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ABSTRACT 

BIOPHYSICAL MECHANISMS OF FREQUENCY-DEPENDENCE AND ITS 

NEUROMODULATION IN NEURONS IN OSCILLATORY NETWORKS 

 

By 

David Michael Fox 

In response to oscillatory input, many isolated neurons exhibit a preferred frequency 

response in their voltage amplitude and phase shift. Membrane potential resonance 

(MPR), a maximum amplitude in a neuron’s input impedance at a non-zero frequency, 

captures the essential subthreshold properties of a neuron, which may provide a 

coordinating mechanism for organizing the activity of oscillatory neuronal networks 

around a given frequency. In the pyloric central pattern generator network of the crab 

Cancer borealis, for example, the pacemaker group pyloric dilator neurons show MPR at 

a frequency that is correlated with the network frequency. This dissertation uses the crab 

pyloric CPG to examine how, in one neuron type, interactions of ionic currents, even 

when expressed at different levels, can produce consistent MPR properties, how MPR 

properties are modified by neuromodulators and how such modifications may lead to 

distinct functional effects at different network frequencies.  

In the first part of this dissertation it is demonstrated that, despite the extensive 

variability of individual ionic currents in a neuron type such as PD, these currents can 

generate a consistent impedance profile as a function of input frequency and therefore 

result in stable MPR properties. Correlated changes in ionic current parameters are 

associated with the dependence of MPR on the membrane potential range. Synaptic 

inputs or neuromodulators that shift the membrane potential range can modify the 

interaction of multiple resonant currents and therefore shift the MPR frequency. 



 

Neuromodulators change the properties of voltage-dependent ionic currents. Since 

ionic current interactions are nonlinear, the modulation of excitability and the impedance 

profile may depend on all ionic current types expressed by the neuron. MPR is generated 

by the interaction of positive and negative feedback effects due to fast amplifying and 

slower resonant currents. Neuromodulators can modify existing MPR properties to 

generate antiresonance (a minimum amplitude response). In the second part of this 

dissertation, it is shown that the neuropeptide proctolin produces antiresonance in the 

follower lateral pyloric neuron, but not in the PD neuron. This finding is inconsistent with 

the known influences of proctolin. However, a novel proctolin-activated ionic current is 

shown to produce the antiresonance. Using linear models, antiresonance is then 

demonstrated to amplify MPR in synaptic partner neurons, indicating a potential function 

in the pyloric network. 

Neuromodulators are state dependent, so that their action may depend on the prior 

activity history of the network. It is shown that state-dependence may arise in part from 

the time-dependence of an inactivating inward current targeted by the neuromodulator 

proctolin. Due to the kinetics of inactivation, this current advances the burst phase and 

increases the duty cycle of the neuron, but mainly at higher network frequencies.  

These results demonstrate that the effect of neuromodulators on MPR in 

individual neuron types depends on the nonlinear interaction of modulator-activated and 

other ionic currents as well as the activation of currents with frequency-dependent 

properties. Consequently, the action of neuromodulators on the output of oscillatory 

networks may depend on the frequency of oscillations and be predictable from the MPR 

properties of the network neurons.  
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1 

 

CHAPTER 1 

INTRODUCTION 

1.1 Objective 

The objective of this dissertation is to understand the biophysical mechanisms that shape 

the frequency-dependent properties of single neurons and in turn how these properties 

determine the action of neuromodulation on the activity of a neuron in an oscillatory 

network. 

1.2 Background and Motivation 

Rhythmic network oscillations are ubiquitous in the nervous system. Since these 

oscillations underlie many behaviors, their abnormalities have been implicated in various 

motor and cognitive impairments. Rhythmic oscillations underlying different behaviors 

can be characterized by frequency and reflect dynamic interactions between neurons in a 

network. Furthermore, certain behaviors require network output within specific frequency 

ranges. Therefore, it is important to understand the factors that shape the frequency of 

neural networks.  

One such factor proposed to contribute to the frequency of network level 

oscillations is the subthreshold frequency-dependent response of individual neurons. 

Networks are often composed of neurons that exhibit preferred frequencies in the form of 

membrane potential resonance (MPR), in which neurons produce a maximum 

subthreshold voltage amplitude response to oscillatory current inputs at a preferred 

(resonance) frequency (fres). A different, but related, phenomenon is the zero phase 

response, in which neurons synchronize with their inputs at some non-zero frequency 



2 

(fφ=0). In many networks, the MPR has been implicated in the generation of oscillations 

because the fres of a single neuron is correlated with the network frequency [1-5]. In some 

cases, the same low-threshold inactivating currents that give rise to oscillations also give 

rise to MPR. We were interested in the biophysical mechanisms that shape the MPR of 

neurons, since factors that affect fres also affect the network frequency in the same 

direction [4]. 

Neurons can demonstrate a broad range of subthreshold behavior as seen in the 

impedance amplitude profile (Z-profile). For example in the CA1 hippocampus, the Z-

profile of pyramidal neurons shows a single resonance peak in the theta frequency band 

(4-12 Hz); others produce more complex shapes, such as in CA1 fast-spiking 

interneurons, in which there is a trough at low frequencies (antiresonance) corresponding 

to theta followed by a peak at higher frequencies corresponding to gamma frequency 

band (Figure 1.1). Antiresonance has been reported experimentally [6] and linear 

modeling has provided minimum conditions for its generation [7, 8]. Often different 

neuron types exhibiting both forms of Z-profiles interact in the same network and it is not 

clear what antiresonance contributes to the dynamics of neurons and networks even in 

small two-cell networks connected via reciprocal inhibition. Previous studies showed that 

MPR influences network oscillations through electrical coupling [9]. Even though 

biophysical parameters and their interaction shape the Z profile, this effect was 

independent of the values of biophysical parameters. We will determine if there is a 

functional role of antiresonance in shaping the activity of individual neurons and 

networks. 
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Figure 1.1 Distinct neuron types exhibit different impedance profile shapes. (A) The impedance 

profile of an interneuron of the CA1 hippocampus shows a resonance peak at an input frequency 

of 30 Hz, and the suppression at input frequencies below 20 Hz (antiresonance). (B) The 

impedance profile of a pyramidal neuron of the CA1 hippocampus shows a resonance peak at an 

input frequency of 3 Hz with no antiresonance. Figure modified from [6] 

 Characteristic frequencies of oscillatory networks underlie different behavioral 

states. Simultaneously, networks must be flexible and capable of producing different 

outputs to meet the changing environmental demands on behavior. Neuromodulation 

underlies this flexibility. The output of all networks in the nervous system is under the 

constant control via the actions of various amines, peptides and gases [10, 11]. Each 

substance can modify the properties of neurons and synapses in the network. Therefore, 

changes in the modulatory background may lead to changes in the network state and 

ultimately behavior. 

 We test multiple hypotheses regarding the frequency-dependent properties of 

neurons and state-dependent neuromodulation. We first examine the hypothesis that 

stability of MPR can arise in spite of variability in the biophysical properties of the 

multiple underlying resonant currents. I next examine the hypothesis that antiresonance 

preferentially amplifies the voltage response of coupled neurons in a narrow range of 

frequencies around fres through reciprocal inhibition. Finally, we examine the hypothesis 

that the state dependence of neuromodulators on the activity of a follower neuron arises 
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from both the time-dependence of modulator-activated currents and the interaction with 

variable baseline intrinsic currents. 

1.2.1 Central Pattern Generators 

Many essential behaviors including walking and breathing are rhythmic; that is, they 

involve repetitive sequences of muscle contractions. The timing cues to muscles are 

carried by the output of small neural networks called central pattern generators (CPGs) 

networks characterized by coherent oscillations[12]. CPGs have been found in both 

invertebrates, such as in leech and decapod crustaceans [13] and in vertebrates such as 

the Pre-Bötzinger complex controlling the respiratory rhythm in mammals [14] and 

swimming generated in the lamprey spinal cord [15]. 

Oscillatory output arises in CPG networks even in the absence of direct patterned 

inputs to the network. Invertebrate CPGs, such as the pyloric network of the decapod 

crustacean Cancer borealis, have provided invaluable insight about intrinsic and synaptic 

properties that govern the organization of oscillatory activity. Moreover, the effect of 

neuromodulators on these properties of well-characterized CPG networks is vast and has 

contributed general principles of the modulation of network dynamics. 

1.2.2 The Stomatogastric Nervous System  

The stomatogastric nervous system (STNS) in the crab Cancer borealis is an extension of 

the central nervous system (Figure 1.2). It has contributed enormously to understanding 

the general principles that underlie the generation of coordinated network activity at the 

cellular level [12]. The STNS consists of 4 interconnected ganglia (and the connecting 

nerves): the paired commissural ganglia; the esophageal ganglion; and the stomatogastric 

ganglion (STG). The STG contains about 26-30 neurons depending on the species that 
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together form two distinct but interacting CPGs, which control different parts of a multi-

compartment stomach involved in feeding. Food enters the gastric mill and is broken 

down by teeth (chewing) before the macerated food is filtered by the pylorus before 

excretion in the midgut. The pyloric and gastric CPG networks drive muscle contractions 

of the pylorus and gastric mill, respectively. 

 

Figure 1.2 The stomatogastric nervous system (STNS) of decapod crustaceans. The STNS lies 

on the dorsal surface of the foregut and controls a multi-compartment stomach. There are four 

main ganglia that comprise the STNS: the oesophageal ganglion (OG), the paired commissural 

ganglia (CoG) and the stomatogastric ganglion (STG). The COGs and OG are connected to the 

STG through the stomatogastric nerve (stn). Figure adapted from [16]. 

The pyloric network produces a rhythmic output in a range of frequencies across 

individual animals (0.5 to > 2 Hz) but on average is ~1 Hz (Figure 1.3) [17]. The output 

is characterized by stable oscillations produced by a group of pacemaker neurons. This 

pacemaker group involves two neuron types, the Anterior Burster (AB) and the Pyloric 

Dilator (PD), of which there are two copies that are strongly electrically coupled with the 

AB neuron and with each other and produce synchronized bursting activity. However, 

only the AB neuron is an intrinsic oscillator [18]. In contrast, the PD neurons only burst 



6 

due to their strong electrical coupling to the AB neuron and fire repetitive spikes when 

isolated from AB [18, 19]. In some species, all pyloric neurons are capable of producing 

bursting [18] in response to external neuromodulatory inputs (see below) to the network 

[20]. Interestingly, in C. borealis this is not the case and only the AB neurons, and the PD 

neurons when coupled to AB, oscillate in response to neuromodulatory input [21]. 

The frequency of the pyloric rhythm is mainly set by the frequency of the 

pacemaker group and its synaptic connections onto pyloric follower neurons. 

Synchronous bursting in the pacemaker neurons drive two pairs of follower neurons to 

sequentially fire bursts of action potentials with different onset timings. Of these neurons, 

the main components necessary for the manifestation of a tri-phasic rhythm are the 

Lateral Pyloric (LP) and the Pyloric constrictor (PY) neurons. However, only the LP 

neuron provides chemical synaptic feedback to the pacemaker group. The patterning of 

the triphasic rhythm depends on the dynamic interaction between synaptic and intrinsic 

properties. All synaptic connections in the pyloric network are inhibitory and utilize 

glutamate as the neurotransmitter except for the PD and the ventral dilator (VD) neurons, 

which use acetylcholine [22].  
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Figure 1.3 Variability of pyloric network cycle period across different animals. a) Typical 

extracellular recordings of pyloric neurons. Simultaneous recordings made from the pyloric 

dilator nerve (pdn), lateral ventricular nerve (lvn) and the pyloric nerve (pyn). The large spikes in 

pdn, lvn, and pyn recordings are from the PD, LP, and PY neurons. The activity phase of these 

neurons are labeled in a single cycle given by the start of one PD burst to the start of the next PD 

burst. b) Histogram showing the distribution of the mean pyloric cycle period for 69 animals. 

Figure modified from [17] 

1.2.3 Neuromodulation 

The pyloric network is modulated by a multitude of substances including biogenic amines 

and neuropeptides [10]. These substances reach the network through synaptic release 

from the modulatory projection neurons originating in anterior ganglia such as the 

commissural (CoGs) and oesophageal ganglia (OG), or through the bloodstream as 

circulating hormones [12, 23] (Figure 1.4). However, the importance of neuromodulation 

is not unique to the pyloric network of the STG; many neuromodulators modify network 

function underlying different behaviors in various animals. One example is the 

modulation of locomotor activity produced in spinal cord CPG networks of the rat by 

serotonin and dopamine [24]. In the pyloric network, neuromodulators strongly influence 

the frequency and phasing of neurons [25, 26]. Each neuromodulator elicits distinct 

pyloric network outputs by reconfiguring the properties of neurons and synapses.  
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Figure 1.4 The stomatogastric nervous system. The Stomatogastric nervous system is comprised 

of four ganglia and interconnected nerves. Projection neurons located in the paired commissural 

ganglia (CoGs) and oesophageal ganglion (OG) provide modulatory inputs to the STG and 

modify the properties of neurons and synapses within the STG. The stomatogastric nerve serves 

as the only source of central input to the STG. The individual neurons that belong to the pyloric 

network are a part of the STG. 

Neuromodulation modifies the membrane excitability of individual neuron by 

modifying the properties of ion channels. In some cases, a single neuromodulator may 

activate a single ionic channel type [27] or multiple channel types in the same neuron 

[11]. Furthermore, multiple neuromodulators may converge to activate the same channel 

type. For example, in the STG, multiple neuropeptides activate the modulatory inward 
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current (IMI) [27, 28], a fast regenerative inward current that promotes oscillatory activity 

in subsets of pyloric neurons. The activation of IMI induces rhythmic oscillations in the 

AB and PD pacemaker neurons, but not follower neurons [21]. We examined the effects 

of the neuropeptide proctolin on the MPR properties of two pyloric neurons, PD and LP. 

In fact, the MPR properties of neurons in the medial prefrontal cortex and pyloric 

neurons [29] have been shown to be under the control of neuromodulators [30]. 

The action of neuromodulators on neurons and networks depends on the prior 

state and activity. For example, the effect of neuromodulators on networks depends on 

the activity of those networks [31-33]. In particular, proctolin increases the frequency of 

the pyloric rhythm when the initial frequency is low, but has little or no effect on 

frequency when the starting frequency is high [31, 33, 34]. Similarly, the effect of 

neuromodulators at the single neuron level can also be altered by activity. For instance, 

the effect of serotonin on the burst generation of R15 neuron of Aplysia is influenced by 

the level of activity [35]. Lastly, similar activity can arise from different combinations of 

biophysical properties of individual neurons [36, 37]. The effect of a neuromodulator that 

alters one ionic current may depend not just on the strength of its action but also on 

properties of other currents in the neuron such that sometimes it produces a large effect 

and other times no effect at all [38-40].  

In this thesis, I examine whether the state-dependent actions of neuromodulation 

could arise from the addition of novel time-dependent current. Previous work has shown 

that neuropeptides can activate ionic currents with time-dependent inactivation in a 

gastric mill neuron [41]. However, the effect of adding a novel time-dependent ionic 

current to a neuron with variable underlying currents has not been explored. We examine 
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whether the state-dependence of neuromodulators on the activity of follower neurons 

could arise from the time-dependent inactivation of modulator-activated currents.  

1.2.4 Ionic Mechanisms of Membrane Potential Resonance 

Neurons are able to generate MPR due to the interaction of active conductances with the 

passive properties of the membrane [42] (Figure 1.5). The passive properties form a low-

pass filter and attenuate voltage response to high frequency inputs. A variety of ionic 

mechanisms can form a high-pass filter and attenuate responses at low frequencies. 

Traditionally, the ionic currents are labeled as resonant if they oppose voltage change at 

low frequencies and activate slowly relative to the membrane time constant. However, 

the (resonant) negative feedback effect of ionic currents arises from the dynamics of the 

associated gating variables. A gating variable is resonant if the reversal potential of the 

associated current lies at the base of the steady-state (in)activation curve for that gating 

variable and the associated time constant is slow relative to the membrane time constant. 

Examples of resonant currents are the hyperpolarization-activated inward current (IH) [4, 

43] and the M-current, a slowly activating, non-inactivating potassium current [44]. 

Moreover, since the properties of MPR depend on the voltage- and time-dependent ionic 

currents, fres will also be voltage-dependent, a property which has been shown in many 

neuron types [29]. Fast regenerative inward currents provide a positive feedback that 

favors voltage changes due to the fact that the associated gating variable is fast relative to 

the membrane time constant and the reversal potential lies at peak of the steady-state 

activation curve. Examples of amplifying currents are the persistent sodium current [5] 

and the modulatory inward current (IMI) found in STG neurons [28]. Inactivating currents 

possess both a fast amplifying activation gate and a slower resonant inactivation gate. 



11 

Therefore the classification of the current can be both amplifying and resonating but the 

effect of the current depends on the interaction between the gating variables. Examples of 

this type of current include the slowly inactivating low-threshold T-type calcium current 

[4, 43, 45] and the transient A-type K
+
 current [5]. 

The pyloric pacemaker neurons AB and PD show MPR whose fres (~1 Hz) is 

correlated with the pyloric network frequency. Pacemaker-driven networks such as the 

pyloric network contain neurons that produce bursts of action potentials that involve low-

threshold activated ionic currents. Often the same low-threshold activated ionic currents 

that generate bursting also generate MPR. Using pharmacological blockers in the PD 

neurons, the MPR was found to be sensitive to blockers of both the hyperpolarization-

activated inward current (IH) and calcium currents (ICa) [4].  

1.2.5 Variability and correlations 

Neurons of the same type express variable ionic current levels across individual animals 

[46, 47]. The biophysical properties associated with ionic currents are themselves 

variable, for example, the voltage-dependences and time constants [48]. In spite of this 

variability, neurons typically exhibit remarkably stable outputs [17, 49, 50]. 
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Figure 1.5 Frequency-dependent properties of electrical circuits and neurons. The relationship 

between the current input current (first column) and the voltage output (third column) of electrical 

circuits or neurons (second column) enables the calculation of the Z profile. The use of the ZAP 

current injection protocol allows one to probe the response in a specific range of frequencies (f). 

The Z-profile is obtained by dividing the Fourier spectrum (obtained from the FFT) of the output 

by that of the input. a, the voltage response of a simple resistor is just a linear scaling of the input, 

seen as a constant value in Z for all f equal to the resistance. b, a resistor and capacitor in parallel 

is a common model for the passive properties of the neuronal membrane. Values of Z decrease for 

increasing values of f, thus acting as a low-pass filter. c, adding an inductive component to the 

circuit enables the system to behave like a bandpass filter, i.e., produces a resonance peak at 

nonzero f. d, Similar to electrical circuits, neurons can exhibit resonance. Resonant neurons 

produce maximal outputs when driven with inputs at frequencies near their resonance frequency. 

Taken from [42]. 

Variable ion channel properties have been observed in a growing number of 

systems [47, 48, 51]. This variability has been directly related to their function [52]. For 

instance, the weakly electric fish electrocytes show a wide range of voltage-dependent 

activation and inactivation time constants of their sodium and potassium ionic currents 



13 

across animals [48]. The variability of kinetic parameters correlates with the variability in 

the frequency of electric organ discharge (EOD) that the animal uses to communicate and 

navigate. These fish can rapidly change their EOD frequency by modifying the kinetic 

parameters associated with these currents under different behavioral contexts. This 

indicates that animals can produce outputs with different combinations of parameters but 

in a manner that is constrained by the behavioral context. In other systems, such as the 

pyloric network of the STG, the link between ionic current variability and function is not 

so clear. In the stomatogastric and cardiac ganglia of the crab Cancer borealis, individual 

neurons shows variable conductance and mRNA levels [47, 53]; however, it has never 

been shown what feature(s) of activity is (are) determined by the natural variability in 

ionic current properties across animals.  

In many rhythmic networks, including the crab pyloric network [17], gill 

ventilation [54], leech heartbeat [55] and lamprey swimming [56], the phase relationships 

of bursting activity in neurons is highly conserved across a population of individual 

animals. Given that phase is determined by a complex interaction between voltage-gated 

and synaptic currents, it is possible that these systems have developed biophysical 

mechanisms to compensate for the variability in the voltage-gated and synaptic currents. 

interactions between the dynamics of synapses and intrinsic currents can contribute to 

maintaining phase when frequency changes within an animal [57]. Across individual 

animals an alternative compensatory mechanism could be utilized to conserve phase, 

where ionic current properties were coordinately regulated by some common effector 

[52].  
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 In a number of systems, correlations have been observed between the biophysical 

properties of single neuron types across different animals. For example, a correlation 

between K
+
 current activation and Na

+
 current inactivation kinetics has been reported in 

electric fish [48]. This correlation may regulate the shape of the EOD by producing 

compensatory changes in these two parameters. In neurons of the crab pyloric network, 

there are linear correlations between the maximal conductances of ionic currents [58-60]. 

One study showed that manipulating the levels of either of two currents that contribute to 

post-inhibitory rebound in pyloric neurons, the transient K
+
 current and the 

hyperpolarization-activated current, led to compensatory changes in the other current 

[59]. Thus, such changes in biophysical parameters that have opposing effects on the 

same activity feature may serve to conserve that feature. However, many correlations 

between ionic currents have been found but their function is unclear (e.g., ICa and INa 

[61]) 

 MPR in individual neurons can be produced from a variety of ionic mechanisms 

[42]. The rhythm frequency of the pyloric network is determined by the properties of the 

pacemakers, of which the PD neuron is a member. The variability in the resonance 

frequency of PD is correlated with the variability of the pyloric network frequency [4]. I 

expect to find correlations between the parameters that have opposing effects on the 

resonance frequency. Furthermore, in a given voltage range, the resonance frequency of 

the PD neuron is remarkably stable across individual animals [62]. I also expect that the 

values of biophysical parameters are constrained by the specific values of the MPR 

attributes. If the MPR is important in determining the supra-threshold neuronal and 

network activity, then coordinate changes in opposing parameters may be necessary in 
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setting the frequency of such activity. In chapter two, I address the possibility that 

multiple combinations of parameter values can produce the same MPR, but the MPR 

attributes are conserved by correlations between pairs of biophysical parameters. 

1.3 Outline 

There were three separate but inter-related aims of this thesis. The first was to understand 

the biophysical mechanisms that shape the MPR of neurons. The second was to 

determine if there is a functional role of antiresonance in shaping the activity of 

individual neurons and networks. The third and final aim was to examine the frequency-

dependent actions of neuromodulation. 

 

The results of this thesis are divided into three Chapters. In Chapter 2, using a 

combined experimental and computational approach, we examine how the PD neuron 

generates MPR through a set of interacting resonant currents. We found that relationships 

among variable parameters determine MPR attributes. Furthermore, we linked the peak 

phase of individual currents to their amplitude to give a mechanistic explanation of the 

effect of the calcium current time constants on fres. Chapter 3 is dedicated to the 

differential effects of proctolin on the Z-profile of the PD and LP neurons and the 

functional consequences for network activity. Chapter 4 focuses on the state-dependent 

actions of proctolin on the burst onset phase and duty cycle of a follower neuron. This 

state-dependence of the effect on follower neuron activity is dictated by the time-

dependent properties of an inactivating inward current expressed in that neuron. 

This dissertation demonstrated that despite the variability in individual ionic 

currents of distinct neuron types, stable MPR can be generated in a variety of ways but 
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correlated changes in parameters associated with the ionic currents (activated in the 

relevant voltage range) set features of MPR. For MPR measured in voltage clamp, any 

factor that alters the phase of active ionic currents with respect to the passive current, will 

shift the resonance frequency. Under the normal voltage range of membrane potential 

oscillations a weakly activated resonant current may contribute indirectly by constraining 

the parameters of an inactivating resonant current strongly activated in the relevant 

voltage range. To produce appropriate shifts in resonance frequency when the membrane 

potential is hyperpolarized, the maximal conductances of distinct resonant currents must 

be finely balanced. Factors that hyperpolarize the voltage or neuromodulators that would 

make the voltage range of distinct ionic currents overlap are expected to change MPR and 

modify the interaction of multiple resonant currents. This dissertation also demonstrated 

that the effect of neuromodulators on MPR in individual neuron types depends on the 

type of ionic currents and their nonlinear interaction. In some cases, neuromodulators 

induce antiresonance.  Using linear models, antiresonance was shown to amplify MPR of 

other neurons and decrease the feedback effect on the frequency of an oscillator neuron 

through reciprocal inhibitory connections (chapter 3). We concluded by showing that the 

action of neuromodulators on the activity of a neuron is not fixed but depends on the 

frequency of oscillations, which was attributed to the activation of currents with time-

dependent properties. 
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CHAPTER 2 

MECHANISMS OF GENERATION OF MEMBRANE POTENTIAL 

RESONANCE IN A NEURON WITH MULTIPLE RESONANT IONIC 

CURRENTS 

2.1 Introduction 

Neuronal network oscillations at characteristic frequency bands emerge from the 

coordinated activity of the participating neurons. The response of a neuron to oscillatory 

inputs can be characterized by the so-called impedance (Z) and phase (ϕ) profiles [42]. 

