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FUNCTIONAL OBSERVERS DESIGN FOR
NONLINEAR DISCRETE-TIME SYSTEMS WITH
INTERVAL TIME-VARYING DELAYS

Yali Dong, Laijun Chen and Shengwei Mei

This paper is concerned with the functional observer design for a class of Multi-Input Multi-
Output discrete-time systems with mixed time-varying delays. Firstly, using the Lyapunov–
Krasovskii functional approach, we design the parameters of the delay-dependent observer. We
establish the sufficient conditions to guarantee the exponential stability of functional observer
error system. In addition, for design purposes, delay-dependent sufficient conditions are pro-
posed in terms of matrix inequalities to guarantee that the functional observer error system
is exponentially stable. Secondly, we presented the sufficient conditions of the existence of
internal-delay independent functional observer to ensure the estimated error system is asymp-
totically stable. Furthermore, some sufficient conditions are obtained to guarantee that the
internal-delay independent functional observer error system is exponentially stable. Finally,
simulation examples are provided to demonstrate the effectiveness of the proposed method.

Keywords: functional observer, discrete-time systems, exponential stability, interval time-
varying delays, Lyapunov–Krasovskii functional

Classification: 93C55, 93C10, 93D09, 93D05

1. INTRODUCTION

The state estimation of dynamic systems that include time delays in their models has
received considerable attention in the last few decades [6, 15]. This is justified by the fact
that the time-delay is a common phenomenon encountered in various practical systems
and the existence of the time-delay may significantly affect performances and causes
instability in dynamic systems. In recent years, the problem of observer design for time-
delay systems has been a subject of intensive research. Some results were presented in
[2, 7, 14].

Functional observers are a class of observers that deal with estimating one or multiple
functions of the states of a system [9, 13]. This type of observers has a wide range of
applications in system monitoring, fault diagnosis, and observer based control of dynamic
systems [8, 1]. Unlike Luenberger type full order observer design for delay systems ([11]),
functional observer design for time-delay systems is a relatively new field of research.
To date, a significant portion of the papers on the design of functional observers for
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time delay systems has been devoted to systems with state delays [3, 4, 12]. In [3], a
method of design of the linear functional observer for time-delay systems was presented.
In [4], an algebraic method for functional observer design was given. In [12], the design
of reduced-order unknown input functional observers for a class of nonlinear Lipschitz
systems was investigated. However, to the best of our knowledge, the observer design
for discrete-time nonlinear systems with time-varying delays is relatively rare.

This paper investigates the problem of functional observer design for a class of
discrete-time systems with interval time-varying delays. The delay-dependent functional
observer for this system is designed to assure the error system is globally α-exponentially
stable. We derive the sufficient conditions of the existence of these functional observers.
In addition, for the purpose of design, the delay-dependent sufficient conditions, which
guarantee the functional observer error system is α-exponentially stable, are established.
Furthermore, an internal-delay independent functional observer is proposed for the sys-
tem. The sufficient conditions of the existence of internal-delay independent functional
observer, which ensure estimated error is asymptotically stable, have been obtained.
In addition, we give some sufficient conditions to guarantee internal-delay independent
functional observer is α-exponentially stable. Finally, three numerical examples are
provided to illustrate the results.

This paper is organized as follows. In Section 2, the system description and some
preliminaries are given. The design of globally exponentially stable functional observer
scheme is presented in Section 3. The internal-delay independent functional observer
design method is demonstrated in Section 4. Section 5 gives three simulation examples
to show the performances of our method. Finally, Section 6 concludes the paper.

Notations. The symbol Z represents the set of integers, Z+ represents the set of
non-negative integers. In symmetric block matrices, we use an asterisk ∗ to represent
a term induced by symmetry. I and 0 represent the identity matrix and null matrix
of appropriate dimensions, respectively. X+ is the pseudo-inverse or the generalized
inverse of the matrix X. X⊥ is the right orthogonal of X in a way that XX⊥ = 0.
C and C+ sequentially are the set of complex numbers, and complex numbers with
positive real parts, respectively.

2. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

Consider a class of discrete-time systems with time-varying delays:

x(k + 1) = Ax(k) +Ad1x(k − d1(k)) +Ad2x(k − d2(k)) +Bu(k) + Ef(y(k)),
y(k) = Cx(k),
z(k) = Lx(k),
x(k) = φ(k), k = −d2,−d2 + 1, · · · , 0,

(1)
where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the input vector, y(k) ∈ Rp is
the measurement output, A,Ad1 , Ad2 , C, L and B are known real constant matrices of
appropriate dimensions and matrices C and L are full row rank. Moreover, z(k) ∈ Rl
is the functional to be estimated. The sequence φ(k) is the initial condition; the time-
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varying delay di(k) satisfies the following condition:

0 < d1 ≤ di(k) ≤ d2, i = 1, 2,

where d1 and d2 are non-negative integers.

