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ABSTRACT

STATISTICAL LEARNING METHODS FOR MINING MARKETING
AND BIOLOGICAL DATA

by
Jie Zhang

Nowadays, the value of data has been broadly recognized and emphasized. More

and more decisions are made based on data and analysis rather than solely on

experience and intuition. With the fast development of networking, data storage,

and data collection capacity, data have increased dramatically in industry, science

and engineering domains, which brings both great opportunities and challenges. To

take advantage of the data �ood, new computational methods are in demand to

process, analyze and understand these datasets.

This dissertation focuses on the development of statistical learning methods

for online advertising and bioinformatics to model real world data with temporal

or spatial changes. First, a collaborated online change-point detection method

is proposed to identify the change-points in sparse time series. It leverages the

signals from the auxiliary time series such as engagement metrics to compensate the

sparse revenue data and improve detection e�ciency and accuracy through �smart�

collaboration. Second, a task-speci�c multi-task learning algorithm is developed

to model the ever-changing video viewing behaviors. With the `1-regularized

task-speci�c features and jointly estimated shared features, it allows di�erent models

to seek common ground while reserving di�erences. Third, an empirical Bayes method

is proposed to identify 3′ and 5′ alternative splicing in RNA-seq data. It formulates

alternative 3′ and 5′ splicing site selection as a change-point problem and provides for

the �rst time a systematic framework to pool information across genes and integrate

various information when available, in particular the useful junction read information,

in order to obtain better performance.
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CHAPTER 1

INTRODUCTION

The value of data has been broadly recognized and emphasized nowadays [41]. More

and more decisions are made based on the data and analysis rather than solely

on experience and intuition [44]. As evidenced by popular news media, e.g., the

Economist, the New York Times and the National Public Radio, companies have

bene�ted from the value of Big Data to guide decisions, trim costs and lift scales

[41, 44]. For example, Walmart and Kohl's analyze sales, pricing, demographic and

weather data to tailor product selections at di�erent stores and determine the timing

of price markdowns [44]; U.P.S. analyzes truck delivery times and tra�c patterns to

optimize routing [44].

With the fast development of networking, data storage, and the data collection

capacity, data have increased in a dramatic scale in industry, science and engineering

domains, which brings both great opportunities and challenges [82]. As reported, 2.5

quintillion bytes of data are created daily and 90% of the data in the world today

are produced within the past few years [72, 82]. A report from McKinsey Global

Institute points out that it would need 140,000 to 190,000 more employees with deep

analytical expertise and 1.5 million more data-literate managers [44]. At the same

time, new computational methods are in demand to process, analyze and understand

these datasets.

Online advertising, an industry responsible for hundreds of billions of dollars

yearly [3], bene�ts a lot from the Big Data technology. It plays a critical role in

the Web ecosystem [25] and is emerging as a primary business for major technology

companies such as Google, Facebook, Microsoft and Adobe [85]. Online advertising

delivers promotional marketing messages to consumers through online media. It often
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involves both a publisher or media provider, who integrates advertisements into online

contents, and an advertiser, who provides the advertisements to be displayed on

the publisher's contents [1]. Advertisers are usually motivated to �ne-tune their ad

spending strategies to drive the highest return on investment and maximize their key

performance indicator (KPI). Media providers want to match the best ads to suitable

audiences and improve the advertising e�ectiveness by displaying more pertinent ads

to targeted audiences [85]. Thus, statistical models are in demand to help di�erent

practitioners to analyze relevant data and optimize their strategies and objectives.

However, the ever-changing data patterns are not in favor of the modeling [90].

Because of the dynamic nature of the online ad environment, data may change

gradually or rapidly along the time. It should be noted that the temporal or spatial

change of the data has been widely observed in industry and academia. For example,

the Click Through Rate (CTR) and Revenue Per Click (RPC) may change remarkably

due to the marketing events such as promotion and new product announcement [90];

The structure and activity of the microorganisms residing in the human gut are

a�ected and changed due to the long-term dietary [16]. In addition, the change itself

is an important pattern that researchers may want to capture in solving their speci�c

problems. Taking bioinformatics as an example, Wei et al. propose to identify the 3′

UTR length changes (or 3′ UTR switching), as it plays a critical role in regulating the

stability, localization and translation of mRNA. Thus, for both industry applications

and basic science research, new methods, which could address the change explicitly

by performing the change-point detection or implicitly by considering it in building

the model, are required and desirable.

This dissertation focuses on the development of computational methods for

analyzing and modeling the ever-changing data, with application to industry problems

(online advertising) and basic science research (bioinformatics). First, a collaborated

online change-point detection method is proposed to perform online change-point

2



detection in sparse time series. Through e�ectively leveraging and coordinating

with auxiliary time series, such as the engagement metrics in online advertising,

it can quickly and accurately identify the change-points in sparse and noisy time

series data. It could greatly improve the precision of the predictive model by

providing accurate change-point information and, therefore, help users build more

accurate systems to measure ad performance. Second, the user's online video viewing

behaviors are explored for gender prediction and a novel task-speci�c multi-task

learning algorithm is developed to model the ever-changing viewing behaviors. It

extends the conventional multi-task learning methods by introducing the task-speci�c

features and, therefore, allows di�erent models to seek common ground while reserving

di�erences. Third, an empirical Bayes change-point model is proposed to identify

alternative 3′ and 5′ splice sites (SS) in next-generation RNA sequencing data.

Speci�cally, the alternative 3′ SS and 5′ SS problem is formulated as a change-point

problem. The proposed empirical Bayes method could e�ciently pool information

across genes to improve detection e�ciency. In addition, a �exible testing framework

is provided for users to address di�erent levels of questions, namely, whether

alternative 3′ SS or 5′ SS happens, and/or where it happens.

This dissertation is organized in the following manner. Chapter 2 discusses

the background and related work of the online change-point detection for online

advertising, gender prediction based on user's video viewing behaviors, together

with the identi�cation of alternative 3′ SS and 5′ SS from the RNA-seq data.

Chapter 3 introduces the collaborated online change-point detection method for sparse

time series. Chapter 4 proposes the task-speci�c multi-task learning algorithm for

predicting the users' genders based on their video viewing behaviors. Chapter 5

develops an empirical Bayes change-point model for identifying 3′ and 5′ alternative

splicing sites in RNA-seq studies. Finally, Chapter 6 summarizes the contribution of

this dissertation and discusses future directions for the research.

3



CHAPTER 2

BACKGROUND

2.1 Online Change-point Detection for Online Advertising

In online advertising, advertisers are motivated to optimize their allocation of dollars

and advertising strategies through internal or external platforms to drive the highest

return on investment (ROI) and maximize their key performance indicator (KPI).

For example, Adobe Media Optimizer (AMO) is such a platform that integrates

various statistical models to help advertisers manage, forecast and mathematically

optimize their paid media, e.g., ad campaigns in search, display, as well as social

media. It provides a consolidated point of view about how statistical models and

algorithmic solutions are performing together with online media to accurately forecast

ad performance. Based on the modern portfolio theory, AMO also employs a portfolio

optimization approach borrowed from �nance risk management [46] to optimize

ad spending and bidding price numerically and deliver global optimal ad bidding

strategies for advertisers across multiple ad channels.

A crucial step in ad optimization is to build accurate predictive models and

predict various critical quantities that measure ad performance. The quantities may

be cost-related, such as the number of impressions during a time interval (e.g., a day),

Click Through Rate (CTR), Cost Per Thousand Impressions (CPM) and Cost Per

Click (CPC), as well as revenue-related, such as Conversion Rate (CR), Revenue Per

Thousand Impressions (RPM) and Revenue Per Click (RPC). Practitioners often face

a variance-bias dilemma when integrating and leveraging historical data in building

those predictive models. On the one hand, they can select a long window of historical

data for utilizing as much data as possible to reduce estimation uncertainty. However,

due to the highly dynamic nature of online ad environment, the data may shift quickly

4



and dramatically, making the model su�er from severe bias once the data pattern

changes. On the other hand, the modelers can simply ignore long historical data

and only focus on a short data window, in order to avoid the potential bias problem.

Nevertheless, the variance of the model may largely increase due to the limited size

of training data. How to address these issues remains a formidable challenge to both

academic researchers and industrial practitioners.

One interesting way to address it is to detect the change-points before building

predictive models. Given the information of change-points, which indicate the drastic

changes in the data pattern, practitioners can easily apply appropriate strategies

to optimize the variance-bias tradeo�. Speci�cally, if a change-point is identi�ed,

practitioners may simply ignore or apply a larger decay rate to the data before the

change-point to reduce the bias incurred by data pattern changes. On the other

hand, if no change-point is detected, practitioners can safely leverage a long historical

window of data and enjoy variance reduction brought by it.

However, a common problem for online advertising is that data are generally

very sparse. With sparse observations, online change-point detection often becomes

challenging. Sparse and noisy data often lead to a high level of false discoveries

when using a loose cuto� in determining change-points. Imposing a strict cuto� for

avoiding false discoveries too strenuously causes a long delay between the time of the

occurrence of a change-point and the time it is detected, and may miss some real

change-points as well [56].

The data sparsity problem is even more severe for revenue or conversion related

data (e.g., RPC time series) in the online advertising application here. Taking Search

Engine Marketing (SEM) as an example, Figure 2.1 shows a typical online advertising

funnel, in which the volumes of events become sparser and sparser from top to bottom.

The revenue or conversion related events, located at the most bottom of funnel,

are much sparser than the previous steps in the funnel (e.g., about 4 order of

5



Figure 2.1 Data funnel in online advertising.

magnitude less than impression data and 2 order of magnitude less than click data).

For example, it is common that, for an advertiser, over 90% of keywords have fewer

than 5 conversions per day in average. This sparsity poses a great challenge in

detecting the revenue or conversion change-points of a keyword.

While the revenue data are sparse, the on-site user behavior events, located in

the middle part of the funnel, are much richer. After a user enters an advertiser's

website by clicking an ad, the user may do a variety of activities before considering a

purchase or subscription. Those activities are called engagement metrics, which are

usually correlated with but much richer than �nal conversion events.

2.2 Gender Information, Video Viewing Behavior and Online

Advertising

Among various demographic traits, gender has been a critical factor in market

segmentation strategy [78] and plays a crucial role in precisely targeting the potential
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consumers in online advertising and ecommerce [34, 49]. For example, companies

which provide fragrances, skin care, and makeup, mainly target female audiences,

while razor producers like Philips focus almost exclusively on male audiences. Chinese

advertisers may require a certain percentage of their audiences to be female in their

commercial contracts with publishers, as women are often thought of as the major

buyers in China [88]. In addition, third party measurements, for instance, from

Nielsen and comScore in USA or from Miaozhen and AdMaster in China1, are widely

applied by advertisers to monitor how many ads, sold by digital media sellers, get

delivered to audiences with the targeted gender.

However, digital media sellers often do not have access to registered data for

their users. Even when people need to register to consume digital content, they may

not provide the correct information. For these reasons, targeting based partially

on self-reported registered data may not score well against more accurate third

party measurements. With this in mind, many companies have started using media

consumption data to model users' demographics. Since people of di�erent genders

have di�erent media preferences, this model provides signi�cant enhancements over

random guesses.

2.3 Demographic Prediction

Earlier demographic prediction was mainly built upon the analysis of the association

between people's demographic attributes and their linguistics writing and speaking

styles [40, 52, 59]. For instance, Otterbacher et al. applied logistic regression on

movie reviews from IMDB [52]. Feng et al. utilized logistic regression to infer

user's gender based on video tags and keywords [22]. With the rise of web services

and social media, exempli�ed by Google, Bing, Facebook and Twitter, researchers

begin to predict demographic information with users' online activities. Hu et al. [31]

1Nielsen: http://www.nielsen.com/; comScore: http://www.comscore.com/; Miaozhen:
http://miaozhen.com/; AdMaster: http://www.admaster.com.cn/.
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made a �rst approach to predict users' genders and ages from their web browsing

behaviors. Supervised regression model was trained to estimate every Webpage's

demographic tendency, i.e., the probability distribution of the ages and genders of

a given Webpage's readers, and then Bayesian framework was employed to predict

user's age and gender based on the age and gender tendency of the Webpages that

he/she had browsed. Followed by [8], Bi et al. proposed to infer users' demographic

information from their query history based on labelled Facebook Likes data. Because

only Facebook Likes data had labelled users, they matched the Facebook Likes with

search queries by using Open Directory Project categories, and transfered the model

trained on Facebook Likes to predict users' genders and ages based on their search

query histories. Burger et al. [12] sampled millions of tweets from Twitter and

applied Balanced Winnow2 algorithm for gender prediction of the unlabeled Twitter

users. Culotta et al. [15] proposed to predict the demographics of Twitter users

based solely on whom they followed through regression models. Other behaviors that

have been investigated include mobile communication patterns [18, 89] and purchase

behavior [74]. However, little research has been conducted, in the scenario of gender

prediction, to model the ever-changing data patterns and discriminant features, and

to control the Type I error rate.

