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Abstract

In this paper we consider weighted polynomial approximation on unbounded multidimensional domains in
the spirit of the weighted version of the Weierstrass trigonometric theorem according to which every continuous
function on the real line with equal finite limits at ±∞ is a uniform limit on R of weighted algebraic polynomials
of degree 2n with varying weights (1 + t2)−n. We will verify a similar statement in the multivariate setting for a
general class of convex weights.

We also consider the similar problem of multivariate polynomial approximation with varying weights for some

typical non convex weights. In case of non convex weights of the form wα(x) := (1+|x1|α+...+|xd|α)
1
α , 0 < α < 1

in order for weighted polynomial approximation to hold for a given continuous function it is necessary that the
function vanishes on a certain exceptional set consisting of all coordinate hyperplanes and ∞. Moreover, in case
of rational α this condition is also sufficient for weighted polynomial approximation to hold.

1 Introduction

Let us start by recalling the trigonometric version of the classical Weierstrass approximation theorem which states
that any 2π periodic continuous function f(x) is a uniform limit on [−π, π] of trigonometric polynomials of degree
n as n → ∞. Clearly the substitution t = tan x

2 , x ∈ (−π, π) transforms 2π periodic continuous functions into
continuous functions on R which have equal finite limits at ±∞, while the trigonometric polynomials of degree n
transform into rational functions (1 + t2)−np2n(t) with p2n(t) being an algebraic polynomial of degree at most 2n.

This results in the following equivalent version of the trigonometric Weierstrass theorem:
Every f ∈ C(R) with equal finite limits at ±∞ is a uniform limit on R of weighted algebraic polynomials

w(t)−2np2n(t), w(t) :=
√
1 + t2, deg p2n ≤ 2n.

Naturally this leads to the question of uniform approximation by general weighted polynomials of the form

w(t)−npn(t), deg pn ≤ n.

This question received a considerable attention in the recent years in case when the even weight w(t) grows at ∞
faster than t, i.e., w(t)

t → ∞ as t → ∞, see for instance monographs [5] and [6]. The assumption w(t)
t → ∞ obviously

implies that w(t)−npn(t) → 0, t → ±∞ for all polynomials of degree at most n. Thus, naturally under condition
w(t)
t → ∞, t → ∞ weighted polynomials can not provide uniform approximation on all of the real line. Indeed,

various results given in [5] and [6] show that only continuous functions with finite support can be approximated
by weighted polynomials in this case, and in fact this finite domain of approximation which depends on w can be
determined by methods of potential theory.

In this paper we intend to consider weighted approximation on unbounded domains in the spirit of the weighted

version of Weierstrass trigonometric approximation theorem. As mentioned above if w(t)
t tends to infinity as t → ∞

only functions with finite support can be approximated, i.e. approximation on the whole real line is not possible in

this case. On the other hand if w(t)
t → 0 as t → ∞ then weighted polynomials w(t)−npn(t) are unbounded as t → ∞
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which also makes the approximation on unbounded domains impossible. Therefore we will require that the weights
have linear growth at infinity. Moreover, this problem will be investigated below in the multivariate setting.

Let us denote by Sd−1 the Euclidian unit sphere in Rd and consider the space C0(Rd) of continuous functions on
Rd which have equal continuous limits at infinity along lines passing through the origin , i.e.,

C0(Rd) := {f ∈ C(Rd) : ∃rf ∈ C(Sd−1) such that lim
|t|→∞

f(tx) = rf (x), uniformly for x ∈ Sd−1}.

Note that for every f ∈ C0(Rd) and x ∈ Rd \ {0} we have that

lim
t→±∞

f(tx) = rf

(
x

|x|

)
and therefore it is natural to extend rf ∈ C(Sd−1) to Rd \ {0} by relation

rf (x) := rf

(
x

|x|

)
,x ∈ Rd \ {0}.

Let w ∈ C(Rd), w(−x) = w(x), ∀x ∈ Rd be a positive even weight function on Rd. We will consider uniform
approximation of functions f ∈ C0(Rd) by weighted polynomials w−npn on Rd, where pn ∈ P d

n are multivariate
polynomials of d variables of degree at most n. We will assume throughout this paper that w is a positive continuous
even weight on Rd such that tw(xt ) is monotone increasing for t > 0 for every fixed x ∈ Rd, and has a continuous
positive limit as t → 0. This means that with some even positive continuous function

w̃ : Sd−1 7→ R+

we have by the Dini theorem that

|t|w
(x
t

)
→ w̃(x), t → 0, uniformly for x ∈ Sd−1. (1)

Hence in particular, w(tx) ∼ |t|w(x), t → ∞, i.e. the weight is of order |t| at infinity. Evidently, extending
w̃ ∈ C(Sd−1) to Rd \ {0} according to the relation w̃(αx) = |α|w̃(x), α ∈ R preserves (1) for every x ∈ Rd. In
particular, when d = 1 we have that w̃(t) ≡ c|t|, t ∈ R with some c > 0.

In what follows positive continuous even weights w on Rd for which tw(xt ) is monotone increasing with respect to
t > 0 for every fixed x ∈ Rd and (1) is satisfied with certain positive continuous function w̃ will be called admissible.
It is important to observe that for admissible weights w we have w−2np2n ∈ C0(Rd) for any p2n ∈ P d

2n and n ∈ N.
For an admissible weight w we consider its homogenization defined for every (x, t) ∈ Rd+1 \ {0} by

w∗(x, t) :=

{
|t|w

(
x
t

)
, x ∈ Rd, t ∈ R \ {0}

w̃(x), t = 0.
(2)

It is easy to see that this function w∗ : Rd+1 7→ R possesses the homogeneous property

w∗(cx, ct) = |c|w∗(x, t), ∀c ∈ R, (x, t) ∈ Rd+1.

In addition, w∗(x, t) is positive everywhere in Rd+1 \{0} and we may set preserving continuity w∗(0) = 0. Evidently,
it follows from (1) that the above relation defines a continuous weight w∗(x, t) ∈ C(Rd+1) since both w and w̃ are
continuous. Also note that w∗(x, t) is even both in x ∈ Rd and t ∈ R.

