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22 Abstract

23 Quantitative paleotemperature reconstructions for the continents, including East Central 

24 Europe, over marine isotope stage 5 (MIS 5) and specifically the last interglacial (LIG, MIS 

25 5e) are scarce and mostly based on pollen assemblages. Here we provide soil and air 

26 temperature reconstructions for the summer season of MIS 5e (5c) using carbonate clumped 

27 isotope thermometry applied to soil carbonate concretions in the Dunaszekcső loess-paleosol 

28 record, Southern Hungary. The sediments making up the S1 pedocomplex investigated 

29 represent the MIS 5 as demonstrated by bracketing K-feldspar post IR-IRSL225/290 ages of ~63 

30 to 164 ka. Both the absolute ages and pedogenic susceptibility (χP) curve indicate that all the 

31 subtages of MIS 5 were found to be recorded in the sequence, and soil carbonates found >1 m 

32 depth below the paleosurface of the S1 soil provide pristine, undisturbed isotopic signals. The 

33 soil carbonate concretions likely formed during MIS 5e at a relatively shallow (20-50 cm) 

34 depth, but a later formation during MIS 5c at >50 cm depth is also plausible. Clumped 

35 isotope-based soil temperatures (ST-Δ47sc) ranged from 16 to 20 ºC, and reconstructed 

36 summer season air temperatures (SATs) for the LIG are consistently lower than the modern 

37 values at the site by 1‒5 ºC, matching surprisingly well the soil bacteria membrane lipid-

38 based MIS 5e air temperature estimates from a nearby Serbian site. At the same time, the 

39 reconstructed SAT values do not match the 2‒4 ºC positive warm season anomalies modeled 

40 for East Central Europe between LIG and present-day in paleoclimate simulations. ST 

41 uncertainties of 1‒6 ºC, infiltration-driven cooling of soil temperatures, and the possibility of 

42 MIS 5c formation of the investigated carbonates may account for this proxy-model data 

43 discrepancy. Oxygen isotope compositions of summer season paleo-rainwaters for MIS 5e 

44 (5c), as reconstructed using the ST-Δ47sc and δ18Osc data of soil carbonates, were found in a 

45 range of ‒6.7 and ‒6.4 ‰, matching the modern mean summer season value of ‒6.2±0.94 ‰ 

46 within error.
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51 1. Introduction

52 The last interglaciation (LIG, ~130‒115 ka), the most recent warm period in Earth’s 

53 climate history prior to the Holocene (0‒12 ka), was characterized by reduced terrestrial ice 

54 volume and higher-than-modern global sea level (EPICA community members, 2004; 

55 Lisiecki and Raymo, 2005; Kopp et al., 2009; NEEM community members, 2013). Marine 

56 and terrestrial proxy data indicate a global mean warming of ~1.5 ºC during the LIG, 

57 corresponding to Marine Isotope Stage 5e (MIS 5e), relative to today (Turney and Jones, 

58 2010), and an increase of global mean sea surface temperature of 0.7±0.6 ºC relative to the 

59 late Holocene (McKay et al., 2011). The maximum annual mean and summer temperature 

60 anomalies reached 4‒5 ºC in high Northern Hemisphere latitudes (CAPE-Last Interglacial 

61 Project Members, 2006; Capron et al., 2014). Natural variations in greenhouse gases (CO2 and 

62 CH4 maximum between 129-128 ka; Lüthi et al., 2008; Loulergue et al., 2008) played a 

63 significant role in warming, while the other driver of climatic differences between the LIG 

64 and modern climate is the astronomical configuration of Earth (Yin and Berger, 2010). During 

65 the early LIG, precession minima (boreal summer at perihelion) and obliquity maxima were 

66 in-phase, amplifying Northern Hemisphere (NH) insolation (Past Interglacials Working 

67 Group of PAGES, 2016).

68 Subsequent insolation-driven climate ameliorations over MIS 5, such as MIS 5c and 5a, 

69 were characterized by ~2 ºC lower global sea surface temperatures (SSTs) (Shakun et al., 