2.4 Identi�cation of 3′ and 5′ Alternative Splicing from RNA-Seq

Alternative splicing plays an important role in building complex organisms from

a limited number of genes. They provide a major mechanism for enhancing

transcriptome and proteome diversity, and critically regulate various biological

functions [36, 38]. Researchers observe that more than 90% of human genes undergo

alternative splicing (AS), a much higher percentage than anticipated [10, 73]. Of

various alternative splice forms, alternative 3′ SS and 5′ SS are particularly important

and constitute more than 30% of all AS events as revealed by RNA-seq [73]. Several
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studies have found that alternative 3′ SS and 5′ SS events are relevant to many

diseases. By analyzing alternative 3′ SS and 5′ SS events, researchers can obtain

precious diagnostic and prognostic information for therapies [27,65].

Thanks to high-throughput RNA-seq, genome-wide quantitative studies on

AS events become feasible [53, 73]. Quite a few computational methods have

been developed to detect and identify AS events. These methods can be roughly

classi�ed into three categories based on their strategies. The �rst category, repre-

sented by Cu�inks [70], perform di�erential splicing detection based on transcript

quanti�cation, which is the most challenging. Short reads, sampled from RNA-seq,

can be aligned to multiple transcripts due to the similarity and overlaps between

alternative transcripts [33, 42]. It makes the expression estimation of individual

transcript an undetermined problem. In addition, various sampling biases, including

position-speci�c biases [11, 43, 58, 83] and sequence-speci�c biases [58, 71] in the

RNA-seq data, incur daunting di�culties for accurate transcript quanti�cation.

Consequently, the e�ciency of these methods is diminished by the uncertainty in

transcript quanti�cation.

The second category of methods aims to detect di�erential splicing by testing

di�erential expression of the annotated events obtained from existing splicing

databases. Representative examples in this category include ALEXA-seq [26], MISO

[37], MATS [61] and SpliceTrap [80]. Among them, MISO employs a statistical

model to estimate expression of alternatively spliced exons and isoforms [37]; MATS

leverages a Bayesian statistical framework to �exibly test the hypothesis of di�erential

alternative splicing patterns [61]. These methods may work well when splicing events

are well and accurately annotated. They are not applicable to detect novel AS events

not cataloged yet in existing annotation databases.

The third category of methods, including Di�Splice [32], DEXSeq [2] and FDM

[64], utilize splice junction read information to overcome the annotation dependency
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limitation. The performances of these methods are highly dependent on the number

and quality of splice junction reads. Sequencing costs often set limits to sequencing

depth and coverage of RNA-seq data sets [63] and, consequently, performance of

these junction read-based methods. Furthermore, the number and quality of aligned

splice junction reads will also rely on sequencing technology as well as read-mapping

tools [21].

Very recently, Wang et al. [75] propose a change-point model which requires no

annotation information. It relies on characterizing the coverage change for detecting

alternative polyadenylation (APA). In principle, it can be applied for detecting 3′/5′

AS events. However, compared with APA, a key di�erence for 3′/5′ alternative splicing

is that junction read information can be useful and utilized for locating splice sites.

For example, a simple strategy for calling 3′/5′ AS events is to identify locations

supported by at least N independent splice junction reads with di�erent alignment

start positions [76]. It is noted that when sequencing depth is not enough, a signi�cant

proportion of 3′/5′ AS events may not be covered by junction reads, in particular

when using a stringent N threshold for ensuring quality. Due to the junction read

coverage limitation, there is room for improvement even when sequencing depth is

high. Exon read coverage may be used as clues for 3′/5′ AS events. Thus, using both

coverage and junction read information may improve both sensitivity and speci�city

of AS 3′/5′ calls compared with relaying solely on junction reads or read coverage.

It is therefore desirable to develop a method that can systematically integrate both

junction read information and coverage information. From a methodology point of

view, Wei's method is a frequestist approach and fails to pool and exploit information

across many genes under investigation. In addition, it tests only whether there is a

change-point, but not where the change-point is. Thus, its change-point location

estimation does not guarantee any multiplicity control.
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CHAPTER 3

COLLABORATED ONLINE CHANGE-POINT DETECTION IN

SPARSE TIME SERIES FOR ONLINE ADVERTISING

3.1 Introduction

Online advertising delivers promotional marketing messages to consumers through

online media. Advertisers often have the desire to optimize their advertising spending

strategies in order to drive the highest return on investment and maximize their

key performance indicator. To build accurate ad performance predictive models,

it is crucial to detect the change-points in the historical data and apply appropriate

strategies to address the data pattern shift problem. However, with sparse data, which

is common in online advertising and some other applications, online change-point

detection is very challenging.

This chapter proposes a novel collaborated online change-point detection

method. Through e�ectively leveraging and coordinating with auxiliary time series,

such as the engagement metrics introduced above, it can quickly and accurately

identify the change-points in sparse and noisy time series data. In addition, the

proposed method could help to improve the accuracy of predictive models by providing

accurate change-point information. Simulations and real data experiments have been

conducted to justify and demonstrate the e�ectiveness of the new method.

3.2 Motivation and Data Overview

Without loss of generality, it focuses on detecting the change-points in Revenue Per

Click (RPC) Time Series (TS) in Search Engine Marketing throughout this chapter.

The same idea can also be applied to other revenue related TS or other advertising

channels. Because of the data sparsity issue, the signal-to-noise ratio of RPC time

series is not high enough for e�ective online change-point detection. On the other
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Keyword Clicks Engagement metrics Conversions 

Keyword No.1 5 • Visited 5 pages per click in average 
• No bounces 
• Watched video twice 
• Revisited the website later after close the 

browser 
• …… 
 

0 

Keyword No.2 5 • 2 bounces out of 3 clicks; 
• Less one page view per click in average;  
• No revisits 
• …… 

0 

Top 
Funnel 

Bottom 
Funnel 

Middle 
Funnel 

Figure 3.1 Aggregated data of two keywords in a day.

hand, as shown in Figure 2.1, the engagement metrics, which are usually precursors

of �nal conversions, are much richer. Thus, it is natural to consider that RPC and

those engagement metrics may have signi�cant positive correlations.

Figure 3.1 shows an example of data of two keywords collected in a given

day. The point estimates of RPC of the two keywords in the day are both zero

due to zero conversions. However, the engagement metrics indicate that users who

enter the website through keyword 1 are more engaged with the website or products

than those who enter through keyword 2. If practitioners believe in the correlation

hypothesis between RPC and engagement metrics, they may want to assign di�erent

RPC estimates to the two keywords (e.g., keyword 1 looks more promising than

keyword 2). Therefore, the basic idea is to leverage the signals in those richer

engagement metrics TS to compensate the sparse RPC TS and improve detection

e�ciency and accuracy through �smart� collaboration between the �target� RPC TS

and the �auxiliary� engagement metrics TS.

There are many possible types of engagement metrics and some of them can be

industry or website-speci�c. In this chapter, three most commonly used engagement

metrics, Time Spend Per Click (TSPC), Page View Per Click (PVPC) and Bounce
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Rate (BR), are selected as examples. Time Spend Per Click measures the total time

a user spends on the website after entering the website through an ad click and before

shutting down the browser. While longer time may indicate higher engagement, it

does not fully capture a user's activeness on the website. Thus, Page View Per Click

is introduced, which measures the total number of pages viewed by the user after

entering the website. In addition, the Bounce Rate is used as the third metric.

A bounce means that a user exits the website immediately after the click. For

convenience, the engagement metrics TS are denoted as auxiliary TS and the RPC TS

is the target TS. The latter is tracked by Adobe Media Optimizer (AMO) while the

former are tracked by Adobe Analytics. All the Metrics as well as RPC are averaged

across the users by day to generate the TSs for each keyword.

3.3 Collaborated Online Change-point Detection

The extremely sparse and noisy RPC TS will incur great di�culty for existing

algorithms to accurately detect change-points based on such revenue data alone.

Engagement metrics collected by analytics tools, such as TSPC, PVPC, and BR, can

be informative for detecting RPC changes. This section proposes a collaborated online

change-point detection method to leverage this information for detecting sequential

change-points in the sparse RPC TS data. Speci�cally, each individual engagement

metric may have its own relevance to RPC. Instead of trying to use these raw auxiliary

TSs directly and separately, the new method �rst combines them into one single TS.

Then it coordinates the target TS with the combined auxiliary TS for more accurate

change-point detection.

3.3.1 Combining Auxiliary TSs

Let Y = (y1, y2, · · · , yt) and A(i) = (a
(i)
1 , a

(i)
2 , · · · , a

(i)
t ), i ∈ {1, 2, 3}, denote the RPC

TS and the auxiliary TSs for a keyword, respectively. To leverage the signals of the
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auxiliary TS to inform the target TS, the linear model is utilized to characterize the

relation between the RPC TS and the auxiliary TS, and extract most relevant signals

from the raw data.

yi = β0 +
K∑
j=1

βj × a(j)
i + εi,

where K is the number of auxiliary TSs and εi ∼ N (0, σ2) is the random error. Ridge

regression with L2 penalty is utilized to estimate the coe�cients β = (β0, β1, · · · , βK)T

β̂ = arg min
β

{
n∑
i=1

(yi − β0 −
K∑
j=1

a
(j)
i βj)

2 + λ
K∑
j=1

β2
j

}
, (3.1)

where λ is the tuning parameter and yi and a
(j)
i represent the data in RPC TS

and jth auxiliary TS, respectively. Parameter λ is selected through 10-fold cross-

validation for the application. Ridge regression shrinks the regression coe�cients by

imposing the L2 penalty on their size [28]. It can e�ectively reduce the variance of

parameter estimation and obtain more stable models compared with ordinary least

squares (OLS) estimation [84]. This is particularly desired when the sample size

is small, which is the case for the current application. Other regressions such as

LASSO [68] and Elastic Net [93] may be considered too when scenarios change.

Though it aims to perform change-point detection on keyword-level RPC TS,

in order to obtain more reliable estimates of the regression coe�cients, the data are

aggregated and the model is �tted at a higher level, e.g., ad group, campaign or

campaign group. After �tting the model, all the keywords under the same group use

the same coe�cients to combine the auxiliary TSs to obtain the combined auxiliary

TS, which is a stable estimation of the original target TS.

Given keyword-level auxiliary TSs, the combined auxiliary TS for each keyword

is Ŷ = (ŷ1, ŷ2, · · · , ŷt) and

ŷt = β̂0 +
K∑
j=1

a
(j)
t β̂j, (3.2)
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where a(j)
t is the t-th data in the j-th auxiliary TS.

3.3.2 Online Change-point Detection

A likelihood-based method [84] is employed by the proposed framework as a

component for online change-point detection. It was �rst proposed to detect changes

in the mean within a sequence of normally distributed observations by Hinkley [30],

who derives the asymptotic distributions of the maximum likelihood estimate and

the likelihood ratio statistic for testing hypotheses. It was further extended to detect

changes in variance [14, 35]. In addition, a popular R [57] package, changepoint

[39], has implemented this likelihood-based framework for performing change-point

detection. It is convenient for implementation and yields good performance as

demonstrated in the experiments later.

It is noted that this online change-point detection module is relatively independent

in the whole framework. Other existing online change-point detection algorithms

can be employed to replace the likelihood-based method and perform the online

change-point detection function. This is another advantage of the proposed method.

Namely, it gives users the �exibility to choose suitable online change-point detection

algorithms to �t their particular applications.

LRT for Single Change-point Detection This section considers the following

likelihood ratio test (LRT) for single change-point detection. LetX1:N = (x1, x2, · · · , xN)

denote a sequence of N observations ordered in time, where xi represents the

observed value at time i. The change-point τ divides the whole sequence into two

homogeneous segmentsX1:τ andX(τ+1):N , in which the observations are independently

and identically distributed (i.i.d.). Let H0 be the null hypothesis that there is no

change-point in sequence X1:N and H1 be the alternative hypothesis that there is a
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single change-point. The testing statistic Λ for LRT is de�ned as

Λ = −2 log

(
L(X1:N |H0)

L(X1:N |H1)

)
= 2 [log (L(X1:N |H1))− log (L(X1:N |H0))] ,

(3.3)

where L(X1:N |H0) and L(X1:N |H1) are the maximum likelihoods under null hypothesis

H0 and alternative hypothesis H1, respectively. And

L(X1:N |H0) =
N∏
i=1

f(xi|θ̂0),

L(X1:N |H1) = max
τ

(
τ∏
i=1

f(xi|θ̂1)×
N∏

i=τ+1

f(xi|θ̂2)

)
,

(3.4)

where θ̂0, θ̂1 and θ̂2 are the maximum likelihood estimates of the parameters and

τ ∈ {1, 2, · · · , N − 1} indicates a change-point. The testing procedure also involves

choosing an appropriate threshold, C, such that users reject the null hypothesis H0

if and only if Λ > C. If H0 is rejected, the change-point is estimated as

τ̂ = arg max
τ

(
τ∏
i=1

f(xi|θ̂1)×
N∏

i=τ+1

f(xi|θ̂2)

)
. (3.5)

This is a general LRT in that the model f(X1:N ; θ) is to be speci�ed according

to a data model. In this application, Gaussian models are utilized to characterize

data �uctuation along time.

