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Introduction

The determinant is one of the central functions of linear algebra. It encom-
passes the multiplicative properties of a matrix, and tells us if a matrix is
invertible. It is fundamental to the definitions of Lie groups such as GLn
and SLn, it is closely related to the eigenvalues of a matrix, and it plays an
important role in differential equations in the form of the Wronskian.

Näıvely, it is difficult to compute the determinant for large matrices. For
an n × n matrix, the determinant is a polynomial whose terms are indexed
by the group of permutations on n letters, and the size of this group is n!,
which grows quite quickly. However, there are easier ways to compute the
determinant, exploiting its symmetry — for example, with row reduction.

The determinant has a close friend in the form of the permanent, which
is just the determinant with its minus signs replaced by plus signs. Unsur-
prisingly given their similarity, the permanent and determinant share several
properties — for example, they are invariant (up to sign) under permuta-
tions of the rows and columns. However, while there are quick algorithms
for computing the determinant of an arbitrary matrix, no quick algorithms
are known for computing the permanent [13].

Research into this paradox has focussed on trying to turn the perma-
nent into a determinant by various manipulations. Any polynomial can be
expressed as the determinant of a matrix whose entries are affine linear poly-
nomials — the size of the smallest matrix where this is possible is called the
determinantal complexity of the polynomial. It has been shown by Grenet
[6] that the determinantal complexity of the permanent of an n×n matrix is
bounded above by 2n − 1. The eventual aim of this field of research is moti-
vated by the work of Valiant [13], who showed that the question of whether
a polynomial upper bound exists is equivalent to an algebraic version of the
P vs. NP problem.

The aim of this thesis is to use an algebraic construction called the polar
pairing to compare the determinant and permanent. In particular, with the
polar pairing we can associate each polynomial to its “apolar ideal”, without
losing any information about the polynomial. We will compute these ideals

vi



vii

for the determinant and permanent, and then use some homological algebra
to examine their free resolutions and compute some Betti numbers. The
major result of this thesis is a description of the linear second syzygies.

This thesis is divided into two parts. The first covers some necessary
background material, and the second gives some new results.

Chapter 1 introduces some basic properties of the determinant and per-
manent, relating the determinant to exterior algebras, which will also be
useful in Chapter 3. This chapter also introduces some basic properties of
bilinear forms, used in Chapter 4, and gives a new proof of a theorem about
magic squares, which is needed for Chapter 6.

Chapter 2 defines a dualising functor and examines some properties of
these functors, inspiring the definition of a Gorenstein ring.

In Chapter 3, we discuss the concept of a graded ring, and define a free
resolution of an arbitrary or graded ring. We prove some important facts
about free resolutions by way of Koszul complexes — in particular, we show
that any finitely generated graded R-module has a minimal free resolution,
which gives some important invariants of the module, namely the Betti num-
bers.

Chapter 4 introduces Macaulay’s polar pairing, an algebraic binary op-
eration on polynomials that echoes how they interact under differentiation.
This operation gives rise to the definition of an apolar ideal associated to
a polynomial. We discuss some properties of this apolar ideal, and give a
theorem by Macaulay that there is a one-to-one correspondence between ho-
mogeneous polynomials (up to scaling) and ideals of this form, so we lose no
information about the polynomial by examining this ideal instead.

Moving into Part II, in Chapter 5 we apply the ideas of the polar pairing
and the apolar ideal to the determinant and permanent functions. The cen-
tral results of this chapter are Theorems 5.6 and 5.7, which re-prove a result
by Shafiei [12] that the apolar ideals of the determinant and permanent are
generated by degree 2 polynomials.

In Chapter 6, we build on Shafiei’s result to look further down the free
resolutions for the determinant and permanent apolar ideals. The major
result of this thesis is a calculation of the next Betti number, β2,3, in Equa-
tions (6.13) and (6.14), and a complete description of the linear second syzy-
gies of the determinant apolar ideal, in Theorem 6.11. We conjecture that
these generate all second syzygies, linear or otherwise, in the resolution of
the determinant, and examine what this means for the next Betti number,
β3,4, in Equation (6.44).



Notation

• “Ring” means “commutative ring with unity”. Usually, A will be an ar-
bitrary ring, and R and S will be the polynomial rings R = k[x1, . . . , xn]
and S = k[X1, . . . , Xn] in n variables, or R = k[x1,1, . . . , xn,n] and
S = k[X1,1, . . . , Xn,n] in n2 variables.

• k denotes an arbitrary field. We make no assumptions about its char-
acteristic or whether it is algebraically closed, unless mentioned specif-
ically.

• Z is the set (or group or ring. . . ) of integers.

• Bold symbols denote matrices. In particular, the matrices

x =

x1,1 . . . x1,n
...

...
xn,1 . . . xn,n

 and X =

X1,1 . . . X1,n

...
...

Xn,1 . . . Xn,n


will be used often.

• If A is a matrix, A(i; j) is the submatrix obtained by deleting the
ith row and jth column. More generally, A(i1, . . . , ia; j1, . . . , jb) is the
submatrix obtained by deleting rows i1, . . . , ia and columns j1, . . . , jb.

• Sn is the symmetric group, the group of permutations on the set {1, . . . , n}.
It is written in upright font, to distinguish it from the ring S with a
subscript. Its elements are written in parenthesis notation: for exam-
ple, (1 3 4) denotes the permutation that sends 1 to 3, 3 to 4 and 4 to
1, fixing everything else.
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Chapter 1

Some linear algebra

The focus of this thesis is the determinant and the permanent, so in this
chapter, we will define them and state some properties. The determinant is
closely connected with the exterior algebra, so we will devote a section to
discussing this too, alongside the symmetric and tensor algebras.

Later in the chapter, we give some elementary properties of bilinear forms
that will be useful in Chapter 4. We also state a version of Birkhoff’s theorem
about semi-magic matrices, and give a new proof with relaxed assumptions.

1.1 The determinant and permanent

Definition. Define the matrix

x =

x1,1 . . . x1,n
...

...
xn,1 . . . xn,n

 .
The n× n determinant of x is

detn x =
∑
σ∈Sn

sgn(σ)
n∏
i=1

xi,σi

where Sn is the symmetric group on n letters, and sgn(σ) is the sign of
the permutation σ, which is 1 if σ can be expressed as an even number of
transpositions, and −1 otherwise.

The n× n permanent of x is

permn x =
∑
σ∈Sn

n∏
i=1

xi,σi

that is, the same formula as the determinant but with the sgn(σ) removed.

2



1.1. THE DETERMINANT AND PERMANENT 3

We will view detn x and permn x as elements of the polynomial ring
k[x1,1, x1,2, . . . , x1,n, . . . , xn,n] with n2 variables.

The determinant and permanent have some important symmetries, which
we will elaborate throughout Sections 1.1 and 1.2. The first of these is the
following result:

Lemma 1.1. detn x> = detn x, where x> denotes the transpose of x. Simi-
larly, permn x> = permn x.

Proof. The functions

Sn → Sn

σ 7→ σ−1
and

{1, . . . , n} → {1, . . . , n}
x 7→ σx

are both bijections, and sgn(σ) = sgn(σ−1). Therefore

detn x> =
∑
σ∈Sn

sgn(σ)
∏

i∈{1,...,n}

xσi,i

=
∑

σ−1∈Sn

sgn(σ−1)
∏

i∈{1,...,n}

xσ−1i,i

=
∑

σ−1∈Sn

sgn(σ−1)
∏

σi∈{1,...,n}

xσ−1σi,σi

= detn x.

The proof for permn is similar, with sgn(σ) removed.

Given a matrix A, a submatrix B of A is a matrix obtained by deleting
some rows and columns of A. The following result will be important in
Chapter 5:

Lemma 1.2. The set of determinants of m×m submatrices of x is linearly
independent in the vector space k[x1,1, . . . , xn,n], for any m = 1, . . . , n. The
same is true for the m×m permanents.

Proof. Let y be an m × m submatrix of x. Each term of det y contains
exactly one variable from each row and column of y. If y′ is a different
m × m submatrix, by the pigeonhole principle there must be some row or
some column that appears in y but not y′. Hence every term of det y contains
a variable that does not appear in any term of det y′, so the terms must be
entirely different.

Since there are no terms shared between any of the determinants of m×m
submatrices, there can be no possible cancelling in a linear combination of
them, so they must be linearly independent.

The same proof holds with determinants replaced by permanents.
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1.2 Exterior and symmetric algebras

To examine the symmetries of the determinant further, it will help to define it
in terms of exterior algebras. Exterior algebras, and the closely related sym-
metric and tensor algebras, will reappear throughout this thesis, particularly
in Chapter 3.

Definition. Given a ring A and an A-module M , the tensor algebra T (M)
is the non-commutative algebra composed of finite sums of products of the
form

m1 ⊗ · · · ⊗md

with mi ∈M , and d = 0, 1, . . . .
The symmetric algebra Sym(M) of M is the quotient of the tensor algebra

with the relation x ⊗ y = y ⊗ x for all x, y ∈ M . We usually write x · y or
simply xy to denote the image of x⊗ y in Sym(M).

The exterior algebra ∧(M) of M is the quotient of the tensor algebra with
the relation x ⊗ x = 0 for all x ∈ M . We usually write x ∧ y for the image
of x⊗ y in ∧(M).

This wedge relation implies that

0 = (x+ y) ∧ (x+ y)

= x ∧ x+ x ∧ y + y ∧ x+ y ∧ y
= x ∧ y + y ∧ x,

so ∧ is anti-commutative.1

There is a natural decomposition of these algebras: for instance, if we
define ∧d(M) to be the module generated by elements of the form

d things︷ ︸︸ ︷
m1 ∧m2 ∧ · · · ∧md

then

∧(M) =
∞⊕
d=0

∧d(M).

Similarly,

Sym(M) =
∞⊕
d=0

Symd(M) and T (M) =
∞⊕
d=0

T d(M).

1Anticommutativity is an equivalent condition to x∧ x = 0 if 2 is a non-zero-divisor in
A, since anticommutativity implies 0 = x ∧ x + x ∧ x = 2(x ∧ x).
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Lemma 1.3. ∧, ∧d, Sym and Symd, T and T d are functors from the category
of A-modules to itself.

Proof. For instance, ∧ takes a map f : M → N to a map ∧f : ∧M → ∧M
that sends m1 ∧ · · · ∧ md to f(m1) ∧ · · · ∧ f(md). This clearly respects
composition and identity maps, and the situation is similar for the other
operations.

From now on, we will take A = k to be a field, and M = V a finite-
dimensional vector space. Given a basis x1, . . . , xn of V , we can give descrip-
tions for the bases of the exterior and symmetric algebras:

Lemma 1.4. The dth exterior power ∧d(V ) is the vector space with a basis
of products

xi1 ∧ · · · ∧ xid
with i1 < · · · < id.

The dth symmetric power Symd(V ) is the vector space with a basis of
products

xi1 · · · · · xid
with i1 ≤ · · · ≤ id.

The dth tensor power T d(V ) is the vector space with a basis of products

xi1 ⊗ · · · ⊗ xid

with no restriction on i1, . . . , id.

Proof. Any vector in V can be expressed as a linear combination of the basis
vectors. By the bilinearity of ⊗, any product of vectors can thus be expressed
as a linear combination of products of the basis vectors.

Suppose
xi1 ⊗ · · · ⊗ xid

is a product of some basis vectors. In the tensor algebra, the set of products
of this form is linearly independent.

In the symmetric algebra (so replace ⊗ with ·), however, swapping two
adjacent xia and xib gives the same element of the algebra, so we may reorder
the xias so that the ias are in weakly increasing order. The set of such
products then gives a maximal linearly independent set.

In the exterior algebra (so replace ⊗ by ∧), swapping adjacent xias is still
allowed, although it reverses the sign, which does not affect whether a set
is linearly independent. However, we have the extra condition that if two
ia and ib are equal, then a wedge product containing xia and xib is zero, so
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the product cannot form part of a linearly independent set. Thus a basis
of the dth exterior power is given by products of xia with the ias strictly
increasing.

Remark. From this description, it is clear that SymV is isomorphic to the
polynomial ring k[x1, . . . , xn], with the basis element xi1 ·· · ··xid corresponding
to the monomial xi1 · · ·xid .

Corollary 1.5. If V is an n-dimensional vector space, then:

• ∧1(V ) ∼= Sym1 V ∼= T 1(V ) ∼= V .

• ∧0(V ) ∼= ∧n(V ) ∼= k. (We set the modules ∧0(V ) = Sym0(V ) = T 0(V )
to equal k by definition.)

• ∧d(V ) ∼= 0 for d > n.

Moreover, dim∧d(V ) =
(
n
d

)
, dim Symd(V ) =

(
n+d−1

d

)
, and dimT d(V ) = nd.

Proof. All these statements follow once we know the dimensions. It is clear
from Lemma 1.4 that dim∧d(V ) =

(
n
d

)
and dimT d(V ) = nd, and the formula

dim Symd(V ) =
(
n+d−1

d

)
follows from the combinatoric fact that the number

of ways of choosing d things from a set of n, with repetition allowed, is(
n+d−1

d

)
.

Remark. The above results about exterior, symmetric and tensor algebras of
a vector space also apply for free A-modules, with only minor modifications
to the proofs.

We are now ready to show the connection between the determinant and
exterior algebras. Note that any k-linear map k → k is multiplication by a
constant.

Lemma 1.6 ([3, p. 579]). If A is the matrix of a linear transformation
V → V with respect to the basis x1, . . . , xn, then under the isomorphism
∧nV ∼= k (Corollary 1.5) where x1 ∧ · · · ∧ xn corresponds to 1,

∧nV ∧nA−−→ ∧nV

is multiplication by a constant equal to detn A.

Proof. To compute ∧nA, we need only see what it does to the basis element
x1 ∧ · · · ∧ xn of ∧nV .

(∧nA)(x1 ∧ · · · ∧ xn) = Ax1 ∧ · · · ∧Axn
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Each Axi is a vector corresponding to the ith column of A, so we can de-
compose it as

Axi =
n∑
j=1

Ai,jxj

Taking these coefficients out of the wedge product, we get

Ax1 ∧ · · · ∧Axn =
n∑

j1=1

· · ·
n∑

jn=1

(A1,j1 · · ·An,jn)(xj1 ∧ · · · ∧ xjn)

Because of the anti-commutativity of the exterior algebra, any term of this
sum with ja = jb for some a and b will include the product xja∧xja = 0, so it
vanishes. Thus we may instead take the sum over permutations of {1, . . . , n}:

Ax1 ∧ · · · ∧Axn =
∑
σ∈Sn

(A1,σ(1) · · ·An,σ(n))(xσ(1) ∧ · · · ∧ xσ(n))

where Sn is the set of permutations on n letters.
But xσ(1) ∧ · · · ∧ xσ(n) may be turned into x1 ∧ · · · ∧ xn by swapping the

terms. Each swap reverses the sign, so xσ(1)∧· · ·∧xσ(n) = sgn(σ)(x1∧· · ·∧xn).
In summary,

(∧nA)(x1 ∧ · · · ∧ xn) =
(∑
σ∈Sn

sgn(σ)A1,σ(1) · · ·An,σ(n)
)

(x1 ∧ · · · ∧ xn)

= (detn A)(x1 ∧ · · · ∧ xn)

so ∧nA is multiplication by detn A.

Corollary 1.7. detn(AB) = (detn A)(detn B).

Proof. Since ∧i is a functor (Lemma 1.3), ∧n(AB) = (∧nA)(∧nB).

Remark. The multiplicativity of the determinant is one of the properties that
sets it apart from the permanent. It is not in general true that permn(AB) =
(permn A)(permn B): for example,(

permn

[
1 1
0 1

])(
permn

[
1 0
1 1

])
= 1 · 1

= 1,

but

permn

([
1 1
0 1

] [
1 0
1 1

])
= permn

([
2 1
1 1

])
= 3.
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We will finally quote some results about the symmetries of the determi-
nant and permanent, without proof.

Theorem 1.8 (Frobenius [5]). If T is a linear transformation on the vector
space of n× n matrices such that detn T (x) = λ detn x for some λ ∈ k non-
zero, then T is either T : x 7→ PxQ or T : x 7→ Px>Q for some non-singular
matrices P and Q.

(These transformations certainly do preserve the determinant, by Lemma 1.1
and Corollary 1.7; the significant fact here is that these are all the symme-
tries.)