Definition 1. (i) The delayed discrete-time system (1) is said to be α-exponentially
stable if there exist two scalars α > 0, β > 0 such that the following inequality holds:

‖µ(k)‖ ≤ βe−αk sup
k∈Z∩[−d2,0]

‖µ(k)‖, ∀k ∈ Z+, (2)

where µ(k) = x(k).

(ii) Let the estimation error e(k) = ẑ(k) − z(k). A minimum-order functional observer
error systems for the system (1) is said to be α-exponentially stable if there exist two
scalars α > 0, β > 0 such that (2) holds, where µ(k) = e(k).

Lemma 1. (Zhu and Yang [16]) For any constant matrix W ∈ Rn×n with W = WT >
0, integers n1 < n2, vector function ω : {n1, n1 + 1, · · · , n2} → Rq such that the sums
concerned are well defined, then

(n2 − n1 + 1)

n2∑
i=n1

ωT (i)Wω(i) ≥

(
n2∑
i=n1

ωT (i)

)T
W

(
n2∑
i=n1

ωT (i)

)
.

Our goal is to design the functional observer for a class of discrete-time systems
with mixed time-varying delays such that the minimum-order functional observer error
system for the system (1) is α-exponentially stable.

3. DELAY-DEPENDENT OBSERVER DESIGN

3.1. Observer structure and stability analysis

Consider the following minimum-order observer:

s(k + 1) = Ws(k) +Wd1s(k − d1(k)) +Wd2s(k − d2(k)) +Gu(k) + Ēf(y(k))
+Hy(k) +Hd1y(k − d1(k)) +Hd2y(k − d2(k)),

ẑ(k) = s(k) + V y(k),
(3)

where s(k) ∈ Rl is the observer’s state. W,Wd1 ,Wd2 , H,Hd1 , Hd2 , G, Ē and V are con-
stant matrices of appropriate dimensions.

Let us define the auxiliary error signal

ρ(k) = s(k)− Γx(k),

where Γ ∈ Rl×n is a constant matrix.
The corresponding estimation error is

e(k) = ẑ(k)− z(k). (4)

Now, we can state the sufficient conditions of the exponential stability of the observer.
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Theorem 1. The functional observer error system for the system (1) and (3) is globally
α-exponentially stable if
(a) the discrete-time system

ρ(k + 1) = Wρ(k) +Wd1ρ(k − d1(k)) +Wd2ρ(k − d2(k)), (5)

is globally α-exponentially stable;
(b) there exists a matrix Γ , such that the following equations are satisfied:

WΓ +HC − ΓA = 0, (6a)

Wd1Γ +Hd1C − ΓAd1 = 0,
Wd2Γ +Hd2C − ΓAd2 = 0,

(6b)

G− ΓB = 0,
Ē − ΓE = 0,

(6c)

Γ− L+ V C = 0. (6d)

P r o o f . From (1) and (3), we get

ρ(k + 1) = s(k + 1− Γx(k + 1)
= Ws(k) +Wd1s(k − d1(k)) +Wd2s(k − d2(k)) +Gu(k) + Ēf(y(k))

+Hy(k) +Hd1y(k − d1(k)) +Hd2y(k − d2(k))− Γ(Ax(k)
+Ad1(k − d1(k)) +Ad2(k − d2(k)) +Bu(k) + Ef(Cx(k)))

= Wρ(k) +Wd1ρ(k − d1(k)) +Wd2ρ(k − d2(k)) + (WΓ +HC − ΓA)x(k)
+(Wd1Γ +Hd1C − ΓAd1)x(k − d1(k)) + (G− ΓB)u(k)
+(Wd2Γ +Hd2C − ΓAd2)x(k − d2(k)) + (Ē − ΓE)f(Cx(k)).

(7)
Hence, if there exists a matrix Γ , such that conditions (6) as well as Condition (a) hold,
then ρ(k) is globally α-exponentially stable.

The calculation of the error signal e(k) gives,

e(k) = ẑ(k)− z(k)
= s(k) + V y(k)− Lx(k)
= ρ(k) + (Γ− L+ V C)x(k).

(8)

From (6d), we get e(k) = ρ(k).

So, if condition (6d) is satisfied, then the estimated error e(k) is globally α-exponen-
tially stable. �

For the discrete-time system (5), we give the following delay-dependent criterion of
exponential stability.

Theorem 2. For given scalars α > 0, d1 and d2 with d2 > d1 > 0, the system (5)
is globally α-exponentially stable if there exist matrices P > 0, Z1 > 0, Z2 > 0,
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R1 > 0, R2 > 0, Q1 > 0, Q2 > 0 such that the following matrix inequality holds:

Π̄11 0 0 Z1 Z2 eαWTP d1ĨZ1 d2ĨZ2

∗ −R1 0 0 0 χP d1χZ1 d2χZ2

∗ ∗ −R2 0 0 ΛP d1ΛZ1 d2ΛZ2

∗ ∗ ∗ −Q1 − Z1 0 0 0 0
∗ ∗ ∗ ∗ −Q2 − Z2 0 0 0
∗ ∗ ∗ ∗ ∗ −P 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Z1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Z2


< 0, (9)

where Π̄11 = −P + d12(R1 + R2) +Q1 +Q2 + R1 + R2 − Z1 − Z2, d12 = d2 − d1, Ĩ =
(eαW − I)T , χ = eαeαd2WT

d1
, Λ = eαeαd2WT

d2
.

