
Sobolev gradient preconditioning for elliptic reaction–
diffusion problems with some nonsmooth nonlinearities

J. Karátson1

Abstract

The Sobolev gradient approach is an efficient way to construct preconditioned
iterations for solving nonlinear problems. We extend this technique to be applicable
for elliptic equations describing stationary states of reaction–diffusion problems if
the nonlinearities have certain lack of differentiability. We derive convergence results
of the Sobolev gradient method on an abstract level and then for our elliptic problem
under different assumptions. Numerical tests show convergence as expected.
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1 Introduction

Reaction–diffusion problems arise in various nonlinear models in applied mathematics,
see, e.g., [7, 14] and the references there. It is often of interest to determine station-
ary states, which are described by elliptic problems. In order to solve numerically the
arising nonlinear problems, an efficient approach is the Sobolev gradient method. The
foundations and various contexts of the Sobolev gradient method have been described
in [15, 16], for problems with potential see also the author’s works [4, 9]. The main
idea is that the gradient w.r.t. the Sobolev inner product provides a properly precon-
ditioned iteration. Sobolev gradients have been succesfully used in many applications
in the recent decade, such as image processing, Burgers’ and Navier-Stokes equations,
differential-algebraic equations, Gross-Pitaevskii equations and Ginzburg-Landau func-
tionals, see [11, 12, 17, 18, 19, 20, 21]. Compared to Newton-like methods, which require
less iterations, the Sobolev gradient approach often proves to be be still more favourable
due to the simpler linearized problems (that, moreover, do not vary in course of the it-
eration process) and since it is directly fitted to minimization settings. A systematic
comparison on a model problem has been executed in [13].

The standard convergence results for such iterations rely on suitable smoothness of the
nonlinearity that describes the chemical reaction in the elliptic equation. In this paper we
study problems where this smoothness condition is relaxed, and hence the above results
cannot be applied. In general, we consider semilinear elliptic boundary value problems of
the following form: { −div

(
k∇u

)
+ q(x, u) = g,

u|∂Ω = 0,
(1.1)

with a diffusion coefficient k ∈ L∞(Ω), k ≥ m > 0, and with a continuous nonlinearity q
such that ξ 7→ q(x, ξ) is increasing for any x ∈ Ω. Later we will impose further technical
restrictions on q to have well-posedness and then to achieve more concrete estimates on
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the order of convergence of Sobolev gradients. However, these assumptions will still allow
nonsmoothness of q. A typical example of such a nonlinearity is q(x, u) ≡ q(u) = uγ for
u > 0 (or rewritten as |u|γ−1u for any u) with some exponent 0 < γ < 1, see, e.g., [3].
Further details on this example will be mentioned later.

Note that for such nonlinear problems it is not possible to apply Newton’s method.
Moreover, semismooth Newton methods are not applicable either for such non-Lipschitz
functions, since semismoothness requires at least local Lipschitz continuity [8] and is thus
typically used for nonlinearities like e.g. max{u, 0}.

As mentioned above, the Sobolev gradient method provides a properly preconditioned
iteration by taking gradients w.r.t. the Sobolev inner product. An elegant property of
this approach is that both the construction and the study of convergence can be carried
out in the Sobolev space associated to the PDE, that is, on the continuous level. Then one
can readily derive the analogous results for finite element discretizations using a proper
projection into the FEM subspace, moreover, convergence is typically mesh-independent,
see [4, 9]. We follow this vein in this paper, and we focus on the continuous level in
the Sobolev space H1

0 (Ω). After a proper foundation of the problem and of underlying
Hilbert space techniques, we derive convergence results of the Sobolev gradient method
for our elliptic problem under different assumptions. Thus we obtain generalizations of
the existing Sobolev gradient results.

2 The problem and its well-posedness

Let Ω ⊂ Rd be a bounded domain, and let problem (1.1) satisfy the following

Assumptions 2.1.

(i) k ∈ L∞(Ω), k ≥ m > 0;

(ii) q : Ω×R→ R is continuous;

(iii) ξ 7→ q(x, ξ) is increasing for any x ∈ Ω, further, there exists a number p ≥ 1 (if
d = 2) or 1 ≤ p ≤ 2d

d−2
(if d > 2) such that

|q(x, ξ)| ≤ c1 + c2|ξ|p−1 (∀x ∈ Ω, ξ ∈ R); (2.1)

(iv) g ∈ L2(Ω).

