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ABSTRACT

EFFICIENT COARSE-GRAINED BROWNIAN DYNAMICS
SIMULATIONS FOR DNA AND LIPID BILAYER MEMBRANE

WITH HYDRODYNAMIC INTERACTIONS

by
Szu-Pei Fu

The coarse-grained molecular dynamics (CGMD) or Brownian dynamics (BD)

simulation is a particle-based approach that has been applied to a wide range of

biological problems that involve interactions with surrounding fluid molecules or the

so-called hydrodynamic interactions (HIs). From simple biological systems such as a

single DNA macromolecule to large and complicated systems, for instances, vesicles

and red blood cells (RBCs), the numerical results have shown outstanding agreements

with experiments and continuum modeling by adopting Stokesian dynamics and

explicit solvent model. Finally, when combined with fast algorithms such as the fast

multipole method (FMM) which has nearly optimal complexity in the total number

of CG particles, the resulting method is parallelizable, scalable to large systems, and

stable for large time step size, thus making the long-time large-scale BD simulation

within practical reach. This will be useful for the study of a large collection of

molecules or cells immersed in the fluids.

This dissertation can be divided into three main subjects: (1) An efficient

algorithm is proposed to simulate the motion of a single DNA molecule in linear

flows. The algorithm utilizes the integrating factor method to cope with the effect of

the linear flow of the surrounding fluid and applies the Metropolis method (MM) in

[N. Bou-Rabee, A. Donev, and E. Vanden-Eijnden, Multiscale Model. Simul. 12, 781

(2014)] to achieve more efficient BD simulation. More importantly, this proposed

method permits much larger time step size than methods in previous literature

while still maintaining the stability of the BD simulation, which is advantageous

for long-time BD simulation. The numerical results on λ-DNA agree very well with



both experimental data and previous simulation results. (2) Lipid bilayer membranes

have been extensively studied by CGMD simulations. Numerical efficiencies have

been reported in the cases of aggressive coarse-graining, where several lipids are

coarse-grained into a particle of size 4 ∼ 6 nm so that there is only one particle

in the thickness direction. In [H. Yuan et al., Phys. Rev. E, 82, 011905 (2010)],

Yuan et al. proposed a pair-potential between these one-particle-thick coarse-grained

lipid particles to capture the mechanical properties of a lipid bilayer membrane,

such as gel-fluid-gas phase transitions of lipids, diffusion, and bending rigidity.

This dissertation provides a detailed implementation of this interaction potential in

LAMMPS to simulate large-scale lipid systems such as a giant unilamellar vesicle

(GUV) and RBCs. Moreover, this work also considers the effect of cytoskeleton

on the lipid membrane dynamics as a model for RBC dynamics, and incorporates

coarse-grained water molecules to account for hydrodynamic interactions. (3) An

action field method for lipid bilayer membrane model is introduced where several

lipid molecules are represented by a Janus particle with corresponding orientation

pointing from lipid head to lipid tail. With this level of coarse-grained modeling,

as the preliminary setup, the lipid tails occupy a half sphere and the lipid heads

take the other half. An action field is induced from lipid-lipid interactions and

exists everywhere in the computational domain. Therefore, a hydrophobic attraction

energy can be described from utilizing the variational approach and its minimizer with

respect to the action field is the so-called screened Laplace equation. For the numerical

method, the well-known integral equation method (IEM) has great capability to solve

exterior screened Laplace equation with Dirichlet boundary conditions. Finally, one

then can obtain the lipid dynamics to validate the self-assembly property and other

physical properties of lipid bilayer membrane. This approach combines continuum

modeling with CGMD and gives a different perspective to the membrane energy

model from the traditional Helfrich membrane free energy.
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CHAPTER 1

INTRODUCTION

Numerical investigations have been widely utilized to understand fluid-structure

interactions (FSI) in biological systems, such as the hydrodynamics of a DNA molecule

[26, 42, 49, 78, 82, 88], lipid membranes [25, 60, 61, 100, 101], a vesicle (self-enclosing

lipid bilayer membrane) [4, 21, 28, 52, 55, 64, 76, 79–81, 91, 95], red blood cells (RBCs)

[54, 70, 84], sperms [63, 83] or flagellated swimmers [56, 98]. The immersed boundary

method (IBM) has been an extremely popular tool for simulating fluid-structure

interactions. Over the years tremendous progress has been made to refine IBM

for various fluid-structure interaction problems in biology [31, 40, 41, 45, 48]. The

phase-field method (PFM) is another popular numerical method for fluid-structure

interaction [22, 33]. The boundary integral (element) method is an efficient and

accurate alternative when an integral formulation exists [73].

Adaptive mesh refinement and/or regularization are often needed for IBM

and/or PFM to resolve a sharp interface in the fluid domain. Boundary integral

simulations may perform better for a moving boundary problem only when an integral

formulation is possible. Therefore, particle-based methods, such as the coarse-grained

Brownian dynamics (CGBD) can be a natural choice for numerical simulations for

fluid-structure interaction when the geometry of the structure decides the smallest

scale in the problem. The advantage of the CGBD model is that, if treated properly

and consistently, more biological details may be incorporated in the FSI.

1.1 DNA Simulations: Implicit-Solvent Modeling

The dynamics of a single DNA or polymer macromolecule in fluid flow has been

extensively investigated experimentally ( [68, 85] and references therein), theoret-
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ically [19, 24, 57] and numerically [42, 78]. Bulk rheological experiments such as

flow birefringence and light scattering measurements give inference of polymer

conformation, orientation, and chain stretch in fluid flows. The advent of single

molecule visualizations using fluorescence microscopy allows for the direct observation

of complex dynamics of individual macromolecules in dilute solutions under shear,

extensional, and general two-dimensional mixed flows [5, 39, 77, 85, 86]. These

measurements provide data for direct comparison against fully parametrized models

of macromolecules, such as the bead-spring model for DNA with finite extensibility,

excluded volume (EV) [71] effects and hydrodynamic interactions (HI) [78]. Brownian

dynamics (BD) simulations of bead-spring and bead-rod models with free-draining

assumption (no hydrodynamic interactions) give quantitative agreement with short

chains of double stranded DNA experiments, for example, ∼ 21µm long λ-DNA

[43,49,87]. However, for longer chains of DNA such as O(102) µm or longer, HI needs

to be included for quantitative agreement. For truly flexible polymers such as single

stranded DNA or synthetic polymers, one can expect that HI will be important even

for short chains.

Following Ermak and McCammon [24], Schroeder et al. modeled the DNA

macromolecule as a system of N particles subject to interparticle forces, fluctuating

HI and EV forces [43, 49, 78]. They designed a semi-implicit predictor-corrector

scheme for simulating the Brownian system, and illustrated how effects of HI and

EV between monomers in a flexible polymer chain influence both the equilibrium and

non-equilibrium physical properties of DNA macromolecules [78], consistent with the

experimental observations. The non-local HI between the DNA macromolecule and

the surrounding fluid involves an integral of hydrodynamic forces between a point and

the rest of the macromolecule. Within the coarse-grained framework, this integral

is equivalent to a sum of all hydrodynamic forces between a bead and the rest of
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the system. In implicit-solvent modeling we can adopt the Rotne-Prager-Yamakawa

(RPY) tensor [74] (i.e., the mobility tensor) for HI effects:

Dij =
kBT

ζres
Iij, if i = j (1.1)

Dij =
kBT

8πηrij

[(
1 +

2a2

3r2
ij

)
Iij +

(
1− 2a2

r2
ij

)
rijrij
r2
ij

]
, if i 6= j, rij ≥ 2a (1.2)

Dij =
kBT

ζres

[(
1− 9rij

32a

)
Iij +

3rijrij
32arij

]
, if i 6= j, rij < 2a (1.3)

where Dij is the mobility of bead i due to bead j in three dimensions, Iij the 3 × 3

identity matrix, and ζres = 6πηa is the bead resistivity with η the solvent viscosity

and a the radius of beads.

There are two main challenges for the long-time large-scale BD simulations

with HI and EV effects. First, the correlated random noises in the change of

displacement vectors at each time step are proportional to
√

∆t with ∆t the time

step size. This makes the design of high-order marching scheme very difficult and

forces very small ∆t for many explicit or semi-implicit numerical schemes in order to

avoid the numerical instability. The problem becomes much more severe for long-time

BD simulations since it then requires a very large total number of time steps for the

system to reach the desired state, which very often leads to weeks of simulation time

even for one run. Second, the direct evaluation of the particle interaction at each

time step requires O(N2) operations where N is the total number of particles in the

system; and the generation of the correlated random displacements requires O(N3)

operations if the standard Choleski factorization is used or O(KN2) if the Chebyshev

spectral approximation is used for computing the product of the matrix square root

and an arbitrary vector (here K is the condition number of the covariance matrix)

(see, for example, [44]). To summarize, in order to efficiently utilize the BD simulation
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as a practical tool to study the properties of large systems, say, many polymers or a

large collection of DNA molecules in a fluid, it is essential to address the following

two questions: how to numerically integrate the system with greater accuracy and

better stability property which enables much large time step size? How to expedite

the calculations of long-range particle interactions and associated correlated random

effects in BD simulations with HI, especially for large N?

For BD simulations near equilibrium, a Metropolis scheme for the temporal

integration has been recently proposed [11,12] for a Markov process whose generator

is self-adjoint (with respect to a density function) to expedite simulations to reach

equilibrium in a timely fashion. Under this scheme, stable and accurate BD

simulations of DNA in a solvent are obtained using time step sizes that are orders

of magnitude larger than those for predictor-corrector schemes [42, 49, 78]. However,

such a Metropolis scheme relies heavily on the self-adjointness of the Markov process

generator for a quiescent flow.

In this dissertation work, we present an efficient algorithm for the simulations

of the dynamics of DNA macromolecules under linear flows. Our method is based

upon the Metropolis scheme developed in [12] for self-adjoint diffusions, which is

applicable for the study of the DNA molecule to its equilibrium configurations in a

quiescent flow. When a linear flow such as an extensional or a shear flow is present

in the surrounding fluid, the diffusion process is not self-adjoint anymore. We first

apply the method of integrating factors to recast the associated system of stochastic

differential equations (SDE) into a form such that the effect of the linear flow is taken

into account by the integrating factor. We then modify the Metropolis scheme in [12]

to update the displacements of beads which are the coarse-grained representation of

the long chain DNA molecule. Our numerical experiments show that our scheme

allows much greater time step size in the BD simulation and avoids the numerical

instability. The numerical results on the study of λ-DNA agree very well with the
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experimental data [85, 86] and previous simulation results [78]. Moreover, the total

simulation time is significantly reduced in our methods as compared with the semi-

implicit predictor-corrector scheme [78].

For BD simulations that involve a “large” number of interacting particles (so

large that the calculation of their mutual interactions becomes the computational

bottleneck), recent work in [44, 53] reduces the computational cost of particle

interactions from O(N2) to O(N) and the cost of generating the correlated random

displacements from O(N3) or O(KN2) to O(KN). These works yield an essentially

linear algorithm with respect to the total number of particles in the BD simulation

of interacting particles. The method developed in [44, 53] extends the original fast

multipole method (FMM) [29] to the case of the RPY tensor and combines it with

the spectral Lanczos decomposition method (SLDM) to generate correlated random

vectors whose correlation is determined by the RPY tensor. To demonstrate that

long-time large-scale BD simulations (with or without linear flows) for large systems of

interacting particles are within practical reach when our modified Metropolis scheme

is combined with the fast method in [44,53], we use two examples to illustrate that our

algorithms do efficiently capture the HI effects in a large BD system when compared

with experimental results: One is the hysteretic extension of a long DNA molecule in a

linear extensional flow, and the other is the multiple DNA molecules in an oscillatory

shear flow.

1.2 Vesicle and Red Blood Cell Simulations: Explicit-Solvent Modeling

In recent years, great progress has been made to understand the dynamics of vesicles

(self-enclosing lipid bilayer membranes) and red blood cells (RBCs) in aqueous

solutions due to their relevance in a wide range of fields such as biology, biophysics,

and biomedical engineering. A main component of the vesicle and RBC membranes

is the amphiphilic lipid molecules, which self-assemble to form liposomes (vesicles) or
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micelles. In a viscous fluid flow, the vesicle may deform due to the balance between

viscous stress, bending resistance and tension forces in the membrane. In this work

we focus on pure lipid bilayer membrane and neglect the effects of multiple lipid

species and different transmembrane proteins on the lipid bilayer membrane. For a

pure lipid bilayer membrane, the equilibrium shapes of vesicles immersed in fluid have

been widely studied in continuum modeling and coarse-grained molecular dynamics

(CGMD) modeling. In the continuum framework, the dynamics and equilibrium

shape of a lipid bilayer membrane is governed by the Helfrich free energy that consists

of mean, Gaussian and spontaneous curvatures of the membrane [34]. The total

membrane energy is integrated over the surface Ω as

E =

∫
Ω

[
γ +

B

2

(
c1 + c2 − c0

)2

+ κ̄c1c2

]
dA, (1.4)

where {c1, c2} are the principle curvatures, γ is the surface tension, B is the bending

rigidity, κ̄ is the saddle-splay modulus and c0 is the spontaneous curvature. Without

membrane tension (γ = 0) and saddle-splay energy (κ̄ = 0), Equation (1.4) is reduced

to the classical Helfrich-Canham energy which consists of only the bending rigidity

and spontaneous curvature:

E =

∫
Ω

B

2

(
c1 + c2 − c0

)2

dA. (1.5)

Continuum modeling has successfully reproduced vesicle and RBC dynamics in a

fluid flow [67], even though several physical properties of the lipid bilayer membrane

(such as membrane diffusivity and temperature-dependent bending rigidity) have to

be assumed in the continuum framework. In the aggressive coarse-graining, the lipid

bilayer membrane is modeled as a one-particle-thick monolayer of coarse-grained lipid

particles, with each particle containing many lipids. By specifying the potential for

particle interaction, the lipid properties of hydrophilic heads and hydrophobic tails can
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be preserved [100]. Hence, a characteristic length scale of one-particle-thick CGMD

membrane model is often chosen as the thickness (4−5 nm) of lipid bilayer membrane.

