remarks

are made in Section 3.8 and one R package “MHTmult” is implemented in Section 3.9.

Proofs of some results are given in the Appendix B.

3.2 Preliminaries

In this section, some necessary notations and basic concepts are introduced. In clinical

safety studies, several body systems contain amount of AE types, the body systems

are regarded as multiple families, AE types classified by body systems forms individual

hypotheses. Therefore, flagging significant AE in some body systems can be formulated

as a multiple testing problem with hierarchical multiple families structure.

3.2.1 Notations

Suppose that there are n =
m∑
i=1

ni AE types, denoted by AEij, i = 1, . . . ,m, j =

1, . . . , ni, appearing in m body systems denoted by BS1, . . . , BSm. The hypotheses Hij

to flag AEij are to be simultaneously tested based on their corresponding p-values Pij,

i = 1, . . . ,m, j = 1, . . . , ni. Let H̃i be the global null hypothesis for i-th body system,

that is, H̃i =
ni⋂
j=1

Hij. The global hypothesis is true only if all Hij in this body system are

true. Let P̃i denote the p-value of the corresponding global hypothesis H̃i.We use the

global test to select body systems. Let S denote the index set of selected hypotheses,

that is, S = {i : H̃i is rejected}

Assume individual p-values are stochastically greater than Uniform(0,1), that is,

Pij satisfies

Pr{Pij ≤ t} ≤ t, for t ∈ (0, 1), (3.2.1)

then the global p-value P̃i satisfies

Pr{P̃i ≤ t̃} ≤ t̃, for t̃ ∈ (0, 1). (3.2.2)
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3.2.2 Several Type 1 Error Rates

The most commonly used type 1 error rates are familywise error rate (FWER) and false

discovery rate (FDR), which are defined in Chapter 1. Here we specifically introduce

some type 1 error rates for multiple families structure.

Type 1 error rate for family level In the clinical safety studies, the number of

body systems is often moderate (5-50). Based on the requirement of future research,

the error measurement is usually not as strict as allowing to make only one type I

error (falsely selecting one body system). Sometimes, the clinical studies would like

to control the probability of falsely selecting at least k body systems under 5%-10%,

where 1 ≤ k ≤ m. Thus when selecting body systems of interest (BSoI), controlling

the generalized FWER for body system level is desired. Let Ṽ denote the number of

false selections when selecting BSoI using global p-values, then generalized FWER is

defined as

k-FWER = Pr(Ṽ ≥ k)

If k = 1, k-FWER will become FWER. The commonly used k-FWER procedures are

generalized Bonferroni and generalized Sidak procedure.

Procedure 3.1 (Generalized Sidak procedure). Reject Hi if pi ≤ t̃, where t̃ satisfies
m∑
l=k

(
m
l

)
t̃l(1− t̃)m−l = α1.

Type 1 error rate for individual level Considering the selection effect, it is valid

to use conditional inference for flagging AEs in testing step. Then define the FWER

and FDR measures conditional on the selected BSoI as follows.

Let Vi denote the number of false rejections for i-th body system, and Ri denote

the number of total rejections for i-th family. Then the conditional FWER selected

i-th family is defined as

cFWERi = Pr(Vi > 0|i ∈ S) = E{I(Vi > 0)|i ∈ S},
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and the conditional FDR for a selected body system is defined as

cFDRi = E

{
Vi

Ri ∨ 1

∣∣∣i ∈ S} .
The advantage of conditional error measure is it can distinguish the selection

effect introduced in the first stage from the multiplicity effect in the second stage. We

can use this information to develop more powerful procedure than existing procedure.

In practice, t is preferred to control cFDR for flagging AE within the selected body

systems in clinical safety studies, since the number of AEs is very large, cFWER control

is too strict.

Overall type 1 error rate An overall error measure addressing selective inference

is the average FDR over selected families, which is defined as

average-FDR = E


∑
i∈S

Vi
Ri ∨ 1

|S| ∨ 1

 ,

which is expected average of false rejection proportions across selected families.

Another overall error measure is global FDR, which is used in several references

such as Hu et al. (2010), Guo and Sarkar (2016), Barber and Ramdas (2016).

global-FDR = E


∑
i∈S

Vi∑
i∈S

Ri ∨ 1


Remark 3.1. We can observe if the numbers of total rejections are the same, the

average-FDR and global-FDR are equivalent. Otherwise, these two overall FDR

measures are different. The procedures considering average FDR control often give

up the global FDR control (Benjamini and Bogomolov (2014)). It makes more sense

to consider average FDR control if the selected families are heterogeneous, such as

the body systems in clinical safety studies are functionally different regarding the AE

response for the experimental drugs.
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3.2.3 Several Existing Two-stage Multiple Testing Procedures

The original double FDR (DFDR) procedure and modified double FDR (DFDR2)

procedure are proposed in clinical safety settings, but original Benjamini and Bogomolov

(BB) procedure and its modification are proposed in GWAS settings, which are much

larger scale settings.

The original double FDR (DFDR) procedure proposed by Mehrotra and Heyse

(2004) is described as follows.

Procedure 3.2 (DFDR).

Step 1: (a) For each body system, find the minimum p-value p̃i = min
1≤j≤ni

{pij}.

(b) Apply BH procedure on p̃1, . . . , p̃m at level α1 to select BSoI.

Step 2: In the i-th selected body system, apply BH procedure on pi1, . . . , pini at level α

to flag AEs.

Note that the minimum p-values p̃i are not uniformly distributed any more, so

the BH procedure applying on those minimum p-values cannot strongly control FDR.

The modified double FDR (DFDR2) procedure developed by Mehrotra and Adewale

(2012) replaces the minimum p-value by minimum BH-adjusted p-value for each body

system.

Procedure 3.3 (DFDR2).

Step 1: (a) For each body system, compute the minimum BH-adjusted p-value as p̃i =

min
1≤j≤ni

{pBH-adj
ij }.

(b) Apply BH procedure on p̃1, . . . , p̃m at level α to select BSoI.

Step 2: In the i-th selected body system, apply BH procedure on pi1, . . . , pini at level α

to flag AEs.

However, since it still uses α as in Step 2, which brings selection bias in testing

step. Then the DFDR2 still cannot control average FDR or global FDR under α.

In R software, use p.adjust() function to compute the BH-adjusted p-values within

each body system, and find the minimum one. Note that the minimum BH-adjusted
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p-value is equivalent to Simes global null p-value min
1≤j≤ni

{ni
j
pi(j)}, which is a valid global

p-value uniformly distributed in [0,1].

Benjamini and Bogomolov (2014) recommended to use the BH procedure on the

set of minimum BH-adjusted p-values as a simple selection rule, then in each selected

family apply BH procedure at an selection-adjusted level which is less than the nominal

significant level, and determined by number of selected families.

Procedure 3.4 (Original BB: BB-α-BH-α).

Step 1: (a) For each body system, compute the minimum BH-adjusted p-value as p̃i =

min
1≤j≤ni

{pBH-adj
ij }.

(b) Apply BH procedure on p̃1, . . . , p̃m at level α to select BSoI.

Step 2: (a) Count the number of selected body systems as |S|.

(b) In the i-th selected body system, apply BH procedure on pi1, . . . , pini at level
|S|
m
α to flag AEs.

It can be seen that the original BB procedure proceeds the same selecting step

(Step 1) as DFDR2 procedure, the only difference is in testing step (Step 2), original

BB procedure uses a adjusted significant level |S|
m
α, which is smaller than α.

Peterson et al. (2016) modified the original BB procedure (BB-α-BH-α1), which

applies BH procedure at level α1 to select BSoI. The selection level α1 is not necessarily

equal to testing level α.

Although original BB procedure and its modification guarantee average FDR

control, they both select body systems using BH procedure, which is too liberal for

moderate number of body systems in clinical safety studies.

Procedure 3.5 (Group BH-TST estimation).

Step 1: (a) For each body system, using Benjamini et al. (2006) two-stage estimator,

compute the estimated true null proportion π̂0i = n̂0i/ni for i-th body

system.

(b) Compute weighted p-value for each AE as pwij = min
{

π̂0i
1−π̂0ipij, 1

}
.
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Step 2: (a) Compute the pooled estimated true null proportion π̂0 =
∑m
i=1 n̂0i

n
.

(b) Pool the weighted p-value together as pw1 , . . . , p
w
n , then apply BH procedure

on the pooled p-values at level
α

(1 + α)(1− π̂0)
to flag AEs.

3.2.4 Combining Functions and Conditional p-values

Since we are dealing with a selected family of hypotheses based on the global test, we

will omit the index i for family to simplify the notation. Also use n replace ni to denote

the number of hypothesis within a family.

Let f : Rn → R be a combining function for testing the global null on each

family. Here we require f is a monotone function of each pj. Let t denote the fixed

hypothesis/family selection threshold, i.e. f(P1, . . . , Pn) ≥ t for non-increasing f or

f(P1, . . . , Pn) ≤ t for non-decreasing f . Let bj be an inflation factor to determine

the conditional p-value p′j satisfying f(p(−j), bj) = t for bj ∈ (0, 1], where p(−j) =

p1, . . . , pj−1, pj+1, . . . , pn. Then we can define conditional p-value as

P ′j := Pj|f(p(−j), Pj) ≤ t =
Pj
bj

The following are three typical examples for calculating inflation factor and

conditional p-values using Fisher’s, Stouffer’s and Tippet’s combining methods.

For Fisher’s combining method, the family will be selected if and only if the

p-values of this family satisfy −2
n∑
j=1

log pj ≥ t, which implies pj
n∏

l=1(6=j)
pl ≤ e−t/2, then

within the family, the inflation factor of pj will be

bj =


e−t/2

n∏
l=1(6=j)

pl

if
n∏

l=1(6=j)
pl > e−t/2

1 otherwise.

So the conditional p-value can be calculated as follow,
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p′j =



n∏
l=1

pl

e−t/2
if

n∏
l=1(6=j)

pl > e−t/2

pj otherwise.

For Stouffer’s combining method, the family will be selected if and only if the

p-values of this family satisfy

∑n
j=1 zj√
n

=

∑n
j=1 Φ−1(1− pj)√

n
≥ t, which implies Φ−1(1−

pj) +
∑n

l=1
( 6=j)

Φ−1(1− pl) ≥
√
nt. Then within the selected family, the inflation factor of

pj will be bj = 1−Φ(
√
nt−

∑n
l=1
(6=j)

Φ−1(1− pl)). Therefore, the conditional p-value can

be calculated as

p′j =
pj

1− Φ(
√
nt−

∑n
l=1
(6=j)

Φ−1(1− pl))
.

For Tippet’s (minP) combining method, the family will be selected if and only if

the p-values of this family satisfy min{p1, . . . , pn} ≤ t, that is, min{pj,p(−j)} ≤ t. So

we call this method as minP combining method. Then within the selected family, the

inflation factor of pj will be

bj =


t if min{p(−j)} > t

1 otherwise.

The conditional p-value can be calculated as

p′j =


pj
t

if min{p(−j)} > t

pj otherwise.

Remark 3.2. If there is only one hypothesis with the p-value P in selected family,

the conditional p-value follows Pr{P ≤ p|P ≤ t} = p/t for any t > p. According to

the inflation factor b satisfies b = t, the conditional p-value will be p′ = p/b = p/t.

Similarly, for Fisher’s combining method, the inflation factor b satisfies −2 log b = t,

then b = e−t/2, so the conditional p-value is p′ = p/e−t/2. For Stouffer’s combining
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method, the inflation factor b has to satisfy
Φ−1(1− b)√

n
= t, then b = 1 − Φ(t), so the

conditional p-value is p′ =
p

1− Φ(t)
.

3.3 A Valid cFDR Controlling Procedure Using k-FWER Controlling

Selection Rule

When we conduct the two-stage procedure, the first stage (selecting step) selects

some significant body systems based on the global null p-values P̃1, . . . , P̃m. Let

S ⊆ {1, . . . ,m} denote the set of selected body systems. Selecting body systems could

be controlled for generalized familywise error rate (denoted by k-FWER) with k ≥ 1

folds under α level. A simple example is to consider generalized Bonferroni procedure

selection rule, then S = {i : P̃i ≤ kα
m
}.

The second stage (testing step) simultaneously tests the individual hypotheses in

the selected body systems based on the individual p-values Pij, i ∈ S, j = 1, . . . , ni, to

flag significant AEs, which is the final goal for the safety studies. Since testing individual

hypothesis is conditional on their body systems being selected, the procedure could

guarantee conditional FDR control. The two-stage selective inference-based procedure

is described as follows.

Procedure 3.6 (cFDR-α-minP-k-Sidak-α1).

Step 1: (a) For each body system, compute the global p-value p̃i = ni min
1≤j≤ni

{pij}.

(b) Apply generalized Sidak procedure on p̃1, . . . , p̃m at level α1 to select body

systems of interest (BSoI), that is, select the i-th body system if p̃i ≤ t̃,

where t̃ satisfies
m∑
l=k

(
m
l

)
t̃l(1− t̃)m−l = α1.

Step 2: (a) In the i-th selected body system, calculate the conditional p-value for Hij:

p′ij =
pij
ti

if min
1≤s≤ni,s 6=j

{pis} > ti; otherwise, p′ij = pij, where ti = t̃
ni

.

(b) Apply BH procedure on p′i1, . . . , p
′
ini

at level α to flag AEs.

Remark 3.3. The selection rule: p̃i ≤ t̃ is equivalent to minP combining function

f(pi1, . . . , pini) = min
1≤j≤ni

{pij} ≤ ti.
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Remark 3.4. A modified BB procedure using the same minP combining k-FWER

controlling selection rule as Procedure 3.6 can be naturally developed. That is, the

procedure uses Step 1 of the Procedure 3.6 to select body systems, and Step 2 of the

Procedure 3.4 to flag AEs (BB-α-minP-k-Sidak-α1). Such a procedure still uses a simple

selection rule, so it strongly controls average FDR as the Theorem 1 in Benjamini and

Bogomolov (2014) stated. We compare this modified BB procedure using the same

selection rule as the proposed procedure in the simulation studies.

3.4 Theoretical Results

Since conditional p-values can be easily obtained using the above combination methods,

it is natural to conduct MTPs for individual hypothesis (AE type) in the selected

families (BSoI). The followings are some theoretical results for the two-stage procedure

controlling conditional FDR within the selected families. Theorem 3.1, Lemma 3.1 and

Theorem 3.2 still omit the index i for family to simplify the notation. Also use identical

number of hypothesis within each family n replace ni.

Theorem 3.1 (Fisher’s combining selection rule). Let P1, . . . , Pn be independent

p-values with U(0, 1) under true null. If

f(p1, . . . , pn) = −2
n∑
j=1

log pj ≥ t, then the BH procedure on conditional p-values

p′1, . . . , p
′
n controls the cFDR at level

n0

n
α ≤ α.

Some desired properties for conditional p-values can be found.

Note that for Fisher’s combing method, we have the following desired statistical

property of the conditional p-values.

Lemma 3.1 (conditional p-value monotonicity). For Fisher’s combining function, if

the unconditional p-value p1 ≤ · · · ≤ pn, then the conditional p-value p′1 ≤ · · · ≤ p′n.