This group of symmetries contains some relevant subgroups. Firstly, we
may take P and Q to be permutation matrices φ and ψ (that is, matrices
that are zero except for precisely one 1 in each row and column, giving a
permutation on the set of basis vectors). The effect of these matrices is to
permute the rows of x by the permutation φ and the columns by ψ. Secondly,
P and Q could be diagonal matrices with diagonal elements p1, . . . , pn and
q1, . . . , qn respectively, such that (p1 · · · pn)(q1 · · · qn) = 1. The effect of these
is to scale the ith row of x by pi, and the jth column by qj. Finally, there
there is the group isomorphic to Z/2 generated by transposing x.

There are more symmetries of the determinant than these — for exam-
ple, adding one row of x to another. These symmetries also preserve the
permanent; however, they are in fact the only ones that do.

Theorem 1.9 (Marcus and May [9]). If T is a linear transformation on the
vector space of n × n matrices such that permn T (x) = permn x, then T is
either T : x 7→ PxQ or T : x 7→ Px>Q, where P and Q are products of
permutation matrices and diagonal matrices, with permn P permn Q = 1.

We will not refer to these theorems, but the symmetries of transposing
a matrix and permuting its rows and columns will be very important in
Chapter 6.

1.3 Bilinear forms

We will come across a particular bilinear form, the polar pairing, in Chap-
ter 4, so it will help to have the following general results about bilinear forms.

Definition. If V is a vector space over a field k, a bilinear form is a map
V × V → k which is linear in each term. Bilinear forms are often written
〈·, ·〉.
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Example. The canonical example of a bilinear form is the dot product, taking
vectors a = (a1, . . . , an) and b = (b1, . . . , bn) in kn to the number 〈a, b〉 =
a1b1 + · · ·+ anbn.

Proposition 1.10 ([1, p. 230]). If x1, . . . , xn is a basis for V , then any
bilinear form 〈·, ·〉 on V is determined as

〈v, w〉 = v>Aw

for all v, w, where A is the matrix defined by Ai,j = 〈xi, xj〉.

The matrix A is called the matrix of the form with respect to the basis.

Proof. Write v =
∑

i vixi and w =
∑

iwixi. Then

〈v, w〉 =
〈∑

i

vixi,
∑
j

wjxj

〉
=
∑
i,j

vi〈xi, xj〉wj

=
∑
i,j

viAi,jwj

= v>Aw

Example. The matrix of the form of the dot product is the identity matrix.

Definition. A bilinear form is symmetric if 〈v, w〉 = 〈w, v〉 for all v, w ∈ V .
A bilinear form is non-degenerate if for every non-zero vector v there is a

vector w such that 〈w, v〉 6= 0.

Proposition 1.11 ([1, pp. 230, 236]). A bilinear form is symmetric (resp.
non-degenerate) if and only if the matrix of the form (with respect to an
arbitrary basis) is a symmetric (resp. invertible) matrix.

Proof. Let x1, . . . , xn be a basis for V , and let A be the matrix of the form
with respect to this basis.

Suppose the form is symmetric; then 〈xi, xj〉 = 〈xj, xi〉 for all basis vectors
xi, xj; but this means that in the matrix of the form, Ai,j = Aj,i for all i, j,
so A is symmetric.

Conversely, suppose A is symmetric. Viewing v>Aw as a 1 × 1 matrix,
we have

v>Aw =
(
v>Aw

)>
= w>A>

(
v>
)>

= w>Av
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so the form is symmetric.
Suppose the bilinear form is non-degenerate. Then for every non-zero v

there is a w such that w>Av 6= 0. Therefore Av must be non-zero for all v,
which implies that the null space of A is trivial, hence A is invertible.

Conversely, if the bilinear form is not non-degenerate, there is some non-
zero vector v such that w>Av = 0 for all w. We must then have Av = 0, so
the null space of A is not trivial, thus A is not invertible.

1.4 Birkhoff’s theorem

In this section, we give a new proof of a generalisation of Birkhoff’s theorem
to an arbitrary ring. This result will be used in Chapter 6.

Definition. A square matrix is semi-magic with magic constant µ if the
sums of the entries in any row and any column are µ.

Example. The following matrices are semi-magic:4 9 2
3 5 7
8 1 6

 ,
0 1 0

1 0 0
0 0 1

 ,
−1 1 0

1 −1 0
0 0 0

 ,
2 2 2

1 1 1
0 0 0

 in Z/3.

Their magic constants are 15, 1, 0 and 0 respectively.

We allow the entries of a semi-magic matrix to come from an arbitrary
ring. This is a departure from the traditional definition, which requires the
entries of the matrix to be non-negative real numbers or even non-negative
integers. A more famous concept is a magic square, which is a semi-magic
matrix whose diagonals also sum to µ, but we won’t need to use this concept.

Theorem 1.12 (Birkhoff’s theorem). Any semi-magic square is a linear
combination of permutation matrices.

This is a variation of a result due to Birkhoff, but the standard proofs
of Birkhoff’s theorem (see e.g. [7]) rely on the entries of the matrix being
non-negative. We present an alternative proof that doesn’t assume this.2

2A semi-magic matrix of non-negative real numbers with magic constant 1 is also called
a doubly stochastic matrix, because of its role in probability theory. Some versions of
Birkhoff’s theorem say more in this case: Birkhoff’s theorem states that the set of doubly
stochastic matrices is not only generated by the permutation matrices, it is in fact the
convex hull of the permutation matrices. If we relax the assumption of non-negativity and
realness, we lose this result.
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Figure 1.1: Matrices at various stages in the proof of Theorem 1.12, for
(n+ 1) = 4. Stars denote unknown numbers.

(a) Start

M =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


(b) Step 1

M′ =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 0


(c) Step 2

M′′ =


∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ 0 0 0

 =


∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 0


(d) Step 3

m̃ =


∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 ∗

 = M′′

Proof. We proceed by induction on the size of the matrix.
For a 1 × 1 matrix, the statement is trivial, so assume it is true for all

n× n matrices, and let

M =

 M1,1 . . . M1,n+1

...
...

Mn+1,1 . . . Mn+1,n+1


be an (n + 1) × (n + 1) semi-magic matrix. We will decompose M into a
linear combination of permutation matrices in three steps.

Step 1: First, observe two facts:

• If A and B are semi-magic matrices with magic constants α and β
respectively, then A+B is also semi-magic, with magic constant (α+β).
The matrix λA, with λ a constant, is semi-magic with magic constant
λα.

(In other words, the semi-magic matrices form a vector space, and taking
the magic constant is a linear map.)

• Every permutation matrix is semi-magic, with magic constant 1.

Therefore if σ is any permutation matrix with a 1 in position (n+ 1, j),
we can subtract Mn+1,jσ from M to get a semi-magic matrix with a 0 in
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position (n + 1, j). Note that this does not affect any other entry from the
(n+ 1)th row of M.

Repeat this operation for every entry in the (n + 1)th row of M. The
result is a semi-magic matrix M′ whose (n + 1)th row is entirely 0, and
the difference between M and M′ is a linear combination of permutation
matrices. (See Figure 1.1b.)

Step 2: Now, let σ be any permutation matrix with 1s in positions (n+ 1, 1)
and (i, n+ 1) for 1 ≤ i ≤ n. If we subtract M ′

i,n+1σ from M′, the result has
a 0 in position (i, n + 1) and some value in position (n + 1, 1), but no other
entries in the (n+ 1)th row and column are changed.

Repeat this operation for all M ′
1,n+1, . . . ,M

′
n,n+1. This gives us a semi-

magic matrix M′′ where the (n+ 1)th column and (n+ 1)th row are all zero
except perhaps position (n + 1, 1), and M′′ −M is a linear combination of
permutation matrices.

Since M′′ is semi-magic, in particular the (n+ 1)th row and column must
both sum to the same number. But the sum along the (n + 1)th column is
zero, and the sum of the (n+1)th row is M ′′

n+1,1, so we must have M ′′
n+1,1 = 0.

(See Figure 1.1c.)

Step 3: Now we have an (n+ 1)× (n+ 1) semi-magic matrix M′′ whose
only non-zero entries occur in the submatrix m made up of the first n rows
and columns. By the induction hypothesis, there is some linear combination
of n× n permutation matrices that equals m:

m = a1σ1 + · · ·+ alσl

For every n×n permutation matrix σ, there is a corresponding (n+ 1)×
(n+ 1) permutation matrix σ̂ (shown in Figure 1.2) in which the n × n
submatrix made of the first n rows and columns is exactly σ, and there is a
1 in position (n + 1, n + 1). (This is the permutation matrix corresponding
to the canonical inclusion of Sn into Sn+1.)

Consider the (n+ 1)× (n+ 1) matrix

m̂ = a1σ̂1 + · · ·+ alσ̂l.

This is a linear combination of semi-magic matrices, so it is itself semi-
magic, and it clearly agrees with M′′ everywhere except perhaps position
(n+ 1, n+ 1). Each σ̂i contributes 1 to this position, so the entry is equal
to a1 + · · · + al. But this is exactly the magic constant of m, which is the
magic constant of M′′, that is, 0. Therefore m̂ = M′′. (See Figure 1.1d.)
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Figure 1.2: The permutation matrix σ̂

σ̂ =

 σ

0 . . . 0

0
...
0

1



But m̂ is a linear combination of permutation matrices, thus M′′ is too,
and so is M. Therefore, by induction, all semi-magic matrices are linear
combinations of permutation matrices.



Chapter 2

Gorenstein rings

The aim of this chapter is to define a zero-dimensional Gorenstein ring, and
give some results that we will use in Chapter 4. It is natural to give this
definition in terms of dualising functors, so we will begin by defining these
and examining some of their properties. This chapter closely follows the
ideas of Sections 21.1 and 21.2 of [3].

Throughout this chapter, we will assume thatA is a local, zero-dimensional
ring. “Local” means there is only one maximal ideal, and “dimension” is the
maximum length of a chain of prime ideals, so a local, zero-dimensional ring
is one with a unique prime ideal, which is necessarily maximal.

2.1 Dualising functors

Definition. A contravariant, A-linear functor

D : Fin-A→ Fin-A

from the category of finitely generated A-modules to itself is a dualising
functor if it is exact and D2 ∼= 1.

Remark. If A is a field k, so Fin-A is the category of finite-dimensional k-
vector-spaces, we already know a dualising functor: the functor V 7→ V ∨

that sends a vector space V to its dual V ∨ = Homk(V, k).
This approach does not work in general: if A is an arbitrary local, zero-

dimensional ring, the functor D = HomA(−, A) does not generally satisfy
either exactness or D2 ∼= 1. The functor HomA(−, I) is exact iff I is an
injective module [14, p. 40], but A is not in general injective as an A-module
(for example A = Z); and if A = Z, we have HomZ(Z/2,Z) ∼= 0 so applying
the functor again will not return Z/2.

14
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Before we construct a dualising functor on modules of arbitrary (local,
zero-dimensional) rings, let us consider some properties that a dualising func-
tor must satisfy. But first, we need some definitions.

Definition. A composition series of an A-module M is a chain of inclusions
0 ⊂ M1 ⊂ · · · ⊂ Mn = M such that each quotient Mi+1/Mi is a simple
module (i.e., it has no non-trivial proper submodules).

It is a theorem that all composition series of a module have the same
length [2, p. 77]. We therefore call this the length of the module.

Definition. If M is a module over a local, zero-dimensional ring A with
maximal ideal m, the top of M is M/mM . The socle of M is the annihilator
of m in M , that is, the set of m ∈M such that am = 0 for all a ∈ m.

Proposition 2.1 ([3, pp. 525–526]). If D is a dualising functor, then:

(a) D(A/m) ∼= A/m;

(b) D preseves lengths;

(c) D preserves annihilators, that is, Ann(M) = Ann(D(M));

(d) HomA(M,N) ∼= HomA(D(N), D(M)), so in particular D preserves en-
domorphism rings;

(e) D sends injective modules to projective modules, and vice versa; and

(f) D sends the top of a module to the socle, and vice versa.

Proof. (a): First, we claim that A/m is the unique simple module of A. It is
a field, so it must be simple.

Now suppose M is an arbitrary simple module. It is non-trivial, so we
can take a non-zero element m. The submodule Am ⊆ M generated by m
must not be a proper submodule, since M is simple, so Am = M . Therefore
we have the following exact sequence:

0 kerm A M 0m

The kernel of A
m−→ M is an ideal, and the condition that M has no non-

trivial submodules means that this ideal is maximal. Therefore the kernel is
m, and by the first isomorphism theorem of groups, M ∼= A/m.

Now, note that D(A/m) must be a simple module: if it has a proper
submodule M , then we have the exact sequence

0 M D(A/m)
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which gives the exact sequence

D2(A/m) D(M) 0

after applying D. Hence D(M) is a proper quotient of D2(A/m) = A/m.
Since A/m has no proper submodules, this is impossible. Hence D(A/m)
must be simple, so, since A/m is the only simple A-module, we must have
D(A/m) = A/m.

(b): If 0 ↪→ M1 ↪→ · · · ↪→ Mn = M is a composition series, so the
cokernels are simple, then applying D gives D(M) = D(Mn) � · · · �
D(M1) � D(0) = 0, with the kernels of these maps being simple modules.
Therefore these modules also form a composition series with the same length
as the original, so the length of M is equal to the length of D(M).

(c): If a ∈ A annihilates M , that is, aM = 0, then by the A-linearity
of D, aD(M) = D(aM) = D(0) = 0, so a annihilates D(M). Therefore
Ann(M) ⊆ Ann(D(M)); similarly, Ann(D(M)) ⊆ Ann(D2(M)) = Ann(M),
so Ann(M) = Ann(D(M)).

(d): Since D is a contravariant functor, we get the following sequence of
maps:

HomA(M,N)
D−→ HomA(D(N), D(M))

D−→

HomA(M,N)
D−→ HomA(D(N), D(M))

Since the composition of any two of these maps is a bijection, each individual
map must be bijective, so HomA(M,N) ∼= HomA(D(N), D(M)). Taking
N = M , we see that HomA(M,M) ∼= HomA(D(M), D(M)), so D preserves
endomorphism rings.

(e): We know that D reverses arrows in diagrams and preserves exact
sequences, so the fact that D sends projective modules to injective ones
and vice versa is immediate from the observation that the diagrams defining
projective and injective objects are identical but with reversed arrows.

(f): If we apply D to the top of M , we get D(M/mM), which we can
view as a submodule of D(M). This is clearly the set of elements of D(M)
which annihilate m, that is, the socle of D(M). The fact that D sends socles
to tops follows by applying D again.

We now turn to finding a dualising functor for modules of an arbitrary
(local, zero-dimensional) ring A.

Proposition 2.2 ([3, p. 527]). If D is a dualising functor, then D(−) ∼=
HomA(−, D(A)).
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Proof. To show this isomorphism of functors, we need to show that D(M) is
naturally isomorphic to HomA(M,D(A)) for arbitrary modules M .

Any A-module homomorphism from A to the module D(M) is determined
uniquely by the image of 1, which can be any element of D(M); thus the
module HomA(A,D(M)) is isomorphic to D(M). By Proposition 2.1(d),

HomA(A,D(M)) ∼= HomA(D2(M), D(A)).

But by the definition of a dualising functor, D2(M) ∼= M . Therefore D(M) ∼=
HomA(M,D(A)).

Remark. This proposition implies that D is uniquely determined by how it
acts on A.

Now let us consider D(A). First, we need a definition:

Definition. A submodule N of an A-module M is essential if every sub-
module N ′ of M meets N non-trivially. We also say that M is an essential
envelope of N .

It is a theorem [3, pp. 628–629] that any submodule has a unique injective
essential envelope (up to isomorphism). We call this essential envelope the
injective hull.

Proposition 2.3 ([3, p. 527]). If D is a dualising functor, D(A) is isomor-
phic to the injective hull of A/m.

Proof. Since A is projective as an A-module (it is, in fact, free), D(A) must
be injective. (We can also see this by noting that HomA(−, I) is exact iff I
is injective.)

The top of A is, by definition, the simple module A/m, so the socle of
D(A) is also simple, and therefore isomorphic to A/m.

