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Chapter 1

Introduction

Quantum Computing (QC) is a form of computation that has been shown to outperform classical
computing on several tasks. These tasks include factoring numbers, querying databases, and some
aspects of machine learning. There has been little work done on using Quantum Computing to
achieve speedups in areas relevant to the study of inductive reasoning, reinforcement learning and
algorithmic information theory.

By itself, inductive reasoning is a powerful tool that can solve a myriad of problems. One of the
greatest of these, the problem of Artificial General Intelligence (AGI), is unlikely to be solved by
inductive reasoning alone. Hutter (2005) presented a theoretical solution to the problem of AGI with
the optimal agent AIXI. The agent AIXI is a combination of reinforcement learning and algorithmic
information theory. AIXI is unfortunately incomputable, however it can be approximated. In this
thesis we present Quantum Algorithms which improve on the classical method of approximating
AIXI.

In Chapter 2, we will give a short description of the background required for this thesis; this
includes computability, probability, and computational complexity theory. In Chapter 3, we will
describe the problem of induction, specifically inductive reasoning, as well as some approaches to the
problem of induction. This will include an explanation of Kolmogorov complexity and Solomonoff
Induction.

In Chapter 4, we will describe quantum computing, from its inception to the present; the
foundation of quantum complexity theory; advances in quantum computability; and some well-
known quantum algorithms which provide large speedups over their classical counterparts.

In Chapter 5, we go over the hardness of counting, specifically the implications of a fast classical
or quantum algorithm.

In Chapter 6, we discuss the Speed prior, and how computing the Speed prior relates to counting,
and that therefore it is unlikely that there exists an exponential speedup for it with quantum
computing; we then describe some of the classical algorithms which could compute the Speed prior,
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and go on to present two quantum algorithms to compute the Speed prior.

The advantage in using the quantum algorithms to compute the Speed prior is that there is a
potential speedup in the time taken. The first quantum algorithm provides a quadratic speedup over
the classical method, while the second provides an exponential speedup, however the approximation
is more crude.

By providing quantum algorithms to the problem of approximating Solomonoff induction, via
the speed prior we have also provided an approach to approximate AIXI using quantum computing,
which we call AIXIq.
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Chapter 2

Preliminaries

In this chapter we will cover some of the prerequisites of this thesis, namely the basics of probability,
computability and complexity.

2.1 Probability

Probability is the study of events and their likelihoods. To describe later results we will need to
define probability measures on binary strings. We use the notation for binary strings: B “ t0, 1u,
B˚ “

Ť

nt0, 1u
n, ε is the empty string, and B8 is the set of all one way infinite sequences of B.

Definition 2.1.1 (Cylinder set (Li and Vitányi, 2014)). A cylinder set Γx Ď B8, for x P B˚, is
the set

Γx “ txω : ω P B8u

Let G “ tΓx : x P B˚u then a function µ1 : GÑ R is defines a probability measure if

1. µ1pΓεq “ 1

2. µ1pΓxq “
ÿ

bPB˚
µ1pΓxbq

We will use the notation where µpxq “ µ1pΓxq, then the definition of a measure can be written as

Definition 2.1.2 (Probability Measure (Li and Vitányi, 2014)). The a function µ : B˚ Ñ R is
defines a probability measure if

1. µpεq “ 1

2. µpxq “
ÿ

bPB˚
µpxbq
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Expected value is another tool from probability which we will be using.

Definition 2.1.3. Given a probability mass function P pxq the (discrete) expected value of a function
f is defined as follows

Erf s “
ÿ

x

fpxqP pxq (2.1)

An example of the expected value is given below,

Example 2.1.1. The expected value of the sum of rolling two fair 6-sided dice with the probability
mass function P pxq “ 1{36, the expected value formula gives us the following formula

ÿ

a,bPt1,2,3,4,5,6u

pa` bq ¨
1

36
“ 7

2.2 Computability

First proposed by Alan Turing in Turing (1937), Turing machines are a class of machines with a tape
of zeros and ones, a head which moves along and writes on the tape, and a program determining
where the head should go. This simple form of computation is the foundation of computer science,
which as a field could be described as “things that can be done with Turing machines”.

Turing machines are not the only form of computation, another equal form of computation
is Lambda calculus (Church), which takes a much more functional (in the mathematical sense)
approach to computing. Other forms of equivalent computation include (but are not limited to)
partial recursive functions, register machines, and Markov algorithms. The idea that all forms of
computation are “equivalent” is called the Church-Turing thesis.

Formally we define a Turing Machine as follows,

Definition 2.2.1 (Bernstein and Vazirani (1997)). A deterministic Turing machine is a triplet
pΣ, Q, δq, where Σ is a finite alphabet with an identified blank symbol #, Q is a finite set of states
with identified initial state q0 and finial state qf ‰ q0, and δ, a deterministic transition function, is
a function

δ : Qˆ Σ Ñ ΣˆQˆ tL,Ru (2.2)

Here tL,Ru denote left and right, directions to move on the tape. The state qf is also called the
Halting state.

Turing machines can be thought of as a head moving along an infinite tape, and on this tape
are elements from the alphabet t#u Y Σ. The head moves up and down the tape, and reads and
writes according to the function δ.

Each Turing machine can be represented by a partial function, δ˚, which takes the initial Turing
machine tape as input, and outputs the contents of the tape once the Turing machine halts, if it
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does halt, and outputs undefined if it does not halt. Hence being a partial function. When referring
to the Turing machine as a function we will be referring to the δ˚ of that Turing machine.

A configuration of a Turing machine, which is a current description of the Turing Machine is
defined as follows

Definition 2.2.2 (Configuration). A configuration (of a Turing Machine) is a tuple pd, h, qq where
d is a description of the contents of the tape, h is the location of the head symbol, and q represents
the state the Turing machine is in.

To receive an output on our computation we require the Turing machine to halt, that is, even-
tually enter the final state qf . Unfortunately this is not always the case. For example consider the
machines below,

Example 2.2.1.

Σ “ t#, 1u

Q “ pq0, qf q

δpq0,#q “ p1, q0, Rq

δpq0, 1q “ p1, q0, Rq

This machine writes 1, then moves right forever. It will never halt since the function δ never maps
to the state qf . Below is the state diagram of this Turing machine,

q0 qf

δpq0,#q

δpq0, 1q

A non-halting machine may not use an infinite amount of tape, as seen in the next example.

Example 2.2.2.

Σ “ t#, 1u

Q “ pq0, q1, qf q

δpq0,#q “ p1, q1, Rq

δpq1,#q “ p1, q0, Lq

δpq0, 1q “ p1, q1, Rq

δpq1, 1q “ p1, q0, Lq

This machine will move left then right and so on. Again this machine will never halt since the
function δ never maps to the state qf . Below is the state diagram of this Turing machine,
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q0 q1 qf

δpq0, 1q

δpq0,#q

δpq1, 1q

δpq1,#q

Turing machines can also be viewed as functions equivalent to partial recursive functions Boolos
et al. (2002).

The ‘Halting problem’ is determining whether or not a Turing machine will halt on a given
input. Turing proved that one cannot in fact use a Turing machine to determine that another
Turing machine will not halt on any input.

Theorem 2.2.1 (Halting problem). There does not exist a Turing Machine which can determine
if a given Turing Machine will not halt on any input.

The ‘Halting problem’ is a good example of something which is incomputable: it is something
which no Turing machine can compute.

2.3 Complexity Theory

Complexity theory is the study of how long it takes to compute a function on a Turing machine.

Specifically, given a Turing machine (which is representing a function δ˚), how many steps does
the Turing machine take to compute that function in terms of the size of the input of the Turing
machine.

For example consider an ADD Turing machine, which takes two (unary) numbers and adds
them together, as shown below

20



Example 2.3.1.

Σ “ t#, 1u

Q “ pq0, q1, q2, qf q

δpq0, 1q “ p1, q0, Rq

δpq0,#q “ p1, q1, Rq

δpq1, 1q “ p1, q1, Rq

δpq1,#q “ p#, q2, Lq

δpq2, 1q “ p#, qf , Rq

The ADD Turing machine takes an input of two unary numbers separated by a #, p1l#1m, then
returns the sum of those two numbers, p1l`mq. Below is the state diagram of this Turing machine,

q0 q1 q2 qf

δpq0, 1q

δpq0,#q

δpq1, 1q

δpq1,#q δpq2, 1q

One can see that if the length of the numbers is n “ l`m`1, then the number of steps required
to compute this ADD function is n`2. In complexity theory, the big O notation is used to describe
the time taken.

Definition 2.3.1. A function f is f P Opgq (read as big O of g) if Dc P R and n0 such that
|fpnq| ď c|gpnq| for all n ą n0. We represent this by the notation fpnq “ Opgpnqq.

From our previous example we would say the ADD function is Opnq, since there exists a c “ 2
and a n0 “ 4 such that n` 3 ă 2n for all n ą 4. A problem is said to be solved in polynomial time
if there exists a function which solves the problem and takes time Opfpnqq, where f is a polynomial
of the size of the input n. Similarly a problem is said to be solved in exponential time if there exists
a function which solves the problem and takes time Opfpnqq, where f is an exponential function of
the size of the input n.

The two most important classes in complexity theory are P and NP. The class P is the class of
all problems that can be solved in polynomial time; the class NP is the class of all problems that
can be verified in polynomial time. Verifying a problem is being given a solution to the problem
and checking if it is correct. For example if the problem was add 4 and 5, then we could be given
a solution, such as 10 and we have to check if it is correct. In this case it is not.

The most famous problem in complexity theory is whether or not P “ NP. This is essentially
asking if being able to verify a problem in polynomial time implies we can solve the problem in
polynomial time.

The reason these classes, and the above question, are so important comes down to the fact that
P is also the class of problems we can efficiently (and therefore physically) solve. In contrast, NP

21



contains many problems which we cannot efficiently solve. Additionally several of these hard-to-
solve problems are very relevant, for example the travelling salesman problem, protein folding, and
RSA cryptography.

A problem B can be reduced in polynomial time to another problem A if there exists transfor-
mation which takes at most polynomial time and transforms every instance of a problem B into an
instance of the problem A such that the transformation of the solution to the instance of the new
problem A is the solution to the instance of the problem B. For example, any hamiltonian cycle
problem can be reduced to a travelling salesman problem by giving all the edges of the hamiltonian
cycle problem weight 1, and creating edges with weight 2 where all the non existent edges of the
hamiltonian cycle problem are. The solution to the resulting travelling salesman problem can be
transformed to the solution to the initial hamiltonian cycle problem, and the transformation takes
at msot polynomial time.

If every problem in NP can be reduced in polynomial time to a problem A, then we say A is
NP-hard. If a problem is in NP and is NP-hard then we say the problem is NP-complete. The
above travelling salesman problem is an example of a problem that is NP-complete.
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Chapter 3

Induction

3.1 Introduction to Induction

The problem of induction, specifically inductive reasoning, is one of the most well-studied problems
in philosophy (De Finetti, 1972; Popper, 1957, 1985; Hume, 2000; Cohen, 1989; Carnap, 1962).
First discussed in Hume (1738), the problem of induction and inductive reasoning is the process of
reasoning about a hypothesis, given some evidence (data). Outside of philosophy, many areas such
as machine learning, statistics, and economics, rely heavily on induction and have produced many
practical solutions to the problem. This is because induction can be used to find “truth” in the
world. Inductive ability has also for a long time been the way in which we test a human’s ability,
in the form of IQ tests, and many similar examinations.

Many of the aforementioned studies have proposed solutions to the induction problem, some of
which have found great practical success such as Nasrabadi (2007) in statistical machine learning.
One proposed solution to the Induction problem, Solomonoff induction (Solomonoff, 1964a), has
benefits over all other solutions (as well as some downsides); this will be the focus of this chapter.