Remark 3.5. Note that the conditional p-values using minP selection rule does not

always satisfy monotone property. Here is a counterexample: suppose use minP

selection rule with t = 0.05 to select two hypotheses p1 = 0.04 ≤ p2 = 0.06, Since

p2 > t, p′1 = p1/t = 0.8. Since p1 ≤ t, p′2 = p2 = 0.06. So p′1 > p′2.

Remark 3.6. For minP combining method, based on the assumption min{p1, . . . , pn} ≤
t, at least one inflation factor should be 1, which means at least one hypothesis will not
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be inflated. The fewer inflated p-values, the smaller selective effect the MTP produces.

Actually, for minP combing method, except for the minimum p-value, other p-values

do not need to be inflated.

For minP combining method, the conditional FDR can also be controlled under

α level.

Theorem 3.2 (minP combining selection rule). Let P1, . . . , Pn be independent p-values

with U(0, 1) under true null. If f(p1, . . . , pn) = min{p1, . . . , pn} ≤ t and α ≤ t ≤ 1,

then the BH procedure on conditional p-values p′1, . . . , p
′
n controls the cFDR at level

n0

n
α ≤ α.

Note that the threshold t is the same as the ti = t̃
ni

in Procedure 3.6. In Procedure

3.6, p̃i = ni min
1≤j≤ni

{pij} ≤ t̃ is equivalent to min
1≤j≤ni

{pij} ≤ 1− (1− t)1/ni , where t satisfies

m∑
l=k

(
m
l

)
tl(1− t)m−l = α1. Since 1− (1− t)1/ni can be regarded as a fixed threshold for

each body system i, thus we have the following result.

Theorem 3.3 (cFDR control). For each selected body system Fi, if individual p-values

Pi1, . . . , Pini are mutually independent with U(0, 1) under true null, then Procedure 3.6

strongly controls the conditional FDR at level α for flagging AEs within the selected

body systems.

Now we have the following result for selecting families.

Theorem 3.4 (k-FWER control). If global p-values P̃1, . . . , P̃m are mutually independent

with U(0, 1) under true null, then Procedure 3.6 strongly controls the k-FWER at level

α1 across body systems.

This theorem follows from the proof of Theorem 2.2 in Guo and Romano (2007).

Corollary 3.1 (average FDR control). Under the independence assumption of Theorem

3.3 and 3.4, Procedure 3.6 strongly controls the average FDR over selected body systems

at level α for flagging AEs.

Theorem 3.3, Theorem 3.4 and Corollary 3.1 imply the proposed procedure can

strongly control various type 1 error rates for selecting body systems (k-FWER),
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flagging AE within each selected body system (condition FDR) and overall flagging

AEs average on all selected body systems (average FDR). Next we will look into how

the selections rules affect the proposed procedure.

3.5 Selection Rule Comparisons

As illustrated in Procedure 3.6, using a multiple testing procedure (MTP) on the

combined p-values (global p-values), and selecting the families accordingly, is a natural

approach in selective inference. In the following, we will compare some different

selection rules regarding p-value combining methods and selection procedures.

We start from a simple example. Suppose we have selected a family of n = 2

hypotheses, since conditional p-value is based on inflation factor, which is relevant to

other p-values and selection cutoff, we want to look into how the other p-values and

selection cutoff affect inflation factor under the examples iin the Section 3.2.4.

3.5.1 Inflation Factor

Firstly, for Fisher’s combining function, suppose the family will be selected if and only if

−2(log p1 +log p2) > tF , that is, p1p2 ≤ e−tF /2. Within the selected family, the inflation

factor of p1 is

b1 =


e−t/2

p2
if p2 > e−tF /2

1 otherwise.

Figure 3.1 is to show b1 versus p2, set t = {0, 1, . . . , 10}; Figure 3.2 is to show b1

versus t, set p2 = {0, 0.02, 0.04, 0.06, 0.1, . . . , 1}.

For Stouffer’s combining function, suppose the family will be selected if and only

if Φ−1(1− pj) +
n∑
l=1
(6=j)

Φ−1(1− pl) ≥
√
nt, then b1 = 1− Φ(

√
nt−

∑n
l=1
(6=j)

Φ−1(1− pl)).

Figure 3.3 is to show b1 versus p2, set t = {−3,−2.5, . . . , 3}; the second plot of

Figure 3.4 is to show b1 versus t, set p2 = {0, 0.1, 0.2, . . . , 1}.
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Figure 3.1 Comparison of inflation factor b1 with respect to p2 for different values of
threshold t using Fisher’s combining method with n = 2 hypotheses.
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Figure 3.2 Comparison of inflation factor b1 with respect to threshold t for different
values of p2 using Fisher’s combining method with n = 2 hypotheses.
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Figure 3.3 Comparison of inflation factor b1 with respect to p2 for different values of
threshold t using using Stouffer’s combining method with n = 2 hypotheses.

For minP combining function, suppose the family will be selected if and only if

min{p1, p2} ≤ tM . Within the selected family, the inflation factor of p1 is

b1 =


t if p2 > t

1 otherwise.

Figure 3.5 is to show b1 versus p2, set t = {0, 0.1, . . . , 1}; the Figure 3.6 is to show

b1 versus t, set p2 = {0, 0.1, 0.2, . . . , 1}.

Remark 3.7. Since the p-values are exchangeable, the inflation factor b2 has the same

tendency as b1.

Now, we want to compare the different selection rules using Fisher’s, minP and

Stouffer’s combining methods. Suppose given the threshold t ∈ [α, 1] for minP selection

rule such that the hypotheses/family is selected if min{p ≤ t}. A simple way to make

them comparable is to find equivalent cutoffs tF for Fisher’s method or tS for Stouffer’s

method satisfying

Pr

{
−2

n∑
j=1

log pj ≥ tF

}
= Pr {min{p1, . . . , pn} ≤ t} ,
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Figure 3.4 Comparison of inflation factor b1 with respect to threshold t for different
values of p2 using Stouffer’s combining method with n = 2 hypotheses.

or

Pr

{∑n
j=1 Φ−1(1− pj)√

n
≥ tS

}
= Pr {min{p1, . . . , pn} ≤ t} .

It means the chances of the family is selected are the same for these methods.

We use the following calculations find equivalent selection threshold for Fisher’s

and minP combining methods. Here, assume the p-values are identical and independent.

In order to compare Fisher’s method with minP method, let

Pr

{
−2

n∑
j=1

log pj > tF

}
= Pr {min{p1, . . . , pn} ≤ t} ,

which is equivalent to

Pr(T ≥ tF ) = 1− (1− t)n,

where T ∼ χ2
2n. Then

Pr(T ≤ tF ) = (1− t)n.
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Figure 3.5 Comparison of inflation factor b1 with respect to p2 for different values of
threshold t using minP combining method with n = 2 hypotheses.

We can also compare Stouffer’s method with minP method. Let

Pr

{∑n
j=1 Φ−1(1− pj)√

n
≥ tS

}
= Pr {min{p1, . . . , pn} ≤ t} ,

which is equivalent to

Pr(Z ≥ tS) = 1− (1− t)n,

where Z ∼ N(0, 1). Then

Pr(Z ≤ tS) = (1− t)n.

It means for the minP threshold t, we can always find somehow equivalent threshold

tF and tS for Fisher’s and Stouffer’s combining method.

We can also plot the comparison for three combining methods when combining

two hypotheses. From Figure 3.7, we can observe the cross points for different two lines

is the equivalent point for the inflation factor and the other p-value. We also compare

different combining methods by conducting the simulations studies in Section 3.6.1.
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Figure 3.6 Comparison of inflation factor b1 with respect to threshold t for different
values of p2 using minP combining method with n = 2 hypotheses.

3.5.2 Selection Rules Using MTP Controlling k-FWER

It has been discussed that controlling generalized FWER is more suitable than

controlling either FWER or FDR for selecting body systems in clinical safety studies.

Since FWER is too strict and FDR is too liberal in such setting, k-FWER is an error

measure between these two conventional error measures. Using k-FWER controlling

procedure to select BSoI brings two questions. Which procedure should be used for

selecting more signals? How to choose a suitable k?

For multiple hypotheses testing without family structure, it has been shown that

the generalized Sidak procedure is much more powerful than generalized Bonferroni

procedure (Guo and Romano , 2007) under independence. In Section 3.6.1, we will also

compare generalized Sidak and generalized Bonferroni selection rules in the simulation

studies.

Another factor which affects the selection rule is how many fold we need to

choose for k-FWER control for family level. On one hand, choosing k depends on

the requirement of practice, such as clinicians’ experience or clinical research interest.

For example, if there are many body systems in the trial, and we are interested in
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Figure 3.7 Comparisons of inflation factor b1 with respect to p2 for equivalent
thresholds of Fisher’s, Stouffer’s and minP combining methods when n = 2.

selecting more body systems, then we can choose k = 2 or k = 3 to allow to make two

or three type 1 errors for the selection. On the other hand, we can also optimize the k

by doing simulations, which will be discussed in Section 3.6.

3.6 Simulation Studies

This section investigates the performance of the proposed two-stage procedure using

simulations under various dependence settings: (i) the p-values are independent both

within body system and across body system; (ii) the p-values are dependent within each

body system and independent of the p-values in other body systems; (iii) the p-values

are independent within each body system and dependent of the p-values in other body

systems.

Since the families contains true nulls and false nulls, it is more reasonable to

use average FDR over selected families (average-FDR) and conditional FDR (cFDR)

for all true null and non-null families respectively to evaluate the performance of the
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procedures, rather than use global FDR or simple FDR of one family. We use analogous

average power over selected families as average power.

3.6.1 Simulations for the Independence Settings

Numerical comparisons for various number of true null families (m0) and true

null individual hypotheses (n0) First of all, we conduct simulations to compare

the proposed procedure using Sidak procedure (similar as Bonferroni procedure) for

global test of minP combination to select families (cFDR-minP-Sidak) with (I) average

FDR controlling procedure using the same selection rule (BB-minP-Sidak), (II) original

double FDR procedure (DFDR) and (III) modified double FDR procedure (DFDR2).

All the simulations are conducted for 2000 times. Set level α = 0.05 for both selection

for family level and testing for individual hypotheses level. Each simulated data set is

based on one-sided one sample Z-test for testing Hij : µ = 0 versus H ′ij : µ = µ1 > 0.

Set the number of families m to be 10, in each family set the number of hypotheses

n to be 20. We vary the number of all true null families m0 as 2, 4, 6 and 8, and the

number of true null hypotheses in each non-true null family n0 as 5, 10 and 15. Set

µ1 = 3, α = α1 = 0.05

From Figures 3.8 to 3.11, we can see the cFDR-minP and BB procedures using

Sidak selection rule can control FWER for family level, and control average FDR and

conditional FDR under all scenarios. But DFDR and DFDR2 procedure fail to control

average FDR when n0 and m0 become bigger. For example, in Figure 3.10, when

n0 = 15, both DFDR and DFDR2 lines are above 0.05 when the proportion of null

families is greater than 0.4. DFDR and DFDR2 also fail to control conditional FDR as

well.

Numerical comparisons for various combining methods In this section, we

compare the procedures using different combining methods, here we mainly compare

Fisher’s and minP methods. The selection threshold here we used generalized Sidak
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Figure 3.8 From the left to right panels are simulated FWER across families,
conditional FDR for a null family and conditional FDR for a non-null family versus
proportion of null hypotheses in each non-null family (n0/n). From the top to bottom
panels, the numbers of true null families are m0 = 2, 4, 6, 8 out of m = 10 families,
there are n = 20 hypotheses in each family, µ1 = 3, α = α1 = 0.05.
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Figure 3.9 From the left to right panels are simulated average FDR over selected
families, global FDR and average power versus proportion of null hypotheses in each
non-null family (n0/n). From the top to bottom panels, the numbers of true null families
are m0 = 2, 4, 6, 8 out of m = 10 families, there are n = 20 hypotheses in each family,
µ1 = 3, α = α1 = 0.05.
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Figure 3.10 From the left to right panels are simulated FWER across families,
conditional FDR for a null family and conditional FDR for a non-null family versus
proportion of null families (m0/m). From the top to bottom panels, the numbers of
true null hypotheses in each non-null family are n0 = 5, 10, 15 out of n = 20 hypotheses,
there are m = 10 families, µ1 = 3, α = α1 = 0.05.
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Figure 3.11 From the left to right panels are simulated average FDR over selected
families, global FDR and average power versus proportion of null families (m0/m).
From the top to bottom panels, the numbers of true null hypotheses in each non-null
family are n0 = 5, 10, 15 out of n = 20 hypotheses, there are m = 10 families, µ1 = 3,
α = α1 = 0.05.
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Figure 3.12 Comparisons for different combining methods using Sidak selection rules
(k = 1) for independent structure, m = 10, n = 20, n0 = 15, α = α1 = 0.05.

threshold. In Figure 3.12, we can see the proposed procedure using Fisher’s combining

method as FWER selection rule is more powerful than using minP combining method.

But BB procedure using Fisher’s combining method is slightly less powerful than the

one using minP combining method.

However, when considering generalized Sidak procedure with a slightly larger

k, the proposed procedure using minP combining method is still less powerful than

the one using Fisher’s combining method, but the two lines are very close. The BB

procedure using these two combining methods are also almost the same regarding the

power performance, see Figure 3.13.
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Figure 3.13 Comparisons for different combining methods using generalized Sidak
with k = 3 selection rules for independent structure, m = 10, n = 20, n0 = 15,
α = α1 = 0.05.

Now we also consider the simulated average power, average FDR, conditional FDR

for a null family and a non-null family versus different significant level α1 for selecting

families, set α1 = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, simulate the proportion of containing

signals among the selected families and proportion of detecting signals among selected

families containing signals. From Figure 3.14, we can observe similar results as Figure

3.13. However, from the real data analysis in the later section, in some cases using

minP combing method can find more signals in selecting step. And minP combining is

more convenient to calculate in practice.
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Figure 3.14 Comparisons for different combining method for independent structure
using generalized Sidak with k = 3 selection rules versus different selection significant
level α1.

Numerical comparisons for various k-FWER selection procedures For

different k-FWER selection rule, such as generalized Bonferroni versus generalized

Sidak; choice of k, we also perform some simulation to investigate the differences.

In Figure 3.16, when k becomes larger, the power for cFDR or BB will become

higher, since the procedure allows to make more than one type 1 error in selecting stage,

more families containing signals could be selected. Moreover, the proposed procedures

(cFDR-minP-k-Sidak and cFDR-minP-k-Bonf) are more powerful than BB procedures

(BB-minP-k-Sidak and BB-minP-k-Bonf) when proportion of null families is greater
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Figure 3.15 Comparisons for using generalized Bonferroni and generalized Sidak
selection rules with k = 1, 2, 3 under independence, the plots show the conditional
FDR for null or non-null family versus the proportion of null families, m = 10, n = 20,
n0 = 15, α = α1 = 0.05.
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Figure 3.16 Comparisons for using generalized Bonferroni and generalized Sidak
selection rules with k = 1, 2, 3 under independence, the plots show the average FDR
and average power versus the proportion of null families, m = 10, n = 20, n0 = 15,
α = α1 = 0.05.
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than 0.4. When k becomes larger, the procedures using generalized Sidak selection rule

are more powerful than the procedures using generalized Bonferroni rule.

3.6.2 Simulations for the Dependence Settings

We also perform the simulations under two types of dependence settings: (I) the p-values

are dependent within each body system and independent of the p-values in other body

systems; (II) the p-values are independent within each body system and dependent of

the p-values in other body systems. We consider equal correlated dependence setting

with ρ = 0, 0.1, . . . , 0.9 in the following simulation studies.