Membrane potential resonance (MPR) is defined as the ability of neurons to exhibit a 

peak in their voltage response to oscillatory current inputs at a particular (preferred or 

resonant) frequency (fres) [42]. MPR has been observed in many neuron types such as 

those in the hippocampus [6, 63, 64] and entorhinal cortex [6, 63-66], inferior olive [67, 

68], thalamus [69] , striatum [70, 71], as well as in invertebrate oscillatory networks such 

as the pyloric network of the crustacean stomatogastric ganglion (STG) [4, 29, 62]. 

Neurons may also exhibit phasonance (i.e., a zero-phase response), which describes their 

ability to synchronize with oscillatory inputs at a preferred phasonant frequency (fϕ = 0) 

[7, 43, 64, 72, 73]. Resonance, phasonance and intrinsic oscillations are related, but are 

different phenomena as one or more of them may be present in the absence of the others 

[7, 43, 73].  

 Resonant and phasonant frequencies result from a combination of low- and high-

pass filter mechanisms produced by the interplay of the neuron’s passive properties and 

one or more ionic currents and their interaction with the oscillatory inputs [7, 42, 73, 74]. 

The slow resonant currents (or currents having resonant gating variables) oppose voltage 

changes and act as high-pass filters. . They include the hyperpolarization-activated 

inward current (IH) and the slow outward potassium current (IM) found in pyramidal 



18 

neurons of CA1 hippocampus, pyramidal neurons of guinea pig frontal cortex, and layer 

2 stellate cell of entorhinal cortex[44, 63, 65]. On the other hand, the fast amplifying 

currents (or currents having amplifying gating variables) favor voltage changes and can 

make MPR more pronounced. They include the persistent sodium current (INaP) and the 

inward rectifying potassium (IKir) current. Most previous systematic mechanistic studies 

have primarily examined models with one resonant and one amplifying current, such as 

IH  and INaP , respectively [7, 73-75]. Currents having both activating and inactivating 

gating variables (in a multiplicative way) such as the low-threshold calcium current (ICa) 

are not included in this classification, but they are able to produce resonance by 

mechanisms that are less understood [43, 45].  

 Resonant neurons have been implicated in the generation of network oscillations 

in a given frequency band because the resonant and network frequencies often match up 

or are correlated. One example is in the hippocampal theta oscillations [76] in which CA1 

pyramidal cells exhibit MPR at theta frequencies of 4-8 Hz [6, 63, 64, 77]. Hippocampal 

interneurons also show MPR in vitro , but at gamma frequencies of 30±50 Hz [6, 64], and 

gamma oscillations have been found to be particularly robust in network models 

containing resonant interneurons [2, 78]. Despite speculations that MPR determines the 

frequency of network rhythms, a causal relationship between fres and the network 

frequency has only been shown for networks of electrically-coupled neurons [9]. 

Furthermore, for other networks resonance at the subthreshold level in individual neurons 

does not necessarily translate to resonance at the spiking/network level even though they 

fall within the same frequency range [7, 70, 79]. 

 The crab pyloric network produces stable oscillations at a frequency of ~1 Hz, 

driven by a pacemaker group composed of two neuron types, the anterior burster (AB) 
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and the pyloric dilator (PD), that produce synchronized bursting oscillations through 

strong electrical-coupling [13]. The PD neuron shows MPR, with fres ~1 Hz that is 

positively correlated with the pyloric network frequency [4]. Previous work has 

demonstrated that MPR in this neuron depends on two voltage-gated currents: ICa and IH 

[4]. Ionic current levels in pyloric neurons are highly variable across animals, even in the 

same cell type [80]. It is therefore unclear how these currents may interact to produce a 

stable MPR in the PD neuron and whether this variability persists or is increased or 

decreased in the presence of oscillatory inputs. 

 Traditionally, MPR is measured by applying a ZAP (chirp) current injection, 

which is a constant amplitude, sweeping frequency sinusoidal waveform, and recording 

the amplitude of the voltage response [42, 81]. In some systems, depolarization can 

increase [44] or decrease [82]) the preferred frequency. Alternatively, resonance is 

measured by applying ZAP voltage inputs in voltage clamp and recording the amplitude 

of the total current [62]. Both approaches yield identical results for linear systems, but not 

necessarily for nonlinear systems. Previous studies from our lab showed that, in the PD 

neuron, hyperpolarization decreases both fres and network frequencies [62]. Since MPR 

results from the outcome of the dynamics of voltage-gated ionic currents activated in 

different voltage ranges, changing the input voltage amplitude is expected to change fres 

in an input amplitude-dependent manner. This cannot be captured by linear models in 

which impedance is independent of the input amplitude. To our knowledge, no study has 

attempted to understand the ionic mechanisms that produce shifts in fres in response to 

changes in the voltage range. 

 A previous experimental study has explored the generation of MPR by ICa in 

thalamic neurons [45] and modeling studies explored the interaction between ICa and IH in 
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hippocampal CA1 pyramidal neurons [43, 72] where the resonant and network 

frequencies are significantly higher than in the crab pyloric network and the ICa time 

constants are smaller. Based on numerical simulations, these investigations have 

produced important results about the role played the activating and inactivating gating 

variables and their respective time constants in the generation of MPR and the 

determination of fres. However, a mechanistic understanding of the effects of the 

interacting time constants and voltage-dependent inactivation that goes beyond 

simulations is lacking. An important finding for the CA1 pyramidal neurons is that, for 

physiological time constants, they exhibit resonance but not phasonance [43]. However, 

for larger time constants, outside the physiological range for these neurons, they are able 

to exhibit phasonance. This suggests that PD neurons, which have slower time scale 

currents, may exhibit resonance and phasonance at comparable frequencies. If so, such a 

correlation between resonance and phasonance can be used to explain the influence of 

ionic current parameters on MPR. 

 Our study has two interconnected goals: (i) to understand how the interplay of 

multiple resonant gating variables shapes the Z- and φ -profiles (impedance amplitude 

and phase-shift as a function of input frequency) of a biological PD neuron, and (ii) to 

understand the many ways in which these interactions can occur to produce the same Z-

profile in these neurons. For a neuron behaving linearly, e.g., with small subthreshold 

inputs, this task is somewhat simplified by the fact that linear components are additive. 

However, neurons are nonlinear and the nonlinear interaction between ionic currents has 

been shown to produce unexpected results [43, 73, 74]. 

 To achieve these goals we measured and quantified the Z- and φ -profiles of the 

PD neuron. We then used a single-compartment conductance-based model of Hodgkin-
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Huxley type [83] that included a passive leak and the two voltage-gated currents IH and 

ICa to explore what  combinations of model parameters can produce the experimentally 

observed PD neuron Z- and φ-profiles. The maximal conductances of ionic currents of 

neurons in the stomatogastric nervous system vary widely [46, 52, 60]. We therefore 

assume that the parameters that determine the Z-profile in the PD neuron vary across 

animals. Thus, instead of searching for a single model that fit the PD neuron Z-profile, 

we used a genetic algorithm to capture a collection of parameter sets that fit this Z-

profile. To achieve such a fit, we defined a set of ten attributes that characterize the PD 

neuron Z-profile (e.g., resonant frequency and amplitude) and used a multi-objective 

evolutionary algorithm [MOEA, [84]] to obtain a family of models that fit these 

attributes. We then used this family of optimal models to identify the important 

biophysical parameters and relationships among these parameters to explain how the PD 

neuron Z-profile is shaped. We show how the fact that the inactivating calcium current 

peaks at the same phase as the passive properties, in response to sinusoidal inputs, can 

explain why resonant and phasonant frequencies are equal. We identify significant 

pairwise parameter-correlations, which selectively set certain attributes of MPR. We 

show that, in this neuron, IH does not produce MPR but can extend the dynamic range of 

ICa parameters mediating MPR. Furthermore, we identify a subset of models that capture 

the experimental shift in the resonant frequency with changes in lower bound of voltage 

oscillation. Finally, we exploit the fact that the resonant and phasonant frequencies are 

equal for the PD neuron to provide a mechanistic understanding of the effects of the ICa 

time constants on the resonant frequency by using phase information. Our results provide 

a mechanistic understanding for a generic class of neurons that exhibit both resonance 
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and phasonance as the result of the interaction between multiplicative gating variables 

and complement the studies in [43]. 

2.2 Methods 

Electrophysiology. The stomatogastric nervous system of adult male crabs (Cancer 

borealis) was dissected using standard protocols as in previous studies [62]. After 

dissection, the entire nervous system including the commissural ganglia, the esophageal 

ganglion, the stomatogastric ganglion (STG) and the nerves connecting these ganglia, and 

motor nerves were pinned down in a 100mm Petri dish coated with clear silicone gel, 

Sylgard 186 (Dow Corning). The STG was desheathed to expose the PD neurons for 

impalement. During the experiment, the dish was perfused with fresh crab saline 

maintained at 10-13ºC. After impalement with sharp electrodes, the PD neuron was 

identified by matching intracellular voltage activity with extracellular action potentials on 

the motor nerves. After identifying the PD neuron with the first electrode, a second 

electrode was used to impale the same neuron in preparation for two-electrode voltage 

clamp. Voltage clamp experiments were done in the presence of 10
−7

M tetrodotoxin 

(TTX; Biotium) superfusion to remove the neuromodulatory inputs from central 

projection neurons (decentralization) and to stop spiking activity [29, 62]. Intracellular 

electrodes were prepared by using the Flaming-Brown micropipette puller (P97; Sutter 

Instruments) and filled with 0.6M K2SO4 and 0.02M KCl. For the microelectrode used 

for current injection and voltage recording, the resistance was, respectively, 10-15MΩ 

and 25-35MΩ. Extracellular recording from the motor nerves was carried out using a 

differential AC amplifier model 1700 (A-M Systems) and intracellular recordings were 

done with an Axoclamp 2B amplifier (Molecular Devices). 
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Measuring the Z-Profile. During their ongoing activity, the PD neurons produce bursting 

oscillations with a frequency of ~1 Hz and slow-wave activity in the range of -60 to -30 

mV. Activity in the PD neuron is abolished by decentralization. The decentralized PD 

neuron shows MPR in response to ZAP current injection when the current drives the PD 

membrane voltage to oscillate between -60mV and -30mV, which is similar to the slow-

wave oscillation amplitude during ongoing activity [4]. The MPR profiles are not 

significantly different when measured in current clamp and voltage clamp [62] There are 

also no significant effects of the direction that the frequency is ramped in the ZAP 

function – sweeping from low to high frequencies gave identical MPR to that obtained 

when frequency was ramped from high to low [29]. Moreover, the PD neuron fres is not 

significantly affected by its electrical coupling to the other pyloric neurons, such as the 

anterior burster (AB) neuron [4]. Since the MPR depends on the dynamics of voltage-

gated ionic currents, it will also depend on the range and shape of the voltage oscillation. 

Therefore, to examine how Z-profile in a given voltage range constrains the properties of 

voltage-gated currents and how factors that affect the voltage range change MPR, we 

measured the Z-profile in voltage clamp [70]. To measure the Z-profile, the PD neuron 

was voltage clamped with a sweeping-frequency sinusoidal impedance amplitude profile 

(ZAP) function [85] and the injected current was measured [62]. To increase the 

sampling duration of lower frequencies as compared to the higher ones, a logarithmic 

ZAP function was used: 
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The amplitude of the ZAP function was adjusted to range between -60 and -30 mV (v0 = -

45 mV, v1 = 15 mV) and the waveform ranged through frequencies of flo = 0.1Hz to fhi = 

4 Hz over a total duration T = 100 s. Each ZAP waveform was preceded by three cycles 

of sinusoidal input at flo, which smoothly transitioned into the ZAP waveform. The total 

waveform duration was therefore 130 s. Impedance is a complex number consisting of 

amplitude and phase. To measure impedance amplitude, we calculated the ratio of the 

voltage and current amplitudes as a function of frequency and henceforth impedance 

amplitude will be referred to as Z(f). To measure φZ(f), we measured the time difference 

between the peaks of the voltage clamp ZAP and the measured clamp current. One can 

also measure Z(f) by taking the ratio of the Fourier transforms of voltage and current. 

However, spectral leakage, caused by taking the Fourier transform of the ZAP function 

and the nonlinear response, often resulted in a low signal-to-noise ratio and therefore in 

inaccurate estimates of impedance. Such cases would lead to less accurate polynomial fits 

compared to the cycle-to-cycle method described above and we therefore limited our 

analysis to the cycle-to-cycle method. Because the average Z-profile may not be a 

realistic representation of a biological neuron, we used the attributes of Z and φ 

measurements from a single PD neuron as our target. We characterized attributes of Z 

into five objective functions used for fitting by specifying five points of the profile 

(Figure 2.1a). These five points were: 

 (f0 , Z0 ), where Z0  = Z (f0 ) and f0  = 0.1 Hz, 

 (fres , Zmax ), thereby capturing QZ  = Zmax-Z0 , 

 (f1 , Z (f1)) where f1 = 4 Hz, 



25 

 The two frequencies at which Z = Z0 + QZ / 2. Pinning the profile to these points 

captures the frequency bandwidth Λ1/2 which is the frequency range for which f > 

Z0 + QZ / 2. 

 

We also constructed five objective functions to capture the attributes of φ(f) at five points 

(Figure 2.1b): 

  (f0 , φ(f0)), 

 (fφ = 0 , 0), where fφ = 0 , is the phasonant frequency 

  (fφmax , φmax) where φmax  is the maximum phase advance, 

  (fφmin , φmin) where φmin  is the maximum phase delay, 

  (2 Hz, φf = 2) capturing the phase at 2Hz. 

Single-Compartment Modeling. We used a single-compartment biophysical conductance-

based model containing only those currents implicated in shaping Z and φ [4]. We 

performed simulations in voltage clamp and measured the current as: 

clamp Cm L Ca HI I I I I     

 

(2.2) 

where ICm is the capacitive current (
dV

C
dt

 in nA), Cm is set to 1 nF and IL is the voltage-

independent leak current in nA. The voltage-dependent currents Icurr (ICa or IH) in nA are 

given by: 

( )p q

curr curr curr curr currI g m h V E   

 

(2.3) 

where V is the ZAP voltage input (see below), mcurr is the activation gating variable, hcurr 

is the inactivation gating variable, currg  is the maximal conductance in µS, Ecurr is the 

reversal potential in mV, and p and q are non-negative integers. For ICa, p = 3 and q = 1; 
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for IH, p = 1 and q = 0. The generic equation that governs the dynamics of the gating 

variables is: 

1
( ( ) )

x

dx
x V x

dt 
   

 

 

(2.4) 

where x = mcurr or hcurr, and  

  ( ) 1/ 1 exp /x xx V V V k
      

 

(2.5) 

The sign of the slope factor (kx) determines whether the sigmoid is an increasing 

(negative) or decreasing (positive) function of V, and Vx is the midpoint of the sigmoid.  

A total of eight free model parameters were defined (Table 2.1), which were optimized in 

light of the objective functions introduced above, to yield a good fit to the Z-profile 

attributes as described below. The slope factors kx of the sigmoid functions ( )
Ca

m V
 , 

( )
Ca

h V
 , and ( )

h
m V
 were fixed at -8 mV, 6 mV, and -7 mV, respectively. mH

1/ 2V   was fixed at -

70 mV, using data from experimental measurements in crab [86]. The voltage-dependent 

time constant for IH was also taken from to be  

  / 1 exp 110 / 13H

m V       

 

(2.6) 

where the range of 
H

m  is given in Table 2.1.  

Fitting Models to Experimental Data. Computational neuroscience optimization 

problems have used a number of methods, such as the brute-force exploration of the 

parameter space [36] and genetic algorithms [87]. However, the brute-force method is 
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computationally prohibitive for an 8-dimensional model parameter space, which would 

require potentially very fine sampling to find optimal models [88]. We used an MOEA 

(evolutionary optimization) to identify optimal sets of model parameters constrained by 

experimental Z and φ attributes. MOEAs are computationally efficient at handling high-

dimensional parameter spaces and other studies have used them to search for parameters 

constrained by other types of electrophysiological activity [88]. 

 

Figure 2.1 Characterization of impedance amplitude Z(f) and phase φ(f). The individual 

objective functions which collectively measure goodness-of-fit were taken as the distance away 

from characteristic points along the Z(f) and φ(f) profiles (green circles). a. The attributes used 

along Z(f) were Z0 = Z(f0) at f0 = 0.1 Hz, Z(f1) at f1 = 4 Hz, maximum impedance Zmax = Z(fres) 

and the two points of the profile at Z0+QZ/2. QZ = Zmax-Z0. Λ½ is the width of the profile at 

Z0+QZ/2. b. The attributes used along φ(f) were φ(f0), maximum phase φmax, zero-phase 

frequency f(φ = 0), φ(f=2) and φ(f=4). 

Evolutionary optimization finds solutions by minimizing a set of functions called 

objective functions, or simply objectives, subject to certain constraints. In our problem, 
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each objective represents the Euclidean distance between the target and the model 

attributes of Z and φ. When optimizing multiple (potentially conflicting) objectives, 

MOEA will find a set of solutions that constitute trade-offs in objective scores. For 

instance, an optimal parameter set may include solutions that are optimal in fres but not in 

QZ or vice versa and a range of solutions in between that result from the trade-offs in both 

objectives. In this paper, we used the non-dominated sorting genetic algorithm II (NSGA-

II) [84, 89] to find optimal solutions, which utilizes concepts of non-dominance and 

elitism, shown to be critical in solving multi-objective optimization problems [89]. 

Solution x1 is said to dominate solution x2 if it is closer to the target Z(f) and φ(f) profiles 

in at least one attribute (e.g., fres ) and is no worse in any other attributes (e.g., QZ , Z0 , 

etc.).  

NSGA-II begins with a population of 100 parameter combinations created at 

random within pre-determined lower and upper limits (Table 2.1). The objective values 

for each parameter combination are calculated and ordered according to dominance. First, 

the highest rank is assigned to all of the non-dominated, trade-off solutions. From the 

remaining set of parameters, NSGA-II selects the second set of trade-off solutions. This 

process continues until there are no more parameter combinations to rank. Genetic 

operators such as binary tournament selection, crossover, and mutation form a child 

population. A combination of the parent and child parameter sets form the population 

used in the next generation of NSGA-II [84, 89]. NSGA-II favors those parameter 

combinations among solutions non-dominating with respect to one another that come 

from less crowded parts of the parameter search space (i.e., with fewer similar, in the 

sense of fitness function values, solutions), thus increasing the diversity of the 
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population. The crowding distance metric is used to promote large spread in the solution 

space [84]. 

We ran NSGA-II multiple times (3-5 times, until the mean values of the 

distributions of optimal parameters were stable) each time for 200 generations with a 

population size of 100, and pooled the solutions at the end of each run to form a 

combined population of ~9000 parameter combinations. The algorithm stopped when no 

additional distinct parameter combinations were found. The Z and φ values associated 

with the optimal parameter sets match the target features (objectives) defining Z and φ to 

within 5% accuracy. 

 To test whether two parameters were significantly correlated in the population of 

9000 PD models, we calculated the Pearson's correlation coefficient (R) for each pair of 

parameters and used a permutation test to determine the significance of R (using a 

random subset of 20 models). The p-value was given as the fraction of R-values for the 

permuted vectors greater than the R value for the original data [36]. We also used a t-test 

to determine whether the calculated slope of the linear fit differed significantly from zero, 

which gave us identical results.  

Sensitivity analysis. We assessed how the values of fres and QZ depend on changes 

in parameter values by performing a sensitivity analysis as in [90]. We split the model 

parameters into two categories: additive, for the voltage-midpoints of activation and 

inactivation functions, and multiplicative, for the maximal conductances and time 

constants. We changed the parameters one at a time and fit the relative change in the 

resonance attributes as a linear function of the relative parameter change. We changed the 
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multiplicative parameters on a logarithmic scale to characterize parameters with both low 

and high sensitivity.  

Multiplicative parameters were varied as pn+1 = exp(±Δpn) p0 with Δpn = 

0.001*1.15
n
 and the sign indicating whether the parameter was increased or decreased. 

To ensure approximate linearity, we added points to the fit until the R
2
 value fell below 

0.98. The sensitivity was defined as the slope of this linear fit (Figure 2.2). For example, 

if a resonance attribute has a sensitivity of 1 to a parameter, then a 2-fold change in the 

parameter results in a 2-fold change in the attribute. We changed additive parameters by 

±0.5 mV. 

We assessed the sensitivity of fres and Qz to parameter pairs (p1 and p2) that were 

correlated. We first fit a line through the correlated values in the p1-p2 space. We then 

shifted this line to pass through a subset of 50 random points in p1-p2 space, resulting in a 

family of parallel lines, L
‖
. For each point, we also produced a line perpendicular to a line 

L
┴
. For each model, we performed a sensitivity analysis as before but used the linear fit 

equation L
‖
 or L

┴
 to calculate the value of p2. We fit the relative change in the Z(f) 

attribute as a linear function of the correlated change in p1 and p2. We used the slope of 

the linear fit to represent the sensitivity. We used a 2-and 3-way repeated measures 

ANOVA and the lsmeans function in R to perform pairwise comparisons of means in 

testing for significant differences between each group of
Cag , each direction, L

‖
 and L

┴
, 

and between each Z attribute, fres and QZ. 

For each model, we solved a system of three differential equations for mH, mCa 

and hCa (voltage was clamped). All simulations were performed using the modified Euler 

method with a time step of 0.2ms. The simulation code, impedance calculations, and 
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MOEA were written in C++. MATLAB (The MathWorks) and R were used to perform 

statistical analyses. 

 

Figure 2.2 Linear fits used to assess the Sensitivity of Impedance Attributes on Changes in 

Parameters. Each model parameter was changed from the optimal value (origin) in both directions 

on a logarithmic scale to characterize parameter sensitivity. The slope of a linear fit of the relative 

change in the Z(f) attribute and the parameter was measured as sensitivity. The parameter was 

changed until the fit was no longer linear (R
2
<0.98) 

Table 2.1 Limits of Parameter Values Allowed for the PD Neuron Models 

 Lg   Hg   Cag   
H

m  

mCa

1/ 2V 

  
Ca

mτ   

hCa

1/ 2V 

  
Ca

hτ   
Low 0 0 0 0 -75 0 -75 0 

High 0.15 0.35 0.35 3000 -30 100 -30 1000 

2.3 Results 

PD Biological MPR. The PD neuron produces 1 Hz bursting oscillations with a slow-

wave approximately -60mV to -30mV (Figure 2.3a). Driving the neuron through this 

voltage range with a ZAP function in voltage clamp (Figure 2.3b top panel) produces a 

minimum (arrow in Figure 1b bottom panel) in the amplitude of  the current response  

(Figure 2.3b).  The input frequency at which this minimum occurs corresponds to a peak 
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in the Z-profile (fres, Zmax; Figure 2.3c1). The value of fres was 0.86 ± 0.05Hz producing 

Zmax values of 10.23 ± 0.51 MΩ (N = 18; Figure 1d). The φ-profile shows a phasonant 

frequency fφ=0 = 0.81 ± 0.05Hz, which in most cases matched fres (Figure 2.3c2). The PD 

neuron had a QZ of 2.77 ± 0.71 MΩ and Λ½ of 0.53 ± 0.04 Hz. Across preparations, QZ 

showed considerable variability, whereas fres, Λ½, and fφ=0 were relatively consistent 

(Figure 2.3d). The corresponding median values for fres, QZ, Λ½, and fφ=0 were 0.83 Hz, 

2.77 MΩ, 0.5 Hz, 0.79 Hz, respectively. 

To obtain model parameter combinations constrained by the PD neuron Z- and φ - 

profiles, we generated a population of models using an NSGA-II algorithm (see 

Methods). The attributes of a single PD neuron Z- and φ -profiles (Figure 2.4), filled red 

circles) constrained the optimization of the parameter values. This resulted in a 

population of ~9000 sets of parameters (“optimal” dataset). All models in the optimal 

dataset captured the attributes of Z and φ to within 5% of the target (light blue lines in 

Figure 2.4), with the exception of φmax, which may be due to the anatomical structure of 

the PD neuron, a property that is omitted in our single-compartment model, or due to 

additional ionic currents, such as the potassium A current, which are not included in our 

model [43, 91]. 
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Figure 2.3 MPR of the PD neuron is relatively stable across preparations. a, During ongoing 

activity, the PD neuron shows a slow-wave voltage waveform ranging approximately between -

60 and -30 mV. b, The membrane potential (Vzap) and the injected current (IPD) were recorded 

when the PD neuron was voltage-clamped using a ZAP function between -60 and -30mV and 

sweeping frequencies between 0.1 and 4 Hz. The arrowhead indicates resonance, where the 

current amplitude is minimal. c, The Z amplitude profile (c1) and phase φZ profile (c2) measured 

at each frequency of the PD neuron measured in 18 preparations. The cross bars show the mean 

and SEM of fres and Zmax  (c1) and fφ=0 (c2). The shaded region indicates the 95% confidence 

interval. d, The range of three Z(f) attributes fres, QZ, and Λ1/2 and one φ(f) attribute fφ=0. Each 

attribute was normalized to the median of its distribution for cross comparison. CoV is the 

coefficient of variation. 
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Figure 2.4 Optimal models capture the impedance attributes of a single PD neuron. The Z- (a) 

and φ- (b) profiles of 500 randomly selected models from the optimal dataset (light blue curves) 

are compared to the target neuron’s impedance profiles (red circles). All attributes (except φmax) 

were captured to within 5% accuracy. The values of the biological target impedance amplitude 

attributes (in Hz, MΩ) were: (f0, Z0) = (0.1, 8.2), (fres, Zmax) = (1, 13.7), (0.4, 11.65), (2.5, 11.65) 

and (4, 9.6). The target impedance phase attributes (in Hz, rad) were: (0.1, 0), (fφmax, φmax) = (0.4, 

0.5), (fφ=0, 0) = (1.05, 0), (2, -4), (fφmin, φmin) = (4, -0.4) 

The Generation of MPR by the Interaction of Two Resonant Voltage-gated Currents. To 

understand how Z is generated by the dynamics of individual ionic currents at different 

voltages and frequencies, we examined the amplitude and kinetics of ionic currents in a 

representative model. In voltage clamp, Z is shaped by active voltage-gated currents, 

interacting with the passive leak and capacitive currents, in response to the voltage 

inputs. To understand the contribution of different ionic currents, we measured these 

currents in response to a constant frequency sine wave voltage inputs (Figure 2.5a inset) 

using three different frequencies: 0.1 Hz, 1 Hz (fres), and 4 Hz (Figure 2.5). For each of 

these frequencies, we plotted the steady-state current as a function of voltage (Figure 

2.5b-d left) and normalized time (or cycle phase = time x frequency; Figure 2.5b-d right). 