70 2015) and ~3‒4 ºC lower summer SSTs in the subpolar North Atlantic (Oppo et al., 2006) 

71 compared to MIS 5e. Climate of the MIS 5 stage was punctuated by several, millennial scale 

72 cold intervals as recorded in marine sediments of the North Atlantic (McManus et al., 1994), 

73 ice cores in Greenland (Rasmussen et al., 2014; Kindler et al., 2014) and speleothems in the 

74 European Alps (Boch et al., 2011). While all the forested intervals of MIS 5 (5e, c, a) were 

75 characterized by mild climate, the last interglacial (MIS 5e) was the most temperate period, as 
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76 shown by pollen records and Coleoptera assemblages, and the MIS 5c and 5a intervals had 

77 more continental climate regimes both in western (Guiot et al., 1992, 1993, Cheddadi et al., 

78 1998) and central Europe (Granoszewski, 2003; Klotz et al., 2004; Behre et al., 2005; Kühl et 

79 al., 2007; Helmens, 2014).

80 While the LIG cannot be considered as an analogue for future climate change due to 

81 different forcing mechanisms, it is still an appropriate period to test climate models under 

82 warmer-than-present conditions (Lunt et al., 2013; Nikolova et al., 2013). Robust LIG model-

83 data comparisons are particularly important to test models developed for future climate 

84 projections. The existing LIG paleo-data syntheses are mostly dominated by marine sea 

85 surface temperature records and continental temperatures are mainly derived from ice core 

86 and pollen records (Kaspar et al., 2005; Turney and Jones, 2010; McKay et al., 2011). To 

87 improve these datasets and facilitate model-data comparisons further quantitative temperature 

88 estimations are required from other, well-dated continental archives. European loess-paleosol 

89 sequences often provide a record of MIS 5, including the LIG, but these have remained 

90 largely underutilized so far due to poor dating and a lack of reliable temperature proxies. Most 

91 studies provided information on weathering and pedogenesis from LIG paleosols (S1) using 

92 magnetic indicators (Buggle et al., 2009, 2014; Marković et al., 2011; Fitzsimmons et al., 

93 2012; Zeeden et al., 2016; Sümegi et al., 2018), grain size (Novothny et al., 2011; Stevens et 

94 al., 2011; Terhorst et al., 2012; Antoine et al., 2013; Sprafke et al., 2014) and chemical 

95 proxies (Buggle et al., 2013; Galović, 2014; Hošek et al., 2015; Obreht et al., 2016). At the 

96 same time, quantitative vegetation, rainfall and temperature reconstructions (Panaiotu et al., 

97 2001; Zech et al., 2013; Schreuder et al., 2016; Marković et al., 2018) are scarce and 

98 sometimes inconsistent. For instance, while Zech et al. (2013) concluded that MIS 5 warm 

99 periods were more arid at the Crvenka site with the expansion of grasses, Schreuder et al. 

100 (2016) have found the opposite at Surduk in terms of precipitation (both sites in Serbia). 
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101 Based on membrane lipids (branched glycerol dialkyl glycerol tetraethers, brGDGTs) of soil 

102 bacteria, wet/warm conditions were reconstructed for MIS 5 at Surduk, with decreasing 

103 temperatures from ~18‒20 (MIS 5e) to 16 ºC (MIS 5a) (Schreuder et al., 2016). Since these 

104 temperatures were found to be well above the present-day mean annual air temperature 

105 (MAT, ~11 ºC) at the study site, they were interpreted as being seasonal (likely summer) air 

106 temperatures.

107 This study provides quantitative soil temperature (ST) and air temperature estimates 

108 from the oxygen and clumped isotope compositions of soil carbonates developed during MIS 

109 5 in the S1 paleosol of the Dunaszekcső loess record in Southern Hungary. The oxygen 

110 isotope composition of soil carbonate (δ18Osc) depends on ancient meteoric water δ18O and the 

111 temperature of carbonate formation (Cerling, 1984; Cerling and Quade, 1993). Therefore, to 

112 obtain robust paleo-temperature estimates independent assumptions on ancient precipitation 

113 oxygen isotopic compositions (δ18Oprec) are required. Clumped isotope thermometry offers a 