Any finitely generated module of A is isomorphic to An/a for some ideal
a, so every finitely generated module has a simple submodule. If N is a
simple module, N is isomorphic to A/m, so every element annihilates m; in
other words, every simple submodule of a module M is contained in the socle
of M . Putting these two facts together, we see that the socle of a module is
an essential submodule.

But this means that D(A) is the unique injective essential envelope of its
socle A/m, that is, D(A) is the injective hull of A/m.

Based on this theorem, we define ωA to be the injective envelope of A/m
for any local, zero-dimensional ring A, and call ωA the canonical module of A.
Propositions 2.2 and 2.3 combined tell us that if a dualising functor exists, it
is uniquely specified as D(−) = HomA(−, ωA). We can say more than that:
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Proposition 2.4 ([3, p. 528]). The functor D(−) = HomA(−, ωA) is always
a dualising functor.

Proof. The functor HomA(−, X) is always contravariant and A-linear, and it
is exact precisely when X is injective, so we need only show that D2 ∼= 1. This
is clearly a natural transformation, so we must show that it is an isomorphism
on every M . We do this by induction on the length of M .

To begin, let M be a module of length 1, so M ∼= A/m. Consider
HomA(A/m, ωA): any element ψ of this must be A-linear, so it must send
elements of A/m to the annihilator of m inside ωA; but this is precisely A/m.
Therefore HomA(A/m, ωA) ∼= A/m; hence D2(A/m) ∼= A/m, and we are
done.

Now suppose M has length greater than 1. It therefore has a proper
submodule N , and the lengths of N and M/N are strictly lower than the
length of M . Therefore we have the following diagram with exact rows:

0 N M M/N 0

0 D2(N) D2(M) D2(M/N) 0

∼= ∼=

where all the vertical arrows but the middle one are isomorphisms, by the
inductive hypothesis. Now a simple application of the 5-lemma [10, p. 15]
shows that the middle arrow is an isomorphism too.

2.2 Gorenstein rings

We are now, finally, ready to define Gorenstein rings (in this local, zero-
dimensional case):

Definition. A local, zero-dimensional ring A is Gorenstein if ωA ∼= A.

There are quite a few equivalent conditions:

Proposition 2.5 ([3, p. 530]). The following are equivalent:

(a) A is Gorenstein.

(b) A is itself an injective A-module.

(c) The socle of A is simple.

(d) ωA is principally generated.
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Proof. (a =⇒ b) By definition ωA is injective, and if A is Gorenstein,
A ∼= ωA.

(b =⇒ c) Since A is injective, it must be the injective hull of its socle.
The injective hull of a sum is the sum of the injective hulls of the summands;
but since A is local, it is indecomposable as a direct sum of A-modules.
Therefore the socle is indecomposable too, so the socle must be simple.

(c =⇒ d) The socle of A is isomorphic to the top of the dual of A,
namely ωA/mωA. We now quote a lemma, without proof:

Lemma 2.6 (Nakayama [2, p. 22]). If M is a finitely generated A-module and
the images of m1, . . . ,mi ∈M generate the quotient M/mM , then m1, . . . ,mi

generate M .

If ωA/mωA is simple, Nakayama’s lemma says that ωA is principally gen-
erated.

(d =⇒ a) A principally generated A-module is isomorphic to A/a for
some ideal a. But Proposition 2.1 (b) tells us that A and ωA have the same
length, so a must be the zero ideal, and ωA ∼= A.



Chapter 3

Syzygies

In this chapter we examine free resolutions, of modules and graded modules.
We will state some properties of graded rings and modules, and examine
the particular case of the graded ring R = k[x1, . . . , xn], whose residue field
k = R/(x1, . . . , xn) has a particular free resolution called the Koszul complex.
We find some important properties of free resolutions of R-modules: the key
result is that graded R-modules have a unique, minimal free resolution. The
dimensions of the components of this, called Betti numbers, give an invariant
of the module, which will be the focus of Chapter 6 in a specific application.

3.1 Free resolutions

Definition. Let A be a ring. An A-module F is free if it is isomorphic to⊕
i∈I Ai with Ai ∼= A for some set I.

A free resolution of a module M is a chain complex of free modules

· · · → F2 → F1 → F0

and a map F0 →M such that

· · · → F2 → F1 → F0 →M → 0

is an exact sequence.

We will sometimes abuse notation, and simply say that

· · · → F2 → F1 → F0

is the free resolution.

20
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We call the elements of Fi the ith syzygies of M . The 0th syzygies corre-
spond to generators of M ; the 1st syzygies correspond to relations between
those generators; the 2nd syzygies correspond to relations between the rela-
tions, and so on. In Chapters 5 and 6 we will focus on the case where M is
the quotient of R by an ideal; in this case, we have a free resolution where
F0 is simply R, hence the 1st syzygies correspond to generators of the ideal,
the 2nd syzygies correspond to relations, and so on.

Example. The following exact sequence is a free resolution of the Z-module
Z/m:

· · · 0 Z Z Z/m 0m

Example. If R = k[x, y], the R-module k = R/(x, y) has a free resolution

· · · 0 R R2 R k 0
[ y
−x ] [x y ]

This is an example of a Koszul resolution, which we will discuss in detail in
Section 3.3.

Lemma 3.1. For any A-module M , there exists a free module F that surjects
onto M .

Proof. For example, let F be the direct sum
⊕

m∈M Am with Am ∼= A, that
is, the sum of one copy of A for each element of M . If 1m is the element
corresponding to 1 in Am, define the map F → M by 1m 7→ m, and extend
linearly. This gives a ring module homomorphism, and it is clearly surjective.

Remark. Taking a direct sum over all elements of M was colossal overkill:
we could also have taken any set of generators of M . Very often M is infinite
but has a finite set of generators — if this is the case, we say M is finitely
generated.

Proposition 3.2 ([14, p. 34]). Any module M has a free resolution.

Proof. We will construct a free resolution inductively.
First, by Lemma 3.1, there is some free module F0 that surjects onto M .

Let M0 be the kernel of this surjection. We therefore have a short exact
sequence (drawn crookedly for reasons that will become clear):

0

M0

F0 M 0

i

ε
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Since M0 is also an A-module, we can apply Lemma 3.1 again to conclude
that there is a free module F1 that surjects onto M0. If the kernel of this
map is M1, we can extend the diagram with the second short exact sequence
0→M1 → F0 →M0 → 0 and the map d1 = i0 ◦ p1:

0 0

M0

F1 F0 M 0

M1

0

i0p1

d1 ε

i1

where the diagonals are exact. We claim that the horizontal line is also
exact. It is exact at M by definition, and at F0, the image of d1 is the
image of i0 ◦ p1, which is the image of i0 since p1 is surjective. But since
0→M0 → F0 →M → 0 is exact, this is precisely the kernel of ε.

Continuing inductively, for a module Mi there is a free module Fi that
surjects onto it, and taking the kernel gives us a new module Mi+1. We get
the following commutative diagram with exact diagonals:

0 0 0 0

M2 M0

· · · F3 F2 F1 F0 M 0

M1

0 0

i2 i0

d3

p3

d2

p2

p1

d1 ε

i1

We must check exactness of the horizontal sequence at each Fn, n > 0.
The image of dn+1 = in ◦ pn+1 is the image of in since pn+1 is surjective, and
the kernel of dn = in−1 ◦ pn is the kernel of pn since in−1 is injective, but the
kernel of pn is equal to the image of in since the diagonals are exact.
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Therefore

· · · F3 F2 F1 F0
d3 d2 d1

is a free resolution of M .

Remark. If we add the assumption that A is noetherian, then we can aug-
ment this proof to show that any finitely generated A-module M has a free
resolution with each Fi finitely generated. The only additional argument we
need is that the modules Mn = ker(pn : Fn → Mn−1) are finitely generated,
which is true if A is noetherian.

3.2 Graded rings and the Hilbert function

Definition. A graded ring is a ring A with a decomposition A =
⊕

n∈ZAn
of abelian groups, where the product of any elements in An and Am is an
element of An+m for all m,n ∈ Z.

If A is a graded ring, then a graded A-module is an A-module M =⊕
n∈ZMn such that if ai ∈ Ai and mj ∈Mj, then aimj ∈Mi+j.
An element of A or M is homogeneous if it comes from a single Ad or

Md, and we then say that d is its degree. Every element of a graded ring
or module can be written uniquely as a finite sum of homogeneous elements
with distinct degrees.

The polynomial ring R = k[x1, . . . , xn] is an example of a graded ring. We
say that a monomial xd11 · · ·xdnn has degree d = d1+ · · ·+dn, and a polynomial
f is homogeneous of degree d if all of its terms have degree d. If Rd is the set
of degree d homogeneous polynomials, then R =

⊕∞
d=0Rd is a decomposition

that makes R into a graded ring. (Note that under the identification between
k[x1, . . . , xn] with Sym kn, this decomposition is exactly the decomposition
of Sym kn into

⊕
d Symd kn.)

An example of a graded module is a homogeneous ideal:

Definition. An ideal in a graded ring is called homogeneous if it can be
generated by a set of homogeneous elements (not necessarily all of the same
degree).

Lemma 3.3. An ideal I in a graded ring A is homogeneous iff for every
element f ∈ I, the homogeneous components of f are also all in I.

Proof. Suppose I is homogeneous. Then it has a set of homogeneous gen-
erators, {gj} over some index set j ∈ J . If we take an arbitrary element
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f of I, we can therefore write f =
∑

j hjgj for some polynomials hj ∈ A
with finitely many hj non-zero. Write each hj as a sum of homogeneous
components: hj =

∑
i hj,i. Then f =

∑
i,j hj,igj. But each hj,igj is a prod-

uct of homogeneous elements, so it is itself homogeneous. Therefore, if we
collect the summands with the same degree, each homogeneous component
of f is a sum of some subset of the hj,igj. But this is clearly in I, so every
homogeneous component of f is in I.

Now suppose that if f is in I, then the homogeneous components of f
are in I, for any f . Take any set of generators {gj} for I. Decompose each
gj into homogeneous components: gj =

∑
i gj,i. By assumption, each gj,i is

also in I.
We claim that the gj,i also generate I. Let g be the ideal generated by the

gj,i. Then g is certainly contained in I since each gj,i is. But g must contain
every gj, so it also contains I. Therefore I = g. Since g was generated by
homogeneous elements, I is a homogeneous ideal.

Remark. A quotient of a graded ring by a homogeneous ideal is also a graded
ring.

We now return to free resolutions. We need to reconsider our definition
of a free resolution in the context of graded rings.

Definition. If A is a graded ring, the ring A(−r) is the graded ring whose
degree d component is the degree d− r component of A.

We now allow a free graded A-module to be one of the form
⊕

iA(−ri)bi
for some ri and bi, and we require the maps in a graded free resolution to
preserve degrees. All above statements about free resolutions still hold, with
only minor amendments to the proofs.

There is even more structure in R = k[x1, . . . , xn] than the graded de-
composition into abelian groups: each Rd is not only a group, it is in fact
a vector space over k. Graded R-modules also inherit this structure. We
therefore have a useful measurement of the size of graded R-modules:

Definition. If M is a graded R-module, then the Hilbert function of M is
the function

HM(d) = dimkMd

for non-negative integers d.

Lemma 3.4. The Hilbert function of R = k[x1, . . . , xn] as an R-module is

HR(d) =

(
n+ d− 1

d

)
. (3.1)
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Proof. The ring R is isomorphic to Sym kn, and the dimension of the degree
d component of this is

(
n+d−1

d

)
by Corollary 1.5.

There is a helpful relation between the Hilbert function of an R-module
and the Hilbert functions of its free resolution. First, we need a lemma:

Lemma 3.5. If

· · · → 0
φr+1−−→ Vr

φr−→ Vr−1
φr−1−−→ · · · φs+1−−→ Vs

φs−→ 0→ · · ·

is a bounded exact sequence of finite-dimensional vector spaces, then

r∑
i=s

(−1)i dimVi = 0. (3.2)

Proof. The rank–nullity theorem tells us that

dimVi = dim imφi + dim kerφi. (3.3)

Therefore

r∑
i=s

(−1)i dimVi =
r∑
i=s

(−1)i dim imφi +
r∑
i=s

(−1)i dim kerφi

=
r∑
i=s

(−1)i dim imφi +
r∑
i=s

(−1)i dim imφi+1

=
r∑
i=s

(−1)i dim imφi −
r+1∑
i=s+1

(−1)i dim imφi

= (−1)s dim imφs − (−1)r+1 dim imφr+1

= 0− 0 = 0

Corollary 3.6 ([4, p. 3]). If

· · · → 0→ Fr → . . .→ F1 → F0 →M → 0

is a bounded, graded free resolution of a graded R-module M with every Fi
finitely generated, then

HM(d) =
∑
i

(−1)iHFi(d). (3.4)

Proof. Since this is a graded free resolution of R-modules, the degree d part
forms an exact sequence of vector spaces. This formula follows immediately
from applying Lemma 3.5.
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3.3 The Koszul complex

There is one free resolution in particular that will be important later: the
Koszul complex.

The proofs in this section, and indeed in the rest of this chapter, require
some more advanced homology techniques than those used so far (e.g. long
exact sequence of homology, Tor). For definitions and properties of these,
see e.g. [14].

Definition. If R = k[x1, . . . , xn], the Koszul complex K(x1, . . . , xn) is the
complex of graded free R-modules whose degree m part is

K(x1, . . . , xn)m = ∧mRn

and the differential is the map

d : ∧mRn → ∧m−1Rn

v1 ∧ · · · ∧ vm 7→
m∑
j=1

(−1)j+1xij(v1 ∧ · · · ∧ v̂j ∧ · · · ∧ vm)

for v1, . . . , vn ∈ Rn, where a hat means the term is omitted.

There is an alternative description of the Koszul complex that will make
some proofs easier. To give this description, we need to define the tensor
product of chain complexes:

Definition. If F and G are chain complexes of A-modules, then the ten-
sor product F ⊗A G is defined to be the chain complex whose degree m
component is

(F ⊗A G )m =
⊕
a+b=m

Fa ⊗A Gb

and if fa and gb are in Fa and Gb respectively, the differential sends

d : fa ⊗ gb 7→
(
dF (fa)⊗ gb

)
+ (−1)a

(
fa ⊗ dG(gb)

)
with dF and dG being the differentials on F and G respectively.

It is straightforward to check that this is a complex.

We can now describe the Koszul complex using tensor products:

K(x1, . . . , xn) ∼= K(x1)⊗ · · · ⊗K(xn) (3.5)
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where K(xi) is the complex (with degrees labelled above)

2 1 0 -1

· · · 0 R R 0 · · ·xi

where the map R
xi−→ R means multiplication by xi.

It can be shown by direct computation that Equation (3.5) is an isomor-
phism. The degree d component of K(x1)⊗ · · · ⊗K(xn) is the sum⊕

D⊆{1,...,n}
|D|=d

(⊗
i∈D

K(xi)1 ⊗
⊗
i 6∈D

K(xi)0

)
(3.6)

with all tensor products over R. Every summand is R ⊗ · · · ⊗ R ∼= R, so
this sum is the free R-module with

(
n
d

)
summands, which is exactly ∧dR by

Corollary 1.5. (The differential maps are more fiddly to compute, although
direct computation shows that they agree too; however, we won’t need an
explicit description of these.)

Analogously, we can define K(xi1 , . . . , xim) = K(xi1) ⊗ · · · ⊗K(xim) for
any i1, . . . , im.

The importance of the Koszul complex for our purposes is the following
result:

Proposition 3.7 ([3, pp. 431–432], [11]). The Koszul complex K(x1, . . . , xn)
is a free resolution of R/(x1, . . . , xn) = k.

Proof. We will show that K(x1, . . . , xi) is a free resolution of R/(x1, . . . , xi)
by induction on i. The case i = 1 is trivial, so assume this is true for arbitrary
i; we need to show that K(x1, . . . , xi+1) is a resolution of R/(x1, . . . , xi+1).

Consider the following diagram, with degrees labelled:

2 1 0 -1

· · · 0 0 R 0 · · ·

· · · 0 R R 0 · · ·

· · · 0 R 0 0 · · ·

id

xi+1

id

(3.7)

It is clearly commutative as all compositions are zero, and the columns are
short exact sequences. We therefore have the short exact sequence of chain
complexes

0 R K(xi+1) R[−1] 0 (3.8)
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where the chain complex R consists of the ring R in degree 0, and the zero
module elsewhere; and R[−1] means the chain complex R has been shifted
in degree by −1 to the right (that is, by 1 to the left) and the differentials
multiplied by (−1)−1 (although this makes no difference in this case).

