
Discrete Applied Mathematics 264 (2019) 196–207

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Reducing hypergraph coloring to clique search
Sandor Szabo a, Bogdan Zavalnij b,∗
a Institute of Mathematics and Informatics, University of Pecs, H-7624, Pecs, Ifjusag utja 6., Hungary
b Department of Science and Mathematics, Coker College 300 E. College Ave. Hartsville, SC, United States

a r t i c l e i n f o

Article history:
Received 16 January 2018
Received in revised form 26 September 2018
Accepted 27 September 2018
Available online 3 November 2018

Keywords:
Coloring the nodes of a hypergraph
Independent set
Clique in a uniform hypergraph
Conflict graph
Combinatorial optimization

a b s t r a c t

It is known that the legal coloring of the nodes of a given graph can be reduced to a clique
search problem. This paper generalizes this result for hypergraphs. Namely, we will show
how legal coloring of the nodes of a hypergraph can be reduced to clique search in a
uniform hypergraph. Replacing ordinary graphs by hypergraphs extends the descriptive
power of graphmodels. In addition searching cliques in uniform hypergraphsmay improve
the efficiency of computations. As an illustrationwewill apply the reformulation technique
to a hypergraph coloring problem due to Voloshin.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The current paper is motivated by the well-known fact that NP-complete problems can be reduced into each other in
polynomial time [7]. So the fact that for example graph coloring with given number of colors can be reduced to a k-clique
search – two examples from the original Karp’s list of NP-complete problems – should not be surprising. There are different
well-known reductions (see [4,5]), but the authors choose a simpler one which could be generalized for a list of different
problems [11], using the k-clique problem as amodeling language. The aim of this paper is to continue our previouswork and
generalize further the proposed concept, this time for solving hypergraph coloring problems. The proposed reformulation
should enable solving hypergraph coloring problems using standard heuristic and exact maximum clique solvers (see [2].)
We also propose similar method for reducing coloring problems into a k-hyperclique problem that is more memory space
efficient. (More on hypergraphs see [1,3].)

Let H = (V , E) be a finite simple hypergraph. The hypergraph has finitely many nodes and finitely many edges. Further
it does not have any loop (hyperedge containing only one element) and it does not have double hyperedges.

We color the nodes of the hypergraph H in the following way.

1. Each node receives exactly one color.
2. All the nodes of a hyperedge cannot receive the same color.

This type of coloring of the nodes of the hypergraph is called a legal coloring of the nodes of H . A coloring of the nodes of
the hypergraph H = (V , E) can be conveniently given by a map f : V → {1, . . . , k}. Here the numbers 1, . . . , k represent
the colors and f (v) is the color of the node v ∈ V . The ith level set of the function f is commonly referred to as the ith colors
class. The ith color class Ci is equal to {v : v ∈ V , f (v) = i}. A coloring of the nodes can also be given by the colors classes
C1, . . . , Ck.

The next problem is known as the k-colorability problem.
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Table 1
The incidence matrix of the hypergraph H in Example 1.

1 2 3 4 5 6 7 8

e1 • • •

e2 • • •

e3 • • •

e4 • • • •

Table 2
The tiles assigned to the hyperedges in Example 1. The hyper-
edges are cut into two tiles.
Hyperedge Tiles

{1, 3, 6} {1, 3}, {6}
{1, 3, 8} {1, 3}, {8}
{1, 5, 8} {1, 5}, {8}
{2, 4, 5, 7} {2, 4}, {5, 7}

Problem 1. Given a finite simple hypergraph H = (V , E) and given a positive integer k. Let us decide if the nodes of H can
be legally colored using k colors.

For each finite simple hypergraph H there is a well defined positive integer k such that the nodes of H can be legally
colored using k colors but the nodes of H cannot be legally colored using k − 1 colors. This k is called the chromatic number
of H and is denoted by χ (H).

By the complexity theory of algorithms, Problem 1 belongs to the NP-complete complexity class even in the k = 2 special
case (see [6,8].) One may interpret this fact by saying that deciding if the nodes of a given hypergraph can be legally colored
using two colors is a computationally demanding problem. Consequently determining the chromatic number of a given
hypergraph is a computationally hard problem as well.