It is noted that it is not trivial to select an appropriate threshold C. For

most distributions, including the Gaussian models, there is no closed form for C

that can guarantee multiplicity control because it seeks through a series of dependent

models (i.e., change-point candidates) for a maximum statistic. An exception is

the binomial model for count data [79]. In addition, falsely reported change-points

(false positives) and falsely missed change-points (false negatives) incur di�erent costs

that are generally hard to quantify. For example, in this application, it is hard to

compare the impacts of false positives and false negatives on the RPC predictive model
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users aim to optimize. It is noted that the ultimate goal is to use the change-point

model for improving the RPC predictive model. Focusing on change-point detection

accuracy only may fail to consider the di�erent costs of di�erent types of errors in

the change-point detection procedure and lead to a sub-optimal solution.

Therefore, the parameter C is tuned through 10-fold cross-validation by

minimizing the prediction error of the RPC predictive model with the reported

change-points. More speci�cally, users choose an initial value based on the Bayesian

information criterion (BIC) [9, 60], and then conduct greedy search to �nd the best

threshold C through 10-fold cross-validation.

Online Change-point Detection There are now two sets of time series, the

original RPC TS and the combined auxiliary TS derived from multiple auxiliary TSs.

Instead of further combining them, the proposed method performs online change-point

detection on the target TS and combined TS separately, and then coordinates the

detection decision in a later stage, which could utilize the original signal of the target

TS and simultaneously take the advantage of the more stable combined auxiliary TS.

Algorithm 1 shows the detailed steps of the proposed online change-point detection

algorithm. It tries to detect one change-point at a time. When a new observation

has been received, a decision, whether there is a change-point, is made based on

the observations received so far. When a change-point is identi�ed, the proposed

algorithm starts to detect the next change-point from the observations received after

the newly identi�ed change-point.

Technically, it may detect change-points for a sequence of any length (>1).

In practice, however, testing on a sequence with too few observations makes little

sense. As noted in [29], industrial practitioners need to gather a modest number of

observations to acquire an initial veri�cation of the assumptions of their models before

starting formal change-point testing. When the data are extremely sparse and noisy,
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Algorithm 1: Online Change-Point Detection Algorithm
initialize change-point set T = ∅, sequence X = ∅, last change-point τ ′ = 0,

least-segment-length L = 10 and minimum-distance D = L
2

repeat

get new data xt and add it to X

if length(X[(τ ′ + 1) : t]) ≥ L then

perform single change-point detection on segment X[(τ ′ + 1) : t]

if τ is identi�ed and (τ − τ ′) ≥ D then

update τ ′ = τ

add τ to T

end if

end if

output T for coordination

until no data available
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e.g., RPC TS, a large number of observations could help reduce false discoveries and

are generally desired. However, collecting more data requires more time and causes

a long delay between the time of the occurrence of the change-point and the time

it is detected. The experimental results show that initializing least-segment-length

L = 10 is a good compromise for balancing the tradeo� to detect a change-point as

early as possible and to make an accurate detection with few false discoveries. A

minimum distance D = L
2
between two adjacent change-points is also set to require

a reasonable distance between them.

3.3.3 Coordination Strategies

This section proposes two strategies to coordinate the results:

• Strategy 1: Report a change-point if and only if it is identi�ed as a change-

point in both RPC TS and combined auxiliary TS;

• Strategy 2: Report a change-point if Strategy 1's condition is met or if it is

identi�ed as a change-point in either TS and its combined statistic is signi�cant.

Strategy 1 requires the change-point supported by both RPC TS and combined

auxiliary TS. Strategy 2 relaxes this constraint by considering the points that may

be extremely signi�cant in one TS but marginally signi�cant in the other. Thus,

Strategy 2 is relatively lenient and may report more change-points than Strategy 1

given that they have the same signi�cance threshold.

Let T0 and T1 denote the two sequences of change-points detected from the

original RPC TS and the combined auxiliary TS, respectively. Because the target TS

data are extremely sparse and noisy, it is rare that the change-points detected from

both TSs exactly locate at the same position. Thus, a distance threshold δ is de�ned,

and if the change-points detected from the RPC TS and the combined auxiliary TS

are close to each other (distance < δ), the proposed method treats them as the same
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change-point and reports their middle position as the �nal change-point position.

Note that δ = 5 in all the experiments. With this relaxed match rule, Strategy 1 is

formally de�ned as

T ∗ = {τ + τ ′

2
| τ ∈ T0, ∃τ ′ ∈ T1, |τ − τ ′| < δ}, (3.6)

where T0, T1 and T ∗ represent the change-point sets for RPC TS, combined auxiliary

TS and �nal reports, respectively.

Let

Λ∗τ = max
(τ−δ)<υ<(τ+δ)

{Λυ},

υ∗τ = arg max
(τ−δ)<υ<(τ+δ)

Λυ,
(3.7)

where Λ∗τ represents the maximum testing statistic for all positions close to τ (distance

< δ), and υ∗τ represents the position with the maximum testing statistic. The Strategy

2 is de�ned as

T ∗∗ = T ∗∪

{τ + υ∗1τ
2
| τ ∈ T0,Λ0τ + Λ∗1τ > 2C∗}∪

{υ
∗
0τ + τ

2
| τ ∈ T1, Λ1τ + Λ∗0τ > 2C∗},

(3.8)

where Λ0τ and Λ1τ represent the testing statistics from the RPC TS and combined

auxiliary TS, respectively; Λ∗0τ and Λ∗1τ are the maximum testing statistics for all

positions close to τ in the RPC TS and combined auxiliary TS, respectively; C∗ is

the threshold for the combined statistics. A larger threshold for the combined statistic

is advisable to reduce false discoveries, and T ∗∗ reduces to T ∗ when C∗ → +∞. Note

that C∗ = 1.5C for all the experiments.

3.4 Experiment

This section �rst performs simulation studies to investigate the numerical performance

of the proposed method. Then the real life experiments are conducted with the data
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from Adobe Media Optimizer and Adobe Analytics. It compares the performance of

four di�erent methods:

M0: No change-point detection;

M1: Online change-point detection with RPC TS only;

M2: Collaborated online change-point detection with coordination Strategy 1;

M3: Collaborated online change-point detection with coordination Strategy 2.

Two metrics are used to evaluate the performance of the competing methods:

Metric 1: Detection accuracy of change-points;

Metric 2: Prediction accuracy of the predictive model after leveraging the detected

change-points.

Metric 1 measures the detection accuracy of the competing methods mainly for

simulation studies, in which the true locations of change-points are known. Metric

2 measures the prediction accuracy of the predictive model which utilizes the infor-

mation of the estimated change-points. As shown in Figure 3.2, when equipped with

the change-point model, the predictive model utilizes the change-point information

to make the di�erential use of historical data. M0, which does not perform any

change-point detection, is used as a baseline method to compare the performance of

the same predictive model when integrated with di�erent change-point methods.

There are many di�erent implementations of RPC predictive models ranging

from the most advanced machine learning methods to the simplest point estimation

methods. Since the predictive models themselves are not the focus of this chapter,

for illustration purpose, two popular and easy-to-implement models are used:

• Predictive Model 1: Predict with average;
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Figure 3.2 Structure of predictive system when integrated with the change-point
model.
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• Predictive Model 2: Predict with weighted average based on time decay

(half-life =30 days).

Given a collected RPC segment Yi:j, predicting with average (Model 1) can be simply

viewed as predicting the next time period RPC using the mean of the previous data

ynext =

∑j
k=i yk

j − i+ 1
,

while predicting with decay (Model 2) predicts next RPC using the weighted average

of the previous data

ynext =

∑j
k=i ykwk∑j
k=iwk

,

where wk = γ(j−k) re�ects time decay and i ≤ k ≤ j. Note that the decay rate

γ = 0.02284, such that the half-life is equal to 30 days.

It should be noted that Model 1 does not address any change in the data while

Model 2 can account for gradual change in the data. However, Model 2 can not cope

well with sharp changes in the data pattern. Each time a change-point is detected, a

simple strategy, i.e., ignoring the data prior to the detected change-point, is applied

in the experiments to help predictive model focus on the most relevant data. In real

implementation, more sophisticated strategy, e.g., increasing the decay rate, can be

employed.

3.4.1 Simulation Studies

This section simulates the data by mimicking the data generating procedure in online

advertising. First, it samples the number of clicks n from a Poisson distribution, the

number of conversions c from a Binomial distribution and the Revenue Per Conversion
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r from a Normal distribution 
n ∼ Pois(λ),

c ∼ B(n, P ),

r ∼ N (µ0, σ0),

(3.9)

where λ is the expected number of clicks per day, P is the conversion rate, and µ0 and

σ0 are mean and standard deviation for Revenue Per Conversion. Then, it computes

the Revenue Per Click

y =

∑c
i=1 ri
n

. (3.10)

The auxiliary TS is simulated by �rst sampling n observations and then computing

their average value as one data point

x(i) ∼ N (µi, σi),

a(i) =

∑n
j=1 x

(i)
j

n
,

(3.11)

where µi and σi (i ∈ {1, 2, 3}) are mean and standard deviation, respectively. Note

that

µi = β
(i)
0 + β

(i)
1 × P + ε,

where ε ∼ N (0, 1). Positive β(i)
1 indicates the positive correlation between auxiliary

TS and RPC TS, while negative β(i)
1 represents the negative correlation between

auxiliary TS and RPC TS. In the simulation studies, all parameters, λ, µi and σi

(i ∈ {0, 1, 2, 3}), are chosen such that the mean and variance are close to real data.

Given all other parameters, conversion rate P is used to control the signal level of the

simulated RPC TS. Larger conversion rate means more conversions generated from

the same number of clicks making the RPC TS less sparse and noisy, while smaller

conversion rate reduces the number of conversions and makes the RPC TS sparser
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Figure 3.3 Change-point detection results for simulated data.

and noisier. In addition, P is also used to set change-points by employing di�erent

P values to simulate the data before and after the change-points.

Three scenarios, with di�erent parameters, are simulated, generating datasets

with strong, medium and weak signals by controlling conversion rate, representing

low, medium and high sparsity, respectively. Each scenario has 50 randomly generated

datasets, with time series length = 300. To make a complete comparison between

di�erent methods, four change-points are set in generated TS at time 50, 100, 150

and 200, respectively.
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Table 3.1 Averaged Number of False Positives and False Negatives (#FP, #FN)

Method
Strong Signal

(#FP, #FN)

Medium Signal

(#FP, #FN)

Weak Signal

(#FP, #FN)

M1 (1.54, 1.78) (1.58, 2.2) (1.64, 2.54)

M2 (0.08, 1.3) (0.14, 1.8) (0.22, 2.16)

M3 (0.72, 0.62) (0.42, 1.68) (0.62, 1.9)

Detection Accuracy Figure 3.3 shows examples of the change-point detection

results for di�erent scenarios with strong, medium and weak signal datasets, respec-

tively. The black curve and red curve are the original RPC TS and combined auxiliary

TS, respectively. Dotted green, blue and red vertical lines indicate the change-points

identi�ed by M1, M2 and M3, respectively. Here are a few remarks. Firstly, the

combined auxiliary TS (red solid line) is less noisy and retains the characteristics

of the original RPC TS, indicating that a better inference of change-points may be

obtained by employing the combined auxiliary TS together with the original RPC TS.

Secondly, M2 and M3 are better than M1, as M1 reports false discoveries as shown

in Figure 3.3. Thirdly, M3 detects more change-points than M2. For example, M2

misses the change-point at time 100 in weak signal dataset (Figure 3.3: Weak Signal).

This is expected because, compared with Strategy 1, the Strategy 2 is less strict

and allows more change-points to be reported. Table 4.1 summarizes the average

results for di�erent scenarios using di�erent change-point detection methods. In

Table 4.1, the two numbers in each pair of parentheses are the average number of

false discoveries (false positives) and average number of missed real change-points

(false negatives), respectively. It is clear that M2 and M3 are better than M1 in all

scenarios. First, M1, which is based on RPC TS only, has more false discoveries than

the collaborated methods, M2 and M3, in all scenarios. Secondly, M1 also misses more

real change-points in all scenarios compared with M2 and M3. Thirdly, comparing
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Table 3.2 Average Prediction Error Ratios for Simulation Experiments

Prediction Method M0 M1 M2 M3

Predict with average 1.0 0.877 0.871 0.861

Predict with decay 1.0 0.904 0.898 0.890

M2 and M3, we can �nd that M2 has fewer false discoveries but more missed real

change-points than M3, which is expected, as M2 uses a much stricter coordination

strategy than M3.