The problem of approximation of f ∈ C0(Rd) by weighted polynomials w−2np2n uniformly on Rd is closely related
to approximation by multivariate homogeneous polynomials

h ∈ Hd
n :=

 ∑
|k|=n

akx
k : ak ∈ R


of degree n on boundaries of 0-symmetric convex bodies.
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In this respect the following conjecture has been widely investigated in the past decade (see, for instance [2], [8],
[3], [7]).

Conjecture 1. For any 0-symmetric convex body K ⊂ Rd and every even f ∈ C(∂K) there exist homogeneous
polynomials h2n ∈ Hd

2n such that f = limn→∞ h2n uniformly on ∂K.
It is easy to see that the above conjecture is equivalent to the claim that every continuous function on ∂K with

K as above can be uniformly approximated by the sum of 2 homogeneous polynomials, i.e., for every f ∈ C(∂K) we
have that f = limn→∞ hn with certain hn ∈ Hd

2n +Hd
2n+1 uniformly on ∂K.

This conjecture has been verified in the following three cases:
(i) when d = 2 (see [2, 8]);
(ii) for any 0-symmetric convex polytope in Rd, d ≥ 2 (see [8]);
(iii) for any 0-symmetric regular convex body in Rd, d ≥ 2 possessing a unique supporting hyperplane at every

point on its boundary (see [3]).
Above results on homogeneous approximation will play an important role in our considerations below.
The outline of the paper is as follows. First a general result on density of weighted polynomials in C0(Rd) in

case of convex admissible weights will be given (Theorem 1). Then we proceed by exhibiting some model examples
of convex weights for which density holds. Finally, Theorems 3 and 4 will deal with analogues questions for certain
non convex weights. It will be shown that in non convex situation the density holds only for functions vanishing at
a certain exceptional set related to the weight.

New results

Our first main result provides a Weierstrass type result asserting that uniform approximation on Rd by weighted
polynomials w−2np2n is possible when the admissible weight is convex and, if d > 1 is also piecewise C1. The
piecewise C1 property of the weight w is meant in the sence that w is a maximum of finite number of C1 weights.

Theorem 1 Let w be a convex admissible weight on Rd, d ≥ 1. In addition, if d > 1 assume that w is piecewise
C1, i.e., with some s ∈ N we have w = max{wj : 1 ≤ j ≤ s} where each wj is admissible convex and w∗

j ∈
C1(Rd+1 \ {0}), 1 ≤ j ≤ s. Then for every f ∈ C0(Rd) there exist polynomials p2n ∈ P d

2n so that

w−2np2n → f, n → ∞

uniformly on Rd.

Thus when d = 1 the convexity of the admissible weight yields the density of weighted polynomials w−2np2n in
the space C0(R). If d > 1 we need in addition the piecewise C1 smoothness of weights in order for the density to
hold. It is plausible that the convexity of admissible weights suffices for the density of weighted polynomials w−2np2n
in C0(Rd), d > 1, as well. Thus we would like to offer the next conjecture which would provide a full analogue of
weighted Weierstrass approximation theorem in Rd.

Conjecture 2. For any convex admissible weight on Rd, d ≥ 1 and f ∈ C0(Rd) there exist polynomials p2n ∈ P d
2n

so that
w−2np2n → f, n → ∞

uniformly on Rd.
Let us now give some model examples of weights for which the above theorem is applicable.
Example 1. For any 0 < α ≤ ∞ the lα norm of x = (x1, ..., xd) ∈ Rd is given by the relations

|x|α :=

{
(|x1|α + ...+ |xd|α)

1
α , 0 < α < ∞

max1≤j≤d |xj |, α = ∞.

Furthermore, for x = (x1, ..., xd) ∈ Rd consider the weight

wα(x) := |(1,x)|α =

{
(1 + |x1|α + ...+ |xd|α)

1
α , 0 < α < ∞

max{1, |x1|, ..., |xd|}, α = ∞.
(3)

Now it easily follows that for this weight and t > 0

w∗
α(x, t) = twα

(x
t

)
= |(t,x)|α, (t,x) ∈ Rd+1
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is monotone increasing for every fixed x ∈ Rd. Moreover, clearly (1) holds with

w̃α(x) = lim
t→0

|t|wα

(x
t

)
= |x|α, x ∈ Rd.

Hence wα(x) is an admissible weight for every 0 < α ≤ ∞. Furthermore, wα(x) is also convex whenever 1 ≤ α ≤ ∞.
In addition, when 1 < α < ∞ these weights are C1, i.e., w∗

α ∈ C1(Rd+1 \ {0}) while for α = 1,∞ the weights are
piece wise C1. Therefore for every 1 ≤ α ≤ ∞ weights wα(x) defined in (3) provide a model of weights for which
conditions of Theorem 1 hold. Hence we obtain the next

Corollary 2 Let 1 ≤ α ≤ ∞, d ≥ 1. Then for every f ∈ C0(Rd) there exist polynomials p2n ∈ P d
2n so that

w−2n
α p2n → f, n → ∞

uniformly on Rd.

Example 2. It should be noted that the sufficient conditions imposed on the weight in Theorem 1 allow
performing certain operations with the weights. In particular, the summation of the weights, or taking maximum of
weights preserves the required properties. Therefore based on the weights (3) it follows for instance that Theorem 1
will also hold for weights

w(x) :=
∑

1≤j≤d

(1 + |xj |αj )
1
αj ,

and
w(x) := max

1≤j≤d
(1 + |xj |αj )

1
αj ,

whenever 1 ≤ αj < ∞, 1 ≤ j ≤ d. Note that in contrast to weights (3) the above weights are in general asymmetric
with respect to the variables xj , 1 ≤ j ≤ d.

Example 3. Another example of piece wise smooth weights for which Theorem 1 can be applied is provided by
linear splines. Namely, we can take w to be an even convex linear spline function on Rd in which case all requirements
of Theorem 1 are fulfilled again.

While the admissibility of the weight appears to be a natural requirement for approximating every function in
C0(Rd) one may ask if the convexity of weight is also necessary for this approximation to hold, in general. A model
example of non convex weights is given by weights (3) when 0 < α < 1. It turns out that convexity of the weight is
crucial in order for the weighted approximation to hold for every f ∈ C0(Rd).

