
A Logical Representation of P Colonies:
An Introduction

Luděk Cienciala1, Lucie Ciencialová1, Erzsébet Csuhaj-Varjú2(B),
and Petr Sośık1

1 Institute of Computer Science and Research Institute of the IT4Innovations Centre
of Excellence, Silesian University in Opava, Opava, Czech Republic
{ludek.cienciala,lucie.ciencialova,petr.sosik}@fpf.slu.cz

2 Faculty of Informatics, ELTE Eötvös Loránd University, Budapest, Hungary
csuhaj@inf.elte.hu

Abstract. We introduce a new way of representation of computation
in P colonies. It is based on logical values, propositional logic and rule-
based systems. A configuration of a P colony is transformed into a data
structure based on a system of stacks. We present a conversion of condi-
tions of applicability of rules, programs, multisets of programs and com-
plete computational steps as propositional formulas in the disjunctive
normal form. This representation allows, among others, to derive new
results concerning the complexity of execution of computational steps of
a P colony.

1 Introduction

P colonies, introduced in [5], are variants of very simple tissue-like P systems,
where the cells (agents) have only one region and they interact with their joint
shared environment by using programs, i.e., by finite collections of rules of special
forms. The extraordinary simplicity of these constructs is demonstrated by some
of their important characteristics.

At any step of their functioning, both the agents and the environment are
represented by a finite number of objects, elements of an object-alphabet. (We
note that the environment has an infinite number of occurrences of a special
symbol, called the environmental symbol as well.) The agents in the P colony
have constant capacity and each agent has the same capacity, i.e., at any com-
putational step every agent is represented by a constant number of objects and
this number is the same for any agent. Furthermore, the agents can change their
contents (the objects at their disposal) and the objects in the environment by
using very simple rules, namely, evolution rules (an object inside the agent is
changed for some other object) or communication rules (an object inside the
agent is exchanged with an object located in the environment). There exists one
other type of rules as well, the so-called checking rule. A checking rule consists
of either two evolution rules or of two communication rules, written as r1/r2.
Rule r1 has higher priority than r2, i.e., if r1 is applicable, then it has to be

c© Springer Nature Switzerland AG 2018
C. Graciani et al. (Eds.): Pérez-Jiménez Festschrift, LNCS 11270, pp. 66–76, 2018.
https://doi.org/10.1007/978-3-030-00265-7_6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/232264905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00265-7_6&domain=pdf

A Logical Representation of P Colonies 67

used, otherwise r2 has to be applied. The change of the contents of the agents
and the change of the current environment is performed by programs. Every
agent has a finite set of programs, and each program consists of as many rules
as the capacity of the agent. When a program is applied, all of its rules should
be used in parallel. At every step, as many agents perform a program in parallel
as possible. These synchronized actions of the agents correspond to a configura-
tion change of the P colony. A finite sequence of configuration changes following
each other and starting from the so-called initial configuration is a computation.
The result of the computation is the number of copies of a distinguished object,
called the final object, occurring in the environment in a final configuration of
the P colony, which is usually a halting configuration.

During the years, P colonies have been studied in detail; for summaries con-
sult [1,4]. These investigations mainly focused on studying P colonies as com-
puting devices; a large number of results prove that even though P colonies are
very simple computing devices they are computationally complete even with
restricted size parameters.

In this paper we study P colonies from other aspect, namely, we provide
a representation of P colonies in terms of logical values, propositional logic and
rule-based systems. The startpoint of our approach is that the applicability con-
ditions of rules, programs, multisets of programs can be given as propositional
formulas in disjunctive normal form and the computational step is obtained by
using a rule-based system.

Obviously, if an evolution rule of the form a → b is to be applied by an agent,
then object a should be present inside the agent. Analogously, if a communication
rule c ↔ d is to be applied by an agent, then object c should be present inside
the agent and object d should appear in the environment. To perform rules and
programs, the configuration of the P colony has to satisfy such conditions.

To continue the concept of logical representation of P colonies, a configuration
of a P colony is transformed into a system of stacks with logical values. Elements
of these stacks are then used as variables in the propositional formulas and thus
a configuration defines an interpretation of the formulas. The computational
step corresponds to a transition of a rule-based production system. Using this
approach, we may solve several problems concerning P colonies. In this paper,
we proved that the decision problem whether a configuration C is a halting
configuration of a P colony Π without checking rules is in P, and if Π is with
checking rules then it is in NP.