Prediction Accuracy This section further compares the prediction errors of the

same predictive system when integrated with M0, M1, M2 and M3, respectively.

Among them, M0 is used as a baseline method, representing the predictive model

without using any change-point information.

Fifty datasets with weak signal are simulated. Table 3.2 summarizes the average

prediction error ratios ε̄i/ε̄0 for the same predictive system when integrated with

di�erent change-point algorithms Mi for i ∈ {1, 2, 3}. If ε̄i/ε̄0 < 1, method Mi could

help to improve the accuracy of the predictive system. The smaller ε̄i/ε̄0 is, the

larger the improvement is. As shown in Table 3.2, the average prediction errors for

systems integrated with change-point methods are smaller than the baseline errors

of predictive model integrated with M0, as corresponding average prediction error

ratios are smaller than one (ε̄i/ε̄0 < 1). In addition, the predictive model integrated

with the collaborated online change-point detection methods, M2 and M3, are better

than the same predictive model integrated with M1, as ε̄j/ε̄0 < ε̄1/ε̄0, j ∈ {2, 3}. It

should be noted that the proposed methods, M2 and M3, could help the predictive

model to obtain over 10% improvement in prediction accuracy than M1 (as shown in

Table 3.2).

Figure 3.4 plots the prediction error ratios for the simulated 50 datasets. The
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Figure 3.4 Prediction error ratios for predictive model integrated with di�erent
change-point detection methods on 50 datasets.

left and right subgraphs show the results for model predicting the next RPC data

by averaging historical data and by weighted average with decay rate γ = 0.02284,

respectively. Each point represents an prediction error ratio (ε̄i/ε̄0) on one dataset.

Speci�cally, green, blue and red points represent the prediction error ratios for

the predictive system integrated with M1, M2 and M3, respectively. The dotted

horizontal line Y = 1 is the baseline such that points below it represent smaller

prediction errors and points above it represent larger prediction errors compared with

the baseline. In Figure 3.4, most of the points, which represent prediction error ratios

for M1, M2 and M3 on 50 di�erent datasets, are under the baseline Y = 1 indicating

that the predictive model could improve its precision by e�ciently employing the

change-point information. In addition, there are several green points above the dotted

baseline (ε̄1/ε̄0 > 1) indicating that, in some cases, system, integrated with M1, has

a worse performance than the baseline, while all blue and red points are under or at

least at the baseline (ε̄j/ε̄0 ≤ 1, j ∈ {2, 3}). Thus, the predictive system integrated

with M2 and M3 tend to have a much more stable performance than the system

integrated with M1.
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Figure 3.5 Change-point detection results for real data experiments.

Paired two-sample t-tests are also performed on prediction results to compare

the performance of the predictive models when integrated with di�erent change-point

algorithms. It shows that M1, M2 and M3 are signi�cantly better than baseline

method (p-values < 10−5). In addition, both M2 and M3 are better than M1. Among

them, M3 is signi�cantly better than M1 (p-value = 0.02).

3.4.2 Real Data Experiments

For real data experiments, 228 keywords from three advertisers across di�erent

industries are randomly selected to evaluate the competing methods.

Detection Accuracy Figure 3.5 shows an example of the change-point detection

results for the RPC TS. As shown in Figure 3.5, M1 detects 3 change-points, while

M2 and M3 only report one change-point at the date close to June 18, 2014. Since the

advertiser had a new product released on June 18, 2014, it is very likely that the date,

June 18, 2014, is a real change-point in this RPC TS. It is with high probability that

M1 reports 2 false discoveries considering the spikes in the RPC TS near the change-

points. After investigation, there are no particular events in those days. Thus, they
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Table 3.3 Average Prediction Error Ratios for Real Data Experiments

Method Advertiser 1 Advertiser 2 Advertiser 3

M0 (1.0, 1.0) (1.0, 1.0) (1.0, 1.0)

M1 (0.933, 0.951) (1.025, 1.146) (0.970, 0.969)

M2 (0.911, 0.938) (0.868, 1.024) (0.954, 0.958)

M3 (0.911, 0.929) (0.904, 1.005) (0.938, 0.936)

are concluded as false positives. These falsely reported change-points may provide

misleading information to the predictive model and consequently impose negative

impact on the predictive model's performance.

Prediction Accuracy This section further integrates M1, M2 and M3 into a

predictive system to demonstrate that more persistent and stable improvements can

be gained for the predictive model by leveraging accurate change-points detected from

M2 and M3 compared with M1, which reports more false discoveries in the sparse

and noisy data. Table 3.3 summarizes the average prediction error ratios across

the keywords for each Advertiser. In Table 3.3, the two numbers in each pair of

parentheses are the average prediction error ratios for predictive model using di�erent

prediction methods, predicting with average and predicting with decay, respectively.

Here are a few remarks. Firstly, though M1 improves the performance of the predictive

system in Advertiser 1 and 3, it causes much worse results for Advertiser 2 compared

with baseline M0. Secondly, the system, integrated with M2 or M3, has a better or

comparable performance compared with the baseline for all Advertisers, indicating

that the proposed method is more appropriate for sparse and noisy data and can

improve the performance of the predictive system persistently and stably. The detail

results for 228 keywords are shown in Figure 3.6. It is obvious that M2 and M3 greatly

improve the system's prediction accuracy, since the majority of the points are below
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Figure 3.6 Prediction error ratios for predictive model integrated with di�erent
change-point detection methods on 228 keywords.

the dotted baseline Y = 1 and others are at the baseline. Though M1 also improves

the prediction accuracy in most of the keywords, it reports many false discoveries

when the data is sparse and noisy, which eventually hurts the system's performance

and causes many green points above the baseline as shown in the Figure 3.6.

Paired two-sample t-tests show that M1, M2 and M3 can signi�cantly improve

the system's prediction accuracy (p-values < 0.01). Furthermore, the system

integrated with M2 or M3 gives signi�cantly better results than system integrated

with M1 (p-values < 10−5), which demonstrates the power and advantages of the

collaborated online change-point detection method.

3.5 Conclusion

This chapter proposes a collaborated online change-point detection method for sparse

time series. By leveraging the auxiliary time series, it can quickly and accurately

identify the changes in the revenue data and enable the predictive model to use

historical data intelligently. Experimental results have demonstrated the bene�ts of

using the proposed algorithm in improving the precision of the predictive model in
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online advertising. Based on its e�ciency in real data applications, it is in the process

of being deployed in AMO at Adobe.
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CHAPTER 4

RELIABLE GENDER PREDICTION BASED ON USER'S VIDEO

VIEWING BEHAVIOR FOR ONLINE ADVERTISING

4.1 Introduction

With the growth of the digital advertising market, it has become more important

than ever to target the desired audiences. Among various demographic traits,

gender information plays a key role in precisely targeting the potential consumers in

online advertising and ecommerce. However, such personal information is generally

unavailable to digital media sellers.

This chapter investigates the problem of gender prediction based on users' online

video viewing behavior. Considering the ever-changing data patterns and related

features, it proposes a novel task-speci�c multi-task learning algorithm to e�ciently

leverage historical data and obtain decent performance. To achieve high-precision

predictions, it further proposes Bayes testing and decision procedures to identify

desired users with controlled false discovery rate (FDR). Comprehensive experiments

show that the proposed method can deliver the best performance over alternative

methods.

4.2 Analyzing Video Viewing Behavior

To analyze the video viewing patterns, 35187, 70031 and 78996 users, registered with

identi�cation cards, were randomly sampled in August, September and October 2015,

respectively, and their viewing logs were extracted from PPTV. It contains 543,240

distinct videos and more than 20 million video viewing logs. Table 4.1 summarizes

the number of users and videos sampled in each month. It collected 8871, 18563 and

21057 female users in August, September and October, respectively, which accounted

for 25.2%, 26.5% and 26.7% of the total sampled users in that month.
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Table 4.1 Summary of the Sampled Users and Videos

Month
Users

Videos
Male Female Total

Aug 26,316 8,871 35,187 301,079

Sept 51,468 18,563 70,031 342,034

Oct 57,939 21,057 78,996 377,499

4.2.1 User's Viewing Behavior and Preference

Based on the video tags that PPTV utilizes to manage its video resources, it could

be viewed as 11 large categories, which contain thousands of videos, plus many small

groups. In addition, an additional category of �Others� is created to collect all small

group videos. Figure 4.1 summarizes the distribution of popularity, measured by the

number of views, of di�erent video categories. TV Series, Animation, Movies, and

News, which are favored by di�erent audiences, account for 78.4% of total views,

while Sports (Sp for short), Games (Ga for short), Variety Shows (Va for short), and

Stars and Entertainment (Star for short) are only applicable to a speci�c group of

audiences and are less popular.

Category-level Gender Preference This section summarizes the proportion of

female audiences for each category in Figure 4.2 and the corresponding male users'

proportion could be computed as Pmale = 1 − Pfemale. The red dashed horizontal

line (Y=0.252) is served as a baseline representing the proportion of female users

in the collected data. Note that September and October actually have a slightly

higher percentage of female users than August. For simplicity, the same baseline is

applied for all these three months. Obviously, the proportion of female audiences

in some categories signi�cantly deviates from the baseline, which exhibits strong

gender preference. Speci�cally, Sports and Games exhibit very low proportions of
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Sp Ga Fu

Movies

News

Others

Animation

TV Series

Mu
Da

Va
Star

Category
Sports (Sp, 0.8%)
Games (Ga, 2.6%)
Funny Videos (Fu, 2.7%)
Movies (9.8%)
News (7.3%)
Others (4.2%)
Animation (23.8%)
TV Series (37.5%)
Music (Mu, 0.7%)
Daily Lives and Children (Da, 1.8%)
Variety Shows (Va, 4.2%)
Stars and Entertainment (Star, 4.6%)

Figure 4.1 Popularities of di�erent video categories.

female audiences. In contrast, Variety Shows, and Stars and Entertainment are more

attractive to female audiences. An extreme case is that the �Hallyu Channels� (a

sub-category of Stars and Entertainment), which is about South Korean actors and

stars, focuses exclusively on female audiences. Additionally, female audiences also

pay close attention to the Daily Lives and Children category. It is interesting that

Sports and Games, which only account for 3.4% of total views (See Figure 4.1), exhibit

stronger demographic preference than popular TV dramas and movies, and therefore,

are more informative for gender prediction.

Video-level Gender Preference Many videos are equally popular among female

and male audiences. But also quite a few videos are watched more by female than

male, or vice versa. To �nd these gender-discriminative videos, this section performs

Fisher's exact test [23] on each video. Let H0 and H1 be the null hypothesis
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that the gender distributions are the same among people who watch the video

and the people who don't, and the alternative hypothesis that the proportion of

female audiences is either higher or lower among people who watch the video than

the people who don't (denoted as background), respectively. FDR [7] adjustment

is used to provide multiplicity control. It detects 8188, 13952 and 15764 videos

in August, September and October, respectively, which demonstrate signi�cant

di�erence (adjusted p-value ≤ 0.05) in the proportions of female audiences compared

with the background. The odds ratio (OR = oddsviewed
oddsnot viewed

, where odds = #female users
#male users

)

is further computed for each signi�cant video. Table 4.2 summarizes the number of

signi�cant videos in each odds ratio interval. Note that the case OR = 1 represents

the null hypothesis of no gender distribution di�erence, and is not shown in Table 4.2.
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Figure 4.2 Proportion of female audiences in each category.
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Table 4.2 Summary of the Signi�cant Videos

Month OR < 1 1 < OR ≤ 3 OR > 3 Total

Aug 4,110 1,356 2,722 8,188

Sept 6,670 2,338 4,944 13,952

Oct 6,502 3,196 6,066 15,764

OR < 1 suggests a lower proportion of female audiences compared to the background,

while the OR > 1 implies a higher percentage of female audiences. Considering the

odds for background is close to 1
3
, OR > 3 indicates that more female users than

male users watch the video. It is interesting that there are many signi�cant videos

with OR > 3 especially in September and October when more data are sampled (See

Table 4.1). Thus, researchers could treat videos with strong gender preference as

discriminant features and infer users' gender information based on whether or not

they watch the video and the number of times they watch it.

