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Abstract 

Hillert showed an elegant way to obtain the equilibrium composition of interfaces (including 

grain boundaries) and the equilibrium interfacial energy for binary solutions using his 

“parallel tangent construction”. However, this method is correct only for equal sizes of atoms 

of the components. A corrected equation is derived here from the two fundamental equations 

of Gibbs. Our resulting non-parallel tangent construction is less elegant, but more correct 

compared to the parallel tangent construction of Hillert. Our method is also extended to multi-

component solid solutions. Our method is equivalent to the Butler equations, without a need 

to introduce partial interfacial energies.  
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 Interfaces and particularly grain boundaries (GB) play an important role in materials 

science [1-4]. Therefore modelling equilibrium interface composition (segregation) and 

equilibrium interfacial energy in binary and multi-component solutions is one of the important 

tasks of materials science [5-10].  

An elegant method was introduced by Hillert [11], demonstrated in Fig.1 for a binary 

A-B solid solution α at a fixed temperature and at a fixed pressure. Suppose its integral molar 

Gibbs energy (denoted as Gm,α, J/mol) is known as function of bulk mole fraction of 

component B (denoted as xB,α, dimensionless) at given temperature and pressure for a 

macroscopic solution. The chemical potentials of its components can be found by drawing a 

tangent line to the curve of the integral molar Gibbs energy at the selected composition, as 

shown in Fig.1. Suppose the integral molar Gibbs energy of the grain boundary (denoted as 

Gm,gb, J/mole) is also known as function of the composition of the interfacial region (denoted 

as xB,gb, dimensionless) at the same temperature and pressure. Hillert suggests drawing a 
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parallel tangent line to the above explained tangent line, but this time being a tangent to the 

integral molar Gibbs energy line of the GB. He has two important claims regarding to this 

parallel tangent construction:  

i.the mole fraction at which the new tangent line touches the molar integral Gibbs energy line 

of the GB corresponds to the equilibrium composition of the GB,  

ii.the vertical distance (measured in J/mole) between the two parallel lines corresponds to the 

equilibrium interfacial energy, multiplied by Vm,i/t, where Vm,i (m
3/mole) is the molar 

volume of the interfacial region and t (m) is its thickness.  

 

 

Fig.1. Schematic representation of the parallel tangent construction by Hillert at constant 

temperature and pressure (similar to Fig.16.5 of his book [11]). From the figure one can 

easily read the equilibrium values of xB,GB and σ ∙ ω as function of bulk composition 

(xB,α). If the value of ω (= Vm,GB/t after Hillert) is known, the equilibrium value of σ 

follows. This parallel tangent construction is valid only at ωA = ωB = ω. 

 

Let us mention that the expression Vm,i/t is equivalent to the partial molar GB area of 

component i as used by this author (denoted as ωi, m
2/mol) – for more details see below. The 

distance between the two parallel tangents in the construction of Hillert is the excess partial 

molar interfacial Gibbs energy (σ ∙ ωi, J/mole). When ωA = ωB = ω for the binary A-B 

solution, the correct result σ = σ follows from the parallel tangent construction as shown in 

Fig.1. However, if ωA ≠ ωB, then the incorrect result σ ≠ σ follows from the same parallel 

A B
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tangent construction of Hillert. The goal of this paper is to derive a correct equation for the 

general case from the fundamental equations of Gibbs [12].  

 The parallel tangent construction of Hillert is frequently used in the literature for GBs 

of binary and multi-component systems [13-19] and even to anti phase boundaries [20]. 

However, there is some confusion in the literature as a method under the same name “parallel 

tangent” is applied to find equilibrium composition of nuclei [21-28]. However, despite the 

same name of the two methods, the two problems are different and should not be confused or 

treated together. The first problem relates to adsorption / segregation of components from 

bulk phases to interfaces, while the second problem relates to nano-thermodynamics, 

extensively discussed by the author recently [3, 29-31]. In this paper only the problem of GB 

segregation, or more generally, the problem of interfacial segregation will be discussed.  