114 solution as it is based on the temperature-dependent formation of 13C‒18O bonds in carbonate 

115 minerals, providing the formation temperature of carbonates (Ghosh et al., 2006; Eiler, 2007, 

116 2011). Using the simultaneously measured δ18Osc this approach allows the calculation of δ18O 

117 of meteoric water. However, seasonal biases in soil carbonate formation are complex 

118 (Huntington and Lechler, 2015), and the isotopic composition of carbonates may reflect 

119 annual, spring/fall or even winter season (Peters et al., 2013; Gallagher and Sheldon, 2016), 

120 and also summer season signals (Breecker et al., 2009; Passey et al., 2010; Quade et al., 2013; 

121 Hough et al., 2014; Burgener et al., 2016, 2018), depending on a number of factors such as 

122 soil temperature, moisture, evaporation, pH and CO2 concentration (Huntington and Lechler, 

123 2015). Due to all these uncertainties, the seasonal bias in carbonate formation is tested and 

124 evidence is provided that the S1 soil carbonate Δ47-temperatures (ST-Δ47sc) are representative 

125 of mean warm/summer season soil and air temperatures (SAT). Carbonate formation depths 
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126 and timings together with the S1 soil development are also discussed in detail in the light of 

127 magnetic susceptibility and stable isotope data. Thus, our study provides quantitative ST and 

128 SAT estimates together with ancient meteoric water δ18O, and pedogenic susceptibility-based 

129 mean annual precipitation (MAP) reconstructions in southern Hungary for MIS 5. Further, our 

130 ST-Δ47sc data are discussed in the context of instrumental soil/air temperature measurements 

131 at the Szeged meteorological station.

132

133 2. Materials and methods

134 2.1. Settings and site information

135 The studied loess-paleosol section is located at Dunaszekcső, Southern Hungary (Fig. 

136 1), on the right bank of the Danube river (46º05’25”N, 18º45’45”E, 135 m a.s.l.) and exposes 

137 glacial-interglacial sediments. A detailed lithostratigraphic description of the profile can be 

138 found in Újvári et al. (2014). In 2008, an enormous bank failure exposed the uppermost ~17 

139 m part of the ca. 70 m thick Quaternary loess–paleosol sequence at Dunaszekcső (Újvári et 

140 al., 2009), thereby allowing the sampling of a relatively fresh profile.

141 This part of the Carpathian Basin is an area of low relief between the main mountain 

142 ranges of central Europe and is under Atlantic, Mediterranean, and continental climatic 

143 influence. This is expressed in the amount of annual rainfall (575 mm·y−1, with extremes of 

144 276 mm·y−1 to 882 mm·y−1) and mean air temperatures during winter (1.0 °C, Dec‒Jan) and 

145 summer (21.5 °C, June‒Aug) as measured at a nearby located meteorological station 

146 (Sátorhely, Fig. 1) for the period 1998–2013.

147 Since soil temperature (ST) data were not available for the Dunaszekcső site and 

148 Sátorhely station, ST data measured at the Szeged meteorological station are used and 

149 reported in this study. The Szeged station is located at the same latitude on the Great 

150 Hungarian Plain, ~103 km east to the Dunaszekcső site. Both regions have similar climate 
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151 (Fig. 1) and the parent material of chernozem soils at the Szeged station is loess. Therefore, 

152 the ST data recorded at the Szeged station as a function of depth and air/soil temperature 

153 relations are considered representative for the Dunaszekcső site.

154

155 2.2. Absolute dating, magnetic susceptibility measurements and paleoprecipitation 

156 reconstructions

157 After cleaning of the sediment surface in the profile, altogether 5 samples were 

158 collected for infra-red stimulated luminescence dating of potassium-feldspars (Thomsen et al., 

159 2008; Buylaert et al., 2009) at various depths in and around the pedocomplex overlying the L2 

160 loess unit corresponding to Marine Isotope Stage (MIS) 6 (Újvári et al., 2014). This was done 

161 by pushing metal tubes into the loess-paleosols. Additional sediment samples from around the 

162 luminescence sampling holes were taken for gamma spectrometry. Further details on the 

163 methodology of both the post-IR IRSL dating (225/290 ºC) and gamma spectrometry 

164 protocols applied in this study can be found in Újvári et al. (2014).