P r o o f . We introduce the new variable v(k) = eαkρ(k). The system (5) is reduced to

v(k + 1) = eαWv(k) + eα[Wd1e
αd1(k)v(k − d1(k)) +Wd2e

αd2(k)v(k − d2(k))] (10)

Consider the Lyapunov–Krasovskii functional:

V (k) = V1(k) + V2(k) + V3(k) + V4(k) + V5(k),

where
V1(k) = vT (k)Pv(k),

V2(k) =
k−1∑

i=k−d1
vT (i)Q1v(i) +

k−1∑
i=k−d2

vT (i)Q2v(i)

+
k−1∑

i=k−d1(k)
vT (i)R1v(i) +

k−1∑
i=k−d2(k)

vT (i)R2v(i),

V3(k) =
−d1∑

i=−d2+1

k−1∑
j=k+i

vT (j)(R1 +R2)v(j),

V4(k) = d1
−1∑

i=−d1

k−1∑
j=k+i

ηT (j)Z1η(j),

V5(k) = d2
−1∑

i=−d2

k−1∑
j=k+i

ηT (j)Z2η(j), η(j) = v(j + 1)− v(j).

Define ∆V (k) = V (k + 1)− V (k) . Then along the solution of (10), we have

∆V1(k) = vT (k + 1)Pv(k + 1)− vT (k)Pv(k),

= vT (k)[e2αWTPW − P ]v(k) + 2eα
2∑
i=1

eαdi(k)eαvT (k − di(k))WT
di
PWv(k)

+
2∑
i=1

e2αe2αdi(k)vT (k − di(k))WT
di
PWdiv(k − di(k))

+2e2αeαd1(k)eαd2(k)vT (k − d1(k))WT
d1
PWd2v(k − d2(k)),

(11)
∆V2(k) ≤ vT (k)(Q1 +Q2 +R1 +R2)v(k)− vT (k − d1)Q1v(k − d1))

−vT (k − d2)Q2v(k − d2)− vT (k − d1(k))R1v(k − d1(k))

−vT (k − d2(k))R2v(k − d2(k)) +
k−d1∑

j=k+1−d2
vT (j)(R1 +R2)v(j),

(12)
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∆V3(k) =
−d1∑

i=−d2+1

k∑
j=k+1+i

vT (j)(R1 +R2)v(j)−
−d1∑

i=−d2+1

k−1∑
j=k+i

vT (j)(R1 +R2)v(j)

= d12v
T (k)(R1 +R2)v(k)−

k−d1∑
j=k+1−d2

vT (j)(R1 +R2)v(j).

(13)
Using Lemma 1, we have

∆V4(k) ≤ d21η
T (k)Z1η(k)−

(
k−1∑

j=k−d1
η(j)

)T
Z1

(
k−1∑

j=k−d1
η(j)

)
= d21η

T (k)Z1η(k)− (v(k)− v(k − d1))TZ1(v(k)− v(k − d1)),

(14)

∆V5(k) = d22η
T (k)Z2η(k)− d2

k−1∑
j=k−d2

ηT (j)Z2η(j)

≤ d22η
T (k)Z2η(k)− (v(k)− v(k − d2))TZ2(v(k)− v(k − d2)).

(15)

From (11) – (15), it follows that

∆V (k) ≤ vT (k)[e2αWTPW − P + d12(R1 +R2) +Q1 +Q2 +R1 +R2 − Z1 − Z2

+(eαW − I)TΥ(eαW − I)]v(k) + 2eα
2∑
i=1

eαd2eαvT (k − di(k))WT
di
PWv(k)

+2e2αe2αd2vT (k − d1(k))WT
d1
PWd2v(k − d2(k))

+e2αe2αd2vT (k − d1(k))WT
d1

ΥWd1v(k − d1(k))
+e2αe2αd2vT (k − d2(k))WT

d2
ΥWd2v(k − d2(k))

+2e2αe2αd2vT (k − d1(k))WT
d1

ΥWd2v(k − d2(k))
−vT (k − d1)[Q1 + Z1]v(k − d1)− vT (k − d2)[Q2 + Z2]v(k − d2)
+2vT (k)Z1v(k − d1) + 2vT (k)Z2v(k − d2)
+vT (k − d1(k))[−R1 + e2αe2αd2WT

d1
PWd1 ]v(k − d1(k))

+vT (k − d2(k))[−R2 + e2αe2αd2WT
d2
PWd2 ]v(k − d2(k))

+2vT (k)(eαW − I)Υeα
2∑
i=1

Wd1e
αdi(k)v(k − di(k))