The logical representation of P colonies we provide and the approach we
propose allow to apply many results known in propositional logic to resolve
open problems in P colony theory. We close the paper with two open problems
and a short discussion of the possible applications of this new approach.

2 Preliminaries and Basic Notions

Throughout the paper we assume the reader to be familiar with the basics of
formal language theory and membrane computing, more information can be
found in [6,7].

68 L. Cienciala et al.

For an alphabet Σ, the set of all words over Σ (including the empty word,
ε), is denoted by Σ∗. The length of a word w ∈ Σ∗ is denoted by |w| and |w|a
denotes the number of occurrences of the symbol a ∈ Σ in w.

A multiset of objects M is a pair M = (O, f), where O is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : O → N; f assigns to each
object in O its multiplicity in M . Any multiset of objects M with the set of
objects O = {x1, . . . xn} can be represented as a string w over alphabet O with
|w|xi

= f(xi); 1 ≤ i ≤ n. Obviously, all words obtained from w by permuting
the letters can also represent the same multiset M , and ε represents the empty
multiset.

2.1 P Colonies

The original concept of a P colony was introduced in [5] and presented in a devel-
oped form in [2,3].

Definition 1. A P colony of capacity k, k ≥ 1, is a construct Π =
(O, e, f, VE , A1, . . . , An), where

– O is an alphabet, its elements are called objects;
– e ∈ O is the basic (or environmental) object of the P colony;
– f ∈ O is the final object of the P colony;
– VE is a finite multiset over O − {e}, called the initial state (or the initial

content) of the environment;
– Ai, 1 ≤ i ≤ n, are agents, where each agent Ai = (Oi, Pi) is defined as

follows:
• Oi is a multiset consisting of k objects over O, the initial state (or initial

content) of the agent;
• Pi = {pi,1, . . . , pi,ki

} is a finite set of programs, where each program con-
sists of k rules. Each rule is in one of the following forms:

∗ a → b, called an evolution rule;
∗ c ↔ d, called a communication rule;
∗ r1/r2, called a checking rule; r1, r2 are evolution rules or commu-
nication rules.

We add some brief explanations to the components of the P colony. We first
note that throughout the paper, we use term “object a is inside agent A” and
term “a ∈ w, where w is the state of agent A” as equivalent.

The first type of rules associated to the programs of the agents, the evolu-
tion rules, are of the form a → b. This means that object a inside the agent is
rewritten to (evolved to be) object b. The second type of rules, the communi-
cation rules, are of the form c ↔ d. If such a communication rule is performed,
then object c inside the agent and object d in the environment swap their loca-
tion, i.e., after executing the rule, object d appears inside the agent and object
c is located in the environment.

The third type of rules are the checking rules. A checking rule is formed from
two rules of one of the two previous types. If a checking rule r1/r2 is performed,

A Logical Representation of P Colonies 69

then the rule r1 has higher priority to be executed over the rule r2. This means
that the agent checks whether or not rule r1 is applicable. If the rule can be
executed, then the agent must use this rule. If rule r1 cannot be applied, then
the agent uses rule r2.

The program determines the activity of the agent: the agent can change its
state and/or the state of the environment.

The environment is represented by a finite number (zero included) of copies of
non-environmental objects and a countably infinite copies of the environmental
object e.

In every step, if a program is applied, then each object inside the agent is
affected by its execution. Depending on the rules in the program, the program
execution may affect the environment as well. This interaction between the agents
and the environment is the key factor of the functioning of the P colony.

The functioning of the P colony starts from its initial configuration (initial
state). The initial configuration of a P colony is an (n + 1)-tuple of multisets
of objects present in the P colony at the beginning of the computation. It is
given by the multisets Oi for 1 ≤ i ≤ n and by multiset VE . Formally, the
configuration of the P colony Π is given by (w1, . . . , wn, wE), where |wi| = k, 1 ≤
i ≤ n, wi represents all the objects present inside the i-th agent, and wE ∈
(O − {e})∗ represents all the objects in the environment different from object
e. A configuration (w1, . . . , wn, wE) contains a configuration (w′

1, . . . , w
′
n, w′

E)
iff w′

E ⊆ wE and w′
i ⊆ wi, 1 ≤ i ≤ n.

At each step of the computation (at each transition), the state of the envi-
ronment and that of the agents change in the following manner:

In the maximally parallel derivation mode a maximal number of agents per-
forms one of its applicable (non-deterministically chosen) programs simultane-
ously. This means that applicable programs are added to the multiset of applied
programs, one program per agent, in an arbitrary order, until no more programs
can be added due to the trade-offs between them. Then the multiset of programs
is applied.

