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ABSTRACT

ROLES OF COSOLVENTS ON PROTEIN STABILITY

by
Zhaoqian Su

The function of a protein is determined by its three-dimensional structure which

emerges from the delicate balance of forces involving atoms of the protein and the

solvent. This balance can be perturbed by changing temperature, pressure, pH and

by adding organic molecules known as cosolvents to the solution. Despite the wide

use of cosolvents to perturb protein structures in the lab and in living systems, their

molecular mechanisms are still not well established. Understanding these mechanisms

is a problem of substantial interest, with potential application to the design of

new drugs to target proteins. In this dissertation, we probe the role of two major

cosolvents, urea and trimethylamine N-oxide (TMAO) at atomic level.

Urea is widely used as a denaturant in the lab to destabilize native protein

conformations. However, the atomic mechanism of this molecule remains a question

of debate. To unravel its molecular mechanism, explicit all-atom molecular dynamics

simulations of unrestrained and extended poly-alanine and poly-leucine dimers are

performed. Consistent with experimental results, we find that the large non-polar

side chain of leucine is affected by urea whereas backbone atoms and alanine’s side

chain are not. Urea is found to occupy positions between leucine’s side chains that

are not accessible to water. This accounts for extra Lennard-Jones bonds between

urea and side chains that favors the unfolded state. These bonds compete with

urea-solvent interactions that favor the folded state. The sum of these two energetic

terms provides the enthalpic driving force for unfolding. It is shown here that this

enthalpy correlates with the potential of mean force of poly-leucine dimers.

To provide insights into the stabilizing mechanisms TMAO on protein structures,

microsecond all-atom molecular dynamics simulations of peptides and replica exchange



molecular dynamics simulations (REMD) of the Trp-cage miniprotein are performed.

Most previous studies have focused on the effect of this osmolyte on protein backbone.

Our results are consistent with these studies as we show that TMAO induces the

backbone to adopt compact conformations. However, it is shown that effects of

TMAO on the backbone are not dominant. In particular, TMAO′s effect on the

backbone is overcompensated by its destabilizing effect on the hydrophobic core:

non-polar peptides and residues forming the hydrophobic core of the Trp-cage protein

adopt more extended conformations in solutions containing TMAO. It is found that

a main interaction that can stabilize folded proteins are charge-charge interactions.

In light of these results, we propose that competing effects of TMAO on hydrophobic

and charge-charge interactions account for its net stabilizing role on proteins.
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CHAPTER 1

INTRODUCTION

Proteins are the workhorse of the living cell actualizing the information blueprinted in

the DNA [187]. These biomolecules perform and control almost all biological functions

including catalysis (enzymes), transport (hemoglobin), transmission of information

between specific cells and organs (hormones), activities in the immune system

(antibodies), passage of molecules across cell membranes etc. [116]. To accomplish

these tasks, proteins need to adopt a specific three-dimensional conformation, known

as the native state [2]. In solution, proteins exist naturally in dynamic equilibrium

between folded and unfolded states, and this equilibrium can be easily perturbed by

changing temperature, pressure, pH and/or by adding small organic molecules known

as co-solvents to the solution [26]. A main focus of this dissertation is to provide

a molecular understanding of how model cosolvents affect the folding-unfolding

equilibrium of proteins. In particular, we study effects of urea and TMAO, which

are molecules used to destabilize and stabilize native protein structure, receptively.

Understanding roles of these molecules can shed light on the new drug design to

prevent protein conformational diseases

This dissertation is organized as follow. In Chapter 1, we provide an

introduction to protein structure, molecular dynamics simulation and cosolvent effects

on protein stability. In Chapter 2, we describe a framework to compute free-energies

required to form peptide dimers, trimers and tetramers. In Chapter 3, we use this

framework to determine roles of urea on the interaction between extended non-polar

peptides. In Chapter 4, we provide insights into the stabilizing mechanisms of TMAO

on peptides and protein structures. In Chapter 5, we probe in-depth understanding

1



of the stabilizing effects of TMAO on the distance-dependent charged interaction. In

Chapter 6, we propose future research directions.

1.1 Protein Structure
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Figure 1.1 Schematics of amino acids and peptide bond formation. (a) Schematics
of an amino acid: Four groups of atoms that attach to a Cα atom consisting of an
amino acid. (b) Peptide bond.

Structurally, proteins are heteropolymers consisting of the 20 naturally existing

amino acids. Amino acids are made of four groups of atoms connected to a central

carbon (Cα). These four groups are a single hydrogen atom (H), an amino group

(NH2), a carboxyl group (COOH) and a side chain (R) - see Figure 1.1a. What

differentiates the amino acids from each other is the side chain, which are apolar,

polar, acidic or basic. Amino acids can connect to each other via peptide bonds,

in which amino group and the carboxyl group of two neighboring amino acids form

a covalent bond with each other releasing a water molecule in this process - see

Figure 1.1b. This leads to the formation of a long chain as shown in Figure 1.2.

The repeating units −N− Cα − C−O−, which are connected to each other form the

”backbone” of the protein.
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1.1.1 Protein Primary Structure
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O 

Primary structure 
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Figure 1.2 Schematics of a polypeptide chain: A sequence of amino acids linked
together via a peptide bond to form a polypeptide.

The primary structure is the simplest level of protein structure. It corresponds

to the sequence in which the amino acids are linked together by peptide bonds. The

protein sequence is determined by the nucleotide sequence of the segment of DNA

containing the gene that codes for that protein. Each protein has a characteristic

number of residues and amino acid sequence. Figure 1.2 shows the primary structure

and how the peptide bond connects two adjacent amino acids starting from the N

terminus to the C terminus.

1.1.2 Protein Secondary Structure

The next level of protein structure, i.e., secondary structure, refers to a local

description of structure. Localized folding of a peptide chain are held together by

weak bonds, e.g., hydrogen and Van der Waals bonds. Figure 1.3 shows the most

common and important secondary structures which are called α-helices and β-sheets.

For α-helices, the carbonyl group (C = O) of amino acid i is hydrogen bonded

to the amino group (N− H) of amino acid i+4 as shown in Figure 1.3a. This pattern
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Antiparallel β strand 
 

Parallel β strand 

b c 

Figure 1.3 Secondary structures. Alpha-helix, antiparallel β-sheet, and parallel
β-sheet. Dotted lines represent hydrogen bonds. Backbones and side chains are
represented using a cartoon and van der walls representation, respectively

of bonding exerts force on the polypeptide chain into a helical structure that looks

like a curled ribbon, containing 3.6 amino acids per turn. The R groups of the amino

acids extend outward from the α-helix, where they are free to interact.

For β-sheets, two or more extended segments of a polypeptide chain line up

next to each other, forming a sheet-like structure held together by hydrogen bonds.

Hydrogen bonds are formed between carbonyl and amino groups of the backbone,

whereas the side chain extend above and below the plane of the sheet. β-sheets

can be parallel or antiparallel, depending on whether the β-strands run in the same

or opposite directions, respectively. The direction is defined by the amino-carboxyl

orientation of the chain as illustrated in Figure 1.3b,c.

The secondary structure can be approximately described by the backbone

dihedral angles - see Figure 1.4. The dihedral angle around the Cα-C′ bond is called

psi (ψ) and the one around the N-Cα bond is called phi (φ). Because of steric

constraints, not all the combinations of the dihedral angles are allowed. This can

be visualized by plotting the φ and ψ angles against each other in a diagram called

Ramachandran plot. Figure 1.5 shows various regions of the Ramachandran plot

and the secondary structure of a protein to which it correspond. For example, the
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Figure 1.4 Diagram showing backbone diheral angles: the angle of rotation around
Cα-C′ bond is called psi (ψ) and the one around the N-Cα bond is called phi (φ).

φ ∼ −160 and ψ ∼ 160 region corresponds roughly to β strands, φ ∼ −60 and

ψ ∼ −60 corresponds approximately to α helices.

1.1.3 Protein Tertiary Structure

The result of the secondary structure elements coming together in an energetically

favorable way accounts for the tertiary structure, i.e., the three-dimensional shape of

the protein molecule. For example, a tertiary structure can be formed by packing

β-strands into one or many β-sheets with α-helices packed on top of the sheets. For

an illustration of a tertiary structure, a cholesteryl ester transfer protein’s (CETP)

3D structure is shown in Figure 1.6, where the protein is colored according to its

secondary structure segments: β-strands are colored in yellow, whereas α-helices are

shown in purple.

Although the three-dimensional shape of a protein may seem irregular and

random, it is fashioned by many stabilizing and destabilizing forces between protein-
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Figure 1.5 Schematic ramachandran plot indicating allowed combinations of
dihedral angles defined in Figure 1.4. Red, blue and green areas correspond to regular
β strands, right-handed α helices and left-handed α helices, respectively.
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Figure 1.6 Visualization of tertiary structures. β-strands are colored in yellow,
whereas the α-helices are shown in purple.
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protein, protein-solvent, and solvent-solvent interactions. Anfinsen demonstrated that

the primary sequence contains all the information to specify the three dimensional

protein structure. This has given rise to the assumption that determing three

dimensional structure of a protein from its primary sequence is possible.

1.2 Driving Force for Protein Folding

Native protein structures are typically only 5-10 kcal/mol more stable than unfolded

states. This free-energy difference emerges from the sum of several weak interactions

- like hydrogen bonds, ion pairs, van der Waals attractions, and hydrophobic

interactions. These interactions are discussed in more detail below.

1.2.1 Hydrogen Bonds

Antiparallel β-sheet   

Figure 1.7 Schematic diagram showing the hydrogen bond pattern in an antipar-
rallel β-sheet. Oxygen atoms are red; Nitrogen atoms are blue; The hydrogen atoms
are white; The carbon atom in the main chain is cyan; Sidechains are not shown.

Hydrogen bonds play an important role in stabilizing protein structures. This

weak bond is formed when a Hydrogen atom which is bonded to an electronegative

atom (an atom that has relatively more tendency to attract bonding pair of electrons),
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is close to another electronegative atom that has a lone pair of electron. An example

of hydrogen bond that is commonly seen in protein is between NH and O groups of

the backbone. Figure 1.7 shows two peptides are aligned adjacent to each other such

that hydrogen bonds can form between C=O groups of one peptide and NH groups

on the other and vice versa. Compared to covalent bonds, hydrogen bonds are very

weak (1 − 5 kcal/mol) and therefore can be easily destructed by heating up (1kBT

= 0.59 kcal/mol). Unfolding of tertiary and secondary structures of proteins happen

as a result of this phenomenon. Hydrogen bonds are short-range and directional

interactions, as they can only form at distances less than 3 Å and over a restricted

range of angles.

1.2.2 Ionic Bonds (Salt Bridges)

+ 
- 

Arg + - 
Lys 

Glu 

Asp 
Charge-charge interaction reduces  

end-to-end distance of Aβ16-22. 

Salt bridge stabilizes native state  
of Trp-Cage miniprotein. 

 
a) b) 

Figure 1.8 (a) Aβ16−22 peptide and (b) Trp-cage miniprotein.

Ionic bonds are formed between oppositely charged groups in proteins. Ionic

bonds are short-range bonds and they are inversely dependent on the polarity of

the environment around the two charges. For example, the attractive interaction

between two charges buried in the nonpolar interior of a protein is approximately
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twenty times stronger than the attractive interaction between two charges in water.

The dipoles of the water molecules surrounding each charge align in such a way

that the charges are partially attenuated, decreasing the attraction between them.

Because there is no water on the interior of a protein, and because most of the buried

side chains are nonpolar, the interactions between side chains of opposite charge are

highly favorable. We call ionic bonds in proteins salt bridges. Figure 1.8 shows

the conformations of Aβ16−22 peptide with charge-charge interaction and Trp-cage

miniprotein with a key salt bridge. This indicates that charge-charge interaction

between polar residues play an significant role in peptide and protein conformations.

In Chapter 4, we demonstrate the addition of TMAO molecules into water is found

to stabilize compact peptide structures by strengthening charge-charged interactions.

1.2.3 Van der Waals Bonds
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Figure 1.9 Van der Waals forces and Leonard-Jones potential. (a) van der
Waal’s interaction between two methane molecules. (b) The Leonard-Jones Potential
energy between two atoms varies as a function of distance between the two atoms.
Decomposition of the Leonard-Jones Potential energy into repulsive term (blue dashed
line) and attractive term (red dashed line).

Van der Waals forces are caused by correlations in the fluctuating polarization

of nearby atoms. As two atoms approach one another, the electron clouds become
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distorted so that there are transient, complementary dipoles induced in opposing

surfaces. The favorable electrostatic interactions between these flickering dipoles

are weak and act only at very short distances, but they add up so that molecules

with lots of surface area interact strongly. As shown in Figure 1.9a, even though

methane molecule has no net dipole, at an one instant its electron density may

not be completely symmetrical, resulting in a temporary dipole. This can induce

a temporary dipole in another molecule. The weak interaction of these temporary

dipoles constitutes van der Waals forces. Moreover, the surface area of a molecule

determines the strength of the van der Waals interactions between molecules. The

larger the surface area, the larger the attractive force between two molecules, and the

stronger the intermolecular forces.

The attractive part of Lennard-Jones potential is often used as an approximate

model for van der Waal force. The curve in Figure 1.9b (Leonard-Jones Potential)

shows how the potential energy between two atoms varies as a function of the distance

between the atoms. The potential energy between two nonpolar groups in a molecule

varies in the same way. When the nonpolar groups are at far distance, they do

not interact (because they need to be close to distort one anothers electron clouds,

producing those favorable flickering dipoles). As they approach more closely, the

potential energy decreases (which is favorable) until a minimum is reached. Forcing

the groups any closer causes a steep rise in energy (because the electron clouds start

to overlap, which is unfavorable).

1.2.4 Hydrophobic Effect

Hydrophobic interactions are very important driving force for protein folding. They

can be described as the tendency for nonpolar surfaces to interact with each other

rather than with water, i.e., they segregate. This leads to the burial of nonpolar side

chains in the interior of proteins, which in turn leads to a collapse of the protein
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Figure 1.10 Schematic representation of hydrophobic interaction. Hydrophobic
solutes are colored in blue. Water molecules in the solvation shell are colored in red.
Bulk water are shown in green. Arrow shows hydrophobic association and release of
water to the bulk.

from an extended coil to a more compact, globular structure. This hydrophobic

collapse happens not because van der Waals interactions are favorable, but because it

is unfavorable for water molecules to organize around a hydrophobic surface. From the

standpoint of the nonpolar molecule, it is at least as favorable to interact with water

as it is to interact with another molecule like itself. From the standpoint of water,

dipole-dipole interactions (between tow water molecules) are stronger than dipole-

induced dipole interactions (between water and a non-polar molecule). Thus, it is

unfavorable for the hydrogen bonds between water molecules to be disrupted because

a nonpolar molecule is in its way. To avoid this unfavorable situation, the water

molecules become highly ordered around the nonpolar surface, forming structures that

maximizing hydrogen bond formation as shown in Figure 1.10. In other words, water

molecules around nonpolar surfaces are perturbed towards the solid phase, i.e., ice.

This accounts for a reduction in the degree of order in the system which is entropically

unfavorable. To avoid these unfavorable water structures, it is energetically favorable
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to bury non-polar surfaces away from water, i.e., non-polar side chains are buried in

the protein interior. Consequently, the free energy of the system goes down.

1.2.5 Configurational Entropy

Conformational entropy is the major energy term that opposes folding of protein.

When a protein is in unfolded state, it can form any arbitrary conformation of allowed

ψ and φ angles. But when the protein folds into its native state, almost all those

available conformations disappear and the protein can only adopt a reduced set of

conformations. This reduction in available structures of protein is defined by loss

of configurational entropy. As a result, when the folding reaction proceeds, the free

energy eventually decreases as the loss of entropy starts to be compensated by the

favorable hydrophobic and other interactions.

1.3 Molecular Dynamics Simulation

Molecular simulation is a very influential modeling toolbox, which enables us to follow

and understand structure and dynamics with extreme detail, literally on scales where

motion of individual atoms can be tracked [111]. We carry out computer simulations

to understand the properties of assemblies of molecules in terms of their structure

and the microscopic interactions between them.

Computer simulations act as a bridge between microscopic length and time

scales and the macroscopic world of the laboratory: we provide a guess of the

interactions between molecules, and obtain ’exact’ predictions of bulk properties.

The predictions are ’exact’ in the sense that they can be made as accurate as we

like, subject to the limitations imposed by our computer budget. Ultimately, bulk

properties are compared with experimental measurements made on specific materials

to validate initial guesses. From validated simulations, the hidden atomic level detail

behind hulk measurements can be revealed [1, 142]. From validated simulations, the

12



hidden atomic level detail behind bulk measurements can be revealed. We may also

carry out simulations on the computer that are difficult or impossible in the laboratory

(for example, working at extremes of temperature or pressure).

MD simulations fundamentally solve Newtons laws of motion for a set of classical

interacting particles. This generates trajectories for the particles in the system that

can be visualized and used to measure equilibrium and non-equilibrium properties

such as transport coefficients or equilibrium thermodynamic ensemble averages. For

example, to measure the mean value of a quantity X of interest (such as distance,

contacts or binding energy between two molecules), one first records its value Xn at

different times Tn, from which an average can be extracted:

X =
1

K

K∑
n=1

Xn (1.1)

where K is the total number of measurements. X is then the simulation estimate of

the mean value of quantity X in the thermodynamic equilibrium.