4.3 Challenge and Motivation

The data pattern and discriminant videos (features) keep changing over time, making

it hard to build e�cient models. For example, in Table 4.2, let SAug, SSept and SOct

denote sets of signi�cant videos for August, September and October. Then, |SAug ∩

SSept| = 4254, |SSept ∩ SOct| = 6621 and |SAug ∩ SSept ∩ SOct| = 3022. Approximately,

1− |SAug∩SSept||SAug |
= 48.0% and 1− |SSept∩SOct||SSept|

= 52.5% of signi�cant videos from August

and September become nonsigni�cant in the next month, respectively, indicating that

a large proportion of previously signi�cant and valuable videos (features) may become

nonsigni�cant or unrelated in the next time period. In addition, for those videos that

remain signi�cant, their magnitude of e�ects may change over time. Both the reduced

number of views and the change in audiences' gender distribution for those videos
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may lead to such changes. It should be also noted that 3022 videos could maintain

their signi�cance for three months in Table 4.2.

The continuous emergence of new videos may contribute to such ever-changing

data patterns and features. Additionally, video recommendation system provides a

profound e�ect on the views of videos [92]. Zhou et al. observed that the related video

recommendation was the main source of views for the majority of the videos [92]. An

ordinary video may quickly become popular when promoted by the recommendation

system. However, its popularity may not last long, as the recommender system may

quickly switch to promote other newly uploaded videos. The intrinsic property of the

video and user's watching habit may also a�ect the data patterns. For example, news

and live program, which are marked with immediacy, may only be watched in a short

time period after they are uploaded. In contrast, high quality movies and TV dramas

could maintain stable views for a long time, as users usually like to �binge-watch�

these videos [77].

Videos with short-term popularity and long-term popularity are treated as

�ordinary videos� and �classical videos�, respectively. Because previous ordinary

videos are rarely viewed by any audience later, employing this part of historical

data for current gender prediction will inevitably introduce many unrelated features

and degrade the performance. In contrast, previous viewing records, generated from

classical videos, may contribute to the current task. In the following sections, a

novel multi-task learning algorithm is proposed to model ordinary videos and classical

videos separately and e�ciently.

4.4 Reliable Gender Prediction

4.4.1 Problem Formulation

As shown in Figure 4.3, historical data can be divided into successive time intervals

t1, · · · , tL, where tL represents the current time period. Each interval ti contains
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Figure 4.3 Task-speci�c multi-task learning model for modeling users' video viewing
behavior.

both transient ordinary videos, which locally belong to one speci�c time interval,

and classical videos, which are shared across di�erent time intervals. In order to

maximize the bene�ts brought by shared classical videos while eliminating interference

from previous transient videos, it is formulated as a multi-task learning problem.

Models trained in successive time intervals are treated as multiple related tasks so

that the shared classical videos (shared features) are jointly estimated across multiple

tasks (See Figure 4.3). In addition, task-speci�c features are introduced into the

conventional multi-task learning framework to capture the e�ects of transient ordinary

videos. It is worth noting that, though multiple models are jointly trained, only the

one trained in current interval tL is utilized to make predictions.

4.4.2 Task-speci�c Multi-task Learning

Suppose that there are L tasks indexed from 1 to L and, for each task l, the training

set consists of Nl i.i.d. samples {(xli, yli)}
Nl
i=1, where x

l
i ∈ RP0+Pl represents the i-th

training data and yli ∈ R denotes the corresponding output. P0 and Pl are the
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number of shared features (shared classical videos) and the number of task-speci�c

features (local transient videos) for task l, respectively. LetX l = [xl1,x
l
2, · · · ,xlNl ]

T ∈

RNl×(P0+Pl) be the data matrix for task l and yl = [yl1, y
l
2, · · · , ylNl ]

T ∈ RNl be the

corresponding output vector.

Let wl =

αl
βl

 be the parameter vector for task l, where αl = (αl1, · · · , αlP0
)T ∈

RP0 and βl = (βl1, · · · , βlPl)
T ∈ RPl are the model parameter vectors for shared and

task-speci�c features, respectively. LetA = [α1,α2, · · · ,αL] be the P0×L parameter

matrix for the shared features across L tasks and Ak ∈ RL represent the k-th row

of matrix A. Let B = [β1T
, · · · ,βLT

]T ∈ R(
∑L
l=1 Pl) be the parameter vector for the

task-speci�c features of L tasks. Figure 4.3 provides a pictorial representation of the

features and parameters of the proposed model.

The `1/`2 norm regularization is introduced to globally select and estimate

the shared features. Furthermore, the `1 norm regularization is employed to obtain

element-wise sparsity in task-speci�c features. Putting them together with logistic

regression would yield the optimization problem

min
A,B

L∑
l=1

1

Nl

Nl∑
i=1

J(xli, y
l
i,w

l) + λ1‖A‖2,1 + λ2‖B‖1 (4.1)

where J(xli, y
l
i,w

l) = −
(
yli · xli

T
wl − log(1 + ex

l
i
T
wl)
)
is the negative log-likelihood,

‖A‖2,1 =
∑P0

k=1 ‖Ak‖2 is the `1/`2 norm of the matrix A and ‖B‖1 =
∑L

l=1 ‖β
l‖1 is

the `1 penalty introduced for task-speci�c features. Note that Expression (4.1) is the

sum of convex functions and is therefore convex.

Here, the `1/`2 norm is utilized to regularize the shared features in the proposed

method. It performs joint covariate selection that, depending on the tuning parameter

λ1, an entire group of shared features may enter into or drop out of the multiple

models simultaneously [4,47,51,62]. One obvious extension is to use the `p norms for

1 ≤ p ≤ ∞ and generalize to `1/`p norm regularizations [51]. Modelers could choose
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p based on how much a priori feature sharing among the tasks, from none (p = 1)

to complete (p =∞) [51]. The `1 norm regularization is also applied on task-speci�c

features to obtain feature-wise sparsity [68].

The new method relaxes the constraints of conventional multi-task learning

methods by introducing the task-speci�c features. It allows di�erent models to seek

common ground while reserving di�erences. With the proposed method, modelers are

encouraged to discover and leverage important task-speci�c information and domain

knowledge, which are usually very helpful for improving the performance.

4.4.3 Bayes Testing and Decision Procedure

It is important for industry people to get reliable and high-precision results. Classical

classi�cation algorithms may label all the audiences and provide us with unsatis-

factory precision. Inspired by multiple hypothesis testing, this section formulates the

classi�cation problem as two separate detection problems:

Q1: Female Detection: which users are female users?

Q2: Male Detection: which users are male users?

The intuition is to label the user only when people are con�dent. Users without

su�cient viewing data or evidence support will be marked as indecision currently

and labeled later [67]. For both questions, it aims to �nd as many desired users as

possible, subject to the constraint that the false discovery rate (FDR) or Type I error

rate [7, 66] is controlled at a user-speci�ed level α, namely, FDR ≤ α.

Given the estimated parameter ŵL =

α̂L
β̂
L

, we have

P (yi = Female|xi; ŵL) =

ex
T
i .ŵ

L

1 + ex
T
i .ŵ

L

P (yi = Male|xi; ŵL) =
1

1 + ex
T
i .ŵ

L

. (4.2)
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Bayes testing and decision procedures are proposed for Q1 and Q2, respectively.

A Bayes testing and decision procedure for Q1 :

1. Order users by P (yi = Male|xi; ŵL) = 1 − P (yi = Female|xi; ŵL) in an

ascending order and denote them by µ(1), µ(2), · · · , µ(N).

2. Let k = max{j : 1
j

∑j
1 µ

(j) ≤ α}.

3. Report users Ui (Ui ∈ GFemale) as female users, where GFemale = {i : P (yi =

Male|xi; ŵL) ≤ µ(k)}.

A Bayes testing and decision procedure for Q2 :

1. Order users by P (yi = Female|xi; ŵL) = 1 − P (yi = Male|xi; ŵL) in an

ascending order and denote them by ν(1), ν(2), · · · , ν(N).

2. Let k = max{j : 1
j

∑j
1 ν

(j) ≤ α}.

3. Report users Ui (Ui ∈ GMale) as male users, where GMale = {i : P (yi =

Female|xi; ŵL) ≤ ν(k)}.

As shown in the experiments, the proposed Bayes decision procedure could

precisely control the FDR at the nominal level with valid posterior probabilities.

4.5 Experiment

4.5.1 Experiment Settings

This section runs real data experiments to investigate the numerical performance of

the proposed method. It compares the performance of four di�erent methods:

M1: naive Bayes classi�er (nBayes);

M2: feature selection + naive Bayes classi�er (F+nBayes);
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M3: logistic regression with `1 penalty (LR);

M4: task-speci�c multi-task learning method (tMulti).

Naive Bayes classi�er and logistic regression with `1 penalty are two popular

approaches in the world of big data modeling [45] and have been widely applied by

various practitioners to solve practical problems in industry. In addition, they provide

probability estimates1, which is desired for controlling the FDR or Type I error rate.

In the experiment, Laplace smoothing is applied to naive Bayes classi�ers to obtain

smoother and better performance. Since logistic regression with `1 penalty (M3) and

the proposed multi-task learning method (M4) do variable selection automatically,

to compare them fairly, naive Bayes classi�er with feature selection is also included as

a competing method in the experiment. Fisher's exact test [23] is conducted for each

video to select those with gender preference (p-value ≤ 0.05) as input features for

the naive Bayes classi�er (M2). Through feature selection, it could greatly eliminate

the irrelevant features, and therefore, improve performance. Note that the proposed

method (M4) will reduce to the `1-regularized logistic regression (M3) if all features

are treated as task-speci�c features.

Three metrics are applied to evaluate the performance of competing methods:

Metric 1: area under the ROC curve (AUC);

Metric 2: Precision@K and Recall@K for the identi�ed top K female users;

Metric 3: Sensitivity at the nominal FDR level α.

Metric 1 measures the discrimination, that is, the ability of a classi�er to correctly

classify those female or male users. Since industry people are more interested in

1SVM doesn't directly provide probability estimates. Although Platt scaling could be
utilized to calibrate the binary SVM's scores by �tting an additional logistic regression
on the scores, it is known to have theoretical issues and the probability estimates may be
inconsistent with the scores [55,81].
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detecting female users, Metric 2 is introduced to clearly evaluate how well a model

can identify female users. Let zM and zF denote the collection of male users and

female users, respectively. Sort the predicted users in descending order according to

their posterior probabilities P (yi = Female|xi) and report the top K users (denoted

as zK) as identi�ed female users. Let Precision@K = |zK∩zF |
K

and Recall@K = |zK∩zF |
|zF |

.

Metric 3 measures the sensitivity (or recall) for each method at the nominal FDR

level α. As a part of the commercial system, one of the most important metrics is

the reliability that it could provide controllable results. Metric 3 is designed for this

purpose and evaluates the competing methods in two aspects, namely, whether the

method could control the FDR at the nominal level, and what the sensitivity is.

It sampled 35187, 70031 and 78996 registered users in August, September and

October 2015, respectively, and extracted more than 20 million video viewing records

from PPTV. Invalid records, e.g., viewing time < 5 seconds, were removed, as such

records were generated by accidentally clicking on a video. E�ciently leveraging the

historical data plays an important role in obtaining decent performance. Here, it

considers up to 3 weeks' previous data and empirically takes each week as a time

interval. It is natural for the proposed method to jointly train multiple models based

on previous weeks' and the current week's data. Classical movies and TV dramas

are treated as shared features, while transient ordinary videos like news, sports, and

stars and entertainment are treated as task-speci�c features. However, for naive Bayes

method and logistic regression, there is no single preferred way to utilize the historical

data. To compare them completely, di�erent ways of leveraging the historical data are

investigated for these competing methods. Speci�cally, it considers three strategies:

S1: use the current data only;

S2: use both the current data and the previous data;

S3: use the current data and only part of the previous data.
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Table 4.3 Summary of the Testing Users

Testing Users Aug E1 Aug E2 Aug E3 Sept E1 Sept E2 Sept E3 Oct E1 Oct E2 Oct E3

Male 3883 3946 3919 8087 8069 8065 6405 6348 6373

Female 1397 1353 1339 3033 2951 3051 2404 2367 2388

Total 5280 5299 5258 11120 11020 11116 8809 8715 8761

For S1, it only uses the current week's data to train the model and drop all previous

data. S2 and S3 both leverage the previous data but in di�erent manners. S2 utilizes

all previous data and video viewing records, while S3 only extracts and utilizes the

viewing records whose corresponding videos are viewed by some audiences in the

current week.

4.5.2 Experiment Results

Experiments are repeatedly conducted 9 times from August to October. Each time it

randomly chooses a time point. The 7 days after the selected time are considered as

the �current week�, while the data collected before it are treated as �previous weeks'

data�. As mentioned earlier, only up to 3 weeks' previous data are considered in the

experiments. The current week's newly sampled users are treated as testing users and

their viewing records, which are only located in the current week, are used as testing

data. Other users are treated as training users and their viewing records collected in

both current and previous weeks are treated as training data. Note that there is no

overlap between the testing users and the training users.

