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Effect of Potential Energy
Variation on the Natural
Frequency of an Euler–Bernoulli
Cantilever Beam Under Lateral
Force and Compression
A cantilever beam is subjected to both lateral force and compression under gravity. By
taking into account the potential energy variation of the system, we develop a theoretical
result that greatly simplifies the bending vibration frequency calculation in agreement
with the experiments. [DOI: 10.1115/1.4036094]

1 Motivation

Classical beam theory neglects the displacement in the direc-
tion of the beam axis when a cantilever beam is subject to a lateral
force at the free end. This displacement modifies the potential
energy of the system. While the natural frequency calculation
uses linear theory and small displacements, the second-order non-
linear deflection of the beam has a relevant effect, in this case, on
the linear vibrations. This makes the standard approximations
based on the linear theory of strength of materials unsatisfactory.

As an example, consider an apple attached to the branch by
means of the stem [1]. The mass of the stem is negligible com-
pared to that of the apple. The stem is elastic and the natural fre-
quency of the apple depends on the lateral deformation of the
stem, which is affected by the tension caused by the weight of
the apple. During the linear vibration of the apple, the change of
the potential energy related to the vertical position of its center
of gravity due to the deformation of the stem should be taken into
account: the vertical displacement is a second degree function of
the lateral displacement, similarly to the planar pendulum.

There is another phenomenon that might be taken into account
in natural frequency calculations, namely that the tensile force
caused by the weight of the apple at the end of the stem results in
the variation of the lateral spring stiffness of the stem. Further
clarification is needed to discuss the two kinds of potential energy
variations and their effects on the natural frequency.

The objective of this study is to provide a closed-form analyti-
cal estimation of the basic natural frequency of a vertical cantile-
ver beam with a heavy block attached to its free end (see the
arrangement in Fig. 1). The beam is considered to be prismatic,
homogeneous, linearly elastic, and inextensible. It is either in
compression or in tension depending on whether it stands upward
or downward, respectively.

To support the calculation of the potential energy, we are going
to construct a simple analytic formula that describes the connec-
tion of the lateral and longitudinal displacements of an elastic
beam. There have been many related results in the literature: Bor-
boni and De Santis [2] and Lee [3] have investigated a cantilever
beam under combined loads with Ludwick type material and pro-
vided a numerical algorithm to solve the problem. Gonz�alez and
LLorca [4] examined a similar problem in the case of linearly

elastic curved beams and derived an implicit analytical expression
that still requires the application of some numerical methods.
Solano-Carrillo [5] has found a relationship between the geometri-
cal and material nonlinearities concerning a beam under combined
loading and suggested a semi-exact solution.

The model used by Bel�endez et al. [6] is the one described in
the introduction above. The mathematical model of their work is
obtained from the Euler–Bernoulli curvature and bending moment
connection and considered large and small deflections. They
investigated only the longitudinal displacement of the beam and
did not take into account its connection with the lateral displace-
ment. Their results were achieved by incorporating some numeri-
cal methods and these were compared with experimental ones.

2 Experiment

In order to identify precisely the effect of the longitudinal dis-
placement of a cantilever beam on the natural frequency of the
bending vibration, an experimental setup was built (see Fig. 1). In
the case of three different beam lengths, the natural frequencies

Fig. 1 The experimental equipment that consists of a rectan-
gular cross rod with length L and a heavy block with mass
m 5 0.978 kg
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were measured while the beam was in the vertical position under
either compression or tension (depending on whether it stood
upward or downward).

The horizontal position defined the neutral case, that is, the
beam is not affected by the heavy block. The results of the experi-
ment are summarized in Table 1. The average 15% difference of
the frequencies depending on the longitudinal load type compared
to the neutral case gives the motivation of this study: in an indus-
trial project, simple closed-form expressions are needed for the
calculation of the natural frequency of a cantilever beam with a
heavy mass attached to its end, which takes into account whether
the beam is vertical or horizontal. The material and geometrical
data of the measured system can be found in Table 2.

3 Theory

According to the results of Bel�endez et al. [6], we are able to
specify

n ¼ jg2 (1)

that describes the connection of the longitudinal displacement n
and the lateral displacement g of a cantilever beam subjected to a
lateral force F at its end (see Fig. 3).