Indeed, in a recent paper [4] the authors showed that in case d = 1 and 0 < α < 1 there exist univariate
weighted polynomials w−2n

α p2n, pn ∈ P 1
2n, n ∈ N, converging to f ∈ C(R) uniformly on R if and only if f(0) =

f(∞) = f(−∞) = 0. Here f(∞), f(−∞) stand for the corresponding limits at infinity. Thus in case of these non
convex admissible weights some additional restrictions need to be imposed on the functions which admit a univariate
weighted polynomial approximation. Namely the function must vanish at a certain exceptional set. It is natural to
expect that this phenomena will be preserved in multivariate setting, as well. The most interesting question here
consists in finding the proper multidimensional exceptional sets.

So let us consider now approximation by weighted polynomials w−2n
α p2n, p2n ∈ P d

2n when 0 < α < 1, that is the
weight is not convex.

Denote by
Ld
j := {x = (x1, ..., xd) ∈ Rd : xj = 0}, 1 ≤ j ≤ d

the coordinate planes in Rd, and let

Ld := ∪1≤j≤dL
d
j = {x = (x1, ..., xd) ∈ Kd

α : x1 · ... · xd = 0}

be the union of all coordinate planes. Furthermore, we will write f(∞) = 0 if f(y) → 0 whenever |y| → ∞.
The next theorem is a multivariate extension of the result given in [4]. It identifies the exceptional zero set for

the functions which admit weighted polynomial approximation on Rd with the non convex weights wα, 0 < α < 1.
Essentially our result shows that in multivariate case the exceptional zero set consists of the union of all coordinate
planes Ld and the infinity.
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Theorem 3 Let 0 < α < 1 and d ≥ 2. Then in order for f ∈ C0(Rd) to be a uniform limit on Rd of weighted
polynomials w−2n

α p2n, p2n ∈ P d
2n it is necessary that f = 0 on Ld ∪ {∞}. Moreover, if 0 < α < 1 is rational then any

f ∈ C(Rd) which vanishes on Ld ∪ {∞} is a uniform limit on Rd of weighted polynomials w−2n
α p2n, p2n ∈ P d

2n.

As mentioned above uniform approximation in C0(Rd) by weighted polynomials w−2np2n is closely related to the
approximation by multivariate homogeneous polynomials on the boundaries of 0-symmetric star like domains. So we
will include now a companion to Theorem 3 related to homogeneous polynomial approximation.

Consider the Lα sphere in Rd given by

Kd
α := {x = (x1, ..., xd) ∈ Rd : |x1|α + ...+ |xd|α = 1} = {|x|α = 1}, α > 0.

When 0 < α < 1 the set Kd
α is not convex so the problem of homogeneous polynomial approximation on this set is

not covered by the results mentioned in the Introduction. In Kroó-Totik [4] it is shown that if d = 2 and 0 < α < 1
then in order that even function f(x, y) ∈ C(K2

α) be a uniform limit on K2
α of homogeneous polynomials h2n ∈ H2

2n

it is necessary and sufficient that f(±1, 0) = f(0,±1) = 0, i.e., the function must vanish at all the vertices of K2
α.

Evidently, when d > 2 the set of all non smooth points of Kd
α is given by

Kd
α ∩ Ld = {x = (x1, ..., xd) ∈ Kd

α : x1 · ... · xd = 0},

where as above Ld is the union of all coordinate planes in Rd. It turns out that only functions that vanish at these
non smooth points admit homogeneous polynomial approximation on Kd

α. Thus when d > 2 the exceptional zero set
consisting of all non smooth points is essentially wider than the set of all vertices of Kd

α.

Theorem 4 Let d > 2, 0 < α < 1. Then in order for an even function f ∈ C(Kd
α) to be a uniform limit on Kα of

homogeneous polynomials h2n ∈ Hd
2n it is necessary that f = 0 on Kd

α ∩ Ld. Moreover, if 0 < α < 1 is rational then
the condition f(x) = 0,x ∈ Kd

α ∩ Ld is also sufficient for this homogeneous polynomial approximation to hold.

Remark. It should be noted that Theorems 3 and 4 provide matching necessary and sufficient conditions for
multivariate weighted and homogeneous approximation for rational 0 < α < 1. In [4] analogous results are given
in the univariate case for every 0 < α < 1. In fact two proofs of sufficiency in Theorem 3 are given in [4] when
d = 1: one using potential theoretic methods for every 0 < α < 1 and another one based on a explicit construction
of approximating polynomials which works for rational 0 < α < 1. When d ≥ 2 the needed potential theoretic
methods are not available anymore, but nevertheless it will be shown below that for rational 0 < α < 1 the explicit
construction of multivariate weighted approximating polynomials can still be accomplished even if d ≥ 2. It appears
to be plausible that sufficiency in Theorems 3 and 4 remains valid for irrational 0 < α < 1, as well. This remains an
interesting open problem.

The next two sections contain the proofs of Theorems 1,3 and 4. We will need to verify several auxiliary lemmas
some of which are of independent interest. In particular, a general duality between weighted and homogeneous
polynomial approximation will be exhibited, see Lemmas 2 and 5 below.

Proof of Theorem 1

We will need first to verify some auxiliary lemmas. The first lemma asserts that w∗ is convex on Rd+1 for every
admissible convex weight w, i.e., the homogenization of weights preserves convexity.

Lemma 1 For any admissible convex weight w ∈ C(Rd) it follows that w∗(x, t) is also a convex continuous weight
on Rd+1.

Proof. Since the weight w is even it follows that w∗(x, t) = |t|w
(
x
t

)
,x ∈ Rd is even in variable t. Therefore for

every (x, a), (y, b) ∈ Rd+1 with some reals a, b ̸= 0, a+ b ̸= 0 we have by the convexity of w

w∗(x, a) + w∗(y, b) = |a|w
(

x

|a|

)
+ |b|w

(
y

|b|

)
=

(|a|+ |b|)
(

|a|
|a|+ |b|

w

(
x

|a|

)
+

|b|
|a|+ |b|

w

(
y

|b|

))
≥ (|a|+ |b|)w

(
x+ y

|a|+ |b|

)
.
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Furthermore, recalling that tw
(
x
t

)
is a monotone increasing function of t > 0 for any x ∈ Rd yields

w∗(x, a) + w∗(y, b) ≥ (|a|+ |b|)w
(

x+ y

|a|+ |b|

)
≥ |a+ b|w

(
x+ y

|a+ b|

)
= w∗(x+ y, a+ b).