The parameters of di�erent methods, e.g., regularization parameters, are tuned

through 5-fold cross-validation with the training data. Table 4.3 summarizes the

testing users sampled at each testing point. It randomly performs three experiments

in each month denoted asAug E1,Aug E2,Aug E3 and so on. Note that more than

75, 000 testing users are used to evaluate the competing methods in the experiments.
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Table 4.4 Performance of the Competing Methods in Terms of Area under the ROC
Curve (AUC)
Method Aug E1 Aug E2 Aug E3 Sept E1 Sept E2 Sept E3 Oct E1 Oct E2 Oct E3

nBayes+S1 0.7246 0.7251 0.7383 0.7386 0.7279 0.7312 0.7164 0.7321 0.7080

nBayes+S2 0.6080 0.6182 0.6132 0.6795 0.6672 0.6751 0.5662 0.5779 0.5803

nBayes+S3 0.6124 0.6262 0.6194 0.6800 0.6680 0.6758 0.5714 0.5859 0.5918

F+nBayes+S1 0.7268 0.7292 0.7415 0.7425 0.7296 0.7341 0.7217 0.7379 0.7186

F+nBayes+S2 0.6143 0.6256 0.6208 0.6804 0.6681 0.6745 0.5687 0.5806 0.5831

F+nBayes+S3 0.6187 0.6334 0.6275 0.6808 0.6688 0.6752 0.5728 0.5889 0.5931

LR+S1 0.7365 0.7345 0.7391 0.7536 0.7511 0.7473 0.7360 0.7570 0.7297

LR+S2 0.6572 0.6554 0.6681 0.6966 0.7007 0.7033 0.6165 0.6330 0.6313

LR+S3 0.6581 0.6571 0.6669 0.6979 0.7018 0.7042 0.6193 0.6368 0.6345

tMulti 0.7545 0.7467 0.7601 0.7674 0.7646 0.7650 0.7610 0.7764 0.7551

It costs approximately 5 hours for a 64-bit server with two 6-Core 2.93GHz CPUs

and 60 GB RAM to train the proposed model.

Metric 1 Table 4.4 summarizes the experiment results of the proposed method

(tMulti) and other competing methods (nBayes, F+nBayes and LR) combined with

di�erent strategies (S1, S2 and S3) in terms of the area under the ROC curve (AUC).

Here are a few remarks. Firstly, method combined with strategy 1 (S1) yields much

better performance than the corresponding method combined with other strategies

(S2 and S3). This observation is consistent among logistic regression with `1 penalty

(LR) and naive Bayes methods (nBayes and F+nBayes). As stated earlier, data

collected at di�erent time intervals usually exhibit signi�cantly di�erent patterns

(See Table 4.2). Not only the discriminant features could change dramatically, but

also their coe�cients may shift over time. Thus, naively leveraging the previous data

will have an adverse e�ect. Secondly, logistic regression with `1 norm regularization

outperforms the naive Bayes methods in most cases. Thirdly, the proposed method

(tMulti) demonstrates the best performance among all competing methods. It

provides an advanced way to leverage the historical data. For di�erent time intervals,
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Table 4.5 Precision and Recall over Top K (K=250, 500, 750 and 1000) Identi�ed
Female Users
Precision@250 Aug E1 Aug E2 Aug E3 Sept E1 Sept E2 Sept E3 Oct E1 Oct E2 Oct E3

nBayes+S1 0.644 0.628 0.632 0.676 0.616 0.708 0.636 0.648 0.620

F+nBayes+S1 0.652 0.636 0.656 0.668 0.624 0.700 0.632 0.640 0.624

LR+S1 0.720 0.736 0.736 0.752 0.704 0.768 0.768 0.744 0.716

tMulti 0.780 0.748 0.740 0.752 0.708 0.788 0.792 0.768 0.740

Recall@250 Aug E1 Aug E2 Aug E3 Sept E1 Sept E2 Sept E3 Oct E1 Oct E2 Oct E3

nBayes+S1 0.115 0.116 0.118 0.056 0.052 0.058 0.066 0.068 0.065

F+nBayes+S1 0.117 0.118 0.122 0.055 0.053 0.057 0.066 0.068 0.065

LR+S1 0.129 0.136 0.137 0.062 0.059 0.063 0.080 0.079 0.075

tMulti 0.140 0.138 0.138 0.062 0.060 0.065 0.082 0.081 0.077

Precision@500 Aug E1 Aug E2 Aug E3 Sept E1 Sept E2 Sept E3 Oct E1 Oct E2 Oct E3

nBayes+S1 0.586 0.570 0.606 0.642 0.608 0.664 0.600 0.600 0.584

F+nBayes+S1 0.602 0.604 0.626 0.638 0.596 0.646 0.606 0.614 0.588

LR+S1 0.656 0.630 0.616 0.712 0.674 0.734 0.710 0.710 0.680

tMulti 0.674 0.636 0.648 0.724 0.698 0.744 0.724 0.714 0.694

Recall@500 Aug E1 Aug E2 Aug E3 Sept E1 Sept E2 Sept E3 Oct E1 Oct E2 Oct E3

nBayes+S1 0.210 0.211 0.226 0.106 0.103 0.109 0.125 0.127 0.122

F+nBayes+S1 0.215 0.223 0.234 0.105 0.101 0.106 0.126 0.130 0.123

LR+S1 0.235 0.233 0.230 0.117 0.114 0.120 0.148 0.150 0.142

tMulti 0.241 0.235 0.242 0.119 0.118 0.122 0.151 0.151 0.145

Precision@750 Aug E1 Aug E2 Aug E3 Sept E1 Sept E2 Sept E3 Oct E1 Oct E2 Oct E3

nBayes+S1 0.561 0.540 0.557 0.612 0.592 0.639 0.561 0.581 0.553

F+nBayes+S1 0.552 0.545 0.577 0.605 0.591 0.631 0.572 0.584 0.556

LR+S1 0.592 0.559 0.575 0.685 0.660 0.687 0.655 0.641 0.647

tMulti 0.624 0.579 0.597 0.704 0.685 0.692 0.676 0.677 0.653

Recall@750 Aug E1 Aug E2 Aug E3 Sept E1 Sept E2 Sept E3 Oct E1 Oct E2 Oct E3

nBayes+S1 0.301 0.299 0.312 0.151 0.150 0.157 0.175 0.184 0.174

F+nBayes+S1 0.296 0.302 0.323 0.150 0.150 0.155 0.178 0.185 0.175

LR+S1 0.318 0.310 0.322 0.169 0.168 0.169 0.204 0.203 0.203

tMulti 0.335 0.321 0.335 0.174 0.174 0.170 0.211 0.215 0.205

Precision@1000 Aug E1 Aug E2 Aug E3 Sept E1 Sept E2 Sept E3 Oct E1 Oct E2 Oct E3

nBayes+S1 0.527 0.502 0.530 0.610 0.585 0.606 0.544 0.566 0.532

F+nBayes+S1 0.525 0.517 0.529 0.592 0.583 0.606 0.562 0.569 0.538

LR+S1 0.547 0.519 0.541 0.658 0.634 0.654 0.613 0.614 0.609

tMulti 0.567 0.540 0.553 0.678 0.663 0.669 0.626 0.632 0.616

Recall@1000 Aug E1 Aug E2 Aug E3 Sept E1 Sept E2 Sept E3 Oct E1 Oct E2 Oct E3

nBayes+S1 0.377 0.371 0.396 0.201 0.198 0.199 0.226 0.239 0.223

F+nBayes+S1 0.376 0.382 0.395 0.195 0.198 0.199 0.234 0.240 0.225

LR+S1 0.392 0.384 0.404 0.217 0.215 0.214 0.255 0.259 0.255

tMulti 0.406 0.399 0.413 0.224 0.225 0.219 0.260 0.267 0.258
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Figure 4.4 Histograms of the posterior probabilities P (yi = Female|xi).

it introduces the task-speci�c features to capture those important but transient videos

and jointly estimate the shared features to obtain better performance.

Metric 2 The Precision@K and Recall@K for top K (K=250, 500, 750 and 1000)

identi�ed female users are summarized in Table 4.5. It should be noted that

accurately detecting female users is more challenging, as the ratio of women to men

is approximately 1 : 3 and it only yields a prediction accuracy of 0.25 for female

users with a random guess. In Table 4.5, it only reports the results for methods

combined with strategy 1 (S1), as strategy 1 (S1) yields the best performance for

other competing methods (See Table 4.4). The experiments conducted in September

and October may have larger precisions but with lower recalls than the results in

August. This is because there are more female testing users in September and October

(See Table 4.3). It is obvious that logistic regression with `1 norm regularization

outperforms the naive Bayes methods in most cases, as `1 norm regularization could
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greatly reduce the risk of over�tting and yields better coe�cient estimation. In

addition, such regularizations could help to obtain valid posterior probabilities for

testing users and enable reliable decisions (See Metric 3). As shown in Table 4.5,

the proposed method (tMulti) beats all of other methods for both precision and recall

in all settings (K=250, 500, 750 and 1000). It gains approximately 2% and more

than 5% improvements in precision compared with logistic regression with `1 penalty

(LR+S1) and naive Bayes methods (nBayes+S1 and F+nBayes+S1), respectively.

Considering there are more than 190 million monthly active users watching videos on

PPTV, such improvements could bring a dramatic increase in commercial value.

Metric 3 A month is randomly selected to evaluate Metric 3. The last week

of the selected month is treated as the �current week�, while the previous 3 weeks

are treated as �previous weeks�. It repeats the experiment in this setting 10 times
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Figure 4.5 False discovery rates for 10 random experiments (at nominal level α =
0.3).
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to evaluate the Metric 3. Each time, it randomly divides the sampled users into

training users (80%) and testing users (20%) in advance and remove all testing

users' viewing records from previous data. Figure 4.4 plots the histograms of

posterior probabilities P (yi = Female|xi) of testing users for di�erent methods.

The red dashed vertical line indicates the proportion of female users (approximately

25%) in the testing data. Obviously, regularization-based methods (LR+S1 and

tMulti) exhibit more reasonable distribution of posterior probabilities among all

testing users. In contrast, naive Bayes methods (nBayes+S1 and F+nBayes+S1),

which make unrealistic independence assumptions, push probabilities toward 0 and 1

and over-estimate the posterior probabilities P (yi = Female|xi) [50]. As shown

in Figure 4.4 (nBayes+S1 and F+nBayes+S1), the majority of testing users are

located in intervals [0, 0.1] and [0.9, 1]. Such over-estimations incur great di�culty

for researchers to choose a reasonable cuto� to classify users accurately. For example,

if they choose 0.9 as a cuto� and report the users with P (yi = Female|xi) ≥ 0.9 as

female users, naive Bayes methods will still report too many users and the precision

is usually less than 0.5. Thus, the naive Bayes method will not be described in detail

in following paragraphs, as it can't guarantee any multiplicity control.

Figure 4.5 summarizes the false discovery rates of competing methods (LR+S1

and tMulti). To save space, it presents the results at the nominal FDR level

α = 0.3 for female users as an example. Note that it delivers similar results for

male users or other FDR levels. Clearly, both methods when combined with the

Bayes decision procedure could precisely control FDR at the nominal level α = 0.3,

which demonstrates both the validity of posterior probabilities and the e�ectiveness

of the proposed Bayes decision procedure. The sensitivities of competing methods

at the nominal FDR level α = 0.3 are summarized in Table 4.6. To clearly present

the results, the improvements of the proposed method (tMulti) are also calculated.

Obviously, the proposed method could achieve 7.26% improvements on average in
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Table 4.6 Sensitivities of Competing Methods (LR+S1 and tMulti) at the Nominal
FDR Level α = 0.3 for 10 Random Experiments E1-10

Method E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

LR+S1 0.128 0.155 0.137 0.143 0.143 0.140 0.146 0.142 0.152 0.145

tMulti 0.149 0.162 0.146 0.158 0.152 0.146 0.155 0.153 0.160 0.152

Improvement 16.4% 4.5% 6.6% 10.5% 6.3% 4.3% 6.2% 7.7% 5.3% 4.8%

terms of the sensitivity (or recall) while controlling the FDR (or Type I error rate)

at the nominal level.

4.6 Conclusion

This chapter investigates the feasibility and challenges of gender prediction based

on users' video viewing behavior. It proposes a novel task-speci�c multi-task

learning algorithm to e�ciently leverage training data and obtain decent performance.