 Let us first write the first fundamental equation of Gibbs [12] for the case of bulk 

phase α, neglecting the role of any interface:  

dGα = ∑ μi,α ∙ dni,αi                                                     (1) 

where Gα (J) is the Gibbs energy of bulk phase α, μi,α (J/mole) is the chemical potential of 

component i in the same phase and ni,α (mole) is the amount of component i in the same 

phase. Now, let us define the chemical potential in the bulk phase from Eq.(1):  

μi,α ≡ (
dGα

dni,α
)

p,T,nj≠i,α

                                                  (2a) 

 Now, let us divide the right hand side of Eq.(2a) by the ratio 1 = nα/nα (with nα, 

mole, the total amount of matter in bulk phase α). Then, an alternative for of Eq.(2a) is 

obtained, taking into account that the molar Gibbs energy of bulk phase α is defined as 

Gm,α ≡ Gα/nα and the mole fraction of component i in bulk phase α is defined as: xi,α ≡

ni,α/nα:  

μi,α ≡ (
dGm,α

dxi,α
)

p,T,xj≠i,α

                                                  (2b) 

 Eq.(2b) is equivalent with Eq.(2a), but Eq.(2b) is written using quantities of Fig.1. 

Now, let us write the second fundamental equation of Gibbs [12] for the bulk phase with an 

interface, particularly with a grain boundary (GB):  

dGGB = ∑ μi,gb ∙ dni,gbi + σ ∙ A                                           (3) 

where GGB (J) is the Gibbs energy of the grain boundary, μi,gb (J/mole) is the chemical 

potential of component i in the GB, ni,gb (mole) is the amount of component i in the GB, σ 

(J/m2) is the GB energy (or more generally the interfacial energy), A (m2) is the interfacial 
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area of the GB. Now, let us express the chemical potential from Eq.(3) similarly as done 

above:  

μi,gb ≡ (
dGgb

dni,gb
)

p,T,nj≠i,gb

− σ ∙ (
dA

dni,gb
)

p,T,nj≠i,gb

                           (4a) 

 The partial molar surface area of component i in the GB is denoted as ωi (m
2/mole) 

and is defined as:  

 ωi ≡ (
dA

dni,gb
)

p,T,nj≠i,gb

                                               (4b) 

 Now, let us define the reduced chemical potential of component i in the GB (it is 

called “reduced “ as it does not contain the σ ∙ ωi term), denote  μi,gb
∗  (J/mole):  

μi,gb
∗ ≡ (

dGm,gb

dxi,gb
)

p,T,xj≠i,gb

                                             (4c) 

 Eq.(4c) was obtained by multiplying the first term on the right hand side of Eq.(4a) by 

the ratio 1 = ngb/ngb (with ngb, mole, the total amount of matter in the GB) and taking into 

account that the molar Gibbs energy of GB is defined as Gm,gb ≡ Ggb/ngb and the mole 

fraction of component i in GB is defined as: xi,gb ≡ ni,gb/ngb. In this way Eq.(4c) is written 

using quantities of Fig.1. Now, let us substitute Eq-s (4b-c) into Eq.(4a):  

μi,gb = μi,gb
∗ − σ ∙ ωi                                                     (4d) 

 Following Gibbs [12], the condition of equilibrium between a bulk phase α and the GB 

follows as: 

μi,α = μi,gb                                                            (5) 

Substituting Eq.(4d) into Eq.(5), the GB energy can be expressed as:  

σ =
μi,gb

∗ −μi,α

ωi
                                                          (6a) 

 As Eq.(6a) is valid for each component, the following equations are valid for a multi-

component solution A-B-C…:  

 σ =
μA,gb

∗ −μA,α

ωA
=

μB,gb
∗ −μB,α

ωB
=

μC,gb
∗ −μC,α

ωC
= ⋯                               (6b) 