= ςT (kΠς(k).
(16)

where

ς(k) = (vT (k) vT (k − d1(k)) vT (k − d2(k)) vT (k − d1) vT (k − d2)T )T ,

Π =


Π11 Π12 Π13 Z1 Z2

∗ Π22 Π23 0 0
∗ ∗ Π33 0 0
∗ ∗ ∗ Q1 − Z1 0
∗ ∗ ∗ ∗ Q2 − Z2

 ,

Π11 = e2αWTPW − P + d12(R1 +R2) +Q1 +Q2 +R1 +R2 − Z1 − Z2

+(eαW − I)TΥ(eαW − I),
Π12 = e2αeαd2WTPWd1 + eαeαd2(eαW − I)TΥWd1 ,
Π13 = e2αeαd2WTPWd2 + eαeαd2(eαW − I)TΥWd2 ,
Π22 = e2αe2αd2WT

d1
ΥWd1 −R1 + e2αe2αd2WT

d1
PWd1 ,

Π23 = e2αe2αd2WT
d1
PWd2 + e2αe2αd2WT

d1
ΥWd2 ,

Π33 = −R2 + e2αe2αd2WT
d2
PWd2 + e2αe2αd2WT

d2
ΥWd2 , Υ = d21Z1 + d22Z2.
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Using Schur complement, Π < 0 if

Π̄11 0 0 Z1 Z2 eαWT d1Ĩ d2Ĩ
∗ −R1 0 0 0 χ d1χ d2χ
∗ ∗ −R2 0 0 Λ d1Λ d2Λ
∗ ∗ ∗ −Q1 − Z1 0 0 0 0
∗ ∗ ∗ ∗ −Q2 − Z2 0 0 0
∗ ∗ ∗ ∗ ∗ −P−1 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Z−11 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Z−12


< 0, (17)

where Π̄11 = −P + d12(R1 + R2) + Q1 + Q2 + R1 + R2 − Z1 − Z2, Ĩ = (eαW − I)T ,
χ = eαeαd2WT

d1
, Λ = eαeαd2WT

d2
.

Pre- and post-multiplied (17) by diag{I, I, I, I, I, P, Z1, Z2} yield

Π̄11 0 0 Z1 Z2 eαWTP d1ĨZ1 d2ĨZ2

∗ −R1 0 0 0 χP d1χZ1 d2χZ2

∗ ∗ −R2 0 0 ΛP d1ΛZ1 d2ΛZ2

∗ ∗ ∗ −Q1 − Z1 0 0 0 0
∗ ∗ ∗ ∗ −Q2 − Z2 0 0 0
∗ ∗ ∗ ∗ ∗ −P 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Z1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Z2


< 0,

From (9) it follows that ∆V (k) ≤ 0, which implies that the function V (k) is decreasing
and

V (k) ≤ V (0), ∀k ∈ Z+.

We can verify that
λ1‖v(k)‖2 ≤ V (k) ≤ V (0) ≤ λ2‖ϕ̄‖2. (18)

where

λ1 = λmin(P ),
λ2 = λmax(P ) + d1λmax(Q1) + d2λmax(Q2) + d2(λmax(R1) + λmax(R2))

1
2d12(d1 + d2 − 1)(λmax(R1) + λmax(R2))
+2d21(d1 + 1)λmax(Z1) + 2d22(d2 + 1)λmax(Z2).

Hence from (18) it follows that

‖v(k)‖ ≤
√
λ2
λ1
‖ϕ̄‖, ∀k ∈ Z+.

Returning to the variable v(k) = eαkρ(k), we have

‖ρ(k)‖ ≤
√
λ2
λ1
e−αk‖ϕ‖, ∀k ∈ Z+.

which implies that the zero solution is exponentially stable. This completes the proof of
the Theorem 2. �
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3.2. Observer design

Let C̃ = [C+ C⊥]. First, the following parameters are introduced:

[Γ1 Γ2] = ΓC̃, [L1 L2] = LC̃, (19)

[C+ C⊥]

[
A0

11 A0
12

A0
21 A0

22

]
= A[C+ C⊥], (20a)

[C+ C⊥]

[
A1

11 A1
12

A1
21 A1

22

]
= Ad1 [C+, C⊥], (20b)

[C+ C⊥]

[
A2

11 A2
12

A2
21 A2

22

]
= Ad2 [C+ C⊥]. (20c)

From (6d), we have

Γ[C+ C⊥] + V C[C+ C⊥]− L[C+ C⊥] = 0.

From (19), we get
Γ2 = L2, (21)

Γ1 − L1 + V = 0. (22)

From (6a) and (6b), we have

WΓ[C+ C⊥] +HC[C+ C⊥]− ΓA[C+ C⊥] = 0,
Wd1Γ[C+ C⊥] +Hd1C[C+ C⊥]− ΓAd1 [C+ C⊥] = 0,
Wd2Γ[C+ C⊥] +Hd2C[C+ C⊥]− ΓAd2 [C+ C⊥] = 0.