165 Samples for magnetic susceptibility measurements were collected at 5 cm (depth: 

166 12.85‒12.05 m) and 2 cm (depth: 14.57‒12.85 m) resolution (Supplementary Dataset 1). 

167 Mass-specific magnetic susceptibility (χ) was measured at two operating frequencies (0.47 

168 and 4.7 kHz) using an MS2B Dual Frequency Sensor linked to a Bartington Ltd. MS3 

169 Susceptibility Bridge. Sample powders were filled in 10 ml plastic containers and empty 

170 container and sample masses were measured using a Kern PCB 250-3 high precision balance 

171 (reproducibility: ±0.001 g). The absolute frequency-dependent susceptibility, χFD = χLF − χHF, 

172 reflects the concentration of magnetic particles over a small grain size window across the 

173 superparamagnetic (SP)/stable single domain (SSD) boundary (Liu et al., 2012). By changing 

174 the observation time (i.e. frequency) a fraction of SSD grains turns superparamagnetic at a 

175 decreased frequency causing a sharp increase in magnetic susceptibility (Maher, 1986; 
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176 Dearing et al., 1996; Worm, 1998). These grains form in situ in soils during pedogenesis 

177 (Maher and Taylor, 1988; Zhou et al., 1990), thus χFD is considered as a proxy of pedogenesis 

178 (Heller et al., 1993; Maher and Thompson, 1995; Buggle et al., 2014). To calculate the 

179 magnetic susceptibility contribution from SP/SSD particles, called the pedogenic 

180 susceptibility (χP = χLF − χB), we used an χLF vs. χFD diagram to estimate the background 

181 susceptibility (χB) representing the eolian detrital input (Forster et al., 1994). From this 

182 diagram χB = 1.56365 × 10−7 m3 kg−1 (Fig. S1) and χP can be calculated, which records 

183 pedogenesis quantitatively (Forster et al., 1994).

184 For the estimation of MAP (Supplementary Dataset 1), the equation of Maher et al. 

185 (1994)

186 (1)𝑀𝐴𝑃 (𝑚𝑚 𝑦𝑟 ‒ 1) = 222 + 199 𝑙𝑜𝑔10𝜒𝑃

187 was used, obtained on modern soils in China. Uncertainties of MAP reconstructions are 

188 estimated to be in the range of 2‒5% according to the sensitivity analysis performed by Maher 

189 et al. (1994). This approach was successfully applied to both modern soils and paleosols by 

190 Panaiotu et al. (2001) and Bradák et al., (2011).

191

192 2.2. Stable- and clumped isotopic analyses

193 For the separation of carbonate concretions 15 cm thick sediment blocks were prepared 

194 and cut from the S1 paleosol (Table 1), which were subsequently disintegrated in the lab by 

195 soaking in distilled water. The concretions were extracted by washing the sediments through a 

196 sieve, then dried at 50 ºC and finally cut into two pieces using a diamond saw. Internal 

197 textures of concretions were examined under microscope and micritic calcite (Fig. S2) was 

198 exclusively sampled for stable and clumped isotope analyses.

199 All carbonate samples were powdered and homogenized using an agate mortar and 

200 pestle. Carbon and oxygen isotope analyses of bulk carbonate samples were carried out at 
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201 ETH Zürich (Zürich, Switzerland) as part of the clumped isotope analyses with a Thermo 

202 Fisher Scientific Kiel IV preparation device coupled to a Thermo Fisher Scientific MAT 253 

203 isotope ratio mass spectrometer, as described by Schmid and Bernasconi (2010) with 

204 improvements, including a carbonate-based correction scheme presented by Meckler et al. 