3.2 Approaches to Induction

3.2.1 Laplace/Bayesian Approach

Laplace’s approach to the induction problem is a rule of succession (Solomonoff, 1964a), also called
Bayes-Laplace estimator. This rule was famously demonstrated with the problem of predicting
whether or not the sun would rise tomorrow. The following explanation is from Hutter (2005).

This approach relies on Bayes’ theorem.
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Theorem 3.2.1 (Bayes’ Theorem). Let H and D be events, then

P pH|Dq “
P pD|HqP pHq

P pDq

Where P pHq be the prior plausibility of the hypothesis H, P pD|Hq is the likelihood of the data
D under the hypothesis H, and P pH|Dq is the posterior plausibility of of hypothesis H, and tHiu

form an exclusive and exhaustive set of hypothesis’. We also have P pDq “
ř

i P pD|HiqP pHiq.
Then Bayes’ theorem in its most useful form

Theorem 3.2.2 (Bayes’ Rule).

P pH|Dq “
P pD|HqP pHq

ř

i P pD|HiqP pHiq
.

Using Bayes’ rule, one can use the prior probability to calculate the posterior plausibility of
of hypothesis H given some data D, and this in turn can be used for inductive reasoning and
prediction.

Getting back to predicting whether or not the sun will rise tomorrow. Let x be some finite
binary sequence, x “ x1 . . . xn P Bn, and let n0 and n1 be the number of 0’s and 1’s in the sequence
respectively. Let each element finite sequence be generated by some probability θ P r0, 1s, that is,
P pxi “ 1q “ θ for all i. Our hypothesis class is then Hθ “ Bernoullipθq. The likelihood of an
event y be given a hypothesis is P py|Hθq “ θn1p1 ´ θqn0 , and using a uniform prior plausibility
P pθq “ P pHθq “ 1. Lastly the probability of some evidence P pyq “ n1!n0!

pn`1q! . All together with

Bayes’ rule we get

P py|xq “
P px|yqP pyq

P pxq
“
pn` 1q!

n1!n0!
θn1p1´ θqn0

Then if we let xi “ 1 if the sun rose on the ith day according to our data, we want to find the
probability of the the sun will rise tomorrow. Our data says that the sun rose for every previous
day, then we get

P p1|xq “
P px1q

P pxq
“
n1 ` 1

n` 2

Which translates to

P psunrise tomorrow | all previous sunrisesq “
#days the sun has risen` 1

#days the sun has risen` 2
.

So according to Bayes’ and Laplace’s rule if the sun has risen for 1012 days (the approximate age
of the earth) then the probability the sun will not rise tomorrow is 1

1012`2 .

3.3 Algorithmic Complexity and Solomonoff Induction

This section will be split into two parts: the problem of algorithmic complexity and the problem
of induction. For a complete analysis of these problems see (Li and Vitányi, 2014). In this section
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we will use the following notation. Let B˚ denote the set of all finite binary strings, and let `ppq
denote the length of a binary string p P B˚.

Kolmogorov (1963) proposed a complexity measure of how complex a given string (or number)
is. It is the length of the smallest program which when inputted into a (often Universal) Turing
machine will produce the string. More formally,

Definition 3.3.1. Given a Turing machine T , the Kolmogorov complexity of a string x is

KT pxq “ min
p
t`ppq : T ppq “ xu

There has been much work done on Kolmogorov complexity, and its application to Artificial
Intelligence, as well as to compression. For a detailed description on these topics and the properties
of Kolmogorov complexity, see Hutter (2005). Although Kolmogorov complexity is incomputable,
it is limit computable. A function fpxq is limit computable if there exists a computable function

f̂px, tq such that fpxq “ limtÑ8 f̂px, tq. This incomputabiliy comes from the fact that the programs
being checked may not halt, and there is no way to determine which programs will not halt.

The problem of induction, that is, predicting or inferring what will come next given some past
data, has been extensively studied. In 1964 Solomonoff proposed a solution to the induction problem
(Solomonoff, 1964a,b).

Solomonoff Induction is based on Epicurus’ principle of multiple explanations and Occam’s
Razor. Together these principles state that one should always consider every theory (or model)
which is consistent with the data, however give preference to more simple theories (or models).
Solomonoff represents the concept of complexity of a model by the length of a program which
‘computes’ the model.

Solomonoff (1964a,b) proposed four equivalent solutions to the induction problem, then demon-
strated these induction techniques on three different induction tasks. The three induction tasks
were induction on a Bernoulli sequence, induction on sequences with symbol constraints, and phrase
structure grammars in coding for induction. Since the original paper the definition has been refined,
and more applications have been demonstrated.

A description of Solomonoff Induction is as follows.

Definition 3.3.2. Given a universal monotone Turing Machine U , the universal (Solomonoff)
a-priori probability semi-measure of x P B˚ is defined as

Mpxq “
ÿ

p : Uppq“x˚

2´`ppq

where x˚ denotes a string which starts with x.

The programs being summed over in the universal a-priori probability represent descriptions of
x, and the 2´`ppq is a weight on the complexity of the description. In this way we define complexity
as description length. This is universal in the sense that every program is considered.

For conditional probability we have,
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Definition 3.3.3. The corresponding conditional probability of x given y is

Mpx|yq “
Mpyxq

Mpyq
“

ř

p:Uppq“yx˚ 2´`ppq
ř

p:Uppq“y˚ 2´`ppq

where yx denotes the concatenation of y with x.

As an example of this induction,

Example 3.3.1. If 0 denotes rainy and 1 denotes sunny and we wish to calculate the probability
it will be sunny given the past data 0101000, we calculate

Mp1|0101000q “
Mp01010001q

Mp0101000q
“

ř

p:Uppq“01010001˚ 2´`ppq
ř

p:Uppq“0101000˚ 2´`ppq

M is a universal semi-measure (Li and Vitányi, 2014) and, like Kolmogorov complexity, it is
incomputable. The incomputability comes from the fact that one cannot compute every possible
program on a universal Turing machine as some may not halt. Additionally it is required that every
program be ran. Whereas for Kolmogorov complexity, one can show that only a finite amount of
programs need to be ran. However, even though it it incomputable, it has been shown that M is
limit computable and there are algorithms which can approximate it. This will be discussed further
in later sections.

The importance of M comes from the following theorem proved by Solomonoff (1978), that is,
Solomonoff induction.

Theorem 3.3.1 (Solomonoff (1978)). Let µ be a computable measure with x1, x2, . . . distributed
according to µ. Then the total squared error between M and µ will be finite, specifically

Eµ

˜

8
ÿ

t“1

pMpxt`1 “ 1|x1 . . . xtq ´ µpxt`1 “ 1|x1 . . . xtqq
2

¸

ď Kpµq
lnp2q

2
ă 8

where Kpµq denotes the Kolmogorov complexity of µ. This theorem states that the expected
value of the sum of the squares of the difference between M and µ is bounded by a constant.
Hence for any computable measure µ, Solomonoff’s prior will have a bounded error in prediction.
Moreover it has been shown that any probability distribution P that satisfies Theorem 3.3.1 in
place of M must be incomputable Solomonoff (2003). This shows that the incomputability of M
is not a bane but a requirement to be able to have bounded errors. In turn this demonstrates that
any computable statistical procedure used in practice must have infinitely many errors on some
sequences.

For a description of the application of Solomonoff Induction to Artificial Intelligence see Solomonoff
(1985). Nearly forty years after the original paper, Solomonoff gave the Kolmogorov lecture
(Solomonoff, 2003) after receiving the Kolmogorov medal, in which he discussed his Universal
distribution and how it relates to AI. Solomonoff mentioned how the study of Artificial Intelligence
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had, for a long time, been completely absent of any notion of probability. However, to be able
to solve the big problem, that is the creation of strong (general) Artificial Intelligence, one must
inevitably use probability. For a description of how Solomonoff Induction can be used to create
a theoretically optimal agent for reinforcement learning, that is a (theoretical) strong Artificial
Intelligence, see Hutter (2005) and Section 3.5.

3.4 Approximation schemes for Solomonoff Induction

There are algorithms which can approximate Kolmogorov complexity and the Solomonoff prior,
most notably Levin search (Levin, 1973), Hutter search (Hutter, 2002), and the Optimal Order
Problem solver (Schmidhuber, 2004).

Levin search (Levin, 1973) is an algorithm for solving a given inversion problem. Given a
function f and a value y, the Levin search algorithm inverts the function f . Levin search sets i :“ 0
and executes every input to the function, x P B˚, with `pxq ď i for time 2i2´`pxq steps, then sets
i :“ i` 1 and repeats, until an x is found such that fpxq “ y.

Hutter Search (Hutter, 2002) is a general speedup algorithm for any given problem. It works by
performing three different tasks and sharing resources between them. The first task is to prove that
other functions (programs in a universal Turing machine) are equivalent to the desired program and
that these functions have time bounds, all of this in formal logic. The second task is to compute the
time bound of every program which satisfies the condition of the first task, and this computation
is split up in a similar way to Levin Search. The third task is to run the function (program) which
has the best time bound from the second task.

The Gödel machine (Schmidhuber, 2007) is a self-improving solver. It works by first solving
(some) problems, then while solving new problems searching for other solvers that are able to
out-perform itself, and changing its own solver to the new solver when it finds a superior one.

3.5 The optimal agent AIXI

Reinforcement learning (Sutton and Barto, 1998) is a paradigm in artificial intelligence where an
agent is given observations and reward (a real number) by an environment, and the agent performs
actions which has some effect on the environment. The goal is to maximise the future reward
based on the history of interactions with the environment. A simple example of a reinforcement
learning environment is an agent playing a game like tic-tac-toe, and the agent receives `1 reward
for winning the game, 0 for drawing the game, and ´1 for losing the game. Below is a diagram of
the agent environment (Env) interaction
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Agent Env

Actions

Rewards

Observations

Solomonoff Induction and reinforcement learning can be used together to construct the optimal
agent AIXI (Hutter, 2000). The agent AIXI, described in (Hutter, 2005), is optimal in the sense that
there does not exist another agent which performs better than AIXI in all possible environments.

Given the history o1r1 . . . ok´1rk´1 where oi is the observation at the ith time step, and ri is
the reward at the ith time step, AIXI takes action ak defined by

ak :“ arg max
ak

ÿ

okrk

. . .max
am

ÿ

omrm

rrk ` . . . rms
ÿ

q:Upq,a1...amq“o1r1...omrm

2´`pqq (3.1)

Here q is a binary string, U is a universal Turing machine, and ` is the length function. Much like
Solomonoff Induction, AIXI is incomputable, as there is no way to determine if a given input to the
universal Turing machine U will halt. However, it is still possible to limit-compute and approximate
AIXI, such as AIXItl: AIXI with a time bound, t, on the running time of U and a length bound,
l, on the programs q (Hutter, 2005).
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Chapter 4

Quantum Computing

In this chapter we will give an introduction to quantum computing. In doing so, we will discuss
the foundations of quantum computing and establish the notation used. We will then move into
some more advanced topics such as five key quantum algorithms, the development and progress
of quantum complexity theory, some results in quantum computability, and quantum algorithmic
information theory. We will assume the reader has some familiarity with Turing machines, the
complexity classes P and NP, as well as the basics of Boolean circuits. We will not go into detail
on the physical construction of a quantum computer; but will however mention some recent progress.
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4.1 Introduction

The central idea in Quantum Computing (QC) is to use the quantum nature of the universe to
provide speedups in computation that would otherwise be impossible in classical computing (Feyn-
man, 1982). The physical realisation of this is called quantum supremacy (Aaronson and Chen,
2016). This quantum supremacy relies on two key features: first, a physically constructed quantum
computer, and second, a Quantum algorithm running on the quantum computer that is beyond any
(current) classical computation. We will be focusing on the quantum algorithm side. A complete
description of the physical and algorithmic aspects of quantum computing can be found in Nielsen
and Chuang (2002).

There are two ways in which we will describe quantum computation: first, the way in which
it was established, as quantum Turing machines. Second, quantum Circuits, which give a clear
description of quantum algorithms. It has been shown that these are equivalent by Yao (1993).