For notational brevity, let K = K(x1, . . . , xi) and K ′ = K(x1, . . . , xi+1).
We can tensor this short exact sequence (3.8) with the complex K to get the
sequence

0 K ⊗R K ⊗K(xi+1) K ⊗R[−1] 0

K K ′ K[−1]

∼= ∼= ∼= (3.9)

which is exact since all objects in K are free R-modules.
From a short exact sequence of chain complexes, we get a long exact

sequence of homology. This long exact sequence is

· · · Hj(K) Hj(K
′) Hj(K[−1]) · · ·

· · · H1(K) H1(K
′) H1(K[−1]) ∂

H0(K) H0(K
′) H0(K[−1])

Note that Hj(K[−1]) = Hj−1(K), by definition: therefore,

· · · Hj(K) Hj(K
′) Hj−1(K) · · ·

· · · H1(K) H1(K
′) H0(K) ∂

H0(K) H0(K
′) H−1(K)

By the inductive hypothesis, K is a free resolution of R/(x1, . . . , xi). This
means precisely that Hj(K) = 0 for j 6= 0, and H0(K) = R/(x1, . . . , xi).
Therefore our exact sequence is

· · · 0 Hj(K
′) 0 · · ·

· · · 0 H1(K
′) R/(x1, . . . , xi)

∂

R/(x1, . . . , xi) H0(K
′) 0

We immediately observe that Hj(K
′) must be 0 for j ≥ 2. To compute this

homology for j = 0 and j = 1, we need to know the connecting map ∂. This
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is a map from the homology of the diagram

0 R

R R

R 0

id

xi+1

id

at the bottom left to the homology at the top right, once it is tensored with
K. But this map is simply multiplication by xi+1; hence the relevant section
of our exact sequence is

0 H1(K
′) R/(x1, . . . , xi) R/(x1, . . . , xi) H0(K

′) 0
xi+1

Thus H1(K
′) is the kernel of multiplication by xi+1, which is zero, and

H0(K
′) is the cokernel of this multiplication, which is R/(x1, . . . , xi+1).

Therefore K ′ = K(x1, . . . , xi+1) is a free resolution of R/(x1, . . . , xi+1).
By induction, K(x1, . . . , xi) is a free resolution of R/(x1, . . . , xi) for all i, so
in particular, K(x1, . . . , xn) is a free resolution of R/(x1, . . . , xn) = k.

Remark. The only facts about x1, . . . , xn we used in this proof were that
multiplication by xi+1 is injective in the ring R/(x1, . . . , xi). Equivalently,
xi+1 is a non-zero-divisor in this quotient ring. Thus the same proof holds
with x1, . . . , xn being any regular sequence in an arbitrary ring R — a regular
sequence is one where each xi+1 is a non-zero-divisor in R modulo x1, . . . , xi,
and (x1, . . . , xn)R 6= R ([3, p. 423]).

3.4 Hilbert’s syzygy theorem

Bounded free resolutions are much more useful than unbounded ones — for
example, Corollary 3.6 lets us compute Hilbert functions from a bounded
resolution — but from the construction in Proposition 3.2, it is not at all
clear that bounded resolutions exist for an arbitrary module, where R =
k[x1, . . . , xn]. Surprisingly, there is always a bounded resolution for any
finitely generated graded R-module. We can say much more than this: if
R is a polynomial ring with n variables, then any finitely generated graded
module has a resolution with length at most n.

To deduce this, we will introduce the concept of a “minimal” resolution.
Näıvely, a “minimal” resolution is one where each free module is generated by
the least number of elements possible to map onto the next module correctly.
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It turns out that this is equivalent to an algebraically simpler condition, which
we will take as the definition.

Definition. Let m be the maximal ideal (x1, . . . , xn) ⊂ R. A free resolution

· · · → Fn
dn−→ · · · d2−→ F1

d1−→ F0

of an R-module M is minimal if the image of each di lies in mFi−1. That is,
the differentials can be written as matrices with entries in m. Equivalently,
the maps in the complex F ⊗R k = F ⊗R R/m are zero.

A free resolution is finite if FN+1 = 0 for some N , and Fi 6= 0 for all
i ≤ N . We call N the length of the resolution (not to be confused with the
length of a module defined in Chapter 2). The length of a resolution that is
not finite is defined to be ∞.

Note that if
· · · → FN+2 → 0→ FN → · · · → F0

is a resolution, with FN+1 = 0 and Fi arbitrary for i > N + 1, then it is
finite with length N by this definition. The length of a finite resolution is
the length of the first consecutive run of non-zero objects. The complex

· · · → 0→ 0→ FN → · · · → F0

is also a resolution, so any finite resolution gives us a bounded one with the
same length.

Corollary 3.8 ([4, p. 6]). A resolution

· · · → Fn
dn−→ · · · d2−→ F1

d1−→ F0

of an R-module M is minimal if and only if each di takes a basis of Fi to a
minimal set of generators for im di.

Proof. We have the right-exact sequence

Fi+1 → Fi → im di → 0 (3.10)

so tensoring with R/m gives the exact sequence

Fi+1/mFi+1 → Fi/mFi → (im di)/(m im di)→ 0. (3.11)

The condition that the resolution above is minimal precisely means that
the map Fi+1/mFi+1 → Fi/mFi is zero, which happens if and only if the map
Fi/mFi → im di/m im di is an isomorphism. Hence any set of generators for
Fi/mFi is sent to a set of generators for im di/m im di.

Nakayama’s lemma (Lemma 2.6) has an analogue for graded rings:



3.4. HILBERT’S SYZYGY THEOREM 31

Lemma 3.9 (Nakayama’s lemma, graded version [4, p. 5]). If M is a finitely
generated graded R-module and the images of m1, . . . ,mi ∈ M generate the
quotient M/mM , then m1, . . . ,mi generate M .

By this lemma, the resolution is minimal if and only if a basis of Fi is
mapped to a minimal set of generators of im di.

Remark. With this description, it is straightforward to construct a free reso-
lution sending a basis of Fi to a minimal set of generators of im di = ker di−1,
so we can conclude that every module M has a minimal resolution.

Definition. The projective dimension pdM of a graded R-module M is the
minimum length of a finite free resolution of M . If M has no finite free
resolutions, then pdM =∞.

Proposition 3.10 ([3, p. 477]). If M is a non-zero, finitely generated graded
R-module, then every minimal graded free resolution of M has length pdM .
Furthermore, pdM is the smallest integer i such that TorRi+1(k,M) = 0.

Proof. Let I be the smallest integer i with TorRi+1(k,M) = 0, or ∞ if this
never occurs.

First, note that since TorRi+1(k,M) can be computed using any free reso-
lution, it can be computed for a bounded free resolution of shortest length.
In this case, TorRi+1(k,M) is certainly 0 for all i ≥ pdM , so I ≤ pdM .

Let

· · · → Fi → · · · → F1 → F0

be a minimal free resolution of M with length L. Immediately, we must have
pdM ≤ L. We can compute TorRi+1(k,M) as the homology of

· · · → k ⊗R Fi → · · · → k ⊗R F1 → k ⊗R F0 → 0

But since the resolution was minimal, the differentials of this are zero, so
TorRi+1(k,M) = k ⊗R Fi+1. This is zero if and only if Fi+1 is zero.

Hence I must equal L, so pdM ≤ I. But this means that pdM = I = L.
Thus any minimal resolution is also a resolution of shortest length, and pdM
is the least integer i with TorRi+1(k,M) = 0.

Corollary 3.11 (Hilbert Syzygy Theorem). If R = k[x1, . . . , xn], every
finitely generated graded R-module has a graded free resolution of length at
most n.
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Proof. We can also use the symmetry of Tor ([14, p. 58]) to compute TorRi+1(k,M)
using a free resolution of k, instead of a resolution of M . The Koszul complex
K(x1, . . . , xn) is a free resolution of k, so TorRi+1(k,M) is the homology of

· · · → K(x1, . . . , xn)i ⊗RM → · · ·
· · · → K(x1, . . . , xn)1 ⊗RM → K(x1, . . . , xn)0 ⊗RM

The degree i component of this is ∧iRn ⊗R M , so when i > n, it is zero.
Hence the homology of this is certainly 0 for i > n, so pdM ≤ n. Thus M
has a free resolution of length at most n.

We know from Proposition 3.10 that all minimal resolutions of a module
M have the same length. There is an even stronger result, which we will
state without proof:

Theorem 3.12. Minimal free resolutions of a finitely generated graded R-
module are unique up to isomorphism.

For a proof, see Theorem 20.2, [3, p. 495]. The proof is not difficult, but
requires several more lemmas.

3.5 Betti numbers

Now that we know that minimal free resolutions exist and are unique for all
finitely generated graded R-modules, we can talk about the minimal graded
free resolution of a graded module.

Graded free resolutions of graded R-modules take the form

· · · Fi · · · F1 F0 M⊕
j∈Z

R(−j)βi,j
⊕
j∈Z

R(−j)β1,j
⊕
j∈Z

R(−j)β0,j

∼= ∼= ∼=

The exponents βi,j of the minimal free resolution, called Betti numbers,
completely determine the objects in the resolution up to isomorphism, and
they are an important invariant of a module. The Betti number βi,j tells
us that the ith object in the minimal free resolution has βi,j generators of
degree j.
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We often display the Betti numbers in a Betti table:

0 1 . . . i . . .
0 β0,0 β1,1 . . . βi,i . . .
1 β0,1 β1,2 . . . βi,i+1 . . .
...

...
...

...
j β0,j β1,j+1 . . . βi,i+j . . .
...

...
...

...

Note that the entry in the ith column, jth row is βi,i+j, not βi,j. One reason
for this is the following property:

Proposition 3.13. If βi,j = 0 for all j < d and some fixed i, then βi+1,j+1 =
0 for all j < d.

Remark. In terms of the Betti table, this means that if one column is entirely
0 above some row, then the next column to the right (and, by induction, all
columns to the right) are also entirely 0 above that same row.

Proof. The minimality condition of the free resolution means that a sum-
mand R(−j) of Fi must be mapped into mFi−1. The map preserves degrees,
and m is precisely the subset of R generated by polynomials with positive
degree. Therefore the image of a generator of R(−j) must have degree at
most −j − 1, so since the maps of a minimal resolution take generators to
generators bijectively, no βi+1,j+1 can be non-zero for j < d.

The ideas in the proof of Proposition 3.10 give us a way of computing the
Betti numbers from an arbitrary free resolution:

Proposition 3.14. βi,j = dimk TorRi (k,M)j

Proof. If F is the minimal free resolution of M , then TorRi (k,M) is the ith
homology of F ⊗ k. Since F was minimal, the maps in F ⊗ k are all zero
by the definition of a minimal resolution, so the ith homology of F ⊗ k is
simply Fi ⊗ k. The dimension of the degree j component of this is exactly
the number of degree j generators of Fi, which is βi,j.



Chapter 4

Apolarity

The polar pairing is a bilinear operation that lets us treat polynomials as
“inverses”. We can associate a polynomial f with the set of inverse polyno-
mials that annihilate it in this system, which we call the apolar ideal — this
set has some important properties. In particular, there is a bijection between
homogeneous polynomials (up to scaling) and these sets, which implies that
we lose no information about the polynomial by looking at its apolar ideal
instead.

4.1 The polar pairing

Definition. Let R = k[x1, . . . , xn] and S = k[x−11 , . . . , x−1n ] be subrings of
the fraction field K = k[x1, x

−1
1 , . . . , xn, x

−1
n ] of R.

Suppose f ∈ R and g ∈ S are monomials. Define the binary operation
∗ : S ×R→ R in the following way:

g ∗ f =

{
gf if this is an element of R, and

0 otherwise.

Extend linearly to all polynomials. This gives R the structure of an S-module
— in particular, we have the useful fact that f ∗ (g ∗ h) = (fg) ∗ h for all
f, g ∈ S and h ∈ R.

We will often write capital letters instead of inverses: so x−1i = Xi, and
S = k[X1, . . . , Xn].

34
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Example. If R = k[x1, x2, x3] and S = k[X1, X2, X3],

X1 ∗ x31 = x−11 x31 = x21
X2 ∗ x1x2 = x1

X1 ∗ x2x3 = 0

(X1 +X2) ∗ (x1x
2
3 + x22x3) = x23 + x2x3

(X2 +X3) ∗ (x2 − x3) = 1− 1 = 0

Remark. Observe that Xi acts like the partial differential operator ∂
∂xi

on
polynomials, except that it doesn’t change coefficients. That is,

Xi ∗ xni = xn−1i ,

whereas
∂

∂xi
xni = nxn−1i .

We will sometimes abuse notation and write Xi as ∂
∂xi

, treating this as “dif-
ferentiation without coefficients”, where this won’t cause confusion. In par-
ticular, if f is a polynomial where no variable has exponent greater than 1,
differentiation without coefficients agrees with the usual differentiation.1

Remark. Give S the analogous grading to R, so that a monomial Xd1
1 · · ·Xdn

n

has degree d = d1+· · ·+dn. If f ∈ R and g ∈ S are homogeneous polynomials
with degrees d and d′ respectively, then g ∗ f is clearly homogeneous with
degree d − d′, since g ∗ f is made up of monomials that either have degree
d− d′, or are zero.

An immediate consequence of this observation is that if d < d′, we must
have g ∗ f = 0, since there are no non-zero polynomials in R with negative
degree. Also, if d = d′, then g ∗ f has degree 0, so it is a constant, that is,
an element of k. This suggests the following definition:

Definition. The polar pairing is the map 〈·, ·〉 : Sd×Rd → k where 〈g, f〉 =
g ∗ f .

1The lack of coefficients is not an irrelevant detail — the systems with and without
coefficients are truly different algebras. For example, with coefficients,(

∂2

∂x2
− ∂

∂y

∂

∂z

)
(x2 + yz) = 2− 1 = 1,

but without coefficients,

(X2 − Y Z) ∗ (x2 + yz) = 1− 1 = 0.
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Recall that we defined a bilinear form in Section 1.3.

Proposition 4.1. The pairing 〈·, ·〉 is a non-degenerate, symmetric bilinear
form, under the identification of S with R that associates Xi with xi.

Proof. The bilinearity follows immediately from the definition.
Since this is a bilinear form, by Proposition 1.10 we can compute the

matrix of the form, with respect to the standard basis for R of monomials.
Observe that if f and g are both monomials of degree d with coefficient

1, if f 6= g, by the pigeonhole principle there must be a variable that has
a higher exponent in g than in f , so g ∗ f = 0; otherwise, if f = g, then
g ∗ f = 1. Therefore the matrix of the form with respect to the basis of
monomials is the identity matrix.

The identity matrix is definitely symmetric and invertible, so by Propo-
sition 1.11, the form is symmetric and non-degenerate.

Remark. This pairing gives an injection Rd → S∨d , where S∨d is the vector
space dual S∨d = Homk(Sd, k), given by f 7→ 〈·, f〉, which is the map g 7→ g∗f .
There is an injection in the other direction, so it follows that this map is an
isomorphism between Rd and S∨d .

4.2 The apolar ideal

Definition. Given a polynomial f ∈ R, the apolar ideal f⊥ is the set of
polynomials g ∈ S such that g ∗ f = 0.

Proposition 4.2. For any f ∈ R, the apolar ideal f⊥ is an ideal. If f ∈ Rd

is a homogeneous polynomial of degree d, f⊥ is a homogeneous ideal.

Proof. We will first check that f⊥ is an ideal. If g1 and g2 are in f⊥, by
bilinearity, (g1 + g2) ∗ f = g1 ∗ f + g2 ∗ f = 0. If g ∈ f⊥ and h is any other
polynomial, then (hg) ∗ f = h ∗ (g ∗ f) = h ∗ 0 = 0.

Now, we must show that the ideal is homogeneous. Suppose g is in f⊥.
We can write g as a sum of homogeneous components: g =

∑
i gi, where gi

has degree i, and all but finitely many gi are zero. Then

g ∗ f =
∑
i

(gi ∗ f).

