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K Y B E R N E T I K A — V O L U M E 5 5 ( 2 0 1 9 ) , N U M B E R 2 , P A G E S 2 7 3 – 2 9 4

SOME METHODS TO OBTAIN T-NORMS
AND T-CONORMS ON BOUNDED LATTICES

Gül Deniz Çaylı

In this study, we introduce new methods for constructing t-norms and t-conorms on a bound-
ed lattice L based on a priori given t-norm acting on [a, 1] and t-conorm acting on [0, a] for
an arbitrary element a ∈ L\{0, 1}. We provide an illustrative example to show that our
construction methods differ from the known approaches and investigate the relationship between
them. Furthermore, these methods are generalized by iteration to an ordinal sum construction
for t-norms and t-conorms on a bounded lattice.
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1. INTRODUCTION

The concepts of triangular norms (briefly t-norms) with 1 as the neutral element and
triangular conorms (briefly t-conorms) with 0 as the neutral element were introduced by
Schweizer and Sklar [26] in the framework of probabilistic metric spaces and extensively
studied by Klement, Mesiar and Pap [23]. Following the definition of t-norms and t-
conorms on the real unit interval [0, 1], these operators were studied on some more
general structures [18], for example, a bounded lattice, and investigated in topology
[19, 21] and logic [16, 22]. They are extensively used in many applications in fuzzy set
theory, fuzzy logic, multicriteria decision support and several branches of information
sciences [5, 20]. Therefore, the knowledge of the structure of t-norms and t-conorms is
very important from the theoretical point of view.

One of the construction methods for t-norms and t-conorms on the real unit interval
[0, 1] is the ordinal sum construction based on ordinal sums of lattices of Birkhoff [4]
and ordinal sums of semigroups [6]. There are many initiatives for this construction
method extended for bounded lattices based on Goguen’s proposal [18] that considers
fuzzy sets with membership values from bounded lattices. In [13, 14], t-norms and t-
conorms defined as operations on a bounded poset or lattice were investigated. In the
meantime, a class of t-norms and t-conorms on any bounded lattice was generated by
use of interior operators and closure operators, correspondingly. Some constructions
were presented with lattice-valued t-norms and t-conorms which generalize most of the
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developed techniques. In [25], an ordinal sum construction of t-norms and t-conorms was
introduced on some bounded lattices which are not necessarily a chain or an ordinal sum
of posets. In this construction, some necessary and sufficient conditions are presented for
the ordinal sum on a bounded lattice of arbitrary t-norms (t-conorms) to yield a t-norm
(t-conorm). The other investigations of ordinal sum constructions for obtaining t-norms
and t-conorms on bounded lattices can be found in [24], where also some additional
conditions are required in order to ensure that an ordinal sum of arbitrary t-norms (t-
conorms) is a t-norm (t-conorm). Uninorm-like operations as a generalization of t-norms
and t-conorms with the underlying operations given by ordinal sums were studied in [15].
In [17], it was proposed a modification of ordinal sums of t-norms (t-conorms) resulting
to a t-norm (t-conorm) valid on an arbitrary bounded lattice. In [10], considering
a bounded lattice L, based on a priori given t-norm and t-conorm on a subinterval
of L, some new construction methods for t-norms and t-conorms on L were introduced.
In the meantime, a complete generalization of the ordinal sums of t-norms and t-conorms
was demonstrated on an arbitrary bounded lattice.

Following the demonstration of the above constructions for t-norms and t-conorms
valid on bounded lattices, the other researches were promoting this area. The main aim
of this study is to introduce the further methods to generate t-norms and t-conorms on
bounded lattices different from the known methods. For this purpose, for an arbitrary
element a ∈ L\{0, 1}, based on the existence a t-norm V on the subinterval [a, 1] and
a t-conorm W on the subinterval [0, a], we present new construction methods for t-norms
and t-conorms on bounded lattices. The present paper is organized as follows. In Section
2, after the known constructions and their resulting elements are briefly discussed, we
propose new methods for generating t-norms and t-conorms on a bounded lattice L. In
addition, we provide some results and illustrative examples to show the relationships
between our methods and the existing approaches. Our constructions exploit a t-norm
V acting on a subintreval [a, 1] and a t-conorm W acting on a subinterval [0, a] for an
arbitrary element a ∈ L\{0, 1}. In Section 3, we present new classes of t-norms and t-
conorms constructed by iteration on bounded lattices. Finally, some concluding remarks
are added.

2. CONSTRUCTIONS OF T-NORMS AND T-CONORMS

First, we provide a brief examination concerning bounded lattices and t-norms and
t-conorms on them.

Definition 2.1. (Birkhoff [4]) A lattice (L,≤) is called bounded if it has the top and
bottom elements, which are written as 1 and 0, respectively, that is, there exist two
elements 1, 0 ∈ L such that 0 ≤ x ≤ 1, for all x ∈ L.

Definition 2.2. (Birkhoff [4]) Let (L,≤, 0, 1) be a bounded lattice and a, b ∈ L. If a
and b are incomparable, we use the notation a ‖ b. We denote the set of all incomparable
elements with a by Ia, that is, Ia = {x ∈ L | x ‖ a}.

Definition 2.3. (Birkhoff [4]) Let (L,≤, 0, 1) be a bounded lattice and a, b ∈ L such
that a ≤ b. Then a subinterval [a, b] of L is defined as follows:

[a, b] = {x ∈ L | a ≤ x ≤ b}.
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Similarly, it is defined ]a, b] = {x ∈ L | a < x ≤ b}, [a, b[ = {x ∈ L | a ≤ x < b} and
]a, b[ = {x ∈ L | a < x < b}.

Definition 2.4. (Çaylı et al. [7], Çaylı [9, 11]) Let (L,≤, 0, 1) be a bounded lattice. An
operation T : L2 → L is called a t-norm on L if it is commutative, associative, increasing
with respect to both variables and has the neutral element 1 such that T (x, 1) = x, for
all x ∈ L.

Definition 2.5. (Aşıcı and Karaçal [1], Aşıcı [2, 3], Çaylı and Karaçal [8]) Let (L,≤
, 0, 1) be a bounded lattice. An operation S : L2 → L is called a t-conorm on L if it is
commutative, associative, increasing with respect to both variables and has the neutral
element 0 such that S (x, 0) = x, for all x ∈ L.