4.2 Quantum Turing Machines

The first formal definition of a Quantum Turing Machine (QTM) is from Deutsch (1985). A main
topic of Deutsch (1985), and an important aspect of the purpose of quantum computing was the
Church-Turing thesis and its expanded form, which we will discuss here before we get to the exact
definition of Quantum Turing Machines.

4.2.1 Church-Turing Thesis

The Church-Turing thesis is as follows:

Every ‘function which could be regarded as computable’ can be computed by a universal
Turing Machine.

This states that anything which we may wish to compute could be simulated on a universal Turing
machine. However it does not mention anything about the time it would take for the universal
Turing machine to simulate a computation.

Deutsch proposed a new version of the thesis, reflecting the physical nature of reality, now called
the Church-Turing-Deutsch thesis.

Every finitely realisable physical system can be perfectly simulated by a universal model
computing machine operating by finite means.

Here, Deutsch is interested in a “finitely realisable physical system” which we want to simulate,
not a “function which could be regarded as computable”. This is quite an important distinction as
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we can (quite easily) construct functions that are theoretically possible to compute with a Turing
machine, however the functions are not representing any finitely realisable physical system. The
constraint here is physical, as the time required to compute some functions is greater than the
heat-death of the universe: For example, the Ackermann function (Calude et al., 1979).

Lastly from Complexity theory, there is the related Extended-Church-Turing thesis by Kaye
et al. (2007):

A probabilistic Turing machine can efficiently simulate any realistic model of computa-
tion.

With the inclusion of “efficiently”, one excludes a large number of problems which are both com-
putable and also represent finitely realisable physical systems. It is important to note that if
quantum computing became a “realistic model of computation”, then this thesis may be negated,
since probabilistic Turing machines cannot efficiently simulate quantum Turing machines.

4.2.2 Formalising Quantum Turing Machines

In a certain sense, a quantum Turing machine is essentially a probabilistic Turing machine which
uses the L2 norm instead of the L1 norm; has complex-valued amplitudes in the place of non-
negative real probabilities; and a complex-valued unitary transition matrix instead of a stochastic
one. This is similar to how quantum mechanics, without the physics, is (essentially) probability
theory with the L2 norm (Aaronson, 2013).

With a classical (deterministic) Turing machine, the actions performed and state transitions are
unsurprisingly deterministic; this means what we expect to happen will exactly happen. With a
classical probabilistic Turing machine, each action will occur with some (non-negative) real proba-
bility. This means that the machine could write 0 with some probability p and write 1 with some
other probability q. As mentioned above, a quantum Turing machine is quite similar, except instead
of (non-negative) real probabilities, the quantum Turing machine uses complex-valued amplitudes,
where the sum of the squares of the absolute value of the amplitudes must be 1 at all times.

It can help to think of this kind of computation as a tree, where each node is a configuration of
the quantum Turing machine. The branch width of this tree is the number of possible actions and
the depth is the number of actions taken. At each time step, we move down the tree according to
the unitary transition matrix.

Below is an example of deterministic, probabilistic, and quantum Turing machine trees repre-
senting the actions of moving left and right achieving different tape configurations, with the edges
representing the probability (or amplitudes) of performing that action.
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0 0 1 0 0

0 0 0 1 0

0 0 0 0 10 0 1 0 0

1 0

0 1 0 0 0

0 0 1 0 01 0 0 0 0

1 0

0 1

Figure 4.1: Deterministic Turing Machine

Then the Probabilistic Turing machine. Note that at each vertex the branching edges must add
to 1.

0 0 1 0 0

0 0 0 1 0

0 0 0 0 10 0 1 0 0

2
3

1
3

0 1 0 0 0

0 0 1 0 01 0 0 0 0

5
8

3
8

1
2

1
2

Figure 4.2: Probabilistic Turing Machine

Lastly the Quantum Turing Machine. Note here that the sum of the squared absolute value at
each vertex of the branches must add to 1.

0 0 1 0 0

0 0 0 1 0

0 0 0 0 10 0 1 0 0

i
b

2
3 ´

b

1
3

0 1 0 0 0

0 0 1 0 01 0 0 0 0

i
b

5
8

b

3
8

´ 1?
2

1?
2

Figure 4.3: Quantum Turing Machine

An important part of probabilistic Turing machines and quantum Turing machines is that two
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separate branches may have the same configuration. In the above examples, it is represented
in the probabilistic Turing machine by the configuration 0 0 1 0 0 occurring with probability
1
2 ¨

3
8 `

1
2 ¨

2
3 “

19
48 , and similarly for the quantum Turing machine, the configuration 0 0 1 0 0

occurring with amplitude ´ 1?
2
¨

b

3
8 `

1?
2
¨ i
b

2
3 “ ´

b

3
16 ` i 1?

3
. This addition of different paths

to the same configuration is quintessential to all Quantum algorithms.

Before formally defining the quantum Turing machine, we need to define the subset of the
complex numbers that define the quantum Turing machine. Let C̃ be the set of complex numbers
α P C for which there is a deterministic algorithm that computes the real and imaginary parts of α
with an error of at most 2´n in time that is a polynomial of n.

Additionally, recall that a configuration in Definition 2.2.2 is the combination of the tape, state
and head position of a Turing Machine. Now we can formally define quantum Turing machines.

Definition 4.2.1 (Bernstein and Vazirani (1997)). A Quantum Turing Machine M is defined,
much like a classical Turing Machine (Definition 2.2.1), by a triplet pΣ, Q, δq where Σ is a finite
alphabet with an identified blank symbol (#), Q is a finite set of states with identified initial state
q0 and final state qf ‰ q0, and δ, the quantum transition function,

δ : Q ˆ Σ Ñ C̃Σ ˆ Q ˆ tL,Ru.

The QTM M has a two-way infinite tape of cells indexed by Z, each holding symbols from Σ, and a
single read/write tape head that moves along the tape. A configuration or instantaneous description
of the QTM is a complete description of the contents of the tape, the location of the tape head, and
the state q P Q of the finite control.

Let S be the inner-product space of finite complex linear combinations of configurations of M
with the Euclidean norm. We call each element φ P S a superposition of M .

φ “
ÿ

i

αimi

The QTM M defines a linear operator UM : S Ñ S, called the time evolution operator of M , as
follows: if M starts in configuration c with current state qk, and scans symbol a, then after one
step M will be in a superposition of configurations ψ “

ř

i αici, where each nonzero αi corresponds
to a transition δpqk, a, b, qj , dq, and ci is the new configuration (Definition 2.2.2) that results from
applying this transform to c. Extending this map to the entire space S through linearity gives the
time evolution operator UM .

However instead of using Quantum Turing machines to define our Quantum Computation, we
will instead mainly use Quantum Circuits.

4.3 Quantum Circuits

An easier way to describe some quantum computing systems is with quantum circuits. Quantum
circuits were first proposed by Yao (1993) where it was shown that they are equivalent to quantum
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Turing machines, in the sense that one can simulate the other with a polynomial slowdown. This
equivalence was also demonstrated by Nishimura and Ozawa (2009).

Quantum circuits can be thought of as classical Boolean circuits, except instead of the classical
bits which take values 0 and 1 (False and True), a quantum circuit uses qubits, where each qubit
takes a value in a complex superposition of 0 and 1. We can represent this as a pair of amplitudes
pα, βq P C2 which has the property |α|2 ` |β|2 “ 1. Here α is representing the amplitude (complex
probability) of being 0, and β likewise for 1. We will use the bra-ket notation to describe qubits.

4.3.1 Bra-ket notation

The Dirac bra-ket (Dirac, 1939) notation is as follows: first we use it to represent the standard
basis vectors of C2

|0y “

ˆ

1
0

˙

, |1y “

ˆ

0
1

˙

with a single qubit being described as

|φy “ α |0y ` β |1y “

ˆ

α
β

˙

.

This asymmetrical notation is called a ket. This choice of notation is far less cumbersome than
regular vector notation.

For |ay “

ˆ

α0

α1

˙

and |by “

ˆ

β0

β1

˙

,

we will also define the tensor product in bra-ket notation as follows:

|ay b |by “ |ay |by “ |aby “

¨

˚

˚

˝

α0β0

α0β1

α1β0

α1β1

˛

‹

‹

‚

For example, instead of writing |0y b |0y b |1y we will write

|001y “

ˆ

1
0

˙

b

ˆ

1
0

˙

b

ˆ

0
1

˙

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 ¨ 1 ¨ 0
1 ¨ 1 ¨ 1
1 ¨ 0 ¨ 0
1 ¨ 0 ¨ 1
0 ¨ 1 ¨ 0
0 ¨ 1 ¨ 1
0 ¨ 0 ¨ 0
0 ¨ 0 ¨ 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0
1
0
0
0
0
0
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.
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We will also raise some qubits to the power of tensors, for example:

|ay
b4
“ |ay b |ay b |ay b |ay “ pαi, αj , αk, αlqi,j,k,lPt0,1u4

Additionally we will define the conjugate transpose as

xa| “ |ay
:
“ pᾱ0, ᾱ1q

where ᾱ is the complex conjugate of α. This notation is called a bra.

Using the two together we can write the inner product as

xa| |by “ xa |by “ ᾱ0β0 ` ᾱ1β1

and the outer product as

|by xa| “

ˆ

β0ᾱ0 β0ᾱ1

β1ᾱ0 β1ᾱ1

˙

This is not the only notation that is used in Quantum computing, however this notation is the
most simple and more importantly it is short.

4.3.2 Quantum Gates

Continuing this notation we can then represent quantum gates as matrices (transforms) which are
applied to a superposition of qubits. It is important that they take a (collection of) qubits from one
superposition to another. Specifically, it is required that the quantum gate conserves the }α}22 “ 1
property.

So a matrix that conserves the superposition is unitary, i.e., its inverse is also its conjugate
transpose. This is no surprise, since the state transition matrices of quantum physics must also be
unitary. It has been shown that if any linear matrix was allowed, quantum computing would be
unreasonably powerful (Aaronson, 2005).

Here we will define some of the common quantum gates used. This is not an exhaustive list.
The ones we will define are the Hadamard gate, the π{8 (rotation) gate, and the controlled-not
gate.

Definition 4.3.1. The Hadamard gate H acts on a single qubit and corresponds to the following
unitary matrix

H “
1
?

2

ˆ

1 1
1 ´1

˙

.

For instance H |0y “
ˇ

ˇ

1
2

D

:“ 1?
2

ˆ

1
1

˙

and HH |0y “ H 1?
2

ˆ

1
1

˙

“ |0y .

It is important to note that the Hadamard gate is both self-adjoint and its own inverse. That
is, HH “ HH: “ I.
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Definition 4.3.2. The controlled-not gate, CNOT , acts on two qubits and performs the not (bit
flip) operation on the second qubit if the first qubit is |1y. This equates to the following unitary
matrix

CNOT “

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

˛

‹

‹

‚

.

For instance CNOT |0y |ay “ |0y |ay and CNOT |1y |ay “ |1y b

ˆ

α0

α1

˙

Definition 4.3.3. The π{8 gate, Rπ{4, corresponds to a rotation of the |1y qubit by π{4. The
matrix representing this rotation is

Rπ{4 “

ˆ

1 0
0 ei

π
4

˙

, Rπ{4 |ay “

ˆ

α0

α1e
iπ4

˙

.

The gate is called the π{8 gate for historical reasons, even though the gate is a rotation of
π{4. These three gates are important as they form a universal set of gates for two qubits. This
means that any classical two bit circuit can be constructed using only these three gates (Nielsen
and Chuang, 2002).

When working with larger numbers of qubits, to apply one of the above transforms to just some
of the qubits, we use identity matrices with block-diagonal matrices of the transform(s).

For example if given two qubits, we wish to apply the Hadamard transform to only the second
one, we can use the following matrix

H1 “ H b

ˆ

1 0
0 1

˙

This process can be used for any number of qubits.

