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Abstract

A semi-algebraic graph G = (V,E) is a graph where the vertices are points in
Rd, and the edge set E is defined by a semi-algebraic relation of constant complexity
on V . In this note, we establish the following Ramsey-Turán theorem: for every
integer p > 3, every Kp-free semi-algebraic graph on n vertices with independence

number o(n) has at most 1
2

(
1− 1

dp/2e−1 + o(1)
)
n2 edges. Here, the dependence on

the complexity of the semi-algebraic relation is hidden in the o(1) term. Moreover,
we show that this bound is tight.

Mathematics Subject Classifications: 05D10, 52C10

1 Introduction

Over the past decade, several authors have shown that many classical theorems in extremal
graph theory can be significantly improved if we restrict our attention to semi-algebraic
graphs, that is, graphs whose vertices are points in Euclidean space, and edges are defined
by a semi-algebraic relation of constant complexity [1, 5, 8, 11, 9, 4]. In this note, we
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continue this sequence of works by studying Ramsey-Turán numbers for semi-algebraic
graphs.

More formally, a graph G = (V,E) is a semi-algebraic graph with complexity at most
t, if its vertex set V is an ordered set of points in Rd, where d 6 t, and if there are at
most t polynomials g1, . . . , gs ∈ R[x1, . . . , x2d], s 6 t, of degree at most t and a Boolean
formula Φ such that for vertices u, v ∈ V such that u comes before v in the ordering,

(u, v) ∈ E ⇔ Φ(g1(u, v) > 0; . . . ; gs(u, v) > 0) = 1.

At the evaluation of g`(u, v), we substitute the variables x1, . . . , xd with the coordinates
of u, and the variables xd+1, . . . , x2d with the coordinates of v. Here, we assume that the
complexity t is a fixed parameter, and n = |V | tends to infinity.

The classical theorem of Turán gives the maximum number of edges in a Kp-free graph
on n vertices.

Theorem 1 (Turán, [13]). Let G = (V,E) be a Kp-free graph with n vertices. Then

|E| 6 1

2

(
1− 1

p− 1
+ o(1)

)
n2.

The only graph for which this bound is tight is the complete (p− 1)-partite graph whose
parts are of size as equal as possible. This graph can easily be realized as an intersection
graph of segments in the plane, which is a semi-algebraic graph with complexity at most
four. Therefore, Turán’s theorem cannot be improved by restricting it to semi-algebraic
graphs.

Let H be a fixed graph. The Ramsey-Turán number RT(n,H, α) is defined as the
maximum number of edges that an n-vertex graph of independence number at most α
can have without containing H as a (not necessarily induced) subgraph. Ramsey-Turán
numbers were introduced by Andrásfai [2] and were motivated by the classical theorems
of Ramsey and Turán and their connections to geometry, analysis, and number theory.
According to one of the earliest results in Ramsey-Turán theory, which appeared in [7],
for every p > 2, we have

RT(n,K2p−1, o(n)) =
1

2

(
1− 1

p− 1

)
n2 + o(n2). (1)

For excluded K4, a celebrated result of Szemerédi [12] and Bollobás-Erdős [3] states that

RT(n,K4, o(n)) =
1

8
n2 + o(n2).

This was generalized by Erdős, Hajnal, Sós, and Szemerédi [6] to all cliques of even size.
For every p > 2, we have

RT(n,K2p, o(n)) =
1

2
· 3p− 5

3p− 2
n2 + o(n2). (2)
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For more results in Ramsey-Turán theory, consult the survey of Simonovits and Sós [10].
In the present note, we establish asymptotically tight bounds on Ramsey-Turán num-

bers for semi-algebraic graphs. We define RTt(n,Kp, o(n)) as the maximum number of
edges that n-vertex Kp-free semi-algebraic graphs with complexity at most t can have, if
their independence number is o(n). Strictly speaking, this definition and all above results
apply to sequences of graphs with n vertices, as n tends to infinity.

It turns out that if the size of the excluded clique is even, then the answer to the
Ramsey-Turán question significantly changes when the graphs are required to be semi-
algebraic. However, in the odd case, we obtain the same asymptotics for the Ramsey-
Turán function as in (1). More precisely, we have

Theorem 2. For any fixed integers t > 5 and p > 2, we have

RTt(n,K2p−1, o(n)) = RTt(n,K2p, o(n)) =
1

2

(
1− 1

p− 1

)
n2 + o(n2).