Consider the lattice L∗ =
{

(x1, x2) | (x1, x2) ∈ [0, 1]
2

and x1 + x2 ≤ 1
}

with the fol-

lowing order:
(x1, x2) ≤L∗ (y1, y2)⇔ x1 ≤ y1 and x2 ≥ y2

(L∗,≤L∗) is a complete lattice. Its bottom and top elements are denoted by 0L∗ = (0, 1)
and 1L∗ = (1, 0), respectively.
Given the elements (x1, x2) , (y1, y2) ∈ L∗, if they are incomparable, we use the notation
(x1, x2) ‖L∗ (y1, y2).

Definition 2.6. (Deschrijver and Kerre [12]) An operation T : (L∗)
2 → L is called

a t-norm on L∗ if it is commutative, associative, increasing with respect to both variables
and satisfies T (1L∗ , x) = x, for all x ∈ L∗.

Definition 2.7. (Deschrijver and Kerre [12]) An operation S : (L∗)
2 → L is called

a t-conorm on L∗ if it is commutative, associative, increasing with respect to both
variables and satisfies S(0L∗ , x) = x, for all x ∈ L∗.

Definition 2.8. (Drossos and Navara [13], Drossos [14]) Let (L,≤, 0, 1) be a bounded
lattice. A mapping cl : L→ L is called a closure operator on L if it satisfies the following
properties:

i) x ≤ cl (x)

ii) cl (x) = cl (cl (x))

iii) cl (x ∨ y) = cl (x) ∨ cl (y)

for all x, y ∈ L.

Definition 2.9. (Drossos and Navara [13], Drossos [14]) Let (L,≤, 0, 1) be a bounded
lattice. A mapping int : L → L is called an interior operator on L if it satisfies the
following properties:

i) int (x) ≤ x

ii) int (x) = int (int (x))
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iii) int (x ∧ y) = int (x) ∧ int (y)

for all x, y ∈ L.

Based on the constructions of t-norms and t-conorms on the unit interval [0, 1], the
study of the constructions of t-norms and t-conorms defined on bounded lattices has
recently become important. In the papers [13, 14, 10, 17, 24, 25], t-norms and t-conorms
defined on bounded lattices were investigated and several methods for constructing these
operators were introduced. Furthermore, by using the existence of a priori given t-norm
and t-conorm, some ordinal sum constructions for t-norms and t-conorms on bounded
lattices were presented in [10, 17, 24, 25]. However, in [24, 25], several necessary and
sufficient conditions are required in order to ensure that an ordinal sum of any t-norms (t-
conorm) is a t-norm (t-conorm). We aim to enhance these constructions by introducing
the different construction methods for t-norms and t-conorms valid on any bounded
lattice. For this purpose, for an arbitrary element a ∈ L\{0, 1}, based on the existence
of a t-norm V acting on the subinterval [a, 1] and a t-conorm W acting on the subinterval
[0, a], we introduce new construction methods for obtaining t-norms and t-conorms on a
bounded lattice L. Note that our constructions have different characteristics compared
with the construction methods described above, and they are presented in Theorems
2.15 and 2.21.

Now, let us recall the construction methods presented in [13, 14, 10, 17, 25] in The-
orems 2.10, 2.11, 2.13, 2.14.

A large class of lattice-valued t-norms and t-conorms can be described by means of
interior operators and closure operators, respectively. In the following Theorem 2.10, it
is proposed a method for generating t-norms and t-conorms, applicable on any bounded
lattice based on interior operators and closure operators.

Theorem 2.10. (Drossos and Navara [13], Drossos [14]) Let (L,≤, 0, 1) be a bounded
lattice, cl : L → L be a closure operator on L and int : L → L be an interior operator
on L. Then the functions T (1) : L2 → L and S(1) : L2 → L are, respectively, a t-norm
and a t-conorm on L, where

T (1) (x, y) =

{
x ∧ y if 1 ∈ {x, y} ,
int (x) ∧ int (y) otherwise

(1)

and

S(1) (x, y) =

{
x ∨ y if 0 ∈ {x, y} ,
cl (x) ∨ cl (y) otherwise.

(2)

In the following Theorem 2.11, an ordinal sum construction of t-norms and t-conorms
is described on a bounded lattice, where several necessary and sufficient conditions are
required for ensuring whether an ordinal sum on a bounded lattice of arbitrary t-norms
(t-conorms) is, in fact, a t-norm (t-conorm).

Theorem 2.11. (Saminger [25]) Let (L,≤, 0, 1) be a bounded lattice, a ∈ L\{0, 1},
V : [a, 1]2 → [a, 1] be a t-norm and W : [0, a]2 → [0, a] be a t-conorm. Ordinal sum
extensions T (2) of V to L and S(2) of W to L are given by

T (2) (x, y) =

{
V (x, y) if (x, y) ∈ [a, 1]

2
,

x ∧ y otherwise
(3)
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and

S(2) (x, y) =

{
W (x, y) if (x, y) ∈ [0, a]

2
,

x ∨ y otherwise.
(4)

However, the above-defined function T (2) needs not be a t-norm on L, in general.
Similarly, S(2) needs not be a t-conorm on L, in general.

Example 2.12. Consider the lattice (L∗,≤L∗) and a = (0.75, 0.25) . Define the t- norm

V : [a, 1]
2 → [a, 1] by

V ((x1, x2) , (y1, y2)) = (4x1y1 − 3x1 − 3y1 + 3, x2 + y2 − 4x2y2)

If we construct the function T : (L∗)
2 → L∗ by using the formula (3) in Theorem 2.11, in

that case T is not monotone on L∗, since T ((0.8, 0.2) , (0.8, 0.2)) = (0.76, 0.24) ‖L∗

(0.6, 0.2) = T ((0.8, 0.2) , (0.6, 0.2)) while (0.6, 0.2) ≤L∗ (0.8, 0.2) .
In addition, T is not associative on L∗, since

T ((0.6, 0.2)T ((0.8, 0.2) , (0.8, 0.2))) = T ((0.6, 0.2) , (0, 76, 0.24)) = (0.6, 0.24)

and

T (T ((0.6, 0.2) (0.8, 0.2)) , (0.8, 0.2)) = T ((0.6, 0.2) , (0.8, 0.2)) = (0.6, 0.2)

Therefore, the function T : (L∗)
2 → L∗ is not a t-norm on L∗.