4.3.3 Measurement

Now that we have qubits and quantum gates, we need a way to measure the outcome. We call
this quantum measurement. This measurement is done according to the L2 norm; for a system of

the form
ř2n´1
x“0 αx|xy, we will observe x with probability |αx|

2. Specifically, measurement of an n
qubit system will do the following:

2n´1
ÿ

x“0

αx |xy Ñ i with probability |αi|
2

The measurement of mixed states yields random outcomes, this is a fundamental aspect of
quantum systems.
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Additionally, one can choose instead to measure a subset of the quantum circuit, for example
the first m qubits. This is no different from the regular measurement, except that the observer will
not gain any information about the n´m qubits remaining.

In several quantum computations one uses extra qubits to aid in the computation which are not
measured at the end of the computation.

It is important to note that this is destructive measurement. This means that performing the
measurement will destroy the superposition of the system.

Although we can only ensure an outcome with some probability, we can repeat the computation
and reduce the probability of error exponentially. Ultimately, we will only ever be sure of an
outcome with some (quite high) probability. In most cases this is good enough.

When performing analysis of a quantum algorithm, it is important to include the number of
times the computation must be repeated to reduce the error sufficiently, since this will increase the
time complexity (potentially exponentially if it is required to be repeated an exponential number
of times).

To give some examples of full quantum circuits, it will be useful to demonstrate some essential
quantum algorithms.

4.3.4 Submodules

In this section we will explain the building blocks of quantum algorithms.

Quantum Oracle

The quantum oracle is used when we want to apply a function f : t0, 1un Ñ t0, 1u to a superposition
of all elements of t0, 1un. Since all transforms in quantum computing are reversible (and indeed
unitary) there needs to be some way to keep the information so that the transform can be reversed.
Classically we could take xÑ fpxq, however when performing this transform in quantum computing
we do the following

Uf |xy |yy “ |xy |y ‘ fpxqy .

Where y is representing an extra qubit used for this reversibility.

Quantum Fourier Transform

The quantum Fourier transform is the quantum version of the Fourier transform. Described in
Nielsen and Chuang (2002), the quantum Fourier transform (QFT ) is a linear operator which acts
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on a vector |jy of size 2n as follows,

QFT |jy “ 1

2n{2

2n´1
ÿ

k“0

e2πijk{2n |ky . (4.1)

An expanded representation of the quantum Fourier transform, into the binary expression of
j “ j1j2 . . . jn, is

|jy Ñ
1

2n{2
`

|0y ` e2πi0.jn |1y
˘ `

|0y ` e2πi0.jn´1jn |1y
˘

. . .
`

|0y ` e2πi0.j1...jn |1y
˘

. (4.2)

Here 0.jn is the nth binary digit of j divided by 2, likewise for 0.jn´1jn and 0.j1 . . . jn.

The unitary matrix form of the QFT of n qubits is a matrix QFT “ 1?
2n
paijq with entries

aij “ ωpi´1qpj´1q, where ω is the 2nth root of unity.

Inverse Quantum Fourier Transform

Also somewhat unsurprisingly the inverse quantum Fourier transform (QFT ´1) is the inverse of
the quantum Fourier transform. That is, QFT QFT ´1

“ QFT ´1 QFT “ I the identity.

QFT ´1

˜

1

2n{2

2n´1
ÿ

k“0

e´2πijk{2n |ky

¸

“ |jy (4.3)

Phase Estimation

Given a unitary transform U with an eigenvector |xy and an eigenvalue e2πiω, phase estimation,
as described in Nielsen and Chuang (2002), allows us to estimate the value of ω. The algorithm
operates on two registers, first a register of t qubits, where t depends on the number of bits of
accuracy required and the probability of success required. Specifically, for accuracy of m and
probability of success 1´ε, we choose t “ m`rlogp2` 1

2ε qs. The second register is |xy. The algorithm
has four steps, first performing the Hadamard operation on the first register; then performing a
controlled version of the unitary operation U on the first register; then performing the inverse
Fourier transform, as mentioned above, on the first register; then lastly performing measurement
on the first register.

Let 0.ω1 . . . ωt be the binary expression of the first t digits of ω, then algebraically the steps
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above are as follows,

|0y
bt
|xy Ñ

1

2t{2

2t´1
ÿ

k“0

|ky |xy Hadamard

Ñ
1

2t{2

2t´1
ÿ

k“0

e2πiωk |ky |xy Controlled-U

“
1

2t{2

´

|0y ` e2πi2t´1ω |1y
¯´

|0y ` e2πi2t´2ω |1y
¯

. . .
´

|0y ` e2πi20ω |1y
¯

|xy

“
1

2t{2
`

|0y ` e2πi0.ωt |1y
˘ `

|0y ` e2πi0.ωt´1ωt |1y
˘

. . .
`

|0y ` e2πi0.ω1...ωt |1y
˘

|xy

Ñ |ω̃y |xy Inverse Fourier transform

Ñ ω̃ Measurement on first register

The Quantum circuit for Phase estimation is as follows,

|0y H ¨ ¨ ¨ ‚

QFT ´1

... H ¨ ¨ ¨

|0y H ‚ ¨ ¨ ¨

|0y H ‚ ¨ ¨ ¨

|xy U20

U21 ¨ ¨ ¨ U2t´1

Figure 4.4: Quantum Circuit for the Phase estimation algorithm (Nielsen and Chuang, 2002; Wikipedia,
2017b)

Phase estimation is an essential part of the Quantum Counting Algorithm and many other
quantum algorithms.

4.4 Quantum Algorithms

In this section we will describe some quantum algorithms. The general setup of all of these algo-
rithms is as follows:

• Take some initial state such as |0ybn
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• Quantumize to create a uniform superposition over all possible qubits, often done with the
Hadamard gate Hbn

• Perform computation of some function in simultaneous states of this superposition

• Uncompute the superposition, often done with the Hadamard gate or the inverse Quantum
Fourier transform

• Measurement of some or all of the circuit

We will first describe the setup of each algorithm, then give an intuitive explanation to each and
why they are superior to their classical counterpart. This will be followed by a formal algebraic
description of the algorithms, then a demonstration of the quantum circuit that would be used.
This is by no means a complete list of Quantum algorithms; it is however a list of all algorithms
which are relevant to this thesis.

4.4.1 Deutsch-Jozsa Algorithm

The Deutsch-Jozsa Algorithm is the first example of an exponential “quantum-speedup”. Imagine
we are given a function f : t0, 1un Ñ t0, 1u that has the property that either all values map to
0, or half of them do. Our objective is to determine whether every value maps to 0, or half of
them do. To check this classically, one must perform at most 2n´1 ` 1 function evaluations. This
is because the moment the function outputs a 1 we know that f outputs 1 on half the inputs. The
Deutsch-Jozsa Algorithm requires only 1 function evaluation.

An exponential speedup comes from evaluating the function in a superposition of every input.
To achieve this, we use the Hadamard gate which takes the initial state to a superposition of every
possible state, with equal amplitude. Then we use oracle (function) f once in the oracle transform
Uf which is defined as follows:

Uf |xy |yy “ |xy |y ‘ fpxqy

where ‘ is addition modulo 2 (XOR). Then after a simplification a second Hadamard gate is used,
and finally after a simplification step, measurement of the first n bits is performed. If fpxq “ 0 for
all x, then the measurement will be 1 with probability 1, and if fpxq “ 0 on half the inputs and
fpxq “ 1 on the other half of inputs, then the measurement will be 0 with probability 1. Below we
have an algebraic description.
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|0ybn|1y Ñ
1

?
2n`1

2n´1
ÿ

x“0

|xyp|0y ´ |1yq Hadamard Hbn bH

Ñ
1

?
2n`1

2n´1
ÿ

x“0

|xyp|fpxqy ´ |1‘ fpxqyq f oracle

“
1

?
2n`1

2n´1
ÿ

x“0

p´1qfpxq|xyp|0y ´ |1yq since fpxq “ 0, 1

Ñ
1

2n

2n´1
ÿ

x“0

p´1qfpxq

«

2n´1
ÿ

y“0

p´1qx¨y|yy

ff

|1y Hadamard Hbn bH

“
1

2n

2n´1
ÿ

y“0

«

2n´1
ÿ

x“0

p´1qx¨y`fpxq

ff

|yy |1y Re-ordering

Ñ

ˇ

ˇ

ˇ

ˇ

ˇ

1

2n

2n´1
ÿ

x“0

p´1qfpxq

ˇ

ˇ

ˇ

ˇ

ˇ

2

Measurement on first n qubits

“

#

1 if fpxq “ 0 @x P t0, 1un

0 if fpxq “ 0 for half the x P t0, 1un

The quantum circuit below is exactly the transforms described above.

|0y {n Hbn

Uf
Hbn

|1y H

Figure 4.5: Quantum circuit for the Deutsch-Jozsa Algorithm (Nielsen and Chuang, 2002)

It is important to note that one may use the Deutsch-Jozsa Algorithm with an oracle f :
t0, 1un Ñ t0, 1u for which the proportion of inputs which map to 0 or 1 is some arbitrary (unknown)
number. However the resulting algorithm would only be correct with some probability. In this case,
the quantum algorithm will have to be repeated to find the proportion with high accuracy.

The last line of the algorithm would become
ˇ

ˇ

ˇ

ˇ

ˇ

1

2n

2n´1
ÿ

x“0

p´1qfpxq

ˇ

ˇ

ˇ

ˇ

ˇ

2

“

ˆ

2n ´ 2L

2n

˙2

where L is the number of x such that fpxq “ 1.

In some cases the number of times the algorithm will have to be repeated will be exponentially
large in n, for example if fpxq “ 1 for only polynomial many x, in which case a classical algorithm
may be just as effective.
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With some algebra (which can be done classically) we can get

1´

b

ˇ

ˇ

2n´2L
2n

ˇ

ˇ

2

2
“

L

2n

which is the desired result of the algorithm modified for any f : t0, 1un Ñ t0, 1u.

Lemma 4.4.1. For any f : t0, 1ul Ñ t0, 1u with L being the number of x P t0, 1ul such that
fpxq “ 1. Let X1, . . . , Xm P t0, 1u be the outputs from the modified Deutsch-Jozsa algorithm. The

number of trials, m, of the modified Deutsch-Jozsa algorithm requires to compute X “

řm
i“1Xi
m such

that P
`
ˇ

ˇX ´ L
2n

ˇ

ˇ ă ε
˘

ă 2e´2k is O
`

k
ε2

˘

.

Proof. Let X1, . . . , Xm be the outputs of m trials of the modified Deutsch-Jozsa algorithm, note

that these are iid. Then let X “

řm
i“1Xi
m be the empirical mean the of the Xi’s. By Hoeffding

inequality we have

Prp|X ´ ErXs| ě εq ď 2e´2m2ε2

That is, after m trials the probability of having an error of ε is bounded by 2e´2mε2 . Therefore
setting m “ k

ε2 for some k we can guarantee the probability of having absolute error of at most ε
is bounded by 2e´2k.

4.4.2 Shor’s Algorithm

Shor’s algorithm (Shor, 1994) is perhaps the most famous Quantum algorithm. While being one
of the few exponential speedups over current classical algorithms, its fame comes more from the
problem which it solves: prime factorisation.

Given an N P N such that N “ pq for p, q prime, find p (or q). It is only required to find one of
the factors since division is easy in the sense that there is a fast classical algorithm. This problem
is quite important for current cryptography, which makes the assumption that this problem is hard
in the sense that it is slow to solve on classical computers (It is important to note that it is still
possible that there exists a fast classical algorithm for prime factorisation, since we have not proved
that the fastest algorithm is not in P; doing so would immediately imply P ‰ NP).

Shor’s algorithm is made up of two parts: a classical part which reduces factoring to order
finding, and a quantum part which finds the order. In the classical part, the algorithm checks
whether N is even, and calculates the GCD (greatest common divisor) of numbers. Both of these
have fast classical algorithms.