To approximate the value of j, let us assume that the end of a
cantilever beam moves on the arc of a circle (see Fig. 2). Then, by
Pythagoras

L2 ¼ ðL� nÞ2 þ g2 ) n2 � 2Lnþ g2 ¼ 0

so n is given by

n ¼ 1

2

g2

L
þO g4

� �
(2)

The assumption provides the approximation of j¼ 1/(2L) where L
denotes the length of the beam.

4 Modeling and Analysis

The liner mathematical model of the Euler–Bernoulli elastic
beam [7] assumes the form

y00 xð Þ ¼ �M xð Þ
IE

(3)

where y describes the planar lateral deformation of the beam as a
function of the coordinate x as shown in Fig. 3, while M denotes
the bending moment. The cantilever prismatic beam has length L,
it is inextensible, and its bending stiffness is IE with modulus of
elasticity E and area moment of inertia I.

The beam is subjected to a lateral force F and compression P at
its free end. Since the bending moment function can be expressed
as

MðxÞ ¼ PðyðxÞ � yðLÞÞ þ Fðx� LÞ
¼ Pgþ Fn

(4)

the governing equation assumes the form

y0000 xð Þ þ a2y00 xð Þ ¼ 0 ; a2 ¼ P

IE
(5)

with boundary conditions

yð0Þ ¼ 0 ; y0ð0Þ ¼ 0 ; y00ðLÞ ¼ 0

IEy000ðLÞ ¼ �Py0ðLÞ � F

The scalar parameters A, B, C, D of the general solution

yðxÞ ¼ Aþ Bxþ C cosðaxÞ þ D sinðaxÞ (6)

are determined by the above boundary conditions, which leads to
the specific solution

y x; Fð Þ ¼ tan aLð Þ
a

1� cos axð Þð Þ� x� sin axð Þ
a

� �� �
F

a2IE
(7)

where its dependence on the lateral force F is emphasized. Then,
the lateral deformation of the end of the beam g is given by

g ¼ yðL; FÞ (8)

from which the lateral force is obtained in the form

Table 1 Measured natural frequencies. Three cases of load
type are given.

Beam length (m) Compression (Hz) Neutral (Hz) Tension (Hz)

0.30 2.513 2.720 2.910
0.40 1.525 1.750 1.950
0.50 0.975 1.231 1.460

Table 2 Experimental data for Figs. 1 and 9

Notation Designation Value Unit

q Density of beam 7900 kg/m3

E Young’s modulus of beam 200 GPa
a Thickness of cross section 0.0020 m
b Width of cross section 0.0203 m
L Length of beam 0.30; 0.40; 0.50 m
m Mass of end body 0.978 kg
mb Mass of beam 0.096; 0.128; 0.160 kg
JC Moment of inertia

of end body
0.00028 kg m2

— Size of end body
(one block)

0.01865� 0.07915
� 0.04265

m�m�m

Fig. 2 Approximation of the displacement of the end of the
cantilever beam
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F gð Þ ¼
a3IE

tan aLð Þ � aL
g

The denominator of F(g) vanishes when tanðaLÞ ¼ aL. The first
root, aL¼ 0, corresponds to rigid body motion. The second root,
aL¼p/0.7, corresponds to the Euler critical load for the problem
of fixed-rolling beam under compression depicted in Fig. 4.

The substitution of F(g) into the solution Eq. (7) leads to the
lateral deformation function y(x; F(g)), and the arc length of the
deformed beam r(g) can also be calculated as a function of g

r gð Þ ¼
ðL�jg2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

@y x; F gð Þ
� �
@x

� �2
s

dx (9)