But each gi ∗f has degree d− i, so all gi ∗f have different degrees. Therefore
since the sum equals zero, each summand must equal zero, so every gi is in
f⊥. Therefore f⊥ is homogeneous by Lemma 3.3.
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Example. If f is the polynomial f = x1x
2
2 + x33, then f⊥ is the ideal

f⊥ = (X2
1 , X1X3, X2X3, X

3
2 , X1X

2
2 −X3

3 , X
4
3 ).

These generators are homogeneous, so this is indeed a homogeneous ideal.
If f is not a homogeneous polynomial, e.g. f = x1x2 + x3, then f⊥ is not

homogeneous: in this case, f⊥ is

f⊥ = (X2
1 , X

2
2 , X

2
3 , X1X3, X2X3, X1X2 −X3),

so X1X2 −X3 is in the ideal while X1X2 and −X3 are not.

Lemma 4.3. If f is a homogeneous polynomial of degree d, there is a bilinear
map

ψ : (S/f⊥)r × (S/f⊥)d−r → k

given by (g, h) 7→ (gh) ∗ f . This map is non-degenerate, meaning that there
is no h ∈ (S/f⊥)d−r such that the map ψ(−, h) is the zero map.

Proof. Observe that if g ∈ (S/f⊥)r has degree r and h ∈ (S/f⊥)d−r has
degree d− r, then gh has degree r+ (d− r) = d, so (gh) ∗ f has degree 0 and
the map is thus well defined.

Now, fix some h ∈ (S/f⊥). We know that (gh) ∗ f = g ∗ (h ∗ f); but
h ∗ f is a degree r polynomial, so since the polar pairing is non-degenerate
as proved in Proposition 4.1, there is always some polynomial g of degree
r with g ∗ (h ∗ f) 6= 0. Therefore ψ(−, h) is not the zero map, so ψ is
non-degenerate.

Recall that for a graded R-module M , we defined the Hilbert function
HM(r) in Section 3.2. The same definition works with R replaced by S.

Corollary 4.4. If f ∈ Rd is homogeneous of degree d, the Hilbert function
of S/f⊥ is symmetric:

HS/f⊥(r) = HS/f⊥(d− r). (4.1)

Proof. The map ψ in Lemma 4.3 gives us a map from (S/f⊥)d−r to the dual
(S/f⊥)∨r = Hom((S/f⊥)r, k):

φ : (S/f⊥)d−r → (S/f⊥)∨r
h 7→ ψ(−, h)

and since ψ is non-degenerate, φ is injective. But (S/f⊥)∨r is isomorphic to
(S/f⊥)r as a vector space over k, so this injection implies that dimk(S/f

⊥)d−r ≤
dimk(S/f

⊥)r.
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Now, if we replace r with d − r throughout, we also get an injection
(S/f⊥)r → (S/f⊥)∨d−r, so dimk(S/f

⊥)r ≤ dimk(S/f
⊥)d−r. But this means

that the two dimensions are equal; hence

HS/f⊥(r) = HS/f⊥(d− r).

Remark. It follows that the map (S/f⊥)d−r → (S/f⊥)∨r is in fact an isomor-
phism.

4.3 Macaulay’s theorem

Macaulay discovered that there is a one-to-one correspondence between ho-
mogeneous polynomials (up to scaling) and apolar ideals. This theorem
finally brings together the polar pairing and the ideas of Chapter 2.

Proposition 4.5. If f ∈ Rd, that is, f is homogeneous of degree d, then
S/f⊥ is a Gorenstein ring.

Proof. Recall that the socle of a local, zero-dimensional ring is the annihila-
tor of the maximal ideal. It is clear that S/f⊥ is local and zero-dimensional:
its maximal ideal m is the image of (x1, . . . , xn) in the quotient. Note that
m is made up of the polynomials of positive degree (and sums of such poly-
nomials).

We claim that the socle of S/f⊥ is the image of Sd in the quotient. Since
f⊥ is homogeneous by Proposition 4.2, the socle of S/f⊥ is also homogeneous,
so it suffices to prove this for homogeneous polynomials. Note that every
polynomial with degree greater than d is in f⊥, so the only non-zero graded
components of S/f⊥ have degree r with 0 ≤ r ≤ d.

Suppose we have some homogeneous polynomial g ∈ S, representing a
polynomial g̃ in the quotient S/f⊥. First, suppose g has degree d. Then for
any homogeneous h in m, hg̃ has degree strictly greater than d, so hg̃ = 0 in
S/f⊥ and thus g̃ is in the annihilator of m in S/f⊥.

Conversely, suppose the degree of g is i with i < d, and g 6∈ f⊥. Then
g ∗ f is a non-zero homogeneous polynomial with degree d− i, so, since ∗ is
non-degenerate by Proposition 4.1, there is some polynomial h with positive
degree such that h ∗ (g ∗ f) 6= 0. But h ∗ (g ∗ f) = (hg) ∗ f , so hg̃ is non-zero
in the quotient S/f⊥, hence g̃ is not in the annihilator of m.

Therefore the socle of S/f⊥, that is, the annihilator of m, is precisely the
degree d piece. By Corollary 4.4, the degree d piece has the same dimension
as the degree 0 piece: this dimension is 1. Thus (S/f⊥)d ∼= k, so it is simple.
Therefore S/f⊥ is Gorenstein, by Proposition 2.5.
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Theorem 4.6 (Macaulay [8]). The map φ : f 7→ f⊥ gives a bijection between
the set of homogeneous polynomials in R of degree d, up to non-zero scalar
multiplication, and the set of homogeneous ideals I ⊆ S such that S/I is a
graded, local, zero-dimensional, Gorenstein ring with socle in degree d.

Proof. To show the bijection, we must give an inverse map. Suppose I is
a homogeneous ideal such that S/I is a local, zero-dimensional, Gorenstein
ring with socle in degree d. Then we have a surjection

Sd � (S/I)d

where (S/I)d is isomorphic to k by the Gorenstein property. Taking the dual
of this map (as a map of vector spaces) gives us an injection:

(S/I)∨d ↪→ S∨d

Note that S∨d
∼= Rd. Take the isomorphism (S/I)∨d

∼= k∨ ∼= k (note that
this is not a canonical isomorphism) and consider the image of 1 in this
isomorphism: call this image f ∈ Rd. Then define ψ(I) = f (which is well
defined up to scaling, since the isomorphism (S/I)∨d

∼= k was not canonical).
We claim that ψ is the inverse of φ.

First, consider ψ ◦φ(f), where f ∈ Rd. We have ψ ◦φ(f) = ψ(f⊥). There
is an exact sequence

0 f⊥d Sd (S/f⊥)d 0

where (S/f⊥)d is isomorphic to k as shown in Proposition 4.5. But we also
have an exact sequence

0 ker ε Sd k 0.

g g ∗ f

ε

The kernel of ε is precisely the degree d component of f⊥. Since the linear
maps Sd → k in these two exact sequences have the same kernel, they must
be the same map (up to scaling).

When we take the dual of this map Sd → k, we get the map

k∨ → S∨d .

In the isomorphism k∨ ∼= k, the element 1 corresponds to the identity map, so
the image of 1 is the composition of the identity map with the map g 7→ g∗f .
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But under the isomorphism S∨d
∼= Rd, the map (g 7→ g∗f) exactly corresponds

to f ; therefore ψ ◦ φ(f) = f .
Now, let us compute φ◦ψ(I) for a homogeneous ideal I such that S/I is a

local, zero-dimensional, Gorenstein ring with socle in degree d. To compute
ψ(I), observe that (S/I)d is isomorphic to k by the Gorenstein property, so
the dual of

Sd → (S/I)d

is a map
k∨ ∼= k → S∨d

∼= Rd.

The image of 1 under this map is some polynomial f ∈ Rd, which corre-
sponds to the map g 7→ g ∗ f under the isomorphism Rd

∼= S∨d . Therefore
the map Sd → (S/I)d must have been the map g 7→ g ∗ f , which means that
Id is the kernel of this map, which is f⊥d .

Similarly to Lemma 4.3, the Gorenstein property implies that we have a
non-degenerate bilinear map

α : (S/I)r × (S/I)d−r → (S/I)d ∼= k

for any r, so we have the formula

Ir = {g ∈ Sr : α(g,−) is the zero map}
= {g ∈ Sr : gh ∈ Id for all h ∈ Sd−r}
= {g ∈ Sr : gh ∈ f⊥d for all h ∈ Sd−r}
= f⊥r .

So I and f⊥ agree in every degree, so they are the same ideal. Therefore
φ ◦ ψ(I) = f⊥ = I.

So ψ and φ are indeed bijections.

Remark. Instead of studying homogeneous polynomials on their own, with
this theorem we are justified in instead considering their apolar ideals. Since
homogeneous polynomials and ideals of this form are in one-to-one correspon-
dence, we lose no information about the polynomial by studying its apolar
ideal.

We will take this idea to heart in the remainder of this thesis, in which
we compare the determinant and permanent through their apolar ideals.



Part II

The resolutions of S/ det⊥n and
S/ perm⊥n
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Chapter 5

The perpendicular ideals det⊥n
and perm⊥n

In Chapter 4 we defined the apolar ideal of a polynomial, and found in
Theorem 4.6 that we can reconstruct a homogeneous polynomial from its
apolar ideal, so we lose nothing by considering the apolar ideal in place of
the polynomial. In Chapter 3 we discovered an important set of invariants of
a graded R-module, the Betti numbers. In the next two chapters, we will put
these ideas together and apply them to the determinant and permanent. The
goal of this chapter is to re-prove a result by Shafiei [12], giving a description
of the generators of the apolar ideals of the determinant and permanent.

5.1 Properties of the determinant and per-

manent in the polar pairing

First, let us examine how the determinant and permanent fit into the polar
pairing. Recall from Chapter 1 that x denotes the matrix

x =

x1,1 . . . x1,n
...

...
xn,1 . . . xn,n

 ,
and recall that Xi,j = ∂

∂xi,j
means differentiation without coefficients, as

explained in Chapter 4 (although in this chapter, we will never apply Xi,j

to polynomials with exponents higher than 1, so it is in fact identical to the
usual differentiation with coefficients).

If A is a matrix, let A(i; j) denote the submatrix obtained by deleting the
ith row and the jth column of A. More generally, let A(i1, . . . , ia; j1, . . . , jb)
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be the submatrix obtained by deleting rows i1, . . . , ia and columns j1, . . . , jb.

Lemma 5.1. The xi,jth derivative of the n×n determinant is (−1)i+j times
the (n− 1)× (n− 1) determinant of the (i, j)th submatrix. That is,

∂

∂xi,j
detn x = (−1)i+j detn−1 x(i; j). (5.1)

The derivative of the permanent is the same without the change in sign:

∂

∂xi,j
permn x = permn−1 x(i; j). (5.2)

Proof. Recall that the n× n determinant can be expressed as

detn x =
∑
σ∈Sn

sgn(σ)
n∏
k=1

xk,σk

Most of these terms vanish when taking the xi,jth derivative: the only ones
remaining are the ones where σ(i) = j, and in those terms, the xi,j variable
is omitted. By inspection, this is the same as the determinant of

x1,1 . . . . . . . . . . . . . . . . x1,n
...

...
xi−1,1 . . . . . . . . . . . . . . . . xi−1,n

0 . . . 0 1 0 . . . 0
xi+1,1 . . . . . . . . . . . . . . . . xi+1,n

...
...

xn,1 . . . . . . . . . . . . . . . . xn,n


, (5.3)

that is, the matrix x with xi,j replaced with 1 and the rest of the ith row
set to 0. By cofactor expansion along the ith row, the determinant of this
matrix is (−1)i+j times the determinant of the (i, j)th submatrix.

By the same argument, the derivative of the permanent is the permanent
of the same matrix as in Equation (5.3), which is the permanent of the i, jth
submatrix of x.

Remark. We need to take a little care when computing multiple derivatives
of the determinant. Suppose we want to compute

∂

∂xi′,j′

∂

∂xi,j
detn x.
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Figure 5.1: The sign change of the second derivative of the determinant. The
quadrant that (i′, j′) lies in relative to (i, j) gives the change in sign of the
determinant, (−1)δ.

 (i, j)

+ −

+−



By Lemma 5.1, this is equal to

(−1)i+j
∂

∂xi′,j′
detn−1 x(i; j).

If i = i′ or j = j′, this is zero, since xi′,j′ will not appear in detn−1 x(i; j),
so we need only consider when i 6= i′ and j 6= j′.

When taking the (i, j)th submatrix, the rows after the ith row are shifted
up by one place, and the columns after the jth are shifted left. Thus if
i′ > i or if j′ > j, but not both, we get an extra factor of (−1) when using
Lemma 5.1 to compute this second derivative. If neither i′ > i nor j′ > j,
then this problem does not occur, and if both i′ > i and j′ > j we get two
factors of (−1), which cancel. Therefore

∂

∂xi′,j′

∂

∂xi,j
detn x = (−1)i+j(−1)i

′+j′(−1)δ
′
detn−2 x(i, i′; j, j′) (5.4)

where δ′ is how many of the statements (i′ > i) and (j′ > j) are true. This
is summarised in Figure 5.1.

For higher derivatives, the pattern continues: if we take a further deriva-
tive by Xi′′,j′′ , we get an extra factor of (−1)δ

′′
where δ′′ is the number of i, i′

that i′′ is greater than plus the number of j, j′ that j′′ is greater than.
The exact sign of third and higher derivatives will not be important for

the rest of this thesis, although we will use the fact that the derivative of
the determinant by Xi1,j1 , . . . , Xim,jm is plus or minus the determinant of
x(i1, . . . , im; j1, . . . , jm).

When we take multiple derivatives of the permanent, we do not get any
extra sign changes, so

∂

∂xi′,j′

∂

∂xi,j
permn x = permn−2 x(i, i′; j, j′) (5.5)

and similarly for higher derivatives.
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Recall the definition of the Hilbert function, from Chapter 3.

Proposition 5.2. The Hilbert functions of S/ det⊥n and S/ perm⊥n are

HS/det⊥n
(d) = HS/perm⊥n

(d) =

(
n

d

)2

.

Proof. Consider the maps

ψ : Sd → Rn−d

g 7→ g ∗ detn
(5.6)

and
ψ′ : Sd → Rn−d

g 7→ g ∗ permn

(5.7)

These are linear maps, by the definition of ∗.
The kernel of ψ is the set of degree d polynomials that make detn vanish

under the polar pairing, so it is precisely (det⊥n )d. Similarly, the kernel of
ψ′ is (perm⊥n )d. The image of ψ is the space generated by determinants of
(n − d) × (n − d) submatrices of x by Lemma 5.1, and similarly, the image
of ψ′ is the space generated by permanents of (n− d)× (n− d) submatrices.
Denote these spaces by Dn−d and Pn−d respectively.

Therefore,

(S/ det⊥n )d = (Sd)/(det⊥n )d ∼= Dn−d

and

(S/ perm⊥n )d = (Sd)/(perm⊥n )d ∼= Pn−d.

Hence the dimensions of S/ det⊥n and S/ perm⊥n in degree d are equal to the
dimensions of Dn−d and Pn−d.

By Lemma 1.2, the set of determinants and the set of permanents of
(n − d) × (n − d) submatrices of x are each linearly independent, so the
dimension of each of these spaces is equal to the number of (n− d)× (n− d)
submatrices of x.

To choose such a submatrix, we must independently choose d rows and d
columns to remove from x, out of n rows and n columns. There are

(
n
d

)
ways

of choosing these rows or columns, so the number of submatrices, and hence
the dimension of (R/ det⊥n )d or (R/ perm⊥n )d, is(

n

d

)2

.
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5.2 A description of the ideals det⊥n and perm⊥n

In this section we will give sets of generators for the perpendicular ideals of
the determinant and permanent.

Proposition 5.3. The ideal det⊥n contains the polynomials Xi,jXi′,j′+Xi,j′Xi′,j

for i, i′, j, j′ ∈ {1, . . . , n}.

Our eventual goal is to show that these polynomials generate the entire
ideal when char k 6= 2, but for now, we will satisfy ourselves with showing
that these are in the ideal.

Remark. Note that if i′ = i, this polynomial is 2Xi,jXi,j′ , so if char k 6= 2
(hence 2 is invertible), we may consider Xi,jXi,j′ instead. Similarly, if j′ = j,
the polynomial can be simplified to Xi,jXi′,j, and if both i′ = i and j′ = j,
the polynomial is X2

i,j.