In order to avoid this problem, some modified versions of the above mentioned ordinal
sum construction were proposed in [10, 17]. Considering an arbitrary bounded lattice L,
for any element a ∈ L\{0, 1}, based on a t-norm V acting on the subinterval [a, 1], the
constructions given by the formulas (5) and (7), respectively, in Theorems 2.13 and 2.14
yield a t-norm on L. Similarly, based on a t-norm W acting on the subinterval [0, a],
the constructions given by the formulas (6) and (8), respectively, in Theorems 2.13 and
2.14 yield a t-conorm on L.

Theorem 2.13. (Çaylı [9, 10]) Let (L,≤, 0, 1) be a bounded lattice and a ∈ L\{0, 1}.
If V is a t-norm on [a, 1] and W is a t-conorm on [0, a], then the functions T (3) : L2 → L
and S(3) : L2 → L are, respectively, a t-norm and a t-conorm on L, where

T (3) (x, y) =

 V (x, y) if (x, y) ∈ [a, 1[
2
,

x ∧ y if 1 ∈ {x, y} ,
0 otherwise

(5)

and

S(3) (x, y) =

 W (x, y) if (x, y) ∈ ]0, a]
2
,

x ∨ y if 0 ∈ {x, y} ,
1 otherwise.

(6)
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Theorem 2.14. (Ertuğrul et al. [17]) Let (L,≤, 0, 1) be a bounded lattice and a ∈
L\{0, 1}. If V is a t-norm on [a, 1] and W is a t-conorm on [0, a], then the functions
T (4) : L2 → L and S(4) : L2 → L are, respectively, a t-norm and a t-conorm on L, where

T (4) (x, y) =

 V (x, y) if (x, y) ∈ [a, 1[
2
,

x ∧ y if 1 ∈ {x, y} ,
x ∧ y ∧ a otherwise

(7)

and

S(4) (x, y) =

 W (x, y) if (x, y) ∈ ]0, a]
2
,

x ∨ y if 0 ∈ {x, y} ,
x ∨ y ∨ a otherwise.

(8)

Now, in the following Theorem 2.15, considering any bounded lattice L, we introduce
a construction method for generating t-norms on L by means of a t-norm V acting on
[a, 1] for an element a ∈ L\{0, 1}.

Theorem 2.15. Let (L,≤, 0, 1) be a bounded lattice and a ∈ L\{0, 1}. If V is a t-norm
on [a, 1], then the function T (5) : L2 → L is a t-norm on L, where

T (5) (x, y) =


V (x, y) if (x, y) ∈ [a, 1[

2
,

0 if (x, y) ∈ [0, a[
2 ∪ [0, a[× Ia ∪ Ia × [0, a[ ∪ Ia × Ia,

x ∧ y if 1 ∈ {x, y} ,
x ∧ y ∧ a otherwise.

(9)

P r o o f . We have T (5) (x, 1) = x ∧ 1 = x, for all x ∈ L. So, 1 ∈ L is a neutral element
of T . It is easy to see commutativity of T (5).
i) Monotonicity: We prove that if x ≤ y, then T (5)(x, z) ≤ T (5)(y, z), for all z ∈ L. The
proof is split into all possible cases.

If z = 1, then we have T (5)(x, z) = T (5)(x, 1) = x ≤ y = T (5)(y, 1) = T (5)(y, z).
1. Let x < a.

1.1. y < a,
1.1.1. z < a and z ∈ Ia,

T (5)(x, z) = 0 = T (5)(y, z)

1.1.2. 1 > z ≥ a,

T (5)(x, z) = x ∧ z ∧ a ≤ y ∧ z ∧ a = T (5)(y, z)

1.2. 1 > y ≥ a,
1.2.1. z < a or z ∈ Ia,

T (5)(x, z) = 0 ≤ y ∧ z ∧ a = T (5)(y, z)

1.2.2. 1 > z ≥ a,

T (5)(x, z) = x ∧ z ∧ a ≤ V (y, z) = T (5)(y, z)
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1.3. y ∈ Ia,
1.3.1. z < a or z ∈ Ia,

T (5)(x, z) = 0 = T (5)(y, z)

1.3.2. 1 > z ≥ a,

T (5)(x, z) = x ∧ z ∧ a ≤ y ∧ z ∧ a = T (5)(y, z)

1.4. y = 1,
1.4.1. z < a or z ∈ Ia,

T (5)(x, z) = 0 ≤ z = T (5)(y, z)

1.4.2. 1 > z ≥ a,

T (5)(x, z) = x ∧ z ∧ a ≤ z = T (5)(y, z)

2. Let 1 > x ≥ a.
2.1. 1 > y ≥ a,

2.1.1. z < a or z ∈ Ia,

T (5)(x, z) = x ∧ z ∧ a ≤ y ∧ z ∧ a = T (5)(y, z)

2.1.2. 1 > z ≥ a,

T (5)(x, z) = V (x, z) ≤ V (y, z) = T (5)(y, z)

2.2. y = 1,
2.2.1. z < a or z ∈ Ia,

T (5)(x, z) = x ∧ z ∧ a ≤ z = T (5)(y, z)

2.2.2. 1 > z ≥ a,

T (5)(x, z) = V (x, z) ≤ V (1, z) = z = T (5)(y, z)

3. Let x ∈ Ia.
3.1. 1 > y ≥ a,

3.1.1. z < a or z ∈ Ia,

T (5)(x, z) = 0 ≤ y ∧ z ∧ a = T (5)(y, z)

3.1.2. 1 > z ≥ a,

T (5)(x, z) = x ∧ z ∧ a ≤ V (y, z) = T (5)(y, z)

3.2. y ∈ Ia,
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3.2.1. z < a or z ∈ Ia,

T (5)(x, z) = 0 = T (5)(y, z)

3.2.2. 1 > z ≥ a,

T (5)(x, z) = x ∧ z ∧ a ≤ y ∧ z ∧ a = T (5)(y, z)

3.3. y = 1,
3.3.1. z < a or z ∈ Ia,

T (5)(x, z) = 0 ≤ z = T (5)(y, z)

3.3.2. 1 > z ≥ a,

T (5)(x, z) = x ∧ z ∧ a ≤ z = T (5)(y, z)

ii) Associativity: We demonstrate that T (5)(x, T (5)(y, z)) = T (5)(T (5)(x, y), z) for all
x, y, z ∈ L. Again the proof is split into all possible cases considering the relationships
of the elements x, y, z and a.