(23)

Then, it follows that

WΓ1 +H − Γ1A
0
11 − Γ2A

0
21 = 0,

Wd1Γ1 +Hd1 − Γ1A
1
11 − Γ2A

1
21 = 0,

Wd2Γ1 +Hd2 − Γ1A
2
11 − Γ2A

2
21 = 0,

(24)

WΓ2 − Γ1A
0
12 − Γ2A

0
22 = 0,

Wd1Γ2 − Γ1A
1
12 − Γ2A

1
22 = 0,

Wd2Γ2 − Γ1A
2
12 − Γ2A

2
22 = 0.

(25)

Now, considering (21) and (25), we have

[W Wd1 Wd2 − Γ1]X = Σ, (26)

where

X =


L2 0 0
0 L2 0
0 0 L2

A0
12 A1

12 A2
12

 , Σ = [L2A
0
22 L2A

1
22 L2A

2
22].

It can be shown that (26) has a solution if and only if the below condition holds [10]:
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Condition I:

rank




L2 0 0
0 L2 0
0 0 L2

A0
12 A1

12 A2
12

L2A
0
22 L2A

1
22 L2A

2
22


 = rank




L2 0 0
0 L2 0
0 0 L2

A0
12 A1

12 A2
12


 . (27)

If Condition I holds, then it is concluded from (26) that

[W Wd1 Wd2 − Γ1] = Y1 + Z̄Y2, (28)

where Y1 = ΣX+, Y2 = I −XX+ , and Z̄ is an arbitrary parameter.
From (28), we have

W = Y11 + Z̄Y21, Wd1 = Y12 + Z̄Y22, Wd2 = Y13 + Z̄Y23, −Γ1 = Y14 + Z̄Y24, (29)

where Y1i and Y2i, i ∈ {1, 2, 3, 4}, are the partitions of Y1 and Y2 with appropriate
dimensions, respectively.

Theorem 3. Assume that Condition I holds. For given scalars α > 0, d1 and d2 with
d2 > d1 > 0, the functional observer error system for the system (1) and (3) is globally
α-exponentially stable if

(a) there exist positive scalars κ1, κ2 and matrices P > 0, R1 > 0, R2 > 0, Q1 >
0, Q2 > 0,K1, K2, K3with appropriate dimensions such that the following matrix
inequality holds:

Ω̄ =

(
Ω̄1 Ω̄2

∗ Ω̄2

)
< 0, (30)

where

Ω̄1 =


J1 0 0 κ1P κ2P
∗ −R1 0 0 0
∗ ∗ −R2 0 0
∗ ∗ ∗ −Q1 − κ1P 0
∗ ∗ ∗ ∗ −Q2 − κ1P

 ,

Ω̄2 =


eαJ2 d1(eακ1J2 − λ1P ) d2(eακ2J2 − κ2P )

eαeαd2J3 d1e
αeαd2κ1J3 d2e

αeαd2κ2J3
eαeαd2J4 d1e

αeαd2κ1J4 d2e
αeαd2κ2J4

0 0 0
0 0 0

 ,

Ω̄3 = diag{−P − κ1P − κ2P},

with J1 = −(1 + κ1 + κ2)P + d12(R1 + R2) + Q1 + Q2 + R1 + R2, J2 = Y T11P + K1,
J3 = Y T12P +K2, J4 = Y T13P +K3.

(b) the below rank condition is satisfied:
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Condition II:

rank

([
PY21 PY22 PY23
KT

1 KT
2 KT

3

])
= rank

([
PY21 PY22 PY23

])
.

In addition, the observer design parameter Z̄ can be computed from the below equation

Z̄ = Γ̄Ỹ +, (31)

where Γ̄ = (P−1KT
1 P−1KT

2 P−1KT
3 ), Ỹ = (Y21 Y22 Y23).

P r o o f . (9) can be written

Ω =

(
Ω1 Ω2

∗ Ω3

)
< 0, (32)

where

Ω1 =


Π̄11 0 0 Z1 Z2

∗ −R1 0 0 0
∗ ∗ −R2 0 0
∗ ∗ ∗ −Q1 − Z1 0
∗ ∗ ∗ ∗ −Q2 − Z2

 ,

Ω2 =


eαWTP d1(eαW − I)TZ1 d2(eαW − I)TZ2

eαeαd2WT
d1
P d1e

αeαd2WT
d1
Z1 d2e

αeαd2WT
d1
Z2

eαeαd2WT
d2
P d1e

αeαd2WT
d2
Z1 d2e

αeαd2WT
d2
Z2

0 0 0
0 0 0

 ,

Ω3 = diag{−P − Z1 − Z2},
Π̄ = −P + d12(R1 +R2) +Q1 +Q2 +R1 +R2 − Z1 − Z2.