The bound for the exponent p in (2.1) ensures the following Sobolev embedding, which
will be required for the well-posedness:

H1
0 (Ω) ⊂ Lp(Ω), ‖v‖Lp ≤ Cp‖v‖H1

0
(∀v ∈ H1

0 (Ω)) (2.2)

for some constant Cp > 0 independent of v, see [1, Theorem 5.4]. The weak form of the
problem reads in a usual way as follows: find u ∈ H1

0 (Ω) such that∫
Ω

(
k∇u · ∇v + q(x, u)v

)
=

∫
Ω

gv (∀v ∈ H1
0 (Ω)). (2.3)
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Proposition 2.1 Problem (1.1) has a unique weak solution.

Proof. Let us consider the Hilbert space H1
0 (Ω) with inner product

〈u, v〉H1
0

:=

∫
Ω

∇u · ∇v, (2.4)

and the functional φ : H1
0 (Ω)→ R,

φ(u) :=

∫
Ω

(k
2 |∇u|

2 +Q(x, u)− gu
)
,

where Q is a potential of q w.r.t. ξ, i.e. Q : Ω ×R → R satisfies ∂ξQ(x, ξ) = q(x, ξ) for
all x, ξ. The estimate (2.1) implies a bound |Q(x, u)| ≤ c̃1 + c̃2|u|p, hence the embedding
H1

0 (Ω) ⊂ Lp(Ω) ensures that the integral in φ(u) is finite. Using standard techniques, one
can check the Gateaux differentiability of φ: namely, for any u, v ∈ H1

0 (Ω), there exists

〈φ′(u), v〉H1
0

= lim
t→0

1
t

(
φ(u+tv)−φ(u)

)
=

∫
Ω

(
k∇u·∇v−gv

)
+lim
t→0

∫
Ω

(
t k2 |∇v|

2+∂ξQ(x, u+tθv)v
)

=

∫
Ω

(
k∇u · ∇v + q(x, u)v − gv

)
, (2.5)

where the last step follows because the integrand converges a.e. as t→ 0 and is majorized
owing to (2.1). The functional φ has the following properties. It is uniformly convex,
since Q is convex by the monotonicity of q. Further, the convexity of Q also implies
Q(x, ξ) ≥ Q(x, 0) + ∂ξQ(x, 0)ξ = q(x, 0)ξ if we choose Q such that Q(x, 0) ≡ 0. Hence

φ(u) ≥
∫

Ω

(k
2 |∇u|

2 + q(x, 0)u− gu
)
≥ m

2 ‖u‖
2
H1

0
− (‖q(x, 0)‖L2 + ‖g‖L2)‖u‖L2

≥ m
2 ‖u‖

2
H1

0
− c‖u‖H1

0
→ +∞ as ‖u‖H1

0
→ +∞ .

As is well-known (see, e.g., [25, Theorem 40.1]), these properties imply that φ has a unique
minimizer, which is also its unique critical point, that is, where 〈φ′(u), v〉H1

0
= 0 for all

v ∈ H1
0 (Ω). In virtue of (2.3) and (2.5), this minimizer is the unique weak solution of our

problem.

Example. A typical example for a reaction-diffusion problem with nonsmooth non-
linearity is { −∆u+ uγ = g,

u|∂Ω = 0,
(2.6)

where 0 < γ < 1 is the order of the reaction, see, e.g., [3]. The increasing function u 7→ uγ

describes an autocatalytic (endothermic) reaction, defined for u ≥ 0. One can extend this
function in an increasing manner as u 7→ |u|γ−1u for any u ∈ R, and for source functions
g ≥ 0 the maximum–minimum principle ensures that the solution of the problem{ −∆u+ |u|γ−1u = g,

u|∂Ω = 0
(2.7)
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is nonnegative, hence the solutions of (2.6) and (2.7) coincide. In this example the non-
smoothness of q comes from non-differentiability in one point only (u = 0), but even
this fact prohibits the applicability of some standard solution techniques. Note that the
above nonlinearity is Hölder continuous, which will be a main assumption later to achieve
more concrete estimates on convergence. Although this will be a strengthened continuity
assumption, it is still general. It allows non-differentiability of q at even infinitely many
points, as is the case with Cantor’s function (or devil’s staircase).

The weak form of our problem can be rewritten as an operator equation as follows.
The Riesz repesentation theorem provides an operator F : H1

0 (Ω)→ H1
0 (Ω) for which

〈F (u), v〉H1
0

=

∫
Ω

(
k∇u · ∇v + q(x, u)v − gv

)
(∀v ∈ H1

0 (Ω)). (2.8)

Thus (2.3) becomes
〈F (u), v〉H1

0
= 0 (∀v ∈ H1

0 (Ω)),

or simply
F (u) = 0. (2.9)

We wish to solve (2.9) with a steepest descent (or gradient) type method, based on the
underlying potential φ. For this purpose, we first formulate general results in a Hilbert
space setting.