The above inequality was derived for any (x, a), (y, b) ∈ Rd+1 with a, b ̸= 0, a+b ̸= 0. But since w∗(x, t) is continuous
on Rd+1 it follows that

w∗(x, a) + w∗(y, b) ≥ w∗(x+ y, a+ b), ∀(x, a), (y, b) ∈ Rd+1.

In addition, we evidently have w∗(cx, ct) = |c|w∗(x, t), c ∈ R which together with the above inequality verifies the
convexity of w∗(x, t). �

Our next lemma provides an important duality between weighted polynomial approximation on Rd and homoge-
neous polynomial approximation on star like domains in Rd+1 associated with the corresponding weight.

Let K ⊂ Rd be a compact 0-symmetric set with nonempty interior which is starlike with respect to the origin,
that is for every x ∈ K we have that (−x,x) ⊂ IntK.

When K is a 0-symmetric star like domain in Rd its Minkowski functional is defined by the relation

ϕK(x) := inf{α > 0 :
x

α
∈ K}, x ∈ Rd.

Note that ϕK(αx) := |α|ϕK(x), α ∈ R,x ∈ Rd and

K = {x ∈ Rd : ϕK(x) ≤ 1}, ∂K := {x ∈ Rd : ϕK(x) = 1}.

Let w ∈ C(Rd), d ≥ 1 be an admissible weight on Rd. With this weight we associate a 0-symmetric star like
domain defined by

Kw := {(x, t) ∈ Rd+1 : w∗(x, t) ≤ 1},

where w∗(x, t) is given by the relation (2). Since w∗(x, t) is even, both in x ∈ Rd and t ∈ R, it follows that Kw is
symmetric with respect to x ∈ Rd and t ∈ R. Thus Kw is a 0-symmetric star like domain in Rd+1. In addition it
follows from Lemma 1 that Kw is convex whenever w is convex. Moreover, it is also easy to see that w∗(x, t) is the
Minkowski functional of Kw.

Conversely, assume that K is a 0-symmetric star like set of points (x, t) ∈ Rd+1 which is also symmetric with
respect to x ∈ Rd for every fixed t ∈ R, i.e., (x, t) ∈ K ⇔ (−x, t) ∈ K, ∀t. Then it is easy to see that its Minkowski
functional ϕK(x, t) is even both in x ∈ Rd and t ∈ R. Now we associate this set K with an even positive weight on
Rd defined by the relation

wK(x) := ϕK(x, 1), x ∈ Rd.

Lemma 2 (i) Let w ∈ C(Rd), d ≥ 1 be an admissible weight on Rd. Assume that for each g ∈ C0(Rd) there exist
polynomials p2n ∈ P d

2n so that w−2np2n → g, n → ∞ uniformly on Rd. Then for every even function f ∈ C(∂Kw)
there exist homogeneous polynomials h2n ∈ Hd+1

2n for which f = limh2n uniformly on ∂Kw.
(ii) Conversely, let K be any 0-symmetric star like set of points (x, t) ∈ Rd+1 which is symmetric with respect to

x ∈ Rd for every fixed t ∈ R. Assume that for each even function f ∈ C(∂K) there exist homogeneous polynomials
h2n ∈ Hd+1

2n such that f = limh2n uniformly on ∂K. Then for every g ∈ C0(Rd) there exist polynomials p2n ∈ P d
2n

so that w−2n
K p2n → g, n → ∞ uniformly on Rd.

Proof. (i) By definition (2) it follows that for every x ∈ Rd

w∗
(

x

w(x)
,

1

w(x)

)
= 1.

Since
∂Kw := {(x, t) ∈ Rd+1 : w∗(x, t) = 1}

this means that (
x

w(x)
,

1

w(x)

)
∈ ∂Kw, x ∈ Rd.
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Now given any even function f ∈ C(∂Kw) set

g(x) := f

(
x

w(x)
,

1

w(x)

)
, x ∈ Rd.

Since f ∈ C(∂Kw) and w is positive and continuous this implies g ∈ C(Rd). Moreover, let us show that g ∈ C0(Rd).
Indeed using that f is even it follows by (1) that as |t| → ∞

g(tx) = f

(
tx

w(tx)
,

1

w(tx)

)
→ f

(
x

w̃(x)
, 0

)
uniformly for x ∈ Sd−1.

Thus g ∈ C0(Rd) and hence there exist polynomials p2n ∈ P d
2n so that w−2np2n → g, n → ∞ uniformly on Rd. Now

set
h2n(x, t) := t2np2n

(x
t

)
∈ Hd+1

2n

and
∂K+

w := {x = (x1, ..., xd+1) ∈ Kw, xd+1 > 0}.

Note that for any (x, t) ∈ ∂K+
w , we have tw(x/t) = 1, t > 0. Thus using substitution y = x/t ∈ Rd and relation

t = 1/w(y) we arrive at

f(x, t)− h2n(x, t) = f(x, t)− t2np2n

(x
t

)
= f

(
y

w(y)
,

1

w(y)

)
− w−2n(y)p2n(y) = g(y)− w−2n(y)p2n(y). (4)

Since w−2np2n → g, n → ∞ uniformly on Rd we obtain that f = limh2n uniformly on ∂K+
w . Since both f and h2n

are even continuous functions the last statement clearly extends to all of ∂Kw �.
(ii) For any g ∈ C0(Rd) set

f(x, t) :=

{
g
(
x
t

)
, x ∈ Rd, t ∈ R \ {0}

rg(x), t = 0

where by the definition of the space C0(Rd)

lim
|t|→∞

g(tx) = rg(x) uniformly for x ∈ Sd−1.