205 (2014), Müller et al. (2017) and Bernasconi et al. (2018). Instead of using heated and 

206 equilibrated gases, at ETH the procedures for determining Δ47 in the absolute reference frame 

207 (ARF; Dennis et al., 2011) include: (1) pressure baseline correction of the raw beam 

208 intensities according to Bernasconi et al. (2013); (2) calculation of the Δ47 values with respect 

209 to the working gas of the mass spectrometer; (3) conversion to the ARF by a transfer function 

210 determined by plotting the measured vs. the accepted values of carbonate standards ETH-1 to 

211 ETH-4; (4) correction for the phosphoric acid fractionation difference between 70 and 25°C 

212 (0.062%). The data were calculated using the “Brand parameters” for the 17O corrections as 

213 suggested by Daëron et al. (2016) and Schauer et al. (2016), and normalized to the reference 

214 frame using the revised accepted composition of the ETH-1 to ETH-4 standards reported in 

215 Bernasconi et al. (2018) (Supplementary Datasets 2 and 3).

216 Traditional stable carbon and oxygen isotope compositions and clumped isotope 

217 composition were calculated as the average of 7–9 replicate analyses of 120 ‒ 180 μg of 

218 carbonate. The stable carbon and oxygen isotope ratios are reported in the conventional  

219 notation in per mil (‰) relative to the Vienna Pee Dee Belemnite (VPDB) as: δsample = (Rsample 

220 / RVPDB)-1, where R is 13C/12C for carbon and 18O/16O for oxygen (Coplen et al., 1994). The 

221 temperature-dependent mass 47 anomaly is defined as (Ghosh et al., 2006)

222 (2)𝛥47(‰) = [( 𝑅47

𝑅47 ∗ ‒ 1) ‒ ( 𝑅46

𝑅46 ∗ ‒ 1) ‒ ( 𝑅45

𝑅45 ∗ ‒ 1)] × 1000

223 where Ri is the abundance of the minor isotopologues relative to the most abundant 

224 isotopologue with mass 44, and the expected stochastic ratios Ri* are calculated based on the 
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225 measured abundance of 13C and 18O in the sample. The results are reported in the absolute 

226 reference frame (Dennis et al 2011).

227

228 2.3. Calculations and modeling related to stable/clumped isotope compositions

229 ST-Δ47sc values (in ºC) were calculated from clumped isotope compositions (Δ47) of soil 

230 carbonates using the travertine-based Δ47-temperature calibration (Kele et al., 2015), 

231 recalculated with the new Brand parameters (Breitenbach et al., 2018; Bernasconi et al., 

232 2018). The Kele et al. (2015) calibration is used in this study, as it was produced using the 

233 same analytical techniques at ETH Zürich (Zürich, Switzerland), thus ensuring internally 

234 consistent data processing and standardisation. Summer season air temperatures (SATs in ºC) 

235 were estimated using measured mean air (2 m) and soil temperatures at 1, 0.5 and 0.2 m for 

236 the summer season at the Szeged station, as given in section 3. Two independent methods 

237 were adopted for MAT calculations: 1) the first one used δ18Osc and

238  (3)𝑀𝐴𝑇(℃) = (𝛿18𝑂𝑠𝑐 + 12.65)/0.49

239 as given by Dworkin et al. (2005), and 2) the method and

240 (4)𝑀𝐴𝑇(℃) = 1.20 × 𝑇℃(47)0 ‒ 21.72

241 published in Quade et al. (2013). Warmest average monthly air temperature was also 

242 calculated after Quade et al. (2013) using

243 (5)𝑊𝑀𝐴𝑇(℃) = 1.13 × 𝑇℃(47)0 ‒ 10.81

244 To infer the “effective surface temperature”, or TºC(47)0, a summer season soil temperature 

245 profile was modeled and fitted to the ST-Δ47sc data by minimizing the sum of squared 

246 errors/residuals. Simulation of summer soil temperatures as a function of depth is based on 

247 Hillel (2003) and Quade et al. (2013)

248 (6)𝑇(𝑧,𝑡) = 𝑇𝑎𝑣𝑔 + 𝐴0[sin (𝜔𝑡 ‒ 𝑧 𝑑)]𝑒 ‒ 𝑧 𝑑

249 , with model parameters defined in Table 2.
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250 Paleoprecipitation oxygen isotopic compositions (δ18Oprec) were calculated from δ18Osc 

251 and ST-Δ47sc data using the calcite-water oxygen isotope fractionation equation

252 (7)1000𝑙𝑛𝛼(𝑐𝑎𝑙𝑐𝑖𝑡𝑒 ‒ 𝑤𝑎𝑡𝑒𝑟) = 18.03 × (103𝑇 ‒ 1) ‒ 32.42

253 of Kim and O'Neil (1997).