3 Some results on steepest descent iterations in Hilbert

space

Let H be a real Hilbert space and F : H → H be a potential operator, i.e. there exists a
Gateaux differentiable functional φ : H → R such that

φ′ = F.

Further, assume that F is uniformly monotone, i.e. there exists m > 0 such that

〈F (v)− F (u), v − u〉 ≥ m ‖v − u‖2 (∀u, v ∈ H). (3.1)

We wish to solve the equation
F (u) = 0.

The uniformly monotonicity assumption implies that there is a unique solution u∗ ∈ H,
which coincides with the minimizer of φ, see, e.g., [25]. Further, it is not restrictive to
have a zero r.h.s., since any equation F (u) = b can be rewritten as F (u)− b = 0 with an
operator u 7→ F (u)− b satisfying the same conditions as F .

The steepest descent iteration is a sequence of fixed-point iteration form:

un+1 := un − αn F (un) (3.2)
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with suitable constants αn > 0. In this case the search direction is −F (un) = −φ′(un).
We present some convergence results under various continuity conditions on F .

We start with a general theorem, where we assume that F is uniformly continuous in
the following sense: there exists a real function r : R+ → R+ such that

r is continuous and increasing; (3.3)

r(0) = 0, lim
t→+∞

r(t) = +∞; (3.4)

‖F (u)− F (v)‖ ≤ r (‖u− v‖) (∀u, v ∈ H). (3.5)

On the other hand, typically the function r has some simpler special form, such as r(t) =
Lt for Lipschitz continuity or r(t) = Ltα for Hölder continuity. Hence we will later
formulate the rate of convergence for these situations.

The following discussion will use the integral and average functions of r, respectively:

R(t) :=

∫ t

0

r(s) ds , ρ(t) :=
1

t

∫ t

0

r(s) ds =
R(t)

t
. (3.6)

Theorem 3.1 Let F satisfy conditions (3.1) and (3.3)–(3.5). Then, for stepsizes

αn := 1
‖F (un)‖ ρ

−1
(‖F (un)‖

2

)
, (3.7)

the error of iteration (3.2) satisfies

en := ‖un − u∗‖ → 0.

Proof. The Newton-Leibniz formula yields

φ(un+1)− φ(un) =

∫ 1

0

〈F
(
un + t(un+1 − un)

)
, un+1 − un〉dt .

Subtracting 〈F (un), un+1 − un〉, using (3.5) and (3.6), we obtain

φ(un+1)− φ(un)− 〈F (un), un+1 − un〉 ≤
∫ 1

0

r
(
t ‖un+1 − un‖

)
‖un+1 − un‖ dt

=

∫ ‖un+1−un‖

0

r(s) ds = R
(
‖un+1 − un‖

)
.

Using (3.2), we have

φ(un+1)− φ(un) ≤ −αn ‖F (un)‖2 +R
(
αn‖F (un)‖

)
.

Now let us define αn as in (3.7). This makes sense since (owing to the assumptions) ρ is
increasing and lim+∞ ρ = +∞. Then

R
(
αn‖F (un)‖

)
= αn‖F (un)‖ ρ

(
αn‖F (un)‖

)
= αn

‖F (un)‖2
2 ,
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hence

φ(un+1)− φ(un) ≤ −αn
‖F (un)‖2

2 = −‖F (un)‖
2 ρ−1

(‖F (un)‖
2

)
=: −σ(‖F (un)‖),

where
σ(t) := t

2 ρ
−1
( t

2

)
is increasing and σ(0) = 0.

Thus
∞∑
n=0

σ(‖F (un)‖) ≤
∞∑
n=0

(
φ(un) − φ(un+1)

)
= φ(u0)− inf φ =: D < ∞, (3.8)

hence σ(‖F (un)‖)→ 0 and thus ‖F (un)‖ → 0 as n→∞. Finally, from (3.1),

m ‖un − u∗‖ ≤ ‖F (un)− F (u∗)‖ = ‖F (un)‖ → 0 (3.9)

i.e. the theorem is proved.

Estimates on the rate of convergence can be given under special choices on r. In each
case it suffices to estimate ‖F (un)‖, since one can use (3.9). First we consider Hölder
continuity.