This description is perhaps more useful. It gives a more complete descrip-
tion in characteristic 2, and also allows us to describe perm⊥n . We will thus
restate Proposition 5.3 in this form:

Proposition 5.4. The ideal det⊥n contains the polynomials

• X2
i,j,

• Xi,jXi,j′ for j 6= j′,

• Xi,jXi′,j for i 6= i′, and

• Xi,jXi′,j′ +Xi,j′Xi′,j for i 6= i′ and j 6= j′

where i, i′, j, j′ ∈ {1, . . . , n}. The set of these polynomials is linearly inde-
pendent.

And the result for perm⊥n :

Proposition 5.5. The ideal perm⊥n contains the polynomials

• X2
i,j,

• Xi,jXi,j′ for j 6= j′,

• Xi,jXi′,j for i 6= i′, and

• Xi,jXi′,j′ −Xi,j′Xi′,j for i 6= i′ and j 6= j′ (note the added minus sign)

where i, i′, j, j′ ∈ {1, . . . , n}. The set of these polynomials is linearly inde-
pendent.
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Proof of Proposition 5.4. The linear independence is obvious, since every
monomial appears in only one of the polynomials.

We know from Lemma 5.1 that

∂

∂xi,j
detn x = ± detn−1 x(i; j).

The matrix x(i; j) does not contain the variables xi,j, xi,j′ or xi′,j, so they
do not appear in its determinant. Hence the derivatives ∂

∂xi,j
, ∂
∂xi,j′

and ∂
∂xi′,j

all send detn−1 x(i; j) to 0. Therefore the first three polynomials are in the
determinant.

The fourth polynomial is slightly trickier. Without loss of generality, we
may swap the variables in each term to make i < i′, and still without loss of
generality, we may then swap the first and second term to ensure j < j′.

By the discussion following Lemma 5.1, it is clear that both

∂

∂xi,j

∂

∂xi′,j′
detn x (5.8)

and
∂

∂xi,j′

∂

∂xi′,j
detn x (5.9)

are equal to ± detn−2 x(i, i′; j, j′), since x(i, i′; j, j′) = x(i, i′; j′, j), as illus-
trated in Figure 5.2.

We must now take care with the signs. Since we assumed i < i′ and
j < j′, we know that the sign of ± detn−2 x(i, i′; j, j′) given by Equation (5.8)
is the expected sign, (−1)i+j(−1)i

′+j′ . But since j′ 6< j, the sign given
by Equation (5.9) is the reverse of the expected sign. Therefore, adding
together Equations (5.8) and (5.9) gives 0, so Xi,jXi′,j′ +Xi,j′Xi′,j is also in
the perpendicular ideal.

The proof of Proposition 5.5 is similar, except that

∂

∂xi,j

∂

∂xi′,j′
permn x =

∂

∂xi,j′

∂

∂xi′,j
permn x = permn−2 x(i, i′; j, j′)

with no confusion around signs.
We now come to the major result of this chapter: that the polynomials

in Propositions 5.4 and 5.5 generate the entire ideals. The result was first
proved by Shafiei in [12].

We will borrow some of Shafiei’s terminology: we will call a monomial
in k[X1,1, . . . , Xn,n] acceptable if it contains no two variables from the same
row or column of X, and no variable has exponent greater than 1; and call a
monomial unacceptable otherwise. Thus a monomial is unacceptable if and
only if it is divisible by X2

i,j, Xi,jXi,j′ or Xi,jXi′,j for some i, j, i′, j′.
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Figure 5.2: The derivatives Xi,jXi′,j′ and Xi,j′Xi′,j of the determinant give
the same submatrix. Lines denote deleted rows and columns.

xi,j

xi′,j′





xi,j′

xi′,j


Theorem 5.6 (Shafiei [12, p. 10]). The polynomials listed in Proposition 5.4
generate the ideal det⊥n . In particular, det⊥n is generated by degree 2 polyno-
mials.

Proof. Let I denote the ideal generated by these polynomials. Proposition 5.4
tells us that det⊥n contains I, so we only need to prove the reverse inclusion.

Since the determinant is a homogeneous polynomial, Proposition 4.2 tells
us that det⊥n is a homogeneous ideal, so it suffices to show that there are no
more homogeneous elements in det⊥n .

Suppose f ∈ det⊥n is homogeneous of degree d. Firstly, every term in f is
either acceptable or unacceptable, so we can write

f = funacc. + facc. (5.10)

where funacc. has only unacceptable terms and facc. has only acceptable terms.
Note that any unacceptable monomial is divisible by X2

i,j, Xi,jXi,j′ or
Xi,jXi′,j, so funacc. is in I. Also note that if d > n, by the pigeonhole principle
every term in f must be unacceptable, and we are done. Hence assume d ≤ n.

Now, suppose αXi1,j1 · · ·Xid,jd is a term of facc., with α ∈ k. Without loss
of generality, we can assume i1 < · · · < id. Suppose 1 ≤ a < b ≤ d; then we
can write

αXi1,j1 · · ·Xid,jd = α (Xia,jaXib,jb)
(
Xi1,j1 · · · X̂ia,ja · · · X̂ib,jb · · ·Xid,jd

)
where a hat means the variable is omitted from the list.

Let g(X) =
(
Xi1,j1 · · · X̂ia,ja · · · X̂ib,jb · · ·Xid,jd

)
to simplify notation. Then

αXi1,j1 · · ·Xid,jd − α (Xia,jaXib,jb +Xia,jbXib,ja) g(X)

= α (Xia,jaXib,jb) g(X)− α (Xia,jaXib,jb +Xia,jbXib,ja) g(X)

= −α (Xia,jbXib,ja) g(X)

= −α (Xi1,j1 · · ·Xia,jb · · ·Xib,ja · · ·Xid,jd)
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In effect, by subtracting a multiple of (Xia,jaXib,jb +Xia,jbXib,ja) from the
term, we have transposed ja and jb (and reversed the sign).

Note that a and b were arbitrary. We now recall two facts about permu-
tations:

• For any list j1, . . . , jd there is a permutation that puts them in increas-
ing order, and

• Any permutation can be written as a sequence of transpositions.

We can conclude that by adding and subtracting multiples of the polynomial
(Xia,jaXib,jb +Xia,jbXib,ja) for suitably chosen a and b, we can turn facc. into
a polynomial ford. whose terms Xi1,j1 · · ·Xid,jd have i1 < · · · < id and j1 <
· · · < jd. Therefore, we can amend Equation (5.10) to say

f = funacc. + ftransp. + ford.

where ftransp. is a polynomial in the ideal generated byXia,jaXib,jb+Xia,jbXib,ja

described above, and ford. is a polynomial whose terms are in order.
Now, by definition, f is an element of det⊥n , so f ∗ detn = 0. But by con-

struction, all terms of funacc. are unacceptable, so they are multiples of X2
i,j,

Xi,jXi,j′ and Xi,jXi′,j for some i, j, i′, j′, and thus elements of I. Similarly,
all terms of ftransp. are multiples of Xi,jXi′,j′ +Xi,j′Xi′,j for some i, j, i′, j′, so
ftransp. is also an element of I. Therefore

0 = f ∗ detn

= (funacc. ∗ detn) + (ftransp. ∗ detn) + (ford. ∗ detn)

= 0 + 0 + (ford. ∗ detn)

But

ford =
∑

1≤i1<···<id≤n
1≤j1<···<jd≤n

αI,JXi1,j1 · · ·Xid,jd

where αI,J are coefficients depending on i1, . . . , id and j1, . . . , jd, so

ford. ∗ detn =
∑

1≤i1<···<id≤n
1≤j1<···<jd≤n

±αI,J detn−d x(i1, . . . , id; j1, . . . , jd)

But this is a linear combination of determinants of distinct (n− d)× (n− d)
submatrices of x. Therefore, since the determinants of m ×m submatrices
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of x are linearly independent by Lemma 1.2, every αI,J must be 0. Thus
ford. = 0, and

f = funacc. + ftransp.

is an element of I.
Thus det⊥n ⊆ I, so det⊥n = I.

And the same result holds for the permanent:

Theorem 5.7 (Shafiei [12, p. 10]). The polynomials listed in Proposition 5.5
generate the ideal perm⊥n . In particular, perm⊥n is generated by degree 2
polynomials.

The proof is identical to the proof of Theorem 5.6, except that we subtract
multiples of (Xia,jaXib,jb −Xia,jbXib,ja) to transpose ja and jb, and thus no
reversal of sign occurs.



Chapter 6

Betti numbers

Now that we have completely described the S-modules det⊥n and perm⊥n , our
next goal is to consider their free resolutions. In this chapter, we will give
some Betti tables for S/ det⊥n and S/ perm⊥n for small n; we will use abstract
results about Hilbert functions (specifically Corollary 3.6) to compute one of
the Betti numbers; and finally we will give a set of relations that generates the
entire space of second syzygies in degree 1. We conjecture that these relations
in fact generate all second syzygies of the determinant, and compute the next
Betti number if this is true.

6.1 Computational results

The Betti tables for S/ det⊥n and S/ perm⊥n can be calculated by computer
for small n. Tables 6.1 to 6.7, on pages 52 to 54, were computed using
the Macaulay2 software. The code used is presented in Appendix A. Blank
entries indicate 0. Due to memory limitations, some of these tables could only
be partially computed: where this is the case, there may be more columns,
but each column shown has no more non-zero values.

There are some interesting observations to make about these tables:

• The ring S is a polynomial ring with n2 variables, so Corollary 3.11
tells us that the minimal free resolution of an S-module has length at
most n2. For the complete Betti tables, when n ≤ 4, the minimal free
resolutions of S/ det⊥n and S/ perm⊥n have length exactly n2, so these
resolutions are as long as possible.

• When the complete Betti tables could be computed (so n ≤ 4), the
tables are rotationally symmetric. This is a consequence of the Goren-
stein property and the symmetry of the Koszul resolution.
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Table 6.1: Complete Betti tables for S/ det⊥n and S/ perm⊥n where n = 2.
Also see Appendix B for the full resolution.

(a) S/ det⊥2

0 1 2 3 4
0 1
1 9 16 9
2 1

(b) S/ perm⊥2

0 1 2 3 4
0 1
1 9 16 9
2 1

Table 6.2: Complete Betti tables for S/ det⊥n and S/ perm⊥n where n = 3

(a) S/det⊥3

0 1 2 3 4 5 6 7 8 9
0 1
1 36 160 315 288 100
2 100 288 315 160 36
3 1

(b) S/perm⊥3

0 1 2 3 4 5 6 7 8 9
0 1
1 36 160 315 288 116
2 116 288 315 160 36
3 1
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Table 6.4: Partial Betti tables for S/ det⊥n and S/ perm⊥n where n = 5

(a) S/det5)
⊥

0 1 2 3 · · ·
0 1
1 225 2800 17325
...

(b) S/ perm5)
⊥

0 1 2 3 · · ·
0 1
1 225 2800 17425
2 100 2400
...

Table 6.5: Partial Betti tables for S/ det⊥n and S/ perm⊥n where n = 6

(a) S/ det⊥6

0 1 2 · · ·
0 1
1 441 7840
...

(b) S/ perm⊥6

0 1 2 · · ·
0 1
1 441 7840
2 450
...

Table 6.6: Partial Betti tables for S/ det⊥n and S/ perm⊥n where n = 7

(a) S/ det⊥7

0 1 2 · · ·
0 1
1 784 18816
...

(b) S/ perm⊥7

0 1 2 · · ·
0 1
1 784 18816
2 1470
...

Table 6.7: Partial Betti tables for S/ det⊥n and S/ perm⊥n where n = 8

(a) S/ det⊥8

0 1 · · ·
0 1
1 1296
...

(b) S/ perm⊥8

0 1 · · ·
0 1
1 1296
...
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• When n ≥ 3, the Betti tables of S/ perm⊥n and S/ det⊥n are different.
For example, when n = 3, the numbers in column 4, row 2 and column
5, row 1 are different between the two tables.

• When n ≥ 4, S/ perm⊥n has non-zero Betti numbers in column 2, row
2 and column 3, row 2, while S/ det⊥n has 0 in these positions — this
means that the permanent has additional second and third syzygies
with degree 2 that don’t appear for the determinant.

• These tables were computed over the field k = Z/7. The tables are the
same for most fields considered, but in Z/2 and Z/3, some numbers
change — in particular, over Z/2 the determinant and permanent are
equal, and the Betti tables for S/ det⊥n = S/ perm⊥n are closest to the
tables for the permanent shown here.

Appendix B contains the full details of the resolution of S/ det⊥n when
n = 2.

6.2 Betti numbers β1,2 and β2,3

6.2.1 Betti number β1,2

Now that we have a description of det⊥n , we can begin computing the minimal
free resolution of S/ det⊥n . We have the exact sequence

0→ det⊥n → S → S/ det⊥n → 0

so the minimal resolution begins

0

det⊥n

· · · S S/ det⊥n 0

To find the next component of the minimal resolution, we we need to
know a minimal set of generators of det⊥n . But we found exactly that in
Chapter 5: Theorem 5.6 describes a set of generators, and Proposition 5.4
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asserts that they are linearly independent, and hence minimal. Therefore we
can extend the resolution:

0 0

det⊥n

· · · F1 S S/ det⊥n 0

Since the generators of det⊥n are all degree 2, F1 must be a direct sum of
copies of S(−2), that is,

F1 = S(−2)β1,2 (6.1)

where β1,2 is the number of generators of det⊥n .
We can compute the number β1,2 using the description of the generators

given in Proposition 5.3. This lets us specify a generator by first picking i
and i′ from {1, . . . , n}, where the order doesn’t matter but repetitions are
allowed, and then independently picking j and j′ with the same rules. Thus
the number of generators is1

β1,2 =

(
n+ 1

2

)2

(6.2)

=
1

4
n2(n+ 1)2. (6.3)

1We could also use the description from Proposition 5.4 to compute this value.
The first type of generator, X2

i,j , is specified by choosing i and j independently out of

{1, . . . , n}, so there are n2 of this type of generator.
The second type is specified by choosing one row out of n (choosing i), and then picking

a subset of 2 elements of that row (choosing j and j′); hence there are n
(
n
2

)
of these

generators. Similarly, there are n
(
n
2

)
of the third type of generator.

The fourth type of generator is specified by choosing i and i′ as distinct elements of

{1, . . . , n}, and then choosing j and j′ independently, so there are
(
n
2

)2
of these generators.

Therefore the total number is

n2 + 2n

(
n

2

)
+

(
n

2

)2

=

(
n +

(
n

2

))2

=

(
n + 1

2

)2

which agrees with Equation (6.2).
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For small values of n, this evaluates to be

n 1 2 3 4 5 6 7 8
β1,2 1 9 36 100 225 441 784 1296

which agrees with the values computed with Macaulay2.

6.2.2 Betti number β2,3

The minimal free resolution of S/ det⊥n thus far is

· · · F2 S(−2)β1,2 S S/ det⊥n 0

with F2 = S(−3)β2,3 ⊕S(−4)β2,4 ⊕ · · · : we know that the least a with R(−a)
appearing in this sum is 3, by Proposition 3.13.

We have enough information to compute the next Betti number, β2,3,
the number of linear relations among the generators of det⊥n . As above, we
will use the formula for HM(d) in terms of the Hilbert functions of its free
resolution, given in Corollary 3.6.

To illustrate this idea, we will first use it to verify our calculation of β1,2.
By Corollary 3.6, we have the expression

HS/det⊥n
(2) =

∑
i

(−1)iHFi(2).