From Figures 3.17 and 3.18, we can observe when m0 = 4 out of total 10 families,

the proposed procedure can control average FDR and maintain high powers. When

and correlation ρ is less than 0.4 for m0 = 8 out of total 10 families, the proposed

cFDR controlling procedure can control the average FDR and more powerful than

BB procedure by using generalized Sidak selection rule with fold k = 3. But when

correlation becomes larger, the proposed procedure using generalized Sidak selection

rule cannot control the average FDR, while modified BB procedure using the same

selection rule can control average FDR. Therefore, we recommend to use the cFDR

controlling procedure when proportion of true null families is small (about 40%) and

use the modified BB procedure when proportion of true null families is large (about

80%).

3.7 Real Data Analysis: Clinical Safety Studies

In this section, we apply the proposed cFDR-minP-k-FWER controlling procedure

(Procedure 3.6) in the clinical safety studies to flag the significant AE types. The data

analysis is conducted in the following three steps.

Step 1 (Select body systems) Selecting body system BSi if f(pi1, . . . , pini) ≤

ti, where ti can be the same value for any i or a sequence of thresholds.
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Figure 3.17 Comparisons of conditional FDR’s with respect to ρ for different
dependent structures and different numbers of null families (m0 = 4, 8) by using
different multiple families testing procedures. α = α1 = 0.05.

88



0.0 0.2 0.4 0.6 0.8
0.

00
0.

04
0.

08

ρ

A
ve

ra
ge

 F
D

R

cFDR−minP−3−Sidak
BB−minP−3−Sidak
DFDR
DFDR2

0.0 0.2 0.4 0.6 0.8

0.
6

0.
7

0.
8

0.
9

1.
0

ρ

A
ve

ra
ge

 p
ow

er

independent families , dependent individuals 
 m = 10 , m0 = 4 , n = 20 , n0 = 15 , mu1 =  3

0.0 0.2 0.4 0.6 0.8

0.
00

0.
04

0.
08

ρ

A
ve

ra
ge

 F
D

R

0.0 0.2 0.4 0.6 0.8

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

ρ

A
ve

ra
ge

 p
ow

er

cFDR−minP−3−Sidak
BB−minP−3−Sidak
DFDR
DFDR2

independent families , dependent individuals 
 m = 10 , m0 = 8 , n = 20 , n0 = 15 , mu1 =  3

0.0 0.2 0.4 0.6 0.8

0.
00

0.
04

0.
08

ρ

Av
er

ag
e 

FD
R

cFDR−minP−3−Sidak
BB−minP−3−Sidak
DFDR
DFDR2

0.0 0.2 0.4 0.6 0.8

0.
6

0.
7

0.
8

0.
9

1.
0

ρ

Av
er

ag
e 

po
we

r

dependent families , independent individuals 
 m = 10 , m0 = 4 , n = 20 , n0 = 15 , mu1 =  3

0.0 0.2 0.4 0.6 0.8

0.
00

0.
04

0.
08

ρ

A
ve

ra
ge

 F
D

R

0.0 0.2 0.4 0.6 0.8

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

ρ

A
ve

ra
ge

 p
ow

er

cFDR−minP−3−Sidak
BB−minP−3−Sidak
DFDR
DFDR2

dependent families , independent individuals 
 m = 10 , m0 = 8 , n = 20 , n0 = 15 , mu1 =  3

Figure 3.18 Comparisons of average FDR’s and powers with respect to ρ for different
dependent structures and different numbers of null families (m0 = 4, 8) by using
different multiple families testing procedures. α = α1 = 0.05.
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We want to control some error rate when selecting the body systems. In different

phases of clinical trials, the adverse experience (AEs) usually are across 5-50 body

systems, and the trials allow to more than one false discoveries on body systems

selection when there are more classified body systems. Thus, we suggest if the number

of body systems is no more than 30, consider generalized FWER (k-FWER) controlling

procedure to select body systems. Otherwise we can consider FDR controlling

procedures. Note for generalized FWER selection rule, k can be decided based on

clinicians’ experience or protocol information.

Step 2 (Conditional inference for flagging AEs) Within each selected body

system Fi : i ∈ S, calculate the conditional p-value for each hypothesis P ′ij, and calculate

corresponding BH adjusted conditional p-value P ′ij
BH-adj.

Step 3 (Make decision) For i ∈ S and j = 1, . . . , ni. If P ′ij
BH-adj ≤ α, then

reject Hij, that is, flag the j-th AE type in the i-th body system.

We consider the following two cases in reality to select body systems of interest,

then flag the significant AE types within the selected body systems.

Case 1: Fixed selection rule and different combining methods are considered. For

instance, let ti = 0.1 for minP combining method. Such a fixed selection rule cannot

guarantee type 1 error rate control across family level.

Case 2: A sequence of data-adaptive thresholds ti to select body systems. For

instance, for i-th family Fi, i = 1, . . . ,m, we set the global null p-value as p̃i = 1− (1−

min
1≤j≤ni

{pij})ni for minP combining method. If the p-values in the family are uniformly

distributed in (0, 1), then p̃i ∼ U(0, 1) for i = 1, . . . ,m. Consider generalized Bonferroni

procedure on the global null p-values. The family is selected if p̃i ≤ kα1

m
, where k ∈

{1, . . . ,m}. If k = 1, the procedure reduces to Bonferroni procedure, which controls

FWER on family level. We can also apply generalized Sidak procedure on the global

null p-values. For fixed k ∈ {1, . . . ,m}, the family is selected if p̃i ≤ t̃ = t̃k,m(α), where

t̃ satisfies
m∑
l=k

t̃l(1− t̃)m−l = α1.
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Besides considering different selection rules for proposed procedure (fixed selection

threshold ti = 0.1, generalized Sidak with k = 1 and k = 3, minP and Fisher’s

combining methods), we also compare them with (I) simply applying BH procedure

on pooled p-values (Naive BH); (II) ad-hoc version of original double FDR procedure

(DFDR, α1 = 0.05, α = 0.1); (III) modified double FDR procedure (DFDR2); (IV)

average FDR controlling procedure (Original BB) and (V) group BH procedure (GBH).

3.7.1 Example 3.1

This example is from Mehrotra and Heyse (2001). The trial involved a quadrivalent

vaccine containing measles, mumps, rubella, and varicella (MMRV). Participants were

296 healthy toddlers aged 12-18 months who were randomly assigned to two groups (148

for treatment group, 132 for control group). The treatment group received MMRV on

day 0 and controls received MMR on day 0 followed by V on day 42. All participants

received PedvaxHIB on day 0. Safety follow-up used standard AE reporting and the

primary question was to assess local and systemic reactions for the varicella component.

The comparison of AEs was between the treatment group during days 0-42 with the

control group during days 42-84. There are 40 AE types across eight body systems.

The Fisher’s exact test two-sided p-values are calculated based on the counts.

If the selection threshold is fixed t = 0.05, the 5th body system are selected but

there is no AE in this body system detected. If t = 0.1, the 2nd, 5th and 7th body

system are selected and there is one AE in the 5th family is flagged. Even consider an

extreme case, set t = 1, then all families are selected to make the inference, that is,

there is no selection effect on families and no conditional inference. Still only the AE

in the 7th family are detected.

In Example 3.1, there are 40 AE types across eight body systems. The AE types

in the result details are denoted by BS+AE, for example, 503 means Body system No.

5, the third AE. The no multiplicity adjustment approach flags only four AE types

(204, 503, 704, 706) with p ≤ 0.05. The numbers in the parenthesis are numbers of
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Table 3.1 Example of Clinical Safety Study from Mehrotra and Heyse (2001), where
“BS” is Abbreviate of “Body System” and “No.” is the Type of AEs in Each Body
System
BS Family No. AE name X1 X1/N1 X2 X2/N2 p-value
1 1 1 Asthenia/fatigue 57 0.385 40 0.303 0.167
1 1 2 Fever 34 0.230 26 0.197 0.561
1 1 3 Infection.fungal 2 0.014 0 0.000 0.500
1 1 4 Infection.viral 3 0.020 1 0.008 0.625
1 1 5 Malaise 27 0.182 20 0.152 0.525
3 2 1 Anorexia 7 0.047 2 0.015 0.179
3 2 2 Candidiasis.oral 2 0.014 0 0.000 0.500
3 2 3 Constipation 2 0.014 0 0.000 0.500
3 2 4 Diarrhea 24 0.162 10 0.076 0.029
3 2 5 Gastroenteritis 3 0.020 1 0.008 0.625
3 2 6 Nausea 2 0.014 7 0.053 0.089
3 2 7 Vomiting 19 0.128 19 0.144 0.730
5 3 1 Lymphadenopathy 3 0.020 2 0.015 1.000
6 4 1 Dehydration 0 0.000 2 0.015 0.221
8 5 1 Crying 2 0.014 0 0.000 0.500
8 5 2 Insomnia 2 0.014 2 0.015 1.000
8 5 3 Irritability 75 0.507 43 0.326 0.002
9 6 1 Bronchitis 4 0.027 1 0.008 0.375
9 6 2 Congestion.nasal 4 0.027 1 0.008 0.375
9 6 3 Congestion.resp 1 0.007 2 0.015 0.603
9 6 4 Cough 13 0.088 8 0.061 0.497
9 6 5 Infection.resp 28 0.189 20 0.152 0.431
9 6 6 Laryn 2 0.014 1 0.008 1.000
9 6 7 Pharyngitis 13 0.088 8 0.061 0.497
9 6 8 Rhinorrhea 15 0.101 14 0.106 1.000
9 6 9 Sinusitis 3 0.020 1 0.008 0.625
9 6 10 Tonsillitis 2 0.014 1 0.008 1.000
9 6 11 Wheezing 3 0.020 1 0.008 0.625
10 7 1 Bite/sting 4 0.027 0 0.000 0.125
10 7 2 Eczema 2 0.014 0 0.000 0.500
10 7 3 Pruritus 2 0.014 1 0.008 1.000
10 7 4 Rash 13 0.088 3 0.023 0.021
10 7 5 Rash.diaper 6 0.041 2 0.015 0.288
10 7 6 Rash.measles 8 0.054 1 0.008 0.039
10 7 7 Rash.varicella-like 4 0.027 2 0.015 0.687
10 7 8 Urticaria 0 0.000 2 0.015 0.221
10 7 9 Viral.exanthema 1 0.007 2 0.015 0.603
11 8 1 Conjunctivitis 0 0.000 2 0.015 0.221
11 8 2 Otitis.media 18 0.122 14 0.106 0.711
11 8 3 Otorrhea 2 0.014 1 0.008 1.000
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Table 3.2 Flagging AE Types for Example 3.1 under α1 = 0.05 for Selecting BSoI
and α = 0.1 for Detecting AEs

Approach BSoI Flagging AE Types

Naive BH NA 503 (1)

DFDR 5 (1) 503 (1)

DFDR2 5 (1) 503 (1)

GBH NA 503 (1)

Original BB 5 (1) 503 (1)

cFDR-minP-0.1 2,5,7 (3) 503 (1)

cFDR-minP-Sidak 0 0

cFDR-minP-3-Sidak 5 (1) 0

cFDR-Fisher-Sidak 0 0

cFDR-Fisher-3-Sidak 5, 7 (2) 0

selected body systems and numbers of flagging AE Types. Note that Naive BH and

GBH procedure do not provide selection function, so by using these two procedures the

BSoI selections are not applicable (NA).

cFDR-minP-Sidak and cFDR-Fisher-Sidak procedures do not select any body

systems and flag no AE, but cFDR-minP-3-Sidak procedure selects the 5th body system

and cFDR-Fisher-3-Sidak select the 5th and 7th body systems. There is still no AE

flagged. DFDR, DFDR2 and Original BB procedures select the 5th body system and

flag one AE in the body system.

3.7.2 Example 3.2

This example is from Example 4.1 in Mehrotra and Adewale (2012), there are 42 AE

types across six body systems. Figure 1 in that paper shows typical summaries of

tier 2 AE counts from a (hypothetical) clinical trial. The p-values and corresponding

95% confidence intervals for a difference between two independent binomial proportions

using the Miettinen and Nurminen method. The no multiplicity adjustment approach

flags nine AE types (101-106, 305, 404 and 507)
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Table 3.3 Flagging AE Types for Example 3.2 under α1 = 0.05 for Selecting BSoI
and α = 0.1 for Detecting AEs

Approach BSoI Flagging AE Types

Naive BH NA 106 (1)

DFDR 1,3,4,5 (4) 101-106, 305, 404 (8)

DFDR2 1 (1) 101-106 (6)

GBH NA 101-106, 305, 404, 507 (9)

Original BB 1 (1) 106 (1)

cFDR-minP-0.1 1,3,4,5 (4) 101-106 (6)

cFDR-minP-Sidak 1 (1) 101-106 (6)

cFDR-minP-3-Sidak 1,3,4 (3) 101-106 (6)

cFDR-Fisher-Sidak 1 (1) 101-106 (6)

cFDR-Fisher-3-Sidak 1 (1) 101-106 (6)

From Table 3.3, we can see the the naive BH procedure only flags one AE types.

Although double FDR and modified double FDR methods flag eight and six AE types,

but it cannot guarantee FDR control. GBH method can only ensure FDR control

under asymptotic case, but not finite number of AE types. Average FDR controlling

procedure only select one body system and flag one AE type, which is too conservative.

The cFDR with fixed threshold t = 0.1 cannot provide any error control on

body system level, although it selected four body systems. Our proposed cFDR using

generalized Sidak selection rule and minP combining method can select one body system

with k = 1 and three body systems with k = 3. When using Fisher combining method,

the procedures with k = 1 and k = 3 select one body system, which guarantee FWER

control and 3-FWER control at α1 = 0.05 across the body systems.

3.7.3 Example 3.3

This example is from Example 4.2 in Mehrotra and Adewale (2012), there are 49 AE

types across nine body systems. Figure 2 in that paper shows tier 2 AE counts and

related summaries for a double-blind, randomized clinical trial that was designed, in
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Table 3.4 Flagging AE Types for Example 3.3 under α1 = 0.05 for Selecting BSoI
and α = 0.1 for Detecting AEs

Procedures BSoI Flagging AE Types

Naive BH NA 703 (1)

DFDR 3, 7 (2) 301, 704 (2)

DFDR2 7 (1) 703, 704 (2)

GBH NA 301, 401, 703, 704 (4)

Original BB 7 (1) 703 (1)

cFDR-minP-0.1 1, 2, 3, 4, 6, 7 (6) 301, 703, 704(3)

cFDR-minP-Sidak 7 (1) 703, 704 (2)

cFDR-minP-2-Sidak 3, 7 (2) 703, 704 (2)

cFDR-minP-3-Sidak 3, 4, 7 (3) 703, 704 (2)

cFDR-Fisher-Sidak 7 (1) 703, 704 (2)

cFDR-Fisher-2-Sidak 7 (1) 703, 704 (2)

cFDR-Fisher-3-Sidak 3, 4, 6, 7 (4) 703, 704 (2)

part, to compare the safety and efficacy of two medical treatments. The no multiplicity

adjustment approach flags nine AE types (101, 209, 301, 305, 401, 602, 703, and 704).