From (29), we have

Ω2 =


eα(Y T11P +K1) d1(eα(Y T11Z1 + U1)− Z1) d2(eα(Y T11Z2 +O1)− Z2)

eαeαd2(Y T12P +K2) d1e
αeαd2(Y T12Z1 + U2) d2e

αeαd2(Y T12Z2 +O2)
eαeαd2(Y T13P +K3) d1e

αeαd2(Y T13Z1 + U3) d2e
αeαd2(Y T13Z2 +O3)

0 0 0
0 0 0

 ,

where Ki = Y T2i Z̄
TP, Ui = Y T2i Z̄

TZ1, Oi = Y T2i Z̄
TZ2, i = 1, 2, 3. In this line, it is

assumed that Z1 = κ1P, Z2 = κ2P , then Ui = κ1Ki, Oi = κ2Ki, i = 1, 2, 3, and
Ωi, i = 1, 2, 3, can be written as

Ω2 =


eαJ2 d1(eακ1J2 − κ1P ) d2(eακ2J2 − κ2P )

eαeαd2J3 d1e
αeαd2κ1J3 d2e

αeαd2κ2J3
eαeαd2J4 d1e

αeαd2κ1J4 d2e
αeαd2κ2J4

0 0 0
0 0 0

 ,
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Ω1 =


−J1 0 0 κ1P κ2P
∗ −R1 0 0 0
∗ ∗ −R2 0 0
∗ ∗ ∗ −Q1 − κ1P 0
∗ ∗ ∗ ∗ −Q2 − κ2P

 ,

Ω3 = diag{−P − κ1P − κ2P},

where J1 = −(1 + κ1 + κ2)P + d12(R1 + R2) + Q1 + Q2 + R1 + R2, J2 = Y T11P + K1,
J3 = Y T12P +K2, J4 = Y T13P +K3.

We have

Z̄(Y21 Y22 Y23) = (P−1KT
1 P−1KT

2 P−1KT
3 ).

The parameter Z̄ has a unique solution as (31), if and only if Condition II is satisfied.
As a result, the observer parameters W,Wd1 ,Wd2 , H,Hd1 , Hd2 and V can be respectively
computed from (29), (24), and (22), which implies that Condition (b) of Theorem 1 is
also satisfied. This completes the proof of the theorem. �

Remark 1. For given κ1, κ2, we note that (30) is linear matrix inequalities which
can be solved efficiently by Matlab LMI Toolbox. Computing the parameters of the
functional observer has certain complexity. In order to solve inequality (30), we first use
(19), (20) to solve A0

12, A
1
12, A

2
12, A

0
22, A

1
22, A

2
22, Using (21), we then get X,Σ. Using X

and Σ, we get Y1 = (Y11 Y12 Y13), Y2 = (Y21 Y22 Y23),. Then, Matlab LMI Toolbox
is used to solve Z̄, by which the parameters of the functional observer are computed.

Remark 2. The steps of calculating the observer parameters are as follows:

Step1. Using Matlab LMI Toolbox to solve (30), we can obtain matrices P,R1, R2, Q1,

Q2,K1,K2,K3.

Step 2. According to (31), we calculate Z̄ ;

Step 3. According to (29), we calculate W,Wd1 ,Wd2 ,Γ1;

Step 4. According to (24), we calculateH,Hd1 , Hd2 ;

Step 5. According to (22), we calculate V ;

Step 6. According to (6c), we calculate G and Ē.

4. INTERNAL-DELAY INDEPENDENT OBSERVER DESIGN

We consider the following observer

s(k + 1) = Ws(k) +Gu(k) + Ēf(y(k)) +Hy(k) +Hd1y(k − d1(k))

+Hd2y(k − d2(k)),

ẑ(k) = s(k) + V y(k),

(33)

where W,H,Hd1 , Hd2G, Ē and V are constant matrices of appropriate dimensions.
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Corollary 1. Consider the functional observer (33) for system (1). The estimated
error system is globally asymptotically stable if
(a) the matrix W is stable.
(b) there exists a matrix Γ such that the following equations hold:

WΓ +HC − ΓA = 0, (34a)

−ΓAd1 +Hd1C = 0,
−ΓAd2 +Hd2C = 0,

(34b)

G− TB = 0,
Ē − ΓE = 0,

(34c)

Γ + V C − L = 0. (34d)

P r o o f . The proof is similar to the proof of Theorem 1. Thus it is omitted. �

Following the same procedure as explained in Section 3.2, for the observer parameters,
the following equation is obtained

[W − Γ1]X1 = Σ1 (35)

where

X1 =

[
L2 0 0
A0

12 A1
12 A2

12

]
, Σ1 = [L2A

0
22 L2A

1
22 L2A

2
22].

It can be shown that (35) has a solution if and only if the below condition holds:

Condition III :

rank

 L2 0 0
A0

12 A1
12 A2

12

L2A
0
22 L2A

1
22 L2A

2
22

 = rank

([
L2 0 0
A0

12 A1
12 A2

12

])
. (36)

If Condition III is satisfied, then it is concluded from (35) that

[W − Γ1] = Ȳ1 + ŽȲ2, (37)

where Ȳ1 = Σ1X
+
1 , Ȳ2 = I −X1X

+
1 , and Ž is an arbitrary matrix.