At 0.1 Hz, the amplitudes of IH and IL + ICm sets Itotal at low (~ -60 mV) and high (~ -30 
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mV) voltages, respectively (Figure 2.5b left). Since IH deactivation is slow, it also 

contributes to Itotal at high voltages (Figure 2.5b right). At 1 Hz (= fres), IH still sets the 

minimum of the total current, but, because of its slow kinetics, its steady-state dynamics 

are mostly linear (Figure 2.5c left). However, now ICa peaks in phase (Figure 2.5c right) 

with the passive IL + ICm at high voltages, thus producing a smaller Itotal (magenta bar in 

Figure 2.5c). The values of IH at 4 Hz are not much different from 1 Hz (Figure 2.5d). 

However, ICa peaks at a much later phase (Figure 2.5d right), which does not allow it to 

compensate for IL + ICm at high voltages, thus resulting in a larger Itotal (magenta bar in 

Figure 2.5d). Note that at 1 Hz, the total current peaks at a cycle phase close to 0.5, thus 

implying that that the fres and fφ=0 are very close or equal (Figure 2.5c right). Although 

Figure 2.5 shows the results for only one model in the optimal dataset, these results 

remain nearly identical for all models in the optimal dataset. The standard deviation of 

the currents measured, including the total current was never above 0.15 nA over all 

models. The inset in Figure 2.5c shows one standard deviation around the mean for the 

data shown in the right panel, calculated for 200 randomly selected models. 

An important collective property of the models we found is that the two 

frequencies, fres and fφ=0 coincide (Figure 2.6a-b). We analyzed the experimental data, and 

confirmed that the coincidence of MPR and phasonance frequencies also occurs in the 

biological system (Figure 2.6b inset). This is typically not the case for neuronal models 

(and for dynamical systems in general), not even for linear systems [73-75], with the 

exception of the harmonic oscillator. However, the fact that it occurs in this system, 

allows us to use the current vs. cycle phase (current-phase) diagrams to understand the 

dependence of fres and fφ=0 on the model parameters (Figure 2.6c).  
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Figure 2.5 Passive and voltage-gated currents contribute to the generation of MPR. (a) Z(f) for a 

random model from the optimal dataset. We measured the steady-state response to sinusoidal 

voltage inputs (inset) at 0.1 Hz, fres=1 Hz, and 4 Hz. Voltage-gated (ICa and IH) and passive 

currents (IL + ICm) are plotted as a function of voltage (left) and normalized time or cycle phase 

(right) at 0.1 Hz (b), 1 Hz (c), and 4Hz (d). The inset in 5c shows one standard deviation around 

the mean for the data shown in the right panel, calculated for 200 randomly selected models. 

The current-phase diagrams are depicted as in Figure 2.6b-d, as graphs of Itotal, IL 

and ICa as a function of the cycle phase for each given specific input frequency (Figure 

2.6c). We do not show IH and ICm in this plot, because at frequencies near fres they do not 
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change much with input frequency. Note that IL is independent of the input frequency 

(five panels in Figure 2.6c) because it precisely tracks the input voltage. 

In voltage clamp, fφ=0 = 1Hz is where Itotal is at its minimum amplitude exactly at 

cycle phase 0.5, coinciding with the peak of the input voltage (Figure 2.6c, middle). The 

fact that IL precisely tracks the input voltage imposes a constraint on the shapes of ICa and 

Itotal. Therefore, by necessity, if the ICa trough occurs for a cycle phase below 0.5, the Itotal 

peak must occur for a cycle phase above 0.5 (Figure 2.6c, top two panels) and vice versa 

(Figure 4c, bottom two panels). This is shown by the slope of the line joining the peaks of 

Itotal and ICa and, at fres this line is approximately vertical (Figure 2.6c middle panel). 

We use this tool to explain the dependence of the Z-profile on the time constants 

Ca

m  (Figure 2.7a) and Ca

h  (Figure 2.7b). The corresponding current-phase diagrams are 

presented in figures 2.7c and 2.7d, respectively. In each panel we present the current-

phase diagrams for f at 1 Hz (=fres when the parameter is at 100%; middle) and f = fres 

(sides) when fres is different from 1 Hz.  

To understand the dependence of Z on changes in Ca

m  and Ca

h  we have to 

primarily explain the dependence of the two attributes Zmax and fres on these parameters.  

While fres has a similar monotonic dependence on Ca

m  and Ca

h  (as these parameters 

increase, fres decreases), Zmax has the opposite dependence on Ca

m  and Ca

h . The opposite 

dependence of Zmax on Ca

m  and Ca

h  is a straightforward consequence of the opposite 

feedback effects (positive for Ca

m  and negative for Ca

h ) that these parameters exert on ICa. 

An increase in Ca

m  (for fixed values of Ca

h ) results in a smaller ICa in response to a given 

voltage clamp input. Because ICa is smaller and negative, this leads to an increase in Itotal 
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and a decrease in Z at all frequencies. Similarly, an increase in Ca

h  (for fixed values of 

Ca

m ) results in a larger ICa, leading to a decrease in Itotal and an increase in Z.  

 

 

Figure 2.6 The Impedance Attributes fres and fφ=0 of the optimal models and biological neurons are 

nearly identical (a) Z(f) (top) and φ(f) (bottom) for a representative optimal model. Green dots 

indicate fres (top) and fφ=0 (bottom). (b) Histogram showing the difference between fres and fφ=0 for 

500 randomly selected models. A comparison of fres and fφ=0 of the experimental data of the PD 

neuron shows a similar distribution (inset, N=18). (c) Plots of steady-state responses of ICa, IL, 

and Itotal to sinusoidal voltage inputs at the frequencies marked in panel a shown as a function of 

normalized time (cycle phase). Dotted vertical line indicates cycle phase 0.5 where the passive 

currents peak. Solid lines connect the minimum of ICa to the peak of Itotal. The two lines nearly 

align at fφ=0.  
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For a fixed value of the input frequency f (e.g. f = 1 Hz as in Figure 2.7), for Zmax 

to decrease as  increases (Figure 2.7-a), the cycle phase of peak ICa is delayed thereby 

subtracting less from IL on the depolarizing phase. This leads to Itotal to phase advance 

relative to IL (Figure 2.7c) and causes fres to decrease. Similarly,  for Zmax to increase as 

 increases (Figure 2.7b), ICa has to peak later in the cycle thereby subtracting less from 

IL on the depolarizing phase, which causes Itotal to peak earlier in the cycle, which in turn 

causes the bar also to swing from the left to the right (Figure 2.7d). Therefore, fres 

decreases. 

Parameter Constraints and pairwise Correlations. Previous studies have shown that 

stable network output can be produced by widely variable ion channel and synaptic 

parameters [60, 92]. Our biological data, similarly, showed that many of the Z- and φ-

profile attributes, such as fres, Λ½ and fφ=0 are relatively stable across different PD neurons 

whereas QZ shows the most variability (Figure 2.3d). To determine whether the Z- and φ-

profile attributes constrain ionic current parameters, we examined the variability of the 

model parameters in the optimal dataset. We found that some parameters were more 

constrained while others were widely variable, as measured by the coefficient of variation 

(CoV; Figure 2.8a). Parameters showing large CoVs were Cag , 
h

mτ  , hg , 
Ca

hτ , and 
hCa

1/ 2V  ; 

those showing small CoVs were Lg and the time constant of activation of IH and ICa and 

half-activation voltage of ICa:
Ca

mτ , 
mCa

1/ 2V  , Lg  (in increasing order of CoV value). A small 

CoV value implies that the parameter is tightly constrained in order to produce the proper 

Z- and φ-profiles. 

 

Ca

m

Ca

h
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Figure 2.7 The time constants of ICa activation and inactivation control fres and Zmax. The Z(f) 

profiles are plotted for a randomly selected optimal model (green) at different values of Ca

m  (a) 

and Ca

h  (b). Note that fres of the control (100%) values are at 1 Hz (dashed vertical line). The 

currents ICa, IL and Itotal plotted as a function of cycle phase at 50% (c1, d1), 100% (c2, d2), and 

150% (c3, d3) of the control values of Ca

m (c) and Ca

h  (d). In each panel of c and d, the currents are 

shown at 1 Hz (along the dashed lines in a, b) and at fres (filled circles in a, b) 

A number of studies have indicated that the large variability in ion channel 

parameters is counter-balanced by paired linear covariation of these parameters [46, 47, 

60, 93, 94]. Considering the large variability, we identified parameter pairs that co-varied 

(Figure 6b). For this, we carried out a permutation test for the Pearson’s correlation 
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coefficients, followed by a Student’s t-test on the regression slopes, to identify significant 

correlations between pairs of parameters (see Methods). The strongest correlations were 

between the following parameters: L Hg - g  (r=-0.93), 
Ca

L mg - τ  (R = 0.73), 
Ca

L hg - τ (R = 

0.88), 
H

H mg -  (R = 0.68), 
Ca

H hg - τ  (R = -0.82), 
hCa

H 1/ 2g -V  (R = 0.76), 
hCa

Ca 1/ 2g -V   (R = -0.94), 

and 
Ca Ca

m hτ - τ  (R = -0.80) (correlations selected with p < 0.01; Figure 2.8b).  

In our experiments, mH

1/ 2V   was fixed at -70 mV, using data from experimental 

measurements in crab [86] (see Methods). However, we also repeated the MOEA with 

mH

1/ 2V   set to -96 mV, as reported in lobster experiments [95], and found that all correlations 

observed with the former value of 
mH

1/ 2V  remain intact, but simply with a much larger 

maximal conductance of IH (Figure A1). In other words, shifting mH

1/ 2V  to the left simply 

results in larger Hg in the optimal models without qualitatively changing the other 

findings. 

In particular, we found that the
hCa

Ca 1/ 2g -V   correlation appeared nonlinear, but there 

were strong and distinct linear correlations in the two regions Cag  > 0.05µS (low Cag ) 

and Cag < 0.05µS (high Cag ; Figure 2.8c). To ensure that our partitioning of the 

population into different levels of Cag  was valid, we ran the MOEA two additional times, 

each time using only the mean values of Lg , 
H

m , 
mCa

1/ 2V  , and 
Ca

mτ  for either the low or the 

high Cag values. These optimal models consistently separated into two non-overlapping 

model parameters, consistent with the low and high Cag models in Figure 2.8c. 

We examined if the low and high Cag  models separated or showed distinct 

correlations in the remaining parameters. The two groups produced non-overlapping 
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subsets of model parameters in the
hCa

Ca 1/ 2g -V   graph. We calculated the Pearson’s correlation 

coefficient for each pair of parameters in the low and high Cag  groups and tested for 

significance as before (see Table 2.2). We found that only the high Cag group showed a 

significant 
Ca Ca

m hτ - τ  and Ca

H hg  correlations (Table 2.2). Additionally, both low and high 

Cag groups showed the following correlations: 
hCa Ca

1/ 2 hV   , L Hg - g ,
hCa

Ca 1/ 2g -V  , and H

H mg  , 

Ca

Ca hg   . Furthermore, when we ran the MOEA on models where Hg was set to 0, the only 

optimal models obtained fell within a narrow range of the high Cag group (Figure A2), 

which is consistent with the distribution of high Cag models in the H Cag g  panel of Figure 

2.8d. 

Decreasing the Low Bound of Voltage Oscillation Influences the Measured fres and Zmax 

The lower voltage range of the PD bursting oscillation is strongly influenced by the 

inhibitory synaptic input from the lateral pyloric neuron (LP), and previous work has 

shown that fres in the PD neuron is influenced by the minimum of the voltage oscillation 

(Vlow) [62]. In order to explore which subset of our optimal models faithfully reproduces 

the influence of the minimum voltage range, we measured the Z-profile when Vlow was 

changed from -60 to -70 mV (Figure 2.9a). Decreasing Vlow significantly decreased fres 

(by 0.24±0.8Hz), while there was no significant difference in the mean Zmax (-

0.15±0.81MΩ) (two-way RM-ANOVA; N = 8, p < 0.001; Figure 2.9b, left panel).  
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Table 2.2 Statistical p-values of Pairwise Comparisons for Low and High Cag  

 Lg  Hg  Cag  
H

m  

mCa

1/ 2V 

  
Ca

mτ  

hCa

1/ 2V 

 
Ca

hτ  

Lg   0.003 0.358 0.147 0.272 0.002 0.347 < 0.001 

Hg  0.003  0.288 0.03 0.442 0.104 0.21 0.004 

Cag  0.349 0.046  0.449 0.512 0.485 <.001 0.129 

H

m  
0.054 0.001 0.002  0.349 0.470 0.417 0.121 

mCa

1/ 2V 

 
0.233 0.496 0.138 0.277  0.378 0.452 0.037 

Ca

mτ  
0.133 0.510 0.191 0.253 0.05  0.318 0.036 

hCa

1/ 2V 

 
0.368 0.07 <0.001 < 0.001 0.068 0.092  0.27 

Ca

hτ  
0.307 0.452 0.008 0.05 < 0.001 < 0.001 0.001  

Low Cag  shown in lower triangle and high Cag  shown in upper triangle 

 

We consequently filtered the full optimal dataset (black dots Figure 2.9c) to find a 

subset of models that reproduced the change in fres and Zmax (to within 5% of the 

representative experimental Z(f) shown in Figure 2.9a) when Vlow was decreased to -

70mV. Of the ~9000 models in the population, we found ~1000 models that produced the 

desired change. Interestingly, the resulting models showed a trade-off in values for Cag  

and 
hCa

1/ 2V  parameters that showed little overlap with the low and high Cag  model groups 

(Figure 2.9c).  
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Figure 2.8 The optimal models show variability in individual and pairs of parameters. a, The 

range of parameters for all optimal models (~9000). Each parameter is normalized by its median 

value for cross comparison. The median values were 0.096Lg S , 0.164Hg S , 

0.172
Ca

g S  , 2179h

m ms  , 
1/2 51mCa

V mV


   , 70Ca

m ms  , 
1/2 67hCa

V mV


   , 458Ca

h ms   . 

Three representative optimal model parameter sets are shown (cyan, orange, purple solid line 

segments) indicating that widely different parameter combinations can produce the biological Z- 

and φ-profiles. CoV is coefficient of variation. b, Pairwise relationships among parameters of all 

optimal models (black dots). The range of parameter space was sampled within the prescribed 

limits given to the optimization routine, shown by including the sampled non-optimal models 

(grey). Permutation test showed significant pairwise correlations (green highlighted boxes with 

linear fits shown as green lines). c, Optimal models could be separated into two highly significant 

linear fits (green lines) in 
hCa

Ca 1/ 2g -V   according to whether Cag < 0.05 (red; Low Cag ) or Cag > 0.05 

(cyan; High Cag ). d, All pairwise relationships, separated on the low or high Cag  (colors as in panel 

c). Green boxes are the same as in b. 
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Figure 2.9 The effect of lower voltage bound Vlow on fres and Zmax (a) An example of the change 

in Z(f) measured in the biological PD neuron for Vlow =-60mV (black line) and Vlow =-70mV (grey 

line). Inset shows the bounds of voltage clamp inputs in the two cases. b. Decreasing Vlow to -70 

mV decreases fres without affecting Zmax. (b) Experimental fres and Zmax values measured in a 

random subset of models corresponding to low or high Cag values produced the same fres and Zmax 

values at Vlow = -60mV (black dots), but distinct fres and Zmax values at Vlow = -70mV (low Cag : red 

dots; high Cag : cyan dots). A subset of models shift fres without affecting Zmax (grey dots). (c) 

Different models as seen in
hCa

Ca 1/ 2g -V   respond differently to changes in Vlow (colors correspond to b 

Model panel). Models depicted by grey dots are referred to as intermediate Cag models. (d1-e3) 

Average voltage-gated ionic currents ICa, IH and ICa+IH and Itotal, shown as a function of voltage 

for Vlow =-60 mV (d1-d3) and Vlow = -70 mV (e1-e3). Numbers are the same as in c. The 

intermediate Cag models (grey dots) show a strong linear correlation in 
hCa

Ca 1/ 2g -V   (f) and 
Ca Ca

m hτ - τ (g). 

(h) Intermediate Cag models (grey dots) show a strong Ca Hg - g linear correlation (black dots). 

To understand why this particular group (which we will term intermediate Cag ) 

produced small changes in Zmax when Vlow was decreased, we plotted the current-voltage 
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relationships for ICa, IH, ICa+IH and Itotal for Vlow = -60 and -70 mV, measured at f=1Hz 

(fres at Vlow = -60mV) and compared these models with the low and high Cag models. For 

Vlow =-60mV, the ionic currents behaved similarly for all model groups and Itotal was 

maximal at -30mV (magenta curve in Figure 2.9d1-3), indicating the similarity of all 

models in the optimal dataset. However, when Vlow was at -70mV revealed differences in 

peak ICa, without affecting the peak amplitude of IH across the different Cag  groups (Figure 

2.9e1-3). The differences in peak ICa accounted for most of the changes in Itotal across the 

different Cag  groups. The Zmax values for intermediate Cag models reproduced the small 

shift seen in experiments because ICa were at the correct level at high voltages (-30 mV) 

when Vlow was at -70mV (Figure 2.9e3). The other two groups did not produce 

appropriate Zmax for Vlow = -70mV because either ICa was too small (and hence Itotal too 

large), resulting in a smaller Zmax (Figure 2.9e1) or vice versa (Figure 2.9e2). It was also 

clear that the more negative voltages allowed for an increase in IH levels and therefore 

larger contribution to the total current. With Vlow at -70mV, not only was there a larger 

peak amplitude of IH at the lower voltages, but the current at positive voltages also 

increased because of the very slow deactivation rate. Consequently, IH did not fully turn 

off when ICa peaked, so that it also contributes to shaping the upper envelope of the total 

current. IH kinetics were also different across the groups (Figure 2.9e1-e3). Taken 

together with the fact that when IH was removed produced only parameter values with 

very high Cag  and very low 
hCa

1/ 2V   (Figure A1), these data suggest that IH could extend the 

range of ICa parameters over which MPR could be generated through compensation for 

variable levels of IH.  
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The ICa in low Cag models was too small when Vlow was -70 mV, because the low 

conductance did not allow for a significant contribution from the additional de-

inactivation (considering the higher 
hCa

1/ 2V  in this group) and therefore the peak current did 

not increase enough. Consequently, the contribution of IH at low voltages was greater than 

that of ICa at higher voltages (Figure 2.9e2). Conversely, in the high Cag group, 
hCa

1/ 2V   was 

more negative and so many more channels were available for de-inactivation and the 

contribution of ICa at higher voltages was much larger than that of IH at low voltages 

(Figure 2.9e3). These findings suggest that the balance between these two currents, that 

shape the lower and upper envelope of the total current response to voltage inputs, is 

necessary to produce the appropriate shift in fres without influencing Zmax significantly. 

The intermediate Cag models were strongly correlated in  
hCa

Ca 1/ 2g -V   (R
2
 = 0.89; p < 

0.001 Figure 2.9f1, and had a stronger correlation in the
Ca Ca

m hτ - τ  parameters compared to 

all models (R
2
 = 0.65; p < 0.001; Figure 2.9g). Limiting the optimal models to the 

intermediate Cag group also revealed a correlation in the Ca Hg - g parameters (R
2
 = 0.79; p < 

0.001; Figure 2.9h). This new correlation may be produced by the balance of the 

amplitudes of IH and ICa at the lower and higher voltages, respectively.   

The Impedance Profile Attributes fres and QZ are maintained by Distinct Pairwise 

Correlations. To determine if any of the MPR attributes were sensitive to the 

correlations, we ran a 2D sensitivity analysis on a random subset of 50 models. We tested 

for significant difference in sensitivity across low, intermediate and high levels of Cag . In 

particular, we tested for significant sensitivity of fres and QZ when parameters were co-
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varied in directions parallel (L
‖
) or perpendicular (L

┴
) to their respective population 

correlation lines.  

We first examined whether fres and QZ were sensitive to 
Ca Ca

m hτ - τ  for both high 

(Figure 2.10a1), low (Figure 2.10a2), and intermediate Cag (Figure 2.10a3) when 

parameters were moved along L
‖
 and L

┴
 (blue and green line; Figure 2.10a1-a3).  For 

high and intermediate Cag models, fres sensitivities in the L
‖
 group were negative and not 

significantly different (3-way RM ANOVA; N=50, p > 0.05), but both groups were 

significantly different from the low Cag group (3-way RM ANOVA; N=50, p < 0.001), 

which had a positive sensitivity (Figure 2.10b). This result indicates that the correlation 

did a better job at maintaining the value of fres when the value of Cag is intermediate or 

high. For all Cag groups, we found that there was a significant interaction between the Z 

attribute and direction (2-way RM ANOVA; F(1, 49) = 853.52, p < 0.001). When 

carrying out a pairwise comparison for each direction within an attribute, we found a 

significant difference in sensitivity between L
‖ 
and L

┴   
for fres (t(93.57)=28.251, p<0.001). 

Similarly, for all Cag groups, significant difference in sensitivity between L
‖ 
and L

┴ 
for QZ 

(t(93.57)=-8.294, p<0.001). Because the difference between L
‖ 

and L
┴ 

for QZ was 

negative, these results suggest that the 
Ca Ca

m hτ - τ correlation determines fres and not QZ 

(Figure 2.10b).  
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Figure 2.10 Assessing the Dependence of fres and QZ on the 

Ca Ca

m hτ - τ  Linear Correlation.(a) 

Parameter values for each model were changed along a line parallel (‖, blue) to the correlation 

line (black) or along a perpendicular line (┴, green). This was done for models with high (cyan; 

a1), low (red; a2) and intermediate (grey; a3) Cag  models. For each model and each line, ‖ or ┴, 

we fit a line to the relative change in either fres or QZ as a function of the relative change in Cag . 

(b) The sensitivity values of fres or QZ to ‖ or ┴ are shown for the three groups. Note that on first 

inspection ┴ lines do not seem perpendicular, this is because correlated parameters span different 

data unit lengths along their respective axis. Horizontal bars spanning ‖ and ┴ indicate that the 

sensitivity was significantly different between ‖ and ┴ for all Cag  groups. 