Table 3.4 shows that the naive BH and original BB procedures flag one AE type

(703), and double FDR and modified double FDR the other methods flag five AE types

(203, 206, 211, 604 and 702).

3.7.4 Example 3.4

This example is from Example 4.3 in Mehrotra and Adewale (2012), there are 64 AE

types across eight body systems. Figure 3 in that paper shows tier 2 AE counts and

related summaries for another clinical trial, using the same format as in the previous

three examples.The no multiplicity adjustment approach flags eight AE types (203, 206,

211, 213, 305, 603, 604, and 702).

From Table 3.5, we can see the naive BH and average FDR methods flag four AE

types (203, 211, 604 and 702), and the other methods flag five AE types (203, 206, 211,

604 and 702).
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Table 3.5 Flagging AE Types for Example 3.4 under α1 = 0.05 for Selecting BSoI
and α = 0.1 for Detecting AEs

Approach BSoI Flagging AE Types

Naive BH NA 203, 211, 604, 702 (4)

DFDR 2, 3, 6, 7 (4) 203, 206, 211, 604, 702 (5)

DFDR2 2, 6, 7 (3) 203, 206, 211, 604, 702 (5)

GBH NA 203, 206, 211, 604, 702 (5)

Origianl BB 2, 6, 7 (3) 203, 211, 604, 702 (4)

cFDR-minP-0.1 1, 2, 3, 6, 7 (5) 203, 206, 211, 604, 702 (5)

cFDR-minP-Sidak 2, 6, 7 (3) 203, 206, 211, 604, 702 (5)

cFDR-minP-3-Sidak 2, 6, 7 (3) 203, 206, 211, 604, 702 (5)

cFDR-Fisher-Sidak 2, 6, 7 (3) 203, 206, 211, 604, 702 (5)

cFDR-Fisher-3-Sidak 2, 6, 7 (3) 203, 206, 211, 604, 702 (5)

3.8 Concluding Remarks

Most existing approaches for two-stage multiple families procedures such as double

FDR, modified double FDR, BB and GBH procedures do not consider the type 1 error

control in both family level and individual level. Selection bias is always existing in those

procedures. In the past, it is also challenge to separate selection effect and multiplicity

effect if the test statistics and select statistics are dependent. In this chapter, by using

conditional inference, we can make valid selective inferences. In clinical safety studies,

the existing double FDR and modified double FDR procedure fail to control FDR based

on our simulation studies. However, similar as these two procedures, by using minimum

p-values, the proposed procedure can guarantee overall FDR control. The procedure

also guarantee k-FWER control for Body System level and conditional FDR for Adverse

Event level.

We summarize the comparisons for different approaches used for multiple families

multiple testing procedures (MTPs) in the Table 3.6. In practice, based on the clinical

safety experience, discoveries across body systems are considerable important and

should be given more attentions for future research. The proposed procedure can
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Table 3.6 Error Rates Control for Different MTPs with Multiple Families Structure

Approach Family level Within selected family Overall

Original DFDR × × ×
DFDR2 FDR × ×
GBH × × global-FDR

p-filter FDR × global-FDR

Original BB FDR × average-FDR

cFDR-minP-t (fixed) × cFDR average-FDR

cFDR-minP-k-Sidak k-FWER cFDR average-FDR

provide suitable type 1 error controls across family level, within selected families and

overall on all families. Based on the simulation studies, the proposed procedures using

specific selection rules can outperform other existing procedures. In clinical safety

studies, the proposed procedures can select some body systems of interest and efficiently

flag the AEs in these body systems.

In this chapter, the recommended procedure using conditional p-value based

on minP combination and generalized Sidak selection rule, which requires p-value

within body system must be independent. But for dependent p-values within body

system, minP or Fisher’s combining method cannot be used. We can consider

Brown’s combining method, which is an extension of Fisher combination, but for

dependent p-values combination. For any dependent global p-values across body system,

generalized Bonferroni or generalized Holm procedure can be considered for selecting the

body systems; for positive dependent global p-values, the generalized step-up k-FWER

procedures in Sarkar (2006) can also be considered. Moreover, we can also consider

applying adaptive procedures (Storey et al., 2004; Sarkar, 2008) on the conditional

p-values to get more powerful procedures. Other problems related to how selection rule

affects the procedures are also interest to solve, such as estimating the proportion of

non-null families (containing signals) among the selected families, and the proportion

of true rejections (detecting signals) among the selected non-null families.
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3.9 Software

The multiple families error rate control methods described in this chapter have been

implemented as a part of the MHTmult R package [Zhu and Guo, 2017], which is

available online at https://cran.r-project.org/web/packages/MHTmult.
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CHAPTER 4

MULTIVARIATE LOGISTIC-TYPE MODELS BASED ON AN

INVERSE SAMPLING SCHEME

4.1 Introduction

In the past half a century there have been many contributions to generalized linear

models (GLMs). The logistic model with the logit link function developed by Cox

(1958) is a very popular generalized linear model. This model is applicable when the

response variable is binary, such as taking two qualitative values (e.g. male/female,

low/high, dead/survived). It is the simplest classification model. A natural extension

here is the multinomial logistic model, where the dependent variable is more than

two categories. The multinomial logistic regression model has been a fundamental

model for developing research in deep learning or softmax regression. The moments

and properties of the negative binomial (NB) distribution are given in Johnson et

al. (1992). In the generalized linear model, when the response variable follows NB

distribution, the variable measures the number of failures until k successes have been

observed. Johnson et al. (1997) describes and analyzes a generalization of the NB

distribution called the negative multinomial distribution (NMn), which can be used to

develop GLM models. Bringing this distribution in GLM, Bonett (1985) proposes NMn

GLM models with linear link and logit link. The GLM considered by Evans and Bonett

(1989) defines a log-linear model for the multilevel contingency tables with negative

multinomial frequency counts and also gives the maximum likelihood estimators.

Dhar (1995) introduces the concept of a generalized inverse sampling scheme

which can be used to study several special events at a time. He derives the Extended

Negative Multinomial distribution (ENMn), the distribution of the frequency counts

under a generalized inverse sampling scheme. Zelterman (1997) proposes an estimate

of the shape parameter based on the mean and quartiles of Pearson’s χ2 statistic.

They also show that the maximum likelihood estimator (MLE) of the shape parameter
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of the negative multinomial distribution cannot be obtained by directly maximizing

the log-likelihood function. Using the EM algorithm, Adamidis (1999) derives the

MLE of the NB distribution’s shape parameter. Dhar and Lahiri (2014) proposes a

log-linear GLM under the ENMn distribution used to study the incidence of cancer.

The parameters of this new model are estimated by the quasi-likelihood method and the

corresponding score function gives a close form estimate of the regression parameters.

Subsequently, the chapter is organized starting with Section 4.2 that introduces

basic notations, concepts and desired statistical properties for the inverse sampling

scheme and multivariate GLM models. In Section 4.3, a new multivariate logistic-

type model is proposed based on the inverse sampling scheme and desired statistical

properties of this model are discussed. Maximum likelihood estimation of the regression

parameters and further inferences, such as confidence intervals, are derived in Section

4.4. Section 4.5 provides model diagnostics and application of this new model. Section

4.6 summarizes findings and discusses potential future work.

4.2 Preliminaries

Basic notations and definitions are introduced to present the multivariate logistic-type

model. Many types of multivariate discrete models are seen in clinical trial and

biomedical research. In particular, categorical data can arise in the experiments where

the distinct outcomes are classified by factors at several levels that consists of the

count number of experimental units formed by these categories. Under these settings,

consider the multinomial (Mn) distribution with exactly G distinct categories and let

the probability of a sample falling in the j-th category in a trial be pj(j = 1, ..., G)

where
G∑
j=1

pj = 1. Further, for a fixed number of independent identically distributed

trials (n > 1), the probability of observing exactly y1, . . . , yG−1 occurrences of category

1, . . . , G − 1, respectively, is given by Mn(n, p1, . . . , pG−1). In this multinomial trials

setting, consider the G-th category to be of special interest. With this background,

consider the model that counts the number of individuals that fall in each of the 1 to
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G − 1 categories until exactly k individuals of the G-th category have been observed.

Then the probability of exactly y1, . . . , yG−1 individuals of categories 1 . . . , G − 1,

receptively, is given by the negative multinomial distribution NMn(k, p1, . . . , pG−1).

This model is also known as the inverse sampling scheme.

This model was further generalized by Dhar(1995) introducing the extended

negative multinomial (ENMn) model, which is a generalized inverse sampling scheme.

Several special events can be simultaneously analyzed using ENMn. To see its definition,

draw samples until a pre-determined total number of k ≥ 1 special events of different

types that occur are observed out of total distinct types of events G > k. So the

model is called ENMn(k, p1, . . . pG) model. What is interesting is that the ENMn model

also deals with the response vector that counts the various categories. Bringing this

feature of the ENMn distribution into the logistic model, one can propose a GLM of

the logistic-type with random samples of response vector that follows this generalized

inverse sampling scheme. The new GLM developed in this chapter considers log

ratio of expected counts of response categories equal to the linear regression similar

to the multinomial logistic model. The properties of the ENMn distribution within

the multinomial logistic-type model framework makes it applicable to analyze more

practical data sets in the health field. The following section formally introduces the

ENMn distribution.

4.2.1 Generalized Inverse Sampling Scheme

The ENMn distribution also known as generalized inverse sampling scheme, Dhar

(1995), is formally introduced. Consider a multivariate response variable to be

the G-categories Mn distribution. In these multinomial categories, without loss of

generality, consider the first G0 groups of events (E1, . . . , EG0) as common (non-special)

events, and the remaining G1 = G − G0 groups of events (EG0+1, . . . , EG) as special

events. Then in the multinomial trials, keep observing events until k events from the

special group 1, . . . , G0 are observed. The count vector of different groups (special or
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non-special), denoted by y is distributed as ENMn with parameters (k, p1, p2, . . . , pG−1).

The mean vector of the ENMn distribution with parameters p1,i, p2,i, . . . , pG,i and

ki =
G∑

j=G0+1

yj,i is given by

E{(y1,i, y2,i, . . . , yG,i)′} =
ki

G∑
j=G0+1

pj,i

(p1,i, p2,i, . . . , pG,i)
′. (4.2.1)

Lahiri et al. (2008) also give the variance-covariance of yi, which is a blocking diagonal

matrix. Generalized inverse sampling scheme distribution is part of the exponential

family as can be seen in the following section.

4.2.2 Multivariate Exponential Family

Jorgensen (1983) studies the response variable y follows the distribution from an

exponential family. The exponential family of distribution has the following form

f(y, θ, κ) = c(y, κ) exp{a(κ)t(y, θ)},

where y, θ, κ can be vectors. Thus, the above exponential family can be viewed as

a multivariate generalization of the univariate case. Here a(κ) > 0 and θ is an m-

dimensional parameter.

The ENMn distribution belongs to the exponential family since its probability

distribution function can be expressed as

f(y1,i, . . . , yG−1,i, p1i, . . . , pG−1,i, ki)

=
(y1,i + · · ·+ yG0,i + ki − 1)!ki

y1,i! · · · yG,i!
p
y1,i
1,i · · · p

yG,i
G,i

=
(y1,i + · · ·+ yG0,i + ki − 1)!ki

y1,i! · · · yG,i!
exp

{
G∑
j=1

yj,i ln(pj,i)

}
,

(4.2.2)

where yG,i = ki −
∑G−1

j=G0+1 yj,i and pG,i = 1 −
∑G−1

j=1 pj,i. Thus, the logistic-type GLM

under ENMn is the class of GLM as considered by Jorgensen (1983). The following
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section introduces a motivating example for the ENMn distribution and describes the

data structure used in a logistic-type GLM under this distribution.

4.2.3 A Motivating Example of ENMn and Data

Therefore, keeping a concrete example in mind when reading this research makes it

easier, consider a sequence of independent trials, which contains several kinds of liver

disease diagnosis as described in Plomteux (1980). This data set is in the form of

multinomial records of one set of liver disease group followed by that of another,

along with the covariates. The study includes 57 cases of acute viral hepatitis (Group

1), 44 cases of persistent chronic hepatitis (Group 2), 40 cases of aggressive chronic

hepatitis (Group 3), and 77 cases of post-necrotic cirrhosis (Group 4). Further, this

data set consists of enzymatic activity measured for the 218 patients giving four liver

enzymes as covariates: aspartate aminotransferase (AST), alanine aminotransferase

(ALT), glutamate dehydrogenase (GLDH) and ornithine carbamyltransferase (OCT).

The four liver disease groups naturally form the categories of the Mn distribution.

Then GLM with response vector following ENMn distribution is simulated as follows.

The four groups counts are aggregated until either Group 3 or Group 4 is observed and

the covariate for a sample here is taken to be that corresponding to average covariate

of the Mn samples involved in it. The independent samples are achieved by randomly

reordering the Plomteux (1980) data. The counts of different groups give rise to a

sample of ENMn distribution with parameters (k = 1, p1, p2, p3, p4) and k = y3 + y4 =

1. Since the available data was randomly reordered, one observes that this reordered

data contains n = 117 independent observations from ENMn(k = 1, p1, p2, p3). In

the following section, the multivariate logistic-type GLM under ENMn distribution is

formally introduced.
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4.3 A Multivariate Logistic-type Model under the ENMn Distribution

Now suppose there are m covariates and G = G0+G1 distinct attributes for a response,

where G1 attributes are of special interest and the remaining are not. Then the

multivariate logistic-type model under the ENMn distribution is defined as follows.

Definition 4.1 (Multivariate Logistic-type GLM). Without loss of generality, let the

last G-th group be a reference group. Then,

E(yj,i) =


ki

exp[x′iβ
(j)]

1 + exp[x′iβ
(G−1)]

, j = 1, . . . , G− 1,

ki

1 + exp[x′iβ
(G−1)]

, j = G,
(4.3.1)

where vector xi =
(

1, xi,1, xi,2, · · · , xi,m
)′

consists of the m covariates and“1” gives

rise to the intercept regression parameter in the vector product, i = 1, . . . , n. Here,

β(j) =
(
β
(j)
0 , β

(j)
1 , · · · , β(j)

m

)
, j = 1, . . . , G− 1, are the regression coefficients.

Then the estimated response for the i-th sample and j-th category is given by

using the estimators β(j) = β̂(j), j = 1, . . . , G− 1.

ŷj,i =


ki

exp[x′iβ̂
(j)]

1 + exp[x′iβ̂
(G−1)]

, j = 1, . . . , G− 1,

ki

1 + exp[x′iβ̂
(G−1)]

, j = G.

(4.3.2)

Remark 4.1. The model in Definition 4.1 and (4.2.1) gives rise to the equations

ln

[
E(yj,i)

E(yG,i)

]
= ln

[
pj,i
pG,i

]
= x′iβ

(j), (4.3.3)

where j = 1, . . . , G−1. Note that these equations are also used to define the traditional

multinomial logistic model. Further, note that in the proposed model, the regression

part is equal to the log ratio of the expectation of a response category to that of the

baseline response category G, which is a log odds ratio.

Remark 4.2. The reference group can be any group in the categories, so it can be either

a common or a special event group in the ENMn model. Without loss of generality,
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in the following equations we use the last G-th group from special categories as the

reference.