From (37), we have

W = Ȳ11 + ŽȲ21, −T1 = Ȳ12 + ŽȲ22,

where Ȳ1i and Ȳ2i, i ∈ {1, 2}, are the partitions of Ȳ1 and Ȳ2 with appropriate di-
mensions, respectively. W is stable if and only if the pair [Ȳ11 Ȳ21]is detectable, or
equivalently the below condition is achieved:

Condition IV:

rank

([
sI − Ȳ11
Ȳ21

])
= l, ∀s ∈ C+.
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Theorem 4. If Conditions III and IV are satisfied, then there exists internal-delay
independent functional observer (33) for the system (1) such that the estimated error
system is a globally asymptotically stable.

Theorem 5. Assume that Condition III holds. For given scalars α > 0, d1 and d2 with
d2 > d1, the functional observer error system for the system (1) and (33) is globally α-
exponentially stable if

(c) there exist positive scalars κ1, κ2, and matrices P > 0, R1 > 0, R2 > 0, Q1 > 0,
Q2 > 0, K1 with appropriate dimensions such that the following matrix inequality holds:

Ω̂ =

(
Ω̂1 Ω̂2

∗ Ω̂3

)
< 0, (39)

where

Ω̂1 =


J1 0 0 κ1P κ2P
∗ −R1 0 0 0
∗ ∗ −R2 0 0
∗ ∗ ∗ −Q1 − κ1P 0
∗ ∗ ∗ ∗ −Q2 − κ2P

 ,

Ω̂2 =


eαJ2 d1(eακ1J2 − λ1P ) d2(eακ2J2 − κ2P )

0 0 0
0 0 0
0 0 0
0 0 0

 ,

Ω̂3 = diag{−P − κ1P − κ2P},

with J1 = −(1 + κ1 + κ2)P + d12(R1 +R2) +Q1 +Q2 +R1 +R2, J2 = Y T11P +K1.
(d) the below rank condition is satisfied:
Condition V

rank

([
PY21
KT

1

])
= rank(PY21).

In addition, the observer design parameter Ž can be computed from the below equation

Ž = Γ̃Ỹ +, (40)

where Γ̃ = P−1KT
1 , Ỹ = Y21.

P r o o f . The proof of Theorem 5 is similar to that of Theorem 3, and the detailed proof
is omitted. �

Remark 3. In [4], Darouach considered the problem of design of linear functional
state observers for the linear discrete-time system with constant delay, and derived
some sufficient conditions. In this paper, we investigate functional observer design for
a class of discrete-time systems with time-varying delays. Compare to [4], the results
obtained in this paper have a wider range of applications.
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Remark 4. In [9], Mohajerpoor et al. studied the functional observer design of linear
time-invariant systems which are continuous-time systems with constant delays and
given the design method. Mohajerpoor et al. [9] did not consider the discrete-time
systems. In this paper, we consider functional observer design for a class of discrete-
time systems with multiple mixed time-varying delays in the states of the systems. The
new method of functional observer design for discrete-time systems is proposed.

Remark 5. In [6], the state vector x(k) is estimated, but in this paper, the functional
z(k) = Lx(k) is estimated. In addition, the design method of this paper is different from
the design method in [6]. When L = I, we have z(k) = x(k), and the estimation for
z(k) is equivalent to the estimation for x(k). Compared with [6], the design method of
this paper has wider application scope.

5. NUMERICAL EXAMPLES

Example 1. Consider system (1) with the following parameters:

A =

 0 −1 0
2 3 −1
−1 0 −1

 , Ad1 =

 0 0.1 0
0 0 −0.1
−1 0 −1

 , Ad2 =

 0 0 0
0 0.8 0.01
0 0.2 0.2

 ,
B =

 1
0
0

 , E =

 0
0.1
0

 , C =

[
1 0 0
0 1 0

]
, L = [0.1 1 0.1], f(Cx(k)) = sin(x1(k)).

Firstly, it can be observed that Condition I is satisfied. For given κ1 = 0.06, κ2 =
0.05, d2 = 3, d12 = 2, α = 0.5, d1 = 1, solving the LMIs (30) yields

P = 9.1182, R1 = 0.7761, R2 = 0.6259, Q1 = 0.6087, Q2 = 1.0603,
K1 = 1.1989, K2 = 8.1309, K3 = −1.7252.

The observer parameters are obtained as

W = 0.4894,Wd1 = −0.8511,Wd2 = 0.1815, Γ1 = [0 − 0.1489], G = 0, V = [0.1 1.1489]
H = [−0.3978 − 0.3738], Hd1 = [−0.1 − 0.1267], Hd2 = [0 − 0.0716], Ē = −0.01489.

Moreover, it can be seen that these parameters satisfy Condition II. According Theo-
rem 3, the functional observer (3) is globally α-exponentially stable.

Simulations were performed with input signal equal to u(k) = 0.1sin(x1(k)).
Figure 1 shows the response of z(k) and its estimation with α = 0.5.
For given κ1 = 0.06, κ2 = 0.05, d2 = 4, d12 = 2, α = 4, d1 = 2, solving the LMIs (30)

yields

P = 6.0831, R1 = 0.4171, R2 = 0.3299, Q1 = 0.3444, Q2 = 0.6612,
K1 = −0.4348, K2 = 5.4261, K3 = −1.1509.