 

We next examined whether fres and QZ were sensitive to the
hCa

Ca 1/ 2g -V  correlation for 

the three model groups (Figure 2.11a1-3). For all Cag groups, we found that there was a 

significant interaction between the Z attribute and direction (2-way RM ANOVA; F(1, 

49) = 1262.73.2, p < 0.001). When carrying out a pairwise comparison for each direction 

within an attribute, we found a significant difference in sensitivity between L
‖ 
and L

┴   
for 

fres (t(95.18)=10.10, p<0.001). Similarly, for all Cag  groups, we found a significant 
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difference in sensitivity between L
‖ 
and L

┴ 
for QZ (t(95.18)=-35.62, p<0.001). Therefore, 

these results suggest that the 
hCa

Ca 1/ 2g -V  correlation determines QZ and not fres (Figure 2.11b).  

 

Figure 2.11 Assessing the dependence of fres and QZ on the linear hCa

Ca 1/ 2g -V


correlation (a) 

Parameter values for each model were changed along a line parallel (‖, blue) to the correlation 

line (black) or along a perpendicular line (┴, green). This was done for models with high (cyan; 

a1), low (red; a2) and intermediate (grey; a3) Cag models. For each model and each line, ‖ or ┴, 

we fit a line to the relative change in either fres or QZ as a function of the relative change in Cag  b. 

The sensitivity values of fres or QZ to ‖ or ┴ are shown for the three groups. Note that on first 

inspection ┴ lines do not appear perpendicular because correlated parameters span different data 

unit lengths along their respective axis. Horizontal bars spanning ‖ and ┴ indicate that the 

sensitivity was significantly different between ‖ and ┴ for all Cag  groups. 

Finally, we tested the sensitivity of fres and QZ to the Ca Hg - g  correlation in the 

intermediate Cag group (Figure 2.12a). We found that there was a significant interaction 

between the Z attribute and direction (Two-way RM ANOVA; F(1, 11.12) = 2236.2, p < 

0.001). When carrying out pairwise comparisons between directions for each attribute, 
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we found there was a significant difference in fres sensitivity between L
‖ 
and L

┴ 
(t(93.93) = 

2.65, p = 0.0095; Figure 2.12). Although the sensitivity of QZ was not 0 for L
‖
, the 

difference in sensitivity values between L
‖ 

and L
┴ 

was also significantly different 

(t(93.93) = 62.157, p < 0.0001; Figure 2.12b). These results suggest that, when Vlow is at -

70 mV, for this subset of models to shift fres with only small shifts in Zmax, Hg  and Cag

values must be balanced. It may be possible that the QZ sensitivity is not closer to zero 

along L
‖
 because 

hCa

1/ 2V  , which is also negatively correlated with Cag , should decrease too 

to compensate for changes in QZ. 

 

Figure 2.12 Assessing the dependence of fres and QZ of the intermediate Cag models on the linear

Ca Hg - g correlation (a) Parameter values for each model were in the intermediate Cag group 

(see fig 7) were changed along a line parallel (‖, blue) to the correlation line (black) or along a 

perpendicular line (┴, green). For each model and each line, ‖ or ┴, we fit a line to the relative 

change in either fres or QZ as a function of the relative change in 
Cag . (b) The sensitivity values of 

fres or QZ to ‖ or ┴ are shown for the three groups. c. Impedance profiles showing how QZ changes 

when the parameters vary along a line parallel (blue) or perpendicular (grey) to the Ca Hg - g

correlation line in one optimal model. Arrows show the direction of the movement of Zmax and fres 

for the change in parameters along ‖ or ┴. 

2.4 Discussion 

Many neuron types exhibit membrane potential resonance (MPR) in response to 

oscillatory inputs. Several studies have shown that the resonant frequency of individual 
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neurons is correlated with the frequency of the network in which they are embedded [4, 

9, 62, 63, 66, 96]. Moreover, networks of resonant neurons have been proposed to 

generate network oscillations with more stable frequency than neurons with low-pass 

filter properties [2, 78]. In several cases, the underlying nonlinearities and time scales that 

shape the Z-profile also shape specific properties of the spiking activity patterns, thus 

leading to a link between the subthreshold and supra-threshold voltage responses [79, 

97].  

Previous work in the crustacean stomatogastric pyloric network has shown that 

the resonance frequency of the pyloric pacemaker PD neurons is correlated with the 

pyloric network frequency and is sensitive to blockers of both IH and ICa [4, 29, 62]. 

However, it was not clear how these voltage-gated ionic currents and the passive 

properties could interact to generate MPR in the PD neurons. Previous modeling work 

showed that these currents participate in the generation of resonance in CA1 pyramidal 

neurons [43, 72]. However, due to the differences in ICa time constants, the interaction 

between its activating and inactivating gating variables did not produce phasonance in 

CA1 pyramidal neurons, while it does in PD neurons. On a more general level, it is not 

well understood how the nonlinear properties of ionic currents affect their interplay. 

Previous studies have shown such interactions may lead to unexpected results, which are 

not captured by the corresponding linearization [43, 72, 74, 75]. This complexity is 

expected to increase when two currents with resonant components are involved [43, 98].  

We therefore set out to investigate the biophysical mechanism underlying such 

interactions by using a combined experimental and computational approach, with the 

biological PD neuron as a case study. The two PD neurons are electrically coupled to the 
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pacemaker anterior burster neuron in the pyloric network and their MPR directly 

influences the network frequency through this electrical coupling [9]. Consequently, our 

findings have a direct bearing on how the pyloric network frequency is controlled. 

Many studies of biophysical models have explored the parameter space using a 

brute-force technique, by sampling the parameters on a grid [92, 99]. Although this 

technique provides a rather exhaustive sampling of the parameter space, using a fine grid 

on a large number of free parameters could lead to combinatorial explosion and result in 

a prohibitive number of simulations. On the other hand, a sparse sampling may miss 

“good” solutions. An MOEA can generate multiple trade-off solutions in a single run and 

can handle large parameter spaces very well. In contrast to a brute-force approach, the 

MOEA can potentially cover a much larger range with possibly hundreds of values [84]. 

One disadvantage of the MOEA is that, as the number of objectives increases, the search 

may miss a large portion of the parameter space. This occurs because randomly generated 

members often tend to be just as good as others, which means that the MOEA would run 

out of room to introduce new solutions in a given generation. To try to overcome this 

problem, we carefully chose the parameters of the MOEA such as population size, 

mutation and crossover distribution indices (100, 20 and 20, respectively) and ensured 

that the sampled population covered the parameter space evenly. Additionally, we ran the 

MOEA multiple times, each time collecting all the good parameter sets until one has 

exhausted all regions of the parameter space where good models exist. 

In previous work, we and other authors have examined how the additive 

interaction of ionic currents with resonant and amplifying gating variables shape the Z 

and φ profiles at both the linear and nonlinear levels of description [7, 44, 66, 73, 75, 82, 
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100]. However, the role of inactivating currents in the generation of MPR remained 

unclear. Authors have established that ICa can generate MPR in the absence of additional 

ionic currents [45], that the activation variable diminishes the propensity for MPR and the 

interaction with IH enhances the dynamic range of parameters producing ICa-mediated 

resonance [43]. Even so, to date, only a descriptive explanation of how the ionic current 

parameters affect certain attributes of MPR has been provided, and no study has provided 

a mechanistic understanding in terms of the parameters of ICa that go beyond numerical 

simulations. 

Similar to [43], the model we used in this paper involves the interaction between 

resonant and amplifying components. Specifically, this model includes a calcium current 

with both activation (amplifying) and inactivation (resonant) gating variables, and an H-

current with a single activation (resonant) gate.  Since IH and ICa shape the lower and 

upper envelopes of the voltage response to current inputs, respectively [4], given the 

appropriate voltage-dependence and kinetics of the currents both could play equal roles at 

different voltage ranges. In fact, either ICa inactivation or IH is capable of producing MPR 

[45, 63]. For example, In CA1 pyramidal neurons, the differences in Z-profiles are due to 

the passive properties and the kinetics of IH [64]. It is possible that the kinetic parameters 

of IH and ICa are tuned so that they contribute nearly equally to shaping the envelopes of 

the voltage-clamp current.  

By tracking the current response to sinusoidal voltage inputs at various 

frequencies, we found that the fres and fφ=0 are driven by the peak phase of ICa, and that fres 

and fφ=0 are nearly equal because of the phase matching of ICa with IL. This is not always 

the case for neuronal models, and dynamical systems in general, not even for linear 
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models, except for the harmonic oscillator [73-75]. In fact, as we mentioned above, this is 

not the case for the ICa model used in [43], although our results on the ICa inactivation 

time constant are consistent with that study. In these models a phase advance for low 

input frequencies required the presence of IH. The underlying mechanisms are still under 

investigation and are beyond the scope of this paper. However, the fact that it occurs 

allowed us to investigate the dependence of the resonant properties on the biophysical 

properties, particularly the dependence of fres on the ICa time constants, using phase 

information. To date, no other analytical method is available to understand the 

mechanisms underlying this type of phenomenon in voltage clamp. The tools we 

developed are applicable to other neuron types for which fres is equal to or has a 

functional relationship with fϕ=0. However, the conditions under which such a functional 

relationship exists still needs to be investigated. 

Linear correlations between biophysical parameters of the same or different 

currents have been reported [60] and may be important in preserving the activity of the 

model neuron and its subthreshold impedance profile attributes [94]. Previous studies 

examined combinations of parameters in populations of multi-compartment conductance-

based models fit to electrophysiological data [36, 43] and found only weak pairwise 

correlations, suggesting that the correlations do not arise from electrophysiological 

constraints. In contrast, constraining the parameters of the ionic currents found to be 

essential for MPR in PD neuron by MPR attributes, we observed strong correlations 

between underlying parameters when the Z and φ were constrained by the experimental 

data. We found that constraining the model parameters by fres produced a correlation 

between the values of time constants of ICa among the population of ~9000 optimal 
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parameter sets. Furthermore, running a 2D sensitivity analysis confirmed that the time 

constants were constrained so that the effect of making inactivation slower was 

compensated for by making activation faster to maintain fres constant.  

The optimal model parameter sets showed a nonlinear co-variation relationship 

between the values of  and half-inactivation voltage of ICa. However, the models 

could be divided into two groups, low and high  in each of which this co-variation 

was close to linear. Interestingly, although ICa alone was the primary current underlying 

MPR, in the absence of IH (with 0Hg  ) the models were restricted to the high group. 

A 2D sensitivity analysis showed that co-varying parameters in each group along their 

respective correlation lines preserved QZ without affecting fres, indicating that each group 

requires a distinct change in one parameter to compensate for effects of changes in the 

other. Local sensitivity analysis showed that changes in had opposite effects on fres 

between high and low groups. Increasing  decreased fres in high models but 

increased it in low models. A previous modeling study has found that changes in 

greatly influenced the amplitude of MPR with little effect on post-inhibitory rebound in 

thalamic neurons [45]. It would be interesting to verify whether the mechanisms that 

generate MPR overlap with those that contribute to post-inhibitory rebound properties in 

both model and biological PD neurons.  

Previous work in our lab has shown that the voltage range of oscillations 

significantly affects fres [29]. Here we show that decreasing, Vlow, from -60 to -70 mV, 

significantly shifted fres to smaller values without affecting Zmax. Within our optimal 

model parameter sets, we obtained a set of ~1000 models in the intermediate range 

that produced a similar shift in fres but no change in Zmax. Because Vlow greatly affects 
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both ICa inactivation and IH activation, this indicated a potential interaction between these 

two currents. In fact, we found that because IH and ICa are activated preferentially in 

different voltage ranges, their amplitudes needed to be balanced to keep Zmax unchanged 

when Vlow was decreased. If the ratio of IH to ICa amplitudes is incorrect, then Z will 

amplify (for high models) or attenuate (for low models). The intermediate 

models also showed a stronger  correlation, which may be important in matching 

the phase of ICa with that of IL. This group also showed a strong correlation, 

which may provide a mechanism for controlling the changes in IH amplitude at more 

negative voltage with similar changes in ICa amplitude at more positive voltages. 

In contrast to the findings of Rathour and Narayanan [43], in our optimal models 

the IH peak amplitude was not different across the groups with different ICa properties. 

However, since ICa and IH are differentially modulated [95, 101], their functional role may 

overlap when their voltage thresholds and time constants are shifted by neuromodulation. 

Therefore, we expect that under certain neuromodulatory contexts, IH may play more of 

an active role in the generation of MPR. A similar effect of two ionic currents on 

resonance has been observed in the hippocampal pyramidal cells that participate in the 

theta rhythm, in which two currents, the slow potassium M-current and IH, were found to 

operate at the depolarized and hyperpolarized membrane potentials respectively to 

generate theta-resonance [63].  

In general, unconstrained variability of ionic current expression in any specific 

neuron type should lead to great variability in network output. Yet, network output in 

general, and specifically the output of the crustacean pyloric network is remarkably stable 

across animals [49, 52, 80]. Our results suggest that in oscillatory networks constraint is 

Cag Cag Cag

Ca Ca

m hτ - τ

H Cag g
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provided by tuning different ionic currents in an individual neuron in a way that reduces 

the variability of the output in response to oscillatory inputs. Although our computational 

study may provide some insight into how such stability is achieved, it also indicates a 

need for additional mathematical analysis to elucidate the underlying mechanisms.  
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CHAPTER 3 

BIOPHYSICAL MECHANISMS OF MODULATOR-INDUCED 

ANTIRESONANCE AND FUNCTIONAL ROLE WITHIN A NETWORK 

3.1 Introduction 

Network oscillations at different frequencies bands are observed in many brain regions 

and are thought to be crucial for motor and cognitive behavior [96, 102]. Previous work 

suggests the frequency of such networks may depend on the preferred frequencies of 

individual neurons [4, 5, 9]. The response of a neuron to oscillatory inputs can be 

characterized by the so-called impedance (Z) profile, which is a curve of the impedance 

amplitude (or simply impedance) as a function of frequency (f) [7, 42, 73]. Neurons 

exhibit membrane potential resonance (MPR) if they show a maximum in the Z-profile at 

some nonzero input (resonant) frequency (fres).  

In many oscillatory networks, the resonant frequency of single neurons has been 

shown to correlate with the network frequency of the networks in which they are 

embedded [1, 4-6, 103]. Networks composed of neurons exhibiting MPR [6, 64, 78] may 

generate more stable network output [2]. For instance, resonant inhibitory interneurons 

promote network rhythms with more stable frequency [2]. Furthermore, oscillatory inputs 

reliably produce spikes at frequencies around the resonance frequency [104]. Moreover 

oscillatory inputs may enhance or suppress activity in different frequency bands in 

distinct neuron types, which suggests that external oscillatory inputs may alter the 

contribution of distinct neurons to network activity in a specific frequency band [6].  

MPR arises as a consequence of the interaction between positive and negative 

feedback effects provided by relatively fast amplifying currents and slower resonant 

currents [7, 42, 73]. Resonant currents are those that counter voltage change on the slow 
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timescale relative to the membrane time constant, such as the H-current (IH) or a slow 

outward K
+ 

current (IM) [44, 73, 100]. Amplifying currents, which include the persistent 

sodium current (INap), enhance voltage change [5]. Studies using models having only one 

resonant and one amplifying current have shown that amplifying currents has to be fast 

relative to the resonant current, and in the limiting case of an instantaneous amplifying 

current the amplification of the voltage response is the strongest. [8]. Although ionic 

currents have previously been labeled as resonant or amplifying, this property is a 

manifestation of the voltage- and time-dependent properties of gating variables. 

For 2D linear systems, the Z-profile is either a decreasing function of f (red curve 

in Figure 3.1A), which represents a low-pass filter, or it can be a non-monotonic graph 

exhibiting a local maximum Zmax at some nonzero frequency, fres (blue curve in Figure 

3.1A). In higher dimensional systems, additional currents operating at various time scales 

may modulate the existing 2D MPR to produce more complex shapes in the Z-profile [7, 

8]. When 2D models have an ionic current with an amplifying gating variable with 

instantaneous activation they produce MPR with a single maximum Z. On the other hand, 

3D models with slower amplifying variables (slower than the resonant gating variable) 

have been shown to produce a minimum Z at low nonzero frequency in addition to a 

maximum Z at higher frequencies [7, 8] (green curve in Figure 3.1B). We refer to a 

minimum in the Z-profile at nonzero frequencies as antiresonance [8].  
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Figure 3.1 Representative Z-profiles (curves of Z vs. input frequency, f) for 2D (A) and 3D (A, 

B) linear systems. A, Z is characterized by three attributes: the resonance frequency, fres, the 

maximum Z, Zmax, and the resonance amplitude, QZ = Zmax –Z0. B, Z is characterized by additional 

attributes: the antiresonance frequency, fares and the impedance local minimum Z0. The resonance 

amplitude is defined as QZ = Zmax –Zmin and it coincides with the definition in panel A when Zmin = 

Z0. 

Neuromodulation alters neuronal excitability by modifying the properties of 

voltage-dependent currents [105]. The neuromodulatory state reflects the behavioral 

context and determines the expression of MPR [106]. MPR depends on several voltage- 

and time-dependent ionic currents, which are targets of neuromodulators. For example, 

norepinephrine modulates IH [30, 107] and acetylcholine modulates IM [108]. Any 

modification of these currents will also affect the MPR [30]. In some cases, 

neuromodulators may target resonant ionic currents producing shifts in resonance 

frequency [30] and in other cases it will amplify existing resonances [29]. Another 

example is seen in the activation of the modulatory-inward current (IMI) by proctolin in 

the lateral pyloric (LP) neuron of the crab pyloric network [29] (see below). 

Computational modeling has demonstrated that modulation of resonant currents in the 

presence of amplifying currents can lead to changes in the resonance frequency and other 

Z-profile attributes [73, 74]. Additionally, neurons that generate MPR at the same or 

different resonance frequency with different ionic mechanisms may respond differently to 

the same neuromodulator.  
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We examine the hypothesis that neuromodulators produce different responses in 

distinct neurons types that interact in an oscillatory network. We address this hypothesis 

using identified neurons and synapses in a reciprocally inhibitory network. The pyloric 

network in the crustacean stomatogastric ganglion (STG) produces a stable triphasic 

rhythm (~1 Hz). The output is characterized by stable oscillations produced by a 

pacemaker group. This pacemaker group involves two neuron types, the Anterior Burster 

(AB) and the Pyloric Dilator (PD), which are strongly electrically coupled and produce 

synchronized bursting activity. This pacemaker group drives follower neurons with 

strong inhibitory synapses [109]. The LP follower neuron provides inhibitory feedback to 

the PD neurons [18, 110]. The PD neuron exhibits resonance at ~1Hz and is correlated 

with the network frequency [4]. The LP neuron shows resonance at higher frequencies of 

~1.4Hz [29]. Furthermore both the PD and LP neurons respond to the endogenously 

released peptide neuromodulator proctolin [27].Earlier reports have shown that bath 

application of proctolin increases the amplitude of MPR in these neurons [29]. 

We demonstrate experimentally that the neuropeptide proctolin produces 

differential effects on the Z-profiles of PD and LP neurons. Using a nonlinear 

conductance-based model, we provide a biophysical mechanism to explain the difference 

in the effects of proctolin on the MPR of these neurons in voltage clamp. These effects 

are dependent on an increase in ICa.by proctolin and the interaction with the properties of 

calcium-dependent K
+
 current, IKCa. This approach is justified because peptides have 

been shown to activate low-threshold inward currents that are voltage-, time- and 

calcium-dependent in other stomatogastric neuron types in addition to IMI [41]. We show 

that the differences in the Z-profiles, seen in voltage clamped nonlinear models, are 
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reproduced in linear conductance-based models in current clamp. The use of linear 

models is justified because previous work showed that the response of the model neuron 

to oscillatory voltage inputs is quasi-linear and voltage clamp and current clamp produce 

identical fres values for linear systems [111]. 

Using linearized conductance-based models, we examine the effects of 

antiresonance in the so-called follower neurons on the network dynamics of a two-cell 

reciprocal inhibitory network (pacemaker and follower). We demonstrate that the 

decrease in the voltage amplitude response of the (follower) neuron to feedforward 

oscillatory synaptic inputs (due to antiresonance) would result in corresponding decreases 

in the amplitude of feedback inputs. This decrease in feedback input amplitude restricts 

increases in Z of postsynaptic neurons to frequencies outside the antiresonance frequency 

range. Finally, we show that antiresonance in response to feedforward inputs from an 

oscillator neuron produces smaller changes in cycle period of an oscillator neuron cycling 

in the antiresonance frequency band. 

3.2 Methods 

Experimental protocols. Adult male crabs (C. borealis) were purchased from local 

seafood markets and stored in tanks filled with artificial seawater at 10-13⁰C until use. 

Crabs were anesthetized by placing them in ice for at least 20 minutes prior to dissection. 

Dissection was performed following standard procedure [4]. The stomatogastric nervous 

system – including the commissural ganglia, the esophageal ganglion, the STG and the 

nerves connecting the ganglia – was pinned down in a 100mm Petri dish coated with 

clear silicon elastomer Sylgard (Dow Corning). The STG was desheathed to expose the 

pyloric neurons PD and LP for impalement. During the experiment, the preparation was 
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superfused with normal Cancer saline (11 mM KCl, 440 mM NaCl, 13 mM CaCl2, 26 

mM MgCl2, 11.2 mM Trizma base, and 5.1 mM maleic acid, pH 7.4 –7.5) at 10-13°C. 

The PD and LP neurons were identified by matching the spikes in intracellular activity at 

the cell body with the extracellular spikes as measured on the corresponding motor 

nerves. 

Intracellular recordings were done using Axoclamp 2B amplifiers (Molecular 

Devices). Intracellular glass electrodes were prepared using a Flaming–Brown 

micropipette puller (P97; Sutter Instrument) and then filled with the electrode solution 

(0.6 M K2SO4 and 0.02 M KCl; electrode resistance 15–30). Extracellular recordings 

from identified motor nerves were obtained using stainless steel wire electrodes, inserted 

inside and outside of a petroleum jelly well, built to electrically isolate a small section of 

the nerve. Extracellular recordings were obtained using a differential AC amplifier (A-M 

Systems 1700). 

Logarithmic ZAP function. To examine the properties of the neurons and synapses at a 

range of frequencies, a ZAP (chirp) function was applied to the presynaptic neuron. This 

function can be described as follows: 

( ) sin(2 ( ))Z t B A f t  , (3.1) 

where B is the baseline, A is the amplitude, and f(t) is a monotonically increasing 

function that determines the frequency range to be covered. When the ZAP function was 

applied in voltage clamp, B = Vlow and A = Vhigh -Vlow (see next section). To obtain a 

larger sample set at the lower frequency range, we used a logarithmic ZAP function by 

setting f(t) to be the following: 
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(3.2) 

where Fbeg and Fend are the initial and final frequencies in the sweep, and T is its total 

duration. For the voltage range experiments, we used a frequency range from Fbeg = 0.1 

to Fend = 4 Hz 

Measurement of membrane potential resonance in the PD and LP neurons. After 

identifying the neurons, we used 10
-7

M TTX (Biotium) to block action potentials, which 

also blocks neuromodulatory release from projection neurons and therefore ongoing 

oscillations. We used two-electrode voltage clamp to clamp the PD and LP neurons and 

applied the ZAP function while measuring the injected current. In each sweep, each 

neuron was clamped at a holding value equal to the minimum of the ZAP function, Vlow = 

-60 mV followed by the ZAP function protocol (see above). The voltage range was Vlow = 

-60 mV to Vhigh = -30 mV. The Z-profiles for the PD and LP neurons were generated in 

MATLAB (MathWorks) by calculating the ratio of the voltage amplitude to the current 

amplitude as a function of frequency. 

Neuromodulation by proctolin. We examined the effects of the modulatory peptide 

proctolin on the Z-profiles of the PD and LP neurons. Proctolin (American Peptide) was 

dissolved as a stock solution in distilled water and stored in aliquots of a concentration 

10
-3

M and frozen at -20°C. We used two separate final concentrations of 10
-7 

M and 10
-6 

M, prepared by dissolving the stock solution in Cancer saline. Proctolin was perfused for 

20 minutes before clamping the neurons with the ZAP function.  

Conductance-based models. We used a single-compartment biophysical model 

containing ICa, which can independently generate MPR in pyloric neurons [37]. We 
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added IKCa to the model because in experiments it is hard to tease apart the collective 

roles of ICa and IKCa in producing MPR. We performed simulations in voltage clamp and 

measured the current as: 

clamp Cm L Ca KCa MII I I I I I     , (3.3) 

where ICm is the capacitive current, IL is the leak current, (all currents are in nA).The 

currents were computed according to the following equations: 

( )

( )

p q

j j x

x

I g m h V E

dx
x V x

dt
 

 

 
, 

 

(3.4) 

where V is the membrane potential in mV, the gating variable x represents either m 

(activation) or h (inactivation), p and q are either 0 or 1, except for ICa, where p = 3 (see 

Table 3.1). The exact forms for x  and the time constants are given in Table 3.1. 