This easily yields that f is continuous on Rd+1 \ {0}. In addition, it is clear that f is even. Then by the assumption
(ii) there exist homogeneous polynomials h2n ∈ Hd+1

2n such that f = limn→∞ h2n uniformly on ∂K. Recall that for
(x, t) ∈ ∂K ⊂ Rd+1 we have by the definition of wK

1 = ϕK(x, t) = |t|ϕK

(x
t
, 1
)
= |t|wK

(x
t

)
,

i.e., |t| = w−1
K

(
x
t

)
. Now we set p2n(y) := h2n(y, 1) ∈ P d

2n and use again substitution y = x/t ∈ Rd yielding

f(x, t)− h2n(x, t) = g
(x
t

)
− t2nh2n

(x
t
, 1
)
= g(y)− w−2n

K (y)p2n(y), y ∈ Rd. (5)

Since f = limn→∞ h2n uniformly on ∂K it follows that w−2n
K p2n → g, n → ∞ uniformly on Rd. This completes the

proof of the lemma.
The next lemma appears to be of independent interest. It shows that if weighted polynomial approximation on

Rd holds for the admissible weights wj , 1 ≤ j ≤ s then it also holds for their maximum w := max{wj , 1 ≤ j ≤ s}.
The proof of this statement will be based on Lemma 2 and an elegant result of Varjú [8]. This latter states that given
any two 0-symmetric star-like domains K1,K2 ∈ Rd satisfying the homogeneous polynomial density Conjecture 1
formulated in the Introduction it follows that the same holds true for their intersection K1 ∩K2, as well.

Lemma 3 Let wj ∈ C(Rd), d ≥ 1, 1 ≤ j ≤ s be admissible weights on Rd such that each g ∈ C0(Rd) is a uniform
limit on Rd of some weighted polynomials w−2n

j p2n,j , p2n,j ∈ P d
2n, 1 ≤ j ≤ s as n → ∞. Then the same holds true

with the weight w := max{wj , 1 ≤ j ≤ s}.
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Proof. Assume that each g ∈ C0(Rd) is a uniform limit on Rd of weighted polynomials w−2n
j p2n,j , p2n,j ∈

P d
2n, 1 ≤ j ≤ s as n → ∞. Then by Lemma 2 (i) every even function f ∈ C(∂Kwj ) is a uniform limit on ∂Kwj of

some homogeneous polynomials h2n,j ∈ Hd+1
2n , 1 ≤ j ≤ s, where Kwj are the 0-symmetric star like domains defined

by Kwj := {(x, t) ∈ Rd+1 : w∗
j (x, t) ≤ 1}, with w∗

j (x, t) given by relation (2) being the Minkowski functionals of Kwj .
Then by the result of Varjú [8] mentioned above the homogeneous polynomial density will hold for the 0-symmetric
star like domain K := ∩1≤j≤sKwj , as well. It is easy to see that the corresponding Minkowski functionals satisfy the
relation

ϕK = max{ϕKj , 1 ≤ j ≤ s} = max{w∗
j , 1 ≤ j ≤ s}.

Furthermore, since for each even function f ∈ C(∂K) there exist homogeneous polynomials h2n ∈ Hd+1
2n such that

f = limn→∞ h2n uniformly on ∂K it follows by Lemma 2 (ii) that for every g ∈ C0(Rd) there exist polynomials
p2n ∈ P d

2n so that w−2n
K p2n → g, n → ∞ uniformly on Rd, where by the previous relation and (2)

wK(x) = ϕK(x, 1) = max{w∗
j (x, 1), 1 ≤ j ≤ s} = max{wj(x), 1 ≤ j ≤ s}, x ∈ Rd,

i.e., weighted polynomial approximation on Rd also holds with the weight w := max{wj , 1 ≤ j ≤ s}. �
Now we are in position to verify Theorem 1. First let us note that based on Lemma 3 it suffices to prove the

theorem for the case s = 1. Thus consider a convex admissible weight w on Rd, d ≥ 1 such that in addition, w∗ is
C1 on Rd+1 \ {0} if d > 1. Consider the 0-symmetric star like domain associated with w given by

Kw := {(x, t) ∈ Rd+1 : w∗(x, t) ≤ 1}.

Here as before w∗(x, t) given by relation (2) is the Minkowski functional ofKw which is even in both x ∈ Rd and t ∈ R.
Note that since w is convex it follows by Lemma 1 that w∗(x, t) is convex too, and therefore Kw is a 0-symmetric
convex domain in Rd+1. Moreover, if d > 1, i.e., d + 1 > 2 then the Minkowski functionals of Kw given by w∗ is
C1 which implies that Kw is a regular 0-symmetric convex domain in Rd+1 when d+ 1 > 2. Then by the results on
homogeneous polynomial approximation proved in [2],[8] and [3] for the case of convex bodies of dimension 2, and in
case of any 0-symmetric regular convex body, respectively (see the introduction above), it follows that for each even
function f ∈ C(∂Kw) there exist homogeneous polynomials h2n ∈ Hd+1

2n such that f = limn→∞ h2n uniformly on
∂Kw. Then by Lemma 2 (ii) for every g ∈ C0(Rd) there exist polynomials p2n ∈ P d

2n so that w−2n
Kw

p2n → g, n → ∞
uniformly on Rd. Here wKw is the weight associated with Kw which satisfies relations

wKw(x) := ϕKw(x, 1) = w∗(x, 1) = w(x), x ∈ Rd.

Thus the required weighted polynomial approximation holds true for the weight w. This completes the proof of
Theorem 1. �

Proof of Theorems 3 and 4

Proof of necessity in Theorem 3. Assume now that f ∈ C0(Rd) is a uniform limit on Rd of weighted polynomials
w−2n

α p2n, p2n ∈ P d
2n. In particular, this implies that for every y ∈ Kd

α, |y|α = 1 the univariate function g(t) := f(ty)
is a uniform limit on R of univariate weighted polynomials (1 + |t|α)−2n/αp2n, p2n ∈ P 1

2n. Then by [4], Theorem 1
g(0) = g(∞) = g(−∞) = 0. Since f ∈ C0(Rd) and thus lim|t|→∞ f(tx) = rf (x) uniformly on Sd−1 it follows that

rf (x) = 0, ∀x ∈ Sd−1, i.e., f(∞) = 0. Furthermore, for any 1 ≤ j ≤ d and any x = (x1, ..., xj−1, 0, xj+1, ..., xd) ∈ Ld
j

set a := (1 + |x|αα)1/α. Now consider the univariate function

g(t) := f(x1, ..., xj−1, at, xj+1, ..., xd).