The other derivation mode is the sequential derivation mode. In this case one
agent uses one of its programs at a time. If more than one agent is able to apply
at least of its programs, then the acting agent is non-deterministically chosen.
If the number of applicable programs for the agent is higher than one, then the
agent non-deterministically chooses one of these programs.

A transition between configurations C1 and C2 is denoted by C1 ⇒ C2.
A configuration C is called alive if there is another configuration C ′
= C such
that C ⇒ C ′. Otherwise, the configuration is called dead. Note that a dead
configuration is either halting (the P colony cannot apply any rule), or else
each valid multiset of applicable rules (subject to the derivation mode) leads the
P colony to the same configuration.

A sequence of transitions starting in the initial configuration is called a com-
putation. A computation is said to be halting if a configuration is reached where
no program can be applied. With a halting computation, we associate a result

70 L. Cienciala et al.

which is given as the number of copies of the objects f present in the environment
in the halting configuration.

Because of the non-determinism in choosing the programs, starting from the
initial configuration we obtain several computations, hence, with a P colony we
can associate a set of numbers, denoted by N(Π), computed by all possible
halting computations of the given P colony.

In the original model (see [5]) the number of objects inside each agent is set
to two. Therefore, the programs were formed from only two rules. Moreover, the
initial configuration was defined as (n+1)-tuple (ee, . . . , ee, ε) so the environment
of the P colony is “empty”, i.e., without an input information at the beginning
of the computation.

The number of agents in a given P colony is called the degree of Π; the
maximal number of programs of an agent of Π is called the height of Π.

3 Logical Representation of P Colonies

In this section we introduce a new way of representation of the concept of
a P colony. First, we briefly explain the idea. To represent existence (or non-
existence) of objects in the P colony, we use value 1 (or 0). Let a be an object
in the P colony (a ∈ O) and suppose that there are three copies of such object
placed in the environment. We construct a stack called “a” and put value 0 into
the bottom of stack. For every copy of object a in the environment, we push one
copy of 1 to the stack. The presence of object a can be expressed as literal a
interpreted as TRUE, otherwise it is FALSE.

a 1 1 1 0

An agent of capacity k is represented by an array of |O| stacks. The sum
of 1s in all stacks is k. For example, agent A1 with capacity 3 working with
alphabet O = {e, a, b, c, } and with objects aae inside the agent has following
representation:

A1 : a 1 1 0

b 0

c 0

e 1 0

The presence of object a inside the agent Ai can be expressed as literal Ai[a].
or more precisely, as an interpretation of this literal.

In these terms we describe how one step of the computation in the whole
system is done: We divide the process into two phases – in the first phase a mul-
tiset of programs is chosen randomly from the set of all multisets containing one
applicable program per each agent which can apply at least one program. In the
second phase we check the actual applicability of each program in the selected
multiset in relation to the number of objects needed for the execution of the
programs. Now we describe the process in detail.

A Logical Representation of P Colonies 71

A rewriting rule a → b of agent Ai is applicable if there is an object a inside
the agent Ai. It means that the rule is applicable if literal Ai[a] is true. The
communication rule a ↔ b is applicable if there is an object a inside the agent
and object b in the environment. In terms of logic we can write the condition
as A1[a] ∧ b. If b = e we may omit b in the condition (there is always some
copy of e in the environment). A condition of applicability of a rewriting or
a communication rule will be called elementary condition of applicability.

We can express the condition of applicability for checking rule r1/r2 as c1∨c2
where r1, r2 are rewriting or communication rules with conditions of applicability
c1, c2. Notice that we speak of applicability, and not the way of application: r1/r2
is applicable if at least one of r1 and r2 is applicable, that is, if c1 ∨ c2 is TRUE.
If r1 is applicable, then r1/r2 can be applied. If r2 is applicable but r1 is not
applicable, then checking rule r1/r2 can be applied as well. If both r1 and r2 are
applicable, then r1/r2 is also applicable, in this case we apply r1.

Lemma 1. Given a program pi,l, the condition of its applicability ci,l can be
expressed in a disjunctive normal form with 2d conjunctions, where d is the
number of checking rules in the program.