The classical algorithm for converting factoring to ordering finding is as follows:
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Algorithm 1: Classical Order finding (Nielsen and Chuang, 2002)

1 Given N ;
2 if N is even then
3 return 2;

4 if N “ ab for a ě 1, b ě 2 then
5 return a;
6 Randomly pick some x in r1, N ´ 1s Ď N;
7 if gcdpx,Nq ą 1 then
8 return gcdpx,Nq;
9 Use order finding to find r such that xr ” 1 mod N ;

10 if r is even and xr{2 ” ´1 mod N then

11 if gcdpxr{2 ` 1, Nq ą 1 then

12 return xr{2 ` 1;

13 else if gcdpxr{2 ´ 1, Nq ą 1 then

14 return xr{2 ´ 1;
15 else
16 Restart
17 end

18 else
19 Restart
20 end

Result: A factor of N with probability Op1q

A fast classical algorithm to find the order has not been found. However the second (Quantum)
part of Shor’s algorithm can find the order fast.

Let Ux,N |ay |by “ |ay |x
ab mod Ny for some x (chosen in the classical algorithm part), and let

m “ 2rlogpNqs` 1` rlog
`

2` 1
2ε

˘

s for some error term ε (such as 1/10).

We need a to use the inverse QFT for Shor’s algorithm.

The quantum algorithm for finding the order is as follows,

43



|0y
bm
|1y
bn
Ñ

1
?

2m

2m´1
ÿ

j“0

|jy |1y
bn

Hadamard Hbm to first m bits

Ñ
1

?
2m

2m´1
ÿ

j“0

|jy
ˇ

ˇxj mod N
D

Ux,N applied

“
1

?
r2m

r´1
ÿ

s“0

2m´1
ÿ

j“0

e2πisj{r |jy |usy Fourier decomposition

Ñ
1
?
r

r´1
ÿ

s“0

|rs{ry |usy Apply inverse Fourier transform to first m qubits

Ñ rs{r Measurement on first m qubits

Ñ r Continued fraction algorithm*

Figure 4.6: Order finding quantum part of Shor’s algorithm (Nielsen and Chuang, 2002)

Using the inverse Fourier transform rs{r is an approximation of the phase of e2πisj{r. The
continued fraction algorithm is used to find an r such that the output rs{r is irreducible.

Shor’s algorithm takes OpplogpNqq3q time, as opposed to the fastest known fully classical algo-
rithm for prime factorisation which takes OpN1{4q time.

The circuit for Shor’s algorithm is as follows: since the order r (actually rl{r) we are trying to
find is greater than 1, we will require multiple registers to measure it.

|0y H ¨ ¨ ¨ ‚

QFT ´1
2n

...
...

...

|0y H ‚ ¨ ¨ ¨

|0y H ‚ ¨ ¨ ¨

|1y {n Ux20

Ux21 ¨ ¨ ¨ Ux22n´1

Figure 4.7: Quantum circuit for Shor’s algorithm (Wikipedia, 2017c)

There have been some improvements on Shor’s algorithm, e.g. by Bernstein et al. (2017) who
present a new algorithm that is faster than Shor’s algorithm in most cases.
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4.4.3 Grover Search

Grover’s search (Grover, 1996), formally described in Nielsen and Chuang (2002), takes a function f
such that there is at least one s such that fpsq “ 1, a set S “ t0, 1un of inputs of size |S| “ N “ 2n,
and is able to find an s P S which satisfies fpsq “ 1 in Op

?
Nq time. Classically this kind of search

has to take at least N steps, and therefore take OpNq time. This speedup, though not exponential,
is quite significant considering the generality of this algorithm. It was also proven that this is the
maximal speedup possible for this problem (Zalka, 1999).

Much like our f oracle mentioned in the Deutsch-Jozsa algorithm, let U be an oracle defined as
U |xy |yy “ |xy|y ‘ fpxqy where fpxq “ 1 if x is a solution to the search problem and 0 otherwise.
The algorithm also uses conditional phase shift which takes |0y to |0y and |xy to ´ |xy for x ą 0. The
Grover iteration used in Grover’s search is defined as a product of 4 gates. First the U gate, followed
by a Hadamard gate, then conditional phase shift, and then another Hadamard gate. Together the
Grover iteration looks like

G “ pHbnp2 |0y
bn
x0|bn ´ InqH

bnqU

Nielsen and Chuang (2002).

To demonstrate how the Grover operator is able to give the desired answer, a geometric analysis
is quite useful. Let M denote the number of solutions to fpsq “ 1, that is M “ |ts P S : fpsq “ 1u|.

Let |βy “ 1?
M

ř

x:fpxq“1 |xy be the vector of all M solutions, and |αy “ 1?
N´M

ř

x:fpxq‰1 |xy,

then we can write the uniform state as

1
?

2n

2n´1
ÿ

x“0

|xy “

c

N ´M

N
|αy `

c

M

N
|βy .

The oracle transform reflects |βy about |αy; mathematically we can write this as

Uωpa |αy ` b |βyq

ˆ

|0y ´ |1y
?

2

˙

“ a |αy

ˆ

|0y ´ |1y
?

2

˙

` b |βy

ˆ

|1y ´ |0y
?

2

˙

“ pa |αy ´ b |βyq

ˆ

|0y ´ |1y
?

2

˙

The transform pHbnp2 |0y x0| ´ IqHbnq is a reflection about 1?
2n

ř2n´1
x“0 |xy. Performing these

two reflections together gives a rotation.

Let cos θ2 “
b

N´M
N , then we have that sin θ

2 “

b

M
N and we can re-write the uniform state as,

1
?

2n

2n´1
ÿ

x“0

|xy “ cos
θ

2
|αy ` sin

θ

2
|βy .
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Then applying the Grover iteration to both sides we get

G

˜

1
?

2n

2n´1
ÿ

x“0

|xy

¸

“ pHbnp2 |0y
bn
x0|bn ´ InqH

bnqUω

ˆ

cos
θ

2
|αy ` sin

θ

2
|βy

˙

“ pHbnp2 |0y
bn
x0|bn ´ InqH

bnq

ˆ

cos
θ

2
|αy ´ sin

θ

2
|βy

˙

“ cos

ˆ

3θ

2

˙

|αy ` sin

ˆ

3θ

2

˙

|βy

and applying the iteration k times leads to

Gk

˜

1
?

2n

2n´1
ÿ

x“0

|xy

¸

“ cos

ˆ

2kθ ` θ

2

˙

|αy ` sin

ˆ

2kθ ` θ

2

˙

|βy .

Thus we perform the iteration a number of times so that sin
`

2kθ`θ
2

˘

is close to 1, which leads
to

k “

S

π

4

c

N

M

W

.

This can be derived by

sin

ˆ

2kθ ` θ

2

˙

« 1

2kθ ` θ

2
«
π

2

θ
2k ` 1

2
«
π

2

2k ` 1 «
π

θ

k «
π

2θ
´

1

2

k «
π

4

c

N

M
´

1

2

We could include the `2mπ in the second line, however we are trying to use the least number of
iteration steps so we pick m “ 0 in this case. Now that we have shown how the Grover iteration is
able to find the desired answer, the algorithm for producing the single unique x1 such that fpx1q “ 1
(thereby the case when M “ 1) can be defined as follows:
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|0y
bn
|0y Ñ

1
?

2n

2n´1
ÿ

x“0

|xy p|0y ´ |1yq Hadamard

then repeat the Grover iteration rpπ
?
N{4qs times

Ñ ppHbnp2 |0y x0| ´ IqHbnqU
rpπ
?
N{4qs

q

˜

1
?

2n

2n´1
ÿ

x“0

|xy p|0y ´ |1yq

¸

“ Grpπ
?
N{4qs

˜

1
?

2n

2n´1
ÿ

x“0

|xy p|0y ´ |1yq

¸

« |βy

ˆ

|0y ´ |1y

2

˙

“
ˇ

ˇx1
D

ˆ

|0y ´ |1y

2

˙

Ñ x1 Measurement on first n qubits

Figure 4.8: Quantum Search Algorithm (Nielsen and Chuang, 2002)

To produce a quantum circuit, we can just write out each transform used in order.

Grover operator

|0y {n Hbn

U
Hbn 2 |0y x0| ´ I Hbn ¨ ¨ ¨

|1y H ¨ ¨ ¨

Repeat Op
?
Nq times

Figure 4.9: Quantum Circuit for Grover’s algorithm (Nielsen and Chuang, 2002; Wikipedia, 2017a)

It may not be immediately obvious what our value of M should be, that is, how many solutions
there may be. It turns out that we can solve this problem with our next algorithm.

4.4.4 Quantum Counting Algorithm

The Quantum Counting Algorithm, proposed in Brassard et al. (1998) and described in Nielsen and
Chuang (2002), is a combination of Grover search and phase estimation. Given an oracle indicator
function fB : A Ñ t0, 1u of B Ď A, with |A| “ N “ 2n, the Quantum Counting Algorithm finds
M “ |B|.
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To do so, the Quantum Counting Algorithm finds a solution θ to the equation

sin2

ˆ

θ

2

˙

“
M

2N
(4.4)

then solves for M .

Phase estimation, described in Section 4.3.4 and Nielsen and Chuang (2002), is a subroutine
used in quantum algorithms to estimate the phase of the eigenvalue of some unitary operator (in this
case G) to some precision. Phase estimation relies on the fact that when the eigenvalue is written

in the form e2πijφ for phase φ, the inverse Fourier transform will transform 1?
N

řN´1
j“0 e2πijφ |jy to

an approximation of φ in the form
ˇ

ˇ

ˇ
φ̃
E

, where φ̃ is the binary approximation of φ.

To achieve m bits of accuracy of θ with probability 1´ ε, the algorithm works on two registers.
The first register is of size t “ m` rlogp2` 1

2ε qs, and the second register of size n` 1.

The algorithm is much like the phase estimation described in Section 4.3.4.

|0y
bt
|0y

n`1
Ñ

1

2t{2

2t´1
ÿ

k“0

|ky
1

2pn`1q{2

2n`1
´1

ÿ

s“0

|sy Hadamards

Ñ
1

2t{2

2t´1
ÿ

k“0

e2πiφk |ky
1

2pn`1q{2

2n`1
´1

ÿ

s“0

|sy Controlled-G

“
1

2t{2

´

|0y ` e2πi2t´1φ |1y
¯´

|0y ` e2πi2t´2φ |1y
¯

. . .
´

|0y ` e2πi20φ |1y
¯ 1

2pn`1q{2

2n`1
´1

ÿ

s“0

|sy

“
1

2t{2
`

|0y ` e2πi0.φt |1y
˘ `

|0y ` e2πi0.φt´1φt |1y
˘

. . .
`

|0y ` e2πi0.φ1...φt |1y
˘ 1

2pn`1q{2

2n`1
´1

ÿ

s“0

|sy

Ñ

ˇ

ˇ

ˇ
φ̃
E 1

2pn`1q{2

2n`1
´1

ÿ

s“0

|sy Inverse Fourier transform

Ñ φ̃ Measurement on first register

The circuit of the algorithm is as follows,
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|0y H ¨ ¨ ¨ ‚

QFT ´1
m

... H ¨ ¨ ¨

|0y H ‚ ¨ ¨ ¨

|0y H ‚ ¨ ¨ ¨

|0y
bn`1

Hbn`1 G20

G21 ¨ ¨ ¨ G2m´1

Figure 4.10: Quantum Circuit for the Quantum Counting algorithm (Nielsen and Chuang, 2002;
Wikipedia, 2017b)

If we choose m “ rn{2s` 1 and ε sufficiently small (such as 1{10), then the algorithm will take
Op
?
Nq Grover iterations. This means that the function f will only be called Op

?
Nq times. Note

that this is in contrast to a classical (deterministic or probabilistic) algorithm which will take OpNq
oracle calls to achieve the same accuracy. Formally,

Theorem 4.4.1 (Quantum Counting Correctness). Given a function f : t0, 1un Ñ t0, 1u such that
M “ |tx P t0, 1un : fpxq “ 1u| and sin2

`

θ
2

˘

“ M
2N , to find θ with m bits of accuracy, with probability

1´ε the Quantum Counting Algorithm requires Opm`n` rlogp2` 1
2ε qsq registers and Op

?
Nq time.