2 Proof of Theorem 2

The aim of this section is to prove Theorem 2. One of the main tools used in the proof
is the following regularity lemma for semi-algebraic graphs. Given a graph G = (V,E), a
vertex partition is called equitable if any two parts differ in size by at most one. Given
two disjoint subsets Vi, Vj ⊂ V , we say that the pair (Vi, Vj) is homogeneous if Vi×Vj ⊂ E
or (Vi × Vj) ∩ E = ∅.

Lemma 3 ([9]). For any positive integer t, there exists a constant c = c(t) > 0 with
the following property. Let 0 < ε < 1/2 and let G = (V,E) be a semi-algebraic graph
with complexity at most t. Then V has an equitable partition V = V1 ∪ · · · ∪ VK into K
part, where 1/ε < K < (1/ε)c, such that all but an ε-fraction of the pairs of parts are
homogeneous.

The upper bound in Theorem 2 follows from

Theorem 4. Let ε > 0 and let G = (V,E) be an n-vertex semi-algebraic graph with

complexity at most t. If G is K2p-free and |E| > 1
2

(
1− 1

p−1 + ε
)
n2, then G has an

independent set of size γn, where γ = γ(t, p, ε).

Proof. We apply Lemma 3 with parameter ε/4 to obtain an equitable partition P : V =
V1 ∪ · · · ∪ VK such that 4

ε
6 K 6

(
4
ε

)c
, where c = c(t) and all but an at most ε

4
-fraction

of all pairs of parts in P are homogeneous (complete or empty with respect to E). If
n 6 10K, then G has an independent set of size one, and the theorem holds trivially. So,
we may assume n > 10K.

By deleting all edges inside each part, we have deleted at most

K

(
dn/Ke

2

)
6

4n2

5K
6 ε

n2

5
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edges. Deleting all edges between non-homogeneous pairs of parts, we lose an additional
at most ⌈ n

K

⌉2 ε
4

K2

2
6 ε

n2

5

edges. In total, we have deleted at most 2εn2/5 edges of G. The only edges that remain in

G are edges between homogeneous pairs of parts, and we have at least 1
2

(
1− 1

p−1 + ε/5
)
n2

edges. By Turán’s theorem (Theorem 1), there is at least one remaining copy of Kp, and
its vertices lie in p distinct parts Vi1 , . . . , Vip ∈ P that form a complete p-partite subgraph.
If any of the parts Vij forms an independent set in G, then there is an independent set
of order |Vij | > bn/Kc > γn, where γ = γ(t, ε, p), and we are done. Otherwise, there is
an edge in each of the p parts, and the endpoints of these p edges form a K2p in G, a
contradiction.

The lower bound on RT(n,K2p−1, o(n)) and RT(n,K2p, o(n)) in Theorem 2 is con-
structive and is based on the following result of Walczak.

Lemma 5 ([14]). For any pair of positive integers n and p, where n is a multiple of p−1,
there is a collection S of n/(p − 1) segments in the plane whose intersection graph GS

is triangle-free and has no independent set of size cpn/ log log n. Here cp is a suitable
constant.

The construction. Take p − 1 dilated copies of a set S meeting the requirements in
Lemma 5, and label them as S1, . . . , Sp−1, so that Si lies inside a ball with center (i, 0)
and radius 1/10. Set V = S1∪ · · · ∪Sp−1. Note that |Si| = n/(p− 1) so that |V | = n. Let
G = (V,E) be the graph whose vertices are the elements of V , and two vertices (that is,
two segments) are connected by an edge if and only if they cross or their left endpoints
are at least 1/2 apart. The graph G consists of a complete (p − 1)-partite graph, where
each part induces a copy of the triangle-free graph GS. Clearly, G is K2p−1-free and does
not contain any independent set of size cpn/ log log n. Moreover,

|E(G)| > 1

2

(
1− 1

p− 1

)
n2.

Every segment can be represented by a point in R4, and whether or not two segments
intersect can be determined by four polynomial inequalities of degree at most two (see
[1]). Thus, counting the distance condition, we have 5 quadratic inequalities, showing
that E is a semi-algebraic relation of complexity 5.
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