Hence, using (4.3.3),

pj,i =



exp[x′iβ
(j)]

1 +
G−1∑
l=1

exp[x′iβ
(l)]

, j = 1, . . . , G− 1,

1

1 +
G−1∑
l=1

exp[x′iβ
(l)]

, j = G,

(4.3.4)

which satisfies
G∑
j=1

pj,i = 1, i = 1, . . . , n, similar to the multinomial logistic regression.

In this case, the plugin estimator of pj,i is given by

p̂j,i =



exp[x′iβ̂
(j)]

1 +
G−1∑
l=1

exp[x′iβ̂
(l)]

, j = 1, . . . , G− 1,

1

1 +
G−1∑
l=1

exp[x′iβ̂
(l)]

, j = G,

(4.3.5)

which is used to describe the model diagnostic procedure in Section 4.3. Note that by

(4.3.2) and (4.3.5) p̂j,i = ŷj,i/ki, and a straightforward fact is that when ki = 1, then

p̂j,i = ŷj,i.

So far, the logistic-type GLM model based on an inverse sampling scheme has

been defined. One can now develop the inference and diagnostics for the proposed

model.

4.4 Model Inferences and Diagnostics

4.4.1 Maximum Likelihood Estimation

Estimation of the regression parameters of the proposed model using MLE theory is

developed in this section. The calculation of the MLE for the regression parameter

Fisher’s scoring method is equivalent to an iterative weighted least squares procedure

is proved by Nelder and Wedderburn (1972). Moreover, calculation of the MLE of the
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regression parameter by Fisher’s scoring method is equivalent to the generalized Gauss-

Newton method for calculation of the least squares estimator is shown by Jorgensen

(1983). These approaches are used to do inference for the regression parameter under

multivariate logistic regression models by Glonek and McCullagh (1995). Similar ideas

to obtain the MLE of regression parameter in the proposed model are used. The

likelihood function of the ENMn model is

L(β(1), . . . ,β(G−1), k1, . . . , kn,y1, . . . ,yn)

=
n∏
i=1

f(y1,i, . . . , yG,i, ki, p1i, . . . , pGi)

=
n∏
i=1

(
∑G0

j=1 yj,i + ki − 1)!ki

y1,i! . . . yG,i!
p
y1,i
1,i · · · · · p

yG,i
G,i ,

(4.4.1)

where yG,i = ki−
∑G−1

j=G0+1 yj,i and pG,i = 1−
∑G−1

j=1 pj,i. In the special case ki ≡ 1, that

is, one stops Mn trials when one observes an event from either one of the special events

group. Then, the likelihood function becomes

L(β(1), . . . ,β(G−1),y1, . . . ,yn)

=
n∏
i=1

f(y1,i, . . . , yG,i, p1i, . . . , pGi)

=
n∏
i=1

(
G0∑
j=1

yj,i

)
!p
y1,i
1,i · · · · · p

yG−1,i

G−1,i ·

(
1−

G−1∑
j=1

pj,i

)1−
G−1∑

j=G0+1
yj,i

y1,i! · · · · · yG−1,i! ·

(
1−

G−1∑
j=G0+1

yj,i

)
!

.

(4.4.2)

The score equations can be derived by taking first-order derivative of lnL in (4.4.2)

with respect to β, giving
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∂ lnL
∂β

=



∂ lnL
∂β(1)

· · ·
∂ lnL
∂β(j)

· · ·
∂ lnL
∂β(G−1)


=



n∑
i=1

{
y1,i −

(
G∑
l=1

yl,i

)
p1,i

}
xi

· · ·
n∑
i=1

{
yj,i −

(
G∑
l=1

yl,i

)
pj,i

}
xi

· · ·
n∑
i=1

{
yG−1,i −

(
G∑
l=1

yl,i

)
pG−1,i

}
xi


, (4.4.3)

where pj,i is as expressed in (4.3.4).

Setting the derivative in (4.4.3) as equal to 0(G−1)×1 gives the score equations.

MLE β̂ is now obtained by solving these score equations. MLE of β can also be

iteratively obtained by the Newton-Raphson’s algorithm. This algorithm is described

as follows.

Algorithm 4.1.

Step 1: Start with an initial estimate β̂(0) =
(
β̂

(1)
(0), β̂

(2)
(0), · · · , β̂

(G−1)
(0)

)′
. For example,

one can set initial estimate as the MLE of the multinomial logistic regression

parameter.

Step 2: Take

β̂(i+1) = β̂(i) −

{(
∂2 lnL
∂β∂β′

)−1
∂ lnL
∂β

}
β=

ˆβ(i)

, (4.4.4)

where β̂(i) is the i-th iterated vector
(
β̂

(1)
(i) , β̂

(2)
(i) , · · · , β̂

(G−1)
(i)

)′
.

Step 3: Iterate Steps 1 and 2 until the sequence in (4.4.4) convergence.

Remark 4.3. The estimators of the proposed model are the same as the conventional

multinomial logistic model estimators of the regression parameters. Since the kernel

of the likelihood function (4.4.1) and equations in (4.3.5) are the same as multinomial

logistic regression. Additional inference is developed in the following section.
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4.4.2 Confidence Intervals and Tests

The Fisher scoring method is used to develop the inference. Using this method, the

asymptotic variance-covariance matrix of the β̂ for logistic-type GLM under ENMn is

derived Thus, second-order partial derivatives of the log likelihood with respect to β is

computed to obtain the Hessian matrix. The components of Hessian matrix is given by

the expectations of

∂2 lnL
∂β(j)2

= −
n∑
i=1

{(
G∑
l=1

yl,i

)[
pj,i(1− pj,i)

]
xix

′
i

}
, (4.4.5)

and

∂2 lnL
∂β(j)∂β(l)

=
n∑
i=1

{(
G∑
l=1

yl,i

)(
pj,ipl,ipG,i

)
xix

′
i

}
, (4.4.6)

where j = 1, . . . , G− 1, l = 1, . . . , G− 1, j 6= l. Since xi is (m+ 1)-dimensional vector,

each component as described in (4.4.5) and (4.4.6) of the Hessian is (m+ 1)× (m+ 1)

matrix. Thus, the Hessian H in (4.4.7) is (m+ 1)(G− 1)× (m+ 1)(G− 1) matrix.

H = E



∂2 lnL
∂β(1)2

∂2 lnL
∂β(1)∂β(2)

· · · ∂2 lnL
∂β(1)∂β(G−1)

∂2 lnL
∂β(2)∂β(1)

∂2 lnL
∂β(2)2

· · · ∂2 lnL
∂β(2)∂β(G−1)

...
...

. . .
...

∂2 lnL
∂β(G−1)∂β(1)

∂2 lnL
∂β(G−1)∂β(2)

· · · ∂2 lnL
∂β(G−1)2


. (4.4.7)

Therefore, the estimator of the variance-covariance matrix based on the MLE is

Σ̂ = −H−1|β(j)=β̂(j) . (4.4.8)

The diagonal elements of the matrix Σ̂ are used to get the estimate of the individual

variances of β̂. The confidence interval and hypothesis test for each regression

parameter can be now developed.
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Further, the fact that β̂ is asymptotically multivariate Gaussian is used. Then, the

two-sided 100(1−α)% confidence intervals of the regression parameters can be derived

from (4.4.8) as β̂(j)±z1−α/2
√
diag{ ˆV ar(β̂(j))}, where j = 1, . . . , G−1. Similarly, to test

H0 : β̂(j) = β̂
(j)
0 versus H1 : β̂(j) 6= β̂

(j)
0 for each component, Z =

|β̂(j) − β̂(j)
0 |√

diag{ ˆV ar(β̂(j))}
component-wise is used.

Remark 4.4. The variance-covariance matrix of β̂ of the proposed model is different

from that of the traditional logistic model. So, confidence intervals, tests of the

regression parameters and model diagnostics are also different. Moreover, when the

proposed model’s distribution is correctly specified as the ENMn distribution, the model

fitting will benefit from the information of special events and the stopping rule.

The goodness-of-fit of the multivariate GLM is developed in the next section.

4.4.3 Model Diagnostics

Similar to Myers et al. (2012), the deviance of the proposed model is computed as

follows.

D = 2 lnL(Satuated Model)− 2 lnL(Full Model)

= 2 ln
n∏
i=1

(
∑G0

j=1 yj,i + ki − 1)!ki

y1,i! . . . yG,i!
p̃
y1,i
1,i p̃

y2,i
2,i · · · · · p̃

yG,i
G,i

− 2 ln
n∏
i=1

(
∑G0

j=1 yj,i + ki − 1)!ki

y1,i! . . . yG,i!
p̂
y1,i
1,i p̂

y2,i
2,i · · · · · p̂

yG,i
G,i

= 2 ln
n∏
i=1

G∏
j=1

(
p̃j,i
p̂j,i

)yj,i
,

(4.4.9)

where p̃j,i =
yj,i
G∑
j=1

yj,i

is MLE of pj,i, Dhar (1995), and p̂j,i is as in (4.3.5). A new model

fitting diagnostic based on deviance residuals is now proposed. The deviance residual

for the i-th sample is

dj,i = sgn(p̃j,i − p̂j,i)

√
2 ln

(
p̃j,i
p̂j,i

)yj,i
, i = 1, . . . , n; j = 1, . . . , G. (4.4.10)
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The normality of the deviance residuals dj,i is used to diagnose the model fit, similar

to Myers et al. (2012). Another approach is to do the model fitting diagnostic based

on the Pearson residuals, instead that of the deviance, which is also used in Dhar et al.

(2014). The Pearson residual is defined as

rj,i =
yj,i − ŷj,i√

ˆV ar(ŷj,i)
, i = 1, . . . , n; j = 1, . . . , G, (4.4.11)

where ŷj,i is obtained from (4.3.2). These model fitting are used in the application

described in Section 4.5 to compare the proposed model with the multinomial logistic

regression model. Also, the confidence intervals for the different models are computed.

4.5 An Application for the Proposed Model

The multivariate logistic-type GLM under ENMn is fitted to the data explained

in Section 4.2.3. This section demonstrates the virtues of the proposed model in

comparison with the multinomial logistic regression model. In the example, there are

G = 4 groups (Groups 1 to 4), including G0 = 2 (Groups 1 and 2) common event groups

and the rest of G1 = 2 (Groups 3 and 4) special event groups. Denote the covariates in

the proposed model as x1, x2, x3 and x4 which are averages of the enzymes: AST, ALT,

GLDH and OCT corresponding to an ENMn sample as described in Section 4.2.3. Set

the last group (Group 4) as a reference group.

In order to do the model comparison, the Section 4.2.3 data is further reduced

as follows. The multinomial logistic regression model is fitted to the data in Plomteux

(1980) (n=218). Covariates based on large p-values are eliminated. In Tables 4.1 and

4.2 “j:covariate” represents the description of the regression parameter for the j-th

category and corresponding covariate. The analysis result is shown as follows.
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Table 4.1 Regression Results Applying Multinomial Logistic GLM

Estimate Std. Error t-value Pr(>|t|)
1:(intercept) -10.734182 3.058415 -3.509721 0.000449

2:(intercept) 5.804643 2.598270 2.234041 0.025480

3:(intercept) -6.276608 1.773263 -3.539580 0.000401

1:log(X1) -5.171071 1.131643 -4.569525 0.000005

2:log(X1) -6.369987 1.098285 -5.799940 0.000000

3:log(X1) -1.439686 0.648000 -2.221736 0.026301

1:log(X2) 9.300834 1.346797 6.905891 0.000000

2:log(X2) 6.506386 1.073560 6.060569 0.000000

3:log(X2) 2.081067 0.618276 3.365919 0.000763

1:log(X3) -2.025177 1.124202 -1.801434 0.071634

2:log(X3) -1.880089 1.035320 -1.815949 0.069378

3:log(X3) 1.192963 0.590522 2.020183 0.043364

1:log(X4) -1.275437 1.007589 -1.265830 0.205574

2:log(X4) -0.671354 0.795664 -0.843766 0.398800

3:log(X4) 0.010497 0.500557 0.020971 0.983269

From Table 4.1, one can observe the covariate of ln(x4) is not significant at

all categories, so the predictor x4 is eliminated. Thus, keeping the three covariates

ln(x1), ln(x2) and ln(x3), that is, m = 3, the parsimonious model is obtained.
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Table 4.2 Fitted Multinomial Logistic GLM on Parsimonious Model

Estimate Std. Error t-value Pr(>|t|)
1:(intercept) -11.589083 3.087192 -3.753924 0.000174

2:(intercept) 5.509834 2.577567 2.137610 0.032548

3:(intercept) -6.186569 1.591427 -3.887435 0.000101

1:log(X1) -5.544992 1.139901 -4.864450 0.000001

2:log(X1) -6.533954 1.076117 -6.071785 0.000000

3:log(X1) -1.425277 0.639885 -2.227395 0.025921

1:log(X2) 8.784099 1.228232 7.151826 0.000000

2:log(X2) 6.217821 1.007456 6.171801 0.000000

3:log(X2) 2.063563 0.603589 3.418822 0.000629

1:log(X3) -2.728094 0.980222 -2.783138 0.005384

2:log(X3) -2.377281 0.786379 -3.023075 0.002502

3:log(X3) 1.185168 0.407927 2.905341 0.003669

Table 4.2 shows the three covariates are all significant. The results indicate

that β̂ = (−11.59, 5.51,−6.19,−5.55,−6.53,−1.43, 8.78, 6.22, 2.06,−2.73,−2.38, 1.19).

The MLE of regression parameters for the proposed model are the same as that of

multinomial logistic model as mentioned in Remark 4.3. The confidence interval results

for the multinomial logistic regression model are shown in Table 4.3.
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Table 4.3 MLE and 95% Two-sided Confidence Interval of the Regression Parameters
for Multinomial Logistic Regression Model

Index of the parameter β MLE Lower bound Upper bound

1 -11.589083 -17.639172 -5.540112

2 5.509834 0.433103 10.529090

3 -6.186569 -9.304570 -3.067024

4 -5.544992 -7.786518 -3.314742

5 -6.533954 -8.643587 -4.424091

6 -1.425277 -2.678925 -0.170815

7 8.784099 6.383295 11.202516

8 6.217821 4.249069 8.203398

9 2.063563 0.880889 3.247565

10 -2.728094 -4.656752 -0.812217

11 -2.377281 -3.923184 -0.838680

12 1.185168 0.383946 1.982532

In order to estimate confidence interval of the parameters for the proposed model,

one needs to calculate the variance-covariance matrix based on (4.4.7) and (4.4.8), the

results are shown in (4.5.1).