Its dependence on the end point lateral deformation g is compli-
cated due to the presence of g in the upper limit of the definite
integral, where j is the unknown parameter we need to determine
in Eq. (1). By means of the Leibniz’s theorem for differentiation
of an integral [8], the power series of r can be expressed with
respect to g in the form

r gð Þ ¼ r 0ð Þ þ r0 0ð Þgþ 1

2!
r00 0ð Þg2 þ � � �

where it is obvious that r(0)¼ L and r0ð0Þ ¼ 0 because when
g¼ 0, that is, the displacement of the end of the beam is zero,
then gradient of the arc length is zero, too. The second derivative
of r at zero can be considered as

r00 0ð Þ ¼ �2jþ
ðL�jg2

0

@2

@g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

@y x; F gð Þ
� �
@x

� �2
s0@

1
A

dx

����
g¼0

It assumes the form

r gð Þ ¼ Lþ �2jþ vð Þ g
2

2!
þ � � � (10)

where

v ¼
1þ 1

2
cos 2aLð Þ

� �
a2L� 3

4
a sin 2aLð Þ

aL cos aLð Þ � sin aLð Þð Þ2

Because the beam is considered to be inextensible, the arc length
is L for all values of g, so

rðgÞ � L () j ¼ v=2

is obtained from Eq. (10), and

j ¼ 2 2þ cos 2aLð Þð Þa2L� 3a sin 2aLð Þ
8 aL cos aLð Þ � sin aLð Þð Þ2

(11)

The parameter a depends on the compression P (see Eq. (5)), and
the parameter j can be developed as a dimensionless power series
of P

jL ¼ 3

5
þ 1

175

L2P

IE

� �
þ 1

2625

L2P

IE

� �2

þ � � � (12)

where j is normalized by the length of the beam L and L2P/IE rep-
resents the relative importance of compression to the proportional
part of Euler buckling load. The coefficient j in Eq. (1) agrees
with the numerical evaluation of the formula in Ref. [6], which
gives the four-digit-accurate value of 0.5988 that is a good
approximation of 3/5 at zero compression. There is 20% differ-
ence between this exact solution and the approximation of 1/2 of
the triangle in terms of the cantilever beam (see Eq. (2)). The non-
zero compression obviously increases the magnitude of the longi-
tudinal displacement of the rod as it is also expressed by formula
Eq. (12) analytically.

Under tension, the only change in Eq. (12) is the sign of P. The
nonzero tension decreases the magnitude of the longitudinal dis-
placement of the beam as we can see in Fig. 5(a). Equation (11)
can be transformed to a dimensionless expression by means of
(aL)2¼PL2/(IE). When L2P/IE ! �1 by using L’Hospital’s
rule, jL¼ 1/2 as in Fig. 2. This means that bending is negligible
compared to tension and so the beam behaves according to the
circular-arc approximation in Fig. 2.

Note that the expressions of j are not uniformly valid when
F¼ 0 due to the assumption of the inextensible nature of the
beam.

4.1 Stiffness of Compressed Beam. With the help of
Eqs. (7) and (8), an equivalent lateral stiffness

k ¼ F

g
(13)

can be calculated with respect to the free end of the beam where
the lateral force F is applied. After simplification, we obtain

k ¼ a3IE

tan aLð Þ � aL
(14)

which can be approximated by the dimensionless power series

L3k

IE
¼ 3� 6

5

L2P

IE

� �
� 1

175

L2P

IE

� �2

� � � � (15)

Clearly, the compression decreases the lateral stiffness of the
beam (see Fig. 5(b)) where the curve crosses the horizontal axis,
there is the first normalized Euler buckling load. In contrast,
tension increases the stiffness.

If there is a large lumped mass at the free end of the vertical
beam (see Fig. 1), the bending vibration frequency can be calcu-
lated either by means of this reduced lateral stiffness or by means
of the variation of the potential energy of the lumped mass in the
gravitational space due to the deformation n. In what follows, the
nonlinear equivalence of the two approaches is proven.

4.2 Proving With Energy Method. In the case of elastic
bodies, the external forces are also going to perform work when

Fig. 3 Mechanical model of a cantilever beam

Fig. 4 Fixed-rolling beam under compression
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the points of application of these forces are shifted by the effect of
another applied force. The loads above are progressively
increased from their zero values to their supreme values. Let us
consider the point of application of Fi that moves with unit vector
ei. If the relationship is linear between the load and the displace-
ment, then the performed work is

Wi ¼
1

2
Fiei

If di is a displacement component of ei in the force direction, it
yields

Wi ¼
1

2
Fidi

According to the Betti’s theorem, if a balanced elastic body with
arbitrary shape loaded sequentially by two different equilibrium
force systems included forces and couples, then they are signed
by index 1 and index 2, respectively.