1.3.1 Integrating the Equations of Motion

The particles in an MD system may represent for example connected atoms in a

protein, a molecule of gas or some larger-scale coarse-grained entity. For a system of

N atoms, the interactions between particles are specified by the interaction potential

function U(r1,r2 ,...rN) , which is uniquely determined by their positions. The force

Fi on atom i can be written as the gradient of the potential energy U(ri)

Fi = −∂U(ri)

∂ri
, (1.2)

and equation of motion of particle i is given by

Mi
∂2ri
∂t2

= Fi, i = 1...N. (1.3)
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In order to obtain the trajectory of the particles, we need to integrate the above

equation of motion. A straightforward integration scheme that is widely used in MD

simulation is called the Verlet algorithm. The simulation time is discretized into time

steps of equal length ∆t. Taylor expansion of the positions at times (t + ∆t) and

(t−∆t) gives:

ri(t+ ∆t) = ri(t) + vi(t)∆t+
fi(t)

2m
∆t2 +

∆t3

6

...
r +O(∆t4) (1.4)

ri(t−∆t) = ri(t)− vi(t)∆t+
fi(t)

2m
∆t2 − ∆t3

6

...
r +O(∆t4) (1.5)

Adding these two equations, we can obtain

r(t+ ∆t) = 2ri(t)− ri(t−∆t) +
fi(t)

m
∆t2 +O(∆t4) (1.6)

for the position update. Note that the expression for positions of particles are precise

up to the O(∆t4), because the terms proportional to O(∆t3) canceled out. We further

obtain velocity by substracting Equation (1.4) from Equation (1.5) and rearranging

the terms:

vi(t) =
1

2∆t
(ri(t+ ∆t)− ri(t−∆t)) +O(∆t3) (1.7)

The previous integration scheme is equivalently expressed in the so-called Leap-

Frog algorithm:

ri(t+ ∆t) = ri(t) + vi(t+
∆t

2
)∆t (1.8)

vi(t+
∆t

2
) = vi(t−

∆t

2
) + vi(t+

Fi
mi

∆t) (1.9)

which provides the values for position and velocity for each time step. The appropriate

choice of step size ∆t will depend on the particular form of interaction potential

between particles. Choosing ∆t too large will lead to large differences in the
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forces at adjacent time-steps, and generate artifacts because the integrator does not

converge. Typically, the steeper the potential or the higher the temperature the

smaller the maximal time-step. On the other hand, picking too small a time-step will

unnecessarily slow down the simulation, which could mean that the time trajectories

are too short to generate meaningful time averages.

Despite its relative simplicity, the Verlet scheme remains a popular choice for

MD simulations. Higher order integration schemes are useful for reproducing a single

trajectory as accurately as possible for given initial condition, like when navigating a

space probe through asteroid belt. But for sampling thermodynamic properties of a

large molecular system, the Verlet integration has several important properties that

make it a good algorithm. It only requires evaluation of the first derivative of the

potential function, which makes it very efficient, as the force calculation is typically

the most time-consuming part of simulation.

1.3.2 Bonded and Non-bonded Interactions

MD simulations commonly utilize pair-potentials, i.e., the potential energy is

calculated from the sum of two-particle interactions. In order to calculate the

potential energy for a given set of particle coordinates, one must first define the set

of equations (known as force-filed) describing the different interactions that occur in

the system. As an example, Equation (1.10)-(1.12) represent the interaction between

atoms in the Amber force-field:

U = Ubonded + Unon−bonded (1.10)

where Ubonded and Unon−bonded represent covalent and weak interactions in the system

of interest. Energies related to bond vibration, angle vibration, and movement around
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torsion angles of covalently linked atoms are described by:

Ubonded =
∑

bondsKb(r − ro)2 +
∑

anglesKθ(θ − θo)2 +
∑

dihedralsKχ(1 + cos(nφ− δ))

+
∑

impropersKimp(ψ − ψo)2

(1.11)

The first term in this equation accounts for bond stretching between two covalently

bonded atoms i and j as shown in Figure 1.11. Bond-angle vibration between a triplet

of atoms i-j-k is represented by a harmonic potential on the angle θ (second term of

equation 1.11). Improper dihedrals are meant to keep certain groups of atoms in a

plane (e.g. aromatic rings), or to prevent molecules from flipping over to their mirror

images, see Figure 1.12.

i j

i

j

kᶿ

r

Figure 1.11 Principle of bond stretching (left) and angle vibration (right).

i
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j k

l

ij k

l

Figure 1.12 Principle of improper dihedral angles. Out of plane bending for rings
(left), substituents of rings (middle), out of tetrahedral (right). The improper dihedral
angle ψ is defined as the angle between planes (i,j,k) and (j,k,l) in all cases.

The non-bonded potential consists of Lennard-Jones potential followed by the

electrostatic potential:

Unonbonded =
1

2

∑
i

∑
j 6=i

4εij

[
(
σij
rij

)12 − (
σij
rij

)6
]

+
qiqj

4πεrij
(1.12)
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Figure 1.13 Principle of proper dihedral angle.

Differences among the force fields used in MD simulation software are commonly

not in the form of used potential energy function, but rather in the parameter of

the force field. They are optimized by fitting the potential energy function, and

functions derived from it, to target data in the form of experimental data or quantum

mechanical data of model compounds.

1.3.3 Simulating Rare Events

A 
B 

Reaction coordinate ξ 

F/
k B

T 
 

ΔF 

Figure 1.14 Schematic free energy profile as a function of reaction coordinate.
Crossing from state A to state B is slowed down by the barrier.
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If free-energy barriers are much larger than kBT (the typical energy scale in

molecular simulations), then only a very rare fluctuation will allow the simulated

system to cross the barrier, leading to sampling problems. But if you have some

knowledge of the barrier, then progress can be made to accelerate the simulation.

Several such techniques are described below. But first, to characterize a barrier,

choose a reaction coordinate ξ and plot the free energy F(ξ), as shown in Figure 1.14.

The energy minima separated by a barrier can represent for example different

conformational states of a molecule, or a system with unbound and bound ligand

respectively. The reaction coordinate ξ characterizing the transition can be for

example torsional angle or distance between a receptor and a ligand. It is very

important to pick a suitable order parameter to describe the desired transition.
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1-dimensional free-energy landscape

umbrella sampling potential

biased free-energy landscape

+

=

Figure 1.15 An example of 1-dimensional free-energy landscape (shown in red).
Biasing umbrella sampling potential (green) is shown as well as the resulting biased
free-energy landscape (blue).

Umbrella Sampling Method Umbrella sampling is one of the most straight-

forward method to overcome high barriers. This method introduces a biasing potential
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to the Hamiltonian of a system, which depends on the reaction coordinate ξ and is

designed to raise probability of unlikely events. Figure 1.15 shows how umbrella

potential (green) changes the shape of the underlying free-energy landscape (red)

such that high-energy structures are sampled more frequently.

The resulting ensemble of modified Hamiltonian, shown in Equation 1.13,

includes more conformations around region what are rarely sampled by traditional

MD simulations. However, the statistics calculated from an umbrella sampling

simulation correspond to the Hbias Hamiltonian in Equation 1.13, where the physical

system actually obeys the Horig Hamiltonian.

Hbias(r) = Horig(r) +
1

2
k(ξ − ξo) (1.13)

Horig is the original, unbiased Hamiltonian, k is the strength of the harmonic bias, ξ

is the reaction coordinate, ξ0 is reference point. Since the exact biasing potential is

known, and the sampling provides information about the total biased Hamiltonian,

we can use the information to infer the original Hamiltonian along the PMF that

our simulation has successfully characterized through sampling. However, since the

umbrella potential increases monotonically on the umbrella center, configurations far

away from that center will be sampled insufficiently, leading to poor convergence in

those regions. To overcome this issue, a series of umbrella sampling simulations are

conducted in intervals along the reaction coordinate (called windows), which are used

to assemble pieces of the PMF near the center of the respective umbrellas. These

pieces are then stitched together to approximate the total, unbiased PMF. The free

energy of the biased potential along the PMF is related to the probability density

function at that point according to

Pbias(ro) =

∫
exp(−βHbias(r))δ(r − ro))dr

exp(−βAbias(ro))
(1.14)
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where P is the probability distribution function, δ is the Dirac delta function that to

extract only those ensemble members that correspond to the specific point ro on the

PMF, and A is the free energy along the PMF at that value. The unbiased probability

distribution, which is directly related to the unbiased free energy up to an arbitrary

constant, can be estimated according to

Punbias(r) = exp(−β(Abias − Aunbias))exp
[
β(

1

2
k(ξ − ξo))

]
Pbias(r) (1.15)

where A is the Helmholtz free energy along the PMF. The unbiased probability

distribution function is estimated for each window, and must be recombined to

calculate the full PMF.

Replica Exchanges Molecular Dynamics In traditional MD simulations, one

trajectory was generated under one condition or some conditions that were set, one

big problem about such simulation is the lack of efficiency in sampling the canonical

distribution due to the trapping into a large number of local minima, which slow

this sampling of phase space. Several attempts have been made to overcome this

problem. One of them is Replica Exchange Molecular Dynamics (REMD). In this

method as shown in Figure 1.16, a series of simulations are conducted parallelly at

different temperatures, and exchanges of configurations are attempted periodically.

Since the time needed to travel across the barrier is ∝ exp(∆F/kBT ), it will be

less difficult to cross the barrier at higher temperature. Parallel tempering utilize this

principle by coupling simulations at multiple temperatures. The higher temperature

is beneficial for the system to escape local free-energy minima, while simulations at

the lower temperature T of interest produce the correct ensemble averages.

In this scheme, n simulations (MD or MC) are run parallelly at temperatures

T1 < T2 < T3 < ...Tn, respectively. After the certain steps, two neighboring

temperatures Ta < Ta+1 are chosen and configurations are swapped with desired
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Figure 1.16 Schematic of a replica exchange molecular dynamics simulation.
Replica are represented as red, blue and silver arrows at their corresponding
temperature. The exchange attempts are shown between adjacent replicas connected
by orange arrows.

exchange probability that meets detailed balance condition

p = min

(
1, exp

[(
1

kBTa
− 1

kBTa+1

)(
V
(
rNa
)
− V

(
rNa+1

))])
(1.16)

where V
(
rNa
)

and V
(
rNa+1

)
represent the potential energy evaluated for the configu-

ration of particles in a-th and a+1-th replica, respectively. In the variant of parallel

tempering for MD, called replica exchange molecular dynamics (REMD) [182], it is

further necessary to rescale velocities of particles by a factor
√

Ta
Ta+1

for configuration

which was at Ta+1 prior to accepting the exchange, and by an inverse factor for

velocities of configuration originally at Ta

Since the probability of accepting a configuration swap will drop fast to zero if

Ta and Ta+1 are excessively far apart, adding more intermediate temperatures can be

more efficient than running just two replicas at T1 and Tn. A key input parameter

for a replica exchange simulation is the number of replicas and range of temperatures
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to be covered by those replicas. Even though more replicas are more expensive, but

closer temperatures result in larger acceptance rates for replica swaps. So the number

of replicas needs to be optimized to attain the most efficient simulation.

1.4 Cosolvent Effects on Protein Stability

In solution, folded and unfolded states of proteins exist in a dynamic equilibrium.

This equilibrium can be easily perturbed by the addition of small organic molecules

known as co-solvents to the solution[26]. The underlying molecular mechanism of

these cosolvents is a question of debate [173]. Here, we review current ideas on

various aspects of cosolvents on protein denaturation and stabilization.

1.4.1 Protein Folding Equilibrium and Cosolvents

As for any chemical equilibria, protein folding and unfolding transitions can be

characterized by thermodynamic parameters. In particular, the difference in Gibbs

free energy between folded and unfolded states quantifies the stability of the native

state for proteins that fold without intermediate structure. For these two states, the

folding equilibrium can be written as:

U
kf
⇀↽
ku
F, (1.17)

where U and F denote unfolded and folded states, respectively. kf and ku are

the folding and unfolding rates, respectively. These quantities determine the Gibb

free energy of folding, as well as the concentration of folded and unfolded proteins

according to the following equations:

∆G = −RT ln
kf
ku
, (1.18)
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[F ]

[U ]
=
kf
ku
, (1.19)

where [F ] and [U ] are the concentrations of folded and unfolded protein, respectively.

The equilibrium concentrations of the folded and the unfolded species are reached

when they match the rates of conversion from one species to the other.

Figure 1.17 Schematic free energy landscape of a protein in water that exhibits
two-state folding. The reaction coordinate ξ represents the averaged folding/unfolding
pathway.

Proteins that exhibit two-state folding transitions have a relatively smooth

free energy landscape with two minima along the folding pathway. The free

energy barrier that separates the two minima corresponds to the transition state

(TS) [104]. A schematic free energy landscape of a protein that exhibits two-

state folding is displayed in Figure 1.17. The equilibrium between folded and

unfolded protein structures is governed by the interplay between protein-protein

interactions, solvent-solvent interactions, protein-solvent interactions and the config-

uration entropy. Folding of a protein increases the number of protein-protein contacts

and solvent-solvent contacts. Unfolding, on the other hand, increases the number of

protein-solvent contacts and the configurational entropy of the system. The stability

of a folded protein is affected by the addition of cosolvents to the solution. Cosolvents
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that shift the equilibrium toward the unfolded ensemble are termed denaturants, e.g.,

urea, whereas those that favor the folded ensemble,e.g. are known as protecting

osmolytes. Thus, the equilibrium can be tuned in either direction, depending on the

identity of the cosolvent. Below we discuss effects of urea and TMAO on the stability

of the native state.

Urea Trimethylamine oxide

Figure 1.18 Atomic structure of urea (denaturant) and TMAO (protecting
osmolyte). Carbon is shown cyan, nitrogen in blue,oxygen in red, and hydrogen
in white.

1.4.2 Proposed Mechanisms for Urea-Induced Denaturation

Urea molecule is widely used as a denaturant in the lab whereby it perturbs native

protein conformations to favor the unfolded state [78, 26]. However, urea’s atomic

mechanism has been a question of debate since its effect was quantify in the 60’s

[173]—although important insights have been obtained recently [76, 26, 81, 58, 80].

Urea may impede the formation of native structures either by forming strong bonds

with the protein (direct mechanism) [28, 178, 83, 81, 109, 156, 123, 105, 130, 46]

or by modifying the structure of water accounting for different solvation properties

(indirect mechanism) [67, 15, 88, 44, 63]. Moreover, it is still not clear whether
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urea affects mainly the backbone or side chains of the protein. Answers to these

open questions can be obtained using simplified computational frameworks that can

quantify interaction strengths in the solvent and protein at the atomic level.

In recent years, several studies have emerged showing that, in solution, urea

can replace water without changing significantly its structural properties since both

molecules are highly polar [177, 173, 95, 155, 102, 83, 9, 90]. This has been a strong

argument against urea’s indirect mechanism which assumes that the formation of

water structures is disrupted by this molecule [67, 129]. Urea’s direct mechanism is,

therefore, gaining increased acceptance in the scientific community. In particular, it is

supported by explicit all-atom computer simulations [28, 178] wherein urea is shown to

form strong non-bonded interactions with the protein providing the driving force for

unfolding. Some studies indicate that these protein-urea interactions emerge mainly

from hydrogen bonding with the backbone [18, 109, 57, 123, 9] whereas others point to

dispersion interactions with non-polar groups of the proteins [159, 206, 102, 158, 80].

Separating contributions from backbone and side chain atoms is not an easy task

even in computer simulations that have access to atomic detail [28, 81, 18].

Traditionally, model compounds have been used to estimate interaction strengths

between different chemical groups in proteins [177, 156, 140, 170, 193, 179]. In

particular, free-energies to transfer non-polar amino acids from pure water to urea

solutions were shown to be negative implying that urea solutions can accommodate

non-polar amino acids better than pure water [140]. As a result, hydrophobic inter-

actions are weaker in urea solutions and this could account for protein denaturation.

Small non-polar compounds (e.g., methane and alanine) as well as glycine were not

found to be significantly affected by urea [140]. Computer simulations of model

compounds point to the same conclusion [170, 193] but also highlight strong hydrogen

bonding of urea with small charged solutes [57].
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Different conclusions can be drawn from studies of simple model compounds

because they do not account simultaneously for contributions from backbone and

side chain atoms in the same proportion as in real proteins. Moreover, solvation

of side chains are affected by the backbone as reported in a recent study [192, 77].

These limitations of model compounds can be overcome by studying homopeptides

[81, 179, 102, 130]. Recently, Horinek and Netz computed free-energies τ to transfer

homopeptides from pure water to aqueous solutions containing urea using all-atom

molecular dynamics simulations and different force-fields [81]. Direct and indirect

effects of urea were singled out by differentiating τ with respect to urea concentration.

This provided important insights into effects of force-fields on urea’s mechanism [81].