There are other types of hypergraph colorings, namely rainbow coloring,mixed coloring, etc.Wewill describe some in the
text, but actually, although they are truly different constructions, from the point of view of our paper there is little difference
between them.

A subset I of the nodes of the hypergraph H is called an independent set if a subset of I is never a hyperedge of H . An
independent set I is maximal in H if it cannot be extended to a larger independent set by augmenting it by a node of H . An
independent set I with cardinality k is a maximum independent set in H if H does not contain any independent set with
cardinality k + 1.

Legally coloring the nodes of an ordinary graph or a hypergraph hasmany important applications in various fields besides
its theoretical significance. Since finding the optimal number of colors of a legal coloring can easily exceed the available
computational resources in many practical situation we settle for approximate greedy coloring procedures. In this work we
will reduce hypergraph coloring problems to hyperclique search problems in r-uniformhypergraph.We intend to exploit the
many possible greedy clique locating procedures to construct approximate legal coloring of the nodes of a given hypergraph.

Let H = (V , E) be a finite simple r-uniform hypergraph. It means that H is a finite simple hypergraph such that each edge
contains exactly r nodes. Let C be a subset of V . We say that C is a clique in H if each r pair-wise distinct nodes in C are the
nodes of a hyperedge of H . The size of the clique is the cardinality |C | of C . If |C | = kwe speak of a k-clique.

The next problem is the so-called k-clique problem for hypergraphs.

Problem 2. Given a finite simple r-uniform hypergraph H and given a positive integer k. Decide if H contains a k-clique.

For a given finite simple r-uniform hypergraph H there is a well defined positive integer k such that H has a hyperclique
of size k and H does not have any hyperclique of size k + 1. This k is called the clique number of H and is denoted by ω(H).
It is a well-known result from complexity theory that the k-clique problem is in the NP-complete complexity class even in
the r = 2 particular case (see [6,8].) As the k-clique problem is computationally challenging it must hold for the problem of
determining the clique number too.

To an r-uniform hypergraph H it is customary to assign an r-uniform hypergraph H ′ such that the nodes of H ′ are the
same as the nodes ofH and an r element subset e of the nodes is a hyperedge ofH ′ when e is not a hyperedge ofH . The graph
H ′ is called the complement of H . Note that the nodes of hyperclique in H form an independent set in H ′ and the elements
of an independent set in H are the nodes of a hyperclique in H ′. We can speak of maximal andmaximum cliques in the same
way as we spoke about maximal and maximum independent sets.

2. Reducing hypergraph problems to ordinary graph problems

Let H = (V , E) be a finite simple hypergraph. We assign colors to the nodes of H such that the following two conditions
are met.
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Table 3
The colored tiles assigned to the hyperedges in Example 1. The first rows of the matrices
contain the tiles and the second rows contain the colors.

1:
[

6
1

]
2:

[
6
2

]

3:
[

8
1

]
4:

[
8
2

]

5:
[

1 3
1 1

]
6:

[
1 3
1 2

]
7:

[
1 3
2 1

]
8:

[
1 3
2 2

]

9:
[

1 5
1 1

]
10:

[
1 5
1 2

]
11:

[
1 5
2 1

]
12:

[
1 5
2 2

]

13:
[

2 4
1 1

]
14:

[
2 4
1 2

]
15:

[
2 4
2 1

]
16:

[
2 4
2 2

]

17:
[

5 7
1 1

]
18:

[
5 7
1 2

]
19:

[
5 7
2 1

]
20:

[
5 7
2 2

]

1. Each node receives exactly one color.
2. Two distinct nodes of a hyperedge never receive the same color.

This type of coloring of the nodes of the hypergraph is called a rainbow coloring of the nodes of H . The following problem
can be called as the k-rainbow colorability problem.

Problem 3. Given a finite simple hypergraph H = (V , E) and given a positive integer k. Let us decide if the nodes of H can
be rainbow colored using k colors.