Since f = limn→∞ w−2n
α p2n uniformly on Rd it obviously follows that

g(t) = lim
n→∞

(1 + |t|α)−2n/αq2n, q2n := a−2np2n(x1, ..., xj−1, at, xj+1, ..., xd) ∈ P 1
2n.

Then using again [4], Theorem 1 we obtain g(0) = f(x) = 0. Thus in addition to f(∞) = 0 we also have that f = 0
on Ld. �

Proof of necessity in Theorem 4. When 0 < α < 1 the lα sphere in Rd given by

Kd
α = {x ∈ Rd : |x|α = 1}
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is not convex. In this case it has been verified in [4], Corollary 2 that if an even function f(x, y) ∈ C(K2
α), d =

2, 0 < α < 1 is a uniform limit on K2
α of even homogeneous polynomials f = limn→∞ h2n, h2n ∈ Hd

2n, then
f(±1, 0) = f(0,±1) = 0, i.e., the function must vanish at all vertices of K2

α. Consider now arbitrary

y = (y1, ...yd) ∈ Kd
α ∩ Ld, |y|α = 1, y1 · ... · yd = 0}, d ≥ 2.

Then we can assume without loss of generality that y = (0, y2, ..., yd), and hence |y2|α + ... + |yd|α = 1. Denote
a1 := (1, 0, ..., 0) ∈ Rd and let M :=span{y,a1}, be the 2 dimensional plane spanned by y,a1. Then evidently

Kd
α ∩M = {t1a1 + t2y ∈ Kd

α : t1, t2 ∈ R} =

{(t1, t2) ∈ R2 : |t1|α + |t2|α(|y2|α + ...+ |yd|α) = |t1|α + |t2|α = 1}
is a 2 dimensional lα sphere. Moreover, if the even function f ∈ C(Kd

α) is a uniform limit on Kd
α of homogeneous

polynomials h2n ∈ Hd
2n then the bivariate continuous function g(t1, t2) := f(t1a1+ t2y) is a uniform limit on Kd

α∩M
of corresponding bivariate homogeneous polynomials. Then using the bivariate result from [4] cited above it follows
that g(±1, 0) = g(0,±1) = 0. Hence in particular, g(0, 1) = f(y) = 0. This verifies that any even function f ∈ C(Kd

α)
which is a uniform limit on Kd

α of homogeneous polynomials h2n ∈ Hd
2n must vanish at every point of Kd

α ∩ Ld, i.e.,
the necessity in Theorem 4 follows. �

Now we proceed to the more difficult task of verifying the sufficiency in Theorems 3 and 4.
First we present a lemma which establishes an equivalence between weighted polynomial approximation on Rd

and homogeneous polynomial approximation on Kd+1
α in the presence of exceptional zero sets. This lemma and its

proof is similar to the duality statement of Lemma 2 and therefore we only briefly outline its proof.

Lemma 5 Let d ≥ 1, α > 0. Then the following statements are equivalent:
(i) For any g ∈ C(Rd) such that g = 0 on Ld ∪ {∞} there exist p2n ∈ P d

2n so that

g = lim
n→∞

w−2n
α (y)p2n(y). (6)

uniformly on Rd.
(ii) Every even function f ∈ C(Kd+1

α ) such that f = 0 on Kd+1
α ∩ Ld+1 is a uniform limit on Kd+1

α of certain
homogeneous polynomials h2n ∈ Hd+1

2n of degree 2n.

Proof. (i) ⇒ (ii) For any even function f ∈ C(Kd+1
α ) such that f = 0 on Kd+1

α ∩ Ld+1 set

g(y) := f

(
y

wα(y)
,

1

wα(y)

)
= f(x), y ∈ Rd, x ∈ Rd+1.

As shown in the proof of Lemma 2 (i) it follows that g ∈ C0(Rd). Now we need to show that in addition g = 0 on
Ld ∪ {∞}. First note that if y = (y1, ..., yd) ∈ Ld, i.e., yj = 0 for some 1 ≤ j ≤ d then also xj = 0 yielding that
x ∈ Kd+1

α ∩ Ld+1. Hence g(y) = f(x) = 0, i.e., g = 0 on Ld. Furthermore, since

wα(y) ≥ max
1≤j≤d

|yj | ≥ d−
1
2 |y|

it follows that xd+1 = 1
wα(y) → 0 whenever |y| → ∞. Thus using again that f ∈ C(Kd+1

α ) and f(x) = 0 if xd+1 = 0

we obtain that g(y) = f(x) → 0 if |y| → ∞. Thus summarizing above observations we obtain that g ∈ C0(Rd)
and g = 0 on Ld ∪ {∞}. Therefore by (i) with suitable p2n ∈ P d

2n, n ∈ N relation (6) must hold uniformly on Rd.
However, as shown in (4) for every x ∈ ∂Kd+1

α , xd+1 > 0

g(y)− w−2n(y)p2n(y) = f(x)− h2n(x),

where h2n is a homogeneous polynomial of x ∈ Rd+1 of degree 2n. Thus since both f and h2n are even continuous
functions it follows that f = limh2n uniformly on ∂Kd+1

α .
(ii) ⇒ (i) Consider any g ∈ C(Rd), d ≥ 1 such that g = 0 on Ld ∪ {∞}. Given x ∈ Kd+1

α set

f(x) :=

{
g
(

x1

xd+1
, ..., xd

xd+1

)
, xd+1 ̸= 0

0, xd+1 = 0.
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Evidently, since g ∈ C0(Rd) and g(∞) = 0 it follows that f ∈ C(Kd+1
α ). Furthermore, f is even and since g = 0 on

Ld we also have that f = 0 on Kd+1
α ∩ Ld+1. Then by assumption (ii) f = limh2n, h2n ∈ Hd+1

2n uniformly on Kd+1
α .

Setting yj := xj/xd+1, 1 ≤ j ≤ d for any x = (x1, ..., xd+1) ∈ Kd+1
α , xd+1 > 0 we obtain

xd+1 =
1

wα(y)
, xj =

yj
wα(y)

, 1 ≤ j ≤ d

and hence as in (5)
f(x)− h2n(x) = g(y)− w−2n

α (y)p2n(y) → 0

uniformly on Rd �.
The next lemma provides an explicit construction of certain multivariate polynomials which are used for multi-

variate weighted approximation in Rd, d ≥ 2.