First of all, the elastic body is loaded by the force system of
index 1 that is going to perform work W11. After that, we have to
apply the force system of index 2, which also performs work W22;
however, the second force system gives rise to further strain;
hence, we need to take into account the work of the first force sys-
tem, too, that provides another work signed by W12. At the end of
the loading period, the total work is

W ¼ W11 þW22 þW12 (16)

where the proper work of the force systems is denoted by W11 and
W22 as well as W12¼W21 are extraneous works. Note that in this
case, the connection between the effects of forces and displace-
ments is linear.

The aim is to prove that the strain energy of the described sys-
tem defined by the stiffness of the beam corresponds with the
work of external forces using the end displacements of the beam,
that is, U¼W. The strain energy can be written as

U ¼ 1

2IE

ðL

0

M2 xð Þdx (17)

where the function of the bending moment is defined by Eq. (4).
After the substitution of Eqs. (4) and (7) into Eq. (17), we obtain

U ¼ F2

4a3IE

aL

cos2 aLð Þ
� tan aLð Þ

� �
(18)

that can also be expressed by its power series with respect to com-
pression P

U ¼ F2L3

IE

1

6
þ 2

15

L2P

IE

� �
þ 17

210

L2P

IE

� �2

þ � � �

 !
(19)

The investigation of the work done by external forces is more
complicated. In order to introduce some simplifications, let us
consider Eqs. (1) and (8) where the compression P is emphasized

n Pð Þ ¼ F2 2aL 2þ cos 2aLð Þð Þ � 3 sin 2aLð Þð Þ
8 IEð Þ2a5 cos2 aLð Þ

g Pð Þ ¼ F tan aLð Þ � aLð Þ
IEa3

(20)

The forms of their power series yield

n Pð Þ ¼ F2L5

IEð Þ2
1

15
þ 17

315

L2P

IE

� �
þ 31

945

L2P

IE

� �2

þ � � �

 !
(21)

Fig. 6 Displacement analysis. The displacements of d11 and
d21 are affected by the lateral force F. The d12 and d22 are due to
compression P.

Fig. 5 (a) Dimensionless relationship between jL and the relative importance of compression/tension given by Eq. (12).
(b) Dimensionless relationship between relative importance of spring stiffness and the relative importance of compression/
tension given by Eq. (15).
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and

g Pð Þ ¼ FL3

IE

1

3
þ 2

15

L2P

IE

� �
þ 17

315

L2P

IE

� �2

þ � � �

 !
(22)

respectively.
The first case can be seen in Fig. 6(a) where we assume that the

lateral force F is applied first, that is, it is the first force and com-
pression P is the second one. Note that the extraneous works are
not equal; hence, the supposition of the Betti’s theorem that all
forces are linear in the displacements does not hold. Henceforth,
Fig. 7(a) and Eq. (16) will be referred to frequently.

The lateral force is applied first that gives rise to two displace-
ments in different directions but only one of them provides work
because we do not even have compression. Since the relationship
between F and d11 is linear

W11 ¼
1

2
Fd11

¼ 1

2
Fg 0ð Þ

¼ F2L3

6IE
(23)

that means the area of a triangle in Fig. 7(a). The situation is more
complicated in the case of W22 because the connection here is
nonlinear, thus

W22 ¼
ðL

0

Pdx ¼ P n Pð Þ � n 0ð Þð Þ �
ðP

0

n Pð Þ � n 0ð ÞdP

¼
F2 aL 12þ 2a2L2 þ 3

cos2 aLð Þ

� �
� 15 tan aLð Þ

� �
12IEa3

(24)

that is given by its power series

W22 ¼
F2L3

IE

17

630

L2P

IE

� �2

þ 62

2835

L2P

IE

� �3

þ � � �

 !
(25)

Since n depends only on compression P, we needed to calculate
the area of W22 this way (see Fig. 7(a)). Finally, we examine W12.
The displacement is caused by compression P in the direction of
the lateral force F that means a rectangular area in F–y plane;
hence, the connection is also linear