Proof. The majority of this proof is from Nielsen and Chuang (2002). Given m and ε set up the
first register with rlogp2` 1

2ε qs qubits, and the second register with n`1 qubits. Use the Hadamard

gate on the second register to take it to the superposition of 1?
2n`1

ř2n`1
´1

x“0 |xy. Like the Grover

search algorithm let |ay and |by represent the eigenvectors of the Grover iteration with eigenvalues
eiθ and eip2π´θq respectively. The superposition of the second register can be written in the form of
|ay and |by. The phase estimation algorithm 4.3.4 allows us to estimate the phase of the eigenvalues
of |ay or |by, that is θ or 2π´ θ, to within |4θ| ď 2´m with probability at least 1´ ε. Therefore we
are able to determine θ to an accuracy of 2´m with probability at least 1´ ε.

4.4.5 Harrow-Lloyd Algorithm for Linear equations

Given some N ˆN matrix A and some vector b, finding the solution x to the equation Ax “ b is
known as the linear equation problem. Classically this can be done in many ways, such as matrix
inversion (finding A´1 such that x “ A´1b). Classically the fastest algorithm takes OpNκq time,
where κ is the condition number of the matrix A. The Harrow-Lloyd algorithm (Harrow et al.,
2009) is able to achieve an exponential speedup in N by taking OplogpNqκ2q time, if κ “ Op1q.
Note that when κ “ OpNq this algorithm provides no speedup.

At this point the reader may question the existence of the algorithm since to output an N
long vector x, one must use at least N steps. This is correct, however, if one is interested in
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some property of x, such as ||Mx||tr for some matrix M , it will provide an exponential speedup
over classical methods. The procedure relies on the quantum phase estimation and hamiltonian
simulation, for both of which there are fast quantum algorithms.

4.5 Quantum Complexity Theory

Quantum complexity theory is developed in the landmark paper by Bernstein and Vazirani (1997),
which expands on Deutsch’s work by defining what it means for a QTM to be well-formed. Then
showed that well-formedness of a QTM is equivalent to having a unitary time evolution operator (as
Quantum Physics requires). Then, it goes on to demonstrate how to (theoretically) construct an effi-
cient universal QTM. This is done by proving some results about reversible Turing Machines, which
in turn apply to Quantum Turing Machines, since unitary transforms are by definition reversible.
Then Bernstein and Vazirani (1997) used those results to construct a looping and branching pro-
cess required by an efficient QTM. To show how to decompose a unitary transform, Bernstein and
Vazirani (1997) defined a class of matrices called near-trivial.

Definition 4.5.1. A near-trivial matrix is one that is the identity with either a single diagonal
phase shift, eiθ, or a rotational block of the form

ˆ

cospθq ´ sinpθq
sinpθq cospθq

˙

for some θ P r0, 2πq.

It was then proven that there exists a (deterministic) polyplogp 1
ε qq algorithm to decompose

any unitary matrix into near-trivial matrices. Bernstein and Vazirani (1997) used θ “ R :“

2π
ř8

k“1 2´2k and showed that one can efficiently simulate any QTM with near-trivial transforms
with this choice ofR. Quantum Turing Machines of the above form, with θ “ R, are hereby referred
to as QTMBV .

All of this led to the definition of the Quantum complexity classes of BQP (Bounded Error
Quantum Polynomial time), an analogue of BPP, and EQP (Exact Quantum Polynomial Time).

Definition 4.5.2. BQP is defined as the set of languages that are accepted with probability 2
3 by

some polynomial time Quantum Turing Machine.

The class EQP is defined in a similar way, however the language has a probability of being
accepted of 1. To compare Quantum complexity classes to classical complexity classes, Bernstein
and Vazirani (1997) proved P Ď EQP, that BPP Ă BQP and that BQP Ď PSPACE. They then
went on to prove that there exist problems which are in BQP but are not in BPP, showing that
Quantum Computing has strict advantages over classical deterministic (or probabilistic) computing.
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4.6 Quantum Computability

Quantum computability was expanded on by Adleman et al. (1997). Here, the authors used tran-
scendental number theory and were able to produce some results about the computational power of
different classes of Quantum Turing Machines. Similarly to Bernstein and Vazirani (1997), Adleman
et al. (1997) defined a type of QTM much like the near-trivial QTM, i.e. one whose transforms are
near-trivial matricies. Let θ P r0, 2πq, then let QTMθ denote a subset of all QTMs, whose matrix
(time evolution operator) is block diagonal with each block containing 1, ´1, or a 2ˆ 2 of the form

ˆ

cospθq ´ sinpθq
sinpθq cospθq

˙

.

Let QTMQ “
Ť

qPQQTMq and let QTMBV be the Quantum Turing Machine defined by Bernstein
and Vazirani (1997). Adleman et al. (1997) showed that QTMQ ” QTMBV in the sense that they
can simulate each other within some small ε ą 0 error, with only a polynomial slowdown. Let
BQPθ denote BQP as defined above for QTMθ. Adleman et al. (1997) proved that this leads to
BQP “ BQPQ. However, they were also able to prove that BQPQ Ĺ BQPC, and that BQPC
contains sets of arbitrary Turing degrees. Recall that Turing degrees (Post, 1944) are the degree of
difficulty of a problem, that is, how unsolvable a problem is. This then leads to the fact that QTMQ
cannot simulate QTMC with ε error in polynomial time. Additionally, Adleman et al. (1997) were
able to prove that BQP and EQP are all contained within PP. Recall that PP (Probabilistic
polynomial time) is the class of all problems solvable with a probabilistic Turing Machine which is
correct with probability more than 1

2 (Gill, 1977). If we define EQPθ similar to BQPθ, then for θ
such that cospθq is poly-computable transcendental, EQPθ “ P .

4.7 Quantum Algorithmic Information Theory

Little work has been done on Quantum Algorithmic Information Theory compared to other areas of
Quantum Computing. Quantum Kolmogorov complexity was first discussed by Berthiaume et al.
(2000). Müller (2008) expanded upon the idea, and defined it as follows,

Definition 4.7.1 (Müller (2008)). Given a QTM M and a finite error δ ą 0, the finite-error
Quantum Kolmogorov complexity of a qubit string |xy is

KQ
M,δpxq “ min

p
t`ppq : ||x´Mppq||tr ă δu

and the approximate-scheme Quantum Kolmogorov complexity of a qubit string x is

KQ
M pxq “ min

p

"

`ppq : ||x´Mpp, kq||tr ă
1

k
@ k P N

*

where || ¨ ||tr is the trace norm, i.e. ||a´ b||tr :“ 1
2 ||a´ b||1.

To construct a Quantum version of the invariance theorem, a result from classical Kolmogorov
complexity, Müller (2008) showed that there exists a Universal Quantum Turing Machine, U which
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satisfies the property that for any other QTM M we have

KQ
U pxq ď KQ

M pxq ` cM

for all qubit strings x, where cM is a constant depending only on M , but not on x. Then Müller
(2008) goes on to prove that for all δ, γ P Q` with δ ă γ, and for all QTM M we have that

KQ
U,γpxq ď KQ

M,δpxq ` cM,γ,δ

for all qubit strings x, where cM,γ,δ is a constant depending on M,γ and δ. This shows that the
QTM U is “strongly universal”.
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Chapter 5

Hardness of Counting

5.1 Hardness of counting

In this chapter we will explain the classical hardness of counting, some quantum computing ap-
proaches, and the implications of a fast classical or quantum counting algorithm.

5.1.1 The class #P

Introduced by Valiant (1979) while describing the complexity class of computing the permanent
of a matrix, the complexity class #P (pronounced num P) is the class of counting the number of
solutions to an NP problem. For example the number of Hamiltonian cycles on a graph, or the
number of inputs satisfying a Boolean circuit. Formally,

Definition 5.1.1 (Valiant (1979)). #P is the class of all problems which can be computed by
counting Turing Machines of polynomial time complexity.

Some examples of problems in #P are: the number of distinct optimal tours in a travelling
salesman problem, the number of unique subsets of a set of integers which sum to zero, and the
number of subgraphs which are isomorphic to a given graph.

5.1.2 Counting

The problem of exact counting is defined as follows: Given a function f : t0, 1un Ñ t0, 1u, we are
concerned with finding

Cpn, fq “
1

2n

ÿ

xPt0,1un:fpxq“1

1.
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The problem of approximate counting is to find a k such that

p1´ εq ¨ Cpn, fq ď k ă p1` εq ¨ Cpn, fq

for some fixed ε ą 0.

It has been shown that approximate counting can be done probabilistically with runtime poly-
nomial in n and 1

ε , with an NP-complete oracle (Valiant, 1979; Stockmeyer, 1983, 1985).

If there was a Quantum algorithm which could perform approximate counting in polynomial
time, then that would imply that NP Ď BQP since as we just mentioned, approximate counting can
be done probabilistically with an NP-complete oracle. This would immediately give (theoretical)
quantum supremacy, which is deemed implausible.

5.1.3 Toda’s Theorem

An exceptional result by Toda (1991) demonstrates the power of the complexity classes PP and
#P.

Theorem 5.1.1 (Toda’s Theorem). The entire polynomial hierarchy PH is contained in PPP.

Using Toda’s theorem, we get an immediate corollary which comes from PPP “ P#P.

Corollary 5.1.1. The entire polynomial hierarchy PH is contained in P#P.

If we had an efficient classical algorithm which could perform exact counting, then from Toda’s
theorem the polynomial hierarchy would collapse. Since we suspect this is not the case, it is unlikely
that there exists a classical algorithm which can compute exact counting.

There have been several attempts to use Quantum computing to solve counting problems more
quickly than classical computers, such as the quantum counting algorithm in the previous chapter.
Here, we will give two other attempts which provide significant speedup over classical methods:
Boson sampling and Postselection.

5.2 Boson sampling

Before getting to Boson sampling, it is important to discuss the permanent.

5.2.1 The Permanent

Though less well-known than its cousin the determinant, the permanent (Weisstein, 2006) is an
operation on a matrix which involves permutations of the rows and columns of the matrix. Formally,
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Definition 5.2.1. The permanent of an nˆ n matrix A “ pai,jq is

permpAq “
ÿ

σPSn

n
ź

i“1

ai,σpiq (5.1)

where Sn is the set of permutations of t1, . . . , nu, also known as the symmetric group.

Alternate representations:

permpAq “ p´1qn
ÿ

sĎt1,...,nu

p´1q|s|
n
ź

i“1

ÿ

jPs

ai,j (5.2)

and

permpAq “ E

»

—

—

–

det

¨

˚

˝

˘
?
a1,1 ¨ ¨ ¨ ˘

?
a1,n

...
. . .

...
˘
?
an,1 ¨ ¨ ¨ ˘

?
an,n

˛

‹

‚

2
fi

ffi

ffi

fl

. (5.3)

Here the expectation is over the 2n
2

˘ combinations.

Using either definition it is quite hard to calculate the permanent, at least naively. In Equation
5.2 the outer sum is summing over the set ts : s Ď t1, . . . , nuu, and this set is of size 2n. As for

Equation 5.3, the expected value is over 2n
2

different matrices.

It should be unsurprising then that calculating the permanent of a matrix A is a #P-hard prob-
lem and a #P-complete problem if A is a (0,1)-matrix (Valiant, 1979). In fact, even approximating
the permanent of a matrix A is #P-hard.

5.2.2 Boson Sampling

Boson sampling, defined by Aaronson and Arkhipov (2011), is a proposed (non-universal) model
of quantum computation which involves sampling from a probability distribution of noninteracting
bosons. It was shown in Abrams and Lloyd (1997) that sampling from bosonic or fermionic distri-
butions can be done efficiently (in polynomial time) using a universal quantum computer. In the
process of boson sampling, it is required to calculate the permanent of a given matrix. This comes
from the fact that the state probabilities in bosonic systems are permanents of matrices.