If at least one of the elements x, y, z is equal to 1, then T (5) is associative. Taking
into account this fact, it is enough to check only those cases in which the elements x, y, z
are not equal to 1.

1. Let x < a,
1.1. y < a,

1.1.1. z < a or z ∈ Ia,

T (5)(x, T (5)(y, z)) = T (5) (x, 0) = 0
= T (5)(0, z)
= T (5)(T (5)(x, y), z)

1.1.2. 1 > z ≥ a,

T (5)(x, T (5)(y, z)) = T (5) (x, y ∧ z ∧ a) = 0
= 0 ∧ z ∧ a
= T (5)(0, z)
= T (5)(T (5)(x, y), z)

1.2. 1 > y ≥ a,
1.2.1. z < a or z ∈ Ia,

T (5)(x, T (5)(y, z)) = T (5) (x, y ∧ z ∧ a) = 0
= T (5)(x ∧ y ∧ a, z)
= T (5)(T (5)(x, y), z)

1.2.2. 1 > z ≥ a,

T (5)(x, T (5)(y, z)) = T (5) (x, V (y, z)) = x ∧ V (y, z) ∧ a = x
= x ∧ z ∧ a
= T (5)(x, z)
= T (5)(x ∧ y ∧ a, z)
= T (5)(T (5)(x, y), z)
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1.3. y ∈ Ia,
1.3.1. z < a or z ∈ Ia,

T (5)(x, T (5)(y, z)) = T (5) (x, 0) = 0
= T (5) (0, z)
= T (5)(T (5)(x, y), z)

1.3.2. 1 > z ≥ a,

T (5)(x, T (5)(y, z)) = T (5) (x, y ∧ z ∧ a) = 0
= 0 ∧ z ∧ a
= T (5) (0, z)
= T (5)(T (5)(x, y), z)

2. Let 1 > x ≥ a.
2.1. y < a,

2.1.1. z < a or z ∈ Ia,

T (5)(x, T (5)(y, z)) = T (5)(x, 0) = x ∧ 0 ∧ a
= T (5)(y, z)
= T (5)(x ∧ y ∧ a, z)
= T (5)(T (5)(x, y), z)

2.1.2. 1 > z ≥ a,

T (5)(x, T (5)(y, z)) = T (5) (x, y ∧ z ∧ a) = T (5) (x, y) = x ∧ y ∧ a = y
= y ∧ z ∧ a
= T (5)(y, z)
= T (5)(x ∧ y ∧ a, z)
= T (5)(T (5)(x, y), z)

2.2. 1 > y ≥ a,
2.2.1. z < a,

T (5)(x, T (5)(y, z)) = T (5) (x, y ∧ z ∧ a) = T (5) (x, z) = x ∧ z ∧ a = z
= V (x, y) ∧ z ∧ a
= T (5) (V (x, y) , z)
= T (5)(T (5)(x, y), z)

2.2.2. z ∈ Ia,

T (5)(x, T (5)(y, z)) = T (5) (x, y ∧ z ∧ a) = T (5) (x, z ∧ a) = x ∧ z ∧ a = z ∧ a
= V (x, y) ∧ z ∧ a
= T (5) (V (x, y) , z)
= T (5)(T (5)(x, y), z)

2.2.3. 1 > z ≥ a,

T (5)(x, T (5)(y, z)) = T (5) (x, V (y, z)) = V (x, V (y, z))
= V (V (x, y) , z)
= T (5)(V (x, y), z)
= T (5)(T (5)(x, y), z)
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2.3. y ∈ Ia,
2.3.1. z < a or z ∈ Ia,

T (5)(x, T (5)(y, z)) = T (5) (x, 0) = 0
= T (5) (x ∧ y ∧ a, z)
= T (5)(T (5)(x, y), z)

2.3.2. 1 > z ≥ a,

T (5)(x, T (5)(y, z)) = T (5) (x, y ∧ z ∧ a) = T (5) (x, y ∧ a) = x ∧ y ∧ a = y ∧ a
= y ∧ z ∧ a
= T (5) (y ∧ a, z)
= T (5) (x ∧ y ∧ a, z)
= T (5)(T (5)(x, y), z)

3. Let x ∈ Ia.
3.1. y < a,

3.1.1. z < a or z ∈ Ia,

T (5)(x, T (5)(y, z)) = T (5) (x, 0) = 0
= T (5) (0, z)
= T (5)(T (5)(x, y), z)

3.1.2. 1 > z ≥ a,

T (5)(x, T (5)(y, z)) = T (5) (x, y ∧ z ∧ a) = T (5) (x, y) = 0
= 0 ∧ z ∧ a
= T (5) (0, z)
= T (5)(T (5)(x, y), z)

3.2. 1 > y ≥ a,
3.2.1. z < a,

T (5)(x, T (5)(y, z)) = T (5) (x, y ∧ z ∧ a) = T (5) (x, z) = 0
= T (5) (x ∧ a, z)
= T (5) (x ∧ y ∧ a, z)
= T (5)(T (5)(x, y), z)

3.2.2. z ∈ Ia,

T (5)(x, T (5)(y, z)) = T (5) (x, y ∧ z ∧ a) = T (5) (x, z ∧ a) = 0
= T (5) (x ∧ a, z)
= T (5) (x ∧ y ∧ a, z)
= T (5)(T (5)(x, y), z)

3.2.3. 1 > z ≥ a,

T (5)(x, T (5)(y, z)) = T (5)(x, V (y, z)) = x ∧ V (y, z) ∧ a = x ∧ a
= T (5) (x ∧ a, z)
= T (5) (x ∧ y ∧ a, z)
= T (5)(T (5)(x, y), z)
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3.3. y ∈ Ia,
3.3.1. z ∈ Ia or z < a,

T (5)(x, T (5)(y, z)) = T (5) (x, 0) = 0
= T (5) (0, z)
= T (5)(T (5)(x, y), z)

3.3.2. 1 > z ≥ a,

T (5)(x, T (5)(y, z)) = T (5) (x, y ∧ z ∧ a) = T (5) (x, y ∧ a) = 0
= 0 ∧ z ∧ a
= T (5)(0, z)
= T (5)(T (5)(x, y), z)

So, we have that T (5) is a t-norm on L. �

Remark 2.16. Observe that the t-norm T (5) considered in Theorem 2.15 can be de-
scribed alternatively as

T (5) (x, y) =



V (x, y) if (x, y) ∈ [a, 1[
2
,

0 if (x, y) ∈ [0, a[
2 ∪ [0, a[× Ia ∪ Ia × [0, a[ ∪ Ia × Ia,

y ∧ a if (x, y) ∈ [a, 1[× Ia,
x ∧ a if (x, y) ∈ Ia × [a, 1[ ,
x if (x, y) ∈ [0, a]× [a, 1[ ,
y if (x, y) ∈ [a, 1[× [0, a] ,
x ∧ y if 1 ∈ {x, y} .