 As follows from Eq.(6b), the differences of chemical potentials of different 

components will equal (μA,gb
∗ − μA,α = μB,gb

∗ − μB,α = μC,gb
∗ − μC,α = ⋯) only, if the partial 

GB areas of the components have the same values: ωA = ωB = ωC = ⋯. Thus, only under 

this latter condition the parallel tangent construction of Hillert is valid. For all other cases the 

tangents to the molar Gibbs energy of the bulk phase and the tangent to the molar Gibbs 
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energy of the GB should not be parallel, rather they should obey Eq.(6b). For a binary A-B 

system, the following equation follows from Eq.(6b):  

μA,gb
∗ −μA,α

μB,gb
∗ −μB,α

=
ωA

ωB
                                                       (6c) 

 The case of ωA/ωB = 1 is shown in Fig.1. As another example, Fig.1 is repeated in 

Fig. 2 for ωA/ωB = 0.5. As follows from Fig.2, in this case segregation of component B is 

enhanced compared to the case shown in Fig.1. This is a general rule for the case when the 

interface active solute B has a larger atomic size compared to the solvent atom A.  

Now, let us write the simplest model for the partial GB area supposing spherical atoms 

[3, 10]:  

ωi = π ∙ ri,a
2 ∙

NAv

fgb
                                                        (7a) 

where ri,a (m) is the atomic radius of component i,  NAv ≅ 6.02 ∙ 1023 1/mol is the Avogadro 

number, fgb (dimensionless) is the 2-D packing fraction of atoms along the GB. The latter is a 

complex function of the structure of the grain, the structure of the grain boundary and the 

crystal planes of the two grains around the GB. For the same GB between the same two grains 

it can be supposed that fgb is not a function of the composition of the GB and the grains, and 

therefore Eq.(6c) can be re-written using Eq.(7a) as:  

μA,gb
∗ −μA,α

μB,gb
∗ −μB,α

= (
rA,a

rB,a
)

2

                                                      (7b) 

 As the molar volume is proportional to the cube of the atomic radii, alternatively also 

the following equation can be written:  

μA,gb
∗ −μA,α

μB,gb
∗ −μB,α

= (
Vm,Aα

Vm,Bα
)

2/3

                                                 (7c) 

where Vm,Aα (m3/mol) is the partial molar volume of component A in phase α and Vm,Bα 

(m3/mol) is the partial molar volume of component B in phase α. As follows from Eq-s.(7b-c), 

the deviation from the parallel tangent rule of Hillert depends on the square of the ratios of the 

atomic radii of the two components of the binary solution, or alternatively it depends on the 

2/3 power of the ratio of the partial molar volumes of the two components. Eq.(7b) is more 

transparent to understand, but Eq.(7c) is more useful as it can take into account the T-

dependence through the T-dependences of the partial molar volumes of the components.  
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Fig.2. Same as Fig.1, but valid for ωA/ωB = 0.5 in accordance with Eq.(6c). Note that in 

equilibrium the two tangents lines are not parallel, in contrary to the case of Fig.1 valid for 

ωA/ωB = 1 

 

 Now, let us write an equation for the integral molar Gibbs energy of the bulk phase α 

(Gm,α, J/mole): 

Gm,α = Gm,α
o + ∆Gm,α

id + Gm,α
E                                           (8a) 

where Gm,α
o  (J/mole) is the standard integral molar Gibbs energy of the mechanical mixture, 

∆Gm,α
id  (J/mole) is the molar Gibbs energy change accompanying the formation of the ideal 

solution from the mechanical mixture, Gm,α
E  (J/mole) is the molar integral excess Gibbs energy 

of the bulk solution, written as:  

Gm,α
o = (1 − xB,bα) ∙ μA,α

o + xB,bα ∙ μB,α
o                                      (8b) 