Theorem 3.2 Let F be Hölder continuous, i.e. satisfy condition (3.5) with r(t) := Mtγ

for some constants M > 0 and 0 < γ ≤ 1, and also satisfy (3.1). Then, with stepsizes αn
from (3.7), for some constant c1 > 0,

min
0≤k≤n

ek ≤ c1 n
−

γ
γ+1 (∀n ∈ N). (3.10)

Proof. We follow [24], where the situation of Hölder continuity was considered for
optimization on a finite dimensional space. For the function r(t) := Mtγ, one can see

that σ(t) = c0t
γ+1
γ with some c0 > 0. Here

c0 min
0≤k≤n

‖F (uk)‖
γ+1
γ = min

0≤k≤n
σ(‖F (uk)‖) ≤ 1

n

n∑
k=0

σ(‖F (uk)‖) ≤ D
n

with D from (3.8), hence (3.9) yields

min
0≤k≤n

ek ≤ 1
m min

0≤k≤n
‖F (uk)‖ ≤ c1 n

−
γ
γ+1 .

Remark 3.1 (i) The stepsize for r(t) := Mtγ can be obtained with an elementary calcu-
lation from (3.7) :

αn =
(γ+1

2M

) 1
γ ‖F (un)‖

1
γ
−1 . (3.11)

(ii) For Theorem 3.2 to hold, it suffices to require Hölder continuity of r in a proper
neighbourhood of 0, since the proof use this property for arguments that tend to 0. In
other words, it suffices to require local Hölder continuity of F : for any R > 0 there exists
a constant M > 0 such that

‖F (u)− F (v)‖ ≤M‖u− v‖γ (∀u, v ∈ H1
0 (Ω) whenever ‖u‖, ‖v‖ ≤ R). (3.12)
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In the case of Lipschitz continuity the above proof (for γ = 1) would yield convergence

of O(n−
1
2 ). However, with some further regularity properties, we then have even geometric

(i.e., linear) convergence:

Theorem 3.3 Let F be Lipschitz continuous, i.e. satisfy condition (3.5) with r(t) := Mt
for some constant M > 0, and also satisfy (3.1). Assume also that F itself is Gateaux
differentiable, the operators F ′(u) are self-adjoint, and F ′ is hemicontinuous (i.e. weakly

continuous on segments). Then, using constant stepsizes α := 2
M+m , denoting c1 :=

1
m
‖F (u0)‖, we have

en ≤ c1

(M −m
M +m

)n
(∀n ∈ N).

Proof. Under the assumptions on F ′, the uniform monotonicity and Lipschitz continuity
conditions are equivalent to requiring

m‖h‖2 ≤ 〈F ′(u)h, h〉 ≤M‖h‖2 (∀u, h ∈ H),

in which situation the result is well-known, see, e.g., [4, Theorem 5.4].

4 Sobolev gradients on continuous and discrete level

Now we study the numerical solution of the boundary value problem (1.1), based on
the results of the previous section. As described in the introduction, one may first for-
mulate the iteration on the Sobolev space level. Then the iteration for a finite element
discretization is obtained just by a projection into the FEM subspace used.

4.1 Sobolev gradient preconditioning

In our case, where F = φ′, the gradients of φ are used to solve equation F (u) = 0.
The Sobolev gradient iteration is defined by taking gradients w.r.t. the Sobolev inner
product. This leads to linearized problems in each step, i.e. a properly preconditioned
iteration. The linearized problems depend on the inner product used; we consider two
situations. The standard H1

0 (Ω) inner product leads to auxiliary Poisson equations, which
is favourable if there is an efficient Poisson solver to be used. If a weighted inner product
is applied in H1

0 (Ω), then one can simplify the iteration.

Sobolev gradients with the standard H1
0 (Ω) inner product. Let u0 ∈ H1

0 (Ω) be
an arbitrary initial guess. For given un (n ∈ N), the iteration step (3.2) can be written as

zn := F (un), un+1 := un − αn zn ,

where

αn :=
(γ+1

2M

) 1
γ ‖F (un)‖

1
γ
−1

H1
0

or αn ≡ α := 2
M+m (4.1)

when the conditions of Theorem 3.2 or Theorem 3.3 hold, respectively. Here zn := F (un)
is equivalent to

〈zn, v〉H1
0

= 〈F (un), v〉H1
0

(∀v ∈ H1
0 (Ω)), (4.2)
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i.e. zn ∈ H1
0 (Ω) is the function that satisfies∫

Ω

∇zn · ∇v =

∫
Ω

(
k∇un · ∇v + q(x, un)v − gv

)
(∀v ∈ H1

0 (Ω)). (4.3)

That is, altogether, the iteration has the following form:

un+1 := un − αn zn , (4.4)

where zn is the weak solution of the linear elliptic problem{ −∆zn = −div
(
k∇un

)
+ q(x, un)− g,

zn |∂Ω = 0.
(4.5)