Remark 2.17. From Remark 2.16, we get the t-norm T (5) on a bounded lattice L as
shown in Figure 1.

0

V (x, y)

0 y ∧ a

x

y 0

x ∧ a

0

0 a

a

1

1

x||a

y||a

Fig. 1: t-norm T (5) on L given in Theorem 2.15.
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Corollary 2.18. Let (L,≤, 0, 1) be a bounded lattice and a ∈ L\{0, 1}. If a is an atom
of L and V is a t-norm on [a, 1], then the t-norm T (5) is given as follows:

T (5) (x, y) =

 V (x, y) if (x, y) ∈ [a, 1[
2
,

x ∧ y if 1 ∈ {x, y} .
0 otherwise.

Remark 2.19. Let (L,≤, 0, 1) be a bounded lattice, a ∈ L\{0, 1} and V be a t-norm
on [a, 1]. Consider t-norms T (1), T (3), T (4), T (5) on L defined in Theorems 2.10, 2.13,
2.14, 2.15, respectively. Then the following relationships hold:
i) T (3) ≤ T (5) ≤ T (4).
ii) If a is an atom of L, then T (3) = T (4) = T (5).
iii) If in Theorem 2.10 the interior operator int : L→ L is defined by int (x) = x∧ a for
all x ∈ L, then we have T (4) ≥ T (1).
iv) If the function T (2) defined in Theorem 2.11 is a t-norm on L and in Theorem 2.10
the interior operator int : L → L is defined by int (x) = x ∧ a for all x ∈ L, then we
have T (2) ≥ T (1).
v) If a is an atom of L and in Theorem 2.10, the interior operator int : L→ L is defined
by int (x) = x ∧ a for all x ∈ L, then we have T (3) = T (4) = T (5) ≥ T (1).
vi) If in Theorem 2.10 the interior operator int : L → L is defined by int (x) = x ∧ a

for all x ∈ L and in Theorem 2.14 the t-norm V : [a, 1]
2 → [a, 1] is defined by V (x, y) ={

x ∧ y if 1 ∈ {x, y} ,
a otherwise

, then we have T (1) = T (4).

vii) Note that if every element of L is comparable with a, i. e., Ia = ∅, then the function
T (2) defined in Theorem 2.11 is a t-norm on L. In that case, we have T (2) = T (4).
viii) If Ia = ∅ and in Theorem 2.14 the t-norm V : [a, 1]

2 → [a, 1] is defined by V (x, y) =
x ∧ y, then we have T (1) ≤ T (4).
ix) If Ia = ∅ and a is an atom of L, then we have T (2) = T (3) = T (4) = T (5).

x) If Ia = ∅, a is an atom of L and in Theorems 2.11 – 2.15, the t-norm V : [a, 1]
2 → [a, 1]

is defined by V (x, y) = x ∧ y, then we have T (1) ≤ T (2) = T (3) = T (4) = T (5).
xi) If Ia = ∅, a is an atom of L and in Theorem 2.10 the interior operator int : L → L
is defined by int (x) = x for all x ∈ L, then we have T (2) = T (3) = T (4) = T (5) ≤ T (1).
xii) If Ia = ∅, a is an atom of L and in Theorem 2.10 the interior operator int : L→ L is
defined by int (x) = x ∧ a for all x ∈ L, then we have T (2) = T (3) = T (4) = T (5) ≥ T (1).
xiii) If the function T (2) defined in Theorem 2.11 is a t-norm on L, then we have T (3) ≤
T (5) ≤ T (4) ≤ T (2).
xiv) Note that if in Theorem 2.11 the t-norm V : [a, 1]

2 → [a, 1] is defined by V (x, y) =
x ∧ y, the function T (2) is a t-norm on L. In that case, we have T (1) ≤ T (2).
xv) If the function T (2) defined in Theorem 2.11 is a t-norm on L and in Theorem 2.10
the interior operator int : L → L is defined by int (x) = x for all x ∈ L, then we have
T (2) ≤ T (1).
xvi) If in Theorem 2.11 the t-norm V : [a, 1]

2 → [a, 1] is defined by V (x, y) = x ∧ y and
in Theorem 2.10 the interior operator int : L→ L is defined by int (x) = x for all x ∈ L,
then we have T (1) = T (2).
xvii) If in Theorem 2.10 the interior operator int : L → L is defined by int (x) = x for
all x ∈ L, then we have T (3) ≤ T (5) ≤ T (4) ≤ T (1).
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xviii) T (1), T (2), T (3), T (4), T (5) on L do not have to coincide on any bounded lattice
unless we choose specify some special conditions. Let us demonstrate this argument by
the following example.

Example 2.20. Consider the bounded lattice L = {0, b, c, d, f, a, g, h, 1} with the lattice

diagram shown in Figure 2. Take a t-norm V : [a, 1]
2 → [a, 1] defined by V (x, y) = x∧ y

for all x, y ∈ [a, 1] and a interior operator int : L → L defined by int (0) = 0, int (b) =
int (d) = int (c) = int (f) = b, int (a) = a, int (g) = int (h) = g, int (1) = 1. By
applying Theorems 2.10, 2.11, 2.13, 2.14, 2.15, respectively, the corresponding t-norms
T (1) : L2 → L, T (2) : L2 → L, T (3) : L2 → L, T (4) : L2 → L and T (5) : L2 → L are given
by Tables 1 – 5, respectively.

Fig. 2: The lattice L.