In this dissertation work we focus on the meshfree CGMD membrane model,

first introduced by Drouffe et al. in early 1990s [20]. They showed that their

simulation method can well predict the self-assembly property of lipid bilayer

membrane. By controlling the model parameters in one-particle-thick CGMD

membrane model, Yuan et al. showed that the various lipid phases (gel, fluid and

gas) and the physically reasonable lipid diffusivity can be achieved [100]. With

the development of LAMMPS and advancement of large-scale parallel computing,

long-time simulations are now more achievable for examining the dynamics of lipid

bilayer membranes in aqueous solutions. Here we adopt CGMD in LAMMPS for

numerical investigation of vesicle and RBC dynamics.

To fully understand the dynamics of a lipid bilayer membrane with sponta-

neous curvature, two approaches are introduced in the particle based MD simulations:

(1) Pair-potential for fluid lipid membrane which involves membrane-solvent, fluid

membrane network and solvent-solvent interactions [17, 51, 100, 101]. (2) Local

multi-body curvature energy which consists of a local curvature potential based on

aplanarity, excluded volume (as a repulsive) potential and an attractive potential

that depends on the local particle density [60, 61]. Both approaches have their

particular advantages in numerical investigation, and results show that they are able

to reproduce the self-assembly property of a fluid-phase lipid membrane. In this work

we implement the pair-potential function for CG lipid bilayer membrane in LAMMPS.

We will illustrate how to simulate the membrane dynamics with either explicit or

implicit solvent in LAMMPS to study the membrane property and dynamic shape

transitions of vesicles and red blood cells. Two specific applications to the biological

systems using LAMMPS are presented in this paper:
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1. Vesicle shape transitions

Seifert et al. calculated the phase diagram of vesicle shape transitions using

the Helfrich free energy (with a spontaneous curvature) described above, and provided

detailed theoretical insight to the vesicle equilibrium shapes by comparing with

experiments [80, 81]. We will illustrate how to use LAMMPS to model the vesicle

shape transition due to volume reduction. In the one-particle-thick CGMD membrane

model, we will include coarse-grained water molecules (explicit solvent) to account

for hydrodynamic interactions.

2. Resting shapes of RBCs

We extend the CGMD modeling of a vesicle to a RBC, where the surface

structure is a lipid bilayer membrane coupled with a layer of cytoskeleton network

underneath. Laboratory experiments show that RBC can form stomatocyte, discocyte

and echinocyte minimum-energy shapes. In early 2000s, Lim et al. introduced the

mechanical theory for predicting the stable RBC shapes involving area difference

between outer and inner leaflets of RBCs. Lim et al. adopted area-difference-elasticity

model (ADE) which describes the free energy using spontaneous curvature and

geometrical area difference of RBCs to reproduce the RBC shapes under cases of

reduce relaxed area difference and compared the simulation results of RBC shapes

with experiments [54].

In the past, the hydrodynamics of a RBC in a fluid flow has been simulated

by using finite element method (FEM), immersed boundary method (IB), dissipative

particle dynamics (DPD) [40, 66, 69] and Langevin dynamics. In this work we adopt

Nosé–Hoover algorithms in CGMD and compare our numerical results with previous

results from continuum model simulations.
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1.3 Amphiphilic Lipid Dynamics: Continuum Modeling

Many experimental results have shown that a stalk structure of fluid membrane

occurs when two bilayer surfaces create contacts, therefore the hemifusion diaphragm,

membrane fusion and pore expansions are then formed. In recent years Kawamoto et

al. have performed the MD simulations to study membrane fusion and measured

the changes of free energy based on the Helfrich membrane model at the stalk

formations. The methodology involves a specific model parameter related to the

membrane separations and the elastic parameters (bending rigidity, saddle splay

modulus and spontaneous curvature) are obtained from experiments where the types

of lipid molecules are DOPC, DOPE and DMPC [46].

In this dissertation work, we propose a new perspective of membrane dynamics

from the views of lipid-lipid interactions and energy variations to understand these

phenomena which is not able to be reproduced from highly aggressive coarse-grained

modeling. This approach can be traced back in early 1970s, a Croatian applied

mathematician approximated the potential energy of the fluid structure interactions

(FSI) using screed Coulomb force [59]. Referring to recent work, Ryham et al.

calculate the entire least-energy pathway of membrane fusion and the membrane

deformation using the so-called string method in continuum mechanics [75].

The main idea is that the lipid bilayer surface Σ is assembled from distal

monolayer ΣD and proximal monolayer ΣP . The total energy of the elastic

contribution and long-range surface interactions between two monolayers is given

by:

E =

∫
Σ

KC

2

[
(div d + k0)2 − k2

0

]
+
Kθ

2

∣∣d× n
∣∣2 +

KA

2

(a− a0)2

aa0

dS

+

∫
ΣP

W (h) cos2(θ)dS + V (ΣF ).

(1.6)
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where the unit director d represents the direction from single lipid head toward lipid

tail, n the unit surface normal, k0 the spontaneous curvature, lipid cross section area

a (perpendicular to d) and the resting lipid cross section area a0. ΣF is the surface

when membran fusion occurs. The first integral in Equation (1.6) models the elastic

energy including deformation, tilt, splay and stretch. Constant coefficients KC , Kθ

and KA are splay modulus, tilt modulus and two-dimensional modulus for stretching

monolayer area. If d and n are parallel everywhere, (div d + k0)2 − k2
0 would reduce

to (2H − k0)2 where H is the mean curvature.

The second integral describes the van der Waal attractions given by

W (h) =


− H

12π

[
1
h2w
− 2

(hw−2l0)2
+ 1

(hw+4l0)2

]
+W0 h� h0,

LP0e
−h/L otherwise

, (1.7)

where H = 1 kT is the Hamaker coefficient for hydrocarbon across water, W0 is

a constant, hw the water thickness, l0 the resting length of lipid and θ the angle

between the proximal surface and horizontal plane. For the interactions between

proximal surfaces separated by small distance h, a repulsive potential is given for

hydration pressure where P0 is the pressure at zero separation and L is the decay

length determined from pressure-distance curves. The last term in Equation (1.6)

is the hydrophobic attraction potential for membrane fusion and is given by the

following formula:

V (ΣF ) = σ

∫
Ω

ρ|∇η|2 + ρ−1|η|2dx. (1.8)

where σ = 11kT is the interfacial tension of a hydrocarbon-water interface. The

hydrophobic attraction field η satisfies η = 1 on the fissure surface ΣF and η = 0 on the

monolayer surfaces. We aim to replace the membrane total energy in Equation (1.6)
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by only considering the hydrophobic attraction potential V (Σ) shown above since the

variation of this energy resolves the dynamics of lipid and the lipid orientations and

configurations can be obtained. As the consequence, the tilt, splay and stretch are

all preserved when we perform the energy evaluation onto whole membrane surfaces.

At this point, the only thing left is to solve the action field η numerically then

apply it to the membrane energy. It can be derived that the minimizer of the energy

satisfies the BVP:

ρ2∆η = η, η = 1 on ΣT , η = 0 on ΣH . (1.9)

where ρ is the attraction decay length which can be obtained from experiments.

We define the hydrophilic and hydrophobic layers as ΣT and ΣF , respectively. The

equation above is the so-called screened Laplacian where the fundamental solutions

in two and three dimensional spaces are given by

G2D(x,x′) =
1

2π
K0(ρ−1|x− x′|) =

i

4
H

(1)
0 (ρ−1|x− x′|),

G3D(x,x′) =
1

4π|x− x′|
e
−|x−x′|

ρ .
(1.10)

The series solution for the screened Laplace equation can be acquired from

the paper [30] and an accurate series formation can be achieved by adopting the

quadrature by expansion (QBX) method [47]. To solve the BVP above numerically

we can use the integral equation method (IEM) combining with the QBX, the FMM

and the iterative solver. That is, with this approach, no “artificial” attractive and

repulsive potentials will be involved in the action field model and this thus becomes

more realistic to the molecular details of membrane dynamics.

This dissertation is organized as the follows: In §2 we demonstrate the

simulations of a single DNA macromolecule in linear fluid flow where we adopt

the implicit modeling with Metropolis integrator and the FMM can be an efficient
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algorithm when the tensor-vector product involves very high counts of operations. In

§3 a pair-potential model for fluid membrane is introduced and we exhibit the full

CGMD simulations in LAMMPS. We also discuss the methodology of accounting for

the hydrodynamic interaction in this work. The dynamics of vesicle and RBC from

LAMMPS simulations are demonstrated and we compare with previous simulation

results [67, 101] where the solvent and internal fluid are coarse-grained. In §3.5 we

propose a new approach of membrane energy model where an action field induced from

lipid-lipid interactions and the energy variation can capture the membrane dynamics

and fusion formation in nano scale. Within this approach, we adopt the IEM coupling

with the use of the QBX and the FMM methods to solve the action field numerically

and integrate the energy variation to acquire the lipid dynamics. Finally, §5 includes

an overall conclusion of this dissertation research and discussion for potential future

works. We provide the input script and detail of setting up the case studies in

LAMMPS in §A.
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CHAPTER 2

COARSE-GRAINED DNA IN LINEAR FLOWS

2.1 Brownian Dynamic Simulation of a DNA Molecule with HI

The DNA or polymer macromolecule is coarse-grained into a system of N beads

described by the Langevin equation [24] with hydrodynamic interactions. The

governing equation for the position vector ri of the ith bead is

mi
d2ri
dt2

=
∑
j

ζij ·
(

vj −
drj
dt

)
+ Fi +

√
2
∑
j

σij ·Wj, (2.1)

where mi is the mass of bead i, vj is the solvent velocity, and ζij is the friction

coefficient tensor. The coefficient matrix σ connects the thermal fluctuations of the

particles through hydrodynamic interactions. In the Ermak-McCammon model [24],

it is related to ζ with ζ = σ>σ/kBT , where kBT is the thermal energy. Wj is the

thermal fluctuation modeled as a Wiener process with mean 0 and variance dt. Thus,

the RHS of Equation (2.1) is the total force acting on the bead i including the drag

force, total inter-particle force and the thermal fluctuating HI.

Ignoring the bead inertia, Equation (2.1) can be written as a first-order

stochastic differential equation (SDE):

dri =

(
κ · ri +

N∑
j=1

∂Dij

∂rj
+

N∑
j=1

Dij · Fj

kBT

)
dt+

√
2

i∑
j=1

αij · dWj, (2.2)

where κ is the transpose of the constant velocity gradient tensor of the linear far-field

flow velocity and vi = κ · ri (vj = 0 in a quiescent flow). The random Wiener process

in the SDE dWj is related to dt as: dWj =
√
dtnj where nj is a random vector with

the standard Gaussian distribution.
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D is the mobility tensor of size 3N × 3N and for the N-bead chain the

tensor D is related to the thermal energy through the friction coefficient tensor ζij as∑
l ζilDlj = kBTδij. As in [24,78], we use the RPY tensor for D.

In the absence of external driving forces, the covariance between the bead

displacements satisfy the following relation

〈dridrj〉 = 2Dijdt. (2.3)

Hence, the coefficient matrix α is connected with D via the formula D = α>α. We

remark here that the choice of α is not unique and fast algorithms for generating

these correlated random displacements actually take advantage of this fact. Finally,

we observe that for the RPY tensor,
∑

j=1
∂Dij
∂rj

is always zero and Equation (2.2) is

reduced to

dri =

(
κ · ri +

N∑
j=1

Dij · Fj

kBT

)
dt+

√
2

i∑
j=1

αij · dWj. (2.4)

2.1.1 Nondimensionalization of the SDE (2.4)

The bead-spring chain model is widely used for BD simulations of a DNA molecule.

In the bead-spring chain model, the DNA molecule is represented as a chain of N

beads of radius a with adjacent beads connected by a spring. Each spring contains

Nk,s Kuhn steps of length bk. So the maximum length of each spring is Nk,sbk, and the

characteristic contour length of the double stranded DNA molecule L is approximately

(N − 1)Nk,sbk as the size of each bead is much smaller than the length of each spring

and thus neglected. We denote the Hookean spring constant by H. The characteristic

length ls is chosen to be ls =
√
kBT/H and the characteristic time ts is chosen to be

ts = ζres/4H, where ζres is the bead resistivity appeared in the RPY tensor (1.3). We

scale the length and time by ls and ts, respectively and nondimensionalize SDE(2.4)

into the following dimensionless form:

dri =

(
κ · ri +

N∑
j=1

Dij · Fj

)
dt+

√
2

i∑
j=1

αij · dWj, (2.5)
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Here with a slight abuse of notation, we have used the same notation to denote all

corresponding dimensionless quantities.

2.1.2 Choices of the Velocity Gradient Tensor κ

We now specify the velocity gradient tensor κ in SDE (2.5) and restrict our attention

to the following two linear planar flows. The first one is the extensional flow where

vx = ε̇x, vy = −ε̇y with ε̇ the extension rate. The second is the shear flow where

vx = γ̇y, vy = 0 with γ̇ the shear rate. We define the Peclet number Pe = ε̇ζ/4H

for the extensional flow and Pe = γ̇ζ/4H for the shear flow, respectively. Then

the dimensionless velocity gradient tensor κ in SDE (2.5) is given by the following

formulas:

κext =


Pe 0 0

0 −Pe 0

0 0 0

 , κshear =


0 Pe 0

0 0 0

0 0 0

 . (2.6)

Here κ = κext for the extensional flow and κ = κshear for the shear flow.