W12 ¼ F g Pð Þ � g 0ð Þ
� �

¼ �F2 3aLþ a3L3 � 3 tan aLð Þ
� �

3IEa3
(26)

expressed by its power series

W12 ¼
F2L3

IE

2

15

L2P

IE

� �
þ 17

315

L2P

IE

� �2

þ � � �

 !
(27)

The summation of Eqs. (23), (24), and (26) provides

W ¼ F2

4a3IE

aL

cos2 aLð Þ � tan aLð Þ
� �

(28)

given by its power series

W ¼ F2L3

IE

1

6
þ 2

15

L2P

IE

� �
þ 17

210

L2P

IE

� �2

þ � � �

 !
(29)

that exactly corresponds with the strain energy (see Eqs. (18)
and (19)).

The second case can be seen in Fig. 6(b) where compression P
is assumed to be the first force. As we consider the stiffness of the
beam to be infinitely large in the beam direction, compression
does not cause displacement (d22¼ 0) that implies W22¼ 0. When
the lateral force F appears, it causes two displacements d11 and
d21. The work W11 is actually the area of a triangle because F was
increased uniformly up to its supreme value

W11 ¼
1

2
Fg Pð Þ

¼ F2 tan aLð Þ � aLð Þ
2IEa3

(30)

expressed by its power series

W11 ¼
F2L3

IE

1

6
þ 1

15

L2P

IE

� �
þ 17

630

L2P

IE

� �2

þ � � �

 !
(31)

The work W21 can be defined as a rectangular area (see Fig. 7(b))
because the value of compression was constant during the applica-
tion of F

W21 ¼ Pn Pð Þ

¼ F2 2aL 2þ cos 2aLð Þð Þ � 3 sin 2aLð Þð Þ
8IEa3 cos2 aLð Þ (32)

given by its power series

Fig. 7 Works of external forces
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W21 ¼
F2L3

IE

1

15

L2P

IE

� �
þ 17

315

L2P

IE

� �2

þ � � �

 !
(33)

The summation of Eqs. (30) and (32) provides the same result
such as Eq. (28).

So, the effect of the displacement in the rod direction results in
the same potential energy variation as the equivalent stiffness
modification by loads. It can be seen in Fig. 8, too.

4.3 Investigation of the Natural Frequencies of the System.
The main purpose of the investigation was to be able to determine
how the natural frequencies of the system are modified by com-
bined loads. The dynamical model of the loaded cantilever beam
that can be seen in Fig. 9 describes a simple two degrees-of-
freedom system. It consists of an elastic cantilever beam of length
L and mass mb and a body of mass m attached to the free end. To
proceed, we assume a concentrated mass mc at the free end of the
beam. We take mc¼mþ 0.2404mb where the coefficient of mb

comes from a continuum beam whose first natural frequency is
approximated by a simple spring–mass system. The end mass mc

can model either compression or tension but we examine the com-
pressed beam in particular.

The generalized coordinates are defined by the horizontal dis-
placement of the end mass (in the direction x) and the angle u of
rotation of the beam end. In order to investigate the motion of the
system above, we need to define its kinetic energy, that is

T ¼ 1

2
mcv2

C þ
1

2
JCx2 (34)

where JC is the moment of inertia of the end body and x is the
angular velocity that corresponds with _u. The velocity of the center
of gravity of the end body is denoted by vC that can be described as

vC ¼
_x
� _h

� �
(35)

where h is equal to jx2 from Eq. (1). If the zero position of the
potential function is defined at the center of gravity of the end
body in the case of equilibrium, then the expression of the poten-
tial energy is

U ¼ 1

2
x u
� �

Kr
x
u

� �
� mcgh (36)

where Kr is the stiffness matrix of the rod that comes from the com-
pliance matrix and there is an additional term (�mcgh) caused by
the longitudinal displacement. In terms of Eqs. (34) and (36), the
linear matrix coefficient differential equation assumes the form

M€q þKq ¼ 0 (37)

where the mass matrix is denoted by M, the stiffness matrix is
defined as

K ¼ @2U

@qi@qj

����
q¼0

and q means the generalized coordinates vector. The difference
between our theory and the general theory is manifested by the
first element (K11) of the stiffness matrix

(38)

where the boxed expression decreases the magnitude of K11 and
mcg defines the compressive force P.