In the model, we assumed that ICa and IKCa channels were clustered together, and 

each cluster was associated with a calcium micro-domain [112]. The diffusion of calcium 

ions entering through voltage-gated calcium channels is limited by buffers, which 

spatially restricts calcium changes to small domains. There is no evidence either for or 

against this hypothesis in the STG, but it is common in other systems [112]. The 

dynamics of Ca
2+ 

were simulated in an average small volume associated with a micro-

domain. The equation governing the intracellular calcium concentration C was given by: 

( )Ca
Ca

IdC
C C

dt zFv
      (3.5) 

where C  is the steady-state value of C in the absence of ICa (20µM), Ca  is the rate of 

constant of calcium buffering/clearance in /ms. We used 10 ms so that C tracks ICa 

closely. Robust activation of IKCa requires values of C > 10 µM and occur only in the 
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vicinity of voltage-gated calcium channels. Fast decay time constants in combination. 

Therefore, we used a small value (3.5µm
3
) for the volume v associated with the each 

microdomain where calcium increases. 

Usually the application of proctolin was simulated by increasing the maximum 

conductance value of IMI. However, there is evidence that peptides may also target an 

inactivating inward current that is voltage-, time-, and calcium-dependent [41, 113]. 

Therefore, we simulated proctolin application by increasing the maximal conductance of 

the existing ICa or an increase in the maximum conductance of IMI. 

Table 3.1 Equations Governing the Voltage-dependence and Kinetics of Currents in the 

PD and LP Neuron Models in Voltage-clamp.  

  m  m  
h  m  

ICa m
3
h 40

lgc
6

v  
 
 

 
60 60

lgc
8

v  
 
 

 
400 

IKCa mh 

 
5

10
lgc

13

1 / 25

v

C


 
 
 


  

 50 ln( / 20)
500 498lgc

10

v x C   
  

 
  

 
5/4

1

1 / 7.2C

  

12 

IMI m 55
lgc

5

v  
 
 

  
- - - 

First column gives the name of the current, second column gives the gating factor, third column 

gives the steady-state activation, fourth column gives the time constant of activation, fifth column 

gives the steady-state inactivation, and the sixth column gives the time constant of inactivation. 

Membrane potential V is in mV, intracellular calcium concentration is C is in µM and the time 

constants are m and h  are in ms. The function lgc(x) is equal to 1/[1+exp(-x)]. For IMI, 

activation was assumed to be instantaneous. 

Synaptically-coupled linear models neurons. Here we refer to a model exhibiting 

resonance with no antiresonance as a resonator and a model exhibiting both resonance 

and antiresonance as an antiresonator. Using this terminology, the resonator was modeled 

as a 2D linear neuron [7, 73]. The antiresonator was modeled as a 4D linear neuron. 

Although antiresonance can be generated in 3D models (with three variables) [7, 8], we 
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needed to generate antiresonance while matching the values of Z0 and Zmax of a 2D 

resonator neuron. We were unable to satisfy these two conditions with a 3D linear model. 

1

( )( )
n

L i i syn pre syn

i

i
i i

dv
C g v g w g s v v E

dt

dw
v w

dt






    

 


, 

 

 

(3.6) 

here, v = V-v* and wi = W-wi* indicating that the model neuron is linearized around 

steady state values v* and w* for v and w respectively. For the resonator n =2 and for the 

antiresonator n = 4. The maximum conductance of the synaptic current is given by syng  

and the reversal potential is given by Esyn. The synaptic activation is a function of the 

presynaptic voltage and was given by the following Boltzmann equation: 

1/2( )
1/ 1 exp

preV V

k

   
  

  
 , 

(3.7) 

where V1/2 is the half-activation voltage of the synapse and k is the slope factor. The 

values of these parameters for each synaptic current are given in Table 3.3. Note, that the 

synapses used in this study are graded synapses, which are activated at low voltages close 

to the resting membrane potential and produce a synaptic current which is a smooth 

function of the presynaptic neuron voltage. This choice was motivated by the fact that the 

inhibitory chemical synapses in the pyloric network are graded synapses and mediate the 

interactions between pacemaker and follower neurons [110, 114]. The capacitance was 

kept fixed at 8nF. The resonator parameters are given in Table 3.2. 
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Table 3.2. The Parameters of 2D Resonator and 4D Antiresonantor Linear Models 

 

Examining the contribution of antiresonance to the shape of Z-profiles through feedback 

inhibition. To examine the functional role of antiresonance, we connected via reciprocal 

inhibition a reference resonator (and henceforth referred to as neuron A) to another 

neuron (henceforth referred to as neuron B) which was either a resonator (identical to A) 

or an antiresonantor. The synaptic parameters are given in Table 3.3. 

Table 3.3 Parameters of Synapses Connecting Linear Resonator and Antiresonator 

Neurons 
 Esyn V1/2 k 

𝐴 → 𝐵 -10 -1 1.25 

𝐵 → 𝐴 -10 2 4 

 

Extended Morris-Lecar oscillator neurons. We examined the influence of antiresonance 

in model neuron B on network oscillation frequency through reciprocal inhibitory 

coupling in a two-cell model network consisting of an oscillator and where neuron B is 

either a linear resonator or antiresonator. As before, the Z-profile of the linear resonator 

and antiresonator were nearly equal in their values of Z0, fres, and Zmax. The oscillator was 

modeled as an extended Morris-Lecar neuron that includes IH, taken from [9] (see 

references therein), as described by the following equations: 

 gL g1 g2 g3 τ1 τ2 τ3 

Resonator 0.075 0.1 - - 160 - - 

Antiresonator 0.09 0.12 0.45  0.4885 348 680 1200 
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(3.8) 

where V is the membrane potential in mV, Cm is the capacitance in nF, xg  and Ex are the 

maximum conductance (in µS) and reversal potential (in mV) of current Ix (in nA). We 

used the following parameters adapted from [9]: Cm = 1, EL =-40, ECa = 100, EK =-80, EH 

= -20, Lg  =0.0001, Cag =0.0025, Kg =0.042, Hg = 0.025. All currents were modeled as 

ohmic currents with x = m, p = 1, and q = 0. The associated gating variable equations are 

given in Table 3.4. 

To modify the oscillation frequency of the ML neuron, we used different values 

of y in the equation for the activation time constant of IK. We measured the relative 

change in the cycle period of the ML neuron after it was connected to the linear model as: 

 new old

old

P P
P

P


   

(3.9) 

Table 3.4 Equations Governing the Voltage-dependence and Kinetics of Currents in the 

Extended Morris-Lecar Model Neuron.  

  m   m   
ICa m lgc(v-0/10) - 

IK m lgc(v-0/7.5) y/cosh(v+0/30) 

IH m lgc(v-78/-10.5) 
270+1500*lgc(v-

42/87) 
First column gives the name of the current, second column gives the gating variable, third column 

gives the steady-state activation, fourth column gives the time constant of activation, Membrane 

potential V is in mV and the time constant m  is in ms. The function lgc(x) is equal to 1/[1+exp(-

x)]. The parameter y was used to control the frequency of oscillations. 
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3.3 Results 

Oscillatory networks contain neurons that often exhibit distinct fres values, which has been 

speculated to shape the activity of individual neurons [6] and to influence the way 

networks process external oscillatory inputs [2, 50]. Previous work reported that both PD 

and LP neurons in the crab pyloric network show MPR with distinct values of fres [4, 62]. 

Moreover, activity in the pyloric network requires the presence of neuromodulators and 

both neurons respond to the application of proctolin [27]. Proctolin activates IMI with 

properties similar to the persistent sodium current, which has been shown to contribute to 

the amplitude of Z-profiles [5].  

Proctolin shows differential action on the Z-profiles of the PD and LP neurons. At least 

for the PD neuron, current clamp and voltage clamp produce identical measurements of 

fres but voltage clamp allows us to measure MPR by precise control of voltage range and 

without recruiting high-voltage activated ionic currents [62]. We measured the Z-profiles 

of the LP and PD neurons by voltage clamping the neuron with a ZAP function sweeping 

a frequency range from 0.1 Hz – 4 Hz and voltage range from -60 mV to -30 mV (Figure. 

3.2). Measurement of the Z-profiles show PD and LP neurons exhibit fres values of ~1 Hz 

and ~1.4 Hz respectively in control conditions consistent with other studies [29] (Figure 

3.2A). We examined the effects of the modulatory peptide proctolin on the Z-profile of 

LP and PD neurons. Previous studies showed that the MPR amplitude is increased 

without affecting fres in the LP neuron [29]. Here, we report that the proctolin effect on 

PD MPR is consistent with previous reports; however, proctolin produced antiresonance 

in LP.  
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Figure 3.2A shows an example of the response of the LP and PD neurons to a 

ZAP function voltage waveform in the presence of 10
-6

 M proctolin. Application of 

proctolin produced a maximum current at low frequencies of the ZAP voltage waveform 

and a shift in the minimum current to higher frequencies of the ZAP waveform. In 

contrast, 10
-6

 M proctolin in the PD neuron produced further decreases in the minimum 

current without shifting the frequency at which this occurred. These changes are seen 

more clearly by looking at changes in the Z-profile before and after application of the two 

concentrations of proctolin (Figure 3.2B). We found that, whereas 10
-7

 M proctolin 

produced no significant changes in Zmin or Zmax or their corresponding frequencies, 

application of 10
-6 

M proctolin significantly shifted fmin and fmax and significantly 

decreased Zmin and increased Zmax respectively (N = 8; one-way ANOVA; p < 0.001; 

Figure 3.2C). However, the application of 10
-6

 M proctolin on a representative PD neuron 

Z-profile had no effect on fmin or fmax but increased the Zmax by ~16%. These results 

suggest that proctolin produces Z-profile changes in the PD neuron that are consistent 

with activation of IMI, whereas the changes in the Z-profile of the LP neuron by proctolin 

are mediated by potentially additional voltage- and time-dependent ionic currents. This 

suggestion is based on the fact that the modulation of underlying 2D MPR to produce 

antiresonance involves the addition of at least an ionic current with slow activation gating 

variable, which contributes a slow amplifying variable in linearized conductance-based 

models. 

Slow IMI reproduces antiresonance inconsistent with proctolin modulation. Proctolin 

modulation was believed to activate IMI, which is fast and amplifying. Previous 

theoretical results [8] provided the conditions for the generation of antiresonance in linear 
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conductance-based models, which required a third variable (representing a gating 

variable). This third variable provides a slow positive feedback that modulates the 

underlying 2D MPR. To test if the slow activation of IMI - which contributes an 

amplifying variable in linearized models - could reproduce the effect of proctolin on the 

Z-profile of the LP neuron, we simulated only ICa, IL, and ICm given in eq. (3.3) and 

summed their responses to a ZAP function as in equations eq. (3.1) and eq. (3.2). We 

increased the maximal conductance of IMI at various activation time constants. Figure 

3.3A shows the effects of increasing the maximal conductance when IMI activation was 

much faster than the inactivation of ICa. Increasing conductance strengths amplified the Z-

profile (an increase in QZ = Zmax – Z0) consistent with the effects of the activation of a fast 

regenerative inward current on the Z-profile [5]. When the time constant of IMI was equal 

to that of the inactivation of ICa, resonance was annihilated as the maximal conductance 

was increased (Figure 3.3B1). 

Just as in [8], the current response at non-zero frequencies was not fast enough to 

rise above Z0 and, therefore, QZ = 0. As the activation time constant of IMI increases 

above the time constant of ICa inactivation, antiresonance emerged (Figure 3.3B2). For 

Zmax to be unaffected by increasing values of gMI the activation time constant must be an 

order of magnitude slower than the inactivation of ICa. Regardless of this fact, these 

simulations are consistent with [8] indicating that the interaction between a faster 

negative feedback (ICa inactivation) and a slower positive feedback (IMI activation) causes 

Z to decrease below Zmax. However, in contrast to [8], antiresonance in this case is 

generated because there is an increase in the input resistance and the response is not fast 

enough to rise above Z0. The experimental modulation of MPR by proctolin suggest a 
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different mechanism for the generation of antiresonance where Z0 is unaffected and the 

response is not fast enough for Z to rise above Z0 causing a suppression in the response 

for frequency up to fres. Our results indicate that in the LP neuron, one or potentially 

multiple currents in addition to IMI must be activated by proctolin to provide both slow 

positive and negative feedback effects in the neuron. 

The time-dependent properties of IKCa are sufficient to capture proctolin-induced 

antiresonance without IMI. The activation of either fast or slow IMI was not sufficient to 

capture the type antiresonance in the LP neuron induced by proctolin. Our results 

suggest, thus far, suggest a combination of additional slow positive and negative 

feedback effects on the MPR in the LP neuron. We already showed that the activation of 

fast IMI, which contributes an amplifying variable in linearized conductance-based 

models, was sufficient to reproduce the proctolin effects on PD MPR. We addressed 

whether the LP response to proctolin could be explained by the activation of a calcium-

dependent K+ current and a calcium current, which together contribute additional slow 

positive and negative feedback effects on the response to oscillatory inputs. 

We used a reduced version of an LP model consisting of a calcium-dependent K
+
 

(IKCa) current modified from [36] and a calcium current (ICa) for examination of the 

proctolin action on the biophysical properties underlying the change in MPR of  the LP 

neuron. Figure 3.4 shows the voltage clamp measurement of the Z-profile of this model. 

Here proctolin modulation was simulated by either an increase in maximal conductance 

of ICa or IMI. Our modeling simulations showed that increasing the maximal conductance 

of ICa in the presence of IKCa produced antiresonance. In contrast, increasing the maximal 

conductance of ICa in the absence of IKCa resulted in an amplification of MPR through an 
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increase in Zmax. Furthermore, increases in the maximum conductances of IMI were 

insufficient to produce antiresonance. These results suggest that proctolin induces 

antiresonance by an interaction between ICa and IKCa. 

 

Figure 3.2 The neuropeptide proctolin produces differential effects in the biological neurons PD 

and LP. A, The biological neurons LP (A1) and PD (A2) were voltage clamped with a ZAP 

waveform spanning a voltage range of -60 to -30 mV and a frequency of 0.1 – 4 Hz. A1, The 

neuromodulator proctolin produces a maximum current at a nonzero frequency (antiresonance) 

and shifts the minimum current (resonance) to higher frequencies in the LP neuron. Vertical blue 

arrows show the maximum and minimum current in LP during proctolin bath application 

indicating antiresonance and resonance. A2, The neuromodulator proctolin produces a minimum 

current at the same nonzero frequency as in control. Vertical arrow indicates the frequency of the 

minimum current in control and proctolin condition are nearly equal. B, The neuromodulator 

proctolin produces antiresonance for low concentration (green) and high concentration (blue) 

seen as a decrease in Z relative to control (red) at low frequencies in LP. In contrast, addition of 

proctolin does not produce antiresonance in the PD, but only amplifies the maximum Z at fres. C, 

Average data (mean ± SEM) showing that increasing concentrations of proctolin produce 

increases in fmin and decreases in Zmin, and increases in fres without significantly changing Zmax (N = 

8 experiments). In contrast, increasing concentrations of proctolin increase Zmax in PD (N=1). 
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Figure 3.3 Representative Z-profiles for the voltage clamp simulation of a model containing ICa, 

IL, ICm and IMI given by eq. (3.3) with gKCa set to 0.A, IMI has fast activation kinetics. B1, The 

activation rate of IMI is equal to the inactivation rate of ICa. In linear models, this is equivalent to 

the additional amplifying variable and underlying resonant variable rates being equal. C, The 

activation rate of IMI is twice as slow as the inactivation rate of ICa. 

Previous studies indicated that proctolin activates IMI [28] and that the properties 

of such currents cause an amplification of MPR [5] . Our modeling simulations show the 

action of proctolin on PD MPR likely results from the activation of IMI. This was 

demonstrated from the fact that an increase in fast IMI only led to an amplification of 

MPR in the presence or absence of IKCa (Figure 3.4). Furthermore, the experimental 
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difference current (defined as the difference between the voltage clamp current measured 

in control and in bath application of proctolin) resembled the current produced by the 

model equation for IMI (Figure 3.5A2 and 3.5B2). In contrast, the activation of IMI could 

not reproduce the effects of proctolin on the voltage clamp current or difference current 

as measured in the biological LP neuron.  

 

Figure 3.4 The effect of proctolin on the Z-profile of the LP neuron is captured by the steady-

state properties of IKCa and is independent of IMI. The application of proctolin was simulated as an 

increase in the value of Cag  from 0.001 µS (red) to 0.01 µS (blue). The voltage-dependent steady-

state activation function and voltage-dependent time constant and calcium-dependent inactivation 

were all sensitive to the increase in calcium concentration. An increase in IMI (purple) without 

increasing the value of Cag in the presence or absence of IKCa does not produce antiresonance. 

Modeling in voltage clamp suggests that proctolin increases the maximal 

conductance of a calcium current, which interacts with the properties of IKCa to produce 

both a maximum and a minimum in the amplitude of the voltage-clamp current (figure 

3.5A1). The difference current obtained as the difference between the current before and 

after an increase in calcium conductance in the model closely resembled that observed in 
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experiments (Figure 3.5B1). Note this effect could also be achieved by proctolin 

activating additional calcium currents not necessarily those that generate the underlying 

MPR. These findings show that proctolin can have divergent actions at the biophysical 

level by affecting multiple ion channel targets, which is reflected in the MPR of 

individual neurons. Lastly, this shows that proctolin induces antiresonance by a slightly 

different mechanism than in [8] whereby additional slow positive and negative feedback 

effects are produced by the interaction of the gating variable dynamics associated with ICa 

and IKCa. These feedback effects contribute amplifying and resonant variables in 

linearized conductance-based models.  

Previous studies indicated that proctolin activates IMI [28] and that the properties 

of such currents cause an amplification of MPR [5] . Our modeling simulations show the 

action of proctolin on PD MPR likely results from the activation of IMI. This was 

demonstrated from the fact that an increase in fast IMI only led to an amplification of 

MPR in the presence or absence of IKCa (Figure 3.4). Furthermore, the experimental 

difference current (defined as the difference between the voltage clamp current measured 

in control and in bath application of proctolin) resembled the current produced by the 

model equation for IMI (Figure 3.5A2 and 3.5B2). In contrast, the activation of IMI could 

not reproduce the effects of proctolin on the voltage clamp current or difference current 

as measured in the biological LP neuron. Modeling in voltage clamp suggests that 

proctolin increases the maximal conductance of a calcium current, which interacts with 

the properties of IKCa to produce both a maximum and a minimum in the amplitude of the 

voltage-clamp current (figure 3.5A1). The difference current obtained as the difference 

between the current before and after an increase in calcium conductance in the model 
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closely resembled that observed in experiments (Figure 3.5B1). Note this effect could 

also be achieved by proctolin activating additional calcium currents not necessarily those 

that generate the underlying MPR. These findings show that proctolin can have divergent 

actions at the biophysical level by affecting multiple ion channel targets, which is 

reflected in the MPR of individual neurons. Lastly, this shows that proctolin induces 

antiresonance by a slightly different mechanism than in [8] whereby additional slow 

positive and negative feedback effects are produced by the interaction of the gating 

variable dynamics associated with ICa and IKCa. These feedback effects contribute 

amplifying and resonant variables in linearized conductance-based models.  

Antiresonance can be generated by adding an amplifying gating variable slower 

than the existing resonant one in a 2D linear model. However, in these 3D models, the 

antiresonance is generated by larger increases in the input resistance Z0 than for Zmin [8]. 

This means that the 3D model shows an amplification relative to the 2D model. Our 

voltage clamp results indicated that proctolin, through ICa and IKCa, may induce 

antiresonance by introducing slow resonant and amplifying effects. A recent study [8] 

examined the interaction between two negative feedback effects on the Z-profile and 

found that adding an additional resonant variable slower than the existing one present in 

the 2D system leads to larger decreases in Z0 than in Zmax. With this knowledge, we added 

additional slow resonant and slow amplifying variables to the 2D model to reproduce the 

proctolin effect on LP MPR, i.e. the generation of antiresonance with a decrease in Z at f 

< fres. The resonant and antiresonant Z-profiles we used in this study have near-identical 

Z0, fres, Zmax. The parameter values generating these profiles are given in Table 2. 
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Figure 3.5 The properties of IKCa and IMI are sufficient to reproduce LP and PD responses to 

proctolin and the proctolin-activated difference current in experiments. A, The model neuron 

given in eq. (3.3) was voltage clamped with a ZAP waveform spanning a voltage range of -60 to -

30 mV and a frequency of 0.1-4 Hz. The total voltage clamp current when is the sum of all of the 

currents as given in eq. (3.3) during the ZAP waveform. Simulated currents in LP (A1, upper) and 

PD (A2, upper) models. Proctolin modulation in LP was modeled as an increase in gCa from 0.001 

µS to 0.01 uS and in the PD neuron by an increase of gMI from 0 µS to 0.008 µS. The proctolin-

activated current (A1 and A2, lower) is given by the difference between currents in eq. (3.3) 

when Cag  was increased (blue) and the baseline maximum conductance (red). B, The total 

voltage clamp current in the biological neurons LP (B1) and PD (B2) in control conditions (10
-7

 

TTX + 10
-5

 M PTX; red trace) and in the presence 10
-6

 M proctolin (B1 and B2, upper). The 

associated difference current is shown (B, lower; gray traces). 

A four-dimensional linear model captures biological LP resonance. MPR results 

from the interaction between positive and negative feedback effects provided by 

relatively fast and slower resonant currents. Recently [8] investigated the mechanisms 

that govern the modulation of underlying 2D MPR by the interaction between two ionic 
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currents with slow dynamics and either similar or opposite feedback effects. We used 

knowledge about these interactions to construct a 4D linear model that reproduced the 

proctolin-induced antiresonance seen in the biological LP neuron. To do this, we first 

added a slow amplifying conductance, g2 (Figure 3.6A) slower than the resonant variable 

generating MPR in the 2D system. As in [8], Z0 increases and the slower activation 

relative to g1 renders Zmax unaffected. However, an increase in g2 causes Z to increase for 

values of frequency up to fres. We then recapitulated the effects on the Z-profile from the 

interaction of an additional slower negative feedback, g3 with an existing slow negative 

feedback, g1. For large values of the time constant of the negative feedback, increasing 

values of g3 causes an increase in QZ due to mainly a decrease in Z0 (Figure 3.6B). This 

change is accompanied by increases in fres.  

Antiresonance was generated by combining the effects of the interaction of a 

slower positive and slower negative feedback with a slow negative feedback that 

generates 2D resonance (Figure 3.6C). For increasing values of g2 in the presence of g3, a 

minimum in the Z-profile was generated. In constructing the antiresonance Z-profile, we 

made combined changes to the values of gl, g1, g2, and g3 such that the sum of these 

conductances remained identical to gl and g1 in a resonator neuron (gl, g1, g2, and g3 = 

0.17) and, therefore, the value of Z0 remained constant (Figure 3.6D). The values of the 

conductances were also set so that the Zmax was equal to that of a resonator Z-profile 

having a single peak. 
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Figure 3.6 Constructing antiresonance with 4D linear models. Impedance profiles for system (6) 

with gsyn set to 0 and additional conductances added to the underlying 2D model. A, interaction 

between a negative and a positive feedback effect for representative sets of parameter values for 

g2<0 and g3 = 0. B, Interaction between two negative feedback effects for g3 ≥ 0 and g2 = 0. C, 

combining the effects of the g2 and g3 to generate antiresonance. For a fixed value of the slower 

negative feedback g3=0.45, antiresonance was generated by decreasing the value of g2. D, The 

values of the conductances were set so that their sum, and therefore Z0 of the Z-profile of the 

antiresonator (blue curve), was identical to the Z0 of a Z-profile with a single resonant peak (red 

curve).  The Zmax were also identical. In all panels, g1 > 0. Parameter values for conductances and 

time constants are given in Table 3.2 

Antiresonance gates feedback inhibition at low frequencies. The interaction between a 

resonant and antiresonant neuron has not been studied before. We found that proctolin 

induced antiresonance in the LP neuron but not the PD neuron. The LP neuron of the 

pyloric network interacts with the PD neuron – shown to exhibit MPR – through 

reciprocal inhibitory connections [109]. To explore the functional role of antiresonance, 
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we used linear models described in eq. (6). To do this, we connected, through reciprocal 

inhibitory connections, a 2D linear resonator (neuron A) to another linear neuron (neuron 

B) which was either identical to neuron A or a 4D antiresonator (Figure 3.7A). The 

network was driven by injecting sinusoidal currents of different frequencies into neuron 

A. A 4D model was used and not a 3D model because we could tune the parameters so 

that both Z0 and Zmax were identical between the resonator and antiresonator. The only 

difference was in the voltage amplitude response to input f ≥ 0 and f≤ fres (Figure 3.7B1). 