Inspired by multiple hypothesis testing, it further proposes Bayes decision procedures

to identify female and male users, respectively, which could precisely control the Type

I error rate at a user-speci�ed level. Experiment results have justi�ed the e�ectiveness

and reliability of the proposed method.
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CHAPTER 5

AN EMPIRICAL BAYES CHANGE-POINT MODEL FOR

IDENTIFYING 3′ AND 5′ ALTERNATIVE SPLICING BY

NEXT-GENERATION RNA SEQUENCING

5.1 Introduction

Next-generation RNA sequencing (RNA-seq) has been widely used to investigate

alternative isoform regulations. Among them, alternative 3′ splice site (SS) and 5′ SS

account for more than 30% of all alternative splicing (AS) events in higher eukaryotes.

Recent studies have revealed that they play important roles in building complex

organisms and have a critical impact on biological functions which could cause disease.

Quite a few analytical methods have been developed to facilitate alternative 3′ SS and

5′ SS studies using RNA-seq data. However, these methods have various limitations

and their performances may be further improved.

This chapter proposes an empirical Bayes change-point model for identifying

3′/5′ AS events. The new approach requires no annotation information and is

applicable to detect novel aberrant splicing events. Compared with previous methods,

it has several unique merits. First of all, it does not rely on annotation information.

Instead, it provides for the �rst time a systematic framework to integrate read

coverage information and junction read or annotation information, when available, in

order to obtain better performance. Secondly, an empirical Bayes model is utilized to

e�ciently pool information across genes for improving detection e�ciency. Thirdly, it

provides a �exible testing framework in which the user can choose to address di�erent

levels of questions, namely, whether alternative splicing happens, and/or where it

happens. Simulation studies and applications to real data have demonstrated that

the proposed method is powerful and accurate.
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5.2 Methods

5.2.1 Alternative 3′ SS and 5′ SS Selection and Change-point Problem

The alternative 3′ SS and 5′ SS selection problem and the change-point model are

illustrated via toy examples in Figure 5.1. As shown in Figure 5.1, di�erent mRNA

isoforms, with di�erent expression levels, are generated from a single gene through

the alternative selection of 3′ SS or 5′ SS. The common regions (constitutive exons),

shared by the two isoforms, are expected to have a higher expression level than

the extended regions (spliced regions). As a result, for RNA-seq data, the common

regions will have higher short read densities than the extended regions, and the exons

with alternative 3′ SS or 5′ SS will have change-points at their 3′ or 5′ splice sites as

illustrated in Figure 5.1. Thus, researchers can detect exons with alternative 3′ SS

and 5′ SS and their splice sites by detecting the change-points where the short read

densities change.

Let Si = (xi1, xi2, · · · , xiLi) be a sequence of observations ordered in position,

where xij is the number of reads (read-count) whose �rst base mapped to exon i

at position j. Following previous literature [5, 17, 86], the change-points divide the

sequence of observations into K unknown homogeneous segments, Π = (Π1, · · · ,ΠK),

such that the data is independent across di�erent segments

p(Si,1:Li |Π) =
K∏
k=1

p(Si,Πk).

For the alternative 3′ SS and 5′ SS problem, it further assumes K = 1 or 2,

namely, expecting there is at most one change-point in a read-count sequence. Let

ρi ∈ {0, 1, 2, · · · , Li−1} denote the change-point position for sequence Si. Speci�cally,

ρi = 0 indicates there is no change-point and ρi = τ(τ > 0) means that there

is a change-point at position τ , before which read-counts in Si,1:τ = (xi1, · · · , xiτ )

follow one homogeneous distribution and after which read-counts in Si,(τ+1):Li =
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Figure 5.1 Illustration and notation of change-point model for alternative 3′ SS
and 5′ SS problem. A) and B) show two AS events: alternative 3′ SS and 5′ SS
selection, respectively. Blue rectangles represent constitutive exons (common regions)
and purple rectangles represent alternatively spliced regions (extended regions). Solid
lines and dashed lines indicate the introns and splicing options, respectively. C) and
D) are examples of isoforms generated from alternative 3′ SS and 5′ SS selection,
respectively. In C), isoform 1 has a higher expression level, while, in D), isoform 2
has a higher expression level. E) and F) show the results of mapping short reads to
the reference genome, respectively. The reads from isoform 2 are marked as dark red,
while reads from isoform 1 are marked as blue. G) and H) show the detailed results
of the exons that contain alternative 3′ SS and 5′ SS. Because of the alternative 3′ SS
or 5′ SS, the common region shared by the two isoforms has a higher gene expression
level than the extended region. Thus, the average number of short reads (read-count)
mapped to the common region will be larger than the one for extended region. This
generates a change-point at the splice site, which partitions the whole region into two
di�erent homogeneous segments with di�erent average read-counts.
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(xi(τ+1), · · · , xiLi) follow another homogeneous distribution, as described in details

below.

5.2.2 Negative Binomial-Beta Model

Considering the over-dispersion of RNA-seq data, the Negative Binomial (NB)

distribution is utilized to characterize the observed read-counts for each segment. As

shown in Figure 5.1, if there is no alternative 3′ SS or 5′ SS in exon i, the read-counts

across the whole exon i are generated from a single model NB(r, qi0). Otherwise,

the splice site τ divides the read-count sequence into two homogeneous parts such

that two Negative Binomial distributions NB(r, qi1) and NB(r, qi2) are involved in

modeling the data. Formally,

xij|ρi ∼


NB(r, qi0), if ρi = 0,

NB(r, qi1), if ρi = τ and j ≤ τ ,

NB(r, qi2), if ρi = τ and j > τ,

where qik ∼ Beta(α, β). The hierarchical structure of this Negative Binomial-Beta

model is illustrated in Figure 5.2. Di�erently from a conventional Bayesian approach,

the hyperparameters α and β are estimated from the data using an empirical Bayes

approach. From the Negative Binomial-Beta model, the probability density function

is calculated as

f(xij|r, qi) =

(
xij + r − 1

xij

)
qri (1− qi)xij

f(qi|α, β) =
qα−1
i (1− qi)β−1

B(α, β)
.

(5.1)

Integrating out the unknown segment speci�c parameter qi, the likelihood of xij is

f(xij|r, α, β) =

∫
q

f(xij|r, qi)× f(qi|α, β)dq

=

(
xij + r − 1

xij

)
B(r + α, xij + β)

B(α, β)
.

(5.2)
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Figure 5.2 Hierarchical structure of Negative Binomial-Beta model.

Since observations in the same segment are independently and identically distributed

(i.i.d.), the likelihood for a homogeneous segment Si,j:k = (xij, xi(j+1) · · · , xik) can be

computed as

f0(Si,j:k|r, α, β) =

∫
qi

k∏
l=j

f(xil|r, qi)× f(qi|α, β)dq

=

[
k∏
l=j

(
xil + r − 1

xil

)]

×
B
(

(k − j + 1)r + α,
∑k

l=j xil + β
)

B(α, β)
.

(5.3)

If there is no change-point in the sequence Si, the likelihood is

f(Si|ρi = 0, r, α, β) = f0(Si,1:Li |r, α, β). (5.4)
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When there is a change-point at τ , the likelihood is

f(Si|ρi = τ, r, α, β) = f0(Si,1:τ |r, α, β)× f0(Si,(τ+1):Li |r, α, β). (5.5)

5.2.3 Prior Information and Hot Points

When no additional information is available, every position has the same prior

probability of being a change-point. Suppose that each sequence Si has a change-point

with a prior probability P , then the prior probability for each candidate position is

Pr(ρi;P ) =

 1− P, if ρi = 0,

P
Li−1

, if ρi = 1, 2, · · · , Li − 1.

If additional information is available, e.g., splice junction reads or isoform

annotation, the proposed method assigns di�erent weights to di�erent candidate

positions allowing them to have di�erent prior probabilities as derived from extra

information. It assigns weight W ≥ 1, which can be estimated from data or

pre-speci�ed by the user, to hot points and weight 1 to ordinary positions. Then

the prior probability for each position will be

Pr(ρi;P,W ) =


1− P, if ρi = 0,

P × wiρi∑Li−1
j=1 wij

, if ρi = 1, 2, · · · , Li − 1,

where wij is the weight assigned to position j in sequence i, (i, j) for short, and

wij =

 1, if (i, j) is ordinary position,

W, if (i, j) is hot point.

This weighting scheme allows �exible weight assigning strategies. It is very

useful when the user has di�erent kinds of prior information. Assuming that various

information has additive e�ects on the weight of a candidate position, the proposed

method can make full use of all kinds of information. Suppose there are m di�erent
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kinds of information, it assigns weights to candidate positions as follows

wij = 1 + β(1)δ
(1)
ij + β(2)δ

(2)
ij + · · ·+ β(m)δ

(m)
ij ,

where β(k) (k = 1, 2, · · · ,m) measures the additive e�ect of information k and δ(k)
ij =

I {position (i, j) supported by information k}. Moreover, interactions of di�erent

information can be considered and added into the weight assigning procedure by

introducing interaction terms β(kl)δ
(kl)
ij (k, l = 1, 2, · · · ,m). For example, given the

annotations and splicing reads, a weight assigning strategy can be

wij = 1 + β(1)δ
(1)
ij + β(2)δ

(2)
ij + β(12)δ

(12)
ij ,

where β(1), β(2) and β(12) measure the additive e�ects of splice junction reads, isoform

annotation and their interactions, respectively.

By assigning di�erent weights to di�erent candidate positions and distinguishing

hot points from ordinary ones, it can e�ciently leverage domain knowledge and

improve the performance. Since all parameters are estimated from data through the

empirical Bayes approach, it doesn't matter if the domain knowledge is dubious or

totally wrong. It is noted that there are trade-o�s between simple versus sophisticated

strategies. Adopting more sophisticated strategy will make better usage of prior

information on one hand, but on the other hand, it will introduce more parameters

and cause di�culty in parameter estimation. Thus, appropriate strategies need to be

chosen to balance these trade-o�s for di�erent applications.

5.2.4 Empirical Bayes Estimator

Empirical Bayes estimates combine the Bayesian and frequentist reasoning that the

prior probability is estimated frequentistically in order to perform Bayesian inferences

[19]. This kind of combination not only provides the Bayesian accurate, objective

and data-related prior information, but also enables frequentists to obtain more
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test e�ciency in solving scienti�c problems [20, 91]. Let Φ denote the set of the

parameters for the Negative Binomial-Beta model (r, α and β) and the parameters

for characterizing prior information (P and W ). The maximum likelihood estimation

of Φ, applied to the total N sequences, is

Φ̂ = arg max
Φ

log

(
N∏
i=1

Li−1∑
ρi=0

Pr(ρi|Φ)f(Si|ρi,Φ)

)
.

The optimization algorithm L-BFGS-B [13], a limited-memory modi�cation of the

BFGS quasi-Newton method with box constraints, is applied to estimate the

parameters Φ.

5.2.5 Empirical Bayes Testing and Decision Procedure

There are two questions of interest that can be addressed by the proposed method:

Q1: Detection, which genes have change-points?

Q2: Identi�cation, where is the change-point, if any?

For Q1, it only cares about whether there is a change-point or not, and is not

concerned about where the change-point locates. For Q2, it aims to �nd the accurate

location of the change-point. In other words, if it correctly detects a sequence with

change-point but wrongly locates the change-point position, it is still considered as

an error. Given the estimated parameters Φ̂, the posterior probability is

Pr(ρi = τ |Si; Φ̂) =
Pr(ρi = τ, Si; Φ̂)∑Li−1
j=0 Pr(ρi = j, Si; Φ̂)

.

Let

πi0 = Pr(ρi = 0|Si; Φ̂),

π∗i = max{Pr(ρi = τ |Si; Φ̂)}, τ = 1, 2, · · · , Li − 1.

It is desirable to control the false discovery rate (FDR) [7] at a nominal level α and

�nd as many sequences with change-points as possible. To obtain this goal, this
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section proposes the following two empirical Bayes testing and decision procedures

for Q1 and Q2, respectively.

An empirical Bayes testing and decision procedure for Q1 :

1. Order sequences by πi0 in an ascending order and denote them by π(1)
0 , π

(2)
0 , · · · , π(N)

0 .

2. Let k = max{j : 1
j

∑j
1 π

(j)
0 ≤ α}.

3. Report sequences Si (Si ∈ GDetection) to have a change-point, where GDetection =

{i : πi0 ≤ π
(k)
0 }.

An empirical Bayes testing and decision procedure for Q2 :

1. Order sequences by (1 − π∗i ) in an ascending order and denote them by

π
(1)
∗ , π

(2)
∗ , · · · , π(N)

∗ .

2. Let k = max{j : 1
j

∑j
1 π

(j)
∗ ≤ α}.

3. Report sequences Si (Si ∈ GIdentification) to have a change-point at position τ ∗i ,

where Pr(ρi = τ ∗i |Si; Φ̂) = π∗i , and GIdentification = {i : (1− π∗i ) ≤ π
(k)
∗ }.