T (1) 0 b d c f a g h 1
0 0 0 0 0 0 0 0 0 0
b 0 b b b b b b b b
d 0 b b b b b b b d
c 0 b b b b b b b c
f 0 b b b b b b b f
a 0 b b b b a a a a
g 0 b b b b a g g g
h 0 b b b b a g g h
1 0 b d c f a g h 1

Tab. 1: The t-norm T (1) on L.
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T (2) 0 b d c f a g h 1
0 0 0 0 0 0 0 0 0 0
b 0 b b b b b b b b
d 0 b d b d d d d d
c 0 b b c c b b c c
f 0 b d c f d d f f
a 0 b d b d a a a a
g 0 b d b d a g g g
h 0 b d c f a g h h
1 0 b d c f a g h 1

Tab. 2: The t-norm T (2) on L.

T (3) 0 b d c f a g h 1
0 0 0 0 0 0 0 0 0 0
b 0 0 0 0 0 0 0 0 b
d 0 0 0 0 0 0 0 0 d
c 0 0 0 0 0 0 0 0 c
f 0 0 0 0 0 0 0 0 f
a 0 0 0 0 0 a a a a
g 0 0 0 0 0 a g g g
h 0 0 0 0 0 a g h h
1 0 b d c f a g h 1

Tab. 3: The t-norm T (3) on L.

It is easy to see that the t-norms T (1), T (2), T (3), T (4) and T (5) are different from
each other.

Now, in the following Theorem 2.21, we propose a construction method to obtain
t-conorms on a bounded lattice L. This method considers the existence of a t-conorm
defined on a subinterval [0, a] for an arbitrary element a ∈ L\{0, 1}.

Theorem 2.21. Let (L,≤, 0, 1) be a bounded lattice and a ∈ L\{0, 1}. If W is a
t-conorm on [0, a], then the function S(5) : L2 → L is a t-conorm on L, where

S(5) (x, y) =


W (x, y) if (x, y) ∈ ]0, a]

2
,

1 if (x, y) ∈ ]a, 1]
2 ∪ ]a, 1]× Ia ∪ Ia × ]a, 1] ∪ Ia × Ia,

x ∨ y if 0 ∈ {x, y} ,
x ∨ y ∨ a otherwise.

(10)

The result is proved similarly as Theorem 2.15.
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T (4) 0 b d c f a g h 1
0 0 0 0 0 0 0 0 0 0
b 0 b b b b b b b b
d 0 b d b d d d d d
c 0 b b b b b b b c
f 0 b d b d d d d f
a 0 b d b d a a a a
g 0 b d b d a g g g
h 0 b d b d a g h h
1 0 b d c f a g h 1

Tab. 4: The t-norm T (4) on L.

T (5) 0 b d c f a g h 1
0 0 0 0 0 0 0 0 0 0
b 0 0 0 0 0 b b b b
d 0 0 0 0 0 d d d d
c 0 0 0 0 0 b b b c
f 0 0 0 0 0 d d d f
a 0 b d b d a a a a
g 0 b d b d a g g g
h 0 b d b d a g h h
1 0 b d c f a g h 1

Tab. 5: The t-norm T (5) on L.

Remark 2.22. Observe that the t-conorm S(5) considered in Theorem 2.21 can be
described alternatively as

S(5) (x, y) =



W (x, y) if (x, y) ∈ ]0, a]
2
,

1 if (x, y) ∈ ]a, 1]
2 ∪ ]a, 1]× Ia ∪ Ia × ]a, 1] ∪ Ia × Ia,

y ∨ a if (x, y) ∈ ]0, a]× Ia,
x ∨ a if (x, y) ∈ Ia × ]0, a] ,
x if (x, y) ∈ [a, 1]× ]0, a] ,
y if (x, y) ∈ ]0, a]× [a, 1] ,
x ∨ y if 0 ∈ {x, y} .

Remark 2.23. From Remark 2.22, we get the t-conorm S(5) on a bounded lattice L as
shown in Figure 3.
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W (x, y)

1

y ∨ a 1

y

x x ∨ a

1

1

0 a

a

1

1

x||a

y||a

Fig. 3: t-conorm S(5) on L given in Theorem 2.21.

Corollary 2.24. Let (L,≤, 0, 1) be a bounded lattice and a ∈ L\{0, 1}. If a is a coatom
of L and W is a t-conorm on [0, a], then the t-conorm S(5) is given as follows:

S(5) (x, y) =

 W (x, y) if (x, y) ∈ ]0, a]
2
,

x ∨ y if 0 ∈ {x, y} ,
1 otherwise.

Remark 2.25. Let (L,≤, 0, 1) be a bounded lattice, a ∈ L\{0, 1} and W be a t-conorm
on [0, a]. Consider t-conorms S(1), S(3), S(4), S(5) on L defined in Theorems 2.10, 2.13,
2.14, 2.21, respectively. Then the following relationships hold:
i) S(3) ≥ S(5) ≥ S(4).
ii) If a is a coatom of L, then S(3) = S(4) = S(5).
iii) If in Theorem 2.10 the closure operator cl : L→ L is defined by cl (x) = x∨ a for all
x ∈ L, then we have S(4) ≤ S(1).
iv) If the function S(2) defined in Theorem 2.11 is a t-conorm on L and in Theorem 2.10
the closure operator cl : L → L is defined by cl (x) = x ∨ a for all x ∈ L, then we have
S(2) ≤ S(1).
v) If a is a coatom of L and in Theorem 2.10 the closure operator cl : L→ L is defined
by cl (x) = x ∨ a for all x ∈ L, then we have S(3) = S(4) = S(5) ≤ S(1).
vi) If in Theorem 2.10 the closure operator cl : L → L is defined by cl (x) = x ∨ a

for all x ∈ L and in Theorem 2.14 the t-conorm W : [0, a]
2 → [0, a] is defined by

W (x, y) =

{
x ∨ y if 0 ∈ {x, y} ,
a otherwise

, then we have S(1) = S(4).

vii) Note that if every element of L is comparable with a, i. e., Ia = ∅, then the function
S(2) defined in Theorem 2.11 is a t-conorm on L. In that case, we have S(2) = S(4).
viii) If Ia = ∅ and in Theorem 2.14 the t-conorm W : [0, a]

2 → [0, a] is defined by
W (x, y) = x ∨ y, then we have S(1) ≥ S(4).
ix) If Ia = ∅ and a is a coatom of L, then we have S(2) = S(3) = S(4) = S(5).