254

255 3. Results and discussion

256 3.1. Soil and air temperature relationship at the Szeged station

257 Mean soil temperatures at shallow depths (average of 6 consecutive years) closely 

258 follow annual air temperature variations at the Szeged meteorological station (Fig. 2a), while 

259 those at 0.5 m and 1.0 m depths are, as expected, shifted in time and the maximum/minimum 

260 temperatures are damped (Hillel, 2003). Observed soil temperatures at shallow depths (0.1 

261 and 0.2 m) higher than air temperature at 2 m during the summer season are due to ground 

262 heating by incident solar radiation (Quade et al., 2013). This effect causes shallow soil 

263 temperatures to be ~2.0 ºC in excess of SAT at the Szeged station.

264 Since the analyzed soil carbonates from the Dunaszekcső sequence may have formed at 

265 shallower depths compared to the paleosurface than their present position recorded during 

266 sample collection (Table 1; discussion in section 3.3) and during the summer season (see later 

267 in section 3.2), the relationships between modern mean SAT and summer soil temperatures 

268 (SST) at 1, 0.5 and 0.2 m depths were investigated. Analysis of our datasets yield a set of 

269 linear equations for these depths (1, 0.5 and 0.2 m, Fig. 2b):

270  (8)𝑦 = 1.29( ± 0.18)𝑥 ‒ 3.21( ± 3.42)

271 R=0.96 (p=0.001963, p(a) < 0.01, n=6)

272  (9)𝑦 = 0.98( ± 0.20)𝑥 + 0.55( ± 4.26)

273 R=0.93 (p=0.008011, p(a) < 0.01, n=6)

274  (10)𝑦 = 0.78( ± 0.22)𝑥 + 3.57( ± 5.04)
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275 R=0.87 (p=0.023671, p(a) < 0.05, n=6)

276 , where the independent (x) and dependent (y) variables are SST and SAT (in ºC), 

277 respectively. Thus, SATs are found to be consistently higher than SSTs at 1 m depth by ~1 to 

278 3 ºC at the Szeged station. Due to less thermal damping SAT values are close to SSTs at 0.5 

279 m depth (slope=~1, Eq. 9), while SATs are lower than SSTs by ~1.5‒3 ºC at 0.2 m depth. 

280 Further testing of these relationships is required at other sites with soils developed on loess 

281 parent material, as drier regions with sparse vegetation may have different relationships due to 

282 stronger ground heating effect. Although it cannot be directly tested, in this study we assume 

283 that the modern SST-SAT relationships are valid for the warm phases of MIS 5 (especially 

284 MIS 5e) because of the generally similar climate (seasonality of rainfall and temperatures) 

285 and vegetation cover (Harrison et al., 1995; Helmens, 2014).

286

287 3.2. Soil carbonate stable and clumped isotope compositions and soil/air temperature 

288 reconstructions

289 Carbon and oxygen isotopic compositions of soil carbonates (δ13Csc, δ18Osc) from the S1 

290 paleosol are confined to ranges of ‒9.41 to ‒8.87 ‰ (SE: 0.02-0.05) and ‒7.78 to ‒7.19 (SE: 

291 0.03-0.08) ‰, with the highest δ18Osc value recorded in the uppermost nodule in the soil 

292 profile (Table 1; Fig. 3). These carbon isotope values are overlapping, while the oxygen 

293 isotope compositions are ~ 1‒2 ‰ less negative than those measured in concretions of last 

294 interglacial soils in sequences at Süttő (Königer et al., 2014) and Verőce (Barta et al., 2018), 

295 ~250 km north of the study site. Soil temperatures calculated from the clumped isotope 