Proof. The condition of applicability of the programs is ci,l : c1 ∧ c2 ∧ · · · ∧
ck, where cx is the condition of applicability of the x-th rule in the program.
A condition is in the form:

Ai[a] (rewriting rule),
Ai[a] ∧ b (communication rule),
cx1 ∨ cx2 (checking rule).

If the program contains a checking rule, then we can write the condition ci,l
in the disjunctive normal form (DNF) ci,l : (c1 ∧ c2 ∧ · · · ∧ cj1 ∧ cj+1 ∧ · · · ∧ ck) ∨
(c1 ∧ c2 ∧ · · · ∧ cj2 ∧ cj+1 ∧ · · · ∧ ck). (Notice that cj1 and cj2 are the conditions
for applicability of the two subrules of the checking rule.)

If there are d checking rules in the program, then the formula contains a con-
junction of d disjunctions and k − d elementary conditions (i.e., literals or con-
junction of literals). Its conversion to DNF results in a disjunction of 2d con-
junctions of k-tuples of elementary conditions of applicability.

Furthermore, consider a k-tuple of elementary rules corresponding to a con-
junction. Generally, j rules (1 ≤ j ≤ k) may depend on the presence of the
same object a inside the agent, hence the program is applicable only if the agent
contains at least j objects a. To indicate that some objects should be present in
several copies, we introduce a literal Ai[a][j], 1 ≤ j ≤ k, which is TRUE when
the j-th position in the stack “a” of agent Ai exists and contains 1. Similarly,
b[j] is the literal which is TRUE when the j-th position in stack “b” is 1, i.e.,
when the environment contains at least j objects b.

Therefore, in each conjunction in the final DNF of the condition ci,l, literals
Ai[a] must be substituted/indexed for Ai[a][j], where j is the order of occurrence
of Ai[a] in the conjunction. Similarly, each literal b is substituted for b[j]. �

72 L. Cienciala et al.

Given a DNF representing the applicability of a program pi,l with d checking
rules, without any change in its satisfiability, we can re-order the conjunctions
in DNF due to decreasing priority among rules as follows:

0. Conjunctions with elementary conditions for the first rule in all d checking
rules.

1. Conjunctions with elementary condition for the second rule in one checking
rule, and for the first rule in the remaining checking rules.

2. Conjunctions with elementary conditions for the second rule in two checking
rules, and for the first rule in the remaining checking rules.
...

d. Conjunctions with elementary conditions for the second rule in all d checking
rules.

This reordering induced by checking rules is crucial for the process of correct
execution of one computational step of the P colony, as it is described after
Lemma 2. In this process, conjunctions in DNF are evaluated in the left-to-right
order, which ensures that the first elementary rule in checking rules has always
priority over the second elementary rule.

Clearly, the logical condition whether an agent Ai can be active (i.e., is able
to apply some of its programs) can be expressed as a disjunction of conditions
for all programs of that agent: ci = ci,1 ∨ ci,2 ∨ · · · ∨ ci,ki

, where ki is the number
of programs of the agent Ai.

Lemma 2. Given a P colony Π as in Definition 1, the condition whether Π can
perform a computational step can be expressed in a DNF with

∑n
i=1

∑ki

j=1 2di,j

conjunctions, where di,j is the number of checking rules in the program pi,j.

Proof. A P colony can perform a computational step (regardless of the sequential
or parallel mode) if at least one of its agents can apply some program. Hence,
the condition of applicability of a computational step of the colony Π is the
disjunction of conditions ci,l for all programs of all agents of Π. By Lemma 1,
these conditions are already in the DNF, so their disjunction leads to a greater
DNF. The total number of conjunctions in the resulting DNF is just the sum of
individual DNF’s, and the statement follows again by Lemma1. �

The process of execution of one computational step of the P colony in logical
representation under maximally parallel mode can be now completed as follows.

1st phase:

(a) For each program pi,j in the colony construct the formula ci,j of its applica-
bility as described in Lemma 1.

(b) For each agent Ai choose one the formulas ci,j , 1 ≤ j ≤ ki, which is TRUE
in the actual configuration (the configuration interprets all literals). If an
agent has no such formula, then it cannot apply any program.

A Logical Representation of P Colonies 73

(c) In each chosen ci,j in the DNF (ordered by their priorities induced by check-
ing rules) find the first conjunction which is TRUE and add it to a resulting
multiset M of formulas (corresponding to the multiset of applicable pro-
grams).

(d) If the multiset M is empty, then the configuration is halting. Otherwise,
construct a disjunction cM of all conjunctions in M (the order of conjunctions
is random).