Lemma 6 Let α = p
q , p, q ∈ N and tk := e

πki
q , 1 ≤ k ≤ 2q, be the 2q-th roots of unity. Then for any n ∈ N and

x ∈ Rd

Qn(x) := |x1|α...|xd|α
∑

1≤sj≤2q,1≤j≤d

ts1 ...tsd(1 + ts1 |x1|α + ...+ tsd |xd|α)nq ∈ P d
pn+d. (7)

Proof. We use the relation
2q∑
k=1

tlk = 0,

which holds for any integer l ̸= 2rq, r ∈ N. To verify that, it suffices to note that, by the periodicity of roots of
unity,

∑2q
k=1 t

l
k = tl1

∑2q
k=1 t

l
k. Hence if tl1 ̸= 1, then the above relation must hold. In addition, we evidently have∑2q

k=1 t
l
k = 2q whenever l = 2rq, r ∈ N.

Using these relations and the multinomial formula we have for any u = (u1, ...ud) ∈ Rd

Q(u) := u1...ud

∑
1≤sj≤2q,1≤j≤d

ts1 ...tsd(1 + ts1u1 + ...+ tsdud)
nq

= u1...ud

∑
1≤sj≤2q,1≤j≤d

ts1 ...tsd
∑

m1+...+md≤nq

bm(ts1u1)
m1 ...(tsdud)

md

∑
m1+...+md≤nq

bmum1+1
1 ...umd+1

d

∏
1≤j≤d

∑
1≤sj≤2q

tmj+1
sj

with proper multinomial coefficients bm. Clearly, we have for the product∏
1≤j≤d

∑
1≤sj≤2q

tmj+1
sj = (2q)d

whenever mj + 1 = 2qrj , 1 ≤ j ≤ d for some integers rj ∈ N, and otherwise this product is always zero. Thus we
obtain that

Q(u) =
∑

2r1+...+2rd≤n+ d
q

cru
2qr1
1 ...u2qrd

d

with some cr ∈ R. Hence setting uj := |xj |α = |x|
p
q , 1 ≤ j ≤ d it follows that u

2qrj
j = x

2prj
j , 1 ≤ j ≤ d and therefore

Qn(x) := Q(|x1|α, ..., |xd|α) =
∑

2r1+...+2rd≤n+ d
q

crx
2pr1
1 ...x2prd

d ∈ P d
pn+d. �

Lemma 7 Let 0 < α = p
q , p, q ∈ N and Qn ∈ P d

pn+d be the polynomial given by (7). Then for any polynomial G ∈ P d
p

of degree at most p we have ∥∥∥∥ G(x)Qn(x)

wα(x)p(n+d+2)
− G(x)|x1...xd|α

wα(x)p(d+2)

∥∥∥∥
C(Rd)

= O

(
1

n

)
, n ∈ N. (8)
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Proof. We will need the following identity which holds for any given a > 0 and tk = e
πki
q , 1 ≤ k ≤ 2q

|1 + tka|2 = (1 + aℜtk)2 + a2(ℑtk)2 = (1 + a)2 + 2aℜtk − 2a = (1 + a)2 − 4a sin2
πk

2q
.

Evidently it implies that whenever 1 ≤ k ≤ 2q − 1, i.e, tk ̸= 1

|1 + tka| ≤ (1 + a)

√
1− 4a

(1 + a)2
sin2

πk

2q
≤ 1 + a− 2a

1 + a
sin2

π

2q
= 1 + a− γqa

1 + a
, γq := 2 sin2

π

2q
. (9)

Iterating the above estimate further consider the sum |1 + ts1a1 + ... + tsdad|, aj > 0, 1 ≤ sj ≤ 2q assuming that
tsd ̸= 1. Then by (9)

|1 + ts1a1 + ...+ tsdad| ≤ a1 + ...+ ad−1 + |1 + tsdad| ≤ 1 + a1 + ...+ ad −
γqad
1 + ad

. (10)

Now we will apply relation (7) which yields using notation |x|α := (|x1|α + ...+ |xd|α)
1
α

Qn(x1, ..., xd)

(1 + |x|αα)qn+s
=

|x1...xd|α

(1 + |x|αα)s
+R(x1, ..., xd) (11)

where

R(x1, ..., xd) :=
|x1...xd|α

∑∗
ts1 ...tsd(1 + ts1 |x1|α + ...+ tsd |xd|α)nq

(1 + |x|αα)qn+s

with the symbol
∑∗

indicating summation over all 1 ≤ sj ≤ 2q, 1 ≤ j ≤ d except the term corresponding to
s1 = ... = sd = 2q. Thus in each term of

∑∗
at least one of tj-s is distinct from 1. Therefore using relation (10) and

the symmetry we obtain that for each term in
∑∗

∥∥∥∥ |x1...xd|α(1 + ts1 |x1|α + ...+ tsd |xd|α)nq

(1 + |x|αα)qn+s

∥∥∥∥
C(Rd)

≤

∥∥∥∥∥∥ |x1...xd|α(1 + |x|αα − γq|xd|α
1+|xd|α )

nq

(1 + |x|αα)qn+s

∥∥∥∥∥∥
C(Rd)

Thus for the remainder term in (11) we obtain the next estimate

∥R∥C(Rd) ≤ (2q)d

∥∥∥∥∥∥ |x1...xd|α(1 + |x|αα − γq|xd|α
1+|xd|α )

nq

(1 + |x|αα)qn+s

∥∥∥∥∥∥
C(Rd)

.

We will now give an upper bound for the norm of the above function using notations

v(x) = v(x1, ..., xd) := 1 + |x|αα, u(x) = u(x1, ..., xd) :=
|xd|α

(1 + |xd|α)v(x)
.

Applying these notations in the above estimate for ∥R∥C(Rd) and using that

|x1...xd−1|α ≤ v(x)d−1, |xd|α ≤ v(x)2u(x)

clearly implies

∥R∥Rd ≤ (2q)d
∥∥∥∥|x1|...xd|α

(1− γqu(x))
nq

v(x)s

∥∥∥∥
C(Rd)

≤ (2q)d
∥∥∥∥u(x)(1− γqu(x))

nq

v(x)s−d−1

∥∥∥∥
C(Rd)

.