Weighted Sobolev gradients. Now let us use the weighted inner product

〈u, v〉H1
0

:=

∫
Ω

k∇u · ∇v (4.6)

adapted to the problem. Then, instead of (4.5), zn is the weak solution of the linear
elliptic problem { −div

(
k∇zn

)
= −div

(
k∇un

)
+ q(x, un)− g,

zn |∂Ω = 0.
(4.7)

In this case the iteration can be rewritten in the following simpler form: letting

wn := zn − un ,

if wn is the weak solution of the linear elliptic problem{ −div
(
k∇wn

)
= q(x, un)− g,

zn |∂Ω = 0.
(4.8)

then
un+1 := (1− αn)un − αnwn . (4.9)

Here αn is from (4.1), understanding the H1
0 (Ω)-norm with weight function k added in

(2.4).

4.2 Finite element discretization

The finite element method (FEM) looks for the numerical solution of problem (2.3) in a
proper FEM subspace Vh ⊂ H1

0 (Ω): find u ∈ Vh such that∫
Ω

(
k∇u · ∇v + q(x, u)v

)
=

∫
Ω

gv (∀v ∈ Vh). (4.10)
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The Sobolev gradient iteration for the FEM problem (4.10) is directly obtained with the
projection of (4.3) into Vh. Namely, let u0 ∈ Vh be an arbitrary initial guess. For given
un (n ∈ N), we let un+1 := un − αn zn, where zn ∈ Vh is the function that satisfies∫

Ω

∇zn · ∇v =

∫
Ω

(
k∇un · ∇v + q(x, un)v − gv

)
(∀v ∈ Vh), (4.11)

i.e. zn ∈ Vh is the FEM solution of the linear elliptic problem (4.5), if the standard inner
product is used. Finally, for weighted Sobolev gradients, we have the weight function k
on the l.h.s. of (4.11), and the iteration can be simplified with wn in the obvious way.

We note that the estimates are independent of the actual FEM subspace used. This
property will also be reflected in the mesh independence obtained in the numerical tests
in subsection (5.3).

5 Convergence estimates

5.1 Power order convergence

In this subsection we establish convergence rates under the assumption of Hölder conti-
nuity of q, i.e., we impose

Assumption 5.1. The function q is Hölder continuous w.r.t. ξ, i.e., there exist
constants cq > 0 and 0 < γ < 1 such that

|q(x, ξ)− q(x, ξ̃)| ≤ cq|ξ − ξ̃|
γ

(∀x ∈ Ω, ξ ∈ R). (5.1)

Proposition 5.1 The operator F in (2.8) is locally Hölder continuous on H1
0 (Ω) in the

sense of (3.12).

Proof. The operator F can be decomposed in a linear and a remaining part as

F = L+ A,

where

〈Lu, v〉H1
0

=

∫
Ω

k∇u · ∇v, 〈A(u), v〉H1
0

=

∫
Ω

(
q(x, u)v − gv

)
(∀v ∈ H1

0 (Ω)).

First, L is Lipschitz continuous since it is a bounded linear operator:

‖Lu‖H1
0

= sup
‖z‖

H1
0

=1

〈Lu, z〉H1
0

= sup
‖z‖

H1
0

=1

∫
Ω

k∇u · ∇z ≤ ‖k‖L∞‖∇u‖L2 = ‖k‖L∞‖u‖H1
0
,

hence it is locally Hölder continuous. Second, we prove that A is Hölder continuous. Here

‖A(u)− A(v)‖H1
0

= sup
‖z‖

H1
0

=1

〈A(u)− A(v), z〉H1
0

= sup
‖z‖

H1
0

=1

∫
Ω

(
q(x, u)− q(x, v)

)
z
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≤ cq sup
‖z‖

H1
0

=1

∫
Ω

|u− v|γ|z| .

We can first apply Hölder’s inequality with the parameters
γ+1
γ and γ + 1, since

γ
γ+1 +

1
γ+1 = 1, and then the Sobolev embedding

‖w‖Lγ+1 ≤ Cγ+1‖w‖H1
0

(5.2)

from (2.2), since γ + 1 ≤ 2 ≤ 2d
d−2

. Thus we obtain∫
Ω

|u− v|γ|z| ≤
∥∥|u− v|γ∥∥

L
γ+1
γ
‖z‖Lγ+1 = ‖u− v‖γLγ+1‖z‖Lγ+1 ≤ Cγ+1

γ+1‖u− v‖
γ

H1
0
‖z‖H1

0
.

The above inequalities yield

‖A(u)− A(v)‖H1
0
≤ cqC

γ+1
γ+1‖u− v‖

γ

H1
0

(5.3)

that is, A is Hölder continuous (globally, and hence locally). Altogether, F = L + A is
also locally Hölder continuous.