Due to Proposition 3.13, the only components of the resolution that are
non-zero in degree 2 are F0 = S and F1 = S(−2)β1,2 . Therefore

HS/det⊥n
(2) = HF0(2)−HF1(2)

= HS(2)−HS(−2)β1,2 (2). (6.4)

Also, the degree 2 part of S(−2)β1,2 is the degree 0 part of Sβ1,2 , which is
simply kβ1,2 as a vector space, hence

HS(−2)β1,2 (2) = β1,2. (6.5)

We also know HS/det⊥n
(2): by Proposition 5.2, it is

HS/det⊥n
(2) =

(
n

2

)2

. (6.6)
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And HS(2) is given by Lemma 3.4, noting that S is a polynomial ring with
n2 variables:

HS(2) =

(
n2 + 1

2

)
. (6.7)

Therefore, putting Equations (6.4) to (6.7) together,

β1,2 = HS(2)−HS/det⊥n
(2)

=

(
n2 + 1

2

)
−
(
n

2

)2

=
1

4
n2(n+ 1)2

which agrees with the value in Equation (6.3).
Now, let us apply this method to compute β2,3 by examining HS/det⊥n

(3).
As before, none of the components of the minimal resolution beyond F2 have
a non-zero part in degree 3, so Corollary 3.6 gives us

HS/det⊥n
(3) = HS(3)−HS(−2)β1,2 (3) +HF2(3). (6.8)

The degree 3 part of F2 is kβ2,3 , as above, so

HF2(3) = β2,3. (6.9)

By Proposition 5.2,

HS/det⊥n
=

(
n

3

)2

. (6.10)

And by Lemma 3.4,

HS(3) =

(
n2 + 2

3

)
. (6.11)

The degree 3 part of S(−2)β1,2 is β1,2 times the degree 3 part of S(−2), which
is the degree 1 part of S. Thus

HS(−2)β1,2 (3) = β1,2

(
n2

1

)
=

(
n+ 1

2

)2

n2. (6.12)
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So when we combine Equations (6.8) to (6.12), we find

β2,3 = HS/det⊥n
(3)−HS(3) +HS(−2)β1,2

(3)

=

(
n

3

)2

−
(
n2 + 2

3

)
+

(
n+ 1

2

)2

n2

=
1

9
n2(n+ 1)2(n− 1)(n+ 2) (6.13)

= 4

(
n+ 1

3

)(
n+ 2

3

)
. (6.14)

For small values of n, this equates to

n 1 2 3 4 5 6 7 8
β2,3 0 16 160 800 2800 7840 18816 40320

which is the same as the values computed by Macaulay2 in Tables 6.1 to 6.6.

6.3 A description of the linear second syzy-

gies of S/ det⊥n

In this section we will give a list of relations among the generators of det⊥n
that give a basis for F2 in degree 1. This list will not be as simple as the
list of generators for det⊥n found in Chapter 5, but fortunately this time we
already know how many relations to expect: this number is β2,3. Therefore,
to give a complete description of the linear second syzygies, we need only
find enough linearly independent relations.

It will help to have a general description of the dimension of some spaces
of relations. To do this, we will exploit the symmetry of the determinant
under permutations of the rows and columns, discussed after Theorem 1.8.

A relation ρ is a linear combination of the generators of det⊥n , with coeffi-
cients in S. When we say a relation “involves” some variables, we mean that
these variables appear in either the generators or the coefficients. Define the
matrix

X =

X1,1 . . . X1,n

...
...

Xn,1 . . . Xn,n

 .
analogously to x.

Lemma 6.1. Suppose ρ is a degree d relation involving variables from some
p×q submatrix mρ of X, and that this is the smallest submatrix containing all
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variables in ρ. Then the orbit of ρ under Sn× Sn, where Sn is the symmetric
group and (σ, µ) ·Xi,j = Xσi,µj, generates a subspace of (F2)d. The dimension
of this subspace is

Ω(ρ)

(
n

p

)(
n

q

)
(6.15)

where Ω(ρ) is the dimension of the orbit of ρ under the action Sp×Sq on the
p× q submatrix.

Proof. Denote the orbit of ρ under a group G by G · ρ.
We know from Theorem 1.8 that detn x is symmetric under permutations

of the rows and columns by Sn × Sn. It follows that det⊥n is also symmetric
under this action, so it has a symmetric set of generators. We note that
the set of generators we described in Chapter 5 is indeed symmetric under
Sn × Sn.

Therefore the module of relations among these generators must be sym-
metric too, hence the action of Sn×Sn sends relations to relations. Therefore
the orbit of ρ stays within the set of relations, so the vector space generated
by the orbit is a subspace of the space of degree d relations.

Let P = {i1, . . . , ip} and Q = {j1, . . . , jq} be subsets of {1, . . . , n}, where
i1, . . . , ip are the rows appearing in the submatrix m, and j1, . . . , jq are the
columns. Consider the set GP ⊆ Sn of permutations that fix P , setwise (so
GP is the set of permutations σ such that σ(i) ∈ P iff i ∈ P ). It is clear that
GP is a subgroup of Sn, although it is not in general a normal subgroup.

If a permutation fixes P , then it must also fix P c = {1, . . . , n} \ P ,
so elements of GP can be written uniquely as a composition φ ◦ ψ of a
permutation φ on P and a permutation ψ on P c. Therefore the number
of elements of GP is p!(n− p)!, and the number of cosets, denoted [Sn : GP ],
is

[Sn : GP ] =
n!

p!(n− p)!

=

(
n

p

)
(6.16)

Similarly, [Sn : GQ] =
(
n
q

)
.

Define the group GP×Q = GP ×GQ ⊆ Sn × Sn. The index of this is

[Sn × Sn : GP×Q] =

(
n

p

)(
n

q

)
The left cosets of GP×Q partition Sn × Sn. If H = (σ, µ)GP×Q is a coset

of GP×Q, let k{H · ρ} be the vector space generated by the orbit of ρ under
H.
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We claim that the vector spaces k{H · ρ} are independent. By construc-
tion, H · ρ is a set of relation with variables in the submatrix whose rows are
σ(P ) and whose columns are µ(Q). Since p and q are minimal, every row and
every column of this matrix must contain a variable appearing in (σ, µ) · ρ,
so no term of (σ, µ) · ρ can appear in any other p × q submatrix. Therefore
there can be no cancellation in a linear combination of vectors from different
spaces k{H · ρ}, so the spaces are independent.

Therefore, we have

dim(Sn × Sn · ρ) = dim
( ∑

cosets H

k{H · ρ}
)

=
∑

cosets H

dim(k{H · ρ})

Since every coset has the same number of elements and the set of relations
is symmetric, every space k{H · ρ} has the same dimension. In particular,
GP×Q is a coset of itself, so

dim(Sn × Sn · ρ) = [Sn × Sn : GP×Q] dim(k{GP×Q · ρ})

But [Sn × Sn : GP×Q] =
(
n
p

)(
n
q

)
, and we defined Ω(ρ) = dim(k{GP×Q · ρ}).

Therefore

dim(Sn × Sn · ρ) = Ω(ρ)

(
n

p

)(
n

q

)
. (6.17)

There is one other symmetry which will be useful:

Lemma 6.2. Define the transposition action −> : S → S that sends Xi,j 7→
Xj,i. Then if ρ is a relation, then ρ> is a relation.

Proof. We know that detn is symmetric under transposition, so det⊥n has a
symmetric set of generators. We note that the set described in Chapter 5 is
such a set, so the relations are also symmetric.

We now have a way of using a single relation to construct a large set of
relations, by permutating and transposing, and we have a systematic way of
computing the dimension of the resulting space of relations, based on a small
submatrix of X.

We now list some relations explicitly. Eventually, we aim to prove that
these relations, and their orbits under Sn × Sn and transposing, generate all
linear relations.
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Proposition 6.3. The following are relations between the generators of det⊥n ,
when n is large enough for all the variables to be defined (so n ≥ 2 or n ≥ 3):

ρ1 = X1,1(X
2
1,2)−X1,2(X1,1X1,2) (6.18)

ρ2 = X1,1(X1,2X1,3)−X1,2(X1,1X1,3) (6.19)

ρ3 = X1,2(X1,1X2,1)−X2,1(X1,1X1,2) (6.20)

ρ4 = X1,1(X1,1X2,2 +X1,2X2,1)−X2,2(X
2
1,1)−X1,2(X1,1X2,1) (6.21)

ρ5 = X1,3(X1,1X2,2 +X1,2X2,1)−X2,2(X1,1X1,3)−X2,1(X1,2X1,3) (6.22)

ρ6 = X1,2(X2,1X3,3 +X2,3X3,1) +X1,3(X2,1X3,2 +X2,2X3,1)
−X2,1(X1,2X3,3 +X1,3X3,2)−X3,1(X1,2X2,3 +X1,3X2,2)

(6.23)

Proof. Expand the brackets.

This notation makes it clear that these are in fact relations, but the
symmetries are hard to see. We will introduce some pictorial notation to
help.

Each term of these relations is shown in the minimal p × q submatrix
mρ containing the variables involved in the resolution, from Lemma 6.1.
Denote the coefficient by a black dot, and denote the generator of det⊥n by
a rectangle with corners at the positions of the generator’s variables: the
generator Xi,jXi′,j′ +X1,j′Xi′,j is a rectangle between the i, jth, i, j′th, i′, jth
and i′, j′th positions of the matrix, the generator Xi,jXi,j′ is a rectangle along
the ith row between the jth and j′th positions, and the generator X2

i,j is a
square in the i, jth position. For example,

X1,2(X1,1X2,1) =

[ ]
.

In this notation,

ρ1 =
[ ]

−
[ ]

(6.24)

ρ2 =
[ ]

−
[ ]

(6.25)

ρ3 =

[ ]
−
[ ]

(6.26)

ρ4 =

[ ]
−
[ ]

−
[ ]

(6.27)
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ρ5 =

[ ]
−
[ ]

−
[ ]

(6.28)

ρ6 =

 +

 −
 −

  (6.29)

Let us compute the dimensions of the orbits of these relations. Note that
although some of these relations only make sense when n ≥ 2 or n ≥ 3,
we can still use the formula from Equation (6.15) in Lemma 6.1 to compute
the dimensions of the spaces their orbits generate when n is too small, since(
n
p

)
= 0 if n < p.

Proposition 6.4. The space of relations generated by permutations of ρ1 on
mρ1 is

Ω(ρ1) = 2. (6.30)

Proof. Since ρ1 is a relation on a 1 × 2 matrix, the permutation group is
S1 × S2

∼= S2, so the orbit of ρ1 consists of

(1) · ρ1 =
[ ]

−
[ ]

and

(1 2) · ρ1 =
[ ]

−
[ ]

.

Neither term of (1 2) · ρ1 appears in (1) · ρ1 or vice versa, so they are linearly
independent. Therefore the dimension of the subspace of (F2)1 that they
generate has dimension 2.

Proposition 6.5. The space of relations generated by permutations of ρ2 on
mρ2 is

Ω(ρ2) = 2. (6.31)

Proof. The relation ρ2 is on a 1 × 3 matrix, so the permutation group is
S1 × S3

∼= S3. We note that (1 2) turns the first term into the second and
vice versa, so (1 2)·ρ2 is just −ρ2, which is not a linearly independent relation.
We thus only need to consider cosets of {(1), (1 2)}, so the orbit is

(1) · ρ2 = −(1 2) · ρ2 =
[ ]

−
[ ]

,

(1 2 3) · ρ2 = −(1 3) · ρ2 =
[ ]

−
[ ]

, and

(1 3 2) · ρ2 = −(2 3) · ρ2 =
[ ]

−
[ ]

The first two of these relations are clearly linearly independent, but we
observe that

(1) · ρ2 + (1 2 3) · ρ2 + (1 3 2) · ρ2 = 0.

Therefore the maximal linearly independent set has two elements, and the
dimension of the vector space generated by these relations is 2.
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Proposition 6.6. The space of relations generated by permutations of ρ3 on
mρ3 is

Ω(ρ3) = 4. (6.32)

Proof. The permutation group of ρ3 is S2 × S2, and the orbit is

(
(1), (1)

)
· ρ3 =

[ ]
−
[ ]

,

(
(1), (1 2)

)
· ρ3 =

[ ]
−
[ ]

,

(
(1 2), (1)

)
· ρ3 =

[ ]
−
[ ]

, and

(
(1 2), (1 2)

)
· ρ3 =

[ ]
−
[ ]

.

The terms of these are entirely distinct, so they are clearly linearly indepen-
dent, and the dimension of the space they generate is 4.

Proposition 6.7. The space of relations generated by permutations of ρ4 on
mρ4 is

Ω(ρ4) = 4. (6.33)

Proof. Recall that

ρ4 =

[ ]
−
[ ]

−
[ ]

. (6.27)

We already observed in Proposition 6.6 that the orbit of

[ ]
under

S2×S2 is a linearly independent set. No other element of this orbit appears in
ρ4, so the orbit of ρ4 must be linearly independent. Therefore the dimension
of the space it generates is |S2 × S2| = 4.

Remark. Note that we could have made the same argument with the orbits

of

[ ]
or

[ ]
instead.

Proposition 6.8. The space of relations generated by permutations of ρ5 on
mρ5 is

Ω(ρ5) = 6. (6.34)
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Proof. Recall that

ρ5 =

[ ]
−
[ ]

−
[ ]

. (6.28)

The action of
(
(1), (1 2)

)
on ρ5, that is, swapping the first and second

columns, interchanges the second and third terms of ρ5, so overall it has no
effect. However, every other permutation alters the first term, so the total
number of linearly independent relations in the orbit of ρ5 under S2 × S3

is the number of cosets of the subgroup generated by
(
(1), (1 2)

)
, which is

2!3!/2 = 6.

Proposition 6.9. The space of relations generated by permutations of ρ6 on
mρ6 is

Ω(ρ6) = 4. (6.35)

Proof. Recall that

ρ6 =

 +

 −
 −

  . (6.29)

Notice that in each of the terms, the variables in the generator (i.e. the
corners of the rectangle) are exactly the positions in the matrix that are not
in the same row or column as the coefficient (i.e. the dot). Thus with this
information, we need only specify the position of the coefficient to specify
the term. We therefore introduce a more concise notation: on a 3×3 matrix,
mark the positions where a coefficient appears, with a plus if that term is
added and a minus if the term is subtracted; thus:

ρ6 =

 + +

−
−


In this notation, a pattern appears: we can create ρ6 by putting a plus sign
in all positions in the first row, and a minus sign everywhere in the first
column, and cancelling the plus and the minus in position (1, 1).

In this new notation it is obvious that the permutations
(
(1), (2 3)

)
and(

(2 3), (1)
)

have no effect on ρ6. (We can see this in the dots-and-rectangles
notation too: for example,

(
(1), (2 3)

)
swaps the first two terms and leaves

the second two unchanged.) Therefore we only need to consider cosets of the
subgroup generated by these two permutations: this subgroup is isomorphic
to Z/2× Z/2, so there are (3!)2/4 = 9 cosets.
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Give ρ6 the new name R1,1, and generalise this notation to its permu-
tations so that that Ri,j has plusses in the ith row and minuses in the
jth column. Equivalently, Ri,j =

(
(1 i), (1 j)

)
· ρ6, taking (1 i) = (1) if

i = 1. The 9 cosets we are considering correspond to the 9 relations Ri,j with
i, j ∈ {1, 2, 3}.

To examine the linear dependence in these diagrams, we have the follow-
ing lemma:

Lemma 6.10. R1,σ1 + R2,σ2 + R3,σ3 = 0 for any σ ∈ S3. Any linear combi-
nation of the Ri,js that cancels to 0 is a sum of linear combinations of this
form.

Proof of lemma. To see that this equation holds, observe that each Ri,σi puts
a plus sign in every position in the ith row and a minus sign everywhere in
the (σi)th column, so after adding all three Ri,σi, there is a plus sign in every
position in every row, and a minus sign everywhere in every column. These
all cancel, leaving 0.

Suppose we have some linear combination
∑

i,j αi,jRi,j that equals zero.
Construct the matrix

α =

α1,1 α1,2 α1,3

α2,1 α2,2 α2,3

α3,1 α3,2 α3,3

 .
Since each Ri,j contributes +1 everywhere in the ith row and −1 in the jth
column, the condition that the linear combination equals zero is equivalent
to the condition that for each i, j, the sum of the entries of the ith row
of α is equal to the sum of the jth column, which implies that all rows
and all columns have the same sum. But then α is a semi-magic matrix, so
Theorem 1.12 tells us that α is a linear combination of permutation matrices,
and permutation matrices correspond exactly to R1,σ1 +R2,σ2 +R3,σ3.

We claim that the least generating set of the Ri,js has four elements. To
do this, we must show that no set of three of the Ri,js produces all of them,
and that there is a set of four that does.

Suppose we have a set of three of the Ri,js. By symmetry, there are only
four situations to consider, shown in Figure 6.1:

• All three of the Ri,j are in the same row or column.

In this case, without loss of generality the three Ri,js might as well be
R1,1, R1,2 and R1,3. But Lemma 6.10 tells us that no more relations
can be made.