This two-neuron network was motivated by the half-center configuration of PD and LP 

neurons, an example of two neurons with different fres that interact in an oscillatory 

network.  

The antiresonator neuron produced a voltage response to feedforward synaptic 

inputs with a minimum at the antiresonance frequency (Figure 3.7B2), which can also be 

seen in the Z-profile (Figure 3.7C1). The Z-profile of neuron A was amplified when 

neuron B was a resonator or antiresonator. However, when neuron B was an antiresonator 

the increase in Z of neuron A was smaller than the increase produced when neuron B was 

an identical resonator (Figure 3.7C2). The smaller increase in Z at low frequencies is 

explained by the fact that feedforward inputs at f around antiresonance, the voltage 

amplitude is attenuated relative to the resonator and is hyperpolarized relative to the 

synaptic half-activation voltage. This causes the feedback synapse to be only weakly 

activated and results in small values of synaptic conductance in neuron A. Therefore, by 

attenuating the voltage amplitude response, antiresonance gates feedback input onto 

neuron A. 
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Figure 3.7 Antiresonance in a linear neuron preferentially amplifies MPR in connected neurons 

through reciprocal inhibitory connections. A, a 2D linear resonator was connected to either an 

identical 2D linear resonator or a 4D antiresonator via reciprocal inhibitory connections. The 

network was driven by sinusoidal current injection only into the 2D resonator. B1+B2, the 

voltage response corresponding to four distinct points on the Z-profiles of the 2D resonator and 

4D antiresonator model neurons. At the antiresonance frequency labeled b on the Z-profile, the 

corresponding voltage response is much smaller in the antiresonator than in the resonator neuron. 

C1, The feedforward responses of the resonator and antiresonator to synaptic input preserve the 

difference between the Z-profiles at low frequencies. C2, The amplification of the Z-profile of the 

2D resonator neuron by a resonator (red) through feedback inhibition is reduced when replaced 

by an antiresonator (blue). Gray shaded region indicates frequencies corresponding to a lesser 

amplification at low frequencies. 
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Antiresonance influences the frequency of an oscillatory network consisting of an 

extended Morris-Lecar oscillator and linear 4D resonator neuron. To examine whether 

antiresonance can influence the frequency of network oscillations. We coupled the 

oscillator model representing the biological neuron PD to a linear 2D resonator or a linear 

4D antiresonator (Figure 3.8A and 3.8B1) and modified the properties of the oscillator 

model to produce oscillations at 4 different frequencies corresponding to distinct points 

along the Z-profile of the antiresonator and resonator models (Figure 3.8A). For each 

oscillation frequency, we measured the percent change in the period of the oscillation 

relative to the period of uncoupled oscillations (Figure 3.8B2). The differences in the 

effect on oscillation period between the two Z-profiles closely followed the differences in 

the Z-profiles. Moreover, when time was normalized to remove differences in frequency 

between the resonant and antiresonant model neurons, both neurons were equally as 

effective in slowing down the oscillator neuron. In contrast, the resonator was more 

effective than the antiresonator at slowing down the oscillator at the frequency 

corresponding to antiresonance. This is seen in the lower panel of Figure 3.8C where the 

resonator terminates the oscillator active phase earlier and remains inhibited much longer 

than when connected to the antiresonator. We found that at frequencies where the Z-

profiles of the 2D resonator and 4D antiresonator were equal, their effect on the 

oscillation period was equal. Interestingly, the change in oscillation period showed the 

same non-monotonic dependence on the frequency of uncoupled oscillations. This effect 

may be due to the phase of the voltage response, which we do not address in this study 

but requires further investigation. Nonetheless, the largest difference between the two 

model neurons corresponded to the frequency at which antiresonance occurred (Figure 
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3.8D). These results demonstrate that the effect of proctolin on the network oscillator 

frequency may depend on the indirect actions on the Z-profiles of other neurons that 

interact with pacemaker oscillations. 

 

Figure 3.8 The effect of antiresonance on the frequency of Morris-Lecar oscillations. A, The 

Morris-Lecar model - given in eq. (3.8) and Table 3.4 - was modified to produce oscillations at 

frequencies corresponding to distinct points along the Z-profiles of a 2D resonator and a 4D 

resonator. B1, The Morris-Lecar model was connected to a 2D resonator and a 4D resonator via 

reciprocal inhibitory connections. B2, The oscillation period was measured as the change relative 

to the period of uncoupled oscillations. C, voltage traces of the ML neuron showing 2 cycles 

normalized in time uncoupled (dashed black line) and when coupled to a 2D linear resonator (red) 

or a 4D antiresonator (blue). D, The change in oscillation period as a function of uncoupled 

oscillation frequency when coupled a 2D resonator (red) or 4D antiresonator (blue). 
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3.4 Discussion 

Understanding the generation of network oscillation frequency involves examination of 

the dynamic properties of the participating neurons and their interaction with network 

connectivity. One dynamic property is MPR [42]. For some neuron types, fres is correlated 

with the oscillatory frequency of the networks in which they are a part [2 , 4, 65, 77, 97]. 

Although a causal relationship between MPR and the frequency of network oscillations 

has been shown in electrically-coupled networks [9], little is known about the 

contribution of MPR to activity of networks connected through chemical synapses. 

However, populations of resonant inhibitory neurons have been shown to promote 

network oscillations with stable frequency [2]. Furthermore, distinct neuron types in the 

same network show different fres values [6, 29] but it is unclear how their MPR properties 

interact and how they contribute to network oscillations. 

In this paper, we showed that MPR in distinct neuron types may be generated by 

different voltage- and time-dependent properties of ionic currents, which are the targets 

of neuromodulation. This neuromodulation can induce antiresonance in only one neuron 

type in a pair of synaptically-coupled neurons. Here, in the pyloric network of the crab 

STG, we demonstrated that the neuropeptide, proctolin, differentially altered the Z-

profiles of the PD and LP neurons, which interact. In the LP neuron, proctolin induced 

antiresonance and increased in fres whereas in the PD neuron, proctolin only increased 

Zmax without affecting fres. The differences in PD and LP neuron Z-profiles are similar to 

the differences between pyramidal neurons (resonance) and interneuron (antiresonance) 

in the hippocampus [6]. The difference in Z-profiles between the neurons could indicate 

the unique roles in responding to external inputs and shaping network activity at different 
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frequencies. We sought to find the mechanism for the generation of antiresonance of the 

type seen in the LP neuron at the nonlinear biophysical level and the linear level that 

represent ionic currents through the interaction of positive and negative feedback effects 

of gating variables. Constructing antiresonance at the linear level allowed us to examine 

how antiresonance contributes to activity and interacts with MPR in other network 

neurons. 

Our experimental observations of the induction of LP antiresonance by proctolin 

were inconsistent with reports that proctolin activates only IMI. There is evidence that 

peptides activate low-threshold activated currents that are voltage-, time- and calcium-

dependent in other stomatogastric neurons [41, 113, 115]. The generation of 

antiresonance in the LP neuron is different from that exhibited by 3D linear models with 

a current that contributes a slow amplifying variable because the antiresonance is 

generated by increases in the input resistance Z0 [8]. Therefore, the LP antiresonance 

involves a new biophysical mechanism that involves more than just the addition of a slow 

amplifying current. We explored the mechanisms at the nonlinear biophysical level in 

voltage clamp and with linearized conductance-based models. 

 We showed that fast activating IMI increased the amplitude of MPR and a slowly-

activating IMI produced antiresonance by increases similar to [8]. Previous studies 

demonstrated that the neuropeptide proctolin increased the calcium concentration in 

muscle cells of lobster [115]. Our results showed that an increase in the maximum 

conductance of an existing ICa generated antiresonance that depended on the presence and 

properties of IKCa and is consistent with effects of proctolin on the Z-profile of the 

biological LP neuron (Figure 3.4B1). Although proctolin may not affect the peak 
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amplitude of the IKCa (unpublished data), it is conceivable that it could modify the 

voltage-dependent time constant. Changing the rate would in turn change the transient 

response to sinusoidal current inputs.  

Both PD and LP neurons contain similar amounts of high-threshold K
+
 currents 

[21] and the time constant of IKCa activation is highly voltage-dependent. We found the 

generation of antiresonance by an increase in the maximal conductance of ICa depended 

on the properties of the voltage-dependent activation time constant. Increases in ICa 

maximal conductance only produced antiresonance when the activation rate began to 

decrease at lower voltages and not higher voltages (not shown). This result could be 

verified by comparing the time to peak of IKCa in response to voltage steps between LP 

and PD. This suggests that although proctolin may activate the same ionic current in 

distinct neuron types, its effect on the Z-profile may depend on the voltage- and time-

dependent properties of ionic currents. 

 Previous studies investigated the mechanisms that generate antiresonance in 3D 

linear models [8]. We used linear models utilizing the findings from [8], which 

investigated the consequences of additional negative and positive feedback processes on 

the MPR generated by a 2D linear neuron. We found that the generation of antiresonance 

in the LP neuron by proctolin involved the activation of both slow positive and negative 

feedback effects provided by the gating variables of ionic currents. Therefore, we used a 

4D linear model to simulate the Z-profile in proctolin. We used this 4D linear 

antiresonator neuron to examine its effects on network activity. We found that, relative to 

a 2D resonator; it preferentially amplified the Z-profile of a coupled neuron through 

reciprocal inhibitory connections. This occurred due to antiresonance attenuating the 
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voltage amplitude response to feedforward synaptic input and therefore the conductance 

of feedback inputs was reduced. Similarly in this frequency range an antiresonator has a 

smaller effect on the frequency of an oscillator neuron. At the same time, the generation 

of antiresonance was also accompanied by changes in the phase shift of the neuron; but it 

is not clear whether phase, amplitude or both contribute to the network effects we 

observe. Therefore, future studies are required to determine the contributions of Z-profile 

and φ-profile through network connections. 

We used linear models to generate antiresonance so that we could investigate its 

role within a network. We wanted to use linear models because we could change more 

than one parameter at a time to modify Z-profile attributes without affecting other 

attributes. We therefore ensured that the observed effects are directly due to the 

difference in Z of antiresonant and resonant profiles where antiresonance occurs, i.e. at 

f>0 and f<=fres. Both the resonant and antiresonant neurons were nearly identical in their 

Z-profiles for all other frequencies. Previously, the study of the emergence of 

antiresonance was approached by examining the modulation of MPR in 2D models by the 

interaction between two ionic currents with slow dynamics and either a positive or 

negative feedback [8]. We used these findings to construct a linear antiresonator that had 

an additional resonant variable and an amplifying variable, both operating at time scale 

slower than the resonant variable generating the underlying 2D MPR in the system. If the 

additional resonant variable is sufficiently slower than the existing resonant variable then 

it causes an amplification due to a decrease in Z0 without affecting fres or Zmax (see Figure 

5b in [98]). To match the value of Z0 (to recapitulate the proctolin modulation of the Z-

profile by proctolin), we used added a slow amplifying variable to make a 4D model. The 
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4D model would respond to inhibition similarly to a 2D model if the conductances were 

changed such that their sum, and therefore, Z0 was kept constant. This allowed us to 

examine the effect of changes in the voltage amplitude response while keeping the 

baseline voltage response to inhibition equal. This, in turn, allowed us to show that 

decreases in the voltage amplitude response of an antiresonator can reduce its influence 

in shaping the frequency response of connected neurons through feedback inhibition. 

We speculate that the effects of antiresonance on oscillator frequency through 

inhibitory coupling could be due to the phase response properties of the coupled 

antiresonator/resonator neurons. The antiresonator had minimal effect on the oscillator 

frequency where the intrinsic oscillator frequency corresponded to the antiresonance 

frequency. The effect of phase response may be just as influential in determining the 

oscillator frequency due to the properties of the PRC of the coupled oscillator neuron. It 

would be interesting to determine if the effects of antiresonant versus a resonant neuron 

would depend on whether the neuron is a type 1 (an input can only delay independent of 

phase) or type 2 (an input can either advance or delay dependent on the phase). 

Therefore, it is not clear whether the antiresonator effect holds for all oscillators. Lastly, 

the suppression in the Z-profile at low frequencies may not have any effect on the 

frequency of an oscillator because depending on the biophysical properties of the 

oscillator, the PRC may be insensitive to changes in strength of the inhibitory synaptic 

input [116].  

The PD neuron is electrically-coupled to other pyloric neuron types that includes 

the anterior burster neuron (AB) and two lateral posterior gastric neurons (LPG). 

Furthermore, previous studies have shown that the resonance frequency can influence the 
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frequency of oscillations though electrical coupling [9]. Thus MPR measured in PD in the 

absence and presence of proctolin could result from network interactions. However, 

previous work in our lab demonstrated that MPR in PD is independent of its electrical 

coupling to the AB neuron [4]. Therefore, we are confident that our results are due to the 

effects of proctolin on the PD neuron. 

The generation of antiresonance opens up several interesting questions about its 

role within a network. Our results make two predictions about the role of antiresonance in 

a two-cell reciprocal inhibitory network: (1) produces a sharpening in the Z-profile of 

coupled neurons receiving oscillatory inputs by precluding the amplification by the 

inhibitory synapse at low frequency; (2) will produce no change in an oscillator neuron at 

frequencies where antiresonance and the associated increased phase advance occur. 

These predictions can be tested using the dynamic clamp method. One can isolate either a 

follower LP or PY neuron and examine how coupling to a model antiresonator changes 

the Z-profile at low frequencies relative to a model resonator. Additionally, we could test 

the effects of antiresonance on the oscillations of PD pacemaker neurons by coupling a 

linear antiresonator when the frequency of PD neuron oscillations are changed by either 

DC current injection or injection of a low-threshold inactivating calcium current with 

various values of the inactivation time constant. 

  



93 

CHAPTER 4 

FREQUENCY-DEPENDENT ACTIONS OF NEUROMODULATION 

4.1 Introduction 

Different neuromodulatory inputs underlie the flexibility in network operation by 

changing intrinsic and synaptic properties of network neurons [117, 118] . However, 

understanding how neuromodulatory actions on any single component influence the 

network output is often extremely difficult because the activity state of a network 

depends on the synaptic interactions of many neurons. Even at the level of a single 

neuron, modulation of any individual ion channel current may produce effects that are not 

readily predictable because multiple nonlinear ionic currents interact with one another 

and with the synaptic inputs to produce a neuron’s output. Moreover, dynamic 

interactions of ionic currents and synapses can lead to neuromodulator actions that are 

state or history dependent [119-121]. 

A prominent example of state-dependence is seen in oscillatory networks when 

the effect of a neuromodulator depends on the network frequency [31, 33, 122]}. One 

mechanism that could account for such state-dependent action is the activation or 

inactivation kinetics of the ionic currents targeted by the neuromodulator. It is also 

possible that the neuromodulator-activated currents may interact with other ionic currents 

in a way that would influence activity in specific frequency ranges [33]. However, 

neuromodulators often elicit reliable changes in activity, independent of variable 

underlying components [123]. 

In this paper we examine the hypothesis that network frequency may gate the 

actions of a neuromodulator on the neuronal output because the time-dependent kinetics 
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of the ionic currents targeted by that neuromodulator produce a frequency-dependent 

effect. We address this hypothesis using the crustacean pyloric network, a well-studied 

central pattern generator (CPG) that produces stable oscillations in a range of frequencies 

(0.5 to >2 Hz), driven by rhythmic bursting in a group of pacemaker neurons, which 

drives all follower neurons with strong inhibitory synapses. The follower neurons, 

including the lateral pyloric (LP) neuron, rebound from this inhibition to produce a burst 

of action potentials. These neurons maintain a relatively constant bursting phase within 

each cycle, in a wide range of network frequencies [17, 49]. Pyloric follower neurons are 

modulated by a number of monoamines and neuropeptides that modulate their 

rhythmicity, rebound and excitability properties [13]. Among the best studied modulators 

of the pyloric network is the neuropeptide proctolin, which activates a fast voltage-

dependent persistent current (the modulator-activated inward current, IMI) in several 

pyloric neurons [27]. IMI is thought to be crucial for the generation of oscillatory activity 

in this network [17, 28, 124]. 

To address whether the actions of proctolin on the LP neuron vary, depending on 

the network frequency during ongoing activity, we measured proctolin-activated currents 

using realistic LP neuron voltage waveforms applied at different cycle frequencies. We 

then used voltage ramps with different slopes to describe the variations in the proctolin-

activated currents as a function of cycle frequency. Finally, using a combination of 

computational modeling and dynamic clamp, we explored how these currents may 

modify the LP neuron activity, including its burst onset phase and duty cycle in a 

frequency-dependent manner.  
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4.2 Methods 

Solutions.  

Cancer borealis physiological saline contained the following (in mM): 440 NaCl, 26 

MgCl2, 13 CaCl2, 11 KCl, 10 Trisma base, 5 maleic acid, and 5 glucose, pH 7.4-7.6. All 

preparations were superfused with saline at 10-13⁰C. Proctolin (American Peptide) was 

dissolved as a stock solution in distilled water and stored in 10
-3 

M aliquots and frozen at 

-20°C. We used a final concentration of 10
-6 

M, prepared by dissolving the stock solution 

in saline. Proctolin was superfused for at least 20 minutes before performing voltage-

clamp measurements. Proctolin was washed out for at least 1 hour before repeating 

voltage-clamp protocols, as explained below.  

For voltage-clamp experiments, tetrodotoxin (TTX; 10
-7 

M; Biotium), picrotoxin 

(PTX; 10
-5 

M; Sigma) were added to the saline to suppress voltage-dependent Na
+ 

currents (TTX) and glutamatergic inhibitory synaptic transmission (PTX). For dynamic-

clamp experiments, PTX was added to the saline and the STG was isolated from 

descending neuromodulatory inputs by transection of the stomatogastric nerve (stn). 

Realistic LP neuron voltage waveforms in voltage clamp.  

We recorded the activity of an LP neuron during the ongoing rhythm and used the 

average of 5 cycles, sampled at 1000 points, to produce a unitary realistic waveform. This 

waveform was scaled to the desired amplitude and applied periodically at fixed cycle 

periods to drive the voltage clamped LP neuron, using the software Scope, developed in 

our laboratory (http://stg.rutgers.edu), and pClamp 10.3 (Molecular Devices). The 

periodic realistic waveform was applied from a holding voltage of -60 mV, with a slow-

wave amplitude of 30 mV and a cycle period of 500, 1000 or 2000 ms. Each application 

http://stg.rutgers.edu/software
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sweep was done for 30 s. This protocol was carried out in normal saline and in the 

presence of 10
-6 

M proctolin, superfused for at least 20 minutes. The difference between 

the voltage clamp currents in the presence of proctolin and in normal saline (with 

identical voltage inputs) was defined as the proctolin-activated current Iproc. For 

quantification of the current, the difference current was filtered using the built-in 

MATLAB function medfilt1 to remove the capacitive artifacts that resulted from the fast 

voltage changes in the LP waveform. 

Voltage clamp ramp protocols.  

The proctolin-activated current was measured by injecting symmetric ramps waveforms 

(-80 to 20 to -80 mV at four different slopes: ±400, ±200, ±100, and ±50 mV/s) into the 

voltage clamped LP neuron in normal saline and in the presence of 10
-6 

M proctolin. The 

difference current was defined as the proctolin-activated current Iproc. We quantified the 

effect of ramp slope and direction on the amplitude of this current by first fitting the 

current using a standard biophysical equation: 
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(4.1) 

with free parameters 0I , g , 1/2V , k  and revE . We used two-way repeated measures 

ANOVA to test for significance of the effect of ramp direction and ramp slope. 

The model ionic currents used to reproduce the period- and slope-dependence of the 

proctolin-activated current.  

We modeled the dependence of the proctolin-activated current on the period of 

the realistic LP waveforms and the voltage ramp slopes by assuming that proctolin 

activated a sum of two voltage-gated currents IMI and a putative calcium current ICaProc. 
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Both currents were modeled as standard Hodgkin-Huxley type currents with the 

associated gating variable equations given in Table 4.1. 

IMI was modeled as previously described [94]. The parameters of the steady-state 

activation and inactivation functions and time constants of ICaProc were found by 

performing voltage clamp simulations to reproduce the amplitude dependence of the 

current on the rising phase of a voltage ramp slope and voltage waveform cycle period.  

We modeled the activation and inactivation of ICaProc to be within reported ranges 

of T-type calcium currents (ICaT). The half-activation voltage of ICaT is reported to be 

between -45 and -60 mV and the activation can be as fast as 2 ms [125]. Several types of 

neurons have ICaT half-inactivation voltages around -80 mV [126], although it can be as 

high as -64 mV. [127]. While some neuron types have very slow ICaT deinactivation rates, 

on the order of 1 s, [128], others are characterized by very rapid recovery, on the order of 

90 ms [129].   

The family of optimal LP model neurons.  

Because neuromodulators have consistent effects on neuronal excitability independent of 

the baseline variability in biophysical parameters, we sought to find multiple models that 

produce approximately the same response to the synaptic input. We used a conductance-

based model with currents known to be expressed in STG neurons [130] and used in 

other models of the LP neuron [36].  

We developed a family of computational models of the LP neuron adapted from a 

previous model [36]. The 4-compartment model of Taylor, et al was reduced to 2 

compartments, one representing the soma, primary neurite, near and far dendrites, and the 

other representing the axon. Only the axon compartment had a fast sodium current and 
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therefore this compartment generated the action potentials. We did not see any significant 

difference between our 2-compartment model neurons and the corresponding 4-

compartment models of Taylor et al [36]. 

The voltage in each compartment obeyed the current balance equation: 

mem axial Syn

dV
C I I I

dt
      

(4.2) 

where C is the compartment capacitance, Imem is the total intrinsic ionic currents, Iaxial is 

the axial current coupling soma and axon compartments, and ISyn is the synaptic current. 

The currents that composed Imem in the soma were the transient potassium current (IA), a 

persistent calcium current (ICaS), a transient calcium current (ICaT), a calcium-activated 

potassium current (IKCa), a hyperpolarization-activated inward current (IH) and a leak 

current (IL-soma). The currents that composed Imem in the axon were the fast sodium current 

(INa), the delayed-rectified potassium current (IKd) and a leak current (IL-axon). 

The mathematical descriptions of these currents was based on descriptions in 

previous work [28, 36, 130]. In all cases, we tuned the half-activation voltages and 

kinetics of these currents to provide good fits to voltage-clamp data. For instance, we 

tuned the properties of IKCa to fit voltage-clamp measurements of the transient part of the 

high-threshold K
+
 current in pyloric neurons [21]. All currents, including calcium 

currents, were modeled as ohmic currents, described by the equation: 
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(4.3) 

where V is the membrane potential in mV, the gating variable x represents either m 

(activation) or h (inactivation) with time constant x . In the case of the calcium-activated 



99 

potassium current IKCa, x and x also depended on an ad hoc internal calcium current. 

The exact forms for x  and x are given in Table 4.1. 

The conductance of ISyn used to drive the model was obtained by voltage 

clamping the biological LP neuron at a holding voltage of -50mV during an ongoing 

pyloric rhythm and recording the synaptic current (data courtesy of H. Anwar). The 

conductance was given as: 

( )rev

I
g

V E



 

(4.4) 

where Erev is the synaptic reversal potential, assumed to be -80 mV [17]. The 

conductance g was obtained by taking the average across 5 cycles, each waveform was 

scaled in time and amplitude and sampled at 1000 points to produce a unitary 

conductance waveform. This waveform was scaled to the desired conductance amplitude 

and period and injected periodically into the model neuron at different cycle periods: 500, 

750, 1000 and 2000 ms. The same procedure was used in dynamic clamp below.  

To find multiple optimal models of the LP neuron, we used a multi-objective 

evolutionary algorithm [37, 84, 89]. Evolutionary optimization finds solutions by 

optimizing a set of objectives. Each objective represents the difference between the target 

and the model attributes. For each objective, the target is defined as a range of desired 

values. 

In our problem, the model attributes are parameters associated with the model voltage 

response to the synaptic conductance input applied at 1 Hz. We optimized the following 5 

objectives: 1, slow-wave amplitude (18-25 mV); 2, burst onset phase (0.49-0.55); 3, burst 

duration (120 ms); 4, number of spikes per burst (2-8); 5, minimum membrane potential 
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(-65 - -60 mV). The MOEA was run with a population of 100 individuals and for 50 

generations. We obtained a total of 300 optimal models and, to save computation time, 

performed all analysis on a random subset of 50 models from this population.  