In Chapter 3 of this dissertation, we study effects of urea on non-restrained

poly-glycine, poly-alanine, and poly-leucine monomers as well as on the interaction of

extended poly-alanine and poly-leucine dimers. For the extended dimers, we compute

the free-energy required to bring two peptides that are initially non-interacting all the

way to a distance ξ, i.e., we compute potentials of mean force (PMF). Our choice of

peptides and approach allows us to probe the effect of urea on two types of interactions

that are essential to account for protein folding, i.e., hydrophobic interactions between

side chains of alanine and leucine residues and interactions between backbone atoms.

Notice that, in addition to non-polar residues, urea has also been shown to bind

favorably to polar and charged residues [177, 178].

1.4.3 Proposed Mechanisms for TMAO Stabilization

The stabilizing effect of TMAO on native structures is often explained by its exclusion

from the vicinity of the protein surface [41, 110, 171] due to favorable TMAO-water

interactions [86, 16, 211, 132, 162, 99, 167]. Exclusion may be more pronounced close

to the main chain of the protein, i.e., the backbone [167, 21, 7, 8, 6]. This explains the

adoption of more compact conformations by poly-glycine (which is commonly used
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as a model of the protein backone) in aqueous TMAO solution compared to pure

water [82, 181]. Despite these results, TMAO exclusion from the protein surface as

a mechanism to protect the native state has been challenged by recent studies. In

particular, computer simulations and experiments have shown that TMAO stabilizes

compact conformations of some non-polar polymers through direct interactions [157,

131]. Other studies have suggested that protecting effects of TMAO emerge because

this molecule acts as a crowding agent [120] and/or by weakening the strength of

hydrogen bonds between the protein and water molecules [120]. Effects of TMAO

were also reported to emerge from favorable interactions of this osmolyte with the

heterogeneous protein surface that is generated upon folding [108]. In later studies,

TMAO was not excluded from air-water or polypeptide-water interfaces which is a

result supported by both experiments and computer simulations [64, 162].

Previous studies have shown that TMAO has little effect on the strength of

hydrophobic interactions between small hydrophobic compounds, e.g., methane (CH4)

[4, 5], whereas this osmolyte has a non-zero effect on larger non-polar molecules, e.g.,

neopentane (C4H12) [68, 157]. Effects on the latter depends on the force-field used to

simulate TMAO. In particular, studies using a five-site model for neopentane reported

that the penalty for transferring this non-polar molecule to water was reduced

and increases when simulations were performed using Kast and Netz force-fields

for TMAO, respectively [68]. This implies that hydrophobic interactions can be

made stronger or weaker with the addition of TMAO to the solution depending on

simulation parameters. Effects of Kast TMAO on the interaction between a pair

of neopentane molecules modeled as a simple Lennard-Jones sphere have also been

studied showing that this osmolyte weakens hydrophobic interactions [144]. Recently,

Kast model was shown to reproduce experimental properties of binary water-TMAO

solutions [124]. However, Netz model may provide a more realist description of
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proteins in water-TMAO solutions as it was calibrated to reproduce experimental

transfer free-energies of poly-glycine from pure water to TMAO solutions [167].

In Chapter 4, we highlight the effects of TMAO on the molecular forces

stabilizing native protein structures by studying small peptides and the Trp-cage

miniprotein. Consistent with other studies [82, 37], we find that TMAO favors

compact conformations of a peptide model of the protein backbone, i.e., poly-glycine.

However, the addition of even the smallest non-polar side chain (i.e., –CH3 group

of alanine) to the backbone counteract this effect while larger non-polar side

chains account for peptide swelling. This suggests that TMAO can destabilize the

hydrophobic core of proteins. We also study conformations of non-polar peptides with

charged terminal residues. We find that these peptides become more compact when

TMAO is added to water due to stronger interactions between charged residues.

In light of these results, we hypothesize that competition of TMAO’s effect on

hydrophobic and charged interactions accounts for its net stabilizing role in proteins.

Extensive replica exchange molecular dynamics (REMD) simulations of the small

Trp-Cage protein in pure water and TMAO solution are performed to test this

hypothesis. Accordingly, we find that residues that form the hydrophobic core of

Trp-cage sample more extended conformations while distances between its charged

residues decrease when TMAO is added to water.
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CHAPTER 2

DRIVING β-STRANDS INTO FIBRILS

2.1 Introduction

The hierarchical organization of building blocks into complex supra-structures is a

recurrent theme in biology. At the molecular level α-helices and β-strands are building

units that pack into globular shapes forming the native state of proteins [146, 145].

The length of these units and their packing topology accounts for the diversity of

known protein folds. The formation of protein cross-β or fibril structures is a simpler

case of hierarchical organization in which β-strands building blocks are identical [56,

71, 137, 148]. These conformations have received a lot of attention as they are linked

to diseases like Alzheimer’s and Parkinson’s [55]. Despite these studies, it is still not

clear what are the forces driving peptides into β-sheets and fibrils, and how they differ

from the ones driving residues into globular proteins [166]. This is of fundamental

importance to understand the pathology of diseases and it is the focus of the present

work.

Under appropriate experimental conditions, X-Ray patterns corresponding to

cross-β structures have been identified for proteins with seemingly unrelated amino

acid sequences [60, 59, 164, 194]. This ubiquity suggests that backbone properties

(which are common to all proteins) could be responsible for fibrils [60]. Accordingly,

energetic models of the Protein Data Bank (PDB) have shown that the free-energy

landscape for misfolding is dominated by interactions involving backbone atoms [65,

33]. In this framework, the role of sidechains is to modulate the propensity of fibril

formation [36]. In particular, experiments have shown that mutations accounting for

an increase in the concentration of non-polar residues in the fibril core have a higher

fibrillization rate [141, 45, 70] while an increase in the net peptide charge has the
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opposite effect [35]. This has lead to the formulation of the amyloid self-organization

principle according to which fibril stability is enhanced by maximizing the number

of hydrophobic and favorable electrostatic interactions (including salt bridges and

hydrogen bonds) [190, 189, 175]. Despite these insights, the question of how backbone

and sidechain atoms contribute to fibrillization is still open.

Thermodynamics provides a quantitative framework to study the forces driving

conformational changes in proteins [2]. These phenomena are often described by a

two-state reaction equation with an equilibrium constant, K, that can be measured

and used to compute differences in Gibbs free energy, ∆G = −RT ln(K) [150].

These free energy differences result usually from the sum of large opposing terms.

For example, in protein folding at ambient conditions the entropic energy (−T∆S)

favors the unfolded state while enthalpy (∆H) favors the native state—each term

contributing ∼ 100− 200 kcal/mol and resulting in ∆G ∼ 10 kcal/mol [23, 24, 150].

Main contributions to −T∆S comes from mainchain (−T∆Smainchain) and water

molecules around the protein (−T∆Swater) which favor, respectively, unfolded and

native states. ∆H emerges from changes in energy due to covalent-bonds (∆HCB)

and non-covalent-bonds (∆HNCB). Thus,

∆G = −T∆Smainchain − T∆Swater + ∆HCB + ∆HNCB. (2.1)

The four terms in the right-hand-side of Eq. 2.1 are not directly accessible exper-

imentally. This has led to controversies in molecular interpretations of measured

−T∆S and ∆H. For example, in protein folding at ambient conditions, the entropic

energy of water molecules around non-polar groups, which gives rise to hydrophobic

interactions [66], is believed to be the main force driving protein folding [98, 53, 107].

However, −T∆S, which is the entropic quantity that can be measured experimentally,

appears unfavorable to the folded state. This is because it is dominated by
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−T∆Smainchain. Thus, studies aiming to describe protein folding have shifted back

and forth between sidechain and backbone centered views [118, 161, 21].

In protein folding, the importance of hydrophobic interactions can be inferred

from the positive curvature of ∆G with respect to temperature [150, 98, 51, 13] which

is characteristic of non-polar solvation and accounts for heat and cold denaturations

of proteins [50, 49, 52]. Also, the diversity of native folds can only be encoded in

the amino acid sequence, suggesting that sidechain properties and, in particular, the

burial of non-polar sidechains in the dry protein core has to be responsible for folding.

Currently, it is still a question of debate how intra- and inter-peptide hydrogen bonds

contribute to secondary-structure formation [12]. It is being argued that hydrogen

bonding are stabilizing [69, 160] and destabilizing [119, 205]. This question is of

fundamental importance to understand fibril formation as inter-peptide hydrogen

bonds are maximized in these structures.

Here we study fibril formation using extended poly-alanine peptides as unit

blocks for aggregation and an umbrella sampling protocol to compute free energies to

form peptide dimer, trimer, and tetramer. The latter can be considered the smallest

repeating unit of a fibril. We find that Lennard-Jones and electrostatic energies of

chemical groups in the protein and solvent are one order of magnitude larger than the

overall enthalpy of the system. Thus, small errors in modeling these interactions can

account for large errors in the total enthalpy of the system—highlighting the need for

accurate models. We show that the total average number of hydrogen bonds in the

system does not change during aggregation as the result of a compensatory mechanism

where the formation of one inter-peptide hydrogen bond accounts for the rupture of

two peptide-water bonds and the release of water molecules from the neighborhood

of the peptide leading to the formation of one extra water-water bond [98, 62, 61,

185, 94]. A consequence of this compensation is that electrostatic energies related

to hydrogen bonds are not minimized during fibril formation. Thus, hydrogen bonds
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do not drive fibril formation. However, we argue that inter-peptide hydrogen bonds

play an important role in fibril formation since aggregation without the formation

of these bonds is energetically prohibitive. Both mainchain and sidechain atoms

contribute actively to minimize Lennard-Jones interactions during fibril formation.

This knowledge of how different chemical groups of the protein contribute to minimize

the energy of the system is of fundamental importance to develop strategies to inhibit

fibrilization related to diseases and to develop better coarse-grain models of proteins.

2.2 Methodology

The system studied in this work consists of up to four poly-alanine peptides, i.e.,

ALA10, immersed in a periodic box containing 5,500 TIP3P water molecules (0.03

M peptide). Poly-alanine peptides have been shown experimentally to aggregate and

to form fibrils at conditions of 10 µM peptide, pH 7, 0.1 M salts at 25◦C [17]—see

also [59]. In our simulations, peptides are made “infinite” through the use of periodic

boundary conditions by attaching the carbonyl-group of residue 1 to the amine-group

of residue 10 in the z-direction. The use of “infinite” peptides eliminates effects from

chain ends causing all residues to be equivalent and to resemble amino acids in the

middle of a β-strand. A pressure of 38 bar is applied along the z-direction to keep the

box from collapsing. The magnitude of this pressure is chosen to ensure an average

peptide length of ∼ 3.5 nm. Therefore, peptides are stretched in our simulations.

Notice that the main energetic term opposing aggregation in Eq. 2.1 is the reduction

in the entropy of the mainchain. This “dissociation” force is not taken into account

in our simulations since mainchain entropies of stretched peptides are essentially

the same in all states implying that −T∆Smainchain = 0 in Eq. 2.1. Our simulation

setup is designed to describe “aggregations” forces, i.e., changes in the enthalpy of

peptide/water and entropy of water (∆HCB, ∆HNCB, and −∆Swater in Eq. 2.1) when

solvated amino acids are brought to interact with each other.
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a b c

Figure 2.1 Schematic representation of the reaction coordinate used to study the
formation of peptide dimer (a), trimer (b), and tetramer (c).

A pressure of 1 atm is applied along x and y directions to account for water

density at ambient pressure. Simulations are carried out using GROMACS and the

Amber99-sd-ildn forcefield [113]. Temperature (298 K) and pressure are controlled

using the v-rescale thermostat (τT = 1 ps) and the Parrinello–Rahman barostat (τP =

1 ps), respectively. A time step of 2 fs is used and the neighbor list is updated every

10 steps. Electrostatics is treated using the Smooth Particle Mesh Ewald method

with a grid spacing of 0.13 nm and a 1.3 nm real-space cutoff [20].

To determine the free-energy landscape of peptide tetramer formation, we

perform three sets of simulations containing two, three, and four peptides, respec-

tively. In the first set, peptides are arranged in an anti-parallel orientation and an

umbrella sampling protocol is used to sample the space given by the distance between

centers-of-mass of peptides (ξ2 in Figure 2.1a) in the range 0.4 nm to 2.0 nm. Different

windows in which peptides are restrained by a spring that has a constant of 5,000 kJ

mol−1 nm−2 are simulated. Equilibrium distances of springs in neighboring windows

differ in steps of 0.05 nm. Each window is simulated for 100 ns and the Potential

of Mean Force (PMF) to form a dimer is computed using the Weighted Histogram

Analysis Method (WHAM) [84]. In coarse-grained simulations, fibrillization was

found to start with the formation of anti-parallel structures follow by a transition

to parallel conformations after enough peptides are added to β-sheets [10, 139]. This
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suggests that parallel β-structures are less stable than anti-parallel ones when sheets

are formed by a small number of peptides while the opposite is expected for large

sheets. For poly-valine, the number of peptides required to stabilize parallel β-sheet

was found to be 14 [10].

To perform the second set of simulations, a peptide is added to the simulation

box of the dimer. In these simulations, a spring is used to restrain centers-of-mass

of the dimer at a distance corresponding to the minimum of its PMF. Umbrella

sampling simulations are repeated for this new system to sample the distance between

centers-of-mass of a reference peptide in the dimer and the additional chain (ξ3 in

Figure 2.1b). Configurations from these simulations are used to compute the PMF

of trimer formation using WHAM. At last, the trimer is restrain to the configuration

corresponding to the minimium in its PMF using two springs connecting a reference

peptide to the other two chains. A peptide is added to the simulation box which

now comprises two sets of anti-parallel peptides. Umbrella sampling simulations are

performed using the distance between the reference peptide in the trimer and the

added chain as the new reaction coordinate (ξ4 in Figure 2.1c). The PMF to form a

tetramer is computed using WHAM.

To define hydrogen bonds, we employ a commonly used geometrical definition

in which these bonds are formed when the distance between hydrogen (H) donor (D)

and acceptor (A) is smaller than 0.4 nm and the angle H-D-A is smaller than 30o.

In the calculation of quantities involving solute–solvent and solvent–solvent atoms,

all solvent (water) molecules were taken into account. In the calculation of spatial

distribution functions of water—see Figure 2.4—the simulation box was divided in

bins of length 0.02 nm. Spatial distribution functions are given in units of the ratio

of the density of water in the simulation and the density of water of an ideal fluid for

each bin.
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2.3 Results

In Figure 2.2a, we show PMF(s) of peptide dimer, trimer, and tetramer. These

three PMF(s) are computed separately as described in the methodology section and

the continuous reaction coordinate ξ is obtained by concatenating inverted order

parameters of peptide dimer (ξnew2 = 2.0− ξ2), trimer (ξnew3 = 2.0− ξ3), and tetramer

(ξnew4 = 2.0 − ξ4). In this procedure, the PMF of the peptide trimer at ξnew3 = 0.0

is shifted to match the minimum in the PMF of the peptide dimer. Similarly for

the tetramer: its PMF at ξnew4 = 0.0 is shifted to match the free-energy minimum of

the trimeric system. This concatenation procedure describes the assembly of fibrils

through monomer addition [38, 79] where peptide dimer is formed first followed by

docking of a third peptide and subsequent tetramer formation.

In Figure 2.2b we show how numbers of hydrogen bonds in the system change

during peptide dimer, trimer, and tetramer formation. The number of hydrogen

bonds for isolated peptides is used as a reference, i.e., NHbond(ξ = 0) ≡ 0. For all

values of ξ, the total (or net) number of hydrogen bonds does not change significantly.

A similar behavior was reported recently for β-hairpin formation of GB1 peptide [134]

and β-sheet formation of model peptides made of glycine, alanine, valine, and leucine

residues [133]. To understand this result in more detail, we decompose the total

number of hydrogen bonds into contributions from peptide-peptide, peptide-water,

and water-water bonds. We observe an almost perfect compensatory mechanism

[98, 62, 61, 185, 94] where the formation of one peptide-peptide hydrogen bond is

preceded by the rupture of two peptide-water bonds accounting for water release into

the bulk and the formation of one additional water-water bond. Notice that during

peptide trimer formation (at ξ ∼ 2.8 nm) the third peptide docks onto the dimer (i.e.,

β-sheet) without forming inter-peptide hydrogen bonds—see Figure 2.1. This process

involves displacement of water molecules from the space between sidechains in the

β-sheet (see “HB” configuration in Figure 2.4a) to the bulk during docking. In this
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Figure 2.2 Potential of Mean Force (a), number of hydrogen bonds (b), and
potential energy (c) to assemble β-strands in a hierarchical process. These
quantities were computed with respect to their values at non-interacting peptide
conformations (ξ = 0). Number of hydrogen bonds was divided into contributions
from peptide-peptide (pp), water-water (ww), and peptide-water (pw). The net
number of hydrogen bonds is also shown. The potential energy was divided into
electrostatic and van der Waals contributions. Dashed lines separate simulations of
dimer (left), trimer (middle), and tetramer (right). Error bars were estimated from
block averages by dividing the simulation in five blocks.
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case, rupture of peptide-water hydrogen bonds during docking of the third peptide

is compensated by newly formed water-water bonds. The generality of the observed

hydrogen bond compensation for peptides with different amino acid sequences and

situations might be due to the small size and polarity of water which can penetrates

small cavities to saturate non-satisfied hydrogen bonds.