The observer parameters are obtained as

W = 0.2895,Wd1 = −0.8711,Wd2 = 0.1871, Γ1 = [0 − 0.1289], G = 0, V = [0.1000 1.1289]
H = [−0.3578 − 0.3494], Hd1 = [−0.1 − 0.1123], Hd2 = [0 − 0.0590], Ē = −0.0129.

Figures 2 shows the response of z(k) and its estimation with u(k) = 0.1sin(x1(k)) and
α = 4. These simulation results demonstrate that our proposed design is very effective.
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Fig. 1. Responses of z(k) and ẑ(k) in Example 1 with α = 0.5.

0 5 10 15 20 25

−2

0

2

4

6

8

10

Time  (sec)

 

 

z(k)
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Fig. 2. Responses of z(k) and ẑ(k) in Example 1 with α = 4.

Example 2. Consider system (1) with the following parameters

A =

 −1 0.1 −0.2
0.2 −0.3 −0.1
−0.1 0 −1

 , Ad1 =

 0 0.1 0.1
0 0.2 −0.1

0.1 0 0.1

 , Ad2 =

 0 0.1 0.3
0 0.1 0.4
0 0.2 0.2

 ,
B =

 1
0
0

 , C =

[
1 0 0
0 1 0

]
, L = [0.1 1 0], E = 0.

It can be observed that Condition III is satisfied. For given κ1 = 0.005, κ2 = 0.05, d2 =
3, d12 = 2, α = 0.15, d1 = 1, solving the LMIs (39) yields

P = 6.3865, R1 = 0.8026, R2 = 0.2867, Q1 = 0.5661, Q2 = 0.5047,K1 = 9.3346.

The observer parameters were obtained as

W = 0.3824, Γ1 = [−0.9663 0.0426], V = [−0.8663 1.0426], G = 0.9663
H = [−1.3545 0.1001], Hd1 = [0.0100 0.0966], Hd2 = [0 0.0157], Ē = 0.

Moreover, it can be seen that these parameters satisfy Condition V. According Theo-
rem 5, the functional observer (33) is globally α-exponentially stable.

Simulation were performed with input signal equal to u(k) = 0.1sin(x2(k)). Figures 3
shows the response of z(k)and its estimation.
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Fig. 3. Responses of z(k) and ẑ(k) in Example 2.

Example 3. Consider the discrete-time system which is the model of some electrome-
chanical systems [5]

x(k + 1) = Ax(k) +Bu(k) + Ef(y(k)),
y(k) = Cx(k),
z(k) = Lx(k),

(41)

where

A =

 1 h 0
0 1− ha2 hb1
0 −ha3 1− ha4

 , B =

 0
0
hb0

 , E =

 0
−ha1

0

 ,
C = [1 0 0], f(y(k)) = sin(y(k)), L = [0 1 1].

We let b0 = 40, b1 = 15, a1 = 35, a2 = 0.25, a3 = 36, a4 = 200. These values are close
to the numerical values given in [5]. Let h = 1

200 .

Firstly, it can be observed that Condition I is satisfied. For given κ1 = 0.06, κ2 =
0.05, d2 = 3, d12 = 2, α = 0.5, d1 = 1, solving the LMIs (30) yields

P = 1.5864, R1 = 0.0673, R2 = 0.0673, Q1 = 0.4708, Q2 = 0.4549,
K1 = −0.6979,K2 = 0,K3 = 0.

The observer parameters are obtained as

W = 0.0070,Wd1 = 0, Wd2 = 0, Γ1 = −17.5998, V = 17.5998,
H = −17.4766, Hd1 = 0, Hd2 = 0, Ē = −0.1750, G = 0.02.

Moreover, it can be seen that these parameters satisfy Condition II. According Theorem
3, the functional observer (3) is globally α-exponentially stable.

Simulations were performed with input signal equal to u(k) = 0.2sin(x1(k)).

Figures 4 shows the response of z(k) and its estimation with α = 0.5. The simulation
results demonstrate that our proposed design is very effective.
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Fig. 4. Responses of z(k) and ẑ(k) in Example 3.

6. CONCLUSIONS

Our paper considers the functional observer design for a class of discrete-time systems
with time-varying delays. We propose both the delay-dependent and internal-delay
independent observer structures. Firstly, the delay-dependent functional observer for a
class of discrete-time systems with mixed time-varying delays has been designed to assure
the error system is globally exponentially stable. We propose the sufficient conditions of
the globally exponential stability of the functional observer error system. In addition, the
delay-dependent sufficient conditions to guarantee the functional observer error system
is exponentially stable are established, and are expressed in terms of matrix inequalities.
Secondly, we also give the sufficient conditions for the existence of an internal-delay
independent functional observer. Besides, to guarantee the internal-delay independent
functional observer error system is exponentially stable, we establish some sufficient
conditions and designed the parameters of the internal-delay independent observer. In
the end, three numerical examples are provided to illustrate our approach.
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