2nd phase:

(a) Re-index literals a for all a ∈ O (corresponding to objects in the environ-
ment) to a[j] using the total order of occurrence of a in the whole formula
cM . This is necessary as the limited amount of environmental objects may
cause trade-offs among chosen programs.

(b) Re-interpret all conjunctions in the formula cM . Some of them may be now
FALSE, while the whole formula remains TRUE.

(c) Apply (in parallel) all sequences of elementary rules corresponding to those
conjunctions which are still TRUE.

The execution of a multiset of rules can be understood as an action of a rule-
based production system: as sensory precondition we use condition of applicabil-
ity and an action can be constructed from functions push and pop as it is usual
for stacks. Function push(x) means put 1 to the top of stack x. Function pop(x)
means remove 1 from the top of stack x.

Let us show one step of computation for simple P colony Π = (O, e, f, VE , A1)
with capacity two and one agent and with O = {a, b, c, d, e, f}, wE = ε, A1 = (ee,
{〈a ↔ c/c ↔ d; c ↔ f/a ↔ e〉 ; 〈a → b; e ↔ b〉}).

Let us construct a condition of applicability of the program 〈a → b; e ↔ b〉:
It is formed from one rewriting and one communication rule.

rule elementary condition of applicability
a → b A1[a]
e ↔ b A1[e] ∧ b

The condition of applicability of the program after the substitution (indexing)
of literals is A1[a][1] ∧ A1[e][1] ∧ b[1].

The condition of applicability of the program 〈a ↔ c/c ↔ d; c ↔ f/a ↔ e〉
is formed from two checking rules, each formed from two communication rules.
rule elementary condition of applicability
a ↔ c c11 : A1[a] ∧ c
c ↔ d c12 : A1[c] ∧ d
c ↔ f c21 : A1[c] ∧ f
a ↔ e c22 : A1[a]
a ↔ c/c ↔ d (A1[a] ∧ c) ∨ (A1[c] ∧ d)
c ↔ f/a ↔ e (A1[c] ∧ f) ∨ A1[a]
The condition of applicability of the program is formed from four conjunctions:
c11 ∧ c21 with highest priority, c12 ∧ c21 and c11 ∧ c22, and c12 ∧ c22 with lowest
priority. After indexing of literals we obtain

74 L. Cienciala et al.

(A1[a][1] ∧ c[1] ∧ A1[c][1] ∧ f [1])∨
∨ (A1[c][1] ∧ d[1] ∧ A1[c][2] ∧ f [1])∨
∨ (A1[a][1] ∧ c[1] ∧ A1[a][2])∨
∨ (A1[c][1] ∧ d[1] ∧ A1[a][1])

Rules for execution of programs are:

– if A1[a][1] ∧ c[1] ∧ A1[c][1] ∧ f [1] then (pop(A1[a]) ∧ push(A1[c]) ∧ pop(c) ∧
push(a) ∧ pop(A1[c]) ∧ push(A1[f]) ∧ pop(f) ∧ push(c))

– if A1[c][1] ∧ d[1] ∧ A1[c][2] ∧ f [1] then (pop(A1[c]) ∧ push(A1[d]) ∧ pop(d) ∧
push(c) ∧ pop(A1[c]) ∧ push(A1[f]) ∧ pop(f) ∧ push(c))

– if A1[a][1]∧c[1]∧A1[a][2] then (pop(A1[a])∧push(A1[c])∧pop(c)∧push(a)∧
pop(A1[a]) ∧ push(A1[e]) ∧ push(a))

– if A1[c][1]∧d[1]∧A1[a][1] then (pop(A1[c])∧push(A1[d])∧pop(d)∧push(c)∧
pop(A1[a]) ∧ push(A1[e]) ∧ push(a))

The logical representation of P colonies, particularly the conditions of appli-
cability of (multisets of) rules allows for a clearer view of complexity of the pro-
cess of execution of a P colony. Here we focus on the problem whether a given
configuration is halting. This problems amounts to checking whether there exists
an applicable multiset of programs.

Theorem 1. Consider a P colony Π without checking rules, and a configuration
C of Π. The problem whether C is a halting configuration is in P.