In all-atom models, hydrogen bonds emerge from electrostatic interactions

involving X–H· · ·Y chemical groups, where X and Y are electronegative atoms and

H is hydrogen. Thus, if hydrogen bonds are a main force driving aggregation, the

electrostatic energy is expected to correlate with the PMF, i.e., it should decrease

whenever the PMF become a minimum. In Figure 2.2c, we show the dependence

of the electrostatic energy of the system on the reaction coordinate ξ. It does not

correlate with the PMF being mostly indifferent to tetramer formation. In contrast,

the energy due to Lennard-Jones interactions is favorable to peptide aggregation.

As a result, the sum of Lennard-Jones and electrostatic energy, i.e., non-bonded

interactions, is favorable to aggregation.

Figure 2.3 quantifies contributions of different chemical groups to changes in

electrostatic and Lennard-Jones energies. Panel a shows a compensatory mechanism

for electrostatic interactions where unfavorable mainchain-water interactions are

balanced by favorable water-water and mainchain-mainchain interactions. Since

Nitrogen and Oxygen are mainchain atoms contributing the most to the peptide’s

electrostatic energy, the observed compensatory mechanism for the electrostatic

energy can be mapped to the formation of one inter-peptide hydrogen bond which

requires breakage of two peptide-water hydrogen bonds and subsequent formation of

one water-water hydrogen bond. Moreover, the total change in electrostatic energy

emerging from these contributions is approximately zero—as shown in Figure 2.2c.

Hence, it is not expected to drive aggregation. However, a hypothetical process in

which mainchain NH– and CO– groups are buried away from water without forming
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inter- or intra-peptide hydrogen bonds would increase the electrostatic energy by a

prohibitive large amount, i.e., Eelect.
Sol−Main+Eelect.

Sol−Sol ∼ 9.4 kJ/mol/residue. This suggests

that a main role of inter- and/or intra-peptide hydrogen bonds is to penalize structures

for which the overall number of hydrogen bonds in the system is not optimized.

Notice that in implicit water models the formation of mainchain hydrogen

bonds is taken into account by a decrease in the energy of the system [174]. This

favors peptide conformations with optimized secondary structures. This approach was

successful in predicting the structure of various non-amyloid [200, 31, 126, 125, 163]

and amyloid [30, 54] peptides. But, this description of hydrogen bonds does not

mimic the energetics of explicit water simulations as described above. Thus, there is

a trade-off between being accounting for the entropic contribution of the backbone

using implicit water coarse-grained models and describing with greater accuracy

non-covalent interactions using all-atom models. A successful strategy could be to

combine these two approaches [135].

Figure 2.3b shows how burial of sidechain and mainchain atoms away from

water during aggregation affects Lennard-Jones interactions. In this process, water

molecules are transferred to the bulk accounting for a modest decrease in Lennard-

Jones energy. This change is comparable to the reduction in Lennard-Jones energy

due to sidechain-sidechain interactions. Main contributions to changes in Lennard-

Jones energy are due to water-mainchain, water-sidechain, mainchain-mainchain, and

mainchain-sidechain interactions. Breaking bonds between water and peptide atoms,

i.e., water-mainchain and water-sidechain bonds, accounts for a large increase in

Lennard-Jones energy. However, this process is overcompensated by the favorable

formations of new bonds between atoms of the peptide, i.e., mainchain-mainchain

and mainchain-sidechain. This leads to a net Lennard-Jones energy that is favorable

to aggregation—as shown in Figure 2.2c.
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Figure 2.3 Contribution of different chemical groups of the protein and solvent
to tetramer formation. Electrostatic (a), Lennard-Jones (b), and non-bonded-
interactions (c) are decomposed into solvent-solvent (black), solvent-mainchain (red),
solvent-sidechain (green), mainchain-mainchain (blue), mainchain-sidechain (orange),
sidechain-sidechain (brown) contributions.
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Figure 2.3c shows the sum of Lennard-Jones and electrostatic energies, i.e.,

non-bonded energies, for interactions between the different chemical groups of the

system. The overall non-bonded energy is favorable to aggregation (as displayed in

Figure 2.2c) and Figure 2.3c shows that it emerges from large contributing terms that

have opposite signs. Contributing terms are one order of magnitude larger than the

overall non-bonded energy. This highlights the importance of using accurate models

since small errors in modeling the strength of one bond can produce large errors in

the total enthalpy of the system.

In Figure 2.4 we show the spatial distribution of water around ground states of

peptide dimer (panel a), trimer (b), and tetramer (c). First column corresponds to a

cross-sections of the peptide’s main axis. In an anti-parallel β-sheet, residues along

a strand can either be hydrogen-bonded to the neighboring strand or non-hydrogen-

bonded [32, 87]. Sidechains of hydrogen-bonded residues all face the same direction

which is called the hydrogen-bonded face (HB) of the β-sheet. Similarly defined is the

non-hydrogen-bonded face (NHB). A detailed analysis of water distribution around

a β-sheet for different non-polar amino acids was reported recently [196]. It showed

that water distribution is different at HB and NHB faces. This result was particularly

striking for leucine and valine residues. For alanine, polar groups of the mainchain are

more exposed to water at the NHB face compared to HB. Thus, water molecules were

shown to penetrate deeper in the space between sidechains at the NHB face. This

result is visible in the cross-section view of dimers and tetramers where iso-surfaces

are more pronounced and penetrate deeper between sidechains at the NHB face. At

the HB face, distributions of water in addition of being perpendicular to the axis of

the peptide also have a parallel component which enhances electrostatic interactions

between water and polar groups of the mainchain that are partially buried between

Cα atoms. The lateral view (last column in Figure 2.4) shows a more pronounced

distribution of water facing NH– groups of the mainchain compared to CO– groups.
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Figure 2.4 Iso-surface of water distribution around the ground state of dimer (a),
trimer (b), and tetramer (c). Columns correspond to cross-section of the peptide’s
axis, non-hydrogen-bonded face (NHB), hydrogen-bonded face (HB), and lateral view.
Isovalues of dimer, trimer and tetramer are 5.04278, 5.04278, and 10.5715.

This result was studied in detail in reference [196] and it was related to the hydrogen-

receiver nature of the CO– group which allows hydrogen-bonding with water with a

greater angular freedom.

2.4 Conclusion

In summary, to investigate the energetics of fibril formation, we performed extensive

molecular dynamics simulations of poly-alanine in water. To understand which

chemical groups of the peptide favor fibril formation, we decomposed non-bonded

interactions into contributions from mainchain and sidechain atoms. We show that
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changes in the energy of the system due to mainchain atoms play a major role in this

process. We used a geometrical definition to compute the number of hydrogen bonds

in the system. We show that due to a compensatory mechanism, the total number

of hydrogen bonds in the system does not change significantly during fibrillization

[62, 98, 94, 185]. Furthermore, main changes in the electrostatic energy of the system

are related to hydrogen bonds and, as a result of the compensatory mechanism, it does

not decrease during fibrillization. Therefore, while fibril formation accounts for an

increase in the number inter-peptide hydrogen bonds there is no apparent energy gain

in the formation of these bonds. This leads to the question of what is the energetic

role of inter-peptide hydrogen bonds [12]

We argue that peptide aggregation without the formation of inter-peptide

hydrogen bonds produces a large electrostatic penalty. Thus, in all-atom simulations

secondary structures do not form to minimize energetic terms associated with

hydrogen bonds but to avoid the energetic penalty of having non-satisfied polar groups

pointing towards the dry core of the protein. This implies that disordered configu-

rations with polar groups exposed to water and secondary-structure configurations

might not be very different with respect to the energy of hydrogen bonds. Therefore,

the main role of hydrogen bonds is to reduce the number of peptide conformations

and, in particular, the number of compact peptide structures. This result could have

important implications for the development of coarse-grained models.

Moreover, if we assume that energies to form sidechain-sidechain and mainchain-

mainchain hydrogen bonds are similar then our results suggest that burial of non-

polar sidechains in the protein core without the formations of hydrogen bonds could

be subjected to large penalties. Thus, conformational changes of proteins after the

formation of a dry core would involve little change in the number of both sidechain

and backbone hydrogen bonds since this requires overcoming large energy barriers.

This is consistent with reported results from coarse grained simulations in which
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transitions between β-barrel structures and fibrils for the polar NHVTLSQ peptide

occurred with little variation in the number of hydrogen bonds [172]. In addition,

the penalty of having non-saturated hydrogen bonds in the protein core could be

responsible for faster fibrillization rates of polar sequences compared to non-polar

ones [117], since the formation of sidechain hydrogen bonds would occur promptly

after the creation of a dry core in the case of polar sequences while a larger (and

more frustrated) phase space has to be sampled before in-registry fibrils can form

in non-polar peptides. In the case of trans-membrane proteins, it has been reported

that hydrogen bonds between polar sidechains and the backbone play an important

role in the dynamics and stability of α-helical structures [165]. This is also consistent

with our results which associates an energetic penalty to polar sidechains exposed to

membranes that can, however, be minimized through sidechain-mainchain hydrogen

bonding.

Despite these conceptual and quantitative contributions, limitations of the

current work should also be noted. While all-atom models have been optimized

over the years to account for folding of several proteins [112, 169], there are still

uncertainties regarding force-field parameters. In particular, all-atom models do

not account for context dependent interactions whereas experiments are suggesting

that the strength of hydrogen bonds could be dependent on the environment

[48, 47, 93, 92, 69]. Moreover, the setup used in this work only considers stretched

peptide structures which is a geometry that facilitates the observed compensatory

mechanism for hydrogen bonds. In contrast, when peptides are not interacting they

can assume conformations for which the total number of hydrogen bonds in the

system is not optimized. While results on GB1 model peptide are showing that

the compensatory mechanism is also valid for unconstrained structures [134], this

requires further investigation.
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Figure 2.5 Potential of mean force of two parallel and two antiparallel polyalanine
peptides at T = 298 K, Pz = 38 atm, and Px = Py = 1 atm.

2.5 Associated Content

In coarse-grained simulations of 18 polyvaline peptides, it was shown that order

emerged from a disordered oligomer through the formation of antiparallel β-sheets.

When a relatively large ordered nucleus of antiparallel β-sheets was formed, a

few parallel sheets started to appear. The growing number of parallel β-sheets

led eventually to a decrease in free-energy leading towards a minimum which was

predominantly composed of parallel β-sheets [10]. A similar but more complex

nucleation mechanism in which antiparallel -sheet formed easily in the beginning

of a coarse-grained simulation followed by a transition to parallel β-sheet was also

observed in simulations of Aβ35−40 [11]. These studies suggest that antiparallel β

conformations are more stable than parallel ones when a small number of peptides

are involved in the sheets while for large sheets (involving 14 peptides in the case of

polyvaline [10]) parallel β structures could be more stable [138].

In Figure 2.5, we compare PMF(s) for the interaction of two parallel and

two antiparallel polyalanine peptides. The PMF for the antiparallel system was
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Figure 2.6 Structure of two parallel polyalanine peptides at ξ = 0.47 nm.
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Figure 2.7 Dependence of the number of hydrogen bonds on the distance ξ between
centers-of-mass of peptides.

taken from Figure 2.6 of the manuscript and the umbrella sampling simulation for

parallel peptides was performed as described in the method section of the manuscript.

We find that antiparallel peptides are more stable than parallel ones by 0.75

kJ/mol/residue. It implies that they should occur more frequently in unconstrained

simulationsconsistent with coarse-grained studies [10, 138]. Furthermore, an analysis

of the structure at the global minimum (ξ = 0.47) reveals that parallel peptides

do not form stable β-sheets with an hydrogen bond pattern extending continuously

along the peptide—see Figure 2.6. Methyl groups of three (out of 10) sidechain-pairs

point towards the backbone of the other peptide. We have made several attempts to

create a stable parallel β-sheet. For example, we started with an ideal initial parallel

β-sheet structure which after 30 ns became unstable producing structures like the

one in Figure 2.6. In other simulations, we increased the pressure in the z-direction

from 38 atm to 128 atm since parallel β-sheets are more extended that parallel one.

However, all our attempts resulted in structures similar to Figure 2.6. Thus, we are

confident that parallel β-sheet of polyalanine peptides are not stable in our set-up.
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Despite the lack a stability of parallel β-sheets, the total number of hydrogen

bonds in the system does not change significantly as a function of the distance

ξ between centers-of-mass between peptides—see Figure 2.7. In Figure 2.7, the

formation of inter-peptide hydrogen bonds is preceded by the rupture of one

peptide-water bond leading to the formation of one extra water-water hydrogen bond.

Notice that in the global minimum, the average number of inter-peptide hydrogen

bonds is 3 (out of 10) which is consistent with the structure shown in Figure 2.6.
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CHAPTER 3

MOLECULAR INTERACTIONS ACCOUNTING FOR PROTEIN

DENATURATION BY UREA

In Chapter 2, we use extended peptide models to study the mechanism of fibrillization

of polyalanine peptides and compute free-energies required to form dimers, trimers

and tetramers. In this chapter, we apply this extended model to investigate roles of

urea on the interaction between extended non-polar peptides.

3.1 Introduction

One of the first scientific accounts of urea’s effect on living systems dates back to

1902 when it was reported that dead frogs become translucent and fall into pieces in

a saturated urea solution [151]. This molecule is now widely used as a denaturant in

the lab whereby it perturbs native protein conformations to favor the unfolded state

[78, 26]. However, urea’s atomic mechanism has been a question of debate since its

effect was quantify in the 60’s [173]—although important insights have been obtained

recently [76, 26, 81, 58, 80]. Urea may impede the formation of native structures either

by forming strong bonds with the protein (direct mechanism) [28, 178, 83, 81, 109,

156, 123, 105, 130, 46] or by modifying the structure of water accounting for different

solvation properties (indirect mechanism) [67, 15, 88, 44, 63]. Moreover, it is still not

clear whether urea affects mainly the backbone or side chains of the protein. Answers

to these open questions can be obtained using simplified computational frameworks

that can quantify interaction strengths in the solvent and protein at the atomic level.

In recent years, several studies have emerged showing that, in solution, urea

can replace water without changing significantly its structural properties since both

molecules are highly polar [177, 173, 95, 155, 102, 83, 9, 90]. This has been a strong

argument against urea’s indirect mechanism which assumes that the formation of
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water structures is disrupted by this molecule [67, 129]. Urea’s direct mechanism is,

therefore, gaining increased acceptance in the scientific community. In particular, it is

supported by explicit all-atom computer simulations [28, 178] wherein urea is shown to

form strong non-bonded interactions with the protein providing the driving force for

unfolding. Some studies indicate that these protein-urea interactions emerge mainly

from hydrogen bonding with the backbone [18, 109, 57, 123, 9] whereas others point to

dispersion interactions with non-polar groups of the proteins [159, 206, 102, 158, 80].

Separating contributions from backbone and side chain atoms is not an easy task

even in computer simulations that have access to atomic detail [28, 81, 18].

Traditionally, model compounds have been used to estimate interaction strengths

between different chemical groups in proteins [177, 156, 140, 170, 193, 179]. In

particular, free-energies to transfer non-polar amino acids from pure water to urea

solutions were shown to be negative implying that urea solutions can accommodate

non-polar amino acids better than pure water [140]. As a result, hydrophobic inter-

actions are weaker in urea solutions and this could account for protein denaturation.

Small non-polar compounds (e.g., methane and alanine) as well as glycine were not

found to be significantly affected by urea [140]. Computer simulations of model

compounds point to the same conclusion [170, 193] but also highlight strong hydrogen

bonding of urea with small charged solutes [57].

Different conclusions can be drawn from studies of simple model compounds

because they do not account simultaneously for contributions from backbone and

side chain atoms in the same proportion as in real proteins. Moreover, solvation

of side chains are affected by the backbone as reported in a recent study [192, 77].

These limitations of model compounds can be overcome by studying homopeptides

[81, 179, 102, 130]. Recently, Horinek and Netz computed free-energies τ to transfer

homopeptides from pure water to aqueous solutions containing urea using all-atom

molecular dynamics simulations and different force-fields [81]. Direct and indirect
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effects of urea were singled out by differentiating τ with respect to urea concentration.

This provided important insights into effects of force-fields on urea’s mechanism [81].

In this paper, we study effects of urea on non-restrained poly-glycine, poly-

alanine, and poly-leucine monomers as well as on the interaction of extended poly-

alanine and poly-leucine dimers. For the extended dimers, we compute the free-energy

required to bring two peptides that are initially non-interacting all the way to a

distance ξ, i.e., we compute potentials of mean force (PMF). Our choice of peptides

and approach allows us to probe the effect of urea on two types of interactions that

are essential to account for protein folding, i.e., hydrophobic interactions between

side chains of alanine and leucine residues and interactions between backbone atoms.

Notice that, in addition to non-polar residues, urea has also been shown to bind

favorably to polar and charged residues [177, 178]. These types of residues are mainly

located at the surface of proteins and, therefore, their energy of solvation is not

expected to contribute significantly to protein unfolding.