• Two of the three Ri,j are in the same row or column, in which case:
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Figure 6.1: Relations generated by some sets of Ri,j. The starting relations
are highlighted in grey, and the other relations they generate are also shown.

(a) All three Ri,j in the same row R1,1 R1,2 R1,3


(b) Two Ri,j in the same row, the third
in the same column as another R1,1 R1,2

R2,1 R2,2

R3,3


(c) Two Ri,j in the same row, the third
not in the same column as another R1,1 R1,2

R2,3

R3,1 R3,2


(d) No Ri,j in the same row or column R1,1

R2,2

R3,3


(e) A set of four Ri,j that generate all R1,1 R1,2 R1,3

R2,1 R2,2 R2,3

R3,1 R3,2 R3,3


– The third Ri,j is in the same column or row as another.

Without loss of generality, we may take these to be R1,1, R1,2 and
R2,1. Using Lemma 6.10, we also obtain R3,3 = −R1,2 − R2,1 and
R2,2 = −R1,1 −R3,3, but no other Ri,j.

– The third Ri,j is not in the same column or row as another.

Without loss of generality, take R1,1, R1,2 and R2,3. We can also
create R3,1 = −R1,2 − R2,3 and R3,2 = −R1,1 − R2,3, but nothing
else.

• None of the three Ri,j are in the same row or column.

We may as well take R1,1, R2,2 and R3,3. Then no other Ri,j can be
produced.

Hence a set of three of the Ri,j is not enough to generate all nine.
However, the set R1,2, R1,3, R2,1 and R3,1 is sufficient. We obtain:

• R2,2 = −R1,3 −R3,1,

• R2,3 = −R1,2 −R3,1,

• R3,2 = −R1,3 −R2,1,



68 CHAPTER 6. BETTI NUMBERS

• R3,3 = −R1,2 −R2,1, and

• R1,1 = −R2,2 −R3,3.

So the least spanning set of the nine Ri,j has four elements. Therefore
the dimension of the space they span, that is, the dimension of the space
generated by the permutations of ρ6, is 4.

Finally, we can put this information together to give a full description of
the linear relations.

Theorem 6.11. The permutations of the six relations ρ1, . . . , ρ6 and their
transposes generate the entire space of linear second syzygies.

Proof. First, consider the transposes of these six relations. The relations ρ1,
ρ2 and ρ5 are on strictly rectangular matrices, so their transposes are clearly
distinct relations. However, the transpose of ρ3 is simply −ρ3, the transpose
of ρ4 is ρ4 + ρ3, and the transpose of ρ6 is −ρ6, so these three transposes do
not contribute any new linearly independent relations.

Note that where the orbits of ρ and its transpose are independent (i.e. for
ρ1, ρ2 and ρ5), by symmetry the dimension of the space generated by both ρ
and its transpose is

Ω(ρ)

(
n

p

)(
n

q

)
+ Ω(ρT )

(
n

q

)(
n

p

)
= 2Ω(ρ)

(
n

p

)(
n

q

)
.

We claim that the spaces generate by the permutations of ρ1, . . . , ρ6 and
permutations of the transposes of ρ1, ρ2 and ρ5 are independent vector spaces.
This is obvious: no permutation of any term in any of these relations appears

in any other, with the exception of

[ ]
in both ρ3 and ρ4, whose other

terms are entirely distinct. Thus there can be no cancellation in a sum of
vectors from the corresponding spaces.

Therefore the dimension of the space spanned by the orbit of all these
relations is the sum of the dimensions of the spaces of the individual relations’
orbits. Call this space V . We can use the formula of Equation (6.15) in
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Lemma 6.1 to compute this:

dimV = 2Ω(ρ1)

(
n

1

)(
n

2

)
+ 2Ω(ρ2)

(
n

1

)(
n

3

)
+ Ω(ρ3)

(
n

2

)(
n

2

)
+ Ω(ρ4)

(
n

2

)(
n

2

)
+ 2Ω(ρ5)

(
n

2

)(
n

3

)
+ Ω(ρ6)

(
n

3

)(
n

3

)
= 2 · 2

(
n

1

)(
n

2

)
+ 2 · 2

(
n

1

)(
n

3

)
+ 4

(
n

2

)(
n

2

)
+ 4

(
n

2

)(
n

2

)
+ 2 · 6

(
n

2

)(
n

3

)
+ 4

(
n

3

)(
n

3

)
=

1

9
n2(n+ 1)2(n− 1)(n+ 2) (6.36)

This is exactly the formula of β2,3 computed in Equation (6.13), so the vector
space generated by these relations is the entire space of linear relations.

6.4 Further conjectures

Everything we discussed in Sections 6.2 and 6.3 applies to the perpendicular
ideal of the permanent as well as the determinant, up to changing some signs.
In particular, the calculations of β1,2 and β2,3 in Section 6.2 still hold, with no
changes required beyond replacing “det” with “perm”; and the linear second
syzygies are generated by the relations

ρ′1 = X1,1(X
2
1,2)−X1,2(X1,1X1,2) (6.37)

ρ′2 = X1,1(X1,2X1,3)−X1,2(X1,1X1,3) (6.38)

ρ′3 = X1,2(X1,1X2,1)−X2,1(X1,1X1,2) (6.39)

ρ′4 = X1,1(X1,1X2,2 −X1,2X2,1)−X2,2(X
2
1,1) +X1,2(X1,1X2,1) (6.40)

ρ′5 = X1,3(X1,1X2,2 −X1,2X2,1)−X2,2(X1,1X1,3) +X2,1(X1,2X1,3) (6.41)

ρ′6 = −X1,2(X2,1X3,3 −X2,3X3,1) +X1,3(X2,1X3,2 −X2,2X3,1)
+X2,1(X1,2X3,3 −X1,3X3,2)−X3,1(X1,2X2,3 −X1,3X2,2)

(6.42)

with the same result in Theorem 6.11. (The proof of Proposition 6.9 needs
to be modified slightly: define R′a,b to have (−1)a+j in the jth entry of the

ath row, and (−1)i+b+1 in the ith entry of the bth column. We still have the
relation R′1,1 +R′2,2 +R′3,3 = 0, so the rest of the proof still holds.)
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One significant difference between the syzygies of S/ det⊥n and S/ perm⊥n ,
demonstrated in the computed Betti tables in Section 6.1 (Tables 6.1 to 6.7),
is that the linear second syzygies generate all second syzygies of S/ det⊥n for
n ≤ 8, but this is not true for S/ perm⊥n (for 4 ≤ n ≤ 8). In other words, β2,4
is non-zero for S/ perm⊥n for 4 ≤ n ≤ 8, but β2,j = 0 when j 6= 3 for S/ det⊥n ,
n ≤ 8.

We conjecture that this pattern continues for S/ det⊥n :

Conjecture 6.12. The relations listed in Proposition 6.3 generate all second
syzygies of S/ det⊥n , not just the linear syzygies, when the characteristic of k
is not 2. In other words, β2,j = 0 for all j 6= 3.

Remark. When k has characteristic 2, the determinant and the permanent
are equal. The first few Betti numbers of S/ det⊥n = S/ perm⊥n , up to the
third column of the Betti table, are the same as in the Betti tables for the
permanent, Tables 6.1b to 6.7b.

If this conjecture is true, we can use the ideas of Section 6.2 to calculate
the next Betti number, β3,4.

Corollary 3.6 gives the formula

HS/det⊥n
(4) =

∑
i

(−1)iHFi(4)

= HS(4)−HS(−2)β1,2 (4) +HS(−3)β2,3 (4)−HF3(4) (6.43)

using Proposition 3.13 to conclude that there are no more non-zero terms.
We know HS/det⊥n

(4) from Proposition 5.2: it is

HS/det⊥n
(4) =

(
n

4

)2

.

Lemma 3.4 says

HS(4) =

(
n2 + 3

4

)
.

We have

HS(−2)β1,2 (4) = β1,2HS(2)

=

(
n+ 1

2

)2(
n2 + 1

2

)
from Equation (6.2); similarly,

HS(−3)β2,3 (4) = β2,3HS(1)

= 4

(
n+ 1

3

)(
n+ 2

3

)
n2
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from Equation (6.14); and

HF3(4) = β3,4.

Putting this all together,

β3,4 = 4

(
n+ 1

3

)(
n+ 2

3

)
n2 −

(
n+ 1

2

)2(
n2 + 1

2

)
+

(
n2 + 3

4

)
−
(
n

4

)2

=
1

192
(n− 1)n2(n+ 1)2(n+ 2)(5n2 + 5n− 18). (6.44)

For small values of n, this equals

n 1 2 3 4 5 6 7 8
β3,4 0 9 315 3075 17325 70560 231084 646380

which agrees with Tables 6.1 to 6.4, as expected.

6.5 Closing remarks

These results suggest some avenues for further investigation.

• An obvious first step would be to prove (or disprove!) Conjecture 6.12,
thus confirming the calculation in Equation (6.44).

• Similarly, it would be interesting to compute β2,4 for the permanent, i.e.
the number of second syzygies with degree 2, or even to give a general
description of generators for these syzygies, as this number measures
the extent to which Conjecture 6.12 fails for the permanent.

• Another way of extending these results would be to compute higher
Betti numbers, e.g. β4,5, β5,6, . . . , and to give explicit descriptions of
the syzygies. This should be done mathematically, but it would also
help to resolve the memory issues with the Macaulay2 computations
and compute more of the Betti tables for small n. Finding a complete
description of the linear third syzygies would also help to compute β2,4,
using the techniques in Equation (6.44).

• More broadly, comparison of the determinant and permanent falls un-
der the purview of algebraic complexity theory. As mentioned in the
introduction, research in this area of mathematics focusses on comput-
ing the determinantal complexity of the permanent and finding bounds
for this number in terms of n. It is conceivable that by considering
the algebraic and homological properties of the apolar ideals, better
bounds could be found.



Appendix A

Macaulay2 code for computing
Betti tables

In Chapter 6, we computed some Betti tables for S/ det⊥n and S/ perm⊥n using
Macaulay2 — see Tables 6.1 to 6.7. The code used to compute them is shown
below.

Listing A.1: Macaulay2 code to compute Betti tables Tables 6.1 to 6.7

−− Set a f i e l d : the f i e l d o f i n t e g e r s modulo 7 i s sma l l
enough to compute w i th qu i c k l y , but doesn ’ t have

too sma l l a c h a r a c t e r i s t i c t ha t t h i n g s c a n c e l
u n e xp e c t e d l y

kk = ZZ/7

−− Set the s i z e o f the mat r i x : e . g . n = 2 , 3 , 4 , . . .

n = 4

−− De f i n e the po l y nom i a l r i n g

Vars = f l a t t en apply (n , i −> apply (n , j −> X ( i , j ) ) )
S = kk [ Vars ]

−− L i s t the g e n e r a t o r s o f the de t e rm inan t a p o l a r i d e a l

DetGen = f l a t t en f l a t t en f l a t t en apply (n , i −> apply (n ,
j −> apply (n , k −> apply (n , l −> X ( i , j )∗X (k , l ) + X (
i , l )∗X (k , j ) ) ) ) )
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−− L i s t the g e n e r a t o r s o f the permanent a p o l a r i d e a l

PerGen1 = f l a t t en f l a t t en f l a t t en apply (n , i −> apply (n ,
j −> apply (n , k −> apply (n , l −> X ( i , j )∗X (k , l ) − X (
i , l )∗X (k , j ) ) ) ) )

PerGen2 = f l a t t en apply (n , i −> apply (n , j −> X ( i , j ) ˆ2) )
PerGen3 = f l a t t en f l a t t en apply (n , i −> apply (n , j −>

apply (n , k −> X ( i , j )∗X ( i , k ) ) ) )
PerGen4 = f l a t t en f l a t t en apply (n , i −> apply (n , j −>

apply (n , k −> X ( i , j )∗X (k , j ) ) ) )

−− De f i n e the a p o l a r i d e a l s i n te rms o f the g e n e r a t o r s

I d e t = trim idea l DetGen
I p e r = trim idea l j o i n ( PerGen1 , PerGen2 , PerGen3 ,

PerGen4 )

−− De f i n e the q u o t i e n t s

Mdet = Sˆ1/ I d e t
Mper = Sˆ1/ I p e r

−− H i l b e r t f u n c t i o n

apply (10 , i −> hi lbertFunct ion ( i , Mdet ) )
apply (10 , i −> hi lbertFunct ion ( i , Mper ) )

−− Compute the r e s o l u t i o n s : i n c r e a s e Leng thL im i t to
compute more components o f the r e s o l u t i o n

ResDet = re so lut ion (Mdet , Leng thL im i t => 6)
ResPer = re so lut ion (Mper , Leng thL im i t => 6)

−− Compute the B e t t i t a b l e s

bet t i ResDet
bet t i ResPer
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The minimal free resolution of S/ det⊥2

When n = 2, n is large enough that the minimal free resolution of S/ det⊥n is non-trivial, but small enough that the
resolution can fit on a page. We present this resolution here. The resolution of S/ perm⊥2 is similar but with some
changes in sign.

Up to isomorphism, the minimal free resolution of S/ det⊥2 is as follows:

0 S(−6) S(−4)9 S(−3)16 S(−2)9 S S/ det⊥2 0
d4 d3 d2 d1

The differentials are:

d1 =
[
X2

1,1 X2
1,2 X2

2,1 X2
2,2 X1,1X1,2 X2,1X2,2 X1,1X2,1 X1,2X2,2 (X1,1X2,2 +X1,2X2,1)

]
,
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d2 =



X1,2 X2,1 0 0 0 0 0 0 0 0 0 0 −X2,2 0 0 0
0 0 X1,1 X2,2 0 0 0 0 0 0 0 0 0 −X2,1 0 0
0 0 0 0 X1,1 X2,2 0 0 0 0 0 0 0 0 −X1,2 0
0 0 0 0 0 0 X1,2 X2,1 0 0 0 0 0 0 0 −X1,1

−X1,1 0 −X1,2 0 0 0 0 0 X2,1 X2,2 0 0 −X2,1 0 0 0
0 0 0 0 0 −X2,1 0 −X2,2 0 0 X1,1 X1,2 0 0 0 −X1,2

0 −X1,1 0 0 −X1,2 0 0 0 −X1,2 0 −X2,2 0 0 0 −X2,2 0
0 0 0 −X1,2 0 0 −X2,2 0 0 −X1,1 0 −X2,1 0 −X1,1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 X1,1 X1,2 X2,1 X2,2


,

d3 =



X2,1 0 0 0 −X2,2 0 0 0 0
−X1,2 0 0 0 0 −X2,2 0 0 0

0 X2,2 0 0 X2,1 0 0 0 0
0 −X1,1 0 0 0 0 −X2,1 0 0
0 0 X2,2 0 0 X1,2 0 0 0
0 0 −X1,1 0 0 0 0 −X1,2 0
0 0 0 X2,1 0 0 X1,1 0 0
0 0 0 −X1,2 0 0 0 X1,1 0
X1,1 0 0 0 0 −X1,2 0 0 −X2,2

0 X1,2 0 0 −X1,1 0 0 0 X2,1

0 0 −X2,1 0 0 0 0 X2,2 X1,2

0 0 0 −X2,2 0 0 X1,2 0 −X1,1

0 0 0 0 −X1,2−X2,1 0 0 0
0 0 0 0 X1,1 0 −X2,2 0 0
0 0 0 0 0 X1,1 0 −X2,2 0
0 0 0 0 0 0 X1,2 X2,1 0



, d4 =



X2
2,2

−X2
2,1

X2
1,2

−X2
1,1

X2,1X2,2

−X1,2X2,2

X1,1X2,1

−X1,1X1,2

X1,1X2,2 +X1,2X2,1


.



Bibliography

[1] Michael Artin. Algebra. Prentice Hall, 2nd edition, 2011.

[2] Michael Atiyah and Ian G. MacDonald. Introduction to commutative
algebra. Addison–Wesley series in mathematics. Addison–Wesley Pub-
lishing Company, Reading, Massachusetts, 1969.

[3] David Eisenbud. Commutative algebra: with a view toward algebraic
geometry. Number 150 in Graduate texts in mathematics. Springer Sci-
ence+Business Media, Inc., New York, 2004.

[4] David Eisenbud. The geometry of syzygies: a second course in commu-
tative algebra and algebraic geometry. Number 229 in Graduate texts in
mathematics. Springer Science+Business Media, Inc., New York, 2005.
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