2.1.3 Specification of the Forcing Term Fi

The force Fj in SDE (2.5) contains two parts: the force exerted by the connected

springs and the force due to the finite size of the beads. We adopt the Marko-Siggia’s

wormlike chain (WLC) spring law [57] to model the spring force between beads. In

the WLC model, the dimensionless spring force acting on the ith bead by the ith

spring is

Fs
i =

√
Nk,s

3

1

2

1(
1− Qi

Q0

)2 −
1

2
+

2Qi

Q0

 Qi

Qi

, (2.7)

where i = 1, . . . , N − 1, Qi = ri+1 − ri is the distance vector between bead ri+1

and ri, Qi is the length of Qi, and Q0 is the maximum distance between these two

beads. Since all interior beads are connected with two springs from two sides, the net
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entropic spring force acting on the ith bead is

Fentropy
i = Fs

i − Fs
i−1, Fs

0 = Fs
N = 0, (2.8)

with i = 1, . . . , N . For later use, we also record the potential for the ith spring below

UWLC(Qi) =
1

2

√
Nk,s

3

(
Q2

0

Q0 −Q
−Q+

2Q2

Q0

)
. (2.9)

For the force due to the finite size of the beads, we adopt the excluded volume

force in [71,78] given by the formula

FEV
i = −

N∑
j=1,i 6=j

9
√

3z

2
exp

(
−

3r2
ij

2

)
rij (2.10)

where z =
(

1
2π

)3/2
ṽN2

k,s, and ṽ = 2ab2
k/l

3
s is the dimensionless excluded volume

parameter. And the excluded volume potential between bead i and bead j is given

by

UEV
ij =

3
√

3z

2
exp

(
−

3r2
ij

2

)
. (2.11)

Finally, the total force acting on bead i is the sum of the spring forces and the

excluded volume forces, that is,

Fi = Fentropy
i + FEV

i . (2.12)

2.2 Numerical Algorithm for BD Simulations in Linear Flows

In the past, a semi-implicit predictor-corrector scheme [39, 78, 87] is often used for

the temporal integration in BD simulations. A major problem associated with that

scheme is that a very small time step size has to be used in order to avoid the

numerical instability, which leads to an excessively large number of time steps and a

very long total simulation time. Recently, a Metropolis integrator has been developed
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to integrate the self-adjoint diffusion equations [12] for BD simulations in a quiescent

flow.

Here we extend the algorithm in [12] to study BD simulations in linear flows.

We first introduce an integrating factor e−κt and rewrite SDE (2.5) as follows:

d
(
e−κtri

)
= e−κt

[
D(ri)F(ri)dt+

√
2α(ri)dWi

]
. (2.13)

Let K(t) = exp(−κt). We now introduce a new variable xi = K(t)ri (i.e., ri =

K(−t)xi). Then the original SDE (2.13) can be rewritten in terms of xi as follows:

dxi = K(t)

[
D(K(−t)xi)F(K(−t)xi)dt+

√
2α(K(−t)xi)dW

]
. (2.14)

The generator of SDE (2.14) is given by the following formula:

Lf(xi) =
1

ν(xi)
div(ν(xi)K(t)D(K(−t)xi)K(t)TDf(xi)) (2.15)

where we introduce the stationary density given by

ν(xi) = exp(−U(K(−t)xi)). (2.16)

We denote the total energy by U which is the sum of WLC spring energy

UWLC and EV potential energy UEV . It is easy to see that the generator of the

transformed stochastic differential equation with respect to ν(xi) is self-adjoint. Thus

the algorithm in [12] can be directly applied to (2.14). We now update the position

vector as follows:

1. Compute the vector x̃n+1
i and update xni by the following formulas:

x̃n+1
i = xni +K(tn)G(K(−tn)xni )∆t+

√
2∆tK(tn)B(K(−tn)xni )dWi, (2.17)
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where the functions G and B are defined by the formulas:

x1 = x +
2

3
D(x)F(x)∆t,

G(x) =
5

8
D(x)F(x)− 3

8
D(x)F(x1)− 3

8
D(x1)F(x) +

9

8
D(x1)F(x1),

(2.18)

x2 = x− 2

3
D(x)F(x)∆t,

B(x)B(x)> =
1

4
D(x) +

3

4
D(x2).

(2.19)

We then apply the Metropolis integrator to obtain the updated xn+1
i .

2. Calculate the acceptance probability α as follows:

α(xni , x̃
n+1
i ) = min

(
1, C exp

[
− |dW̃i|2

2
+
|dWi|2

2
− U(x̃n+1

i ) + U(xni )

])
, (2.20)

where C = detB(xni )/ detB(x̃n+1
i ), U = UWLC + UEV is the total potential energy,

and dŴi is obtained via the formula

B(x̃n+1
i )dW̃i = B(xni )dWi +

√
2∆tG(x̃n+1

i ). (2.21)

3. Generate a Bernoulli random number γ, that is, generate a uniformly distributed

random number β on [0, 1] and set γ to 1 if β ≤ α and 0 otherwise.

4. Compute the updated position vector at time t = tn+1 by the formula

rn+1
i = γK(−tn+1)x̃n+1

i + (1− γ)rni (2.22)

In other words, the position vector will be updated only if the Bernoulli random

number γ is equal to 1. This is the essence of the Metropolis algorithm for Monte-

Carlo simulations.
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2.3 Numerical Results

Common measures of the “stretch” of a DNA molecule under flow are the molecular

fractional extension (x̂ is the unit vector in the x direction)

X ≡ max
i

(ri · x̂)−min
i

(ri · x̂), (2.23)

and its ensemble average 〈X〉 ≡ 1
M

∑
X, where M is the total number of experiments

(or simulations). Here we first compare the transient fractional extensions of a λ-DNA

between the experimental data, semi-explicit numerical simulations [78], and our

Metropolis scheme simulations. The initial DNA configurations in these simulations

are the equilibrium DNA configurations in the absence of flow from the Metropolis

scheme.

For the purpose of comparison, we use the same values of physical and model

parameters as in [78]. That is, the viscosity η of solvent is 8.4 cP (= mPa · s) and

the relaxation time τ is 21.0 seconds. The λ-DNA is modeled with N = 29 beads

of radius a = 0.101 µm connected by 28 springs, where each spring has Nk,s = 40

Kuhn steps of size bk = 0.132 µm and the contour length L is 150 µm. Finally, the

excluded volume parameter v = 0.0034 µm3.

To mimic the experimental configurations, it is essential [78] to first simulate

the DNA molecule to its equilibrium in a quiescent flow, i.e., κ · ri = 0 in SDE (2.5),

which is now a self-adjoint stochastic differential equation that can be efficiently

solved to an equilibrium state using the Metropolis scheme in Section 2.2. At the

beginning of the no-flow simulations, beads are equally spaced on the x-axis. The

Metropolis scheme allows for relatively large time step 4t (an order of magnitude

larger), consequently saving a significant amount of computation time for running

no-flow simulations compared to the semi-implicit predictor-corrector scheme in [78].

The flow-free simulation is continued until an equilibrium configuration is reached,

which is often 10-20 relaxation times (τ). After the equilibrium is reached for a DNA
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in a quiescent flow, we then turn flow on in the simulations and sum up dri to obtain

the updated configuration and the mean fractional extension of a DNA molecule

under linear flow.

In Figures 2.1–2.6, we use the Deborah number to label different flows. As a

dimensionless flow strength, the Deborah number De is equal to ε̇τ for the extensional

flow and γ̇τ for the shear flow. We would like to remark here that γ̇τ is also called the

Weissenberg number in the case of the shear flow in many literature. The transient

fractional extension from these simulations is summarized in Figure 2.1, which shows

two sets of comparison for Deborah number De = 0.98 (ε̇ ≈ 0.0467 sec−1) and

De = 4.0 (ε̇ ≈ 0.1905 sec−1) for panels (a) and (b), respectively. Figure 2.1 is

simulated by using the modified Metropolis integrator scheme with an integrating

factor (Equation (2.5) in Section 2.2, κ = κext). Thin curves are individual trajectories

from experiments, filled circles are the ensemble average from experiments, filled

triangles are ensemble average from Schroeder et al. [78], and our results are the empty

triangles. We observe that, in both panels, our results are in good agreement with the

experiment results. However, our simulations are orders of magnitude more efficient

because a time-step ∆t = 10−4τ = 2.1×10−3 sec is used for results in panels (a), and

∆t = 10−3/ε̇ = 5.25× 10−3 sec is used for panel (b). In comparison, a much smaller

time step for De = 4.0 and De = 0.98 cases are necessary for the predictor-corrector

scheme [78]. The advantage of using Metropolis integrator is to capture the physical

phenomena of the model. Error bars in the figures denote the standard deviation

calculated from our numerical simulation data (triangles). No error bars are provided

for the data from the experiment (filled circles) and Schroeder’s simulation (empty

circles).

Similar comparison of a single DNA molecule in a planar extensional flow

between experiment and simulation are also conducted in [42]. Figure 2.2 compares

our results against those from [86] for a 21 µm DNA molecule in an extensional flow
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Figure 2.1 Transient fractional extension for a 7-lambda (L = 150 µm) DNA in
a planar extensional flow. 60 trajectories from simulations are used for ensemble
average.
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Figure 2.2 Comparison between experiments [86] (thin curves for individual
trajectories and filled circles for the average) and our numerical simulations (empty
circles). The vertical dashed line in figure 2(a) shows the point below which
continuous data could not be collected in some experiments. The horizontal dashed
line in figure 2(b) shows the steady-state of the stretched ∼ 22 µm λ-DNA.
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Figure 2.3 Comparison between numerical results [42] (filled and empty circles for
the assemble averages of FD and HI) and our numerical simulations (empty triangles).
Solid curves are single trajectories of HI simulations from [42].
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with N = 11, bk = 0.106 µm, Nk,s = 19.8, a = 0.077 µm, 23◦C for the temperature

and v = 0.0012 µm3. Figure 2.2(a) is for De = 2.0, ε̇ = 0.5 sec−1, τ = 4.1 sec

and η = 43.3 cP. Figure 2.2(b) is for De = 48.0, ε̇ = 2.8 sec−1, τ = 17.3 sec and

η = 182 cP. Thin curves are trajectories from experiments [86], filled circles are the

ensemble average of experimental results, and empty circles are the ensemble average

from our modified Metropolis integrator simulations. For De = 2.0 (Figure 2.2(a))

our average is almost identical to the simulation average from [42] (bottom panel of

their Figure 2). For De = 48.0 (Figure 2.2(b)), Our simulation results are in better

agreement with experimental results than those from Jendrejack et al. [42] and we

show these comparisons in Figure 2.3. In these Metropolis integrator simulations

∆t = 10−3 sec for both De = 2.0 in Figure 2.3(a) and De = 48.0 in Figure 2.3(b).

Even though this time step is slightly smaller than those used in [42], our Metropolis

algorithm with the integrating factor is second-order accurate [11, 12] and no matrix

inversion is needed. In Section 2.4, we describe how our numerical algorithm can be

further improved when the system size is large by using FMM to efficiently calculate

the HI.

Next we compare the mean fractional extension of a DNA molecule against

experiments [85] and Jendrejack et al.’s simulations [42]. The parameters for

simulations are [85]: bead radius a = 0.077 µm, and temperature is fixed at 20◦C.

Two viscosities are considered in the experiments, η = 60 cP and 220 cP for the shear

flow cases, while only η = 60 cP is used for the case of extensional flow (based on the

experiments in [85]). For the corresponding simulations in [42] the number of beads

is 11, Kuhn step size bk = 0.106 µm, the number of springs per Kuhn step Nks = 21,

and the contour length L = 22 µm.

Figure 2.4 shows the fractional extension versus time for three cases of Deborah

numbers (De = 3.2, 6.3, and 76.0) when DNA molecule is under the simple shear

flow. Since the relaxation time τ is fixed, shear rate γ̇ is higher at higher De. As
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Figure 2.4 Fractional extensions for different De and shear rate γ̇ from our
simulations with (De, γ̇) = (3.2, 0.5), (6.3, 1.0), (76.0, 4.0), respectively. The
relaxation time τ is 6.3 sec for the first two cases and 19.0 sec for the third case.
The time steps are: ∆t = 10−3 sec for De = 3.2, ∆t = 5× 10−4 sec for De = 6.3, and
∆t = 2.5× 10−4 sec for De = 76.0.
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Figure 2.5 Cases of mean fractional extensions for shear flow and extensional flow.
Experimental data [85] are symbols with error bars, bead model with and without
HI (see legend) are from [42] and our results as red symbols (empty circles for the
extensional flow; triangles and crosses for the shear flow).

expected, larger mean extension of the DNA molecule is expected at a higher shear

rate. From these results, the mean fractional extension is computed by taking the

averages over a long duration.

Figure 2.5 shows the comparison of mean fractional extension between exper-

iments [85], Jendrejack et al.’s simulations [42] and our simulations. Experimental

data are shown in filled dark disks for the extensional flow and dark circles for the

shear flow, and the thin solid curves are their best fits. Simulation results from [42] are

thick dashed (with HI) and dash-dotted (without HI, or free-draining (FD)) curves.

Our simulation results are denoted by red symbols in the legends, and their best fits

are the thin dashed curves. It is clear that our results agree well with experimental

data for the shear flow cases. For the extensional flow cases, our results agree better

with simulation results from [42] for all values of De. At larger De (De ≥ 40), all

three agree well for the extensional flow cases.

26



Schroeder et al. also investigated the hysteresis of stretch-coil transition

of a long λ-DNA (∼ 1300µm) in an extensional flow [77]. Figure 2.6 shows the

comparisons of single trajectories of DNA extensions over strains between their

experimental data [77] and our numerical results. For the initially coiled DNA,

the simulation starts without flow for several relaxation times as done in previous

numerical simulations [77]. Also following their procedure for the initially stretched

DNA , we first run the simulations with a high Deborah number (De = 15) until

equilibrium, and then gradually lower the flow strength (Deborah number) until the

desired values are reached (at t = 0): De = 0.30 for Figure 2.6(a) and De = 0.57

for Figure 2.6(b). The parameters for simulations are the following: a = 0.28 µm,

Ns = 123, Nks = 80, bk = 0.132 µm, ν = 0.00032 µm3 and τ = 126.0 sec. We

set the solvent viscosity to be 1 cP and time step size (a) ∆t = 10−2 sec and (b)

∆t = 5×10−3 sec are used for simulations. The agreement with the experimental data

demonstrates that our numerical methods are able to capture the hysteric transition

between stretched and coiled DNA in an extensional flow.