Here, we show that poly-leucine monomers become less compact when urea is

added to water whereas poly-glycine and poly-alanine monomers are only weakly

affected by this co-solvent. Consistent with this result, changes in the PMF of

extended poly-alanine and poly-leucine dimers when urea is added to water agree

qualitatively with transfer free-energies of their respective side chains, i.e., only the

PMF of poly-leucine dimers is destabilized (Figure 3.5). Also, we show that urea

molecules are more densely populated around poly-leucine’s side chains than in the

bulk and this difference increases when peptides dissociate (Figure 3.7). This occurs

because urea molecules can replace water in the first shell around peptides and they

can occupy positions that are not accessible to water due to their planar distribution

of partial charges [42, 100] (Figure 3.7). Thus, our results suggest that urea destabilize

proteins through a direct mechanism whereby it binds favorably to side chains.

Moreover, we observe a clear correlation between changes in non-bonded interactions
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(i.e., enthalpy) and changes in the PMF when urea is added to the system (Figure 3.8).

These changes when peptides are brought close together emerge from contributions of

protein-urea interactions (mostly Lennard-Jones) that favor the dissociated state and

solvent-solvent interactions (electrostatic and Lennard-Jones) that favor the folded

state (Figure 3.10).

3.2 Methodology

Microsecond-long molecular dynamics simulations are used to study unrestrained

poly-glycine, poly-alanine and poly-leucine monomers in pure water and 3M urea

solution. Two independent simulations, starting from different stretched confor-

mations of the monomer, are performed for each combination of solvent and peptide.

Systems are equilibrated for 60 ns, and they are analyzed along 940 ns trajectories.

Simulations are performed in the NPT ensemble at 1 atm and 298 K.

Extended poly-alanine and poly-leucine dimers in this work are made of 10

residues which are immersed in pure water and aqueous urea solutions. Peptides

are made “infinite” through the use of periodic boundary conditions by attaching

the carbonyl-group of residue 1 to the amine-group of residue 10 in the z-direction.

This method to describe extended peptides was first used by Horinek and Netz [81].

Advantages of this method are that it eliminates effects from chain ends and all

amino acids are equivalent. To maintain peptides stretched at an average length of

∼ 3.5 nm, pressures of -38 atm and -100 atm are applied along the z-direction for

poly-alanine and poly-leucine, respectively. A pressure of 1 atm is applied along x and

y directions accounting for an average density of 990 kg/m3. Thus, the anisotropic

pressure used in this work ensures that peptides are stretched and their solvation

resembles experimental conditions [133, 179].

To determine the free-energy landscape of extended dimers, we use an umbrella

sampling protocol where the reaction coordinate is the x-y distance between centers-
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Figure 3.1 x-y components of the distance vector ~ξ. Trajectories of different
umbrella-sampling windows are represented using different colors.

of-mass of peptides (ξ) in the range 0.4 nm to 2.0 nm. We simulate different windows

in which peptides are restrained by a spring that has an equilibrium constant of 5,000

kJ/mol/nm2. The equilibrium distances of springs in neighboring windows differ in

steps of 0.05 nm. Each window is simulated for 150 ns. In Figure 3.1, we fix the

position of one peptide at the origin and we show x and y components of the distance

vector ~ξ for trajectories at the different windows. This figure shows that the two-

dimensional space defined by ~ξ is properly sampled in our simulations. Trajectories

at the different windows are used to compute the “raw” PMF, i.e., PMFraw, using

the Weighted Histogram Analysis Method (WHAM) [84]. This quantities increases

linearly with ξ. In this work we subtract this linear dependence on ξ and we use the

average PMF, i.e., 〈C〉, computed in the ξ range 1.8–2.0 nm to define the reference

PMF (i.e., its zero value):

PMF(ξ) = PMFraw(ξ) + kbT log(ξ)− 〈C〉. (3.1)
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A detail account of the normalization procedure of the PMF is given in reference [43].

38 windows were used in our umbrella sampling simulations of poly-leucine. Each one

of these windows was sampled for 150 ns accounting for an accumulated simulation

time of 5.7 µs. The distribution of ξ in these windows is shown in Figure 3.2 for 7M

urea solution. Significant overlap between neighboring distributions is observed which

ensures repeated movement of the protein in the unbias simulations. In Figure 3.3,

we show the PMF for the 7M urea solution computed using different time intervals.

Clear convergence of the PMF is observed. Moreover, error-bars computed using the

bootstrap method is shown in Figure 3.3. Table 3.1 shows details of the different

systems studied.

Figure 3.2 Histogram of ξ for 38 windows in our 7M urea simulaltions.

Temperature (298 K) and pressure are controlled using the v-rescale thermostat

(τT = 1 ps) and the Parrinello–Rahman barostat (τP = 1 ps), respectively. Simulations

are carried out using GROMACS and the AMBER99SB-ildn-force-field [113]. We use

the TIP3P model for water. Urea, (NH2)2CO, is a highly polarized molecule with

a dipole moment 6-8 Debye (D) in liquid state [97] (the value for water is 2.95 D

[75]). Therefore, urea can easily form hydrogen bonds with water molecules [128].
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Figure 3.3 Convergence of the PMF for poly-leucine in 7M urea solution. PMF
are computed using different time interval.

For urea we used the AMBER-force-field [147], as shown in Table 3.2. We use the

leap-frog algorithm with a time-step of 2 fs to integrate the equation of motion and

the neighbor list is updated every 10 steps. Electrostatics is treated using the Smooth

Particle Mesh Ewald method with a grid spacing of 0.13 nm and a 1.3 nm real-space

cutoff [20].

Table 3.1 System Details for Poly-leucine in Pure Water and Urea Solutions. Curea
Denotes the Concentration of Urea, Nurea and Nwater Denote the Number of Urea
and Water Molecules of the System

Curea Nurea Nwater box size (Å)

0M 0 2638 4.94 4.97 3.38

2M 96 2417 4.98 4.98 3.44

3.8M 201 2417 5.18 5.18 3.44

7M 351 1912 5.14 5.14 3.40
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Table 3.2 Parameters of the AMBER-force-field for Urea

Atom Partial Charge
Lennard-Jones parameter

σ/ε

C 0.88 3.34 / 0.360

O -0.613 2.96 / 0.879

N -0.924 3.25 / 0.711

H 0.395 1.07 / 0.066

Stretched fragments of proteins are of fundamental importance in biology [145]

as they form the building blocks of β-sheets. After α-helices, β-sheets are the most

frequent secondary structures of globular proteins serving as template for 20–28%

of all the residues [22]. In our setup, the two peptides in the simulation box run

in opposite directions, i.e., the displacement vector between carbonyl- and amine-

groups point in the positive z-direction for one peptide and in the negative direction

for the other. As a result, the type of β-sheet structures adopted by peptides in

our simulations is called antiparallel. β-sheet structures formed by peptides that

run in the same direction are called parallel. In globular proteins, the later occur

less frequently than antiparallel β-sheet structures and they will not be studied in

this work. Both poly-alanine and poly-leucine have been found to form fibrils [59]

which are stabilized by hydrogen bonds and side chain interactions from facing and

surrounding residues. When a β-sheet is formed in our model, it is stabilized by

hydrogen bonds and chain interactions from surrounding residues.

3.3 Results

In Figure 4.3, we study effects of urea on the conformation of unrestrained poly-

glycine, poly-alanine, and poly-leucine peptides by measuring the radius of gyration

Rg of backbone atoms. Poly-glycine is a model of the protein backbone whereas
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Figure 3.4 Distribution of the radius of gyration Rg of backbone atoms for poly-
glycine, poly-alanine, and poly-leucine in aqueous urea solutions at 298 K and 1 atm.

poly-alanine and poly-leucine represent peptides with small and large non-polar side

chains, respectively. Figure 4.3a shows that conformations of poly-glycine are not

significantly affected by urea: Rg distributions of poly-glycine in pure water (black

line) and aqueous urea solution (red) are very similar to each other. Effects of urea

are more pronounced for poly-alanine which becomes less compact when urea is

added to water. This is shown in Figure 4.3b where the distribution of Rg shifts

to larger values when urea is added to water. This shift in the distribution of Rg is

even more significant for poly-leucine as shown in Figure 4.3c. This points to the

importance of side chains in accounting for urea’s destabilization of compact protein

conformations. In agreement with Figure 4.3, a recent simulation of a fifteen residue

poly-glycine peptide performed using the Kirkwood-Buff force field for urea reported

that conformations of this peptide are not significantly affected by urea [80]. In

this study, effects of urea on side chains of small proteins were found to be key in

accounting for the unfolded state [80].

To shed light into urea denaturation mechanism, we study a simplified system,

i.e., extended poly-alanine and poly-leucine dimers in aqueous urea solutions.

These systems provide a framework to study effects of urea on atomic interactions

responsible for the stability of native conformations, i.e., hydrophobic interactions
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Figure 3.5 Potential of mean force (PMF) of poly-alanine (a) and poly-leucine (b)
dimers in pure water (red) and aqueous urea solutions (blue). PMF values computed
at ξ=2.0 nm are used as our reference, i.e., zero value. Characteristic configurations
of dimers are also shown.

and hydrogen bonds. Figure 3.5 shows PMF of poly-alanine and poly-leucine dimers

in pure water and in aqueous solutions containing urea. These PMF are characterized

by a global minimum at ξ ∼ 0.5 nm in which peptides assume anti-parallel β-sheet

structures. For poly-leucine, PMF also exhibit a second minima at ξ ∼ 0.8 nm.

At this ξ value, we observe interdigitation of side chains with polar groups of the

backbone pointing towards the solvent [133]. In addition to these minima, an energy

barrier is observed between global and local minima for poly-leucine. Characteristic

configurations at the barrier resemble the ones at ξ ∼ 0.8 nm with side chains

interdigitating more tightly.

In Figure 3.5a, the addition of urea does not account for significant changes in

the PMF of poly-alanine chains. In contrast, urea weakens the interactions between

poly-leucine chains as depicted in Figure 3.5b. Similar results for other concentrations

of urea (2M, 3.8M, 5M, and 7M) are shown in Figure 3.6. A possible explanation
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Figure 3.6 Potentials of mean force (PMF) of poly-alanine (a) and poly-leucine (b)
dimers in pure water and different urea solutions.

for this difference in behavior is that urea affects mostly side chain (not backbone)

interactions [25, 26] with side chains of leucine being more affected than side chains

of alanine. This idea is supported by simulations of methane (CH4) and neo-pentane

(C5H12) dimers that are chemical compounds resembling side chains of alanine and

leucine, respectively [170]. PMF describing the interaction of methane dimers do not

change significantly in the presence of urea [170] whereas PMF of neo-pentane dimers

become less negative with increasing urea concentration. If backbone interactions

were the main energetic term affected by urea then PMF of both poly-leucine and

poly-alanine in Figure 3.5 would have changed by a similar amount. This is not the

case suggesting that the backbone is not the main part of the protein affected by

urea. This is also consistent with transfer free-energies of glycine from pure water

to urea solutions [140]. Glycine is often used as model for the backbone of proteins

and its transfer free-energy is small (smaller than for alanine) and positive implying

that urea has little or no destabilizing effect on the interaction between glycine
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residues. Another case in point regarding the PMF in Figure 3.5b is that the energy

barrier separating global and local minima for poly-leucine increases significantly

when urea is added to aqueous solution. A similar increase was observed in the PMF

of non-polar model compounds [170]. This was related to enhanced cooperativity in

folding/unfolding transitions of some proteins [114].

Additional support for the idea that urea weakens mainly side chain interactions

and not backbone interactions is provided by studying the preferential interaction

Γ. This quantity compares the distribution of urea and water as a function of the

distances r from the closest peptide [25, 149]:

Γ(r) =
〈
Nu(r)− Nbulk

u

Nbulk
w

Nw(r)
〉
, (3.2)

where Nu(r) and Nw(r) are the number of urea and water molecules, respectively,

with minimal distance to peptide atoms between 0 and r. Nbulk
u and Nbulk

w are the

number of urea and water molecules in the bulk. Distances r from the protein for

which urea tends to accumulate will show positive Γ values whereas negative Γ values

imply exclusion of urea from the protein. Figure 3.7 provides a comparison of Γ when

dimers are at their preferred interaction distance, i.e., at ξ = 0.47 nm (full line),

and when they are non-interacting, i.e., at ξ = 2.0 nm (dashed line). Γ measured

with respect to all atoms (in black) of poly-alanine or poly-leucine increases when

chains dissociate. These changes in Γ, i.e., ∆Γ(r) = Γmonomer(r) − Γdimer(r) are

shown in Figure 3.7c-d for poly-alanine and poly-leucine, respectively. For attractive

co-solvents, ∆Γ(r) is proportional to the effect of the co-solvent on the free energy

difference to unfold proteins [186]. In our simulations, ∆Γ(r) is significantly larger

for poly-leucine compared to poly-alanine close to the peptide, i.e., for r < 0.6 nm.

To provide further insights, Γ(r) is decomposed into contributions from

backbone (Γbackbone, in blue) and side chain (Γsidechain, in red) atoms. Γbackbone(r) is

computed by counting the number of urea and water molecules (i.e., Nu(r) and Nw(r))
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Figure 3.7 (a-b) Preferential interaction Γ(r) around dimers (ξ = 0.47 nm) and
monomeric peptides (ξ = 2.0 nm). Decomposition of the preferential interaction
(black) into backbone (blue) and side-chain (red) contributions. (c-d) Changes in
the preferential interaction ∆Γ = Γmonomer − Γdimer as peptides dissociate. Spatial
distribution functions of urea (panel e) and water (panel f) around poly-leucine dimers
in 7M urea and pure water solutions, respectively. Isovalues for urea and water are
18 and 7.8.
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that are closer to backbone than to side chains atoms with a distance between 0 and

r from the peptide. A similar definition is used for Γsidechain. These definitions ensure

additivity of Γ(r), i.e., Γ(r) = Γbackbone(r) + Γsidechain(r). Γsidechain and Γbackbone are

shown in Figure 3.7a-b. The corresponding change in these quantities, i.e., ∆Γbackbone

and ∆Γsidechain, is shown in Figure 3.7c-d. For poly-alanine, both backbone (blue)

and side chain atoms (red) contribute significantly to ∆Γ(r). In contrast, ∆Γ(r) for

poly-leucine is mainly ascribed to side chains atoms (red). Notice that ∆Γbackbone is

positive and its magnitude is similar for both poly-alanine and poly-leucine chains.

Although ∆Γbackbone accounts for a significant contribution of the overall ∆Γ in

poly-alanine, dimers of this peptides are not destabilized significantly–see Figure 3.5a.

The accumulation of polar urea molecules around the non-polar sidechain can be

explained by the planar distribution of partial charges in urea that allows this molecule

to surround planar non-polar environments without breaking hydrogen bonds with

the solvent [42, 100]. These environments are usually unfavorable to water that

would have at least one non-saturated hydrogen bond because of its tetrahedral

distribution of partial charges. Figure 3.7e-f depicts spatial distribution functions

of urea and water molecules around poly-leucine in aqueous urea and pure water

solutions, respectively. To compute these functions, the simulation box was divided

in bins of size 0.02×0.2×0.2 nm3. Spatial distribution functions are given as the ratio

between the density of solvent molecules in the bin and the density of the solvent in an

ideal fluid. In addition to replacing water molecules around the peptide, urea is also

found between side chains in the hydrogen bonded face of the β-sheet [196] (arrows

in Figure 3.7e) whereas these positions are left unoccupied in pure water solutions

(Figure 3.7f). Similarly, at other poly-leucine dimer distances (i.e., other ξ values),

urea occupies spaces otherwise left empty by water.

In Figure 3.8a, we show changes in the PMF of poly-leucine when 7M urea is

added to water, i.e., ∆PMF(ξ) = PMFurea(ξ) − PMFwater(ξ). This quantity is the
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Figure 3.8 (a) Changes in total energy (∆Etotal), entropic energy (−T∆S), and
PMF (∆PMF) when 7M urea is added to water as a function of the distance ξ between
poly-leucine peptides. (b) Correlation between ∆PMF and changes in non-bonded
energies when urea is added to water (∆Enon−bonded) as a function of ξ. Error bars
are computed using block average of the different trajectories. (c) Projection of non-
bonded energy into peptide-solvent (∆EPS), peptide-peptide (∆EPP), and solvent-
solvent (∆ESS) components.
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Figure 3.9 Volumes of poly-leucine in pure water and 7M urea solution as a function
of ξ. These volumes are computed with respect to their value at ξ=2.0 nm.

result of both enthalpic and entropic terms. Since the volume of the system does not

change significantly as a function of ξ in Figure 3.9, the main term contributing to

the enthalpy is the total energy of the system. In Figure 3.8a, we show how this total

energy changes when 7M urea is added to water: ∆Etotal(ξ) = Eurea
total(ξ) − Ewater

total (ξ).

The entropic term (−T∆S) which is determined by subtracting ∆Etotal from ∆PMF

is also shown in Figure 3.8a. Notice that ∆PMF, ∆Etotal, and −T∆S are computed

with respect to their values at ξ = 2.0 nm. Figure 3.8a shows that an increase in

∆Etotal(ξ) is accompanied by an increase in ∆PMF(ξ). For example, both ∆PMF

and ∆E peak at ξ = 0.7 nm and their local minima are located at ξ = 0.5 nm. The

entropic term opposes these changes and it is negative, i.e., favorable to dimerization,

for small ξ values. This is consistent with recent studies in which the entropic energy

of urea was shown to favor the folded state of some macromolecules [158, 19, 154].