9.65 −0.01 −1.39 −0.67 0.11 0.00 −0.01 −0.03 0.12 −0.01 −0.00 −0.01

−0.01 0.48 −0.45 0.05 −0.01 0.01 −0.01 −0.00 −0.02 0.01 −0.00 −0.01

−1.39 −0.45 0.74 −0.19 −0.00 −0.01 0.01 0.00 0.00 −0.00 −0.00 0.01

−0.67 0.05 −0.19 0.57 −0.01 −0.00 −0.00 0.01 −0.01 −0.00 0.00 0.01

0.11 −0.01 −0.00 −0.01 7.22 −2.07 0.86 −0.84 0.14 −0.02 −0.00 −0.01

0.00 0.01 −0.01 −0.00 −2.07 0.96 −0.58 0.24 0.00 0.01 −0.00 −0.01

−0.01 −0.01 0.01 −0.00 0.86 −0.58 0.49 −0.30 −0.03 −0.00 0.00 0.00

−0.03 −0.00 0.00 0.01 −0.84 0.24 −0.30 0.52 0.00 −0.01 0.00 0.01

0.12 −0.02 0.00 −0.01 0.14 0.00 −0.03 0.00 2.43 −0.32 −0.03 −0.24

−0.01 0.01 −0.00 −0.00 −0.02 0.01 −0.00 −0.01 −0.32 0.24 −0.15 −0.03

−0.00 −0.00 −0.00 0.00 −0.00 −0.00 0.00 0.00 −0.03 −0.15 0.16 −0.01

−0.01 −0.01 0.01 0.01 −0.01 −0.01 0.00 0.01 −0.24 −0.03 −0.01 0.17



(4.5.1)

Now one can derive the 95% two-sided confidence interval for the regression

parameters of the proposed model, which is shown in Table 4.4.
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Table 4.4 MLE and 95% Two-sided Confidence Interval of the Regression Parameters
for the Proposed Logistic-type GLM using ENMn Model

Index of parameters MLE Lower bound Upper bound

1 -11.589083 -17.678111 -5.500056

2 5.509834 4.158039 6.861628

3 -6.186569 -7.868941 -4.504198

4 -5.544992 -7.021851 -4.068132

5 -6.533954 -11.801088 -1.266820

6 -1.425277 -3.348624 0.498070

7 8.784099 7.411104 10.157095

8 6.217821 4.806222 7.629419

9 2.063563 -0.991926 5.119052

10 -2.728094 -3.678583 -1.777606

11 -2.377281 -3.157388 -1.597175

12 1.185168 0.381420 1.988916

To compare the above two models, the MLE and corresponding 95% two-sided

confidence interval are plotted side-by-side in Figure 4.1. From Figure 4.1, one can
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Figure 4.1 MLE and confidence interval comparisons between the proposed model
and multinomial logistic regression model.

see most confidence intervals for the proposed model are shorter than the multinomial
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logistic model except the β’s with indices 5, 6 and 9, whose covariates are ln(x1) for

Group 2, ln(x1) for Group 3 and ln(x2) for Group 3, respectively. Please note here

that the confidence intervals for both β6 and β9 show that the parameters are not

significant different from zero at level 0.05. If one therefore takes zero for these two

regression parameters, the proposed GLM model under the inverse sampling scheme

can produce more accurate estimation than conventional model when the true response

distribution is ENMn. To illustrate the deviance calculation as shown in (4.4.9), using

the implemented R package, the deviance is 231.1164 for conventional multinomial

logistic model and 226.7065 for the proposed model. The proposed model again shows

to be a better fit than conventional one since the latter has a smaller deviance.

To make comparisons between models, the normal probability plots of the

deviance residual is used. We can compare the models using normal probability or

QQ-plot for deviance residuals and Pearson residuals.
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Figure 4.2 Normal probability plot for deviance residuals comparisons between
multinomial logistic regression model and the proposed model.

From Figures 4.2 and 4.3, one can see that the deviance and Pearson residuals for

the proposed model are spreads closer to the diagonal line than that for the multinomial

logistic model, indicating the former shows a better fit. Since Pearson residual is
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Figure 4.3 Normal probability plot for Pearson residuals comparisons between
multinomial logistic regression model and the proposed model.

standardized, ideally it should be well spread from -3 to 3. However, from Figures

4.2 and 4.3, the Pearson residuals are spread out from −1 to 1 for the multinomial

logistic regression model, again indicating a better fit for the proposed model.

4.6 Conclusion

This chapter presents an applicable generalized linear model using extended negative

multinomial distribution (inverse sampling scheme) with the known multiple categories

and log odds ratio of expected counts. The proposed model is suitable for the data

that is described by recordings of count of different categories of special or non-special

type occurrences and corresponding covariates. By comparison with the multinomial

logistic regression, the proposed model has several benefits such as more accurate

estimation (providing shorter confidence intervals), providing better goodness-of-fit,

model diagnostics, and deviance.

The estimation algorithms currently uses Newton-Raphson’s method to calculate

the estimator of the proposed model. This method is not the only one, Qaqish and

Ivanova (2006) presented an efficient algorithm for parameter estimation. A potential
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work would be to develop an efficient algorithm using similar ideas, which will result

in an alternative inference and model diagnostic. If the inverse sampling scheme

is implemented in clinical settings, then the health industry can benefit from the

optimality of the sampling design that is incorporated in the proposed model.

4.7 Software

The proposed GLM model in this chapter has been implemented in mvlogit R

package [Zhu and Dhar, 2017], which will be available online at https://cran.r-

project.org/web/packages/mvlogit.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this dissertation, we considered testing multiple hypotheses with discrete data and

multiple families structure and developed novel methods which exploit these inherent

data structures. We also considered categorical data which contains several special

events of interest and developed a logistic-type multivariate model by using inverse

sampling scheme. Those multiple testing and generalized linear model methodology

can be applied in clinical trial and biomedical health care research.

In Chapter 2, we have developed several FWER controlling procedures for discrete

data by exploiting the information of discreteness for test statistics. The proposed

procedures control FWER under various dependence structure. Real data analysis

in both clinical safety studies and cDNA transcript data reveals that the proposed

procedures have more chance to detect signals than conventional procedures in terms of

adjusted p-values. The simulation results imply that the proposed stepwise procedures

outperform the discrete procedures in terms of minimal power. A future work is to

explore optimality of the suggested Procedure 2.1 and 2.3 under arbitrary dependence,

which means for some joint distribution of the discrete p-values, one cannot increase

even one of the critical constants while keeping the remaining fixed without losing

control of the FWER. Another possible future work is to incorporate some data

driven weights into our current proposed procedures to develop more powerful FWER

controlling procedures for discrete data, such as weighted Hochberg type procedure.

In Chapter 3, by using conditional inference and tool of conditional p-value,

we can make valid selective inferences. In clinical safety studies, the existing double

FDR and modified double FDR procedure fail to control average and conditional FDR

based on our simulation studies. However, by using similar screening with minimum

p-values, the proposed procedure can guarantee overall FDR control. In this chapter, we
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recommend a two-stage procedure using conditional p-value based on minP combination

and generalized Sidak selection rule, which requires p-value within body system must

be independent. But for dependent p-values within body system, minP or Fisher’s

combining method cannot be used. We can consider Brown’s combining method, which

is an extension of Fisher combination, but for dependent p-values combination. For

any dependent global p-values across body system, generalized Bonferroni or generalized

Holm procedure can be considered for selecting the body systems; for positive dependent

global p-values, the generalized step-up k-FWER procedures in Sarkar (2006) [62] can

also be considered. Moreover, we can also consider applying adaptive procedures

(Storey et al., 2004; Sarkar, 2008) on the conditional p-values to get more powerful

procedures. Other problems related to how selection rule affects the procedures such as

estimating the proportion of non-null families (containing signals) among the selected

families, the proportion of true rejections (detecting signals) among the selected non-null

families, are also interesting.

In Chapter 4, we present a novel generalized linear model using extended negative

multinomial (inverse sampling scheme) with the known multiple categories log ratio

of expected count. The proposed model is suitable for different categories in several

samples, the observations of each sample share common covariates information. By

comparing with the conventional multinomial logistic regression model, the proposed

model have several benefits such as more accurate estimation (providing shorter

confidence intervals), have a better goodness-of-fit in model diagnostics. A potential

work is to apply the inverse sampling scheme on ordinal multinomial logistic regression

model, which is also widely used in social science research, such as marketing survey.

One can compare the new model with the conventional ordinal multinomial logistic

model in terms of MLE, confidence interval and model diagnostics.
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APPENDIX A

SIMULATION RESULTS IN CHAPTER 2

This appendix contains the simulation results stated but not shown in Chapter 2.

A.1 Independent Simulation Results

The simulation results under independent setting for stepwise procedures comparisons

are shown in this section. Table A.1 and Table A.2 are single-step procedures

comparisons using Fisher Exact Test, and Table A.3 and Table A.4 are single-step

procedures comparisons Binomial Exact Test. Table A.5 and Table A.6 are step-down

procedures comparisons using Fisher Exact Test. Table A.7 and Table A.8 are step-up

procedures comparisons using Fisher Exact Test.

A.2 Dependent Simulation Data Generation and Results

Step 1: Generate dependent Poisson observed counts for each group

In order to generatem dependent EBT statistics Ti, we use the following algorithm

to generate m dependent Poisson random variables within each group, note the Poisson

random variables between two groups are independent.

1. Generate m independent Poisson random variable Y1i ∼ Poi((1 − ρ)λ1i) =

Poi(2(1− ρ)) and one Y01 ∼ Poi(ρλ1i) = Poi(2ρ).

2. Let X1i = Y1i + Y10, then X1i ∼ Poi(2) are dependent for i = 1, . . . ,m, and the

correlation betweenX1i andXj1 is
Cov(X1i, Xj1)√

V ar(X1i)
√
V ar(Xj1)

=
V ar(Y10)√

2
√

2
=

2ρ

2
= ρ

for i, j = 1, . . . ,m and i 6= j.

3. For i = 1, . . . ,m0, generate m0 independent Poisson random variable Y2i ∼

Poi((1 − ρ)λ2i) = Poi(2(1 − ρ)) and one Y20 ∼ Poi(ρλ2i) = Poi(2ρ). For

i = m0 + 1, . . . ,m, generate m − m0 independent Poisson random variable

Y2i ∼ Poi((1− ρ)λ2i) = Poi(10(1− ρ)) and one Y ′20 ∼ Poi(ρλ2i) = Poi(10ρ).
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4. Let X2i = Y2i + Y20 for i = 1, . . . ,m0, then X2i ∼ Poi(2) are dependent for i =

1, . . . ,m0, and the correlation between X2i and X2j is
Cov(X2i, X2j)√

V ar(X2i)
√
V ar(X2j)

=

V ar(Y20)√
2
√

2
=

2ρ

2
= ρ for i, j = 1, . . . ,m0 and i 6= j; let X2i = Y2i + Y ′20 for

i = m0 + 1, . . . ,m, then X2i ∼ Poi(10) are dependent for i = m0 + 1, . . . ,m, and

the correlation between X2i and X2j is
Cov(X2i, X2j)√

V ar(X2i)
√
V ar(X2j)

=
V ar(Y ′20)√

10
√

10
=

10ρ

10
= ρ for i, j = m0 + 1, . . . ,m and i 6= j.

Step 2: Obtain the conditional test statistics

Since the generated Poisson random variables between two groups are independent,

we can directly conduct EBT for each hypothesis. after generating Poisson observed

counts x1i and x2i, let ci = x1i + x2i be the total observed count for two groups. Then

the test statistics Ti is conditional test statistics Xi1 given X1i + X2i = ci. Then the

critical value is observed count x1i.

Step 3: Conditional distribution of the test statistics

Based on the conditional inference in Lehman and Romano (2005). which is the

EBT in our paper, the conditional distribution of X1i given X1i +X2i = ci is binomial

Bin(ci, pi), where pi =
λ1i

λ1i + λ2i
.

Step 4: Calculate available p-value Pi and attainable p-values When Hi

is true, λ1i = λ2i, then pi = 0.5. That is, X1i|X1i + X2i = ci ∼ Bin(ci, 0.5) under null

Hi. Therefore, the available conditional p-value for Hi can be calculated by

Pi = PrHi {X1i ≥ x1i|X1i +X2i = ci}

=

ci∑
j=x1i

(
ci
j

)
0.5i(1− 0.5)ci−j

=

ci∑
j=x1i

(
ci
j

)
0.5ci .

(A.2.1)

The corresponding attainable p-values can be calculated by

PrHi {X1i ≥ x|X1i +X2i = ci} =

ci∑
j=x

(
ci
j

)
0.5ci for x = 0, 1, . . . , ci. (A.2.2)
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Table A.1 Simulated FWER Comparisons for Single-step Procedures with
Independent p-values Generated from Fisher’s Exact Test Statistics

N = 25 N = 50 N = 75 N = 100 N = 125 N = 150

m = 5

π0 = 0.2

MBonf 0.0025 0.0060 0.0035 0.0075 0.0075 0.0095
Tarone 0.0015 0.0030 0.0015 0.0055 0.0045 0.0085
Bonf 0.0010 0.0030 0.0015 0.0055 0.0045 0.0085
Sidak 0.0010 0.0030 0.0015 0.0055 0.0045 0.0085

m = 5

π0 = 0.4

MBonf 0.0045 0.0130 0.0120 0.0170 0.0135 0.0145
Tarone 0.0030 0.0060 0.0065 0.0140 0.0090 0.0100
Bonf 0.0015 0.0060 0.0065 0.0140 0.0090 0.0100
Sidak 0.0015 0.0060 0.0065 0.0140 0.0090 0.0100

m = 5

π0 = 0.6

MBonf 0.0085 0.0200 0.0195 0.0235 0.0225 0.0245
Tarone 0.0060 0.0105 0.0105 0.0180 0.0155 0.0170
Bonf 0.0025 0.0100 0.0105 0.0180 0.0155 0.0170
Sidak 0.0025 0.0100 0.0105 0.0180 0.0160 0.0175

m = 5

π0 = 0.8

MBonf 0.0140 0.0265 0.0270 0.0340 0.0315 0.0370
Tarone 0.0110 0.0140 0.0155 0.0245 0.0215 0.0220
Bonf 0.0045 0.0135 0.0155 0.0245 0.0215 0.0220
Sidak 0.0045 0.0135 0.0155 0.0245 0.0220 0.0230

m = 10

π0 = 0.2

MBonf 0.0020 0.0060 0.0100 0.0115 0.0095 0.0110
Tarone 0.0005 0.0040 0.0065 0.0060 0.0070 0.0060
Bonf 0.0005 0.0040 0.0065 0.0060 0.0070 0.0060
Sidak 0.0005 0.0040 0.0065 0.0060 0.0070 0.0060

m = 10

π0 = 0.4

MBonf 0.0050 0.0145 0.0165 0.0190 0.0215 0.0190
Tarone 0.0025 0.0090 0.0120 0.0100 0.0140 0.0125
Bonf 0.0025 0.0090 0.0120 0.0100 0.0140 0.0125
Sidak 0.0025 0.0090 0.0120 0.0110 0.0145 0.0130

m = 10

π0 = 0.6

MBonf 0.0090 0.0245 0.0260 0.0265 0.0300 0.0255
Tarone 0.0055 0.0150 0.0185 0.0150 0.0180 0.0155
Bonf 0.0045 0.0140 0.0185 0.0150 0.0180 0.0155
Sidak 0.0045 0.0140 0.0185 0.0160 0.0195 0.0155

m = 10

π0 = 0.8

MBonf 0.0175 0.0335 0.0345 0.0370 0.0390 0.0360
Tarone 0.0090 0.0215 0.0225 0.0190 0.0220 0.0200
Bonf 0.0055 0.0190 0.0225 0.0190 0.0220 0.0200
Sidak 0.0055 0.0190 0.0225 0.0210 0.0240 0.0200

m = 15

π0 = 0.2

MBonf 0.0040 0.0060 0.0065 0.0120 0.0080 0.0100
Tarone 0.0020 0.0030 0.0030 0.0065 0.0045 0.0070
Bonf 0.0005 0.0030 0.0030 0.0065 0.0045 0.0070
Sidak 0.0005 0.0030 0.0030 0.0075 0.0045 0.0070

m = 15

π0 = 0.4

MBonf 0.0090 0.0150 0.0140 0.0240 0.0210 0.0200
Tarone 0.0060 0.0075 0.0065 0.0125 0.0150 0.0105
Bonf 0.0010 0.0070 0.0065 0.0125 0.0150 0.0105
Sidak 0.0010 0.0070 0.0065 0.0145 0.0150 0.0105

m = 15

π0 = 0.6

MBonf 0.0165 0.0250 0.0210 0.0325 0.0320 0.0280
Tarone 0.0090 0.0130 0.0095 0.0170 0.0205 0.0180
Bonf 0.0020 0.0105 0.0095 0.0170 0.0205 0.0180
Sidak 0.0020 0.0105 0.0095 0.0190 0.0205 0.0180

m = 15

π0 = 0.8

MBonf 0.0210 0.0345 0.0315 0.0400 0.0460 0.0360
Tarone 0.0115 0.0170 0.0155 0.0215 0.0285 0.0240
Bonf 0.0020 0.0135 0.0155 0.0215 0.0285 0.0240
Sidak 0.0020 0.0135 0.0155 0.0240 0.0285 0.0240
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Table A.2 Simulated Minimal Power Comparisons for Single-step Procedures with
Independent p-values Generated from Fisher’s Exact Test Statistics