296 compositions (ST-Δ47sc) were found in a broad range (3 to 20 ºC, with 1.3-6.1 ºC uncertainty; 

297 Table 1), with two extreme values (Dsz-SC-1 and 10/1, Table 1, Fig 3a). The ST value of 2.7 

298 ºC (Dsz-SC-10/1) is considered to be an outlier, while the lower ST value (10.4 ºC) recorded 

299 in the Dsz-SC-1 nodule may simply reflect a different season of formation. Due to shallow 
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300 formation depth, carbonate precipitation could be biased to soil drying after small, frequent 

301 precipitation events occurring throughout the spring, summer, and fall months (Ringham et 

302 al., 2016). So, this is probably an annual signal as the SAT value (11.7 ºC, calculated with Eq. 

303 10 for 0.2 m depth) coincides with the modern MAT (11.6 ± 0.7 ºC) of this region (Fig. 1). 

304 Nodules at depths of 1.05‒1.50 m record ST values of 16.5 to 19.9 ºC, overlapping summer 

305 season STs measured at 1 m depth at the Szeged station (15.6‒21.8 ºC; 19.1 ± 1.7 ºC) and the 

306 simulated modern summer season STs (Fig. 3a).

307 SAT values estimated by Eqs. (8) range between 18.1 and 22.4 ºC (Table 1), 

308 corresponding with the present-day range of summer season temperatures (~20‒22.5 ºC). The 

309 “effective surface temperature” TºC(47)0 is 22.0 ºC, as given by the intersect of the best-fit 

310 model curve (green line, Fig. 3a) and the surface. Both the warmest average monthly and 

311 mean annual air temperatures (WAMT/MAT), calculated using TºC(47)0, were found to be 

312 unrealistically low (14.1 and 4.7 ºC) for this region. This implies that the equations (Eqs. 3-4) 

313 by Quade et al. (2013) indeed do not seem to be universal, as proposed by the authors. MAT 

314 estimates using the Dworkin et al. (2005) equation (Eq. 2) gave slightly lower values 

315 (9.9‒11.1 ºC; Table 1) than the modern value (11.6 ºC). These figures seem to be correct 

316 despite the fact that the δ18Osc compositions of the investigated carbonates (>50 cm depth) 

317 reflect the summer season, and are not annual signals (see below).

318 Using soil nodule ST-Δ47sc and δ18Osc data, the reconstructed oxygen isotopic 

319 compositions of the paleoprecipitation (δ18Oprec) were found in a range of ‒6.72 to ‒6.45 

320 (Table 1), excluding samples Dsz-SC-1 and 10/1. We could not find any indication of 

321 analytical problems or contamination with these two samples. For Dsz-SC-1, the lower ST-

322 Δ47sc and δ18Oprec values can be accounted for by a spring-fall bias in carbonate formation, 

323 and/or a bias to soil drying after small, frequent precipitation events (averaging to shallow 

324 summer ST-Δ47sc) due to a shallow formation depth (Ringham et al., 2016). At the same time, 
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325 for Dsz-SC-10/1 the possibility of the isotopic signature being altered through diagenesis or 

326 contamination cannot be excluded. Therefore, these two samples were not used in δ18Oprec 

327 reconstructions.

328 The mean seasonal δ18Oprec values as measured at the closest (Zagreb) GNIP station for 

329 the period of 1980-1995 are shown in Fig. 4 as a function of mean seasonal air temperatures, 

330 together with the reconstructed δ18Oprec values from soil carbonates (>1 m depth) at the 

331 Dunaszekcső S1 soil. The range of reconstructed δ18Oprec values (‒6.7 to ‒6.4 ‰; Table 1) are 

332 very close to the summer season mean (‒6.2±0.94 ‰) of the Zagreb GNIP station. Only some 

333 unusually heavy oxygen isotope compositions of the spring season were found to be 

334 overlapping the reconstructed δ18Oprec values of the S1 soil carbonates. Therefore, we interpret 

335 the ST-Δ47sc values of the S1 soil carbonates (>1 m depth) as being representative of the 

336 summer season.