Thus, when urea is added to water changes in ∆PMF of poly-leucine are caused by

changes in total energy of the system.
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In Figure 3.8b, we show changes in the non-bonded component of the total

energy, i.e., ∆Enon−bonded, when urea is added to water. This component is the

sum of van der Waals and electrostatic energies in the system and it is shown

with respect to its value computed at ξ = 2.0 nm. As for the total energy,

changes in ∆Enon−bonded and ∆PMF occur at the same ξ values and in the same

direction. This correlation is, however, only qualitative since other energetic terms

also contribute to ∆PMF, e.g., entropic energy in Figure 3.8a. In Figure 3.8c, we

project ∆Enon−bonded into its peptide-peptide (∆EPP), peptide-solvent (∆EPS), and

solvent-solvent (∆ESS) components. As peptides are brought close to each other,

solvent molecules are released into the bulk breaking peptide-solvent bonds. These

bonds are stronger in urea solution than in pure water accounting for the positive

∆EPS in Figure 3.8c (red line). Congruently more solvent-solvent interactions are

formed in this process. Solvent interactions involving urea molecules are stronger

than in pure water accounting for the negative ∆ESS in Figure 3.8c (blue line).

In contrast, peptide-peptide interactions are not strongly affected by urea (black

line) except at intermediate distances where side chains interdigitate. Changes

in peptide-urea interactions have been extensively studied in the literature and

related to the destabilizing effect of this co-solvent [25, 28, 26, 81]. However, as

shown in Figure 3.8c, unfavorable changes in the peptide-solvent interactions occur

simultaneously with a favorable change in solvent-solvent interactions. It is the result

of these two interactions that account for the destabilizing effect of urea.

Additional insights into how ∆EPS and ∆ESS are affected by urea can be

obtained by studying their van der Waals and electrostatic components. To that

purpose, we write ∆EPS = Eurea
PU + Eurea

PW − Ewater
PW . Now, the term Ewater

PW − Eurea
PW can

be interpreted as the energy of water molecules that have been replaced by urea. We

refer to this term as ∆Ereplaced
PW . Lennard-Jones (red lines) and electrostatic (blue)

contributions of both ∆Eurea
PU and ∆Ereplaced

PW are shown in Figure 3.10a-b. When
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Figure 3.10 Lennard-Jones and electrostatic energies of (a-b) peptide-solvent
and (c-d) solvent-solvent interactions. Peptide-solvent is decomposed into replaced
peptide water interactions ∆PWreplaced (see text) and peptide-urea ∆PUurea energies.
Solvent-solvent is shown for pure water and aqueous urea solution. Quantities
computed at ξ=2.0 nm are used as our reference.
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the distance ξ of both poly-alanine and poly-leucine dimers is small, electrostatic

contributions of these two terms are comparable in magnitude and they cancel out

when accounting for ∆EPS. This implies that the electrostatic interaction between

water and the peptide is very similar to the electrostatic interaction between urea and

the peptide [177]. This is consistent with results from another simulation [210]. In

contrast, Lennard-Jones energies of these two terms are very different when peptides

are close to each other with the magnitude of ∆Eurea
PU dominating over ∆Ereplaced

PW .

Thus, peptide-solvent Lennard-Jones energies favors non-interacting configurations

of the dimer. This energetic analysis is consistent with the molecular picture in

Figure 4.10 where urea forms new Lennard-Jones bonds with non-polar side chains

and it replaces some electrostatic bonds between peptide and water (e.g., hydrogen

bonding).

In Figure 3.10c-d, we decompose solvent-solvent interactions (i.e., ∆ESS) into

their Lennard-Jones and electrostatic components for simulations performed in pure

water and urea solutions. As peptides are brought close to each other, solvent

molecules are released into the bulk and this accounts for a favorable decrease in

solvent-solvent energy. Figure 3.10c-d shows that this reduction in energy is larger in

urea solution and, therefore, the release of urea molecules into the bulk favors folding

of the protein. This is consistent with experimental [173, 95, 155] and computational

[14, 102, 177] studies in which urea was found to incorporate readily and tightly into

water. In Figure 3.10c-d both Lennard-Jones and electrostatic energies contribute to

urea insertion into the solvent.

From Figure 3.10 we can conclude that the increase in ∆EPS (see Figure 3.5b)

when peptides are brought close together in urea solution compared to pure water

emerges from loss of favorable Lennard-Jones interactions between peptide and urea.

This occurs for both poly-alanine and poly-leucine dimers (see Figure 3.10a-b)

although the effect in poly-alanine is not significant enough to produce a change

66



in its PMF (see Figure 3.5a). In contrast, the reduction in ∆ESS (see Figure 3.5b)

when peptides are brought close together in urea solution compared to pure water

occurs because of changes in both Lennard-Jones and electrostatic energies–see

Figure 3.10c-d.

3.4 Conclusions

In this work we study effects of urea on poly-peptides. We show that unrestrained

poly-leucine peptides become less compact when urea is added to water whereas

poly-glycine and poly-alanine peptides are only weakly affected by this co-solvent.

To rationalize these results, we study interactions between stretched poly-alanine and

poly-leucine dimers. In particular, we compute potential of mean force of these dimers

in pure water and aqueous solutions containing urea. Urea is found to significantly

destabilize poly-leucine dimers whereas it has little effect on the stability of poly-

alanine dimers (Figure 3.5). This is consistent with our simulations of unrestrained

poly-peptides and it leads to the conclusion that urea has a main effect on interactions

involving side chains since poly-alanine and poly-leucine are different only in their

side chains. This is further confirmed by studying the distribution of urea molecules

around peptides using the preferential interaction defined in Equation 4.10. We found

that the number of urea molecules close to side chains is larger than the expected

number for the same volume in bulk solvent (Figure 3.7a-b). Moreover, the difference

between the number of urea molecules around peptides and the expected number

increases when peptides dissociate (Figure 3.7c-d). This is significantly larger for poly-

leucine than for poly-alanine. Therefore, our results suggest that urea destabilizes

proteins through a direct mechanism whereby it binds favorably to large non-polar

side chains. An analysis of the energy of the system shows that urea forms mainly

Lennard-Jones interactions with side chains while maintaining electrostatic bonds

with the solvent (Figure 3.10). This is possible due to the planar distribution of
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partial charges in urea that allows it to occupy positions between non-polar side

chains which are not accessible to water (Figure 3.7e-f).

In summary, we propose a simplified framework to study effects of urea on

hydrophobic interactions and hydrogen bonds in proteins. This framework can be

used to provide insights into effects of other cosolvents [167]. Results for urea agree

with other studies in which this molecule is found to destabilize proteins through

dispersion interactions with non-polar groups of the proteins [159, 206, 102, 158, 80].

The simplified nature of the framework used here allows us to provide a comprehensive

description of the effects of urea on the interactions leading to the “association”

of peptides. Despite the insights brought by the current study, limitations should

also be noted. In particular, our framework does not account for the reduction in

the conformational entropy of proteins associated with folding since peptides in our

simulations are stretched. Conformational entropies account for the main energetic

term (−T∆S) opposing dimerization and simulations without restrains are required

to account for this “dissociation energy”.
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CHAPTER 4

EFFECTS OF TMAO ON THE CONFORMATION OF PEPTIDES

AND ITS IMPLICATIONS FOR SMALL PROTEINS

In Chapter 3, urea was shown to denature proteins through a direct mechanism,

by interacting favorably with peptide hydrophobic side chains. Conversely to

denaturants, the presence of protecting osmolytes in solution favors the native state

of proteins. TMAO is an example of protecting osmolyte, whereas its molecular

mechanism is much less clear. In this chapter, we provide insights into the stabilizing

mechanisms of TMAO on protein structures by performing microsecond long all-atom

molecular dynamics simulations of peptides and replica exchange molecular dynamics

simulation of the Trp-cage miniprotein.

4.1 Introduction

Biochemical reactions in living systems take place in aqueous environments containing

small organic molecules [202, 203]. These molecules affect osmosis in cells and they

are known as protecting or denaturing osmolytes depending on how they modulate

the stability of proteins [203, 201, 168]. Denaturing osmolytes, e.g., urea and

guanidine, are widely used in protein folding studies to destabilize the native state

[176]. Effects of these molecules emerge from favorable protein-osmolyte interactions

which enhances the preference for protein conformations with greater solvent exposed

surface area, i.e., the unfolded state [90, 80, 46, 180, 208, 114]. In contrast, protecting

osmolytes, e.g., trimethylamine N-oxide (TMAO) and proline, favor the native state of

proteins [3]. These osmolytes counteract effects of water stresses enabling organisms

to cope with extreme conditions [202]. For example, deep-sea animals counteract

effects of hydrostatic pressure by increasing the concentration of TMAO in their
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muscles [72, 204]. Despite intensive studies on the effects of TMAO in proteins, its

molecular mechanisms remain a question of debate [153].

The stabilizing effect of TMAO on native structures is often explained by its

exclusion from the vicinity of the protein surface [41, 110, 171]. Exclusion is possible

because TMAO is more strongly attracted to water [86, 16, 211, 132, 162, 99, 167]

than to the protein surface. Moreover, exclusion may be more pronounced close to

the main chain of the protein, i.e., the backbone [167, 21, 7, 8, 6] which explains

the adoption of more compact conformations by poly-glycine (which is commonly

used as a model of the protein backone) in aqueous TMAO solution compared to

pure water [82]. Despite these results, TMAO exclusion from the protein surface as

a mechanism to protect the native state has been challenged by recent studies. In

particular, computer simulations and experiments have shown that TMAO stabilizes

compact conformations of some non-polar polymers through direct interactions [157,

131]. Recently, TMAO’s effect on proteins was reported to emerge from favorable

interactions of this osmolyte with the heterogeneous protein surface that emerges

upon folding [108]. Other studies are suggesting that protecting effects of TMAO

emerge because this molecule acts as a crowding agent reducing the conformational

entropy of the unfolded state [37, 120] and/or by weakening the strength of hydrogen

bonds between the protein and water molecules [120].

In this chapter, we highlight effects of TMAO on the molecular forces stabilizing

native protein structures by studying small peptides and the Trp-cage miniprotein.

Consistent with other studies [82, 37], we find that TMAO favors compact confor-

mations of a peptide model of the protein backbone, i.e., poly-glycine. However,

the addition of even the smallest non-polar side chain (i.e., –CH3 group of alanine)

to the backbone counteract this effect while larger non-polar side chains account

for peptide swelling. This suggests that TMAO can destabilize the hydrophobic

core of proteins. We also study conformations of non-polar peptides with charged
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terminal residues. We find that these peptides become more compact when TMAO

is added to water due to stronger interactions between charged residues. In light of

these results, we hypothesize that competition of TMAO’s effect on hydrophobic and

charged interactions accounts for its net stabilizing role in proteins. Extensive replica

exchange molecular dynamics (REMD) simulations of the small Trp-Cage protein in

pure water and TMAO solution are performed to test this hypothesis. Accordingly, we

find that residues that form the hydrophobic core of Trp-cage sample more extended

conformations while distances between its charged residues decrease when TMAO is

added to water.

4.2 Methodology

All the simulations are performed using Gromacs 4.5 [197] with the AMBER99SB-

ildn-force-field to describe peptides [113], TIP3P water, and Kast model to mimic the

behavior of TMAO molecules. The leap-frog algorithm with a time-step of 2 fs is used

to integrate the equations of motion and the neighbor list is updated every 10 steps. A

Lennard-Jones cutoff of 1.3 nm was used. Electrostatics is treated using the Smooth

Particle Mesh Ewald method with a grid spacing of 0.13 nm and a 1.3 nm real-space

cutoff. The initial 60 ns of each simulation is ignored and the remaining is used for

analysis. Temperature is controlled using the v-rescale thermostat (τT=1 ps) and

pressure using the Parrinello–Rahman barostat (τP=1 ps). Details of the simulations

performed in the manuscript for poly-peptides and the Trp-cage miniprotein are

described in Table 4.1.

Equilibrium conformations of peptides in this work are determined using NPT

molecular dynamics simulations (1 atm and 298 K) of at least two independent

simulations. Peptides are terminated with COOH and NH2 groups, and they are

initially in an extended conformation. To study equilibrium configurations of the

Trp-cage miniprotein, we use REMD simulations. Trp-cage has one positive net
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Table 4.1 Details of the Simulations Performed for Poly-peptides and the Trp-cage
Miniprotein

Peptide Time
Number of water

molecules

Number of TMAO

molecules

TMAO

Concentration

G10

1 × 800 ns 2149 0 0M

1 × 800 ns 1554 103 3M

1 × 800 ns 905 228 7M

A10

1 × 1000 ns 4100 0 0M

2 × 1000 ns 3008 302 3M

2 × 1000 ns 2341 333 5M

V10

1 × 1800 ns 2126 0 0M

3 × 400 ns 3014 199 3M

2 × 900 ns 1768 457 7M

L10

1 × 1100 ns 2069 0 0M

2 × 1000 ns 3008 199 3M

2 × 1000 ns 1762 454 7M

A16-22

2 × 1000 ns 2135 0 0M

2 × 1000 ns 1542 104 3M

2 × 1000 ns 894 230 7M

KV5E

3 × 1200 ns 2137 0 0M

3 × 1200 ns 1545 104 3M

3 × 1200 ns 898 230 7M

KL5E

3 × 1200 ns 2133 0 0M

3 × 1200 ns 1540 104 3M

3 × 1200 ns 893 230 7M

Trp-cage
32 × 450 ns 2998 0 0M

32 × 250 ns 1528 221 5M
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charge which is neutralized by adding one chloride ion to the solvent. Simulations

are performed in pure water and 5 M TMAO solution at a constant pressure of 1

atm. We use 32 temperatures 298.00, 300.50, 303.52, 306.56, 309.63, 312.72, 315.84,

318.98, 322.14, 325.33, 328.55, 331.79, 335.06, 338.36, 341.67, 345.03, 348.40, 351.80,

355.22, 358.68, 362.16, 365.66, 369.20, 372.73, 376.32, 379.94, 383.58, 387.26, 390.97,

394.70, 398.47, and 402.26 which provide an exchange rate of approximately 0.2

[40]. Exchanges between neighboring replicas are attempted at every 750 steps.

Simulations are extended over 300 ns per replica and the last 200 ns are used for

analysis. Thermodynamics of Trp-Cage are shown in Figure 4.1, Figure 4.2, Table 4.2

and Table 4.3. To show that results from simulations are force-field independent, we

also use Osmotic [27] and Netz [167] models for TMAO as well as SPCE water.

The parameters of Kast, Netz and Garcia force-fields of TMAO are summarized in

Table 4.4 - 4.7. We use high concentrations of TMAO molecules to allow for significant

changes in protein conformations within the time-scale of simulations. At these high

concentrations, Kast model tends to underestimate the effective repulsion between

TMAO molecules [27].

Table 4.2 Thermodynamic Parameters for Trp-Cage at 298K in Pure Water

Calculated Experimental [4]

∆G(kJ/mol) 5.88 3.2

∆H(kJ/mol) -77 50

CP (kJ/mol/K) 2.34 0.30

Tc(K) 360 317

To determine the free-energy landscape describing charge-charge interaction,

we use an umbrella sampling protocol where the reaction coordinate is the distance

between NA+ and CL− ions in the range 0.2 to 1.0 nm. We simulate different windows

73



Table 4.3 Thermodynamic Parameters for Trp-Cage at 298K in 5M TMAO Solution

Calculated

∆G(kJ/mol) 7.45

∆H(kJ/mol)(kJ/mol) -62.06

CP (kJ/mol/K) 2.00

Tc(K) 356

Figure 4.1 Temperature dependence of RMSD distributions of Trp-cage
miniprotein in pure water
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Figure 4.2 Fraction of folded replicas as a function of temperature for the Trp-cage
miniprotein in pure water. The number of folded replicas were computed by
integrating the RMSD distribution up to the cut-off value. Different curves are
computed when different portions of the simulation are ignored: 120 ns (black), 180
ns (red), 240 ns (green), 300 ns (blue), 360 ns (orange). The total simulation time is
480 ns. This figure shows convergence of the simulation. The coexistence temperature
Te 360 K is defined when the fraction of folded states is 0.5.
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Table 4.4 Partial Charges and Lennard-Jones Parameters

Atoms type
Partial charge

q [e]

Well depth

ε [kJ/mol]

Contact distance

σ=2r [nm]

Kast

O -0.65 0.6385 0.3266

N 0.44 0.8368 0.2926

C -0.26 0.2828 0.3041

H 0.11 0.0774 0.1775

Netz

O -0.91 0.6385 0.3266

N 0.70 0.8368 0.2926

C -0.26 0.2828 0.3600

H 0.11 0.0774 0.2101

Garcia

O -0.78 0.6385 0.3266

N 0.528 0.8368 0.2926

C -0.312 0.2828 0.3041

H 0.132 0.0774 0.1775

Table 4.5 Bond Parameters

Bonds Well depth ε [kJ/(mol nm2)] r0 [nm]

O-N 143335.472 0.1407

N-C 107181.528 0.1506

C-H 247257.664 0.1082

O-C* 30133.168 0.233

N-H* 65814.32 0.2101

H-H* 5493.592 0.1768

C-C* 40597.352 0.2414
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Table 4.6 Angle Parameters

Angles Force Constant k [kJ/mol] a0 [deg]

O-N-C 254.97296 109.99

N-C-H 208.94896 108.07

C-N-C 576.1368 108.16

H-C-H 229.57608 108.25

Table 4.7 Dihedral Angle Parameters

Dihedrals Well depth ε [kJ/mol] Multiplicity n Phase t0[deg]

O-N-C-H 1.12968 3 0

C-N-C-H 1.12968 3 0

in which ions are restrained by a spring that has an equilibrium constant of 4000

kJ/mol/cm2. The equilibrium distances of springs in neighboring windows differ in

steps of 0.05 nm. Each window is simulated for 150 ns and the Potential of Mean

Force (PMF) is computed using the Weighted Histogram Analysis Method (WHAM).