When P reaches its critical value, then

det K ¼ 0 ) 3IE

L3
� 2Pcrj ¼ 0 (39)

To approximate the critical value of compression, let us use the
first approximation of j (see the first term in Eq. (12)). Then the
solution of Eq. (39) leads to Pcr ¼ 10IE=ð2LÞ2 that means 1.3%

Fig. 8 Dimensionless connection between the normalized works and the relative importance of compression:
(a) case 1 and (b) case 2

Fig. 9 Dynamical model of the two degrees-of-freedom com-
pressed cantilever beam
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difference compared to the Euler critical buckling load p2IE=ð2LÞ2.
The error decreases as the approximation of j is improved,
although it will not reach the Euler critical value even if the exact
formula Eq. (11) of j is used (see also Fig. 5(b)). The Euler critical
value is obtained exactly if the additional tiny height variation h is
calculated also as a function of the angle u caused by a torque at
the free end of the bar.

Since the model does not include damping and nonconservative
forces, D ¼ 0; Q ¼ 0. The natural frequencies of the system can
be calculated by means of frequency equation, that is

detð�x2
nMþKÞ ¼ 0 (40)

The expanded form of Eq. (40) is a biquadratic equation

x4
n �

4IE

JCL
þ 12JCIE

mcL3
� 2gj

� �
x2

n

þ 12 IEð Þ2

mcJCL4
� 8IEgj

JCL

 !
¼ 0 (41)

that gives two positive roots where xn1<xn2. We deal with the
first one because the measurement provided only the first natural
frequency of the experimental equipment.

5 Results

While Eq. (41) provides only results concerning compression,
the end mass is able to behave as tension where the natural fre-
quencies are also easily calculated. Eventually, if the acceleration
of gravity assumed to be zero, then we obtain the neutral case
where the experimental equipment is held horizontally. The
results of the compressed, tensed, and neutral beam are summar-
ized in Table 3 by different beam lengths.

First of all, we can realize that the natural frequencies are lower
in compression compared to the neutral case because it decreases
the stiffness of the cantilever beam. On the other hand, tension
increases the stiffness that causes higher natural frequencies. The
natural frequencies also depend on the length of the beam.

The error columns of Table 3 mean the difference between the
analytical and measured results (see Table 1). It can be seen that
the largest relative failure is not greater than 4%. These minor dis-
crepancies might be caused by the asymmetric disposition of the
experimental equipment depending on the length of the beam, too.

6 Conclusion

A simple cantilever beam subjected to lateral force F and com-
pression P at the free end was investigated. The paper brings up a
classical topic of beam theory that assumes the displacement n in
the beam direction might be neglected because that is a second-
order function n¼ jg2 of the lateral displacement g. In terms of
vibration theory, the longitudinal lifting of the end point of the
beam is able to vary the potential function of the system that acts
upon the natural frequencies. The investigated formula is given by
its power series

jL ¼ 3
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þ 1
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that makes up connection between the longitudinal and lateral dis-
placements of the end of the beam in the case of compressive
force P.

The question was whether the modification of the potential
energy corresponds with the stiffness variation of the system
under the combined loads above or not. By means of the Betti’s
theorem, it can be proved that the work of external loads using the
longitudinal displacement equals with the strain function of the
system considered only by bending.

The analytical results correspond to the measurement results
where the errors might be explained by the asymmetric disposition
of the device. Graff [9] has also examined the dynamics of beams
and elaborated on the flexural waves in thin rods under different
types of loads. He dealt with the effects of prestress in the case of
a pin-ended column investigating continuum beam without end
mass. The development of his models might provide another way
to understand our results.

The importance of our theory is manifested by the natural fre-
quency calculations of the blades of wind turbines and long boring
tools [10–14] where large longitudinal forces might appear. There
are many related theoretical, numerical results and topics in the
literature: Bayly et al. [15] investigated the low frequency vibra-
tion in drilling to find agreement with drilling tests in the presence
of large longitudinal cutting forces. Roukema and Altintas [16]
and Heisig and Neubert [17] also considered lateral vibration of
drilling tools. Park et al. [18] examined the linear vibration of
blades of a wind turbine to see how to avoid structural resonance
due to significant axial forces caused by rotation.
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