2.4 Extension to Large Systems

In the numerical algorithm described in Section 2.2, the RPY tensor D is constructed

explicitly, the matrix vector product DF is computed directly, and the uppertri-

angular matrix B is obtained by the Cholesky decomposition with its determinant

simply the product of its diagonal entries. This is affordable for the numerical

experiments presented in Section 2.3 since the total number of beads N = 29.

However, for large systems the computational cost of these standard direct algorithms

becomes prohibitively expensive since the matrix vector product DF requires O(N2)

operations, the Cholesky factorization requires O(N3) operations, and each BD

simulation often requires more than 105 time steps. Thus, fast algorithms become a

necessity in order to make long-time large-scale BD simulations practical.
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As mentioned in Section 1.1, recently a fast multipole method for the RPY

tensor (RPYFMM) has been developed in [53]. The fundamental observation in [53]

is that the RPY tensor can be decomposed as follows:

Dij = C1

[
δij
|x− y|

− (xj − yj)
∂

∂xi

1

|x− y|

]
+ C2

∂

∂xi

xj − yj
|x− y|3

,

where C1 = kBT
8πη

, C2 = kBTa
2

12πη
.

With this decomposition, the matrix vector product Dv for a given vector

v can be interpreted as a linear combination of four harmonic sums with suitably

chosen source charges and dipoles. In other words, the matrix vector product Dv

can be evaluated by four calls of the classical FMM for Coulomb interactions in three

dimensions [16]. Thus, the RPYFMM avoids the explicit construction of the RPY

tensor and reduces the computational cost of Dv to O(N) in both CPU time and

memory storage.

We observe further that the Cholesky factor B of the RPY tensor D can be

replaced by any matrix C which satisfies the same matrix equation CC> = D (note

that there are actually infinitely many matrices satisfying this matrix equation, see,

for example, [44] for details). Indeed, [53] also proposed to replace the Cholesky

factor B by
√
D and compute

√
Dv by combining the classical Spectral Lanczos

Decomposition Method (SLDM) with the RPYFMM. The resulting algorithm has

O(κN) complexity with κ the condition number of the RPY tensor D. We remark

here that for most BD simulations with HIs, the beads do not overlap with each other

due to the EV force and our numerical experiments show that the condition number

of the RPY tensor in this case is fairly low. This indicates that the RPYFMM-SLDM

method is essentially a linear algorithm for computing
√
Dv. The timing results

presented in Table 4.1 and Table 4.2 clearly demonstrate of linear scaling of the

RPYFMM and RPYFMM-SLDM methods.
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Table 2.1 Timing Results (sec) for Computing T = Dv by RPYFMM

N TRPY FMM TDirect ERPY FMM

1,000 0.20897 0.31495 1.6008e-02

10,000 1.6058 30.6643 5.5339e-02

100,000 16.172 2738.48 8.3803e-02

1,000,000 160.24 271009.4 1.1603e-01

Table 2.2 Timing Results (sec) for Computing T =
√
Dv by RPYFMM-SLDM.

N m TSLDM Erelative

1,000 4 0.54192 6.21032e-06

10,000 4 9.03360 6.24604e-04

100,000 6 111.80 7.92857e-04

1,000,000 12 2180.8 2.91239e-04
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Finally, we would like to remark here that recent developments in the fast

multipole methods and fast direct solvers also enable a linear algorithm for computing

the determinant of a matrix with certain hierarchical low rank structure [2,35,36]. By

incorporating all these fast methods into our current numerical scheme, we obtain a

numerical algorithm which is stable even for relatively large time step size and scales

linearly with respect to the number of particles (or beads) in the system.

Figure 2.7 and Figure 2.8 are simulation snapshots of many DNA in an

oscillatory shear flow. Similar to the previous work [89] we define the background

oscillatory shear as U0 = (γ̇ sin(2πωt)y, 0, 0) (on the x − y plane in each panel),

where ω = (20000∆t)−1, ∆t = 0.00128 and γ̇ = 1.0 is the shear rate for simulations.

For this simulation we include 25 DNA molecules, each of which has a rest contour

length of 150 µm. The parameter set of 150 µm long DNA (29 beads) is used (total

number of beads is 725). In the simulation, each molecule has the same initial

extension. Figure 2.9 illustrates the correlation between mean molecule extension

and the oscillating shear flow magnitude. Figure 2.10 shows that the spring energy

dominates the total energy during the first period (t = 25.6) since the DNA molecules

stretch under shear flow. After one period of time, DNA molecules turn to coiled

states and EV potential energy is dominant due to molecule-molecule interactions.

Finally, the timing result for one time step ∆t including forcing calculations

and matrix-vector multiplications with the use of RPYFMM and RPYFMM-SLDM

is ∼ 0.3 sec. However, it takes ∼ 98.0 sec at each time step for direct calculations

involving construction of RPY tensor and direct factorization using Cholesky

decomposition. This result shows that one can reduce much computational cost by

using the O(N)-operation algorithms when N is large.
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2.5 Conclusion

We have extended the Metropolis integrator in [12] to study BD simulations with

HIs in linear flows. The method utilizes the integraing factor to absorb the effect of

the linear flow and permits much larger time step sizes for BD simulations with HIs

in linear flows. We have applied our method to study the fractional stretch and the

mean stretch of a single λ-DNA molecule in planar linear flows. Our numerical results

agree very well with experimental data [85, 86] and other simulation results [78] in

the literature.

We have also discussed the extension of our method to large systems in

Section 2.4. By incorporating the RPYFMM and other fast algorithms into the

scheme, the resulting algorithm admits large time step sizes and has nearly optimal

complexity (i.e., O(N) or O(N logN)) in the number of particles in the system. Thus,

even though many of these fast algorithms have a large prefactor (say, C ≥ 1000)

in front of N , the combination of our fast algorithm with modern computers makes

long-time large-scale BD simulations with HIs within practical reach. We are currently

incorporating these fast algorithms into the modified Metropolis integrator and

applying the resulting algorithm to study the lipid bilayer membrane of the red blood

cells in the blood flow. Results from these ongoing work are being analyzed now and

will be reported in a timely fashion.
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Figure 2.6 Molecular extensions for 1.3 mm DNA in an extensional flow for De =
0.30 (top) and De = 0.57 (bottom). Filled symbols are experimental data from [77].
Blue circles are our simulation results. Time steps ∆t = 5 × 10−2 sec for De = 0.30
(top), and ∆t = 10−3 sec for De = 0.57 (bottom).
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Figure 2.7 Numerical experiments of many-DNA in an oscillatory shear flow at (a)
t = 0 and (b) t = 25.6, when shear flow velocity is zero.
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Figure 2.8 Numerical experiments of many-DNA in an oscillatory shear flow at (a)
t = 38.4 and (b) t = 49.024.
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Figure 2.9 Numerical simulations for 25 DNA molecules in an oscillatory shear
flow. Blue trajectories are fractional extensions of each molecule, dashed green curve
is the magnitude of periodic shear flow and solid red curve is the assemble average.
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Figure 2.10 Energies versus time t for 25 DNA molecules in an oscillatory shear
flow. Total enegy (top) is the sum of WLC spring energy (middle) and EV potential
energy (bottom). Red dotted vertical lines represent half period of flow oscillation.
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CHAPTER 3

COARSE-GRAINED LIPID BILAYER MEMBRANE – VESICLES

AND RED BLOOD CELLS SIMULATIONS IN LAMMPS

3.1 Model Descriptions

3.1.1 Coarse-Grained (CG) Modeling

The advantage of using coarse-grained modeling is to reduce the computational cost.

Without losing physical properties of lipid bilayer membrane, characteristic length

scale in CG modeling can be much larger than atomistic sizes and simulations can

be performed for a much longer time. Figure 3.1 shows that lipid bilayer membrane

can be represented as: (a) 1 bead for lipid head and rigid rod for lipid tail [62]; (b) 1

bead for lipid head and 2 beads for lipid tail [96]; (c) 1 bead for a collection of lipids

with the bead diameter as the thickness of lipid bilayer membrane [60, 61]. For all

LAMMPS simulations in this work, we adopt the coarse-graining in panel (c), the

one-particle-thick meshless model where the characteristic length is the diameter of

coarse-grained particle (lipid bilayer membrane thickness).

3.1.2 Pair-Potential Model for Coarse-Grained Membranes

In this work, we implement in LAMMPS the lipid-lipid interaction potential function

for CGMD simulations of a lipid bilayer membrane. Developed by Yuan et al., the

interaction potential between coarse-grained lipid particles is constructed to account

for the head-head, tail-tail and head-tail interactions between the coarse-grained lipid

mesoscopic molecules [100, 101]. Figure 3.2 shows the schematic of inter-particle

interactions, angular parameters and the approximation of spontaneous curvature c0.

d0 is the average inter-particle distance and the dimensionless spontaneous curvature

is c̃0 = R0c0 where R0 is the radius of spherical body. {θi, θj} indicate the orientations

of particle pair {ri, rj}.
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Figure 3.1 Various CG membrane models: (a) 1 bead for lipid head and rod for lipid
tail; (b) 1 bead for lipid head and 2 beads for lipid tail; (c) 1 bead for a collection of
lipids without mesh. (panel (a) and (b) are reprinted from [96]; panel (c) is reprinted
from [60])

Figure 3.2 Schematics of normal vectors, angular parameters for the particle pair
{ri, rj} and relationship between angle parameter θ0 and spontaneous curvature c0

where d0 is the average interparticle distance.

Denoting the position of ith CG particle as ri, for each pair of particles {ri, rj},

we only consider the repulsive potential uR(r) and attractive potential uA(r) which
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are given by the following formulas

uR(r) =ε

[(rmin
r

)4 − 2
(rmin
r

)2
]

uA(r) =− ε cos2ζ

(
π

2

(r − rmin)

(rc − rmin)

)
,

(3.1)

with r = |rij| ≡ |ri − rj|. The exponent ζ controls the slope of the attractive branch

and rc is the cutoff radius. rmin is the distance which minimizes the potential energy

uA(r) and rmin = 6
√

2σ, where σ is the length unit. ε is the energy unit which we set

kBT = 0.23ε for numerical simulations in Section 3.4.

We then define an angular function φ(r̂ij,ni,nj) which depends on the relative

orientation between particle pair ri and rj:

φ(r̂ij,ni,nj) = 1 + µ(a(r̂ij,ni,nj)− 1) (3.2)

a(r̂ij,ni,nj) = (ni × r̂ij) · (nj × r̂ij) + sin θ0(ni − nj) · r̂ij − sin2 θ0. (3.3)

where r̂ij = rij/r, µ is the parameter related to bending rigidity and θ0 is the

parameter related to the spontaneous curvature. The pair-interaction potential U

of each pair of particles {ri, rj} is expressed in terms of the angular function φ, uR(r),

and uA(r) as

U(rij,ni,nj) =


uR(r) + [1− φ(r̂ij,ni,nj)]ε, r < rmin

uA(r)φ(r̂ij,ni,nj), rmin < r < rc.

(3.4)

Figure 3.3(a) shows the variation of a(r̂ij,ni,nj) with {θi, θj}, and Figure 3.3(b)

shows the dependence of the attractive component of the potential U(rij,ni,nj) on

parameter ζ. From the formulas above, the simplest case is when the normal vectors

{ni,nj} are parallel, which gives a = 1 and φ = 1.
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Figure 3.3 (a) Surface plot for the values of a(r̂ij,ni,nj) versus corresponding
{θi, θj}; (b) Dependence of potential energy on angular parameter θ0 when the model
parameter ζ = 4.0.

3.1.3 Cytoskeleton

The cytoplasmic membrane of a RBC is coupled to a cytoskeleton network. Within

the coarse-grained formulation, the cytoskeleton network is modeled as a polymeric

network that contains three basic types of coarse-grained particles: (1) Junction

complexes (actin protofilament and protein band 4.1) are located at the end of

spectrin tetramers, (2) Spectrin tetramers (composed of consecutive bonded beads),

and (3) Ankyrin proteins located in middle of spectrin beads which connect network

to transmembrane proteins. Since we focus on the RBC shape transition at the small

deformation regime, we use harmonic springs to model the connectivity between the

coarse-grained lipid bilayer membrane and the cytoskeleton network through binding

with spectrin, ankyrin and other linking proteins. The harmonic bond potential is

given by:

Eharmonic = K(rij − r0)2, (3.5)

where K is a constant and r0 is the equilibrium distance of each bond. The number

of coarse-grained cytoskeleton particles depends on the average distance between
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each pair of ankyrins. As the cytoskeleton network is enclosed by the lipid bilayer

membrane, strong thermal fluctuations may cause nonphysical phenomenon in the

CGMD simulations. For example, the coarse-grained cytoskeleton particles may move

to the cell exterior. In our simulations precautions are made to prevent this from

happening. In the initial configuration of the CGMD simulations of RBC, we put no

water molecule between the membrane and cytoskeleton network. Figure 3.4 shows

the initial configuration of a coarse-grained RBC and water molecules. Including

internal water molecules and external water molecules, we have total 7 types of

particles for simulations in LAMMPS.

Figure 3.4 Cross-section snapshot of cubical simulation box for coarse-grained RBC
simulation in LAMMPS with periodic boundary condition; 7 types of particles are
shown in this image: lipid membrane (blue), transmembrane protein (pink), junction
complexes (dark purple), spectrin tetramers (lime), ankyrin (light purple), internal
water (brown) and external water (gray).