5.3 Experiment

5.3.1 Simulation Settings

This section �rst performs simulation studies to investigate the numerical performance

of the proposed method. It randomly generates N = 500 sequences, each with length

Li = 100. P ∗ N sequences are selected to have change-points. It simulates two

scenarios, the �rst one without hot points and the second one with hot points. For

the �rst scenario, it randomly picks one position with equal probability to be the

change-point for all the P ∗ N selected sequences. For the second scenario, it sets

positions 25, 50 and 75 as hot points with weight W = 32 while the other points

with weight W = 1. one half of the selected P ∗ N sequences have change-points
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at hot points and the other half don't. As a result, there are (1 − P ) ∗ N + 2 ∗ P ∗

N = (1 + P )N homogeneous sequence segments in total. The read-count data from

each segment are generated from a Negative Binomial distribution with parameters

estimated from real data [48]. Prior probability P is varied from 0.05 to 0.7 (P =

0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7) to make a complete comparison. The simulation is

repeated 100 times for each parameter setting, and the averaged FDR and sensitivity

are reported.

It considers two versions of the proposed method. The �rst one does not consider

hot points by setting W = 1 rather than estimating it. The second one considers hot

points by allowingW to be estimated from data. The method in [75] essentially scans

the whole sequence and selects a position exhibiting the most dramatic di�erence as a

potential change-point to be determined by a statistical test. Following their strategy,

a frequentist testing procedure is implemented as a competing method to be compared

with the proposed empirical Bayes method. Speci�cally, this frequentist method

scans the whole sequence and �nds a position with the most signi�cant di�erence

as quanti�ed by rank-sum testing statistic. It is an extreme testing statistic and its

original p-value may not be valid any more. As a result, this frequentist method

couldn't guarantee multiplicity control. To make comparison, the exons are ranked

based on their maximum rank-sum testing statistic and then the same number of

signi�cant exons are reported.

5.3.2 Simulation Results

Figure 5.3 shows the results for the scenario without hot points. First, the model

without considering hot points (NB model without HP), which is ideal for this

scenario, can control FDR precisely at the nominal level 0.1 for all settings. Second,

the model considering hot points (NB model with HP) can also control the FDR at

nominal level 0.1 for all settings. In addition, it demonstrates similar sensitivity as
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Figure 5.3 Results for di�erent methods applied on data set without hot points.
�NB Model with HP" represents change-point model considering hot points; �NB
Model without HP" represents change-point model without considering hot points.
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the ideal model which has the information of W=1. This comparable performance

suggests that the model considering hot points, which estimates W from data, is

more general and robust. Third, both of the empirical Bayes models outperform

the frequentist method which demonstrates a higher FDR while with a lower

sensitivity. Fourth, the sensitivity for the detection problem (Q1) is much higher

than the identi�cation problem (Q2), which is expected, as the latter indeed is more

challenging. Figure 5.4 shows the results for the scenario with hot points simulated.

Again, the empirical Bayes models, considering hot points or not, both demonstrate

signi�cantly better performance than the frequentist method. The model considering

hot points is the optimal model. It can precisely control FDR at the nominal level

and shows the best performance. It is noted that the model without considering

hot points erroneously set W=1, and, as a result, it either couldn't guarantee FDR

control for the detection problem (Q1), or has a lower sensitivity than the correct

model for the identi�cation problem (Q2).

From the results previously mentioned, in comparison with the model considering

hot points versus the one without considering hot points, the former is comparable

when applied to data without hot points, and better than the latter when applied

to data with hot points. Therefore, the model considering hot points is robust and

superior.

5.3.3 Real Data Experiments

The proposed method is applied to analyze a real dataset in this section. Flockhart et

al. [24] conducted whole transcriptome RNA-seq to study melanoma cell migration.

Their RNA-seq datasets have been deposited to the NCBI Gene Expression Omnibus

(GEO) database (http://www.ncbi.nlm.nih.gov/geo/) with ID GSE33092. There

are 69,925,376 paired-end reads in the control sample SRR354040 from primary

human melanocytes infected with RFP lentivirus, and 62,884,955 paired-end reads in
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Figure 5.4 Results for di�erent methods applied on data set with hot points. �NB
Model with HP" represents change-point model considering hot points;�NB Model
without HP" represents change-point model without considering hot points.
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Table 5.1 Estimated Parameters for Di�erent Samples

Data Set P r α β W

SRR354040 0.354 2.21 1.02 1.22 9.90

SRR354042 0.348 0.86 1.20 1.57 10.00

the case sample SRR354042 from primary human melanoma sample [24]. The raw

reads were downloaded from GEO and then aligned to the hg19 reference genome

using the popular RNA-seq mapping tool Tophat [69] v1.3.1 with default settings.

Exons with short reads found in both samples are used for further analysis. As a

result, 62209 exons from 13290 distinct genes remain.

The read-count data were calculated for each position, and then binned every

5 BPs as one point to reduce the e�ect of sparsity and noise. In addition, junction

read-supported positions are treated as hot points, whose weights will be estimated

from the data. Table 5.1 shows the estimated parameters for the two samples. Note

that the estimated weights of hot points are bigger than 1 (Ŵ > 1), which indicates

that the positions supported by junction reads do have higher prior probabilities than

other locations. The proposed model can capture and make use of this information

e�ectively.

To �nd biologically meaningful 3′/5′ AS events, it tries to detect the exons that

have change-points in one sample but not in the other sample. Under the FDR level

α = 0.05, the proposed method detects 7222 such exons. As a comparison, the tool

developed by Wang et al. [75] and the simple strategy, which counts only junction

reads, are also applied to analyze this dataset. Wei's tool only detects 3366 exons with

signi�cant changes between the two samples at the same FDR level, which suggests a

lower power compared to the proposed method. For the simple strategy, it reports a

3′/5′ AS event if it is supported by one or more junction reads. This strategy detects

796 exons that contain 3′/5′ AS events in one sample but not in the other sample.
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Table 5.2 Results for Real Data Experiments
Method # Total Detected AS # Novel AS # AS Supported by AceView Supporting Rate

EB Change-point 7222 1988 5234 72.5%

Frequentist Method (Wei's) 3366 1058 2308 68.6%

Simple Strategy 796 24 772 97.0%

This improved sensitivity of the proposed method over the simple strategy shows that

utilizing junction reads together with read coverage information could obtain a better

performance than using junction reads only.

The detected AS events are further compared with the isoforms cataloged in

the AceView database. When the algorithm detects an AS event and there is one

in the matching AceView exon as well, it means this detected AS event is supported

by AceView. It is noted that this is not an experimental validation but serves as a

proxy to the �truth�. As summarized in Table 5.2, 5234 out of the 7222 AS events

the proposed method �nds are supported by AceView and 1988 AS events are novel,

while for Wei's method, 2308 out of the 3366 AS events are supported and 1058 AS

events are novel, and for the simple strategy, 772 AS events are supported and 24

AS events are novel. In contrast, for the whole genome, 64.7% exons contain AS

events annotated in the AceView database. In this section, the proposed model only

uses the junction reads as side information and leaves the AceView annotations for

evaluation purpose. The exons reported by the proposed method have a statistically

higher supporting rate of 72.5%.

Finally, following [75], the gene set enrichment analysis (GSEA) is conducted

based on the genes with 3′/5′ AS events reported by the proposed model in order

to evaluate the results from a systems biology point of view. The canonical

pathways de�nitions (Version 4) are downloaded from the Molecular Signatures

Database (http://www.broadinstitute.org/gsea/msigdb/index.jsp). The proposed

method identi�es 12 signi�cantly enriched pathways as shown in Table 5.3 at an

FDR level of 0.05. Interestingly, many of them are relevant to melanoma or cancer.
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For example, recent studies demonstrate that activation of the Smad2/3 pathway

has inhibitory e�ects on tumor cell plasticity of melanoma [54]. Regulation of the

actin cytoskeleton contributes to cancer cell migration and invasion [87]. The Notch

signaling pathway plays a key role in melanoma growth and progression [6]. The

meaningful GSEA results from a systems biology point of view provide supplementary

support to the proposed method. In addition, they may provide insight into the role

of 3′/5′ AS in these pathways.

5.4 Conclusion

This chapter proposes an empirical Bayes change-point model to identify 3′/5′ AS

events. Simulation studies and real data application have demonstrated that the

proposed method is powerful, accurate and e�cient for analyzing the next-generation

RNA sequencing data. Compared with previous methods, the new approach does not

rely on annotation information. Instead, it provides for the �rst time a systematic

framework to characterize coverage change while being capable of integrating other

information, in particular the junction read information which is very helpful for

detecting 3′/5′ AS events.

It utilizes an empirical Bayes model to e�ciently pool information across genes.

The Negative Binomial-Beta model, which allows the over-dispersion in the real data,

could estimate the hyperparameters from data e�ciently. This makes the model more

powerful compared with frequentist methods, as it applies Bayesian inference [91].

Since the hyperparameters are estimated frequentistically from data, it also overcomes

the defects of subjective priors of Bayesian methods. In addition, it provides a �exible

testing framework in which the user can choose to address di�erent levels of questions,

namely, whether alternative splicing happens, and/or where it happens. This gives

users more �exibility in solving real problems. When exact splice sites are hard to

determine, user could choose to only report the exons that contain alternative splicing.
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In addition, a Bayesian con�dence interval for the splicing point can be constructed

based on the posterior probabilities if it is of the user's particular interest.
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Table 5.3 Gene Set Enrichment Analysis Results

Canonical Pathway P-Value

PID_SMAD2_3NUCLEAR_PATHWAY 3.82E-05

KEGG_REGULATION_OF_ACTIN_CYTOSKELETON 7.02E-05

PID_MET_PATHWAY 1.54E-04

KEGG_PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM 1.68E-04

SIG_BCR_SIGNALING_PATHWAY 2.19E-04

REACTOME_DEVELOPMENTAL_BIOLOGY 2.24E-04

BIOCARTA_VDR_PATHWAY 2.30E-04

PID_NECTIN_PATHWAY 2.47E-04

KEGG_PATHWAYS_IN_CANCER 2.50E-04

KEGG_FOCAL_ADHESION 2.94E-04

KEGG_NOTCH_SIGNALING_PATHWAY 4.06E-04

PID_HES_HEY_PATHWAY 4.06E-04
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CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

This dissertation focuses on the development of statistical learning methods for mining

marketing and biological data. The main contributions of this dissertation are as listed

below:

First, a collaborated online change-point detection method is developed for

identifying the change-points in sparse time series. By leveraging the auxiliary time

series, it can quickly and accurately identify the changes in the revenue data and

enable the predictive model to use historical data intelligently. With the improved

accuracy, advertisers could further optimize their biding strategies and increase the

revenue.

Second, a novel task-speci�c multi-task learning algorithm is proposed to help

media providers predict users' gender information from their video viewing behaviors.

Compared with the traditional multi-task learning algorithms, it combines the `1

regularized task-speci�c features and `1/`2 regularized shared features to model

the ever-changing user's watching behaviors. It brings considerable �exibility for

practitioners to incorporate domain knowledge into their models. In addition, Bayes

testing and decision procedures are proposed to report as many desired users as

possible, while controlling the false discovery rate (FDR) or Type I error rate at a

user-speci�ed level.

Finally, an empirical Bayes change-point model is proposed to identify 3′ and

5′ alternative splicing from RNA-seq data. It provides for the �rst time a systematic

framework to integrate various information when available, in particular the useful

junction read information, in order to obtain better performance in change-point

detection. An empirical Bayes method is utilized to e�ciently pool information across
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genes to improve detection e�ciency. It also provides a �exible testing framework in

which the user can choose to address di�erent levels of questions, namely, whether

alternative 3′ SS or 5′ SS happens, and/or where it happens.

Future work lies in the following directions:

First, except the traditional changes in mean, variance, sequence length and so

on, the periodic change is a special and usually pretty useful pattern in industry and

academic data. Modeling it appropriately could further improve the performance of

existing systems.

Second, the available data may demonstrate various biases. For example, recent

studies have revealed that RNA-seq data sampled from the transcriptome exhibit

various biases, including position-speci�c and sequence-speci�c biases [32]. These

biases may incur great di�culties in detecting change-points and cause false positive

reports. Additional e�orts are required to circumvent this problem by improving the

data collection procedure and building more robust models.

Third, the proposed methods mainly focus on one change-point at a time. It is

noted that there can be more than one change-points in a sequence. In principle, the

proposed procedures could be extended to search for more change-points. However,

seeking the optimal model for multiple change-points would impose great computa-

tional cost. Computational time is linear to scan for one possible change-point, and

becomes factorial when considering multiple change-points. There is also a caveat

of over�tting to consider. Because of these implications, the potential gain may not

necessarily warrant seeking a perfect model. The extension for multiple change-points

is left for future work.
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