These simulations were performed using TIP3P.

4.3 Results

Figure 4.3a shows extended conformations of deca-homopeptides made of glycine

(G10), alanine (A10), valine (V10) and leucine (L10). The side chain of glycine is

made of one hydrogen atom and, therefore, poly-glycine is commonly used as a model

of the protein backbone. The side chain of alanine is made of a small non-polar

group (–CH3) whereas valine and leucine are decorated with large non-polar groups

(–C3H7 and –C4H9). Thus, L10 and V10 are more hydrophobic in nature than A10.

Distributions of the radius of gyration Rg of backbone atoms of these peptides are
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Figure 4.3 Conformations of Homopeptides in Different Aqueous Solutions. (a)
Schematics of homopeptides using a cartoon-like representation for the backbone and
a van der Waals representation for side chains highlighting the weaker hydrophobic
nature of poly-alanine compared to poly-valine and poly-leucine. TMAO (C3H9NO)
and water (H2O) are also shown. Distributions of the radius of gyration Rg of
backbone atoms for (b) poly-glycine, (c) poly-alanine, (d) poly-valine, and (e)
poly-leucine in pure water as well as 3 M and 7 M TMAO solutions at 298 K and 1
atm.

78



studied in Figure 4.3b-e in pure water (black) as well as 3 M (red) and 7 M (blue)

TMAO solutions.

Figure 4.3b shows that compact and extended conformations of G10 become

more and less populated, respectively, when TMAO is added to water. Previous

studies have suggested that this effect of TMAO is the dominant stabilizing effect of

this osmolyte on native protein structures [21]. In Figure 4.3c-e, we probe effects of

TMAO on non-polar peptides. Distributions of Rg for the A10 peptide are not strongly

affected by TMAO—see Figure 4.3c. This is consistent with computational studies

showing that the interaction between non-polar compounds that are comparable in

size to alanine’s side chain (–CH3), i.e., methane molecules (CH4), is only weakly

affected by TMAO [4]. In contrast, V10 and L10 become more extended as the

concentration of TMAO increases—see Figure 4.3d-e. In Figure 4.3e, we also show

distributions of Rg for L10 in aqueous solutions containing Osmotic and Netz TMAO

molecules (in green). Independent of TMAO force-field, Figure 4.3e shows that the

population of extended conformations of L10 increases when TMAO is added to water.

Swelling of L10 is also observed with a different water model, i.e., SPCE water,

using Netz TMAO molecules—see Figure 4.4b. These results show that TMAO’s

collapsing effect on the backbone can be overcompensated by its effect on hydrophobic

residues which causes peptides to swell. This is consistent with the hydrophobic effect

becoming weaker in aqueous TMAO solutions as reported for non-polar compounds

that are comparable in size to leucine’s side chain (–C4H9), e.g., neo-pentane (C5H10)

[144, 121, 122, 68, 157]. Moreover, since the hydrophobic core is key to protein folding

this result suggests that, in addition to the backbone, other elements of the protein

may also play an important role in TMAO’s stabilizing effect.

Insights into another stabilizing effect of TMAO can be obtained by studying

the Aβ16−22 peptide (KLVFFAE) which is made of five non-polar residues (bold

letters) flanked by opposite charged residues (underline letters). Based on results
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Figure 4.4 Distributions of the radius of gyration Rg of backbone atoms for (a)
Aβ16−22 and (b) poly-leucine in pure water and 7M TMAO solutions at 298 K and
1 atm. These simulations are performed using SPCE water model and Netz TMAO
model.
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Figure 4.5 Effects of TMAO on the conformation of non-polar peptides flanked
by opposite charged residues. Distribution of the radius of gyration Rg of backbone
atoms for (a) Aβ16−22, (b) KV5E and (c) KL5E in different aqueous solutions at 298
K and 1 atm.
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from Figure 4.3, the addition of TMAO to water is expected to cause the Aβ16−22

peptide to swell due to its highly non-polar nature. However, all-atom molecular

dynamics simulations using the CHARMM22 force field with the CMAP modification

have reported that TMAO favors compact conformations of the Aβ16−22 peptide

possible due to a coil-helix transition [37]. In our simulations using the AMBER99SB-

ildn-force-field, the peptide also becomes more compact when TMAO is added to

water (see Figure 4.5a) but without favoring any type of secondary structures–see

Table 4.8 and Figure 4.6. An analysis of the structures of Aβ16−22 shows that

TMAO favors conformations where charged residues are close to each other–see

Figure 4.7 Therefore, we speculate that charged residues at the end of Aβ16−22 are

responsible for the collapsing effect of this peptide. To verify this idea, we flank short

poly-valine and poly-leucine peptides (which adopt more extended conformation in

the presence of TMAO–see Figure 4.3d-e) with opposite charged residues: K-L5-E

and K-V5-E. Results from simulations of these peptides are shown in Figure 4.5b-c.

These simulations show that the presence of charged residues makes TMAO to favor

compact peptide conformations. A similar result is also observed using SPCE water

and Netz model for Aβ16−22–see Figure 4.4 and Table 4.9. It suggests that TMAO

enhances the magnitude of charge-charge interactions. Accordingly, in Figure 4.8 we

compute the potential of mean force (PMF) for the interaction between Na+ and Cl−

in pure water and 7M TMAO solution. The PMF to form a contact between these ions

increases significantly (∼ 2 kJ/mol) when TMAO is added to water. Thus, effects of

TMAO on charge-charge interactions contribute to overcome TMAO’s swelling effect

on non-polar peptide segments and they may play an important role in stabilizing

compact protein structures.

To show that the results obtained for peptides in Figures. 4.3 and 4.5 also

apply to proteins that fold into a native state, we show in Figure 4.9 results from

REMD simulations of the Trp-cage miniprotein. The key charge-charge interaction
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Table 4.8 Average fraction of Helix (αhelix + 3-helix), β-sheet, and Rest (coil +
bend + turn) in the Simulations of Aβ16−22, KV5E, and KL5E Peptides in Pure
Water (0M) and in Aqueous TMAO Solutions (3M and 7M). Secondary Structures
were Computed Using DSSP Definitions

Helix β-Bridge Rest

0M 3M 7M 0M 3M 7M 0M 3M 7M

Aβ16−22 0.01 0.01 0.00 0.00 0.00 0.00 0.99 0.99 1.00

KV5E 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00

KL5E 0.01 0.01 0.02 0.00 0.01 0.05 0.99 0.98 0.94

Figure 4.6 Secondary structures of sample trajectories of Aβ16−22, KV5E, and
KL5E peptides in pure water (0M) and in aqueous TMAO solutions (3M and 7M).
Secondary structures were computed using DSSP definitions.
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Figure 4.7 Probability distribution of the distance between charged hydrogen atoms
of Lysine residue (K) and charged oxygen atoms of glutamic acid (E) for Aβ16−22,
KV5E, and KL5E in pure water (0M) and in TMAO solutions (3M and 7M).
Characteristic conformations of flanked peptides at the peak with shortest charge
to charge distance are also showing. Lysine and glutamic acid are shown in blue and
red, respectively.

Figure 4.8 Free-energy landscape between Na+ and Cl− in pure water and TMAO
solutions .
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Figure 4.9 Effects of TMAO on the Trp-cage miniprotein. (a) Amino acid
sequence of Trp-cage highlighting residues that form the hydrophobic core and a
key charge-charge interaction of this miniprotein. The native structure of Trp-cage
with side chains of charged and the hydrophobic residues are depicted on the right
hand side. (b-c) Rg distributions of charged and hydrophobic residues are depicted
for simulations performed in pure water and 5 M TMAO solution. (d-e) Free-energy
landscape of Trp-cage divided by the thermal energy as a function of hydrophobic
and charge Rg in pure water and 5 M TMAO solution.
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of Trp-cage flanks the loop region of this protein while the hydrophobic core holds

one side of the α-helix bonded to the straight segment in the native state [136]—see

Fig.4.9a. Experimental and computational studies have highlighted the importance of

these residues in accounting for the stability and folding of Trp-cage [85, 209]. Results

from our simulations of peptides (see Figures. 4.3 and 4.5) predict that adding TMAO

to water destabilizes the hydrophobic core of Trp-cage while it increases the stability of

the charged residues. To verify this prediction, distributions of the radius of gyrations

of hydrophobic Rhydro
g and charged Rcharge

g residues are shown in Figure 4.9b-c for

simulations performed in pure water and 5 M TMAO solution. These distributions

are shown for the unfolded state at the coexistent temperature Te = 350 K where

native and unfolded states are equally populated. Figures 4.9b-c show that when

TMAO is added to water charged and hydrophobic residues sample more compact and

extended conformations, respectively. This is consistent with results from Figures 4.3

and 4.5. To provide further detail, we show the free-energy of Trp-cage divided by

the thermal energy as function of Rhydro
g and Rcharge

g in pure water (Figure 4.9d) and

TMAO solution (Figure 4.9e) at Te. They show that in pure water, the unfolded

state of Trp-cage samples mostly conformations in which charged residues are far

apart, i.e., states U3, and U4 in Figure 4.9d. In contrast, the unfolded state in

TMAO solution is mostly characterized by hydrophobic residues that are far apart

from each other whereas charged residues remain as compact as the native state–see

states U5, U6 and U7 in Figure 4.9e. Atomic insights into the structures adopted by

Trp-cage are provide in Figure 4.11. These structures correspond to the most popular

cluster at different Rhydro
g and Rcharge

g values. Arrows linking the different structures

are drawn based on the proximity of these states in the free-energy landscape in

Figure 4.9d-e. In pure water, the largest distances between key charged residues is

achieved when the segment of the protein linking the two charges form a beta-strand

(see state U4 in Figure 4.11). This conformation can be reached from the native state
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by first breaking the key charge-charge interaction (U1) followed by swelling of the

hydrophobic core (U3) and the formation of the beta-sheet (U4). Alternatively, state

U4 can be reached by first breaking the hydrophobic core (U2) followed by breaking

the bond between charged residues (U3) and the formation of the beta-sheet (U4).

The existence of these two folding/unfolding scenarios of Trp-cage is consistent with

other computational studies of this protein [7]. Trp-cage configurations with the least

compact hydrophobic core are found in TMAO solutions (state U6 in Figure 4.11).

This state is reached from the native state by first breaking the alpha-helix (U5)

followed by swelling of the hydrophobic core (U6). Notice that extending the two

key charged residues from U6 leads to the formation of a beta-sheet (U7). Thus,

Figure 4.11 shows that the unfolded state of Trp-cage in pure water and TMAO

solutions samples different sets of conformations.

To provide insight into how TMAO destabilizes hydrophobic interactions while

enhancing the magnitude of charge-charge interactions, we compute the preferential

interaction defined as [27, 25]

Γ(r) =
〈
NTMAO(r)−

(Nbulk
TMAO

Nbulk
water

)
Nwater(r)

〉
, (4.1)

where NTMAO(r) and Nwater(r) are the number of TMAO and water molecules with

minimal distance to peptide atoms between 0 and r. Nbulk
TMAO and Nbulk

water are numbers

of TMAO and water molecules in the bulk. Γ(r) compares the number of TMAO

molecules within a distances r from the protein with the expected number of TMAO

in a similar water region in the bulk. It has been proposed that osmolytes which

accumulate in the vicinity of proteins and, therefore, are characterized by positive

Γ(r) values, interact favorably with the protein surface favoring the unfolded state.

In contrast, osmolytes that are repelled from the protein surface (i.e., Γ(r) < 0) favor

the folded state of proteins. Insights into how osmolytes are partitioned close to

the air-water interface can be obtained from measurements of surface tension which
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Figure 4.10 Preferential interaction Γ(r) of poly-glycine, poly-leucine, Aβ16−22 and
Trp-cage. (b-d) Γ(r) is decomposed into contributions from backbone (red) and
side chain (blue) atoms. (c-d) Γ(r) of side chains is further analyzed in terms of
contributions from polar (doted blue), and non-polar (dashed blue) side chains. Only
key residues comprising charge-charge interactions and the hydrophobic core (see
Figure 3a) are used to compute contributions of polar and non-polar side chains of
Trp-cage.
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Figure 4.11 Schematics of the most populated conformations and their allowed
transitions . Side chains of the key charged residues (D9 and R16) are shown and the
backbone is colored based on secondary structures: beta-sheet in yellow, alpha-helix
in purple, coil in gray, and loop in green.

are often, but not always, consistent with their effects on proteins. Upon addition of

TMAO to water, the air-water surface tension decreases suggesting that this osmolyte

accumulates at this interface [64]. In contrast, positive transfer free-energies of

proteins from pure water to TMAO solutions imply that this osmolyte is repelled

from the vicinity of the protein [21].

In Figure 4.10a, we show that for poly-glycine Γ(r) is negative implying that

TMAO is excluded from the surface of this peptide. For the other peptides, we provide

insights into how backbone and side chain atoms contribute to Γ(r) by assigning

solvent molecules to a particular group (backbone or side chain) if it is closest to

that group. This assignment is independent of r. Solvent molecules assigned to

a group are used to compute Γ(r) of that particular group. Consistent with our

results for poly-glycine, Γ(r) computed for solvent molecules associated to backbone

atoms of poly-leucine, Aβ16−22, and Trp-cage (red lines in Fig. 4.10b-d) are negative
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confirming that TMAO is excluded from the backbone of proteins. Similarly, TMAO

is excluded from the proximity of charged residues of Aβ16−22 and the Trp-cage protein

as Γ(r) for these groups (dotted blue lines in Figure 4.10c,d) are negative. In contrast,

Γ(r) computed for solvent molecules associated with non-polar side chain atoms of

poly-leucine (blue line in panel b) as well as of Aβ16−22 and Trp-cage (dashed blue lines

in panels c,d) are positive for distances greater than 0.4 nm implying that TMAO

is attracted to non-polar groups of proteins. Notice that the exclusion of TMAO

from backbone and charged amino acids is consistent with peptides adopting more

compact structures in Figures 4.3b and 4.5. Also, attraction of TMAO to non-polar

residues is consistent with non-polar peptides adopting more extended conformation

in Figure 4.3d-e.

4.4 Conclusions

In summary, we find that TMAO accounts for swelling of non-polar peptides

suggesting that it can destabilize the hydrophobic core of proteins. Accordingly,

our simulations of the Trp-cage protein reveal that its non-polar residues adopt more

extended conformations in TMAO solutions. This result may provide rationalization

for the Rg of the Snase protein which was found to be larger in TMAO solutions (17.3

± 1.5 Å) than in water (15.6 ± 0.2 Å) measured using SAXS [103]. Moreover, we

find that effects of TMAO on backbone and charged residues are found to stabilize

compact peptide structures. Traditionally, the former has been related to TMAO’s

main stabilizing mechanisms [82, 21]. However, the observed swelling of non-polar

peptides in our simulations provide evidence that, at least for these amino acid

sequences, TMAO’s effects on the backbone are not enough to counteract its effects

on non-polar residues. For non-polar peptides flanked by charged residues as well as

the Trp-cage miniprotein, we find that charged residues contribute significantly to

counteract effects of TMAO on non-polar residues. Evidence that charged residues
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contribute to the stability of globular proteins is provided by thermophilic proteins

[29, 152]. While hydrophobic interactions are the main interaction accounting for

the increases stability of thermophilic proteins, 68 % of these proteins showed an

increased number of salt bridges when compared to their mesophilic homologs [74].

These additional salt bridges contribute to enable thermophilic proteins to function at

higher temperatures [184]. Despite the novel insights brought up by our simulations,

this work does not exclude the existence of other stabilization mechanisms of TMAO,

e.g., the recently proposed surfactant mechanism which may explains TMAO’s effect

on elastin that is made of alternating glycine and non-polar residues with no charged

amino acids [108].