3.1.4 Langevin Dynamics

The dynamics of a coarse-grained macromolecule has been modeled by the Langevin

equation. In the case of a coarse-grained lipid bilayer membrane, the Langevin

equation with constant friction coefficient is often adopted:

mi
d2ri
dt2

= −ζ dri
dt

+ Fi +
√

2kBTζWi, (3.6)
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where mi is the mass of coarse-grained particle i, ζ is the friction coefficient and Fi

is the interparticle force. The coefficient of Wiener process Wi connects the thermal

fluctuations of the particles through hydrodynamic interactions. Thermal fluctuation

effect is significant in this length scale following from fluctuation-dissipation theorem

therefore the axisymmetric case is not considered in this work. In the absence of

external driving forces, the covariance between the bead displacements satisfies the

following relation

〈Wi(t)〉 = 0, 〈Wi(t)Wj(t
′)〉 = 2kBTζδijδ(t− t′). (3.7)

Therefore, the magnitude of thermal fluctuation can be controlled by fixing the system

temperature.

3.1.5 Nondimensionalization

For LAMMPS simulations, we nondimensionalize length, time and temperature units

by following the scaling laws specified in the LAMMPS lj unit style:

ls =σ, i.e., x∗ =
x

σ

ts =τ, i.e., t∗ = t

√
ε

mσ2

T ∗ =T
kB
ε
,

where m is the mass of each CG membrane particle and T is the temperature.

3.2 Hydrodynamic and Interparticle Interactions

The Lennard-Jones (L-J) potential is used through all this work for the interac-

tions between coarse-grained lipid particles, coarse-grained cytoskeleton and water

molecules. As water molecules may pass through the porous structures in the

cytoskeleton, we need to take the membrane-water interactions into account. In
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addition, we also add L-J potentials for cytoskeleton network and membrane to

prevent proteins from coming out of the RBC. The L-J potential is given by the

following formula

ELJ = 4ε

[(
σeq
rij

)12

−
(
σeq
rij

)6]
, (3.8)

where rij is: (a) distance between two coarse-grained water molecules; (b) distance of

each pair of coarse-grained cytoskeleton particles; (c) distance between membrane or

cytoskeleton and water molecules. σeq is the equilibrium length to the interactions.
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Figure 3.5 Lennard-Jones potential and force curves with σeq = 2.7 and the energy
constant ε = 1.0. The blue dot represents the case when the minimum energy occurs
at rmin/σeq = 21/6 ≈ 1.12.

Figure 3.5 shows one example when σeq = 2.7, ε = 1.0 case. For water-water

interactions, a smaller value of σeq implies a smaller effective volume occupied by the

coarse-grained water molecules. Instead of changing the number of coarse-grained

water molecules to adjust the interior RBC/vesicle volume, we adjust σeq for the

coarse-grained internal water molecules to control the volume in RBC. This approach

is advantageous as gives the desired interior volume in LAMMPS simulations.
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3.2.1 Modified Harmonic Bond Function

The water volume enclosed in the lipid bilayer membrane is controlled by adjusting

the effective radius of the coarse-grained water molecules. For the case of a RBC, it is

important to ensure that RBC cytoskeleton is stress-free in the initial configuration

so we can conduct comparison with previous results in the literature. One way to

ensure a stress-free RBC cytoskeleton is by modifying the equilibrium bond length in

Equation (3.5) so that initially the harmonic bond energy is zero for the cytoskeleton.

Thus, we modified the harmonic bond in LAMMPS by calling initial config-

uration x0 and calculate the bond length l0(ri, rj) between each pair of particles at

the beginning of simulation. Different from the harmonic bond function in LAMMPS

where the bond length r0 is a constant in Equation (3.5), the modified harmonic bond

energy is now

Ẽharmonic = K(rij − l0(ri, rj))
2, (3.9)

where l0 = |x0, ij| is the initial length of the bond. This slight modification helps

us achieve a stress-free configuration for the cytoskeleton before we reduce the RBC

volume. The detailed LAMMPS implementation of this proposed modified harmonic

bond is stated in Appendix A.

3.2.2 Choices of Thermostat Algorithms

Quite a few thermostat algorithms are available in LAMMPS to provide the desired

system temperature, such as Langevin thermostat [32], Berendsen thermostat [7] and

Nosé–Hoover thermostat [37]. In particular, Nosé–Hoover thermostat is one of the

most accurate integration methods in molecular dynamics simulations, and LAMMPS

users often use Nosé–Hoover thermostat with NVT (constant number of particles,

volume and temperature), NVE (constant number of particles, volume and total

energy) or NPT (constant number of particles, system pressure and temperature)

ensembles to run the simulations of biological system. For running the equilibrium
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state of vesicle and RBC simulations, we combined the NVT and NPT ensembles

to control the system. We observed that using NPT ensemble on water molecules

and cytoskeleton network and NVT ensemble for coarse-grained membrane is able to

acquire numerical stable configurations.

3.2.3 Volume Control of Water Molecule Inside the Cell

In our CGMD simulations of lipid bilayer membrane dynamics, we have assumed that

no internal fluid molecules will be able to move across the membrane or cytoskeleton

and vise versa for the solvent. By adjusting the equilibrium cut length of L-J potential

for internal water-water interactions, a smaller σeq implies less neighbors of water

molecules to be taken into account, and this means that the water volume inside the

cell is reduced. For instance, our goal may be to reduce the vesicle volume during

the simulation within a given amount of time. Using the ramp function with respect

to σeq, we can achieve nearly constant rate of change in vesicle volume. Figure 3.6

is an example, where the green line shows the linear decrease of σeq from 2.7 at

t ∼ 0.8µs (when the equilibrium configuration is reached) to σeq ∼ 2.1 at t ∼ 8µs.

The corresponding vesicle volume scaled to the initial vesicle volume v0 is depicted

in the blue curve. We observe that the wiggles of blue curve is due to the thermal

fluctuation effect and the trend of decreasing volume is near linear.

3.2.4 Simulating Procedure in LAMMPS

Figure 3.7 is the general procedure in which LAMMPS users should follow solid

arrows for performing vesicle simulations and both dashed and solid arrows for RBC

simulations:

1. For complicated geometries such as RBC which requires an elliptic region for

membrane and a hexagonal network for cytoskeleton network, one can use
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Figure 3.6 Dashed line represents the linear decreasing L-J equilibrium length σeq
over time and the solid curve is the volume fraction v(t)/v0 over time. The occurrence
of wiggles is due to the effect of thermal fluctuation presented in the simulation.
Clearly, the volume of cell is reduced while σeq is decreasing.

MATLAB script to generate the initial configurations. Otherwise, LAMMPS

can handle spherical region or rectangular patch with the command region.

2. Prepare LAMMPS input script to initialize the particles mass, velocities, time

step size and the simulation run length.

3. Follows from the requirement of LAMMPS data format as shown in Table A.1

in Appendix A, one needs to call “hybrid” style for using multiple atom styles

in LAMMPS. Depends on the subject of simulations, one may need to include

the bond styles for specific bonds, for instance, RBC simulations.

4. Use proposed pair-potential as the main pair style for bilayer membrane; use L-J

potential for membrane-water, cytoskeleton-water, water-water and membrane-

cytoskeleton interactions.
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Figure 3.7 Flow chart of simulation procedures in LAMMPS. For simple membrane
structure such as planar membrane or vesicle, the procedure follows the solid arrows;
for RBC simulations all steps connected by dashed arrows are included.
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5. Setup modified harmonic bond energy for linking proteins between membrane

and network. Similarly, setup modified harmonic bond energy for spectrin

tetramer and ankyrin bonds.

6. For the steps of running equilibrium state, we use the mix of NPT and NVT

fixes as our thermostats.

7. Adjust the value of σeq in L-J potential for internal water-water interactions to

achieve the cell volume reduction.

8. Finally, generate LAMMPS output data into the file format “.lammpstrj”.

3.3 Membrane Properties

We first show that the proposed pair potential for coarse-grained lipid molecules

reproduces some of the basic membrane properties such as in-plane diffusivity,

bending rigidity and membrane tension. For the diffusivity, we study a planar

membrane patch where the side L ∼ 40σ and the particle number N is 5822. The

time step size is ∆t = 0.01τ and we adopt the NVE ensemble with Berendsen

pressure control algorithm for 3× 106 steps. Since the system may take some time to

equilibrate, we follow the protocols in the literature [60, 61] to average over the last

1.5 × 106 steps for considerations. The diffusivity can be observed by tracking the

mean-square-displacement (MSD) which is given by the following formula:

MSD(t) =
1

N

N∑
i=1

〈(ri(t)− ri(0))2〉, (3.10)

where MSD is an accumulated value over the time period t. From Einstein’s equation

for 2D membrane, we can compute the 2D diffusivity by
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D(t) =
MSD(t)

4t
. (3.11)

(a) (b)

Figure 3.8 (a) Initial state of a planar membrane patch where we separate the
membrane with two different colors. (b) Membrane configuration at t ∼ 1 ms (106

time steps). We observe that membrane particles can travel through the membrane
behaving as a fluid structure.
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Figure 3.9 (a) Mean-square-displacement (MSD) versus time: linear MSD repre-
sents the diffusion property of fluid membrane; (b) From the relationship between
the diffusivity and the MSD, we obtain the plot of diffusivity versus time. For this
simulation, the parameters are: ζ = 4, µ = 3, sin θ0 = 0, T = 0.23 and N = 5822.
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Figure 3.8(a) shows initial state of the membrane patch, and the membrane

shape at t ∼ 1 ms in (b). It is clear that coarse-grained particles move

randomly within the membrane as the lipids are in fluid phase. In LAMMPS,

mean-square-displacement (MSD) can be computed and stored by adding specific

commands. Figure 3.9 shows MSD and diffusivity as we collect the data every 200

time steps. Figure 3.9(a) gives the linearly increasing MSD which represents the pure

diffusivity. From the use of the Equation (3.11), we track the diffusivity over time and

the result is shown in Figure 3.9(b) which shows the constant diffusion of membrane.

Next we extract the bending rigidity from the membrane fluctuation spectrum.

Given a profile function h(x, y) of the planar membrane patch, its Fourier transform

h̃(q) =
1

L

∑
n

h(x, y)ei~q·(x,y), (3.12)

where the wave vector ~q = 2π
L

(nx, ny) and the wavenumber q is the norm of wave vector

~q. Following [10], the bending rigidity and the membrane tension for a coarse-grained

membrane patch in a 3D periodic domain can be approximated by the following

formula

〈|h̃(q)|2〉 =
kBT

L2(γq2 + κq4)
, (3.13)

where γ is the membrane tension and κ is the bending rigidity.

For this numerical study, we generate a large membrane patch in a periodic

domain with size L ∼ 140σ. The particle number N = 23452 and the time step

size ∆t = 0.01τ . The total steps for simulation is 22 × 106 and we dump the

trajectories of membrane into a .xyz file every 1000 time steps. After running 12000τ

for equilibrium state, we calculate the values of fluctuation spectra by using 2D Fast

Fourier Transform in MATLAB which gives fast evaluations to 2D discrete Fourier

transform of height function h(x, y).
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Figure 3.10 shows that the fluctuation spectra of our simulation results lay

on both q−2 and q−4 lines. From the fitting to Equation (3.13), we obtain the

approximations of bending rigidity κ ≈ 18 kBT . This result matches the experimental

data of bending rigidity for vesicles and we observe from case studies that the bending

rigidity is independent of the size of membrane domain. Therefore, in the following

section, we perform the numerical applications by using the same parameter set as

one used here.
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Figure 3.10 Blue circles are our simulation results for the fluctuation spectra of
membrane height versus the quantities q where q is the norm of two dimensional wave
vector. The parameters for this simulation are: ζ = 4, µ = 3, sin θ0 = 0, T = 0.23 and
N = 23452.

3.4 Applications to Biological Systems

We conduct two sets of simulations – vesicle shape transitions and resting shapes of

RBCs. Visual Molecular Dynamics (VMD) 1.9.1 is used to generate snapshots from

the simulation data.
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3.4.1 Vesicle Shape Transitions

Yuan et al. used the pair potential in their CGMD simulations of a vesicle and

demonstrate the shape transitions of vesicles in [101]. Without using water molecules

in their CGMD vesicle simulations, they calculated the volume by local triangulation.

The vesicle volume is controlled by a penalty body force from an energy EV that drives

the system to a desirable equilibrium volume V from an initial volume V0:

EV =
1

2
KV

(
V

V0

− 1

)2

(3.14)

where KV is a constant. In principle, we can consider the Equation (3.14) as a

spring energy exerted on the vesicle volume. Therefore, the energy EV should be

incorporated into the total free energy. Once EV is incorporated, enormous amount

of computations is needed for local triangulation to the enclosed vesicle membrane at

each time step as the volume transitions toward the desirable value [101]. This makes

the computation very slow and inefficient.

Rather than local triangulation for volume calculation, we apply coarse-grained

particles to explicitly model water molecules with an effective L-J potential for

water-water interactions, and adjust the equilibrium radius σeq to achieve the volume

control. With no penalty energy in the total free energy, at each time step we record

the membrane configuration and we are able to compute the vesicle volume by using

volume approximation of convex hull in MATLAB.

In the following, we report that we can reproduce some of theoretical results

using the same set of algorithms in LAMMPS. For vesicle simulations, we only

consider a layer of coarse-grained membrane interacting with solvent and calculate

the inter-particle force using the proposed pair-potential. We use a spherical vesicle

as the initial configuration for of the coarse-grained membrane. The initial vesicle

configuration is first generated on MATLAB and a LAMMPS input file is prepared.
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We note that the file format for hybrid atom styles should comply with the LAMMPS

requirement. For example, volume parameter is essential for peridynamics atom style

and the volume of each particle is set to be a fixed constant in this simulation .