One can observe that Problem 3 is not a genuine hypergraph problem in the sense that it can be reduced to the coloring of
the nodes of an ordinary graph. Let us define an ordinary graph G. The nodes of G are identical to the nodes of the hypergraph
H . Two distinct nodes u, v of Gwill be adjacent in G if u, v are elements of a hyperedge ofH simultaneously. It is easy to verify
that if the nodes of the hypergraph H have a rainbow coloring with k colors then the nodes of the ordinary graph G have a
legal coloring using k colors. And conversely, if the nodes of G have a legal coloring with k colors, then the nodes of H have
a rainbow coloring with k colors.

One may define cliques in a hypergraph H = (V , E) in the next way. A subset C of V is a clique in H if for each distinct
nodes u, v in V there is a hyperedge of H that contains both u and v. We may consider Problem 2 in connection with this
clique concept. Locating a k-clique in the hypergraph H can be reduced to find a k-clique in an ordinary graph G. For this
purpose it is enough to introduce the ordinary graph Gwe have described above. In this sense this new clique concept is not
a genuine generalization of the ordinary clique concept for hypergraphs.

Let H = (V , E) be a 3-uniform hypergraph and suppose that we are looking for a k-hyperclique in H . This problem can
be reduced to a clique search in an ordinary graph G. Let e1, . . . , em be all the hyperedges of H . These hyperedges will be the
nodes of G. Two distinct edges ei = {ui, vi, wi}, ej = {uj, vj, wj} are adjacent in G if the unordered triplets

{ui, uj, vj}, {ui, uj, wj}, {ui, vj, wj},

{vi, uj, vj}, {vi, uj, wj}, {vi, vj, wj},

{wi, uj, vj}, {wi, uj, wj}, {wi, vj, wj}

are all hyperedges of the hypergraph H . Both of the sets {ui, vi, wi}, {uj, vj, wj} have three elements. It can happen that these
sets are not disjoint. In this case not all of the listed nine sets have three elements. We should check if the three elements
subsets among the listed nine sets are hyperedges of the hypergraph H .

We claim that if the hypergraph H has a hyperclique of size k, then the ordinary auxiliary graph G has a clique of size
(k
3

)
.

In order to prove the claim let C ⊆ V with |C | = k such that for each pair-wise distinct u, v, w ∈ C the unordered triplet
{u, v, w} is a hyperedge of H . We can form

(k
3

)
unordered triples from the elements of C . All these triplets are hyperedges of

H . Further these hyperedges are pair-wise adjacent nodes in the graph G. Thus G has a clique of size
(k
3

)
.

Next we claim that if G has a clique of size
(k
3

)
, then H has a hyperclique of size k. Let m =

(k
3

)
and let e1 =

{u1, v1, w1}, . . . , em = {um, vm, wm} be all the nodes of a clique of sizem in G. Of course e1, . . . , em are hyperedges of the hy-
pergraph H . Set C = {u1, v1, w1, . . . , um, vm, wm}. There maybe repetition among the elements u1, v1, w1, . . . , um, vm, wm.
In other words these elements are not necessarily pair-wise distinct. Let us suppose that |C | = t . As e1, . . . , em are pair-wise
distinct three element subsets of C , it follows that m =

(k
3

)
≤

(t
3

)
and so k ≤ t .

Choose u, v, w ∈ C such that u, v, w are pair-wise distinct. By the definition of C there are hyperedges ep, eq, er of H
for which u ∈ ep, v ∈ eq, w ∈ er and ep, eq, er ⊆ C . Note that ep, eq are adjacent nodes in G. Using the nine subsets in the



S. Szabo and B. Zavalnij / Discrete Applied Mathematics 264 (2019) 196–207 199

Fig. 1. On the left is the conflict graph G in Example 1. Each distinct two among the elements of {5, 6, 7, 8} are adjacent. the same holds for the sets
{9, 10, 11, 12}, {13, 14, 15, 16}, {17, 18, 19, 20}, {1, 2}, {3, 4}. In order to avoid an overly cluttered picture these edges are not drawn. On the right is a
condensed form of the conflict graph. The nodes inside each ovals are pair-wise adjacent. An edge between ovals represents several edges. The number of
the edges are given near to the ovals and near to the edges.

definition of the adjacency in G we get that there is a hyperedge es of H such that u, v ∈ es and es ⊆ C . Note that er , es are
adjacent nodes in G. We get that there is a hyperedge of H that contains u, v, w. Therefore each three element subset of C is
a hyperedge of H . This means that H has a hyperclique of size k.