In defining boson sampling, Aaronson and Arkhipov (2011) proved that, under some reasonable
conjectures, the existence of a classical algorithm which could efficiently compute exact (or ap-
proximate) boson sampling would imply that the polynomial hierarchy collapses to the third level,
meaning having more than two NP-complete oracles is equivalent to having two NP-complete
oracles. It is unlikely (though not impossible) that this is the case.

This comes from the fact that exact (or approximate) boson sampling is a #P-hard problem,
since it involves calculating a permanent, and Toda’s theorem.
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Thus if large, efficient boson Sampling computers were physically realised, we may be able to
solve hard problems such as the exact or approximate counting or computing the permanent, which
(likely) have no efficient classical algorithm.

5.3 Postselection

Postselection, first defined in Aaronson (2005), is the process of ignoring all outcomes of a compu-
tation in which an event did not occur; selecting specific outcomes after (post) the computation.

The complexity class PostBQP, standing for post-selected bounded-error quantum polynomial
time, is the class BQP with postselection. Unsurprisingly we have that PostBQP Ě BQP.

The power of postselection which Quantum computing comes from the following theorem

Theorem 5.3.1 (Aaronson (2005)). PostBQP “ PP. Which immediately implies PP Ě BQP

An immediate result of this is that PPostBQP “ P#P and therefore PH Ď PPostBQP. This
means that if there was an efficient way to postselect with a Quantum computer, we would be able
to solve many of the problems which are intractable classically, including exact counting.
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Chapter 6

Quantum Algorithms for Universal
Prediction

Although the exact Kolmogorov complexity and Solomonoff prior of a given x P t0, 1u˚ are in-
computable, approximations are not. Finding efficient approximations of either would provide a
powerful form of compression and prediction. One interesting approximation of the Solomonoff prior
is the Speed prior (Schmidhuber, 2002). The speed prior is very much like the Solomonoff prior,
however it essentially accounts for running time of each program on a universal Turing machine, as
opposed to running each program until it halts, as in the Solomonoff prior.

The speed prior is not the only approximation. There is also universal search, however both of
these still take time scaling exponentially in the length of the largest program. In this chapter, we
give a quantum algorithm which takes advantage of the quantum counting algorithm to compute
a fixed length speed prior, with a quadratic speedup compared to the classical method. We will
also give a reasoning to why we suspect that the speed prior is #P-complete, and as discussed
in the previous chapter, that implies it is unlikely that there exists a quantum algorithm which
has an exponential speedup over the classical method. Then we define a quasi-conditional Speed
probability which can be efficiently computed with a quantum algorithm related to the conditional
Speed prior algorithm. Lastly we present AIXIq a quantum computing approximation of AIXI and
give some results about the potential speedup it possesses over classical methods.
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6.1 Speed Prior

Although Solomonoff’s prior has many desirable theoretical properties, when performing inference
we often want a prior that is more easily computable, but still has strong theoretical properties.
To this end we will use the Speed Prior (Schmidhuber, 2002). The Speed prior is much like the
Solomonoff prior, however it takes into account the amount of time each program has been running.
This immediately gives a more practical prior than Solomonoff’s prior. Before we define the speed
prior itself we first need to define what we mean by amount of time each program has been running.
For that we use the FAST algorithm and notation which uses it.

Definition 6.1.1 (Schmidhuber (2002)). FAST algorithm: For i “ 1, 2 . . . perform PHASE i.
PHASE i: execute t2i´`ppqu instructions from all program prefixes p satisfying `ppq ď i, and subse-
quently write the outputs on adjacent sections of the output tape, separated by blanks.

Definition 6.1.2 (Schmidhuber (2002)). Given program prefix p, write p Ñ x if our TM reads p
and computes an output starting with x P t0, 1u˚, while no fixed prefix of p consisting of less than
`ppq bits outputs x. Write pÑi x if pÑ x in PHASE i of FAST .

Much like Solomonoff’s prior the complete speed prior is defined over all programs. Additionally
it is defined over all program times.

Definition 6.1.3 (Schmidhuber (2002)). The complete speed prior S on x P B˚ is

Spxq “
8
ÿ

i“1

2´iSipxq; where Sipλq “ 1; Sipxq “
ÿ

pÑix

2´`ppq for x ą λ

Having to execute every possible program for every amount of time is somewhat impractical,
this leads us to our finitely computable fixed length speed prior which we will be using.

Definition 6.1.4. The speed prior (which in this case is finitely computable and fixed length) S on
x P B˚ is

Spxq “
n2
ÿ

i“1

2´iSipxq; where Sipλq “ 1; Sipxq “
ÿ

pPBn: pÑix

2´`ppq for x ą λ

Where n “ `pxq

Here n2 is chosen so that the universal Turing machine component of S takes polynomial time
(specifically a small polynomial). Unfortunately because of this restriction we have no way to
guarantee the convergence to the speed prior, however we are not able to guarantee convergence if
we run universal Turing machines for any finite time.

When performing inference a conditional probability is required, for this we defined the condi-
tional speed prior.

Definition 6.1.5. The conditional speed prior of y P B˚ given x P B˚ is defined as

Spy|xq “
Spxyq

Spxq
(6.1)
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6.2 Complexity of S

S is the problem of the fixed-length speed prior.

We will show that if there did exist a quantum algorithm (in BQP) which could approximate S
exponentially faster then the classical method that would imply that BQP “ #P. We have been
unable to prove that S is #P-hard, however under this assumption this will immediately show it
is in a superset of BQP, since BQP Ď NP Ď #P.

Lemma 6.2.1. S P #P

Proof. To compute the Spxq we need to count the number of programs p of a length n such that
pÑi x for i from 1 to n2. For each program p, determining if pÑi x for i from 1 to n2 can be done
in polynomial time. The time taken to determine this for all p P t0, 1un grows exponentially in n,
and is thus an NP problem. The class #P is the counting class for NP problems, in particular it
can count the number of programs satisfying this property, therefore we have that S P #P.

We suspect that given a #P-complete problem one can simulate the problem with the speed
prior without a polynomial slowdown, however we have not yet been able to prove this claim.

Conjecture 6.2.1. S is #P-hard

Together this would give us the #P-completeness of S.

Conjecture 6.2.2. S is #P-complete

As a corollary of this, we have that if there did exist a quantum algorithm which could solve a
S in polynomial time, then the polynomial hierarchy would collapse, meaning having any number
of NP-complete oracles is equivalent to having no NP-complete oracles, as mentioned in Aaronson
and Arkhipov (2011).

Corollary 6.2.1. Under the assumption that S is #P-complete, if there exists a quantum algorithm
which can compute S in polynomial time then the polynomial hierarchy collapses.
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6.3 Classical Universal Prediction

First we will give the classical algorithm to compute the speed prior.

To compute the speed prior of x we can use the following Levin-search-style algorithm.

Algorithm 2: Classical Computable fixed-length speed prior algorithm

1 Given x;
2 S :“ 0;
3 n “ `pxq;
4 i :“ 1;
5 if x “ λ then

6 S :“ 1´ 2´n
2

7 else
8 while i ď n2 do
9 numi :“ 0;

10 for p P t0, 1un do
11 if pÑi x then
12 numi :“ numi ` 1
13 end

14 end

15 S :“ S ` 2´pi`nq ¨ numi;
16 i :“ i` 1;

17 end

18 end
Result: S

The first loop requires n2 iterations, each going for 1 ď i ď n2 time, and the second loop requires
2n iterations since the size of t0, 1un is 2n. Therefore the run time of this algorithm is Opn42nq.

To compute Spx|yq, one needs only to compute Spyq and Spyxq, then perform division of the
two. Using the algorithm above, approximating Spx|yq will require Opn42nq time, since we are just
using it twice.

6.4 Universal Prediction with Quantum Computing

6.4.1 Quadratic speedup for Speed Prior

If the probability being measured in a quantum computation is exponentially small then it requires
at least an exponential number of repeats to find the probability with sufficiently small error.
Therefore we cannot, at least naively, use a quantum version of the above algorithm to gain an
exponential speedup.
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It turns out, however, that for a lot of problems we can gain a quadratic speedup. This comes
from the use of the quantum counting algorithm (Brassard et al., 1998); as mentioned in chapter 4,
the quantum counting algorithm is a combination of Grover search and phase estimation which can
find Spxq “ |tp P t0, 1un : p Ñn2 xu| in Opn22n{2q time, opposed to the classical algorithm which
takes Opn22nq time. Let QCApxq denote the result of the quantum counting algorithm being run
on n “ `pxq qubits counting the set Spxq. The quantum counting algorithm is used in place of lines
9-14 of the classical 2 used to compute the finitely computable speed prior.

Algorithm 3: Quantum Counting speed prior algorithm

1 Given x;
2 S :“ 0;
3 n “ `pxq;
4 i :“ 1;
5 if x “ λ then

6 S :“ 1´ 2´n
2

7 else
8 while i ď n2 do
9 numi :“ QCApxq;

10 S :“ S ` 2´pi`nq ¨ numi;
11 i :“ i` 1;

12 end

13 end
Result: S

Thus the quantum computation of the finitely computable speed prior has running timeOpn42n{2q.
This is shown in the calculation below:

n2
ÿ

i“1

i2n{2 “ Opn42n{2q

Theorem 6.4.1 (Quantum Correctness). Given the an x P t0, 1u˚, and the Quantum Counting

algorithm function QCA : t0, 1u˚ Ñ N such that sin2
`

θ
2

˘

“
QCApxq

2n`1 , to find θ with m bits of
accuracy with probability 1 ´ ε the quantum finitely computable fixed length speed prior algorithm

requires Opm` n` logp2` n2

2 qq registers and Opn42n{2q time.

Proof. This proof comes immediately from Theorem 4.4.1. For a given x QCA allows us to find the
number of programs satisfying our property in Op2n{2q steps. At each stage the universal Turing

machine runs for 2i time, so the total time of the algorithm is
řn2

i“0 i2
n{2 “ Opn42n{2q. The accuracy

of each individual θ at a given stage is m and is correct with probability 1 ´ ε. This means that
the probability of correctness of all the stages is p1` εqn

2

, thus for the probability of the complete

algorithm being correct is 1 ` p1 ` εqn
2

´ 1, therefore if we choose ε “ 1
n2 for each QCA we will

have sufficiently small final error.

Although the time is still exponential, this quadratic reduction in time may still be useful. As
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mentioned earlier, to calculate the conditional finitely computable speed prior Spx|yq, one needs
only to run the above algorithm twice.

6.4.2 Exponential Speedup for Speed Prior

Our second quantum algorithm to compute S will be similar to the classical algorithm for computing
Spxq, however we will use the modified Deutsch-Jozsa algorithm as a subroutine to check every
program p P t0, 1un.

Formally let

fippq “

#

1 if pÑi x for p P t0, 1un

0 otherwise

For fi let L be the number of elements mapped to 1, and 2n ´ L be the number of elements
mapped to 0. Recall from section 4.4.1 that the modified Deutsch-Jozsa algorithm is as follows, f
is no longer restricted to the condition that either fpxq “ 0 for all x or fpxq “ 0 for exactly half of
the inputs x.

Lemma 6.4.1. Using the Quantum Counting Algorithm for fi with O
`

k
ε2

˘

trials, the absolute error
in estimating L is at most ε with probability at most 2e´2k.

Proof. This follows immediately from Lemma 4.4.1.

Now for the quantum algorithm we let Di denote the output of our modified Deutsch-Jozsa
algorithm with the oracle function fi, and let the r-average of a quantum algorithm be the empirical
mean of the quantum algorithm with r trials.