The parameter set for the pair-potential is the same as in previous work [101]:

angular parameter ζ = 4, the parameter µ = 3 is from orientation dependent function

φ(r̂ij,ni,nj) in Equation 3.2 and θ0 can be calculated from desired spontaneoues

curvature c0. For the energy unit ε to the system we set kBT = 0.23ε and the

cutoff length in pair-potential is rc = 2.6. The thickness of membrane σves ≈ 5 nm

and the diameter of vesicle is 50σves. We run simulations in periodic box where the

side is 70σves. As mentioned in Section 3.2.2, we apply NVT ensemble for water

interactions and NPT ensemble for the bilayer membrane. We then perform the

simulation for vesicle shape transitions by using the ramp function to adjust σeq in

the L-J potential for water-water interactions. Moreover, the equilibrium length of

Lennard-Jones potential to the water-water interactions is initially set with σeq = 2.7.

As described in Section 3.2, we reduce vesicle volume by decreasing the value of σeq.

From single run simulation with wide range of change of σeq, say, from 2.7 to 1.5,

we are able to track that specific shapes occur when σeq is at corresponding level.

After obtaining the desired vesicle shapes, we unfix the ramp function and relax each

case for several time units to obtain the equilibrium states. Finally, we recorded the

numerical experiments and corresponding σeq values. We observed that within certain

range of σeq the vesicle will remain at the specific shapes as shown in Figure 3.11.

Our simulation data show that one can obtain prolate shape, dumbbell

shape, biconcave shape, stomatocyte-like shape and inward budding cell when

σeq ≈ {2.5, 2.3, 2.0, 1.9, 1.7}, respectively. Notice that according to [101], this shape

transition can be achieved by using fast rate of volume change v̇ within 200τ where τ

is the dimensionless time unit and in real time τ is of order 0.1 µs. The dimensionless

time step size ∆t = 0.01 is used for this simulation and total number of time steps
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is vary for cases of desired shapes. Figure 3.11 shows that starting with spherical

vesicle, when the spontaneous curvature sin θ0 is set to be 0, we have the shape

transitions which are prolate (v = 0.8), dumbbell (v = 0.7), biconcave (v = 0.6),

stomatocyte (v = 0.65) and inside budding shapes (v = 0.45) with corresponding

volume of internal water.

With similar setup, we then perform the simulations for the cases when the

spontaneous curvature c0 is nonzero and the results are shown in Figure 3.12. We

observed that different from the case when c0 = 0, for c0 = 2 and c0 = 4, the vesicle

forms tube like configuration and outward budding shapes.

Figure 3.11 Shape transitions of vesicle for corresponding values of vesicle volume
v when the spontaneous curvature c0 = 0. According to [101], this case of transition
occurs when the volume change rate is high (v̇ = 1.75× 10−3τ−1).
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Figure 3.12 Possible shapes of vesicles when curvature c0 is nonzero: (a) Tube like
configuration (c0 = 2) and (b) outward budding shape (c0 = 4) when v = 0.65, 0.45,
respectively.

3.4.2 Resting Shapes of RBCs

Recall the modified harmonic bond function in Section 3.2.1, the stress-free configu-

ration of cytoskeleton network plays an important role in the study of resting shapes

of RBCs, by minimizing the total elastic energy of the system. Lim et al. compared

their simulation results with experiments for resting shapes of RBCs for cases of

different spontaneous curvatures and access areas between inner and outer leaflets of

the lipid bilayer [54].

In this study, we consider slightly eccentric spheroid as the stress-free

configuration of a RBC. Denote the volume of each initial cell as Vs and the volume

of original stress-free spheroid cell as V0, we performed simulations for the cases when

the ratio Vs/V0 are {0.9, 0.925, 0.95, 0.975, 0.995, 0.998}. To validate our simulations

against the continuum simulation results shown in [67], we reduced the volume of RBC

from V0 to 0.65V0 and reproduced the results under values of spontaneous curvatures

c0. Figure 3.13 shows the numerical results of stress-free RBC using finite element
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method (FEM) [67]. With the use of the same parameter set as given in the first part

of numerical simulations, one additional NPT fix is needed for cytoskeleton network

then we can obtain the stress-free state for both membrane and cytoskeleton.

The experimental observed size of RBC is 6 ∼ 8 µm in diameter but here we

inherit the same cell size from previous section where the diameter of cell is 50σrbc

and the gap between cytoskeleton and membrane is set to be 2σrbc. As done in the

previous simulations, we used periodic boundary condition to run the simulations.

With enough amount of coarse-grained particles on membrane and cytoskeleton, the

small size of the cell can also achieve the same deformations as ones occurred in

real size RBC. In addition, this setup reduces computational cost. We would like to

make a remark here that due to the volume of internal water is not fixed for cases of

spheroid, σeq should be carefully adjusted and the cytoskeleton inside the cell takes

space therefore the values of σeq from previous simulation of vesicles are not feasible.

Our simulation results generated from LAMMPS are shown in Figure 3.13.

Comparing our result with the numerical results from continuum model using FEM,

it is clear that for Vs/V0 is at {0.9, 0.925, 0.95} we have close resting shapes which

are biconcave shapes. Also, for Vs/V0 is at {0.975, 0.995, 0.998} we have bowl shapes

which are nearly identical to the results from continuum modeling. We want to point

out that the shape transition from bowl shape to biconcave shape is well predicted

in this simulation and we include the zoom-in views of both shapes in Figure 3.14.

Lastly, due to the thermostat generated from LAMMPS, thermal fluctuation would

be a huge factor to the simulation in LAMMPS which may cause numerical instability.

Thus, the time step size for this simulation is smaller than one in previous sections.

Here we used ∆t = 0.005 .
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Figure 3.13 (a) FEM simulation results for resting shapes of RBC reprinted from
[67]; (b) Our simulation results using LAMMPS for various spontaneous curvature c0

versus cases of Vs/V0. We also provide the equilibrium length σeq for internal fluid
interactions in each simulation.

(a) (b)

Figure 3.14 Possible resting shapes of stress-free RBCs: (a) Bowl shape
(Stomatocyte); (b) Biconcave shape.

3.5 Conclusion

In this work, we incorporate into LAMMPS the pair-potential developed for

one-particle-thick CGMD simulations of lipid bilayer membranes. Using LAMMPS

we demonstrated that the dynamics of a lipid bilayer membrane immersed in a
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viscous fluid can be simulated with explicit solvents. We also provide the instruction

for preparing the simulation setups consisting of the coarse-grained vesicles, RBCs,

internal fluid and solvent. In order to apply the stress-free configuration of the

cytoskeleton of RBCs, we modify the built-in harmonic bond energy to acquire the

equilibrium state of cytoskeleton network.

Our simulation results show that the orientation-dependent pair-potential for

the coarse-grained lipids well captures the membrane properties such as membrane

diffusivity, bending rigidity and membrane tension (by evaluating the mean-square-

displacement and fluctuation spectrum of height function). Furthermore we incor-

porate coarse-grained water molecules to account for the hydrodynamic interaction

between a lipid bilayer membrane and the fluid around it. A Lennard-Jones

potential is adopted for interactions between solvent molecules, and by adjusting the

equilibrium length σeq we can control the volume enclosed inside the lipid bilayer

membrane or RBC. In our CGMD simulations using LAMMPS we are able to

reproduce the shape transitions of vesicle for cases of desired equilibrium volumes.

We also perceive the contrast between results in continuum modeling and ones in

CGMD for the resting shapes of RBC.

LAMMPS is equipped with the capability for parallel computing with

OpenMPI. To illustrate how the approaches presented in this paper may be practical

for parallel simulation of realistic biological membranes, here we demonstrate some

timing results from parallel computation of the CGMD model of the lipid bilayer

membrane: (a) for a total number of CG lipid particles N = 23452 running parallel

computing on a cluster (with 2.53 GHz 6-core processor) with 160 CPUs, it takes

about 3 hours to integrate the system to 1 ms; (b) Table 4.2 shows the timing results

of GUV simulations with 144 CPUs. In other words, it becomes practical to couple

our pair function with more complicated biological system.
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Table 3.1 Timing Results (sec) for Running 105 Time Steps of GUV Simulations
with 144 CPUs

Dvesicle Ntotal Nbilayer Nwater T100k (sec) Lbox

250 nm 20011 8346 11665 179.70 350 nm

500 nm 147750 31404 116346 439.84 700 nm

1000 nm 1152245 125588 1026657 2761.13 1400 nm
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CHAPTER 4

ACTION FIELD METHOD FOR MOLECULAR DYNAMICS OF
LIPID BILAYER MEMBRANES

In this work we aim to adopt an aggressive coarse-grained modeling where each bead

represents a collection of lipid molecules and consider the action due to lipid-lipid

interactions. With the known physical properties of lipid–hydrophobic tail and

hydrophilic head, we can prescribe a condition where the action field exists when

tail-tail interactions effects are significant and is absent from the tail-head interaction.

With this setup, the orientations of lipids are implicitly defined and axial rotations

can be derived and calculated.

4.1 Action-Field of Lipid-Lipid Interactions

Figure 4.1(a) shows the schematic of membrane fusion process. From panel A to panel

F , we can observed that proximal layers form pores when membrane fusion begins

and the lipids at contact surfaces change corresponding orientations. Figure 4.1(b)

is the Janus particle representation of a lipid bilayer membrane where each Janus

particle represents single lipid. In other words, the diameter D of each Janus particle

is a half of thickness of membrane which is D ∼ 2.5 nm. The panel (c) of Figure 4.1

shows that from this setup the orientations of Janus particles are assigned implicitly

from lipid heads toward lipid tails.

The usage of Janus particles for forming the lipid bilayer membrane refers to

the aggressive coarse-graining. Different from the implementation in [75] for the field

evaluations where they marked points on lipid tails and considered separation angles,

we propose to solve the action field solutions by using the IEM which has capability on

solving the screened Laplacian in any geometry with Dirichlet boundary conditions.

In this work, we consider our Janus particles as spheres (or ellipsoids) where the
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(a)

(b) (c)

Figure 4.1 (a) Membrane fusion process from two interacting separate membranes
in A to two fused membranes in F. This figure is reprinted from [75]; (b) The schematic
of Janus particles representing the lipid bilayer membrane where the coarse-grained
lipid tail is in orange and lipid head is in blue; (c) The orientations of Janus particles
are assigned from lipid heads toward lipid tails.

solution exists only on the particle surfaces. As shown in the panel (b) of Figure 4.1,

we propose that the solution of action field η = 1 on lipid tails and η = 0 on lipid

heads. Moreover, recall from the proposed boundary conditions, we denote the surface
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of one hemisphere representing the lipid tail as ΣT and the surface of the other one

for lipid head as ΣH . Hence, the solution on the boundary is given by: η = 1 on ΣT

and η = 0 on ΣH .

From calculus of variation, we can derive the variation of the attraction

potential δV in the computational domain and update particle positions and

directions in terms of δV . Given initial ith particle center position and direction

{xi,di} and suppose that the action field η solves Equation (1.9), we have the

following hydrophobic attraction energy on the membrane surfaces:

V = σ

∫
R\

⋃
i
Bi

ρ|∇η|2 + ρ−1|η|2dx, (4.1)

where σ the surface tension and ρ the screened length to the system. Refer to [75],

the parameters are given by σ = 11kBT/nm
2 and ρ = 0.22 nm.

Before proceeding to the calculation of energy variations, we first nondi-

mensionalize the proposed hydrophobic attraction energy potential by the following

scaling laws:

length scale: [L] = D = 2.5 nm;

energy scale: [E] = σ × [L]2 = 68.75kBT.

This implies that all dimensionless parameters are given by:

D̄ =1.0;

ρ̄ =0.088;

σ̄ =σ
[L]2

[E]
= 1.0.

For the following derivations we omit the bars from notations and the variation

with respect to time perturbation dV/dt at the domain is given by
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dV

dt
=

∫
⋃
i
∂Bi

(
ρ|∇η|2 + ρ−1|η|2

)
· u · n̂dx

+

∫
R3\

⋃
i
Bi

2

[
ρ∇η · (δ∇η) + ρ−1η · (δη)

]
dx.

(4.2)

where n̂ the unit outward normal of the boundary and u the local velocity field. Use

integration by parts on the first term of the second integral above, we then obtain:

dV

dt
=

∫
⋃
i
∂Bi

(
ρ|∇η|2 + ρ−1|η|2

)
· u · n̂ + 2ρ(∇η · n̂)ηtdS

+

∫
R3\

⋃
i
Bi

2

(
− ρ∆η + ρ−1η

)
(δη)dx.

(4.3)

where we can prove that ηt = ∇η · u and the energy variations become:

dV

dt
=

∫
⋃
i
∂Bi

(
ρ|∇η|2 + ρ−1|η|2

)
· u · n̂ + 2ρ(∇η · n̂)(∇η · u)dS

+

∫
R3\

⋃
i
Bi

2

(
− ρ∆η + ρ−1η

)
(δη)dx.

(4.4)

The last term of the equation above vanishes automatically when we minimize the

energy. Once the action field η is solved, we can evaluate the approximation of ∇η

on the domain boundary. Therefore the energy variation (4.4) can be obtained and

the particle configuration and net torque {xi, τi} can be updated by the following

formulas from Euler-Lagrange derivatives:

ξx
dxi
dt

=

∫
∂Bi

δV

δx
dS

=

∫
∂Bi

(
ρ|∇η|2 + ρ−1|η|2

)
· n̂ + 2ρ∇η(∇η · n̂)dS, when u = δx

(4.5)

ξθ
dθi
dt

=τi =

∫
∂Bi

2aρ(∇η · n̂)(∇η · t̂)dS, when u = ω(x− xi) = ωan̂, (4.6)
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where a is the radius of Janus particle and ω is a two-dimensional rotation matrix

which is given by: cos θ − sin θ

sin θ cos θ

 ,

and ξx and ξθ are drag coefficients of translational and angular velocities. t̂ is the unit

tangent vector and θi is the corresponding angle of ith particle orientation with respect

to the x-axis. The relationship above states that the angular velocity is proportion

to the torque with a reciprocal of rotational drag coefficient.