Theorem 5.1 Let Assumptions 2.1 and 5.1 hold. Let us construct the Sobolev gradient
iteration, starting from arbitrary initial guess u0 ∈ H1

0 (Ω), according to either (4.4)–(4.5)
or (4.8)–(4.9), and choose the stepsizes αn from (3.11). Then, for some constant c1 > 0,
the errors ek := ‖uk − u∗‖H1

0
satisfy

min
0≤k≤n

ek ≤ c1 n
−

γ
γ+1 .

Proof. Proposition 5.1 and Remark 3.1 yield that Theorem 3.2 can be applied for
F in H1

0 (Ω) with inner product (2.4), hence the corresponding Sobolev gradient iteration
(4.4)–(4.5) satisfies (3.10). Further, the weighted inner product (4.6) induces a norm
equivalent to the original one, hence Proposition 5.1 also holds w.r.t. the weighted norm,
and hence the weighted Sobolev gradient iteration (4.8)–(4.9) also satisfies (3.10).

Remark 5.1 In order to calculate the stepsize (3.11), we need the values γ, ‖F (un)‖H1
0

and M .

• Here γ is known since it coincides with the Hölder constant of q from (5.1).

• By construction, F (un) =: zn is computed as the solution of the auxiliary linear
problem, hence we have to compute ‖zn‖H1

0
after solving the auxiliary problem and

use this value in the stepsize.

• For M we can use any bound with which the Hölder continuity estimate holds.
As seen in the proof of Proposition 5.1, such a bound requires an estimate for the
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embedding constant Cγ+1 that appears in (5.3). For a simple estimate for this, we
can use the intermediate L2 space, since, as is well-known, for any β ≤ 2

‖w‖Lβ ≤ |Ω|
1
β
− 1

2‖w‖L2 , ‖w‖L2 ≤ diam(Ω)
d
√
π
‖w‖H1

0
,

see [4, 22]. Hence, with β = γ + 1, we obtain that (5.2) holds with

Cγ+1 ≤
1−γ

2(1+γ)
diam(Ω)
d
√
π

.

5.2 Local linear convergence for interior regular problems

In this subsection we study a special subclass of our boundary value problem (1.1). The
main assumption is that the nonsmoothness of the nonlinearity (i.e. the singularity of its
derivative) is restricted to the argument ξ = 0, as formulated below (5.5). As it will turn
out, positive source functions imply u > 0 inside Ω, hence the singularity of such problems
is restricted to the boundary where u = 0. This situation still covers the example (2.6).

Let us consider the problem{ −∆u+ q(x, u) = g,

u|∂Ω = 0
(5.4)

under the following

Assumptions 5.2.

(i) Ω ⊂ R2 is a bounded domain, and ∂Ω ∈ C1;

(ii) q : Ω×R→ R is continuous, further, q(x, 0) = 0 (∀x ∈ Ω);

(iii) for any x ∈ Ω, ξ 7→ q(x, ξ) is increasing and it is C1 on R\{0}, further, there exist
constants 0 < γ < 1 and cγ > 0 such that

|∂ξq(x, ξ)| ≤ cγ|ξ|γ−1 (∀x ∈ Ω, ξ ∈ R \ {0}); (5.5)

(iv) g ∈ C(Ω) and g > 0 in Ω.

Remark 5.2 Assumptions 5.2 clearly imply that Assumptions 2.1 and 5.1 hold, i.e. we
have a subclass of the previous boundary value problem. Namely, the diffusion coefficient
is now k ≡ 1, further, using the Newton–Leibniz-formula, (5.5) implies both the Hölder
continuity and the growth condition for q.

5.2.1 Properties of the exact solution

The positivity features of the solution will play an important role. For this we fomulate
the following property, where ∂νu denotes the outer normal derivative.

Definition 5.1 A function u : Ω → R is called strongly positive on Ω if u ∈ C1(Ω) and
it satisfies u > 0 on Ω and ∂νu < 0 on ∂Ω.
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Lemma 5.1 If u is strongly positive, then |u|γ−1 ∈ Lr(Ω) for any 1 < r < 1
1−γ .