Then our quantum algorithm to compute the finitely computable speed prior is as follows:
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Algorithm 4: Quantum Speed prior algorithm

1 Given x;
2 S :“ 0;
3 n :“ `pxq;
4 i :“ 1;
5 if x “ λ then

6 S :“ 1´ 2´n
2

7 else
8 while i ď n2 do
9 numi :“ r-average of Di;

10 S :“ S ` 2´pi`nq ¨ numi;
11 i :“ i` 1;

12 end

13 end
Result: S

Theorem 6.4.2. The quantum speed prior algorithm computes the speed prior with absolute error
at most Opεq with probability at most 2n2e´2k in time O

`

k
ε2n

4
˘

Proof. The absolute error at each numi step (line 8) is at most ε, therefore the absolute error in
line 9 is at most 2´pi`nqε, therefore the absolute error in the final S is at most

n2
ÿ

i“1

2´pi`nqε “ p1´ 2´n
2

q2´nε “ Opεq,

by Boole’s inequalities the probability of numi having absolute error ε for all i is bounded by
2n2e´2k, since the probability of a single numi having absolute error ε is at most 2e´2k. By lemma
6.4.1 we have that the number of trials required to achieve an absolute error of at most ε with
probability at most 2e´2k is m “ k

ε2 . Since the computation of each Dipnq takes Opiq time, then

each numi will take Opi kε2 q time. Addition and multiplication take constant time. Therefore the
total time taken is

n2
ÿ

i“1

O

ˆ

i
k

ε2

˙

“ O

ˆ

n4 k

ε2

˙

Although this appears to be an exponential speedup over the classical method there is a problem.
Our average output may be exponentially small, potentially of size Op2´nq. This would mean that
we need ε to be at most 2´n, which means the time taken will be O

`

k22nn4
˘

which is not a speedup
on the classical methods which take time Opn42nq. This also means that for the conditional speed
prior, which is the quotient of two speed priors, we not have a speedup over classical methods either.

Example 6.4.1. Let y be a random binary sequence, then to compute Sp1|yq we need to compute
Spyq and Spy1q. The ε required for Spyq will be at most 2´n, where n “ `pyq since y is a random

sequence. Then by the previous theorem the time required will be O
´

k
p2´nq2n

4
¯

“ Opkn422nq.
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This example shows that there are cases where 4 has no speed improvement over the classical
method. However we may be able to avoid the occurrence of small ε’s.

6.4.3 Quasi-conditional prediction

As mentioned earlier, it is unlikely that we will be able to find a quantum algorithm to compute S
exponentially faster than our classical algorithm. This is because we may not suffer the problem of
small probabilities. Since we cannot exactly take a quotient mid quantum computation then we need
to use some structure of the problem to do something similar. This leads us to the quasi-conditional
speed prior, which is exponentially faster than classical methods. Additionally, we would like our
quasi-conditional speed prior to predict “well” in the sense that it does not differ too much from
the conditional speed prior.

Formally, our quasi-conditional speed prior is defined as follows:

Definition 6.4.1. The quasi-conditional finitely computable speed prior of x P t0, 1u˚ given y P
t0, 1u˚ is

S1px, yq “
n2
ÿ

i“1

2´iS1ipx, yq; where S1ipλ, yq “ 1; S1ipx, yq “
ÿ

pPBn: pyÑiyx

2´`ppq for x ą λ (6.2)

Where n “ `pxq

Our quantum algorithm to compute S1 will be similar essentially the same as the quantum
algorithm used to compute S.

Formally let

f 1ippq “

#

1 if py˚ Ñi yx for p P t0, 1un

0 otherwise

Just like before let L be the number of elements mapped to 1, and 2n ´ L be the number of
elements mapped to 0.

Lemma 6.4.2. Using the Quantum Counting Algorithm for f 1i with O
`

k
ε2

˘

trials, the absolute error
in estimating L is at most ε with probability at most 2e´2k.

Proof. This follows immediately from Lemma 4.4.1.

Now for the quantum algorithm we let D1i denote the output of our modified Deutsch-Jozsa
algorithm with the oracle function f 1i , and let the r-average of a Quantum algorithm be the empirical
mean of the Quantum algorithm with r trials.

Then our quantum algorithm to compute the quasi-conditional finitely computable speed prior
is as follows:
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Algorithm 5: Quantum Quasi-conditional speed prior algorithm

1 Given x;
2 S1 :“ 0;
3 n :“ `pxq;
4 i :“ 1;
5 if x “ λ then
6 S1 :“ 1´ 2´n

7 else
8 while i ď n2 do
9 numi :“ r-average of D1i;

10 S1 :“ S1 ` 2´pi`nq ¨ numi;
11 i :“ i` 1;

12 end

13 end
Result: S1

Then to show the computation time for our algorithm we have the following theorem. The proof
almost exactly like that of the regular speed prior.

Theorem 6.4.3. The Quantum quasi-conditional speed prior algorithm computes the quasi speed
prior, S1, with absolute error at most Opεq with probability at most 2n2e´2k in time O

`

k
ε2n

4
˘

The proof of this theorem is identical to the proof of 6.4.2.

Thus we can compute the quasi-conditional speed prior exponentially faster than the classical
conditional speed prior. However, we have not yet shown that the quasi-speed prior is a reasonable
approximation of the classical conditional speed prior.

Conjecture 6.4.4. The quasi-conditional speed prior approximates the conditional speed prior
sufficiently well.

The same example does not cause the quasi-speed prior algorithm to take an exponential amount
of time since the ε is not going to be as small, this is because for S1 the program begins with the
sequence y, so being a random sequence does not require the ε to be of size 2´n. This is not a
proof that there does not exist a sequence, or there only exists a small set of sequences which cause
extremely small ε.

6.5 AIXIq

Recall that the agent AIXI can be written as taking action ak where

ak :“ arg max
ak

ÿ

okrk

. . .max
am

ÿ

omrm

rrk ` . . . rms
ÿ

q:Upq,a1...amq“o1r1...omrm

2`pqq (6.3)
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Observe that one can modify AIXI to use the speed prior instead of Solomonoff induction. The
resulting agent, AIXI-Spd, will take action ak where

ak :“ arg max
ak

ÿ

okrk

. . .max
am

ÿ

omrm

rrk ` . . . rmsSpo1r1 . . . omrm|a1 . . . amq (6.4)

Using the classical algorithm the time taken to compute AIXI-Spd is

Theorem 6.5.1. Computational time of compute AIXI-Spd using 2 and search over observations
and rewards is Op|O|m|A|mpnmq42nmq.

Where |O| is the size of the set of observations, |A| is the size of the set of actions, and each
element of O,A is bounded in size by n.

Proof. The time taken to compute Spo1r1 . . . omrm|a1 . . . amq is pnmq42nm when oi, ai is bounded
in size by n, shown in section 6.3. The number of possible observation reward pairs is |O|m|A|m,
therefore the total time required to compute Equation 6.4 is Oppnmq42nm|O|m|A|mq.

Then from this we can define our AIXIq

Definition 6.5.1. Given the history o1r1 . . . ok´1rk´1 where oi is the observation at the ith time
step, and ri is the reward at the ith time step, AIXIq takes action ak defined by

ak :“ arg max
ak

ÿ

okrk

. . .max
am

ÿ

omrm

rrk ` . . . rmsSqpo1r1 . . . omrm|a1 . . . amq (6.5)

Here Sq is the quasi-conditional speed prior computing on a quantum computer using Algorithm 5,
with ε “ 1

nm2|O||A|pm´kq
and k “ 100.

The ε is chosen this way to prevent the cumulation of errors, as we need to consider the errors
of the quasi-conditional speed prior with every combination of action and observation. Since we
suspect that the quasi speed prior is a close to the speed prior, and the ε is chosen so that the
action ak chosen is sufficiently close to the action chosen by AIXI-Spd, then it should follow that
AIXIq is a good approximation of AIXI-Spd.

Conjecture 6.5.2. AIXIq is a good approximation of AIXI-Spd

Then the time taken for AIIXq is as follows

Theorem 6.5.3. The computational time taken for AIXIq is Op|O|m|A|mpnmq622p|O||A|pm´kqqq

Where |O| is the size of the set of observations, |A| is the size of the set of actions, and each
element of O,A is bounded in size by n.

Proof. The time taken to compute Sqpo1r1 . . . omrm|a1 . . . amq is pnmq622p|O||A|pm´kqq when oi, ai is
bounded in size by n and ε “ 1{pnm2|O||A|pm´kqq, shown in section 6.4.3. The number of possible
observation reward pairs is |O|m|A|m, therefore the total time required to compute Equation 6.5 is
Op|O|m|A|mpnmq622p|O||A|pm´kqqq.
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Thus using quantum computing we can compute AIXI-Spd exponentially faster in n, although
there is an exponential increase with respect to |O|, |A| and m.
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Chapter 7

Conclusion

Quantum computing is an expanding field which has provided opportunities to perform computing
in a completely different way to classical computing method. This has resulted in the study of the
theoretical and practical aspects of quantum computing, we focused on the theoretical aspects.

We have provided a description of quantum computing, including the current state of quantum
algorithms, a summary of the more popular quantum algorithms, including those used to gain
speedups for classically hard problems, such as Shor’s algorithm. Additionally we included evidence
to suggest why it is unlikely that quantum computing could solve counting problems (exponentially)
faster than classical computing. Counting is a major part of approximating the Speed prior thus
we need to be able to show that if we had a quantum algorithm which could approximate the Speed
prior exponentially faster than classical methods then the polynomial hierarchy would collapse.

Additionally we presented two quantum algorithms to provide speedups for the problem of ap-
proximating the Speed prior. Firstly a quadratic speedup based on the quantum counting algorithm,
and secondly an exponential speedup for a quasi Speed prior, since this was not the exact Speed
prior it did not contradict the evidence mentioned previously, nor cause the polynomial hierarchy to
collapse. Together we can use these algorithms to create an approximation of the super intelligent
agent AIXI which is able to perform learning faster than a classical version.

There are many avenues to achieve Artificial General Intelligence, an approximation of the
theoretically optimal agent AIXI is just one. All current approximations of AIXI are not viable.
Our use of quantum computing techniques to construct a quantum algorithm to provide speedup
over a classical algorithm is a way in which an approximation may become viable. The viability
does then depend on the existence of reasonably-sized general purpose quantum computers, which
at the time of writing do not exist.

We hope that future research may be able to come up algorithms which have improved compu-
tation time as well as physical quantum computing devices in which our quantum algorithms could
be implemented.
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List of Notation

N : The set of Natural Numbers

Z : The set of Integer Numbers

Q : The set of Rations Numbers

R : The set of Real Numbers

C : The set of Complex Numbers

C̃ : The set of polynomial-time computable Complex Numbers

QTM : Quantum Turing Machine

|0y : The vector

ˆ

1
0

˙

|1y : The vector

ˆ

0
1

˙

|ay b |by : The tensor product of |ay and |by

a: : The conjugate transpose of a

H : The Hadamard gate

N : A natural number

QFT : The Quantum Fourier Transform

QFT ´1 : The inverse Quantum Fourier Transform

θ : An angle

κ : Condition number of a matrix

G : Grover iteration

P,NP,PP,BPP,EQP,BQP : The complexity classes of the same names

perm : Permanent of a matrix

det : Determinant of a matrix

S : Speed prior

S1 : Quasi-conditional Speed prior

KT pxq : Kolmogorov complexity with Turing Machine T

E : Expected value
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` : Length

B : The set t0, 1u

B˚ : The set of all finite binary strings

P : The power set

O : The set of observations

A : The set of actions

|| ¨ ||tr : The trace norm

Q : Set of Turing Machine states

L,R : Left and Right

‘ : Addition modulo 2

ε : Small positive real number usually denoting error

δ : A real number, or the transition function

µ : A computable measure

φ : The phase

I : The identity matrix

c : Constant

M : Solomonoff Prior or a natural number

m : Number of bits of accuracy or the maximal time for AIXI

n : A number

k : A number

T : A number, usually denoting time

A : A matrix

L : A positive integer

x : A number or binary string

y : A number or binary string

z : A number or binary string

ρ : A number or binary string
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