When optimizing multiple and potentially conflicting objectives, MOEA will find 

a set of solutions that constitute trade-offs in objective scores. For instance, an optimal 

parameter set may include solutions that are optimal in the burst onset phase but not in 

the slow-wave amplitude or vice versa and a range of solutions in between that result 

from the trade-offs in both objectives. Using NSGA-II, we varied the maximal 

conductance values and the voltage-dependence and kinetics of the transient ICaT and 

persistent ICaS calcium currents using “fudge factor” parameters shiftv , scalev , and  scale that 

altered the dynamics of the currents. We explored the kinetics and voltage dependence 

because calcium currents have not been characterized in this system and the kinetic 

parameters that we adopted from other models may not have been appropriate for 

modeling the LP neuron.  

All simulations were performed with custom written code in C++ and exported as 

Python modules so that the Python evolutionary algorithms library DEAP could be used 

for optimization.  

Dynamic clamp experiments.  

We used dynamic-clamp to inject artificial versions of ionic (IMI, and ICaProc) and synaptic 

currents (ISyn) into the LP neuron [9, 21, 92, 124]. These currents were identical to those 

used in the computational model described above. The synaptic conductance was set to 

0.1µS unless otherwise stated. With each set of parameters for IMI and/or ICaProc, the 

biological LP neuron was driven by a synaptic conductance with a reversal potential of -
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80mV for at least 30s. The LP neuron activity was recorded for at least 10s before 

addition of IMI and/or ICaProc and the synaptic activation.  

Table 4.1 Equations governing the Voltage-Dependence and Kinetics of Ionic Currents 

in the LP model Neurons.  
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The membrane potential v is in mV, intracellular calcium concentration is C is in µM and the 

time constants are m and h  are in ms. lgc( ) 1/ (1 exp( )).  x x  All parameters modified 

from [36], except for ICaProc which was determined empirically to fit the properties of the 

proctolin-activated current. 

Occasionally, the resting membrane potential and action potential threshold varied 

between preparations, most probably due to impalement quality. Therefore, to produce 

more consistent measurements, we also injected a leak current with a small negative 

maximal conductance to ensure that the LP neuron produced approximately the same 

number of spikes at the same frequency as measured during the ongoing rhythm. The 

negative-conductance leak current was given by ( ) ( )NL NL NLI V g V E   where ENL =-68 mV 

is the reversal potential and NLg is the conductance. When the value of the leak 

conductance was set to be negative in the dynamic clamp software it resulted in an 

overall decrease in the input conductance of the neuron. 
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Table 4.2 Model fixed parameter values 

Parameter Value 

ENa 50 mV 

EK -80 mV 

ECa According to the 

Nernst equation at 

10°C with [Ca]O  = 

13 mM. 

ECaProc 120 mV 

EH -10 mV 

EMI 0 mV 

EL-Soma -25 mV 

EL-Axon -60 mV 

Cm-Soma 40 nF 

Cm-Axon 10 nF 

raxial-axon ra=0.3µS 

raxial-soma ra =1.3µS 

[Ca] τCa=10 ms, Vol=6.49 

µm
3
, [ ]Ca  =20 µM 

 

Dynamic clamp was implemented using the NetClamp software (Gotham 

Scientific; http://gothamsci.com/NetClamp) on a 64-bit Windows 7 PC using an NI PCI-

6070-E board (National Instruments). Data were acquired using a Digidata 1440A 

Digitizer (Molecular Devices) at 5-KHz sampling rate.  

 

http://gothamsci.com/NetClamp
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Data analysis and statistics.  

The response of the LP neuron to synaptic conductance inputs at different frequencies 

was analyzed using custom-written MATLAB (MathWorks) scripts. For each frequency 

and in separate instances with the addition of either IMI or IMI with ICaProc, we measured 

the burst onset phase, termination phase and slow-wave amplitude of the LP neuron. The 

LP response phase in each cycle was analyzed from the onset of the pacemaker 

component of the synaptic input. Statistics were done in R (R Foundation). 

4.3 Results 

Across different animals, the pyloric network cycle period can vary considerably ranging 

from approximately 0.5 to >2 s [17]. The network output can be altered by multiple 

biogenic amines and neuropeptides that modify the properties of neurons and synapses. 

However, the effect of neuromodulators on the pyloric network activity depends on the 

state and level of activity of the network. For instance, proctolin increases the frequency 

of the pyloric rhythm when the initial frequency is low, but has little or no effect on 

frequency when the starting frequency is high [31, 33, 34]. The effect of neuromodulators 

at the single neuron level can also be altered by activity. For instance, the R15 neuron of 

Aplysia fires bursts of action potentials strongly modulated by serotonin. Changes in the 

activity that alter intracellular calcium levels also influences the modulation of R15 by 

serotonin [35].  

 Because most neuromodulators act through second-messenger pathways to 

modify the excitability of neurons, their action may be influenced by the ongoing activity 

patterns of target neurons. While proctolin has state-dependent effects on the pyloric 

network frequency [33], it may also have effects on the dynamics of individual neurons, 
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which also depends on the network frequency. Recent work demonstrated that 

neuropeptides activate time-dependent ionic currents in other STG neurons [41]. In this 

study, we address the state-dependent effects of proctolin on the activity of the follower 

neuron LP. Specifically, we examine the hypothesis that the current activated by 

proctolin in the follower neuron LP depends on the frequency of ongoing pyloric network 

oscillations. 

The amplitude of the proctolin-activated current is sensitive to the voltage waveform 

period. We examined whether the actions of the proctolin on the LP neuron depend on 

the pyloric cycle period. To measure the ionic currents activated by proctolin in the LP 

neuron, we abolished the ongoing rhythmic activity with bath application of TTX, PTX 

and by removing endogenous neuromodulatory inputs (see Methods). We then played 

back pre-recorded LP neuron voltage waveforms at different cycle periods in control 

saline and during bath application of 10
-6

 M proctolin and measured the proctolin-

activated current (Iproc) as the difference current (Figure 4.1).  

The peak amplitude and mean value of Iproc decreased with the waveform cycle 

period (Figure 4.1A). Overall, the longer waveform periods produced a significantly 

smaller current (one-way RM-ANOVA; N=6, p < 0.001). The mean current value 

followed the same trend as the peak and was significantly smaller as at longer waveform 

periods (one-way RM-ANOVA, N=6, p < 0.001). The fact that the waveform rise slope 

decreases with cycle period suggested that the decrease in Iproc and mean with longer 

cycle periods may be due to the increased inactivation of this current. Thus these results 

suggest that the changes in the mean current may be caused by the dynamics of 

inactivation of Iproc or some component of this current  
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Figure 4.1 The peak and mean value of Iproc changes as a function of cycle period. A, Top, the LP 

voltage waveforms with a slow-wave amplitude of 30 mV with cycle periods of 500, 1000  and 

2000 ms were used to clamp the LP membrane potential. The current (ILP) was measured in 

control and in 10
-6

 M proctolin. The difference current (Iproc) was obtained by subtracting the 

control ILP from the proctolin ILP and smoothed using a median filter to remove the capacitive 

artifacts for quantification Dashed lines indicate the peak amplitude of Iproc at 500 and 1000 ms 

waveform periods. The shaded region in Iproc indicates the area over which the mean current was 

calculated. The minimum (B1) and mean (B2) current (mean ± SEM) as a function of cycle 

period (N=6). The minimum current was normalized to the minimum current at 500 ms. 

Further confirmation of partial inactivation of Iproc could be observed by a 

comparison of the Iproc traces in sequential cycles of the LP voltage waveform at 500 ms 

and 2000 ms cycle periods. At 500 ms cycle period, the peak current amplitude in 

response to the second and subsequent applications of the unitary waveform were smaller 

than the first, indicating that the channel experiences inactivation that is slower than the 
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voltage input. In contrast, the cycle-to-cycle inactivation was much less at 2000 ms cycle 

period. Therefore, the pyloric rhythm frequency determines the inactivation level of the 

proctolin-activated current and its contribution to the LP neuron activity. 

 

Figure 4.2 The proctolin-activated difference current Iproc shows more inactivation at longer 

waveform cycle periods. Black dots indicate the (negative) peak amplitude of Iproc in each cycle. 

Horizontal dashed line indicates the steady-state value (average of last 5 cycles) and the black 

curve is a single exponential decay fit. The amplitude of the decay is 0.6 nA for P=500 ms and 

0.22 nA for P=2000 ms. 

The amplitude of Iproc is sensitive to the slope and direction of voltage ramps. Thus far, 

we have indicated that the levels of Iproc may depend on its time course of inactivation. 

We noted that increases in the waveform cycle period were accompanied by decreases in 

the voltage slope. In previous studies, IMI, which is a fast persistent current, has been 

measured using voltage ramps and the current amplitude was assumed to be independent 

of the ramp slope or whether the ramp was rising or falling {Golowasch, 1992  

#71;Swensen, 2000 #103}. However, such a current should not show a difference in 

amplitude with changing the cycle period of the voltage input, as we found above with 

realistic waveforms. Therefore, to explore the properties of Iproc in the LP neuron we used 

symmetric voltage ramps to measure the difference current (see Methods).  
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In contrast with previous reports, we found that Iproc peak amplitude was larger 

with ascending ramp compared to descending ramp (Figure 4.3). Additionally, Iproc peak 

amplitude increased significantly with ramp slope for ascending ramps, but the amplitude 

did not change with the descending ramp slope (Figure 4.3C-D; two-way RM-ANOVA, 

N=14, p < 0.001). For the smallest voltage ramp slope, Iproc peak amplitude was not 

different between the ascending and descending voltage ramps, which suggested that the 

current only partially inactivates and, at this slope, it is maximally inactivated by the peak 

of the ramp (Figure 4.3C). These results are consistent with the waveform data and 

suggest that proctolin, in addition to the previously-described IMI, also activates an 

inactivating inward current that adds to the total inward current on the ascending ramp 

but is at least partly inactivated on the descending ramp. 

An inactivating low-threshold putative calcium current and IMI are sufficient to 

capture the dependence of Iproc on waveform period and ramp slope. Our results 

indicating that Iproc  depends on the waveform cycle period and voltage slope is 

inconsistent with the view that proctolin and other peptides only activate a single fast 

non-inactivating inward current, IMI [27, 28].To characterize minimally the biophysical 

mechanisms that can reproduce the ramp currents, we built a simple computational model 

to explore whether a low-threshold inactivating inward current, together with IMI, could 

reproduce these results. 
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Figure 4.3 The peak amplitude of Iproc is sensitive to the slope of ascending but not descending 

voltage ramps. A1. A symmetric voltage ramp protocol was applied to the LP neuron from a 

holding voltage of -80mV to a peak voltage of 20mV. The voltage ramp is separated into 

ascending (blue) and descending (red) parts, with slopes of 400 mV/s. The voltage clamp current 

ILP was measured in control saline (black) and in bath applied proctolin (10
-6

 M) (grey) and the 

difference current was defined as Iproc. Colors correspond to the voltage ramp protocol. A2, I-V 

plots of Iproc for the ascending and descending voltage ramps (colors corresponding to A1). B. 

average of fits of Iproc obtained from the average of 14 preparation measured on the ascending and 

descending voltage ramps with various slopes (top) in the voltage range given in A1. C. The 

absolute peak current is shown in response to voltage ramps of different slopes measured for the 

ascending and descending phases of the ramp. Increasing ramp slope increased the peak current 

for ascending but not the descending ramp. Furthermore, the current was significantly larger for 

the ascending ramp for large slopes. 

Using a simple computational model (see Methods), we found that the 

experimental results could be explained by the sum of IMI and a current with properties 

like a T-type calcium current. We refer to this putative calcium current as ICaProc. The 

availability of the current depends on its level of inactivation. Three main properties 



109 

relating to inactivation that would determine the dependence of the current on ramp and 

waveform cycle period: the kinetics of inactivation, steady-state inactivation and the 

kinetics of recovery from inactivation. We tuned the parameters associated with these 

properties to reproduce the dependence of Iproc on waveform cycle period and voltage 

ramp slope. The values of these parameters (Table 4.1) were in the range reported by 

studies in other neuron types [127].  

When IProc consisted of IMI + ICaProc, the amplitude measured during the ascending 

ramp increased with ascending ramp slope. In contrast, the amplitude of this Iproc was not 

sensitive to the slope on the descending ramps (Figure 4.4A). As expected, the amplitude 

of Iproc, when it consisted of only IMI, was insensitive to the ramp slope or direction 

(Figure 4.4B). These results suggest that the low voltage activation and rapid inactivation 

of ICaProc are sufficient to produce the effect of ascending voltage ramps various rates 

without contaminating the IMI response measured on descending voltage ramps. 

Figure 4.4C shows the response of a model Iproc in voltage clamp using LP 

realistic waveforms at the cycle periods used in experiments. When Iproc consisted of only 

IMI, the amplitude was insensitive to changes in the cycle period. In contrast, when Iproc 

consisted of IMI + ICaProc, the current was largest at short waveform periods (Figure 4.4D). 

These results suggest that the dependence of the amplitude and mean of Iproc on cycle 

period can be explained by the inactivation and recovery from inactivation of ICaProc. 
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Figure 4.4 A low-threshold inactivating current (ICaProc) is sufficient to reproduce the dependence 

of Iproc on voltage-ramp slope and waveform cycle period. A, The model Iproc, measured in 

response to symmetric voltage ramps of various slopes from -80 to +20 mV, shown for the 

ascending and descending ramps. B, The model Iproc peak value in response to changing the ramp 

slope and direction. C, Iproc measured in the model using realistic voltage waveforms at various 

cycle periods in voltage clamp. Iproc consisted of either only IMI or a combination of IMI and ICaProc. 

Dotted horizontal lines mark the peak amplitude of Iproc at the 500 ms period. Arrows indicate the 

decrease in the Iproc amplitude of relative to the 500 ms period. D, The change in model Iproc mean 

value and amplitude at different voltage waveform cycle periods. Colors as in C. 
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Figure 4.5 Multiple model parameter sets capture the response of the LP neuron to a 1 s cycle 

period realistic synaptic conductance input. A, the response of a biological LP neuron (upper 

trace) to a 1 s period dynamic clamp synaptic conductance input, applied in a decentralized 

preparation and 10
-5

 M PTX. Model LP neurons were optimized to reproduce the same 

response attributes for slow-wave amplitude, onset phase, burst duration and number of spikes 

per burst. 50 optimal models (lower traces) were selected at random from the optimal 

population of 300. Two of the optimal models are highlighted in cyan and red traces. B, The 

distribution of 17 model parameter values, with darker tones representing greater distribution 

density. The value of each parameter was normalized to the median value of its distribution 

(dashed horizontal line) for comparison.  These median values are (g in µS; V, k in mV; τ in 

ms): Lg  =0.23 (soma); Hg =3.01; CaTg =0.41; CaSg =0.17; KCag =98.83; Ag = 0.73; Lg =0.59 

(axon); Nag =607.89; Kdg =144.46; CaTg m  V1/2=-29, k = 9.29; CaTg h  V1/2=-49.63, k = 9.41; 

CaSg m  V1/2=-12.33, k = 9.21; CaTg m  =47.77, h  =528.25. In these simulations MIg and

CaProcg were set to 0. Two model parameter sets, corresponding to the highlighted traces in 

panel A, are shown for comparison (cyan and red), indicating that models that exhibit similar 

traits did not require a consistent relationship among their parameters. Eight of the 17 model 

parameters were relatively tightly constrained by the optimization (bold-faced CV: coefficient 

of variation < 0.4) in all optimal models. 

 

The functional effects of the proctolin-activated currents in the LP model neuron. In order 

to examine the functional consequences of the dependence of Iproc on cycle period, we 

used a detailed computational model of the LP neuron (see Methods; Table 4.1) and 

quantified the model LP neuron activity parameters during ongoing oscillations.  Ionic 

currents in identified STG neurons are known to have variable maximal conductances 

across preparations [17, 49]. We therefore examined the effect of the proctolin-activated 
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currents not on a single LP neuron parameter set, but rather a family of LP model neurons 

with distinct parameter sets, all of which produced the same (optimal) activity pattern at a 

cycle period of 1 s. To produce such a family, the model neuron activity was optimized in 

response to a 1 s realistic synaptic conductance input, using a multi-objective 

evolutionary algorithm (see Methods), to match the response attributes of a biological LP 

neuron driven with the same dynamic clamp synaptic conductance (Figure 4.5A). Since 

neuromodulatory input to the STG had been removed by decentralization, we our 

optimized models had no IMI or ICaProc. 

The response attributes that were fit were: the slow-wave amplitude (21mV), 

minimum voltage, burst onset phase (55%), number of spikes per burst (5) and burst 

duration (125ms). The parameter values of the maximal conductances in the population 

showed considerable variability (Figure 4.5B) but the low-threshold transient calcium 

current parameters were constrained relative to all other parameters. We then subjected 

random subset of 50 optimal models (chosen from among 300) to synaptic conductance 

inputs with 500, 750, 1000 and 2000 ms cycle period, and recorded the mean and 

standard deviation of the burst onset phase, duty cycle (burst duration/cycle period), and 

slow-wave amplitude (see Methods). For these 50 models, we compared the relative 

actions of IMI and ICaProc in changing these values at each cycle period. We predicted that, 

due to its transient time-dependent properties, ICaProc would affect one or more properties 

mainly at shorter cycle periods because, at large periods, it would be more inactivated. 
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Table 4.3 Response features of optimal LP models across a range of frequencies. 

 Cycle Period (ms) 

500 750 1000 2000 

φon 0.69±0.60 0.60±0.015 0.55±0.01 0.46±0.01 

Slow-wave amplitude (mV) 14.79±0.72 17.65±0.59 19.28±0.63 20.95±1.05 

Duty Cycle 0.16±0.06 0.27±0.05 0.30±0.03 0.34±0.04 

Values of burst onset phase, slow-wave amplitude, and duty cycle (mean ± std) measured across 

the 50 randomly selected optimal models.  

We assessed the effect of adding IMI and ICaProc separately or together on the 

response dynamics of the LP model neurons in response to synaptic conductance inputs 

of different cycle periods. We found that, independent of the variability in intrinsic 

baseline model parameters, adding IMI alone was more effective at advancing phase 

relative to control at small cycle periods (Figure 4.6A). This was because both the 

amplitude and phase of all models was decreased and delayed in response to 500 ms 

inputs and so IMI provided the depolarizing drive to offset this frequency-dependent 

change in amplitude and thus the time it takes to reach spike threshold.  

We found no difference in the onset phase relative to control between adding 

ICaProc alone or together with IMI (Figure 4.6A). To understand the effect of ICaProc on onset 

phase on top of the action of IMI and if the effect of ICaProc depended on the level of IMI, 

we plotted the change in onset phase when IMI and ICaProc were added together relative the 

effect of IMI alone (Figure 4.6B). We found that the effect of ICaProc in advancing phase 

depended on the maximum conductance of IMI, since the additional effect of ICaProc 

decreased for all cycle periods and was not different from IMI alone at 2000 ms period 

(Figure 4.6B). 
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Figure 4.6 Proctolin-activated ICaProc produces a phase change at small cycle periods but its effect 

depends on the level of IMI. A, The LP model neuron phase change relative to control, plotted as a 

function of waveform cycle period in the presence of IMI alone, ICaProc + IMI  and ICaProc alone. B, 

The effect of increasing cycle period on the onset phase for the ICaProc + IMI, normalized to the 

onset phase for the IMI only condition, at each frequency, for two baseline values of MIg = 0.03 and 

0.06 µS.  

Using dynamic clamp to assess the functional effects of the proctolin-activated currents 

in the biological LP neuron The LP computational model neuron predicted in the 

presence of IMI, the time-dependent properties of ICaProc produce larger decreases in the 

burst onset phase at short cycle periods. To examine whether these predictions bear out in 

the biological system, we used dynamic clamp to introduce different levels of IMI and 

ICaProc into the synaptically isolated LP neuron, while it was driven by a dynamic clamp 

synaptic conductance inputs at different cycle periods (Figure 4.7A).  

For the same set of cycle periods used in the model, we found that addition of 

ICaProc changed both the amplitude and onset phase relative to both control and injection 

of dynamic clamp IMI (Figure 4.7B). As in the comparable manipulations of the 

computational model (Figure 4.6), we measured the effect of injection of ICaProc on the 

onset phase relative to control and found that the onset phase was significantly larger 
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during 500ms cycle period inputs than for other longer periods. However, in contrast to 

the model, injection of IMI alone did not produce any changes in onset phase as a function 

of cycle period (Figure 4.7C).  

 

Figure 4.7 Adding IMI and ICaProc is more effective than IMI alone at advancing onset phase. A, 

The voltage response (VLP) of the synaptically isolated LP neuron to dynamic clamp injection of 

artificial synaptic conductance (gsyn) inputs in control conditions. The dClamp manipulations 

were run for 30 s to that the LP response reaches steady state. B, The response to the last cycles 

of gsyn injection at different cycle periods (B1-B4) was extracted to measure the burst onset phase 

in control and with the dynamic clamp addition IMI alone and IMI + ICaProc. C, The LP neuron phase 

change relative to control plotted as a function of cycle period.  

Proctolin produces larger phase advances at shorter cycle periods. To test whether the 

effect of bath application of proctolin is comparable to dClamp injections of ICaProc and 

IMI, we drove the LP neuron at different cycle periods (with a dClamp synaptic 
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conductance) in control and in low (10
-7 

M) and high (10
-6 

M) concentrations of proctolin. 

We then compared the LP burst onset phase in proctolin to the phase measured in control 

saline during dClamp current injection.  

At cycle periods  ≥ 1000 ms, neither concentration of proctolin produced a change 

in phase compared to control saline with no additional current, or control saline with only 

dClamp IMI. However, at cycle periods < 1000 ms, whereas the onset phase change in low 

concentration proctolin resembled that observed with dClamp IMI alone, large 

concentrations of proctolin produced a phase change comparable to dClamp IMI + ICaProc. 

These findings suggest that the influence of proctolin on the activity phase of the LP 

neuron is comparable to the combination of dClamp IMI and ICaProc. 

 

Figure 4.8 The frequency-dependent effect of proctolin on LP onset phase is comparable to 

dClamp IMI and ICaProc. In each panel: top, LP voltage in response to synaptic conductance input 

in the presence of low (10
-7

 M, red) and high (10
-6

 M, green) concentration of Proctolin. In each 

panel: bottom, a comparison with the LP voltage in response to synaptic conductance input in 

control (black), with dClamp IMI (blue), and dClamp IMI + ICa (cyan). Dashed lines are used to 

compare the onset phase in the presence of low and high concentrations with that observed during 

dClamp injection. 
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4.4 Discussion 

We have identified a frequency-dependent mechanism underlying the proctolin control of 

burst onset phase in a follower neuron in an oscillatory network. Underlying this 

frequency-dependent effect was the activation of at least two inward currents with 

distinct voltage- and time-dependence. The identification of a time-dependence of the 

proctolin-activated currents is novel and in contrast to those who previously studied the 

properties of this current [17, 28]. The pyloric rhythm maintains its pattern over a range 

of frequencies [17] by keeping the phase of the component neurons constant. The time-

dependence of the proctolin-activated currents may play a role in the phase maintenance 

of burst onset.  

 Furthermore, neuromodulators show state-dependent actions [33] so that the 

activity determines the extent or sign of modulator action [122]. We showed that the 

activity of a neuron given by the steady-state frequency could account for the state-

dependent actions of neuromodulators on individual neurons. The action of a 

neuromodulator preferentially advanced phase and duty cycle at high frequencies, by 

virtue of the properties of the time-dependent inactivation of an inward current activated 

by proctolin.  

Although IMI is a fast persistent current, across animals the amplitude of IMI is 

positively correlated with the phase of synaptic inputs [17] which may suggest an 

inactivating property. In support of this, a recent study suggests that a peptide modulator 

elicits low-threshold inactivating transient inward currents, in addition to IMI, in a 

stomatogastric neuron [41]. The inactivation time-dependence of the low-threshold 

current was shown to interact with IMI to promote post-inhibitory rebound bursting. 
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Therefore, a neuromodulator may modify multiple physiological mechanisms, but it 

would do so in frequency ranges constrained by the time scale of ionic current kinetics. 

Our approach of using realistic waveforms to drive LP in voltage-clamp to 

measure modulator-activated difference current at different frequencies was a novel one. 

If proctolin-activated current were fast and non-inactivating, as previously suggested [17, 

28], then the properties of the current would be independent of cycle period. Using this 

method, we were able to reliably identify transient inactivating currents by showing that 

both the absolute peak current and mean current decreased with increasing cycle period. 