To determine the drag coefficients ξx and ξθ, we assume that all Janus particles

are immersed in the water where the viscosity is given by µ = 0.93 cP when the

temperature is T = 296.15K. For a spherical particle of radius a, the drag coefficients

are known as ξx = 6πµa and ξθ = 8πµa3. Neglecting the thermal fluctuations for

now and using the hydrodynamic drag coefficient for a sphere of radius a = 1.25 nm,

we scale time by the following characteristic time for the coarse-grained lipid (janus)

particle

time scale [T ] =
6πµa

[E]
[L]2 ≈ 4.88× 10−10 second.

Thus the translational drag ξx will be scaled to one and the rotational drag will be

scaled as

ξ̄θ = 8πµ̄(
ā

2
)3 = µ̄π =

1

3
.

4.2 Integral Equation Method

For solving action field η numerically we adopt the IEM which only utilizes the surface

potentials to compute the solutions with boundary data when the governing equation

is homogeneous. The simulation procedures are described as the follows:
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1) Recall the Screened Laplace equation and write it in the form of PDE in term of

a differential operator L:

Lu = 0 in Ω, u = f on Γ, (4.7)

where Ω is the simulating domain and Γ is the boundary of the target geometry.

2) From the potential theory, we can write down the solution in terms of a linear

combination of single layer potential S and double layer potential D:

u = CSσ +Dσ = C

∫
Γ

G(x, y)σ(y)dSy +

∫
Γ

∂G(x, y)

∂n
σ(y)dSy, (4.8)

where σ(x) is an unknown density in the computational domain and C is a constant.

The so-called Brakhage-Werner parameter C = i is used through this work [13]. The

Green’s function is given by the (1.10) and the series solution is formed by modified

Bessel function. Therefore, we can express the solution above by QBX method [47]

Dσ(x) =
∞∑

l=−∞

αQBXl Kl(ρ
−1r)eilθ. (4.9)

The coefficients αl can be computed numerically and is given by:

αQBXl =
i

4

∫
Γ

H
(1)
l (iρ−1|x′ − c|)eilθ′σ(x′)dx′ (l = −p,−p+ 1, . . . , p), (4.10)

where (|x′ − c|, θ′) denote the polar coordinates of the point x′ with respect to the

point c.
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3) From one side limits for both exterior and interior problems, a jump relation is

given by:

f = D∗σ(x)

∣∣∣∣
Γ

= lim
x±→x

Dσ(x±)± 1

2
σ(x), (4.11)

where the sign depends on the type of problem. We then need to use iterative solver

such as GMRES to solve the density σ(x). After obtaining the density σ(x) we can

use the FMM to solve u = Dσ.

4) The boundary condition for ith Janus particle is given by

f(ri, θi) =


1 −π

2
< θi <

π
2

0 π
2
< θi <

3π
2

. (4.12)

where the angle θi corresponds to the particle orientation di.

In order to have smooth boundary condition, one suitable option is to use

hyperbolic functions instead of adopting step functions. For example, one candidate

can be:

f(ri = ai, θi) =
tanh(θi + π

4
)− tanh(θi − π

4
)

2 tanh(π
4
)

, (4.13)

where ai is the radius of the ith particle.

5) We also need to obtain the action field gradient ∇η when we solve the field η.

Remarks: 1. the accuracy of iterative solver is set to be 10−8 for the trial

case. 2. η and ∇η may be solved in the same script. Otherwise, it can be computed

by using central difference scheme. 3. Post processing includes variation calculation

configuration updates and visualization. 4. The base problem solving package can be

acquired from
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Figure 4.2 Boundary function (4.13).

http://github.com/inducer/pytential

developed by Dr. Andreas Klöckner. All codes are written in Python and C++

languages and post-processing script is performed in MATLAB.

The BVP (1.9) is solvable from the use of separation of variables in polar

coordinates and the series solution is in terms of the modified Bessel’s equation for

N -particle system:

η(r, θ) =
N∑
j=1

ηj(r, θ) =
N∑
i=j

Rj(r)Θj(θ)

=
N∑
j=1

∞∑
k=1

[(
Cj1kI√k(

r

ρ
) + Cj2kK√k(

r

ρ
)

)(
Cj3ke

i
√
kθ

)]

+
N∑
j=1

[
Cj10I0(

r

ρ
) + Cj20K0(

r

ρ
)

)(
Aj0θ +Bj0

)]
(4.14)
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where

Iα(x) =
∞∑
m=0

1

m!Γ(m+ α + 1)

(x
2

)2m+α

Kα(x) =
π

2

I−α(x)− Iα(x)

sin(απ)
.

(4.15)

Since the modified Bessel function of the first kind Iα(x) does not vanish at farfield,

the solution can be represented as:

η(r, θ) =
∞∑

n=−∞

AnKn(
r

ρ
)einθ, (4.16)

where the coefficients An can be calculated from the boundary condition f(a, θ):

An =
1

2πKn(a
ρ
)

∫ π

−π
fe−inθdθ. (4.17)

where the particle radius is a and this solution will be used for performing tests of

numerical accuracies.

4.3 Numerical Results

4.3.1 Convergence Test and Timing Results

The quadrature error O(( h
4r

)2q) and the truncation error O(rp+1
QBX) are provided by [47]

where q is the number of points evaluated in Gauss-Legendre quadrature, p the order

of the QBX, rQBX the radius of a disk centered at an off-surface point and h the

arc length of discretized panels. For the following numerical results, (ρ = 1) is used

through all simulations and the system dimension is 2. We begin from testing two

Janus particles on the x-axis where they face toward each other, i.e., {dleft,dright} =

{(1, 0), (−1, 0)}. Figure 4.3 shows surfaces plots and x-y projections when the distance

between two centers of particles r = {2, 3, 4, 5, 6, 7}. The schematic is shown in the

Figure 4.4. As expected that the solution of the action field η in middle decays when

68



the two particles separate. As an example, the panel (b) in the Figure 4.4 is the

cross-section plot at x-axis when the distance between two particles is r = 7.

(a) (b) (c)

(d) (e) (f)

Figure 4.3 (a)–(f) Action field profile for the distances of two Janus particles on
the same axis r = {2, 3, 4, 5, 6, 7}.

(a) (b)

Figure 4.4 (a) Schematic of two Janus particles on the same axis facing each other;
(b) Cross-section plot when r = 7.
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(a) (b)

Figure 4.5 (a) Schematic of checking solution accuracy; (b) Contour plot of the
action field.

To perform the convergence tests, we test three cases: (1) The number of

panel segments is equal to 4 with various numbers of panels on the boundary; (2)

The number of panel segments is equal to 8 with various numbers of panels on the

boundary; (3) with the fixed number of panel segments and the number of panels on

the boundary, we adjust the tolerance of iterative solver. The number of evaluated

points on the boundary is given by the following formula: Nbdary = Npanel×(Nsegment+

1). It is clear that with higher number of panels and the number of panel segments,

the grid points marked on the boundary increase. As shown in the Figure 4.5, we pick

a point near one Janus particle to check the accuracy of solution where the solution

can be obtained from Equation (4.16). The results of Table 4.1–4.4 show that with

higher number of panel segments, the numerical error can be reduced.

We then show the numerical accuracy of the solutions in Figure 4.6 where we

adjust the QBX order p and the QBX radius rQBX = h/2 is used for this test. It

is clear that the `2 error of numerical solution is of the order hp+1. Table 4.5 shows

that increasing the number of grid does not effect the numerical accuracy of the
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Table 4.1 Convergence Test 1: The number of panel segments Nsegment = 4 and
the Tolerance tolGMRES = 1.0× 10−13 are Fixed; Total Grid Number is 100× 100

Npanel Nbdary Iterations l2 error

20 100 10 1.30× 10−3

40 200 10 6.36× 10−5

80 400 10 2.56× 10−6

Table 4.2 Convergence Test 2: The number of panel segments Nsegment = 8 and
the Tolerance tolGMRES = 1.0× 10−13 are Fixed; Total Grid Number is 100× 100

Npanel Nbdary Iterations l2 error

20 180 10 8.46× 10−7

40 360 10 1.79× 10−8

80 720 10 1.92× 10−9

Table 4.3 Convergence Test 3: The number of panel segments Nsegment = 12 and
the Tolerance tolGMRES = 1.0× 10−13 are Fixed; Total Grid Number is 100× 100

Npanel Nbdary Iterations l2 error

20 260 10 4.25× 10−9

40 520 10 5.85× 10−10

80 1040 10 6.85× 10−11

solution. The reason is that the nodes on the boundary are fixed and the numerical

error depends on the parameter Nbdary as shown in Figure 4.7. Figure 4.8 is generated

from Table 4.5 for the timing results on serial code.

We also include the timing results for {10, 20, 40, 80} particles in the same

size of computational domain in Table 4.6, i.e., the grid points of the domains

remain the same over four cases of simulations. This timing results are collected

from single CPU performance. Since the QBX method is highly parallelizable, the
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Table 4.4 Convergence Test 4: The number of panel segments Nsegment = 16 and
the Tolerance tolGMRES = 1.0× 10−13 are Fixed; Total Grid Number is 100× 100

Npanel Nbdary Iterations l2 error

20 340 10 4.80× 10−10

40 680 10 6.56× 10−11

80 1360 10 4.02× 10−12

Figure 4.6 Numerical accuracy of the QBX method when the order of QBX varies.
h is the arc length of each sub-panel of the boundary and Npanel = 20.

computational cost is expected to optimize with the use of parallel computing. The

positions and orientations of particles are generated randomly in MATLAB where the

initial configurations are shown in Figure 4.9.

4.4 Conclusion and Ongoing Works

Our numerical results have shown that with the use of the certain sets of parameters

in the QBX method the `2 error can achieve a least single precision. Moreover, since

the FMM is also implemented in solving the solution of BVP, the error due to the

FMM is also tunable by adjusting the order of the FMM.
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Figure 4.7 Numerical accuracy of the QBX method when the order of QBX fixed
and Nbdary varies.

Table 4.5 Timing results 1: One Particle in the Domain with Different Number
of Grid Points. The number of panel segments Nsegment = 8, Npanel = 20 and
tolGMRES = 1.0× 10−13 are Fixed

Ngrid Iterations Ttotal(sec) l2 error

100× 100 10 72.38 8.46× 10−7

200× 200 10 85.73 8.46× 10−7

300× 300 10 104.47 8.46× 10−7

400× 400 10 128.23 8.46× 10−7

500× 500 10 158.44 8.46× 10−7

600× 600 10 196.25 8.46× 10−7

700× 700 10 238.62 8.46× 10−7

800× 800 10 288.62 8.46× 10−7

From performing the numerical experiments of particle dynamics, we observe

that even the refinement of the quadrature evaluation points on the particle surfaces

is turned on, once the particle boundaries are extremely close to each other, the

numerical solver will not be able to handle the topology break. Therefore, for the
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Figure 4.8 Timing results the cases when h varies where h is the length of each
subpanel in computational domain. QBX order = 8, Npanel = 20 and tolGMRES =
1.0× 10−13 are fixed.

Table 4.6 Timing Results 3: For N = {10, 20, 40, 80} Particles in the Domain where
Lx = 20, Ly = 20.

Nparticle QBX order Ngrid Nbdary tolGMRES Iterations Ttotal(sec)

10 4 500× 500 50 1.0× 10−8 19 158.46

20 4 500× 500 50 1.0× 10−8 21 260.68

40 4 500× 500 50 1.0× 10−8 24 572.65

80 4 500× 500 50 1.0× 10−8 29 1335.20

continuing work one direction is to enhance the model based on the physics. We may

need to include an artificial hard-sphere excluded volume potential similar to the one

described in Chapter 2.
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(a) (b)

(c) (d)

Figure 4.9 (a)–(d) Randomly distributed particles in the same size of domain where
N = {10, 20, 40, 80}.
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CHAPTER 5

CONCLUSIONS AND POTENTIAL FUTURE WORK

5.1 Conclusions

In this dissertation, we have shown that we have established capability to simulate

from simple biological systems (N ∼ O(101) − O(103)) such as DNAs, long-chain

polymers immersed in fluid to large systems (N ∼ O(104) − O(106)), for instance,

vesicles and RBCs with explicit fluid. Also, in order to include as much as known

molecular details, we have demonstrated several levels of coarse-graining from the size

of O(1) nm to O(10−1) µm in particle diameter size. For these numerical simulations,

the computational cost is always an important factor. We aim to take advantage

of parallel computing such as MPI and OpenMP. Moreover, the fact is that all the

work introduced in this dissertation except the LAMMPS simulations are expected

to be highly parallelized, for examples: (1) We modified and implemented the

Metropolis integrator scheme and the FMM in DNA simulations. For the parallelized

MPIFMM, the expensive matrix-vector multiplications can be expedited when the

particle distributions are nonuniform [6,99]. For the acceptance probability mentioned

in Section 2.2, recent literature have provided a general idea for parallelizing the

covariance matrix [3, 15]; (2) The QBX scheme involving in IEM has been built in

the fashion of parallelism and GPU implementation [72]. To include a Stokes flow in

Janus particle simulations, the large system simulations of DNA dynamics can be a

basis of continuing works. The trivial direction of the potential research can refer to

the recent published journal article: integral equation formulation for rigid bodies in

Stokes flow [18].
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5.2 Potential Future Works

5.2.1 CGBD Simulations of DNA Molecules/Vesicles/RBCs in Confined
Geometry

Traditional integrators (such as the forward Euler integrator) for SDE often give

erroneous results when applied to a confined domain, such as a random walker in

a finite box modeled as an infinite potential well. Due to numerical errors of the

numerical integrator, the particle often gets trapped near the box boundary where

the potential goes to infinity. Such unphysical trapping can be avoided by using the

Metropolized stochastic integrators. However, for particles suspended in fluid flow

near a solid substrate, the forces from the wall on the particle must be taken into

account. Such corrections of Stokeslet and stresslet for Stokes flow in the presence of

a solid wall have been investigated [4,8]. Recently Gimbutas et al. have incorporated

these corrections in FMM to simulate flow through a porous medium with complex

geometry [27]. Furthermore, Marple et al. managed to simulate a vesicle suspension in

a confined periodic channel by successfully dealing with the vesicle-vesicle interactions

in a highly packed vesicle suspension [58]. Inspired by these developments, we propose

to derive such correction(s) consistent with the CGBD formulation and implement

an efficient implicit solvent algorithm for the nonlocal HIs for CGBD in a confined

geometry.