Table 4.9 Details of the Simulation Force Fields

Poly-glycine

Charmm-27

Kast

TIP3P [82]

Charmm-22

Kast

TIP3P [37]

Amber99SB-ildn

Kast

TIP3P [Fig.1]

Amber99SB-ildn

Netz

SPCE [Fig.S6]

Aβ16−22

Charmm-22

Kast

TIP3P [37]

Amber99SB-ildn

Kast

TIP3P [Fig.1]

Amber99SB-ildn

Netz

SPCE [Fig.S7]

Poly-leucine

Amber99SB-ildn

Kast, Netz, Osmotic

TIP3P [Fig.1]

Amber99SB-ildn

Netz

SPCE [Fig.S7]
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CHAPTER 5

EFFECTS OF TMAO ON CHARGED INTERACTIONS

In Chapter 4, TMAO was shown to strengthen charge-charge interactions which

favored compact conformations of peptides flanked with oppositely charged termini

and increased the stability of the native state of Trp-cage. In this chapter, we

provide an in-depth understanding of the effect of TMAO on charge-charge interaction

between Na+ and Cl−.

5.1 Methodology

To investigate the effects of TMAO on ionic interaction, we perform molecular

dynamics simulations in the NPT ensemble at 1 atm and four temperatures (273K,

298K, 338K and 368K). The open-source Gromacs suite version 4.6.5 is used to

perform these simulations [197]. The temperature is controlled using the v-rescale

thermostat (τT = 1 ps) and pressure is fixed using the Parrinello-Rahman barostat

(τP = 1 ps). A cut-off of 1.3 nm is used to account for short-range non-bonded

interactions. Long-range electrostatics were calculated using the Particle Mesh Ewald

(PME) algorithm with a grid spacing of 0.13 nm and a 1.3 nm real-space cutoff.

Simulations are conducted using the TIP3P water model, Kast and Netz [167] models

for TMAO and the AMBER model for Na+ and Cl−.

To compute the free-energy landscape describing Na+–Cl− interaction, we use an

umbrella sampling protocol. For the reaction coordinate of these interactions, we use

the distance ξ between between ions in the range of 0.2 nm to 1.1 nm. In the different

windows of the umbrella sampling protocol, ions are restrained to their equilibrium

distance by a spring. The equilibrium distances of springs in neighboring windows

differ in steps of 0.05 nm and their spring constant is 4,000 kJ mol−1 nm−2. Each

window is simulated for 150 ns and the potential of mean force (PMF) is computed
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using the Weighted Histogram Analysis Method (WHAM) [84]. Notice that the PMF

increases with −kbT log(ξ2) due to the three-dimensional nature of ξ, where −kbT is

the thermal energy. We subtract this dependence of the PMF on ξ and the PMF at

the last umbrella sampling window (ξ = 1.75 nm for the neopentane pair or ξ = 1.1

for Na+–Cl−) is shifted to zero.

The enthalpy and entropic energy as a function of ξ are computed from

the temperature dependence of the PMF. For each ξ distance, the temperature

dependence of the PMF is fitted to the thermodynamic relation [51]:

PMF(ξ, T ) = ∆Ho(ξ)− T∆So(ξ, ) + ∆Cop(ξ)

[
(T− To)− T log

(
T

To

)]
, (5.1)

where ∆So(ξ), ∆Ho(ξ) and ∆Cop(ξ), correspond to changes in entropy, enthalpy, and

heat capacity at the reference temperature To, respectively.

5.2 Results

Potential of Mean Force In Figure 5.1a, we show PMF describing the interaction

between Na+ and Cl− ions in pure water (black) and aqueous TMAO solutions (red

and blue). These PMF are characterized by the presence of a contact minimum

(cm), a desolvation barrier (db), a first-solvent-separated minimum (1st ssm), and

a second-solvent-separated minimum (2nd ssm). Notice that several force-fields,

including the AMBER force-field used in this work, have been shown to reproduce the

experimental transfer free-energy of sodium (-375 kJ/mol) and cloride (-347 kJ/mol)

to pure water, which combined account for a free-energy change of 722 kJ/mol [143].

However, the distance-dependent interaction for Na+ and Cl− ions, i.e., position

and magnitude of the PMF at different states, has been shown to depend on the

force-field used in the simulation [191]. While there are no experimental estimates

of the PMF, most classical force-fields overestimate the magnitude of the PMF at

cm when compared to ab initio simulations. This overestimated cm in classical
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1st ssm

2nd ssm

c d

Figure 5.1 (a) Potential of mean force (PMF) for the interaction between Na+

and Cl− ions in pure water (black) and aqueous TMAO solutions (red and blue).
PMF values computed at ξ=1.1 nm are used as our reference, i.e., zero value. (b)
Characteristic configurations of sodium (cyan) and choride (yellow) at cm, db, 1st

ssm, and 2nd ssm. Water molecules in the first solvation shell are shown in a licorice
representation. Dotted lines correspond to hydrogen bonds. (c-d) RDF of ion-Owater

(red) and ion-Hwater (blue) in pure water simulations when ions are fart apart from
each other, i.e., ξ = 1.1 nm.
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molecular dynamics simulations, which is enhanced in AMBER when compared to

other force-fields, may account for abnormal ion clustering at high concentrations

[191]. Arrows in Fig. 5.1a show increased stability of cm states when Kast or

Netz TMAO molecules are added to water. db becomes smaller in simulations

performed with Kast TMAO whereas Netz model has little effect on the stability

of this state. Surprisingly, we find that Kast model stabilizes the 1st ssm while Netz

model destabilizes this state.

In Figure 5.1b, we show characteristic configurations of the different states of

PMF. One and two layers of water molecules separate Na+ and Cl− ions in the 1st

and 2nd ssm, respectively. These ions are in contact, i.e., at close proximity, at cm

whereas cavities in the space between them account for a large positive PMF at db. In

Figure 5.1c-d, we show RDF for ion-Owater and ion-Hwater in simulations performed in

7 M Kast TMAO solution when ions are fart apart from each other, i.e., ξ = 1.0 nm.

From these RDF, Owater peaks closer to Na+ than Hwater whereas the opposite order in

first peaks is observed for Cl−. This reflects the orientation of water molecules in the

solvent first-shell which is such that their hydrogen atoms, which have positive partial

charges, point towards and away from Cl− and Na+ ions, respectively. These water

configurations minimize the electrostatic energy between ions and the dipole moment

of water. Notice that water structures around neopentane optimize the network of

hydrogen bond in the solvation shell.

Enthalpy and Entropy To provide insights into effects of TMAO on the

distance-dependent interaction of Na+ and Cl− ions, we decompose the PMF into

enthalpy (∆H) and entropic energy (−T∆S) in Figure 5.2. In pure water (panel a),

the interaction between Na+ and Cl− ions is favored by entropic energy (blue) and

it is opposed by enthalpy (red) [207]. This reflects the reduced mobility of water in

the first-solvation shell around ions due to strong electrostatic interactions between
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Figure 5.2 Decomposition of PMFs (black) of sodium chloride ion pair into
enthalpies (red) and entropies (blue) contribution in pure water (a) and aqueous
TMAO solutions ((b),(c)) at 298 K as a function of seperation distance between the
two ions. Quantities computed at ξ/ξo=1.0 are used as our reference, i.e., zero value.
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ions and the dipole moment of water molecules. At short ξ distances, i.e., when Na+

and Cl− are close to each other, some water in the first-solvation shell are released

into the bulk where they become more disordered accounting for a favorable change

in the entropic energy—see Figure 5.2a. Concurrently, the enthalpy of these released

water molecules increases as they stop interacting with the ions.

When TMAO is added to water, transferring shell water to the bulk reduces

both the enthalpic penalty and the entropic gain associated with the formation of

cm. This is represented by arrow in Figure 5.2b-c. Notice that these effects are more

significant in the Netz model for which TMAO has a larger dipole moment associated

with its nitrogen and oxygen atoms as well as a larger hydrophobicity related to

CH3 groups. Also, TMAO reduces the enthalpic barrier and it increases the entropic

energy associated with the formation of cavities at db.

Solvation Shell around Na+ and Cl− ions In Figure 5.3a-b, we show RDF

for the interaction between ions and OTMAO (red line), NTMAO (blue), or CTMAO

(black). RDF describing the interactions between ions and Owater are also shown in

green. These function are computed in simulations performed at 7 M Kast TMAO

solution when Na+ and Cl− ions are far apart from each other, i.e, at ξ = 1.1 nm.

In Figure 5.3a, first peaks in the RDF of Na+ and oxygen atoms of both water and

TMAO occur at the same short distance of 0.24 nm. This attraction between Na+

and oxygen atoms of these molecules accounts for a solvation shell containing 1.4

TMAO and 4.5 water molecules, respectively. In 3 M Kast TMAO solution (RDF

not shown), the number of TMAO and water molecules in the solvation shell is 0.3

and 5.5, respectively. Notice that in pure water (RDF not shown), the number of

solvent molecules around Na+ is 5.9. These numbers were obtained by integrating

first peaks in RDF of Na+–OTMAO, and Na+–Owater. The lack of CTMAO atoms in the

first solvation shell of Na+ (see Figure 5.3a) suggests that methyl groups of TMAO are
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Figure 5.3 (a-b) RDF of ions and different atoms of TMAO (oxygen in red, nitrogen
in blue and carbon in black) or water (green) for simulations performed in 7 M Kast
TMAO solution when ions are far apart, i.e., ξ = 1.1 nm. Inset panels show the
distribution of θ in the solvation shell. (c) Spatial distribution functions of TMAO
(pink color) and water (silver color) around ions in 7 M Kast TMAO solution at
ξ = 0.375 nm (left) and at ξ = 1.1 nm (right). Isovalues for TMAO and water are
7.5 and 10.
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solvated away from this ion. Accordingly, the distribution of θ (defined in Figure 5.3a

for TMAO molecules that are in the solvation shell) is biased towards large angles–see

inset of Figure 5.3a. This characterizes TMAO orientations in which OTMAO point

towards Na+ and CTMAO atoms points away from this ion.

Figure 5.3b shows that RDF of Cl− and different atoms of TMAO are not

characterized by a strong first peak. Moreover, only a reduced number of CTMAO

atoms are located within the first solvation shell around the Cl− ion. This

suggests exclusion of TMAO’s polar group from the vicinity of Cl−. Accordingly,

the distribution of θ in the inset of Figure 5.3b is biased towards short angles

corresponding to oxygen atoms of TMAO pointing away from Cl−.

In Figure 5.3c, we show spatial distributions of TMAO (in pink) and water

(silver) around Na+ and Cl− when these ions are far apart (ξ = 1.1 nm) and at cm

(ξ = 0.375 nm). In agreement with RDF in Figure 5.3a-b, these spatial distribution

functions provide evidence that the solvation shell of Na+ contains both water and

TMAO molecules whereas the solvation shell around Cl− contains mainly water

molecules.

5.3 Conclusions

To provide insights into how TMAO affects charged interactions in aqueous solution,

we study the association of Na+ and Cl− ions. Kast and Netz models are used to

mimic TMAO. Both TMAO models are found to stabilize the interaction between

Na+ and Cl− as they reduce the enthalpic penalty of bringing these ions together.

We find that TMAO is attracted to Na+ becoming part of its solvation shell whereas

it is excluded from the vicinity of Cl−.
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CHAPTER 6

SUMMARY AND FUTURE WORK

6.1 Major Results of this Dissertation

In this dissertation, we addressed effects of cosolvents on protein stability using

all-atom molecular dynamics simulations. This is of fundamental importance to

understand living systems as most biological reaction occur in solutions containing

organic molecules. Moreover, understanding how cosolvents affect protein stability

may lead to new principles for drug design. In particular, we have studied the effect of

denaturant urea and protecting osmolyte TMAO. This dissertation has has provided

physical insights and it has made advances in the methodology for studying these

phenomena.

In Chapter 2 of this dissertation, we have proposed a simplified framework in

which extend model peptides were used to study contributions of backbone and side

chain atoms to fibrillation. This framework was used in Chapter 3 to study effects

of urea in this process. The simplified nature of our methodology has enabled us

to provide a comprehensive quantitative description of the effects of urea on the

interactions leading to the ”association” of peptide. In particular, potential of mean

force of extended peptides in pure water and aqueous solutions containing urea. Urea

is found to significantly destabilize dimers with large hydrophobic sidechain. This

is consistent with our simulations of unrestrained poly-peptides, and it is further

confirmed by studying the distribution of urea molecules around peptides using the

preferential interaction. Moreover, an analysis of the energy of the system shows

that urea forms mainly Lennard-Jones interactions with side chains while maintaining

electrostatic bonds with the solvent. Our study on urea provides a clear picture on the
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balance of driving forces that govern the process at thermodynamic and microscopic

level.

In Chapter 4, we studied the molecular mechanism of stabilization of proteins by

TMAO. Despite intensive and recent studies, the molecular mechanisms of TMAO

(and protecting osmolytes in general) remain a question of debate. Most studies

have focused on the effect of this osmolyte on the protein backbone. Here, we show

that, through microsecond long all-atom molecular dynamics simulations of peptides

and REMD of the Trp-cage miniprotein, effects of TMAO on the backbone are not

dominant. In particular, TMAOs effect on the backbone is overcompensated by its

destabilizing effect on the hydrophobic core: non-polar peptides and residues forming

the hydrophobic core of the Trp-cage protein adopt more extended conformations in

solutions containing TMAO. We find that a main interaction that can stabilize folded

proteins are charge-charge interactions. In light of these results, we propose that

competing effects of TMAO on hydrophobic and charge-charge interactions account

for its net stabilizing role on proteins.

In Chapter 4, it is suggested that effects of TMAO on charge-charge interactions

can provide an important stabilization effect on native protein structures. However,

the stabilizing mechanism of TMAO on charged interaction has not been documented

yet. In Chatper 5, we provide in-depth insights into the stabilizing effects of TMAO

on the distance-dependent interaction of Na+ and Cl− ions. We find that this

charge-charge interaction become stronger when TMAO is added to water because

this osmolyte decreases the enthalpic penalty of bringing Na+ and Cl− close together.

At the molecular level, we find that TMAO is attracted to Na+ becoming part of

its solvation shell whereas it is excluded from the vicinity of Cl−. These results for

charged interactions are more pronounced in simulation performed using Netz model

which has larger dipole moment when compared to the Kast model.
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6.2 Foreseeing Future Work

Recent studies indicate that TMAO not only benefits living organisms by regulation

osmotic pressure, but it may also have a deleterious effects on human health [195].

In particular, consumption of choline-rich foods such as red meat, egg and processed

foods, promote TMAO concentration in the blood [199, 188]. The has been found to

correlate with an increased the risk of cardiovascular disease (CVD), which may lead

to stroke or heart attack [127], leading cause of death in the U.S. and worldwide. The

critical questions is what is the role of TMAO in CVD [198] and how TMAO promote

the probability of CVD.

Remarkably, MD simulations have been applied to explore important deter-

minants in processes leading to CVD, and these determinants include lipid trans-

portations [106, 34, 101], lipid interactions [183] and atrial fibrillation [91, 39].

Therefore, we are encouraged to investigate the effect of TMAO in CVD, e.g., role of

TMAO on Cholesteryl Ester Transfer Protein by MD simulation.

Role of TMAO on Cholesteryl Ester Transfer Protein. Cholesteryl Ester

Transfer Protein (CETP in Figure 6.1) plays a critical role in lipid metabolism by

facilitating the net transfer of lipids from high-density lipoprotein (HDL) to low

density lipoprotein (LDL). The activity of CETP directly lowers cholesterol levels

of HDL (good cholesterol) and enhances LDL (bad cholesterol). LDL cholesterol

is considered bad cholesterol since high levels of LDLs lead to plaque buildup and

atherosclerosis. HDL cholesterol is considered good cholesterol since HDLs absorb

cholesterol and carry it to the liver, where it is then flushed from the body. This

helps to prevent plaque buildup in the arteries. CETP deficiency and its inhibition

in humans and rabbits have shown to reduce the probability of CVD. Moreover, this

reduced risk account for increased levels of HDL and decreased levels of LDL through

CETP inhibition [73, 89]. Therefore, to prevent CVD, discovery of small molecule
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inhibitors became an active stratege to hinder CETP’s lipid transfer activity [115, 96].

In particular, MD simulation presenting atomic-level details have been accelerating

the drug-discovery processes targeting CETP for treatment of CVD [106, 34, 101].

Beta-bridge 

N-terminal 

C-terminal 

DOPC Molecules 
Cholesterol Molecules 

Ω3 

Ω1 

Ω2 
Ω6 

Ω5 

Ω4 

Figure 6.1 Structure of CETP showing N and C terminal regions. Two
dioleoylphosphocholine (DOPC) plugging the tunnel openings are colored in orange,
and cholesterol ester (CE) located inside the tunnel are colored in cyan. The
functional loops from Ω1 to Ω6 and beta-bridge are marked in the figure.

We have studied effects of TMAO on small proteins. Our results show that

TMAO strongly affects hydrophobic and ionic interactions. Since CETP is made of

many hydrophobic amino acids and several key salt-bridges, this suggests that TMAO

might have a strong effect on CETP. A possible mechanism by which TMAO may

affect regulation of cholesterol is by changing the conformation/function of CETP.

The aim of this project is to study effects of TMAO on the conformation and function

of CETP at the atomic level. This will be accomplished using all-atom molecular

dynamics simulations to observe the effect of TMAO on CETP.
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