Surprisingly, increasing the amplitude of the realistic waveform slightly decreased the 

peak current at all cycle periods relative to 500ms, but did not produce similar decreases 

in the mean current. This may imply that the activation of a transient component is 

activated more strongly in voltage range of LP activity (usually ~ -30mV peak slow-wave 

potential [17]) 

The fast, voltage-dependent inactivation implies a current similar to T-type 

calcium currents, which may provide an important intrinsic mechanism to regulate 

multiple dynamic processes such as onset phase and burst duration. Our ramp protocols 

also pointed towards proctolin targeting an inactivating inward current with distinct 

dynamics to the previously identified IMI. This current was sensitive to voltage ramps on 

the rising and not falling phase. Furthermore, even at fast voltage ramps the current on 

the rising phase was largely inactive at the beginning of the falling phase, thus suggesting 

a low-threshold fast inactivating inward current. However, further studies are needed to 

identify the biophysical phenotype of this current.  
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Recent work using the related neuropeptide CabPK in the LG neuron of the 

gastric mill neuron showed that multiple currents including IMI plus both slow and fast 

activating transient, low-threshold inward currents [41]. Here, we demonstrated that 

proctolin may activate IMI and at least one other voltage-dependent inward current with 

distinct voltage-dependence and kinetics in the pyloric LP neuron. Although these 

additional currents were not identified with pharmacological blockers, another study 

showed that only the additional time-dependent currents, and not IMI, were sensitive to 

replacing the extracellular Ca
2+

 with Mn
2+

, a Ca
2+

 channel antagonist [41]. We therefore, 

carried out our study with the assumption that this additional current was a fast-activating 

transient calcium current.  

In conclusion, this study provides a plausible mechanism to explain why the 

action of a neuromodulator can be altered by the activity of neurons. Previous work 

showed a state-dependent action of proctolin on the pyloric cycle period promotes 

network oscillations at 1 Hz cycle frequency producing larger increases in slow rhythms 

as compared to faster ones [33]. Here, we show that the actions of proctolin on individual 

neurons may depend on the activity of the target neuron. Due to the time-dependent 

properties of ionic currents in the target neuron, the neuromodulator may alter features of 

activity in a frequency-dependent manner. We showed that these features may include the 

onset of spiking or rebound burst phase and duty cycle. However, the frequency-

dependent effect depends on the level of modulator-activated persistent currents. 

Therefore, it is plausible that these modulator-activated currents are expressed in 

individual neurons with precise ratios to achieve frequency-dependent effects. 

Understanding the physiological conditions under which time-dependent currents 
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produce reliable phase changes, i.e. whether and how they interact with other intrinsic 

regenerative phase-promoting inward currents remains to be determined.  
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CHAPTER 5 

CONCLUSION AND DISCUSSION  

5.1 Purpose and goals 

The primary purpose of this thesis was to understand the biophysical control of 

frequency-dependence in neurons and determine whether short-term actions of 

neuromodulators depend on the frequency of oscillation. The goals of this dissertation 

were threefold: 1) to understand the interaction of multiple resonant ionic currents in the 

generation of MPR in pyloric pacemaker PD neurons; 2) to understand how frequency-

dependent responses shape network activity; 3) to examine the frequency-dependent 

actions of neuromodulation. As a model system, we used the pyloric network of the crab 

Cancer borealis and used a combined experimental and computational approach to 

accomplish these goals. Based on the results presented here, I conclude that the kinetics 

of inactivating currents not only are important for generating preferred frequency 

responses in neurons but also alter the action neuromodulators have on network activity. 

The first goal was accomplished by measuring the MPR as reflected in the Z- and 

φ- profiles of biological PD neurons in voltage clamp. I then used a genetic algorithm to 

obtain multiple biophysical models with unique combinations of parameter values 

constrained by biological measurements of ionic currents. I used the fact that the 

resonance frequency and zero-phase frequency were identical in these models to explain 

the dependence of MPR properties on the kinetics of ionic currents. The second goal was 

accomplished by measuring unique changes in the MPR of distinct neuron types by the 

same neuromodulator, and computationally exploring the consequences of such changes 

on the activity of neurons in a simplified two-cell reciprocal inhibitory network. The third 



122 

goal was accomplished by measuring neuromodulator-activated ionic currents in voltage-

clamp using realistic waveforms and ramps of various cycle periods and voltage slopes 

respectively. Using computational modeling, I identified a fast inactivating inward 

current, ICaProc, proposed to be a target of the neuropeptide proctolin in addition to IMI, to 

explain the frequency-dependence of the proctolin-activated current. This was shown 

experimentally using realistic LP voltage waveforms and voltage ramps of various cycle 

periods and slopes. To determine the effects of a fast inactivating inward current on the 

activity of the LP neuron, I used a combination of modeling and dynamic clamp. In 

particular, I explored the effect of such currents on the onset spiking phase in response to 

realistic synaptic inputs in both a family of computational models that produce LP-like 

activity and in biological LP neurons using the dynamic clamp technique. In both 

approaches, I used specific ratios of the maximal conductances of transient and persistent 

neuromodulator-activated currents during rhythmic inputs at various frequencies and 

measured changes in onset spiking phase. 

5.2 Main Results 

In this section, I explore the general findings related to the question addressed in each 

chapter. 

5.2.1 Chapter 2: Mechanisms of Generation of Membrane Potential Resonance in a 

Neuron with Multiple Resonant Ionic Currents 

 

In this chapter, I was interested in understanding how multiple resonant ionic currents 

interact to generate MPR in the pyloric pacemaker PD neuron. To address this, I 

measured the MPR of PD neurons using voltage-clamp. Two caveats must be addressed, 

namely the use of voltage clamp and PD electrical coupling. Voltage clamp has been used 
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previously for this purpose, and it gives comparable fres measurements to those calculated 

when using current clamp [29, 62, 70]. The PD neuron is electrically-coupled to other 

pyloric neuron types that include the anterior burster neuron (AB) and two lateral 

posterior gastric neurons (LPG). Furthermore, previous studies have shown that the 

resonance frequency can influence the frequency of oscillations though electrical 

coupling [9]. Thus MPR measured in PD could result from network interactions. 

However, previous work in our lab demonstrated that MPR in PD is independent of its 

electrical coupling to the AB neuron [4]. 

To understand how MPR is generated in the PD neuron in voltage clamp, I used a 

data-driven approach. More specifically, I constructed a biophysical model that was 

parameterized by equations associated with two ionic currents, IH and ICa, which were 

thought to shape MPR in the PD neuron. Since the attributes of the Z- and φ-profiles were 

relatively stable across different animals and the maximal conductances of ionic currents 

are variable [60], I used an MOEA to obtain multiple combinations of parameter values 

associated with IH and ICa. I found models that fit the experimental data with high 

accuracy without needing to consider additional ionic currents. We therefore, examined 

the population of parameter sets to understand their contribution to MPR.  

The first key finding from this chapter includes the fact that multiple 

combinations of parameter values can produce MPR. At the same time, I observed 

correlations between parameters defining the same and different ionic currents. Using a 

sensitivity analysis, I found specific correlations maintained the values of Z-profile 

attributes. In particular, the 
m h   correlation associated with the time constants of ICa 

gating variable, maintained fres. In addition, the 
1/2

h

Cag V    correlation also associated 
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with ICa, maintained QZ, without affecting fres. Furthermore, the 
H Cag g  correlation was 

present in a subpopulation of models that produced appropriate changes in fres and Zmax 

as the Vlow of the voltage ZAP was decreased. Other studies failed to see correlations in 

parameter values in models containing multiple resonant currents [43, 72]. This may be 

because voltage-clamp used in our study restricted the voltage range of the neuron and 

thus limits the contribution of ICa and IH with nonoverlapping activation voltage ranges. 

Although I did not refute the possible role of additional currents in influencing the 

Z- and φ-profiles, it is unlikely that they would have a major influence on the correlations 

I found. I used voltage clamp to limit the role of currents activated at higher threshold. In 

the crab PD neuron, IA does not activate more than 5% at -30 mV (the equations are in 

[94]). Additionally, [4] explored the role of several other ionic currents on resonance with 

pharmacological blockers, and I could therefore exclude those that had no effect. 

In the biological PD neuron and the good fit models, I found that the fres and fφ=0 

were nearly identical, which was not reported previously. Whether this is because MPR 

was measured in voltage clamp and not current clamp or due to the unequal contributions 

of non-overlapping resonant currents requires further investigation. Nonetheless, I used 

the equality in these frequencies to explain the dependence of fres on the kinetics of 

individual ionic currents. Specifically, I showed that MPR occurs at a given frequency 

because the amplitude is largest when it is synchronized with voltage inputs. Any 

parameter that shifts the phase of ionic currents also shifts the frequency at which that 

ionic current is maximum and therefore fres. I believe this to be a general rule for how 

MPR is generated in voltage clamp by one or many ionic currents.  
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A previous study incorporating these currents in a model of hippocampal 

pyramidal neurons saw resonance (fres) without phasonance (fφ=0) [43]. However, 

phasonance could be restored by making the inactivation time constant of a low-threshold 

ICa slower. This is consistent with our result and suggests that PD neurons show resonance 

and phasonance, whereas CA1 pyramidal neurons only show resonance because PD 

neurons have a low-threshold ICa whose inactivation is much slower than in CA1 

pyramidal neurons. For instance, in our models the average inactivation time constant 

was ~450 ms, whereas in [43] it was 30 ms. 

5.2.2 Chapter 3: Biophysical Mechanisms of Modulator-induced Antiresonance and 

its Functional Role in an Oscillatory Network 

In this chapter I was interested in understanding if neuromodulators have different effects 

on neurons with distinct MPR properties which interact in an oscillatory network. My 

findings showed proctolin modulates the MPR of the PD pacemaker neuron and the LP 

neuron but had differential effects on the shape of the Z-profile. Consistent with other 

studies, proctolin amplifies PD MPR by increasing the Zmax without changing fres. In 

contrast, proctolin switches the Z-profile of the LP neuron from having only a single 

resonant peak to a Z-profile where Z(f) shows a minimum at low nonzero f 

(antiresonance) followed by a shift in fres to higher frequencies. This more complex Z-

profile shape has been experimentally reported in hippocampal interneurons [6] and the 

antiresonance has been proposed to suppress activity in the theta range of frequencies in 

which CA1 pyramidal neurons are most excitable. However, the functional consequences 

were not explored in previous studies. 

I provided a simple mechanism for the differential effects of proctolin on the Z-

profile of the PD and LP neuron, which is related to an increase in IMI, ICa or both. A 
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simple amplification could occur by either an increase in IMI or ICa. Since both neurons 

express a calcium-dependent potassium (IKCa), the generation of antiresonance in LP 

could be related to the modification of voltage-dependent activation time constant of IKCa, 

which followed the changes in intracellular calcium concentration. Such changes in 

intracellular calcium concentration could be achieved by an increase in a low-threshold 

ICa that generates MPR or a yet undescribed current that is added by proctolin. These 

findings underline a novel aspect of neuromodulation, where rich dynamics in the 

rhythmic output of oscillatory networks are produced by a single neuromodulator 

differentially altering the MPR properties of specific neurons. 

Furthermore, I computationally explored the consequences of differential 

modulation of neurons that interact in an oscillatory network. To do this, I constructed 

linear models that showed resonance or antiresonance. Previous computational studies [7, 

8] used similar linear conductance-based models to show how additional ionic currents 

operating at various time scales modulate existing resonance generated by 2D models. It 

was shown that a 3D model having an additional current that contribute a slow positive 

feedback can produce antiresonance [8] but antiresonance was less pronounced when 

Z0 .was unchanged My experimental observation of the change in the Z-profile of the LP 

neuron by proctolin suggested that additional ionic currents that contribute a slower 

negative feedback are also activated. Therefore, I used a 4D linear model to capture this 

effect and found that the underlying mechanism for the generation of antiresonance. 

In contrast to nonlinear conductance-based models, the use of linear models 

greatly facilitated our ability to control fres and other resonance attributes independently. I 

changed the values of the resonator parameters in such a way that antiresonance was 
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generated with no effect on Z0, fres, and Zmax. This required changing more than one 

biophysical parameter at a time in a manner consistent with previous work [8]. This 

ensured that the observed effects are directly due to the antiresonance at low frequency 

oscillatory inputs and not due to other changes in the shape of the Z-profile.  

Our first result using linear models to examine antiresonance effects through 

network interaction showed that antiresonance can reduce feedback inputs to limit 

amplification in the low frequency range of the Z-profiles of postsynaptic neurons. I 

showed that this was due to antiresonance because a 2D resonator with identical Z0, fres, 

and Zmax produced a bigger amplification at low frequencies but an equal amplification 

relative to the antiresonator model. Our second result using linear models to examine 

antiresonance effects through network interactions showed that antiresonance produces 

smaller changes in the period of an intrinsic oscillator through reciprocal inhibition.  

The method of changing Z-profile attributes without changing other attributes to 

examine the effects on network activity was also used previously [9]. Previous work 

showed that network effects in an electrically-coupled network were due to the Z-profile 

and were independent of parameter values chosen. My results showed a causal 

relationship between antiresonance and both the shape of Z-profiles and oscillation period 

of a linear model neuron and an oscillator model neuron in a two neuron synaptically-

coupled network. However, similar to [9] further work is needed to show that these 

network effects hold for a wide range of parameters for neurons in a two-neuron 

synaptically-coupled network. Moreover, at least for a synapse with no dynamics, the 

antiresonance effects do depend on the values chosen for synaptic parameters and so 
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future work should characterize the contribution of antiresonance to the modification of 

the Z-profile of synaptically-coupled neurons. 

I examined the effects of changing sets of parameters associated with ionic 

currents that contribute slow feedback to the subthreshold response to oscillatory inputs. 

Biologically, these changes may be achieved by simultaneous modulation of multiple 

parameters associated with distinct voltage-gated ionic currents to alter network 

dynamics. My biophysical conductance-based modeling suggests that at least in the LP 

neuron of the crab, these effects are embodied in the complex interaction between ICa and 

IKCa. 

Our results also have implications for the activity of the pyloric network. The 

pyloric network activity is driven by the AB/PD pacemaker group, including one AB 

electrically coupled to two PD neurons. The LP neuron provides the sole chemical 

synaptic feedback to the pacemaker group. Previous studies have shown that it can 

potentially alter the rhythm period generated by the pacemaker group [110]. Other studies 

show that the synapse has no effect in spite of several-fold increases in its strength [131], 

or that the synapse serves to make the rhythm frequency more robust under control 

conditions [132]. My findings suggest that the emergence of antiresonance in the LP 

neuron may act to stabilize the pacemaker group oscillations by preferentially amplifying 

PD resonance by reducing inhibitory feedback at low frequencies.  

The effects on oscillator period through chemical synaptic coupling could be 

partly due to the φ-profile. In model neurons that produce MPR, at some special 

frequency, fφ=0, the neuron will synchronize with its input [73]. In networks of spiking 

neurons coupled with spike-mediated synapses, fφ=0 of individual neurons predicts the 
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frequency of network activity [133]. My study predicted that resonant or antiresonant 

neurons have minimal effect on the frequency of an oscillator neuron at frequencies near 

fφ=0 and antiresonance increased the range of frequencies over which the oscillator period 

was minimally affected (Figure 3.8).  

Additional ionic currents, which contribute amplifying and resonant variables in 

linear models, that change the Z-profile, also affect the φ-profile [8]. We chose to use a 

4D linear model because in 3D models the antiresonance phenomenon is less pronounced 

for increases in a slow amplifying variable that would not affect input resistance [8]. This 

indicated that a combination of resonant and amplifying variables was required to 

generate antiresonance while leaving input resistance unchanged. However, the 

interaction between these two variables in shaping the φ-profile is unclear. Previous work 

showed that the addition of a slow resonant variable to 2D models increases the 

maximum phase advance and increases fφ=0. In contrast, the addition of a slow amplifying 

variable to 2D models seems to have opposite effects [8]. To better understand how these 

two variables interact to shape the φ-profile, additional work should be carried out that 

examines the effects of increasing the values of the effective ionic conductances while 

keeping their sum constant and measuring the effect on attributes of the φ-profile. 

Previous studies have shown some neuromodulators such as proctolin can have 

extensive cellular and synaptic effects on the pyloric network. [13]. Our results suggest 

that a part of these modulatory effects on the neurons of the pyloric network can be 

attributed to alterations in the Z-profile of interacting neurons. I found that at low 

concentrations of 10
-7

 M proctolin there was little effect on the Z-profiles of the PD and 
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LP neurons. However, such concentrations have been shown to affect other aspects of 

pyloric network activity such as phasing of pyloric network neurons [34]. 

5.2.3 Chapter 4: Frequency-dependent Actions of Neuromodulation 

Neuromodulators alter pyloric network output through modification of the properties of 

neurons and synapses [34, 105]. The action of neuromodulators on network output 

depends on prior network activity or state [32, 33]. Similarly, neuromodulators can have 

frequency-dependent effects [35]. In this chapter, I examined the hypothesis that the 

effect of neuromodulators on the activity of individual neurons depends on the frequency 

of oscillation. 

I addressed this hypothesis by recording neuromodulator-activated voltage-gated 

ionic currents using prerecording realistic unitary waveforms in voltage clamp. I 

measured the frequency-dependence in the modulator-activated current by scaling the 

cycle period and measuring changes in the current. To our knowledge, this approach has 

not been used before for the investigation of frequency-dependence of neuromodulation. 

This method opens up future studies to understand the contribution of other 

neuromodulator-activated currents to the generation of rhythmic activity at different 

frequencies. 

Our findings show that the effect of proctolin depends on the frequency of 

membrane potential oscillations. Using realistic LP voltage waveforms I showed that the 

proctolin-activated current in the LP neuron was dependent on the waveform period and 

slope. The largest current response occurred in response to shorter waveform period and 

steep voltage slopes. Modeling using IMI and low-threshold rapidly inactivating calcium 

current ICaProc, similar to T-type calcium currents, showed that the larger response at short 
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waveform periods is due to the rapid time-dependent inactivation and recovery from 

inactivation. Furthermore, the frequency-dependence of Iproc relied on the ratio of ICaProc to 

IMI. The frequency-dependence was contingent upon ICaProc dominating at early phases of 

the cycle period and IMI dominating at later phase due to its persistent activation. This 

suggest that the effects of neuromodulators depend on the frequency of oscillation due to 

the relative contributions of multiple ionic currents with distinct voltage- and time-

dependence. 

Using computational modeling and the dynamic clamp technique, with the LP 

neuron as an example, I showed that the activation of ICaProc produced changes in the 

spiking activity, which depended on the oscillation cycle period. In particular, the larger 

decreases in onset spike phase were seen at short cycle periods. Reduction of T-type 

currents expressed in thalamic reticular neurons increased the threshold for burst firing 

and produced a delay in the onset of bursting [134]. I proposed that this effect was due to 

ICaProc as it depended on inactivation properties similar to other fast-inactivating T-type 

currents [125, 127]. Furthermore, fast inactivating inward currents, which are calcium-

dependent are targeted by neuropeptides in other STG neurons and calcium-dependent in 

addition to IMI [41].  

Our findings suggests ICaProc has properties similar to the T-type calcium currents, 

[125]. The fast recovery from inactivation allows ICaProc to produce an inward current at 

short waveform cycle periods. I showed that, for a given half-inactivation voltage, an 

inhibitory synaptic input would produce the largest current when the cycle period was 

short. The duration of the synaptic input scales with cycle period. Therefore, short cycle 

periods result in short duration synaptic inputs. Such inputs gave larger currents because 
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the inactivation gate was too slow relative to the synaptic input. In contrast, longer 

duration synaptic inputs (corresponding to long cycle periods) allows the relatively quick 

inactivation gate to close, and thus decrease the current. These findings demonstrated that 

the inactivation properties of ionic currents could account for the frequency-dependent 

effects of neuromodulator-activated currents. To our knowledge, the use of realistic 

voltage waveforms at different cycle periods had not been used before to examine 

frequency-dependent properties of neuromodulators. 

My study indicates that ICaProc could lead to post-inhibitory rebound (PIR) burst 

firing. PIR bursting often involves the complementary influence of multiple voltage-

gated ionic currents. Non-inactivating ionic currents move the membrane potential into 

the activation range of additional currents. These currents are usually inactivating T-type 

calcium currents [41, 135]. Previous studies examined the interaction of the non-

inactivating inward current, IMI, with a slowly inactivating inward current and found that 

PIR bursting was promoted by IMI [41]. However, increases in IMI led to decreases in the 

PIR effects of ICaProc, which inactivates much faster than the inactivating current used in 

[41]. Therefore, further work is needed to characterize how the effect of ionic currents 

with different inactivation rates on PIR depends on fast non-inactivating inward currents, 

such as IMI. One could measure the effect of phase as a function of cycle period when the 

inactivation rate of ICaProc is either slow or fast and then show that IMI promotes PIR for 

slower inactivation rates. 

5.3 General Discussion 

There were three separate but inter-related aims of this thesis. The first was to understand 

the biophysical mechanisms that shape the MPR of neurons. The second was to 
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determine if there is a functional role of antiresonance in shaping the activity of 

individual neurons and networks. The third and final aim was to examine the frequency-

dependent actions of neuromodulation. Addressing these aims has led to general insight 

about the underlying mechanisms of frequency-preference in single neurons, its control 

by neuromodulation in distinct neuron types, and the functional consequences for the 

activity of such neurons in an oscillatory network. 

I showed that variability in multiple ionic current properties can be compensated 

for by correlated expression. Correlated expression of ionic current parameters conserves 

multiple MPR features. One outcome of this could be to maintain the equality between 

fres and fφ=0 When this occurs the total amplitude of (one or many) ionic currents is 

largest when it is in-phase with voltage inputs. The kinetic parameters of ionic currents 

shift fres because they shift the phase of ionic currents, which changes the frequency at 

which ionic current is maximum. I believe this to be a general rule for how MPR is 

generated in voltage clamp by one (or many) ionic currents.  

Any ionic mechanism that produces MPR could generate spontaneous membrane 

potential oscillations [42]. Slowly inactivating inward currents, such as low-threshold 

calcium currents, may contribute to both the generation of oscillations and determination 

of the oscillation frequency in the pyloric pacemaker PD neurons. Furthermore, it is most 

likely that the kinetic parameters of such currents are under the control of 

neuromodulators, which regulates the oscillation frequency. Few studies have explored 

the dynamics of calcium currents in stomatogastric neurons (Johnson et al., 2003) and 

their role in the generation of rhythms at different frequencies in this network remains to 

be explored.  
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Our findings indicate novel aspects of neuromodulation, where rich dynamics in 

the rhythmic output of oscillatory networks are produced. First a single neuromodulator 

differentially alters the MPR properties of distinct neurons due to differences in intrinsic 

properties. The functional consequences of changes in MPR on network activity had not 

previously been explored. Using linear models, I showed that antiresonance may have 

profound consequences for the control of stable network oscillations. Secondly, the 

actions of neuromodulators can also be frequency-dependent due to the addition of novel 

time-dependent inward currents. Due to the inactivation properties of neuromodulator-

activated ionic currents onset phase of bursting is preferentially advanced at short cycle 

periods. This could provide an additional mechanism to promote phase maintenance, a 

common phenomenon in the pyloric network whereby neurons maintain burst phase 

across a wide range of network cycle periods.  

In conclusion, this thesis demonstrated that a combined experimental and 

computational approach is an effective way to understand how variability can lead to 

stable activity as seen in the MPR of neurons. Moreover, the use of nonlinear and linear 

modeling provides insights into the mechanisms that control the frequency-dependent 

responses of neurons and provides testable predictions for experimentalists. 
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APPENDIX 

Supplementary Figures pertaining to Chapter 2 

The figures in this appendix relate to supplementary material that accompany chapter 2. 

They are primarily concerned with the role of IH in determining the multiple 

combinations of parameter values that shape MPR in the PD neurons. 

 

 

Figure A1, Changing the value of 
mH

1/ 2V  does not change the correlations observed among the 

model parameters. a. Correlations shown in Figure. 2.8b with 
mH

1/ 2V   at -70 mV. b. Correlations 

obtained with 
mH

1/ 2V   set to -96 mV (red dots). MOEA was run only once in this case, compared to 5 

times in panel a (hence the difference in the number of points). Black dots are the same as panel 

a. Note that the values of Hg in this case are about 10 times larger than those in panel a, but the 

correlations (green boxes) remain intact. More importantly, the range of parameters other than Hg  

is exactly the same in both cases. 
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Figure A2. IH extends the dynamic range of ICa parameters over which ICa-mediated MPR occurs. 

Parameter values for the optimal models in 
hCa

Ca 1/ 2g -V   space shown for all models (grey dots) and 

those without IH (blue dots). We removed IH by setting Hg  = 0, and ran the MOEA multiple times 

using the same Z- and φ-profiles to constrain the ICa parameters.  A linear fit (green) shows that, 

when Hg =0, the relationship between 
hCa

Ca 1/ 2g -V   is linear and matches a narrow range of the high 

Cag values in Figure 2.6c. 
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