3. The auxiliary hypergraph

We pick a hyperedge e of the hypergraphH . We partition e into the subsets T (e, 1), . . . , T (e, r). In other words we choose
the subsets T (e, 1), . . . , T (e, r) such that they satisfy the following conditions.

1. T (e, i) ̸= ∅ for each i, 1 ≤ i ≤ r .
2. T (e, 1) ∪ · · · ∪ T (e, r) = e.
3. T (e, i) ∩ T (e, j) = ∅ for each i, j, 1 ≤ i < j ≤ r .

We will refer to the subsets T (e, 1), . . . , T (e, r) as tiles associated with the hyperedge e.
We pick a tile T (e, i) and color its elements with the k colors in all possible ways. If T (e, i) has t elements, then the number

of possible colorings is equal to kt . We will denote this number by α(e, i). We will denote a colored tile by [T (e, i), C(e, i, j)].
Here C(e, i, j) is a coloring of the elements of T (e, i), that is, C(e, i, j) is a map from T (e, i) to the set of colors {1, . . . , k}.

We define an ordinary graph Γ1. The nodes of Γ1 are the colored tiles we have just constructed. Two distinct colored tiles

[T (e1, i1), C(e1, i1, j1)], [T (e2, i2), C(e2, i2, j2)]

will be adjacent in Γ1 if the colorings C(e1, i1, j1), C(e2, i2, j2) do not agree on the intersection of the tiles T (e1, i1), T (e2, i2).
Next we define an r-uniform hypergraph Γ2. The nodes of Γ2 are the colored tiles. The pair-wise distinct colored tiles

[T (e, 1), C(e, 1, j1)], . . . , [T (e, r), C(e, r, jr )]

formahyperedge ofΓ2 if all the nodes of the hyperedge e ofH receive the same color at the colorings C(e, 1, j1), . . . , C(e, r, jr )
of the tiles.We callΓ1,Γ2 conflict graphs. Both represent situations that obstruct legal coloring of the nodes of the hypergraph
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Table 4
The adjacency matrix of the conflict graph in Example 1.

1 1 1 1 1 1 1 1 1 1 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

1 × • •

2 • × •

3 × • • •

4 • × • •

5 • • × • • • • •

6 • × • • • •

7 • • × • • •

8 • • • • • × • •

9 • • • × • • • • •

10 • • • × • • • •

11 • • • • • × • • •

12 • • • • • × • •

13 × • • • •

14 • × • •

15 • • × •

16 • • • × •

17 • • • × • • •

18 • • • × • •

19 • • • • × •

20 • • • • • • ×

H . As it turns out the information contained by the conflict graphs Γ1, Γ2 is sufficient to locate legal coloring of the nodes
of the hypergraph H . We will state the results formally in two lemmas. Suppose the given hypergraph H hasm hyperedges.
Them hyperedges are partitioned intomr tiles.

Lemma 1. If the nodes of the hypergraph H can be legally colored using k colors, then the conflict graphs Γ1, Γ2 contain an
independent set I of size mr simultaneously.

Proof. Let us assume that the nodes of the hypergraph H are legally colored using k colors and suppose that the map
f : V → {1, . . . , k} defines this coloring. Note that the colored tiles

[T (e, i), C(e, i, j)], 1 ≤ j ≤ α(e, i)

that are all the colored versions of the tile T (e, i) are pair-wise adjacent in the conflict graph Γ1. This means that only one of
them can be an element of an independent set in Γ1. It follows that an independent set in Γ1 can have at mostmr elements.

The map f restricted to the tile T (e, i) provides a colored tile [T (e, i), C(e, i, j)] for some j, 1 ≤ j ≤ α(e, i). There are m
choices for e and there are r choices for i. Therefore Γ1 has an independent set I of sizemr .