Proof. Since ∂νu < 0 is continuous on ∂Ω, there exists m > 0 such that ∂νu ≤ −m
on ∂Ω. For given x ∈ Ω, let d(x) denote the distance of x from ∂Ω, and let x0 ∈ ∂Ω such
that d(x) = |x − x0|. For given δ > 0, let Ωδ := {x ∈ Ω : d(x) < δ}. Then there exists
δ > 0 such that u(x) ≥ m

2
|x− x0| for x ∈ Ωδ. Hence

|u(x)|r(γ−1) ≤ c |x− x0|r(γ−1) (∀x ∈ Ωδ),

and since r(γ − 1) > −1, we have |u|r(γ−1) ∈ L1(Ωδ), i.e. |u|γ−1 ∈ Lr(Ωδ). Further,
u ≥ ε := minΩ\Ωδ > 0 in Ω \ Ωδ, thus |u|γ−1 ∈ Lr(Ω \ Ωδ). Altogether, |u|γ−1 ∈ Lr(Ω).

Proposition 5.2 The solution of (5.4) is strongly positive.

Proof. It follows from [6, Theorem 12.4] that u ∈ C1(Ω). Now, first we prove that
u > 0. Under our monotonicity and positivity assumptions, we have u ≥ 0 (see, e.g., [10]),
hence we only have to exclude interior zeros. Assume for contrary that there exists x1 ∈ Ω
such that u(x1) = 0. Then x1 is a local minimizer, hence ∆u(x1) ≥ 0. Further, from
assumption (ii), u(x1) = 0 implies q(x1, u(x1)) = 0, and from assumption (iv), g(x1) > 0.
These lead to the contradiction

0 ≥ −∆u(x1) + q(x1, u(x1)) = g(x1) > 0.

Now we prove ∂νu < 0 on ∂Ω. By the strong maximum principle [6, Lemma 3.4], we have
∂νu(x0) < 0 for x0 ∈ ∂Ω whenever u(x0) < u(x) for all x ∈ Ω. In our case this holds on
the whole ∂Ω, since u(x0) = 0 and u > 0 in Ω.

Corollary 5.1 For any 1 < r < 1
1−γ , the solution of (5.4) satisfies |u|γ−1 ∈ Lr(Ω). In

other words,

Ir(u) :=

∫
Ω

|u|r(γ−1) < ∞. (5.6)

5.2.2 The local linear convergence result

Based on the above, we are able to provide linear rate of convergence (hence an accelera-
tion if compared with the bound in Theorem 5.1) provided that un is close enough to the
exact solution to reproduce its positivity properties, formulated in Proposition 5.2 and
Corollary 5.1. Namely, let us impose

Assumptions 5.3. There exists n0 ∈ N such that

(i) un is strongly positive for any n ≥ n0;

(ii) Kr := sup
n≥n0

Ir | [un, un+1] < ∞.

Here we used notation sup
n≥n0

Ir | [un, un+1] := sup
n≥n0

{Ir(u) : u = sun+(1−s)un+1, 0 ≤ s ≤ 1}.

12



Lemma 5.2 If (5.6) holds, then the Gateaux derivative of F satisfies

m‖h‖2
H1

0
≤ 〈F ′(u)h, h〉H1

0
≤
(
m̃+ cγ C

2
2s Ir(u)

1
r

)
‖h‖2

H1
0

(∀h ∈ H1
0 (Ω)).

Proof. It follows in a standard way [4] that the Gateaux derivative of F satisfies

〈F ′(u)h, v〉H1
0

=

∫
Ω

(
k∇h · ∇v + ∂ξq(x, u)hv

)
(∀h, v ∈ H1

0 (Ω)).

To prove the upper bound, let us fix some number 1 < r < 1
1−γ . We can use Hölder’s

inequality with the parameters r and s := r
r−1 , since 1

r + r−1
r = 1. Then, with (2.2),∫

Ω

|u|γ−1 h2 ≤
∥∥|u|γ−1

∥∥
Lr

∥∥h2
∥∥
Ls

= Ir(u)
1
r ‖h‖2

L2s ≤ Ir(u)
1
r C2

2s‖h‖2
H1

0
,

hence, letting m̃ := supΩ k,

〈F ′(u)h, h〉H1
0

=

∫
Ω

(
k |∇h|2 + ∂ξq(x, u)h2

)
≤ m̃

∫
Ω

|∇h|2 + cγ

∫
Ω

|u|γ−1 h2

≤
(
m̃+ cγ C

2
2s Ir(u)

1
r

)
‖h‖2

H1
0
.

The lower bound follows readily: since ∂ξq ≥ 0, we have

m‖h‖2
H1

0
= m

∫
Ω

|∇h|2 ≤
∫

Ω

k |∇h|2 ≤ 〈F ′(u)h, h〉H1
0
.

Now we are in the position to prove linear convergence, for which we can adapt the
techniques of [4, Theorem 5.4] in order to derive a local version of Theorem 3.3.