Now recalling that s ≥ d+ 1 and using that v(x) ≥ 1, x ∈ Rd we obtain

∥R∥C(Rd) ≤
(2q)d

γq
∥t(1− t)nq∥C(R) ≤

c(q, d)

n
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with a constant c(q, d) depending only on q and d. Applying this estimate in (11) yields∣∣∣∣ Qn(x)

(1 + |x|αα)qn+s
− |x1...xd|α

(1 + |x|αα)s

∣∣∣∣ ≤ c(q, d)

n
, x = (x1, ..., xd) ∈ Rd, n ∈ N. (12)

Now we can observe that for any polynomial G ∈ P d
p of degree at most p we have∥∥∥∥ G

wp
α

∥∥∥∥
C(Rd)

≤ c.

Thus multiplying relation (12) by the bounded quantity | G(x)
wα(x)p | and setting s := p(d+1)

α > d+ 1 in (12) yields∥∥∥∥ G(x)Qn(x)

wα(x)p(n+d+2)
− G(x)|x1...xd|α

wα(x)p(d+2)

∥∥∥∥
C(Rd)

= O

(
1

n

)
,

which is the statement of the lemma. �
Proof of sufficiency in Theorems 3 and 4. Now the proof of the sufficiency in Theorem 3 can be finalized by

using a Stone-Weierstrass-type argument. For any closed subalgebra of functions A ⊂ C(K) with K being a compact
Hausdorff space denote by ZA := {x ∈ K : g(x) = 0, for all g ∈ A} the zero set of A. Then the Stone-Weierstrass
theorem (see e.g., [1, p. 13]) states that if A separates points in K \ ZA, then any f ∈ C(K) which vanishes on ZA

belongs to A, i.e., A = {f ∈ C(K) : f = 0 on ZA}. We will use this statement in the space

C∗(Rd) := {f ∈ C(Rd) : f(∞)} = 0

of continuous functions vanishing at infinity which clearly provides the needed compactification of the domain.
Let α = p

q , p, q ∈ N, 0 < α < 1. The proof will be accomplished in two steps. First we will verify the need

statement for the subsequence Np := {pn : n ∈ N}.
Set

Ap := {f ∈ C∗(Rd) : f = lim
n→∞

w−pn
α gpn, gpn ∈ P d

pn}.

Obviously, Ap is a closed subalgebra of C∗(Rd), where by the already proven necessary condition in Theorem 3 we
have Ld ∪ {∞} ∈ ZAp . Furthermore it follows by Lemma 7 that for any polynomial G ∈ P d

p of degree at most p we
have

G(x)|x1...xd|αwα(x)
−p(d+2) ∈ Ap. (13)

Since function |x1...xd|αwα(x)
−p(d+2) vanishes only on Ld ∪ {∞} it follows that Ld ∪ {∞} = ZAp . Moreover polyno-

mials G ∈ P d
p , p ≥ 1 separate points in all of Rd and hence functions (13) separate points in Rd \ {Ld ∪ {∞}}. Thus

any function f ∈ C(Rd) which vanishes on Ld ∪ {∞} is in Ap i.e., is a uniform limit on Rd of weighted polynomials
w−pn

α gpn, gpn ∈ P d
pn.

Now for any 0 ≤ j ≤ p− 1 and any polynomial G ∈ P d
1 of degree at most 1 consider continuous functions

fj(x) := x1...xdG(x)wα(x)
−p−d+j−1, 0 ≤ j ≤ p− 1.

It can be easily verified that fj vanishes on Ld ∪ {∞} = ZAp for every 0 ≤ j ≤ p− 1. Thus by the previous step of
the proof each fj is a uniform limit on Rd of weighted polynomials w−pn

α gj,n, gj,n ∈ P d
pn, 0 ≤ j ≤ p − 1. Of course

this is equivalent to

wα(x)
−pn−jgj,n(x) → x1...xdG(x)wα(x)

−p−d−1 ∈ C∗(Rd), 0 ≤ j ≤ p− 1, n → ∞.

Now for an m ∈ N, m ≡ j (mod p), say for m = pn+ j with some n ∈ N and 0 ≤ j ≤ p− 1, set

gm := gj,n ∈ P d
pn ⊂ P d

m.

Then the last relation means that we found a sequence of polynomials gm ∈ P d
m, m = 1, 2, . . ., such that

wα(x)
−mgm(x) → x1...xdG(x)wα(x)

−p−d−1 ∈ C∗(Rd), 0 ≤ j ≤ p− 1, n → ∞.
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Therefore, if we define
A := {f ∈ C∗(Rd) : f = lim

m→∞
w−m

α gm, gm ∈ P d
m},

then it follows that x1...xdG(x)wα(x)
−p−d−1 ∈ A for any polynomial G ∈ P d

1 of degree at most 1. Just as above
this means that ZA = Ld ∪ {∞} and we have suitable test functions in the closed subalgebra A ⊂ C∗(Rd) which
separate points in Rd \ {Ld ∪ {∞}}. Hence, repeated application of the Stone-Weierstrass theorem implies that any
function f ∈ C(Rd) which vanishes on Ld ∪ {∞} is in A i.e., is a uniform limit on Rd of weighted polynomials
w−n

α gn, gn ∈ P d
n . This completes the proof of the sufficiency in Theorem 3. Moreover, recalling Lemma 5 we obtain

the sufficiency in Theorem 4, as well. �
Conclusions. As it can be seen from the above results convexity of the weight plays a crucial role in the study

of density of weighted polynomial approximation. In this respect it would be very important to verify that density
holds for every convex admissible weight without the assumption of piecewise C1 smoothness as stated in Conjecture
2 for d > 1. Another promising line of investigation could be related to the study of non convex weights. As it is
indicated by Theorem 3 in non convex case certain exceptional zero sets come into play and finding these sets poses
a rather nontrivial question. Furthermore, the study of weighted polynomial approximation in C0(Rd) might lead to
a further insight into the question of density of multivariate homogeneous polynomials.
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