Proof. If no checking rules are present then, by Lemma 1, each condition ci,l
corresponding to an applicability of a program pi,l, 1 ≤ i ≤ n, 1 ≤ l ≤ ki, consists
of a single conjunction. By Lemma2, the formula – condition of applicability of
a computational step of Π is a DNF consisting of

∑n
i=1 ki conjunctions, each

containing at most 2k literals. Therefore, the size of the formula is polynomial
in the size of description of the P colony Π, and so is the algorithm for its
construction and interpretation. �
Theorem 2. Consider a P colony Π with checking rules, and a configuration
C of Π. The problem whether C is a halting configuration is in NP.

Proof. In presence of checking rules, each condition ci,l corresponding to an
applicability of a program pi,l, 1 ≤ i ≤ n, 1 ≤ l ≤ ki, is expressed in DNF
consisting of up to 2k conjunctions (Lemma 1). One could argue that the size of
the formula is smaller before its conversion to the DNF. However, the conversion
seems necessary since all literals in the formula must be indexed (see the proof
of Lemma 1) to interpret the formula correctly, and this is done only after the
conversion to the DNF.

By Lemma 2, the formula – condition of applicability of a computational
step of Π is a DNF consisting of

∑n
i=1

∑ki

j=1 2di,j = O(n2k) conjunctions, each
conjunction containing at most 2k literals, where 1 ≤ di,j ≤ k is the number of
checking rules in the program pi,j . Therefore, the size of the formula (in number
of literals) is O(nk2k). �

A Logical Representation of P Colonies 75

Open Problem 1. Consider the problem “is a given configuration of a P colony
with checking rules halting?” Is the problem NP-complete? We conjecture yes
but no proof is known yet.

Open Problem 2. How complex is the problem to decide whether a given
configuration of a P colony is dead or alive? (Consult Sect. 2.1 for the definition
of a dead configuration.)

4 Conclusions

In this paper we introduced a concept of logical representation of P colonies,
particularly the transformation of applicability of its rules and computational
steps into propositional formulas. A configuration of a P colony is transformed
into a system of stacks with logical values. Elements of these stacks are then used
as variables in the mentioned propositional formulas and thus a configuration
defines an interpretation of the formulas. The application of a computational
step then can be viewed as a transition of a rule-based production system.

The logical representation of P colonies allows to apply many results known in
propositional logic to resolve open problems concerning P colonies. Particularly,
it allows to convert the conditions of applicability of programs and multisets
of programs into the form of logical formulas in DNF. This transformation, in
turn, results in a straightforward characterization of computational complexity
of execution of computational steps of a P colony. Some of them may charac-
terize the borderline between P and NP, although the proof is not known yet.
Many related problems remain open, two of which are mentioned in the previous
section.

Acknowledgments. This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustainability (NPU II) project
IT4Innovations excellence in science - LQ1602, by SGS/13/2016 and by Grant No.
120558 of the National Research, Development, and Innovation Office - NKFIH, Hun-
gary.

References

1. Ciencialová, L., Csuhaj-Varjú, E., Cienciala, L., Sośık, P.: P colonies. Bull. Int.
Membr. Comput. Soc. 1(2), 119–156 (2016)

2. Csuhaj-Varjú, E., Kelemen, J., Kelemenová, A., Păun, Gh., Vaszil, Gy.: Computing
with cells in environment: P colonies. J. Mult.-Valued Log. Soft Comput. 12(3–4
Spec. Iss.), 201–215 (2006)

3. Kelemen, J., Kelemenová, A.: On P colonies, a biochemically inspired model of
computation. In: Proceedings of the 6th International Symposium of Hungarian
Researchers on Computational Intelligence, Budapest TECH, Hungary, pp. 40–56
(2005)

4. Kelemenová, A.: P colonies. In: Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) The
Oxford Handbook of Membrane Computing, Chap. 23.1, pp. 584–593. Oxford Uni-
versity Press, Oxford (2010)

76 L. Cienciala et al.

5. Kelemen, J., Kelemenová, A., Păun, Gh.: Preview of P colonies: a biochemically
inspired computing model. In: Workshop and Tutorial Proceedings, Ninth Interna-
tional Conference on the Simulation and Synthesis of Living Systems (Alife IX),
Mass, Boston, pp. 82–86 (2004)

6. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press Inc., New York (2010)

7. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages I-III. Springer,
Heidelberg (1997). https://doi.org/10.1007/978-3-642-59126-6

https://doi.org/10.1007/978-3-642-59126-6

	A Logical Representation of P Colonies: An Introduction
	1 Introduction
	2 Preliminaries and Basic Notions
	2.1 P Colonies

	3 Logical Representation of P Colonies
	4 Conclusions
	References