Theorem 5.2 Let Assumptions 5.2–5.3 hold. Let us construct the Sobolev gradient iter-
ation as in Theorem 5.1, but for n ≥ n0 redefine the stepsize as a constant αn ≡ α :=

2
M+m , where M := m̃ + cγ C

2
2sK

1/r
r . Then, denoting c1 := 1

m
‖F (un0)‖H1

0
, the errors

en := ‖un − u∗‖H1
0

satisfy

en ≤ c1

(M −m
M +m

)n−n0

(∀n ≥ n0).

Proof. In virtue of the Newton-Leibniz formula, and since un+1 := un − αF (un),

F (un+1) = F (un) +

∫ 1

0

F ′
(
un + t(un+1 − un)

)
(un+1 − un) dt

= F (un)− α
∫ 1

0

F ′
(
un + t(un+1 − un)

)
F (un) dt =: Ln F (un),

where

Ln := I − α
∫ 1

0

F ′
(
un + t(un+1 − un)

)
dt
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is a bounded linear operator on H1
0 (Ω), which is self-adjoint since the derivatives F ′(u)

of the potential operator F are self-adjoint. Moreover, for any u := un + t(un+1 − un) ∈
[un, un+1] and h ∈ H1

0 (Ω), Lemma 5.2 and Assumption 5.3 (ii) yield

m‖h‖2
H1

0
≤ 〈F ′(u)h, h〉H1

0
≤M ‖h‖2

H1
0
, where M := m̃+ cγ C

2
2sK

1
r
r ,

hence
(1− αM)‖h‖2

H1
0
≤ 〈Ln h, h〉H1

0
≤ (1− αm)‖h‖2

H1
0
.

The stepsize α = 2
M+m yields 1 − αm = −(1 − αM) = M−m

M+m , hence ‖Ln‖ ≤ M−m
M+m .

Thus
‖F (un+1)‖H1

0
≤ M−m

M+m ‖F (un)‖H1
0

(∀n ≥ n0).

This and (3.9) altogether yield

en ≤ 1
m‖F (un)‖H1

0
≤ 1

m‖F (un0)‖H1
0

(
M−m
M+m

)n−n0

(∀n ≥ n0).

5.3 Numerical experiments

We consider the stationary reaction-diffusion problem (2.6) with γ = 1/2 and g ≡ 1:{
−∆u+ u1/2 = 1,

u|∂Ω = 0.
(5.7)

For instance, such an equation with exponent 1/2 can describe the concentration u of
chlorine in a gas phase reaction with chloroform if the latter has a larger magnitude
considered as constant [23].

We used Courant finite elements on the unit square domain. For this problem, owing
to the Laplacian principal part, the standard and weighted Sobolev gradients (4.5) and
(4.7) coincide. We have run the iteration with three mesh parameters h, and calculated
the residual errors and convergence quotients

εn := ‖F (un)‖H1
0

and Qn :=
εn
εn−1

,

respectively. Owing to the positivity of the iterates, we have used the simple form u1/2 of
the nonlinearity in the code instead of |u|−1/2u. The results are shown in Table 1.

h = 0.1 h = 0.01 h = 0.001
εn Qn εn Qn εn Qn

0.1814322 0.1874409 0.1874726
0.0301495 0.1661 0.0302984 0.1617 0.0302977 0.1616
0.0019173 0.0636 0.0018617 0.0614 0.0018612 0.0614
0.0001317 0.0687 0.0001235 0.0663 0.0001234 0.0663
0.0000089 0.0683 0.0000081 0.0660 0.0000081 0.0659
0.0000006 0.0684 0.0000005 0.0661 0.0000005 0.0660

Table 1. The residual errors and convergence quotients for the test problem.

One may observe that the convergence is linear in accordance with subsection 5.2,
further, it shows a uniform behaviour independently of the mesh size h.
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5.4 Concluding remarks

We have established the rate of convergence of the Sobolev gradient iteration in two
situations in the Sobolev space H1

0 (Ω). For the finite element discretization, the iteration
is obtained just by a projection into the FEM subspace. The convergence estimates for
the FEM case coincide with the Sobolev space case, since the proofs that use functions in
H1

0 (Ω) can be restricted to functions in Vh only. This approach is similar to the one used
in [4, 15].

Besides obtaining convergence of Sobolev gradients, we mention that Newton’s method
or its semismooth versions might not be used here owing to the lack of Lipschitz continuity.

Finally we note that our results can be generalized in a straightforward way to certain
more general situations: to problems with mixed boundary conditions and for gradient
systems, i.e. PDE systems arising from the minimization of a joint energy functional. In
these cases the Sobolev space H1

0 (Ω) has to be replaced by a subspace of H1(Ω) associated
to the given Dirichlet portion of the boundary, or by a product Sobolev space, respectively.
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