∆Gm,α
id = R ∙ T ∙ [xB,α ∙ lnxB,α + (1 − xB,α) ∙ ln (1 − xB,α)]                        (8c) 

Gm,α
E = Lo ∙ xB,α ∙ (1 − xB,α)                                            (8d) 

where μA,α
o  (J/mole) is the standard chemical potential of phase α made of only component A, 

μB,α
o  (J/mole) is the same when phase α is made of only component B, R = 8.314 J/molK is the 

universal gas constant, T (K) is absolute temperature, Lo (J/mole) is the interaction energy of 

A B
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the regular solution model. Now, let us substitute xB,α = xB,gb = 0 into Eq.(6a) and express 

from the resulting equation  μA,gb
∗o :  

μA,gb
o∗ = μA,α

o + ωA
o ∙ σA

o                                                   (9a) 

where all the quantities are defined similarly as above, but the upper index “o” and the lower 

index “A” mean that all quantities belong to a pure phase made of only component A. For 

example, σA
o  (J/m2) is the GB energy of a pure system made of only component A. A similar 

equation can also be written for component B by substituting xB,α = xB,gb = 1 into Eq.(6a) 

as:  

μB,gb
o∗ = μB,α

o + ωB
o ∙ σB

o                                                   (9b) 

 Now, let us write the integral molar Gibbs energy of the GB (Gm,gb, J/mole), in analogy 

with Eq.(8a):  

Gm,gb = Gm,gb
o + ∆Gm,gb

id + Gm,gb
E                                        (10a) 

where the quantities are the same as in Eq.(8a), but they all belong to the GB and can be 

written by equations similar to Eq-s (8b-d):   

Gm,gb
o = (1 − xB,gb) ∙ μA,gb

o∗ + xB,gb ∙ μB,gb
o∗                                      (10b) 

∆Gm,gb
id = R ∙ T ∙ [xB,gb ∙ lnxB,gb + (1 − xB,gb) ∙ ln (1 − xB,gb)]                        (10c) 

Gm,gb
E =

zgb

zα
∙ Lo ∙ xB,gb ∙ (1 − xB,gb)                                            (10d) 

where zgb (dimensionless) is the coordination number in GB, zα (dimensionless) is the 

coordination number in the bulk of the α grain. As follows from Eq-s (8-10), if the model 

parameters for the molar Gibbs energy of the bulk phase α are known, then the molar Gibbs 

energy of the GB can be modelled if the following additional parameters are known: σA
o , σB

o , 

ωA
o , ωB

o  and zgb/zα. In the first approximation: ωi = ωi
o. Now, let us write the ratio of the 

differences of the two chemical potentials from Eq-s (6a, 9a):  

μA,gb
∗ −μA,α

μA,gb
o∗ −μA,α

o =
ωA∙σ

ωA
o ∙σA

o                                                       (11a) 

 If the above approximation ωA = ωA
o  is valid, then σ can be expressed from Eq.(11a) 

as:  

σ = σA
o ∙

μA,gb
∗ −μA,α

μA,gb
o∗ −μA,α

o                                                     (11b) 

 Similar equations are valid for all other components. As follows from Eq.(11b), in this 

case the molar interfacial areas and therefore the value of fgb fall out from the calculation of 

σ. As follows from Fig.2, the ratio in the right hand side of Eq.(11b) is smaller than unity and 
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so σ < σA
o . This is generally valid when component B is GB-active, i.e. when σB

o < σA
o , i.e. 

when component B segregates preferentially to GB.  

 As a conclusion it is claimed here that the parallel tangent construction of Hillert is just 

a simplified case of our generally valid Eq-s (6-7). The parallel tangent construction can be 

used only if the atomic sizes of all components are the same. In all other cases our Eq-s (6-7) 

should be used and the two tangent lines are not parallel. It should be also mentioned that Eq-

s (6) are identical with the Butler equations applied to GBs [10] (see also [15]), but without 

the need to introduce partial GB energies.  
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