The colored tiles that form a hyperedge of the conflict graph Γ2 are all associated one fixed hyperedge e of H . Further all
these tiles are colored with one fixed color. But the map f cannot assign the same color to each node of e. This shows that
the set I is an independent set in the conflict graph Γ2. □

Lemma 2. If the conflict graphs Γ1, Γ2 contain an independent set I of size mr simultaneously, then the nodes of the hypergraph
H can be legally colored using k colors.

Proof. Let us assume that the conflict graphs Γ1, Γ2 have an independent set I of sizemr simultaneously. As in the previous
proof note that the colored tiles

[T (e, i), C(e, i, j)], 1 ≤ j ≤ α(e, i)

are pair-wise adjacent in Γ1. It follows that exactly one of these colored tiles must be an element of I . This means that each
tile is colored, that is, no tile remains uncolored. Consequently, each node of the hypergraph H receives a color. The conflict
graphΓ1 guarantees that a node can receive only one color. The conflict graphΓ2 makes sure that all the nodes of a hyperedge
of H cannot receive the same color. □

Let W be the set of all colored tiles. The edges of the conflict graph Γ1 are two element subsets of W . The hyperedges of
the conflict graph Γ2 are r element subsets ofW . We add r − 2 new nodes β1, . . . , βr−2 toW to getW ′. We construct a new
conflict graph Γ = (W ′, F ). If the unordered pair {u, v} is an edge of Γ1, then we add the hyperedge {u, v, β1, . . . , βr−2} to
Γ . We add the hyperedges of Γ2 to Γ without any modification. The conflict graph Γ carries exactly the same information
as the conflict graphs Γ1, Γ2. In order to find a legal coloring of the nodes of H we should locate an independent set I of size
mr + r − 2 in the conflict graph Γ . Or equivalently we should look for a hyperclique of size mr + r − 2 in the complement
of the conflict graph Γ .
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Table 5
The edges of the conflict graph in Example 1.
The 9th row of the table codes the information
that the unordered pairs {9, 19} and {9, 20} are
edges of the conflict graph G.

1 5
2 8

3 5 9
4 8 12

5 11 12
6 11 12
7 9 10
8 9 10

9 19 20
10 17 18
11 19 20
12 17 18

13 17
14
15
16 20

17
18
19
20

4. Toy examples

Let us consider the hypergraph H = (V , E) with V = {1, 2, . . . , 8} and E = {e1, . . . , e4}, where

e1 = {1, 3, 6}, e2 = {1, 3, 8},
e3 = {1, 5, 8}, e4 = {2, 4, 5, 7}.

The hypergraph H has 8 nodes and 4 hyperedges. We ask if the nodes of H can be colored legally using two colors. The
incidence matrix of the edges of H is in Table 1.

Example 1. Using the hypergraph H we construct an auxiliary hypergraph G = (W , F ). In this example we cut the
hyperedges of H into two tiles. In other words we choose the number r in the construction to be 2.

Using the hyperedges of the hypergraph H = (V , E) we construct certain subsets of V . As in Section 3 we will call the
family of these subsets tiles. The list of pair-wise distinct tiles is the following

T1 = {6}, T2 = {8}, T3 = {1, 3},
T4 = {1, 5}, T5 = {2, 4}, T6 = {5, 7}.

The way we constructed the tiles is summarized in Table 2. There are many ways to divide the hyperedges of H into two
tiles. Any of these can be used to construct an auxiliary graph. These auxiliary graphs need not to have the same number of
nodes.

After the list of tiles is availablewe construct a list of colored tiles by assigning colors to the nodes in the tiles in all possible
ways. If a tile has n nodes and we try to color the nodes of the hypergraph H using k colors, then from the uncolored tile we
will construct kn colored tiles. The colored tiles are the nodes of the auxiliary hypergraph G. The procedure of coloring the
tiles can be followed in Table 3.

There is a conflict in the following cases.

1. Two tiles are not disjoint and the common part of the tiles is not colored in the same way in the two tiles.
2. The union of two tiles is equal to a hyperedge of the hypergraph H and all the nodes in the two tiles are receiving the

same color.