N = 25 N = 50 N = 75 N = 100 N = 125 N = 150

m = 5

π0 = 0.2

MBonf 0.2550 0.5060 0.6855 0.8195 0.9145 0.9505
Tarone 0.1945 0.3900 0.5775 0.7680 0.8655 0.9275
Bonf 0.1125 0.3825 0.5765 0.7680 0.8655 0.9275
Sidak 0.1125 0.3825 0.5850 0.7680 0.8710 0.9340

m = 5

π0 = 0.4

MBonf 0.2110 0.4085 0.5785 0.7405 0.8375 0.9025
Tarone 0.1605 0.3110 0.4715 0.6705 0.7695 0.8625
Bonf 0.0880 0.3000 0.4700 0.6705 0.7695 0.8625
Sidak 0.0880 0.3000 0.4770 0.6705 0.7765 0.8680

m = 5

π0 = 0.6

MBonf 0.1550 0.3130 0.4320 0.5835 0.7025 0.7845
Tarone 0.1180 0.2365 0.3370 0.5145 0.6255 0.7245
Bonf 0.0605 0.2190 0.3355 0.5145 0.6255 0.7245
Sidak 0.0605 0.2190 0.3420 0.5145 0.6330 0.7345

m = 5

π0 = 0.8

MBonf 0.0945 0.1800 0.2570 0.3595 0.4660 0.5505
Tarone 0.0740 0.1330 0.1920 0.2955 0.3950 0.4850
Bonf 0.0330 0.1190 0.1920 0.2955 0.3950 0.4850
Sidak 0.0330 0.1190 0.1955 0.2955 0.4025 0.5005

m = 10

π0 = 0.2

MBonf 0.3155 0.6130 0.8090 0.9110 0.9765 0.9930
Tarone 0.2075 0.4695 0.7220 0.8550 0.9415 0.9820
Bonf 0.1575 0.4660 0.7220 0.8550 0.9415 0.9820
Sidak 0.1575 0.4660 0.7220 0.8595 0.9425 0.9830

m = 10

π0 = 0.4

MBonf 0.2700 0.5220 0.7180 0.8455 0.9440 0.9750
Tarone 0.1770 0.3905 0.6065 0.7720 0.8905 0.9505
Bonf 0.1235 0.3795 0.6065 0.7720 0.8905 0.9505
Sidak 0.1235 0.3795 0.6065 0.7775 0.8920 0.9575

m = 10

π0 = 0.6

MBonf 0.2005 0.4030 0.5615 0.7300 0.8450 0.9035
Tarone 0.1330 0.2990 0.4525 0.6315 0.7590 0.8525
Bonf 0.0800 0.2825 0.4525 0.6315 0.7590 0.8525
Sidak 0.0800 0.2825 0.4525 0.6375 0.7615 0.8585

m = 10

π0 = 0.8

MBonf 0.1115 0.2440 0.3500 0.4775 0.6140 0.6935
Tarone 0.0760 0.1680 0.2645 0.3810 0.5165 0.6060
Bonf 0.0390 0.1555 0.2645 0.3810 0.5165 0.6060
Sidak 0.0390 0.1555 0.2645 0.3880 0.5170 0.6185

m = 15

π0 = 0.2

MBonf 0.3370 0.6715 0.8820 0.9495 0.9915 0.9965
Tarone 0.2520 0.4995 0.7530 0.8910 0.9765 0.9895
Bonf 0.1390 0.4870 0.7515 0.8910 0.9765 0.9895
Sidak 0.1390 0.4870 0.7515 0.8960 0.9765 0.9895

m = 15

π0 = 0.4

MBonf 0.2880 0.5815 0.7910 0.9025 0.9635 0.9830
Tarone 0.2110 0.4105 0.6475 0.8050 0.9335 0.9745
Bonf 0.1030 0.3870 0.6460 0.8050 0.9335 0.9745
Sidak 0.1030 0.3870 0.6460 0.8125 0.9335 0.9745

m = 15

π0 = 0.6

MBonf 0.2135 0.4485 0.6570 0.7925 0.8840 0.9500
Tarone 0.1495 0.3070 0.5085 0.6730 0.8315 0.9140
Bonf 0.0700 0.2760 0.5065 0.6730 0.8315 0.9140
Sidak 0.0700 0.2760 0.5065 0.6790 0.8315 0.9140

m = 15

π0 = 0.8

MBonf 0.1205 0.2635 0.4270 0.5490 0.6710 0.7780
Tarone 0.0830 0.1785 0.3050 0.4295 0.5890 0.7020
Bonf 0.0335 0.1480 0.3040 0.4290 0.5890 0.7020
Sidak 0.0335 0.1480 0.3040 0.4345 0.5895 0.7020
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Table A.3 Simulated FWER Comparisons for Single-step Procedures with
Independent p-values Generated from Binomial Exact Test Statistics

π0 = 0.2 π0 = 0.4 π0 = 0.6 π0 = 0.8

m = 5

α = 0.05

MBonf 0.0020 0.0060 0.0075 0.0165

Tarone 0.0010 0.0030 0.0055 0.0105

Bonf 0.0010 0.0020 0.0025 0.0030

Sidak 0.0010 0.0020 0.0025 0.0030

m = 10

α = 0.05

MBonf 0.0010 0.0045 0.0130 0.0160

Tarone 0.0000 0.0010 0.0050 0.0115

Bonf 0.0000 0.0005 0.0025 0.0025

Sidak 0.0000 0.0005 0.0025 0.0025

m = 15

α = 0.05

MBonf 0.0010 0.0065 0.0045 0.0150

Tarone 0.0000 0.0010 0.0020 0.0070

Bonf 0.0000 0.0005 0.0000 0.0000

Sidak 0.0000 0.0005 0.0000 0.0000

m = 5

α = 0.1

MBonf 0.0070 0.0125 0.0200 0.0365

Tarone 0.0020 0.0065 0.0110 0.0285

Bonf 0.0020 0.0055 0.0065 0.0130

Sidak 0.0020 0.0055 0.0065 0.0130

m = 10

α = 0.1

MBonf 0.0040 0.0080 0.0275 0.0350

Tarone 0.0000 0.0030 0.0165 0.0195

Bonf 0.0000 0.0015 0.0055 0.0060

Sidak 0.0000 0.0015 0.0055 0.0060

m = 15

α = 0.1

MBonf 0.0060 0.0155 0.0185 0.0315

Tarone 0.0005 0.0060 0.0045 0.0200

Bonf 0.0000 0.0010 0.0020 0.0025

Sidak 0.0000 0.0010 0.0020 0.0025
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Table A.4 Simulated Minimal Power Comparisons for Single-step Procedures with
Independent p-values Generated from Binomial Exact Test Statistics

π0 = 0.2 π0 = 0.4 π0 = 0.6 π0 = 0.8

m = 5

α = 0.05

MBonf 0.9205 0.8805 0.7845 0.5565

Tarone 0.8815 0.8240 0.7395 0.5235

Bonf 0.8735 0.8055 0.6610 0.4045

Sidak 0.8735 0.8055 0.6610 0.4045

m = 10

α = 0.05

MBonf 0.9850 0.9635 0.9035 0.7390

Tarone 0.9470 0.9240 0.8630 0.6855

Bonf 0.9315 0.8635 0.7050 0.4775

Sidak 0.9315 0.8635 0.7050 0.4775

m = 15

α = 0.05

MBonf 0.9925 0.9810 0.9555 0.8210

Tarone 0.9825 0.9500 0.9095 0.7845

Bonf 0.9820 0.9475 0.8560 0.6135

Sidak 0.9820 0.9475 0.8560 0.6135

m = 5

α = 0.1

MBonf 0.9680 0.9415 0.8615 0.6330

Tarone 0.9410 0.9140 0.8240 0.5920

Bonf 0.9050 0.8375 0.7040 0.4520

Sidak 0.9050 0.8375 0.7040 0.4520

m = 10

α = 0.1

MBonf 0.9965 0.9875 0.9620 0.8315

Tarone 0.9885 0.9660 0.9170 0.7835

Bonf 0.9870 0.9565 0.8690 0.6600

Sidak 0.9870 0.9565 0.8690 0.6600

m = 15

α = 0.1

MBonf 0.9995 0.9970 0.9830 0.9030

Tarone 0.9960 0.9930 0.9605 0.8400

Bonf 0.9880 0.9615 0.8830 0.6515

Sidak 0.9895 0.9635 0.8880 0.6590
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Table A.5 Simulated FWER Comparisons for Step-down Procedures with
Independent p-values Generated from Fisher’s Exact Test Statistics

N = 25 N = 50 N = 75 N = 100 N = 125 N = 150

m = 5

π0 = 0.2

MHolm 0.0030 0.0090 0.0065 0.0115 0.0150 0.0150
TH∗ 0.0015 0.0045 0.0030 0.0075 0.0090 0.0140
Holm 0.0010 0.0045 0.0030 0.0075 0.0090 0.0140

m = 5

π0 = 0.4

MHolm 0.0055 0.0155 0.0135 0.0230 0.0225 0.0225
TH∗ 0.0030 0.0080 0.0080 0.0185 0.0140 0.0180
Holm 0.0020 0.0075 0.0080 0.0185 0.0140 0.0180

m = 5

π0 = 0.6

MHolm 0.0100 0.0215 0.0215 0.0290 0.0305 0.0320
TH∗ 0.0065 0.0115 0.0115 0.0220 0.0185 0.0205
Holm 0.0030 0.0110 0.0115 0.0220 0.0185 0.0205

m = 5

π0 = 0.8

MHolm 0.0155 0.0285 0.0285 0.0360 0.0375 0.0440
TH∗ 0.0115 0.0145 0.0160 0.0260 0.0240 0.0270
Holm 0.0050 0.0140 0.0160 0.0260 0.0240 0.0270

m = 10

π0 = 0.2

MHolm 0.0020 0.0070 0.0125 0.0130 0.0160 0.0185
TH∗ 0.0005 0.0040 0.0070 0.0080 0.0115 0.0125
Holm 0.0005 0.0040 0.0070 0.0080 0.0115 0.0125

m = 10

π0 = 0.4

MHolm 0.0050 0.0155 0.0200 0.0215 0.0280 0.0265
TH∗ 0.0025 0.0090 0.0125 0.0125 0.0200 0.0175
Holm 0.0025 0.0090 0.0125 0.0125 0.0200 0.0175

m = 10

π0 = 0.6

MHolm 0.0095 0.0250 0.0285 0.0290 0.0360 0.0350
TH∗ 0.0060 0.0150 0.0185 0.0155 0.0220 0.0215
Holm 0.0045 0.0140 0.0185 0.0155 0.0220 0.0215

m = 10

π0 = 0.8

MHolm 0.0175 0.0340 0.0360 0.0380 0.0420 0.0405
TH∗ 0.0090 0.0215 0.0235 0.0195 0.0255 0.0230
Holm 0.0055 0.0190 0.0225 0.0195 0.0255 0.0230

m = 15

π0 = 0.2

MHolm 0.0045 0.0070 0.0070 0.0140 0.0125 0.0120
TH∗ 0.0025 0.0035 0.0030 0.0090 0.0060 0.0085
Holm 0.0005 0.0030 0.0030 0.0090 0.0060 0.0085

m = 15

π0 = 0.4

MHolm 0.0095 0.0165 0.0145 0.0255 0.0255 0.0285
TH∗ 0.0060 0.0080 0.0075 0.0160 0.0175 0.0165
Holm 0.0010 0.0070 0.0075 0.0160 0.0175 0.0165

m = 15

π0 = 0.6

MHolm 0.0165 0.0260 0.0215 0.0345 0.0350 0.0345
TH∗ 0.0090 0.0130 0.0105 0.0190 0.0215 0.0195
Holm 0.0020 0.0105 0.0100 0.0190 0.0215 0.0195

m = 15

π0 = 0.8

MHolm 0.0215 0.0350 0.0315 0.0415 0.0465 0.0390
TH∗ 0.0120 0.0170 0.0165 0.0225 0.0290 0.0260
Holm 0.0020 0.0135 0.0165 0.0225 0.0290 0.0260
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Table A.6 Simulated Minimal Power Comparisons for Step-down Procedures with
Independent p-values Generated from Fisher’s Exact Test Statistics

N = 25 N = 50 N = 75 N = 100 N = 125 N = 150

m = 5

π0 = 0.2

MHolm 0.2555 0.5070 0.6855 0.8200 0.9145 0.9505
TH∗ 0.1945 0.3905 0.5780 0.7680 0.8660 0.9280
Holm 0.1130 0.3830 0.5770 0.7680 0.8660 0.9280

m = 5

π0 = 0.4

MHolm 0.2120 0.4090 0.5790 0.7405 0.8375 0.9030
TH∗ 0.1605 0.3115 0.4725 0.6705 0.7695 0.8630
Holm 0.0880 0.3005 0.4710 0.6705 0.7695 0.8630

m = 5

π0 = 0.6

MHolm 0.1555 0.3150 0.4330 0.5855 0.7035 0.7855
TH∗ 0.1185 0.2365 0.3375 0.5160 0.6265 0.7260
Holm 0.0605 0.2190 0.3360 0.5160 0.6265 0.7260

m = 5

π0 = 0.8

MHolm 0.0950 0.1815 0.2585 0.3615 0.4690 0.5530
TH∗ 0.0745 0.1330 0.1920 0.2965 0.3960 0.4860
Holm 0.0330 0.1190 0.1920 0.2965 0.3960 0.4860

m = 10

π0 = 0.2

MHolm 0.3160 0.6130 0.8095 0.9120 0.9765 0.9930
TH∗ 0.2075 0.4700 0.7220 0.8550 0.9415 0.9820
Holm 0.1575 0.4660 0.7220 0.8550 0.9415 0.9820

m = 10

π0 = 0.4

MHolm 0.2705 0.5220 0.7185 0.8455 0.9445 0.9750
TH∗ 0.1770 0.3905 0.6065 0.7720 0.8905 0.9505
Holm 0.1235 0.3795 0.6065 0.7720 0.8905 0.9505

m = 10

π0 = 0.6

MHolm 0.2010 0.4035 0.5615 0.7300 0.8450 0.9035
TH∗ 0.1330 0.2990 0.4525 0.6315 0.7590 0.8525
Holm 0.0800 0.2825 0.4525 0.6315 0.7590 0.8525

m = 10

π0 = 0.8

MHolm 0.1115 0.2440 0.3500 0.4780 0.6145 0.6935
TH∗ 0.0760 0.1680 0.2645 0.3810 0.5175 0.6065
Holm 0.0390 0.1555 0.2645 0.3810 0.5175 0.6065

m = 15

π0 = 0.2

MHolm 0.3375 0.6715 0.8820 0.9495 0.9915 0.9965
TH∗ 0.2520 0.4995 0.7530 0.8910 0.9765 0.9895
Holm 0.1390 0.4870 0.7515 0.8910 0.9765 0.9895

m = 15

π0 = 0.4

MHolm 0.2885 0.5825 0.7915 0.9025 0.9635 0.9830
TH∗ 0.2110 0.4105 0.6475 0.8055 0.9335 0.9745
Holm 0.1030 0.3870 0.6460 0.8055 0.9335 0.9745

m = 15

π0 = 0.6

MHolm 0.2135 0.4495 0.6575 0.7930 0.8840 0.9500
TH∗ 0.1495 0.3070 0.5085 0.6730 0.8315 0.9140
Holm 0.0700 0.2760 0.5065 0.6730 0.8315 0.9140

m = 15

π0 = 0.8

MHolm 0.1205 0.2645 0.4280 0.5495 0.6730 0.7780
TH∗ 0.0835 0.1785 0.3055 0.4295 0.5890 0.7030
Holm 0.0335 0.1480 0.3045 0.4290 0.5890 0.7030
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Table A.7 Simulated FWER Comparisons for Step-up Procedures with Independent
p-values Generated from Fisher’s Exact Test Statistics