x) If Ia = ∅, a is a coatom of L and in Theorems 2.11 – 2.21 the t-conorm W : [0, a]
2 →
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[0, a] is defined by W (x, y) = x ∨ y, then we have S(1) ≥ S(2) = S(3) = S(4) = S(5).
xi) If Ia = ∅, a is a coatom of L and in Theorem 2.10 the closure operator cl : L→ L is
defined by cl (x) = x for all x ∈ L, then we have S(2) = S(3) = S(4) = S(5) ≥ S(1).
xii) If Ia = ∅, a is a coatom of L and in Theorem 2.10 the closure operator cl : L → L
is defined by cl (x) = x∨ a for all x ∈ L, then we have S(2) = S(3) = S(4) = S(5) ≤ S(1).
xiii) If the function S(2) defined in Theorem 2.11 is a t-conorm on L, then we have
S(3) ≥ S(5) ≥ S(4) ≥ S(2).
xiv) Note that if in Theorem 2.11 the t-conorm W : [0, a]

2 → [0, a] is defined by
W (x, y) = x∨y, the function S(2) is a t-conorm on L. In that case, we have S(1) ≥ S(2).
xv) If the function S(2) defined in Theorem 2.11 is a t-conorm on L and in Theorem
2.10 the closure operator cl : L→ L is defined by cl (x) = x for all x ∈ L, then we have
S(2) ≥ S(1).
xvi) If in Theorem 2.11 the t-conorm W : [0, a]

2 → [0, a] is defined by W (x, y) = x ∨ y
and in Theorem 2.10 the closure operator cl : L → L is defined by cl (x) = x for all
x ∈ L, then we have S(1) = S(2).
xvii) If in Theorem 2.10 the closure operator cl : L → L is defined by cl (x) = x for all
x ∈ L, then we have S(3) ≥ S(5) ≥ S(4) ≥ S(1).
xviii) S(1), S(2), S(3), S(4), S(5) on L do not have to coincide on any bounded lattice
unless we choose specify some special conditions. Let us demonstrate this argument by
the following example.

Example 2.26. Consider the bounded lattice L = {0, t, n, s, k,m, a, r, p, q, 1} with the

lattice diagram shown in Figure 4. Take a t-conorm W : [a, a]
2 → [0, a] defined by

W (x, y) = x ∨ y for all x, y ∈ [0, a] and a closure operator cl : L → L defined by
cl (0) = 0, cl (s) = cl (t) = cl (n) = s, cl (a) = a, cl (k) = cl (r) = cl (p) = p, cl (m) =
cl (q) = cl (1) = 1. By applying Theorems 2.10, 2.11, 2.13, 2.14, 2.21, respectively, the
corresponding t-conorms S(1) : L2 → L, S(2) : L2 → L, S(3) : L2 → L, S(4) : L2 → L
and S(5) : L2 → L are given by Tables 6 – 10, respectively.

Fig. 4: The lattice L.
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S(1) 0 t s n k m a p q r 1
0 0 t s n k m a p q r 1
t t s s s p 1 a p 1 p 1
s s s s s p 1 a p 1 p 1
n n s s s p 1 a p 1 p 1
k k p p p p 1 p p 1 p 1
m m 1 1 1 1 1 1 1 1 1 1
a a a a a p 1 a p 1 p 1
p p p p p p 1 p p 1 p 1
q q 1 1 1 1 1 1 1 1 1 1
r r p p p p 1 p p 1 p 1
1 1 1 1 1 1 1 1 1 1 1 1

Tab. 6: The t-conorm S(1) on L.

S(2) 0 t s n k m a p q r 1
0 0 t s n k m a p q r 1
t t t s s k q a p q r 1
s s s s s p q a p q r 1
n n s s n p m a p q r 1
k k k p p k 1 p p 1 p 1
m m q q m 1 m q 1 q q 1
a a a a a p q a p q r 1
p p p p p p 1 p p 1 p 1
q q q q q 1 q q 1 q q 1
r r r r r p q r p q r 1
1 1 1 1 1 1 1 1 1 1 1 1

Tab. 7: The t-conorm S(2) on L.

S(3) 0 t s n k m a p q r 1
0 0 t s n k m a p q r 1
t t t s s 1 1 a 1 1 1 1
s s s s s 1 1 a 1 1 1 1
n n s s n 1 1 a 1 1 1 1
k k 1 1 1 1 1 1 1 1 1 1
m m 1 1 1 1 1 1 1 1 1 1
a a a a a 1 1 a 1 1 1 1
p p 1 1 1 1 1 1 1 1 1 1
q q 1 1 1 1 1 1 1 1 1 1
r r 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1

Tab. 8: The t-conorm S(3) on L.
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S(4) 0 t s n k m a p q r 1
0 0 t s n k m a p q r 1
t t t s s p q a p q r 1
s s s s s p q a p q r 1
n n s s n p q a p q r 1
k k p p p p 1 p p 1 p 1
m m q q q 1 q q 1 q q 1
a a a a a p q a p q r 1
p p p p p p 1 p p 1 p 1
q q q q q 1 q q 1 q q 1
r r r r r p q r p q r 1
1 1 1 1 1 1 1 1 1 1 1 1

Tab. 9: The t-conorm S(4) on L.

S(5) 0 t s n k m a p q r 1
0 0 t s n k m a p q r 1
t t t s s p q a p q r 1
s s s s s p q a p q r 1
n n s s n p q a p q r 1
k k p p p 1 1 p 1 1 1 1
m m q q q 1 1 q 1 1 1 1
a a a a a p q a p q r 1
p p p p p 1 1 p 1 1 1 1
q q q q q 1 1 q 1 1 1 1
r r r r r 1 1 r 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1

Tab. 10: The t-norm S(5) on L.

It is easy to see that the t-conorms S(1), S(2), S(3), S(4) and S(5) are different from
each other.

3. T-NORMS AND T-CONORMS CONSTRUCTED BY ITERATION

Theorem 3.1. Let (L,≤, 0, 1) be a bounded lattice and {a0, a1, a2, ..., an} be a finite

chain in L such that a0 = 1 > a1 > a2 > ... > an = 0. Let V : [a1, 1]
2 → [a1, 1]

be a t-norm on the sublattice [a1, 1]. Then the operation T = Tn : L2 → L defined
recursively as follows is a t-norm, where V = T1 and for i ∈ {2, 3, ..., n} the operation
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Ti : [ai, 1]
2 → [ai, 1] is given by

Ti (x, y) =


Ti−1 (x, y) if (x, y) ∈ [ai−1, 1[

2
,

ai
if (x, y) ∈ [ai, ai−1[

2 ∪ [ai, ai−1[× Iai−1

∪Iai−1
× [ai, ai−1[ ∪ Iai−1

× Iai−1
,

x ∧ y if 1 ∈ {x, y} ,
x ∧ y ∧ ai−1 otherwise.