We are looking for a conflict free collection of colored tiles. In other words we are looking for an independent set in the
conflict graph. Or we are looking for a clique in the complement of the conflict graph. Only one colored version of each of the
six uncolored tiles can enter into an independent set. On the other hand each uncolored tilemust occur in one colored version
in the independent set. As there are six uncolored tiles we are looking for an independent set of size six in the conflict graph.
Equivalently, we are looking for a clique of size six in the complement of the conflict graph. Table 4 contains the adjacency
matrix of the conflict graph. Table 5 lists the edges of the graph and Fig. 1 depicts a geometric representation of the graph.
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Table 6
The tiles coincide with the hyperedges in Example 2. The
hyperedges are cut into one tile.
Hyperedge Tile

{1, 3, 6} {1, 3, 6}
{1, 3, 8} {1, 3, 8}
{1, 5, 8} {1, 5, 8}
{2, 4, 5, 7} {2, 4, 5, 7}

An inspection shows that the colored tiles numbered 1, 3, 6, 10, 13, 19 form an independent set in the conflict graph.
From this we can read off a coloring of the node of the given hypergraph H .

node 1 2 3 4 5 6 7 8
color 1 1 2 1 2 1 1 1

This coloring of the nodes is a legal coloring of the nodes of H using two colors.

Example 2. Using the hypergraph H we construct an auxiliary hypergraph G = (W , F ). In Section 3 we did not cover the
case when the tiles are identical with the hyperedges of H . In this example we choose the number r to be 1.

In this case the tiles coincide with the hyperedges of the hypergraph H . For the sake of a unified treatment we listed the
tiles in Table 6. The list of pair-wise distinct tiles is the following

T1 = {1, 3, 6}, T2 = {1, 3, 8},
T3 = {1, 5, 8}, T4 = {2, 4, 5, 7}.

Table 7 lists the colored tiles. We dropped the colored tiles whose elements are colored with one color. The remaining 32
colored tiles are the nodes of the conflict hypergraph G.

There is a conflict in the following case.

1. Two tiles are not disjoint and the common part of the tiles is not colored in the same way in the two tiles.

The conflict hypergraph is a 2-uniform hypergraph, that is, an ordinary graph. We are looking for an independent set of size
4 in the conflict graph. Or a clique of size 4 in the complement of the conflict graph. The 4 tiles we constructed must be
colored in same way and the corresponding 4 colored tiles must be conflict free. Table 8 contains the adjacency matrix of
the conflict graph. Fig. 2 depicts a geometric representation of the graph.

For the sake of practice we work out one more example in detail.

Example 3. Using the hypergraph H we construct an auxiliary hypergraph G = (W , F ). In this example we cut the
hyperedges of H into three tiles, that is, we deal with the r = 3 case.

We displayed the tiles in Table 9. The list of pair-wise distinct tiles is the following

T1 = {1}, T2 = {3}, T3 = {5}, T4 = {6}
T5 = {7}, T6 = {8}, T7 = {2, 4}.

Table 10 lists the colored tiles. There are 16 colored tiles. Together with one additional node they are the nodes of the conflict
hypergraph G.

There is a conflict in the following cases.

1. Two tiles are not disjoint and the common part of the tiles is not colored in the same way in the two tiles.
2. The union of three tiles is equal to a hyperedge of the hypergraph H and all the nodes in the three tiles are receiving

the same color.

The conflict hypergraph is a 3-uniform hypergraph. If three colored tiles are in conflict by condition (2), then the unordered
triple formed by these three tiles is a hyperedge of the conflict graph. If two colored tiles are in conflict by condition (1), then
we add node 17 to form a three element subset. All these unordered triples are the hyperedges of the conflict hypergraph.
The conflict hypergraph G has 17 nodes. A 3-uniform hypergraph with 17 nodes may have at most

(17
3

)
= 680 hyperedges.

The complement of G has 680− 20 = 660 hyperedges. We are looking for an independent set of size 8 in the conflict graph.
Equivalently we are looking for a clique of size 8 in the complement of the conflict graph. The nodes of the 7 tiles we picked
must receive colors and the coloring of corresponding 7 colored tiles cannot be conflicting. Table 12 contains the adjacency
matrix of the conflict graph. We used Table 11 for the construction of the adjacency matrix.