Results from the laboratory experiments on cell-wall interactions (RBC

adhesion [50] and adhesion of a giant vesicle on a glass substrate [94]) suggest that

the interactions between coarse-grained membrane and a treated substrate are even

more challenging because the membrane-wall interactions may be dependent on the

properties of the wall and the ionic strength in the solution. Modeling work on

lipid membrane adhesion [9, 14, 23, 97] shows that, depending on the membrane-wall

interactions, the lipid membrane may exhibit non-trivial dynamics (lipid circulation)

and shapes. We propose to adopt the approaches in [27, 58] to investigate the

membrane-wall interactions in CGBD.
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5.2.2 Study of Membrane and Water Bridge System

In recent years broad interests of research have been brought to the physics of

nanoscale water bridge system in water capillary analysis. Different from the

continuum modeling which adopts the constant contact angle, the target contact angle

is related to the water-wall interactions and the size of the system. Due to the nature

of dipolar water molecules, not only Lennard-Jones (L-J) but also long rang Coulomb

forces are included. Following from the article [90] for numerical observations of

force exerted on capillary water-bridge, we perform full-atomic nanoscale simulations

in LAMMPS. With the fixed substrates in periodic domain and constant number

of water molecules, we vary the height of the water-bridge in order to compare the

numerical results with theoretical capillary force.

Vega et al. provide the surface tension of the most popular water models by

using so-called test-area simulation method [93]. Therefore we can obtain the local

surface tension from the averaged pressure components and the formula is given by

γ =
Lz
2

[p̄N(z)− p̄T (z)], (5.1)

where p̄N(z) and p̄T (z) are the mean normal and tangential pressure components

at position z. Particularly, at temperature T = 300◦K the surface tension γ =

65.4 mJ/m2 = 65.4 mN/m where this value is averaged over virial route and test-area

simulation method without long range correction [93].

The water model we adopt is TIP4P/2005 [1] where the hydrogen atoms (H)

connect the oxygen atom (O) with fixed chemical bonds and each water molecule

maintains a fixed bond angle over simulation time. A Lennard-Jones (L-J) potential

and a Coulombic interaction with a fixed charged point (M) are considered in the

inter-molecule interactions as described in TIP4P/2005 model. Table 5.1 shows the
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parameter sets and the detailed comparisons between modern water models can be

found in [38,92].

Two substrates are formed in 3.5Å fcc lattice and the material we use is

based on the chemical properties of the silicon. In the preliminary simulations,

two substrates are not charged and we will compare our results with charged walls

in the later work. A strong L-J potential is considered on the wall particles

with no initial velocity. By simulating in a large periodic computational domain

(262.5Å, 262.5Å, 262.5Å), we can ensure that there is no “top wall”-“bottom wall”

interactions when the walls are located far enough from the domain boundary in

z direction. Hence, it is fair enough to claim that our simulations are performed

in x-y periodic domain. Table 5.2 shows the parameter set we utilize in particle

pair-interactions. Moreover, during simulation the wall particles are subject to have

no motion and moving substrate is definitely an another interesting topic to be

explored.

The unit setup in LAMMPS we utilize is called “real” which uses angstrom as

characteristic length and femtosecond (fs) as characteristic time. For all simulations

performed in this work we use ∆t = 4fs as our time step size.

Table 5.1 Parameter Set for TIP4P/2005 Water Model

O mass H mass O charge H charge

15.9994 1.008 -1.0484 0.5242

OH bond HOH angle O-O (ε, σ) O-H, H-H (ε, σ)

0.9572Å 104.52◦ 0.16275, 3.16435 0.0, 0.0

The Coulomb force for particle pair {ri, rj} is given by the following formula:

E = C
qiqj

ε|ri − rj|
, |ri − rj| < rc, (5.2)
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Table 5.2 Parameter Set for L-J Interactions between Walls, Oxygen and Hydrogen

Pair wall-wall O-O wall-O wall-H

Our simulation (ε, σ) 16.004, 2.471 0.16275, 3.16435 0.439, 2.5 0.0, 2.5

where ε is an the dielectric constant and C is energy-conversion constant. To expedite

the computational speed, LAMMPS incorporates the so-called particle-particle

particle-mesh solver (p3m) which uses three-dimensional FFT to solve interparticle

Coulomb forces in O(N log N) operators.

Recall from the theoretical capillary force, we have the following relationship:

F = 2πRwbγ sinα, (5.3)

where we use the values γ = 65.4mN/m and Rwb is the radii observed from the contact

surfaces between water-bridge and both walls.

Table 5.3 gives the dimensions of all six cases we study and we set the number

of water molecules to be a fix number which is N = 12000. We first provide some

snapshots from visualizations of all cases in Figure 5.1. The computational domain

has periodic boundary conditions in all directions. The global cutoff radius is 9 Å

which is much smaller than the side of the simulation box Lx = Ly = Lz = 262.5 Å.

The advantage of this setup is to prevent the effect of duplicated pair-interactions.

Table 5.3 Dimensions for Simulations

Initial # of Oxygen in height 5 10 15 20 25 30

Bottom wall (Å) 120.75 115.5 108.5 96.25 92.75 85.75

Top wall (Å) 141.75 150.5 157.5 162.75 173.25 180.25

Height (Å) 21.0 35.0 49.0 64.75 80.5 94.5
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(a) (b) (c)

(d) (e)
(f)

Figure 5.1 VMD snapshots for six cases of simulations. Panel (a)–(f): bridge height
= {21.0Å, 35.0Å, 49.0Å, 64.75Å, 80.5Å, 94.5Å}.

After analyzing the properties of the nano-scale water bridge system we aim

to include the membrane into this water bridge. That is, with the use of existing

membrane model and water model in LAMMPS, we can study the conformation

changes due to the membrane-bridge interactions and van der Waals effects.

5.2.3 Three Dimensional Action Field Approach Using Integral Equation

Method

As the continuation of the two-dimensional action field approach on Janus particle

simulation using IEM, three dimensional version of numerical implementation is not

going to be extremely complicate since the main challenge is the optimization of three

dimensional QBX which may take humongous time to evaluate the volume potentials.
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Otherwise, with the same setup of numerical algorithm, the only change will be the

Yukawa kernel within different system dimensions.

5.2.4 Other Possible Related Projects

Some interesting projects are listed below:

1. Molecular Dynamics Simulations for Micro-pipette Aspiration of Cells.

2. Power law rheology of filament, DNA and cell.

3. Parallelization of general Brownian dynamics simulator: combination of the
FMM and the Metropolis.

4. With existing DNA and vesicle models, protein insertion into membranes is a
very interesting subject.

5. Adding ion channels on membrane.

6. Polymer Block in both free space and confined geometry.
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APPENDIX A

LAMMPS INPUT SCRIPT FOR MEMBRANE SIMULATIONS

For the newly developed pair-potential function, after implementation is completed

in LAMMPS, we name it as

pair fluidmembrane

where the package is available for download on the following program doi:

http://dx.doi.org/10.17632/4v53nkv5hc.1

and this package includes: (1) one LAMMPS function script and one LAMMPS

header file; (2) one LAMMPS bond function; (3) one MATLAB script for generating

the initial configuration for LAMMPS simulations and lastly, (4) we provide an

example for simple test run for users.

A.1 Implementation in LAMMPS

For vesicle simulation, it includes membrane, internal water molecules and external

water molecules. In the case of CGMD RBC simulations, an addition of cytoskeleton

network is generated. In LAMMPS input, the very beginning step is to determine the

“unit” of the simulations. Since all the variables and parameters are dimensionless

quantities, we set the LAMMPS unit style to be
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units lj

and define the mass of coarse-grained particles as

mass bilayer 1.0

We then specify multiple atom styles using hybrid function and call “ellipsoid”,

“molecular” and “peri”. Here we provide the LAMMPS command in the script:

atom style hybrid ellipsoid peri molecular

“peri” is for extracting the initial configurations (x0 in LAMMPS) of all coarse-grained

particles including bilayer membrane and cytoskeleton network [65]. The data format

provided below is for satisfying the hybrid atom style listed in Table A.1 from

LAMMPS guidelines:

atom-ID atom-type x y z ellipsoidflag

density volume density molecule-ID

Table A.1 The Atom Styles Used in Current Numerical Simulations

ellipsoid atom-ID atom-type ellipsoidflag density x y z

peri atom-ID atom-type volume density x y z

molecular atom-ID molecule-ID atom-type x y z

hybrid atom-ID atom-type x y z sub-style1 sub-style2 sub-style3
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To call our proposed pair-potential interaction function in LAMMPS, the input

commands are given as follows:

pair style hybrid lj/cut 3.6 fluidmembrane 2.6

pair coeff 1∗2 1∗2 fluidmembrane 1.0 1.0 2.6 4 3 0

where we give the parameters for global cut-off lengths in the pair-potential. The

above LAMMPS commands can also be used to call the Lennard-Jones potential,

which is used to model the interaction with explicit solvents and internal fluid in

Section 3.4. The sequence of parameters for “fluidmembrane” pair function are given

by:

ε σ rcut ζ µ sin θ0.

Recall from Section 3.1.3, we have total 7 types of coarse-grained particles in

RBC simulations (3 types in vesicle simulations): type 1: lipid membrane; type

2: transmembrane protein; type 3: junction complexes; type 4: spectrin tetramers;

type 5: ankyrin; type 6: internal water and type 7: external water. Excerpt from the

provided input script for LAMMPS simulations, we have the following lines to adopt

the thermostat algorithms:

variable ini T equal 0.02

variable T equal 0.23

variable P equal 0.05

variable LD equal 1.0

variable P damp equal 1

fix 1 water npt temp ${T} ${T} ${LD} iso ${P} ${P} ${LD}

fix 2 network npt temp ${int T} ${T} ${LD} iso ${P} ${P} ${P damp}
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fix 3 bilayer nvt/asphere temp ${T} ${T} ${LD}

As mentioned in Section 3.2.3, a ramp function is used to gradually adjust the

equilibrium length σeq over time to control the cell volume after the desired initial

configuration of the cell is obtained.

variable scale1 equal ramp(2.7,2.66)

fix 4 water adapt 1 pair lj/cut sigma 6 6 v scale1

where the fix command is to assign an operator or algorithm into LAMMPS system.

To implement the specified interactions in LAMMPS, we have the following commands

in the input script:

pair coeff 1∗2 6∗7 lj/cut 0.2 1.0

pair coeff 1∗2 3∗5 lj/cut 0.2 1.0

pair coeff 3∗5 3∗5 lj/cut 0.2 1.0

pair coeff 3∗5 6∗7 lj/cut 0.2 1.0

pair coeff 6∗7 6∗7 lj/cut 0.2 2.7

A.2 Modified Harmonic Bond Implementation in LAMMPS

As needed in RBC simulations, we have to call the modified harmonic bond function

to obtain the stress-free configuration of cytoskeleton. Therefore, we have to specify

the bond style in LAMMPS script which is provided by the following:
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bond style harmonic1

The lines below are the codes we modified from existed bond function:

bond harmonic.cpp

and created a new C++ source code and a header file with the name

bond harmonic1.cpp

bond harmonic1.h

Here is the code which calculates the bond lengths l0 in Equation (3.9):

double ∗∗x0 = atom → x0;

double ∗∗x = atom → x;

delx0 = x0[i1][0] - x0[i2][0];

dely0 = x0[i1][1] - x0[i2][1];

delz0 = x0[i1][2] - x0[i2][2];

delx = x[i1][0] - x[i2][0];

dely = x[i1][1] - x[i2][1];

delz = x[i1][2] - x[i2][2];

rsq = delx*delx + dely*dely + delz*delz;

r = sqrt(rsq);

l0 = sqrt(delx0∗delx0 + dely0∗dely0 + delz0∗delz0);

dr = r - l0;

rk = k[type]∗dr;
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A.3 Descriptions of the Subprograms and Sample Output

The subprograms include:

• create rbc with water (MATLAB),

• bond harmonic1 (C++),

• in example (LAMMPS input script).

We have provided the detail of LAMMPS implementations for the LAMMPS

input script and modified harmonic bond function in the sections above. Here we

include a sample run for RBC simulation where the initial configuration of the RBC

is a sphere. The MATLAB script generates an initial data file for the configurations

of all atoms including coarse-grained lipid bilayer membrane, cytoskeleton network

and water molecules where the generated data file satisfies the file format described

above at the beginning of Section A.1. LAMMPS is capable to assign specific regions

for simple geometries such as planar membrane or spherical surfaces and fill the

regions with desired atoms. For this example, we require a hexagonal network to

represent the cytoskeleton network which is not trivial to be done in the LAMMPS

input script. Therefore, with the use of MATLAB script as supplementary tool we

can create complicated shapes of objects.

The provided LAMMPS input script dumps a LAMMPS trajectory file

(.lammpstrj) and it can be read in various of visualization softwares. For this work,

Visual Molecular Dynamics (VMD) 1.9.1 is used to generate snapshots from the

simulation data and here we show the screen-shot of VMD setting windows and the

snapshots of simulation output (without showing water molecules) for this example

in Figure A.1.
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Figure A.1 Screenshot of VMD setting windows and 3 snapshots from the output
of sample RBC simulation. From top to bottom of the snapshots are (1) initial state
of RBC; (2) equilibrium state of stress-free RBC; (3) resting shape of RBC after
performing the volume control algorithm.
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