N = 25 N = 50 N = 75 N = 100 N = 125 N = 150

m = 5

π0 = 0.2

MHoch 0.0030 0.0090 0.0070 0.0115 0.0150 0.0155
Roth 0.0020 0.0045 0.0040 0.0085 0.0115 0.0155
Hoch 0.0015 0.0045 0.0040 0.0085 0.0115 0.0155

m = 5

π0 = 0.4

MHoch 0.0060 0.0155 0.0140 0.0235 0.0230 0.0245
Roth 0.0035 0.0080 0.0085 0.0185 0.0160 0.0200
Hoch 0.0025 0.0075 0.0085 0.0185 0.0160 0.0200

m = 5

π0 = 0.6

MHoch 0.0105 0.0215 0.0215 0.0290 0.0305 0.0325
Roth 0.0065 0.0115 0.0115 0.0220 0.0195 0.0215
Hoch 0.0030 0.0110 0.0115 0.0220 0.0195 0.0215

m = 5

π0 = 0.8

MHoch 0.0160 0.0285 0.0285 0.0360 0.0380 0.0445
Roth 0.0115 0.0145 0.0160 0.0265 0.0245 0.0280
Hoch 0.0050 0.0140 0.0160 0.0265 0.0245 0.0280

m = 10

π0 = 0.2

MHoch 0.0025 0.0070 0.0125 0.0140 0.0170 0.0200
Roth 0.0005 0.0040 0.0070 0.0080 0.0120 0.0135
Hoch 0.0005 0.0040 0.0070 0.0080 0.0120 0.0135

m = 10

π0 = 0.4

MHoch 0.0055 0.0155 0.0200 0.0225 0.0290 0.0275
Roth 0.0025 0.0090 0.0125 0.0125 0.0200 0.0185
Hoch 0.0025 0.0090 0.0125 0.0125 0.0200 0.0185

m = 10

π0 = 0.6

MHoch 0.0095 0.0250 0.0285 0.0290 0.0360 0.0350
Roth 0.0060 0.0150 0.0185 0.0155 0.0220 0.0215
Hoch 0.0045 0.0140 0.0185 0.0155 0.0220 0.0215

m = 10

π0 = 0.8

MHoch 0.0180 0.0340 0.0360 0.0380 0.0420 0.0405
Roth 0.0095 0.0210 0.0235 0.0195 0.0255 0.0235
Hoch 0.0055 0.0190 0.0225 0.0195 0.0255 0.0235

m = 15

π0 = 0.2

MHoch 0.0045 0.0070 0.0070 0.0140 0.0125 0.0130
Roth 0.0020 0.0035 0.0030 0.0090 0.0060 0.0095
Hoch 0.0005 0.0030 0.0030 0.0090 0.0060 0.0095

m = 15

π0 = 0.4

MHoch 0.0100 0.0165 0.0145 0.0255 0.0255 0.0290
Roth 0.0060 0.0080 0.0075 0.0160 0.0175 0.0165
Hoch 0.0010 0.0070 0.0075 0.0160 0.0175 0.0165

m = 15

π0 = 0.6

MHoch 0.0175 0.0260 0.0215 0.0345 0.0350 0.0345
Roth 0.0090 0.0130 0.0105 0.0190 0.0220 0.0195
Hoch 0.0020 0.0105 0.0100 0.0190 0.0220 0.0195

m = 15

π0 = 0.8

MHoch 0.0215 0.0350 0.0315 0.0415 0.0465 0.0390
Roth 0.0120 0.0170 0.0165 0.0225 0.0290 0.0265
Hoch 0.0020 0.0135 0.0165 0.0225 0.0290 0.0265
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Table A.8 Simulated Minimal Power Comparisons for Step-up Procedures with
Independent p-values Generated from Fisher’s Exact Test Statistics

N = 25 N = 50 N = 75 N = 100 N = 125 N = 150

m = 5

π0 = 0.2

MHoch 0.2600 0.5075 0.6885 0.8240 0.9170 0.9525
Roth 0.1975 0.3915 0.5820 0.7685 0.8695 0.9300
Hoch 0.1170 0.3845 0.5810 0.7685 0.8695 0.9300

m = 5

π0 = 0.4

MHoch 0.2155 0.4105 0.5810 0.7410 0.8400 0.9055
Roth 0.1630 0.3115 0.4755 0.6705 0.7715 0.8660
Hoch 0.0885 0.3010 0.4740 0.6705 0.7715 0.8660

m = 5

π0 = 0.6

MHoch 0.1580 0.3155 0.4340 0.5860 0.7045 0.7875
Roth 0.1200 0.2365 0.3380 0.5165 0.6280 0.7275
Hoch 0.0605 0.2190 0.3365 0.5165 0.6280 0.7275

m = 5

π0 = 0.8

MHoch 0.0955 0.1815 0.2585 0.3615 0.4695 0.5535
Roth 0.0745 0.1330 0.1920 0.2970 0.3965 0.4870
Hoch 0.0330 0.1190 0.1920 0.2970 0.3965 0.4870

m = 10

π0 = 0.2

MHoch 0.3215 0.6155 0.8110 0.9130 0.9765 0.9930
Roth 0.2080 0.4685 0.7225 0.8555 0.9420 0.9820
Hoch 0.1580 0.4660 0.7225 0.8555 0.9420 0.9820

m = 10

π0 = 0.4

MHoch 0.2735 0.5245 0.7200 0.8465 0.9450 0.9755
Roth 0.1770 0.3840 0.6070 0.7720 0.8920 0.9510
Hoch 0.1240 0.3795 0.6065 0.7720 0.8920 0.9510

m = 10

π0 = 0.6

MHoch 0.2030 0.4045 0.5615 0.7310 0.8450 0.9045
Roth 0.1335 0.2910 0.4525 0.6315 0.7600 0.8530
Hoch 0.0800 0.2825 0.4525 0.6315 0.7600 0.8530

m = 10

π0 = 0.8

MHoch 0.1135 0.2440 0.3500 0.4780 0.6150 0.6935
Roth 0.0765 0.1625 0.2645 0.3810 0.5175 0.6075
Hoch 0.0390 0.1555 0.2645 0.3810 0.5175 0.6075

m = 15

π0 = 0.2

MHoch 0.3405 0.6720 0.8830 0.9505 0.9915 0.9965
Roth 0.2520 0.5010 0.7545 0.8910 0.9765 0.9900
Hoch 0.1390 0.4875 0.7535 0.8910 0.9765 0.9900

m = 15

π0 = 0.4

MHoch 0.2895 0.5830 0.7925 0.9025 0.9635 0.9830
Roth 0.2110 0.4115 0.6485 0.8060 0.9335 0.9745
Hoch 0.1030 0.3870 0.6470 0.8060 0.9335 0.9745

m = 15

π0 = 0.6

MHoch 0.2150 0.4500 0.6595 0.7935 0.8845 0.9505
Roth 0.1495 0.3080 0.5095 0.6730 0.8320 0.9150
Hoch 0.0700 0.2760 0.5075 0.6730 0.8320 0.9150

m = 15

π0 = 0.8

MHoch 0.1210 0.2645 0.4285 0.5500 0.6730 0.7780
Roth 0.0835 0.1785 0.3055 0.4295 0.5895 0.7035
Hoch 0.0335 0.1480 0.3045 0.4290 0.5895 0.7035
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APPENDIX B

PROOFS IN CHAPTER 3

This appendix contains the proofs of the theorems and lemmas stated but not proved

in Chapter 3.

B.1 Proof of Theorem 3.1

Proof. Let I0 denote the index of true null hypothesis, n0 = |I0| denote the number of

true nulls, R denote the the number of rejected hypothesis. Denote I = 1 if the first

true null hypothesis H1 is rejected.

Without loss of generality, replace first true null p-value by 0 and order the p-values

such that p1 = 0 ≤ p2 ≤ · · · ≤ pn. Let J = max{k : pk ≤
k

n
α}. Since the number

of rejections R is a non-increasing function of each p-values, R = R(p′1, p
′
2, . . . , p

′
n) ≤

R(p1, p2, . . . , pn) ≤ J(0, p2, . . . , pn) = J .

So I = 1 implies p1 ≤ p′1 ≤
R

n
α ≤ J

n
α. For 1 < r ≤ J , there are three cases as

the inflation factor br and b1 vary as follows.

• Case 1: br = 1.

Since p1 ≤
J

n
α, pr ≤

J

n
α for r ≤ J . Hence p′r = pr ≤

J

n
α.

• Case 2: b1 = 1, br =
e−t/2

n∏
l=1(6=r)

pl

< 1.

Since b1 = 1 implies
e−t/2

n∏
l=2

pl

≥ 1, p′r = pr/br =

n∏
l=1

pl

e−t/2
= p1

n∏
l=2

pl

e−t/2
≤ p1 = p′1 ≤

J

n
α.

• Case 3: b1 =
e−t/2

n∏
l=2

pl

< 1, br =
e−t/2

n∏
l=1(6=r)

pl

< 1,

then p′r = p′1 =

n∏
l=1

pl

e−t/2
. Since p′1 ≤

J

n
α, p′r ≤

J

n
α.
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Based on the above analysis, we can conclude I = 1 implies p′r ≤
J

n
α for r ≤ J ,

that is, at least J conditional p-values are no more than
J

n
α. Since R is the maximal

number r satisfying p′r ≤
r

n
α, so J ≤ R. Therefore, we can conclude J = R since

J ≥ R.

Therefore,

cFDR = E

(
V

R ∨ 1

∣∣∣f(P) > t

)
= n0E

{
n∑
r=1

I(H1is rejected , R = r|f(P) > t)

r

}

= n0EP2,...,Pn

{
EP1|P2,...,Pn

[
n∑
r=1

I(H1is rejected , R = r|f(P1,P
(−1) = p(−1)) > t)

r

]}

= n0EP2,...,Pn

{
n∑
r=1

1

r
Pr(I = 1, R = r|f(P1,P

(−1) = p(−1)) > t)

}

= n0EP2,...,Pn

{
1

J
Pr(P ′1 ≤

J

n
α|f(P1,P

(−1) = p(−1)) > t)

}
=
n0

n
E(α) ≤ α.

(B.1.1)

Then the proof is complete.

B.2 Proof of Lemma 3.1

Proof. For any 1 ≤ j ≤ n− 1, we have pj ≤ pj+1, and

p′j =



n∏
l=1

pl

e−t/2
if

n∏
l=1
(6=j)

pl > e−t/2

pj otherwise.

p′j+1 can only take the value of

n∏
l=1

pl

e−t/2
or pj+1.

• Case 1 If p′j+1 =

n∏
l=1

pl

e−t/2
, which implies

n∏
l=1

(6=j+1)

pl > e−t/2.
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So
n∏
l=1
(6=j)

pl = pj+1

n∏
l=1

(6=j,j+1)

pl ≥ pj
n∏
l=1

( 6=j,j+1)

pl =
n∏
l=1

( 6=j+1)

pl > e−t/2, where the first

inequality follows from pj+1 ≥ pj. Thus p′j =

n∏
l=1

pl

e−t/2
= p′j+1.

• Case 2 If p′j+1 = pj+1, which implies
n∏
l=1

(6=j+1)

pl ≤ e−t/2, p′j can be pj or

n∏
l=1

pl

e−t/2
.

If p′j = pj, then it is trivial that p′j ≤ p′j+1 since pj ≤ pj+1.

Otherwise, p′j =

n∏
l=1

pl

e−t/2
= pj+1

n∏
l=1

( 6=j+1)

pl

e−t/2
≤ pj+1 = p′j+1, since

n∏
l=1

(6=j+1)

pl ≤ e−t/2.

Therefore, for any 1 ≤ j ≤ n − 1, if pj ≤ pj+1, then p′j ≤ p′j+1, the proof is

complete.

B.3 Proof of Theorem 3.2

Proof. By using similar arguments as the proof of Theorem 1, we can conclude reject

H1, i.e. I = 1, implies p1 ≤ p′1 ≤
R

n
α ≤ J

n
α. For 1 < r ≤ J , we also consider the

following three cases.

• Case 1: br = 1.

Since p1 ≤ p′1 ≤
J

n
α, pr ≤

J

n
α for r ≤ J . Hence p′r = pr ≤

J

n
α.

• Case 2: br = t < 1.

br = t implies min{p1, p2, . . . , pr−1, pr+1, . . . , pn} = min{p1, p2} > t, which means

p1 > t. Since p1 ≤
J

n
α ≤ α and α ≤ t, p1 ≤ t, which leads to a contradiction.

Based on the above analysis, we can conclude I = 1 implies p′r ≤
J

n
α for some

r ≤ J , that is, at least J conditional p-values less than or equal to
J

n
α. Since R is the

maximal number r satisfying p′r ≤
r

n
α, then J ≤ R. So J = R since J ≥ R.

Therefore,
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cFDR = E

(
V

R ∨ 1

∣∣∣min{P} ≤ t

)
= n0E

{
n∑
r=1

I(H1is rejected , R = r|min{P} ≤ t)

r

}

= EP2,...,Pn

{
EP1|P2,...,Pn

[
n∑
r=1

I(H1is rejected , R = r|min{P1,P
(−1) = p(−1)} ≤ t)

r

]}

= n0EP2,...,Pn

{
n∑
r=1

1

r
Pr(I = 1, R = r|min{P1,P

(−1) = p(−1)} ≤ t)

}

= n0EP2,...,Pn

{
1

J
Pr(P ′1 ≤

J

n
α|min{P1,P

(−1) = p(−1)} ≤ t)

}
= n0E

(α
n

)
≤ α

(B.3.1)
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