5. An application

Voloshin [13] introduced the following type of coloring of the nodes of a hypergraph. The edges of the given hypergraph
H are labeled as C type or D type hyperedges. An edge may belong to both types or may belong to neither. We color the
nodes of the hypergraph H in the following way.
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Table 7
The colored tiles assigned to the hyperedges in Example 2. The first rows of the matrices contain the tiles and the second rows contain the colors.[

1 3 6
1 1 1

]
1 :

[
1 3 6
1 1 2

]
2 :

[
1 3 6
1 2 1

]
3 :

[
1 3 6
1 2 2

]

4 :

[
1 3 6
2 1 1

]
5 :

[
1 3 6
2 1 2

]
6 :

[
1 3 6
2 2 1

] [
1 3 6
2 2 2

]
[

1 3 8
1 1 1

]
7 :

[
1 3 8
1 1 2

]
8 :

[
1 3 8
1 2 1

]
9 :

[
1 3 8
1 2 2

]

10 :

[
1 3 8
2 1 1

]
11 :

[
1 3 8
2 1 2

]
12 :

[
1 3 8
2 2 1

] [
1 3 8
2 2 2

]
[

1 5 8
1 1 1

]
13 :

[
1 5 8
1 1 2

]
14 :

[
1 5 8
1 2 1

]
15 :

[
1 5 8
1 2 2

]

16 :

[
1 5 8
2 1 1

]
17 :

[
1 5 8
2 1 2

]
18 :

[
1 5 8
2 2 1

] [
1 5 8
2 2 2

]
[

2 4 5 7
1 1 1 1

]
19 :

[
2 4 5 7
1 1 1 2

]
20 :

[
2 4 5 7
1 1 2 1

]
21 :

[
2 4 5 7
1 1 2 2

]

22 :

[
2 4 5 7
1 2 1 1

]
23 :

[
2 4 5 7
1 2 1 2

]
24 :

[
2 4 5 7
1 2 2 1

]
25 :

[
2 4 5 7
1 2 2 2

]

26 :

[
2 4 5 7
2 1 1 1

]
27 :

[
2 4 5 7
2 1 1 2

]
28 :

[
2 4 5 7
2 1 2 1

]
29 :

[
2 4 5 7
2 1 2 2

]

30 :

[
2 4 5 7
2 2 1 1

]
31 :

[
2 4 5 7
2 2 1 2

]
32 :

[
2 4 5 7
2 2 2 1

] [
2 4 5 7
2 2 2 2

]

Table 8
The edges of the conflict graph in Example 2. The 7th row of the table holds
the information that the unordered pairs {7, 14}, {7, 16}, {7, 17}, {7, 18} are
edges of the conflict graph G.

1 8 9 10 11 12 16 17 18
2 7 10 11 12 16 17 18
3 7 10 11 12 16 17 18
4 7 8 9 12 13 14 15
5 7 8 9 12 13 14 15
6 7 8 9 10 11 13 14 15

7 14 16 17 18
8 13 15 16 17 18
9 14 16 17 18

10 13 14 15 17
11 13 14 15 16 18
12 13 14 15 17

13 20 21 24 25 28 29 32
14 19 22 23 26 27 30 31
15 19 22 23 26 27 30 31
16 20 21 24 25 28 29 32
17 20 21 24 25 28 29 32
18 19 22 23 26 27 30 31

19
.
.
.
32

1. Each node receives exactly one color.
2. All the nodes of a D type hyperedge cannot receive the same color.
3. The nodes of a C type hyperedge cannot receive all different colors.

It is easy to see that the proposed construction of Γ1 and Γ2 conflict graphs can easily be carried out for this type of graph

coloring too.
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Fig. 2. The condensed form of the conflict graph G in Example 2. The nodes inside an oval are pair-wise connected by edges. Edges between ovals represent
many edges. The number of edges are written near to the ovals and near to the edges.

Fig. 3. Results of the A series, where an edge can be a C edge or a D edge but not both.