(11)

The proof follows easily from Theorem 2.15 by induction and therefore it is omitted.
The construction described inductively by formula (11) can be considered as a ordinal
sum construction for t-norms. Obviously, in Theorem 3.1, if L is a chain then the formula
(11) reduces to

Ti (x, y) =


Ti−1 (x, y) if (x, y) ∈ [ai−1, 1[

2
,

ai if (x, y) ∈ [ai, ai−1[
2
,

x ∧ y ∧ ai−1 if (x, y) ∈ [ai, ai−1[× [ai−1, 1[ ∪ [ai−1, 1[× [ai, ai−1[ ,
x ∧ y otherwise.

Theorem 3.2. Let (L,≤, 0, 1) be a bounded lattice and {b0, b1, b2, ..., bn} be a finite

chain in L such that b0 = 0 < b1 < b2 < ... < bn = 1. Let W : [0, b1]
2 → [0, b1] be

a t-conorm on the sublattice [0, b1]. Then the operation S = Sn : L2 → L defined
recursively as follows is a t-conorm, where W = S1 and for i ∈ {2, 3, ..., n} the operation

Si : [0, bi]
2 → [0, bi] is given by

Si (x, y) =


Si−1 (x, y) if (x, y) ∈ ]0, bi−1]

2
,

bi
if (x, y) ∈ ]bi−1, bi]

2 ∪ ]bi−1, bi]× Ibi−1

∪Ibi−1
× ]bi−1, bi] ∪ Ibi−1

× Ibi−1
,

x ∨ y if 0 ∈ {x, y} ,
x ∨ y ∨ bi−1 otherwise.

(12)

The proof follows easily from Theorem 2.21 by induction and therefore it is omitted.
The construction described inductively by formula (12) can be considered as a ordinal
sum construction for t-conorms. Obviously, in Theorem 3.2, if L is a chain then the
formula (12) reduces to

Si (x, y) =


Si−1 (x, y) if (x, y) ∈ ]0, bi−1]

2
,

bi if (x, y) ∈ ]bi−1, bi]
2
,

x ∨ y ∨ bi−1 if (x, y) ∈ ]0, bi−1]× ]bi−1, bi] ∪ ]bi−1, bi]× ]0, bi−1]
x ∨ y otherwise.

4. CONCLUDING REMARKS

In this study, we introduced new methods for constructing t-norms and t-conorms on
an arbitrary bounded lattice L by means of a t-norm V acting on a subinterval [a, 1] and
a t-conorm W acting on a subinterval [0, a] for an arbitrary element a ∈ L\{0, 1}. Note
that the t-norm T (5) defined by the formula (9) in Theorem 2.15 needs not coincide with
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a predescribed t-norm K acting on the subinterval [0, a]. In order to show this argument,

consider the lattice characterized by Figure 2 in Example 2.20 and force T (5) | [0, a]
2

to
be infimum t-norm on [0, a], i. e., T (5) (x, y) = x ∧ y for all x, y ∈ [0, a] . In that case,
we have T (5)

(
f, T (5) (g, b)

)
= T (5) (f, b) = 0 and T (5)

(
T (5) (f, g) , b

)
= T (5) (d, b) = b.

So, the associativity of T (5) is violated. Therefore, we can not force T (5) to coincide
with a predescribed t-norm K acting on the subinterval [0, a]. Similarly, t-conorm S(5)

defined by the formula (10) in Theorem 2.21 needs not coincide with a predescribed
t-conorm M acting on the subinterval [a, 1]. In addition, we provided some illustrative
examples (see Examples 2.20, 2.26) in order to show that our construction methods for
t-norms and t-conorms on an arbitrary bounded lattice do not have to coincide with
the known approaches. We also showed that they can be generalized by iteration to an
ordinal sum construction for t-norms and t-conorms, applicable on any bounded lattice.
Our results allow to construct new types of t-norms and t-conorms in the framework of
lattices frequently considered in the information systems areas, including intuitionistic
fuzzy sets, fuzzy sets type 2 and interval lattice and interval-valued fuzzy sets.
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[3] E. Aşıcı: An extension of the ordering based on nullnorms. Kybernetika 55 (2019), 2,
217–232. DOI:10.14736/kyb-2019-2-0217

[4] G. Birkhoff: Lattice Theory. American Mathematical Society Colloquium Publ., Provi-
dence 1967. DOI:10.1090/coll/025

[5] D. Butnariu and E. P. Klement: Triangular Norm-Based Measures and Games with Fuzzy
Coalitions. Kluwer Academic Publishers, Dordrecht 1993. DOI:10.1007/978-94-017-3602-2

[6] A. Clifford: Naturally totally ordered commutative semigroups. Am. J. Math. 76 (1954),
631–646. DOI:10.2307/2372706
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Gül Deniz Çaylı , Department of Mathematics, Faculty of Science, Karadeniz Technical
University, 61080 Trabzon. Turkey.

e-mail: guldeniz.cayli@ktu.edu.tr

http://dx.doi.org/10.1016/j.fss.2017.07.015
http://dx.doi.org/10.1016/j.fss.2018.07.012
http://dx.doi.org/10.1016/j.fss.2003.12.006
http://dx.doi.org/10.1016/s0165-0114(98)00258-9
http://dx.doi.org/10.1016/j.fss.2009.09.017
http://dx.doi.org/10.1016/s0165-0114(01)00098-7
http://dx.doi.org/10.1016/s0165-0114(01)00098-7
http://dx.doi.org/10.1002/int.21713
http://dx.doi.org/10.1016/0022-247x(67)90189-8
http://dx.doi.org/10.1016/0022-247x(67)90189-8
http://dx.doi.org/10.1016/0022-247x(73)90288-6
http://dx.doi.org/10.1007/bf01167724
http://dx.doi.org/10.1007/978-94-015-9540-7
http://dx.doi.org/10.1016/j.fss.2012.03.002
http://dx.doi.org/10.1016/j.fss.2005.12.021

		webmaster@dml.cz
	2020-02-27T15:45:20+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