One remarkable property of mixed hypergraph coloring is that there are somemixed hypergraphs that cannot be colored

properly at all. In his book Voloshin proposes some open questions and this particular one is among them. ‘‘Develop a
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Fig. 4. Results of the B series, where an edge can be C edge and D edge at the same time.

Table 9
The hyperedges are cut into three tiles in Example 3.
Hyperedge Tiles

{1, 3, 6} {1}, {3}, {6}
{1, 3, 8} {1}, {3}, {8}
{1, 5, 8} {1}, {5}, {8}
{2, 4, 5, 7} {2, 4}, {5}, {7}

probabilistic method for the colorability problem. Let H = (V , C,D) be a mixed hypergraph with the probability of each
C edge given by p and the probability of each D edge is given by q. What is the probability, as a function of p and q that
H will be colorable’’. We are not going to solve the proposed problem, but can back up this question with some extended
computational results. The question is ambiguous as it leaves open if the same subset can be a C and D edge at the same time
or not. So we considered both possibilities.

We constructed a big series of 3-uniform mixed hypergraphs. In series A all 3 element subset of the nodes were either
a C edge or a D edge or no edge. A random number 0 ≤ z < 1 was generated for each 3 nodes, and if z < p these nodes
became a C edge, if p ≤ z < q these nodes became a D edge. In series B we allowed the same 3 size subset to be a C edge
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Table 10
The colored tiles assigned to the hyperedges in Example 3. The first rows of the matrices
contain the tiles and the second rows contain the colors.

1:
[

1
1

]
2:

[
1
2

]

3:
[

3
1

]
4:

[
3
2

]

5:
[

5
1

]
6:

[
5
2

]

7:
[

6
1

]
8:

[
6
2

]

9:
[

7
1

]
10:

[
7
2

]

11:
[

8
1

]
12:

[
8
2

]

13:
[

2 4
1 1

]
14:

[
2 4
1 2

]
15:

[
2 4
2 1

]
16:

[
2 4
2 2

]

Table 11
Unordered pairs and unordered triplets expressing conflicts in
Example 3.
Pairs Triplets

{1, 2}, {3, 4} {1, 3, 7}, {2, 4, 8}
{5, 6}, {7, 8} {1, 3, 11}, {2, 4, 12}
{9, 10}, {11, 12} {1, 5, 11}, {2, 6, 12}

{13, 14}, {15, 16} {13, 5, 9}, {16, 6, 10}
{13, 15}, {13, 16}
{14, 15}, {14, 16}

Table 12
The incidence matrix of the conflict graph in Example 3.

1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7

f1 • • ◦

f2 • • ◦

f3 • • ◦

f4 • • ◦

f5 • • ◦

f6 • • ◦

f7 • • ◦

f8 • • ◦

f9 • • ◦

f10 • • ◦

f11 • • ◦

f12 • • ◦

f13 • • •

f14 • • •

f15 • • •

f16 • • •

f17 • • •

f18 • • •

f19 • • •

f20 • • •

with probability of p and to be a D edge with probability of q. That means that the same subset can be either a C edge, or a D
edge, or both, or not an edge. As in each graph at least one C edge was present that meant that the graph cannot be colored
by |V | colors. So we asked the question if it can be colored by |V | − 1 colors or less, and constructed an auxiliary graph Γ

accordingly. There are few practical software for hyperclique or hyper independent set search. A recent publication [12] can
deal with only small hypergraphs.We used r = 2, that is normal graphs for this construction. This alsomeant that we did not
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need two but only one auxiliary graph. We performed the k-clique search using the BBMCX maximum clique solver setting
the upper and lower bounds (see [9,10].)

The nodes of the auxiliary graph Γ are all possible pairs of the set V colored by all possible colors. At this junction we
would like to point that when we ask if the nodes of a hypergraph can be colored legally using k colors we actually mean k
or less than k colors.

The series of experiments calculated the colorability of graphs of size 6,8,10,12 and 14. We set the values for p and q all
possible ways by 5% steps. We generated 20 instances with the same p and q values, and checked the colorability of the
resulting graphs. The results are the f frequency of the colorable ratio of these graphs, and pictured in Fig. 3 for A series, and
Fig. 4 for B series.
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