337

338 3.3. Absolute chronology and correlations, paleosol and soil carbonate development in MIS 5 

339 and paleotemperature reconstructions

340 The sediments making up the paleosol complex in the Dunaszekcső section were 

341 formed during MIS 5, as indicated by the K-feldspar post IR-IRSL ages obtained in the 

342 profile (Table 3; Fig. 5a). These absolute ages, together with the magnetic susceptibility curve 

343 demonstrate an accretionary soil development and that all the MIS 5 substages (e to a) seen in 

344 the LR04 δ18Obenthic curve are recorded in the sequence. MIS 5e (=LIG) and MIS 5c are 

345 characterized by intense pedogenesis (χP curve peaks; Fig. 5c), while the intensity of soil 

346 formation was much reduced during MIS 5a. After the cold MIS 6 period, significant 

347 warming commenced in this region at ~129‒130 ka, as demonstrated by the >3 ‰ positive 

348 shifts in speleothem carbonate δ18O values in the nearby Abaliget cave (Koltai et al., 2017). 

349 Estimated mean annual precipitation (MAP) reached ~620‒630 mm in MIS 5e and 5c, with a 
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350 significant drop during MIS 5b (~480 mm) and still low values (~510 mm) in MIS 5a (Fig. 

351 5c).

352 Both paleopedological and magnetic susceptibility data indicate that two separate 

353 phases of intense pedogenesis occurred and are seen in the S1 paleosol (Fig. 5c), and the soil 

354 carbonate concretions may have formed in any of these periods. Accordingly, soil nodules 

355 originate from >1 m depth in the paleosol profile (from the paleosurface) may have 

356 precipitated during MIS 5e or 5c. Both scenarios are plausible in lack of direct U‒Th dating 

357 of soil carbonate concretions. Provided that the nodules (>1 m depth) were formed during 

358 MIS 5e, the carbonate precipitation depth may have ranged between 20‒50 cm from the 

359 paleosurface. If later (MIS 5c), the nodules could have formed at >50 cm (mostly 60‒100 cm) 

360 depth. In this case, these authigenic soil carbonates would have formed during MIS 5c at a 

361 soil depth that corresponds to soil/loess that was originally deposited during MIS 5e. Both 

362 scenarios are discussed below. As for the soil carbonate collected at a shallow depth (Dsz-SC-

363 1, Table 1), this nodule may have precipitated at the end of MIS 5c or during MIS 5a.

364 According to scenario 1 (MIS 5e formation), the soil carbonates reflect LIG (MIS 5e) 

365 summer season soil/air temperatures and rainfall oxygen isotope compositions. The 

366 reconstructed ST-Δ47sc values would correspond to 20‒50 cm soil depth and the calculated 

367 (Eq. 9) SAT values would be ~4‒1.5 ºC below modern summer air temperatures (Table 1). 

368 Interestingly, the reconstructed SAT values (17‒20 ºC, Table 1) correspond to MIS 5e 

369 paleotemperature estimates from brGDGTs in the Surduk loess-paleosol sequence (Fig. 5b), 

370 Serbia, 200 km to the south of our study site (Schreuder et al., 2016). Our ST-Δ47sc dataset, 

371 therefore, supports the hypothesis by Schreuder et al. (2016) that brGDGT-based temperatures 

372 in loess/soil profiles in Europe record summer season temperatures instead of mean annual 

373 temperatures, similarly to Chinese loess deposits (Peterse et al., 2011).
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374 Last interglacial paleoclimate simulations modeled 0.5‒2 ºC higher MATs for East 

375 Central Europe than the modern values (McKay et al., 2011; Lunt et al., 2013; Otto-Bliesner 

376 et al., 2013). Simulated summer season air temperature anomalies between the LIG and 

377 present-day are mostly in the range of +2 ‒ +4 ºC for East Central Europe (Kaspar et al., 

378 2005; Bakker et al., 2013; Nikolova et al., 2013), but even higher (+4 ‒ +6 ºC) June-July-

379 August temperature anomalies were found in some models (Otto-Bliesner et al., 2013). Our 

380 δ18Osc-based MAT estimates are slightly (~<1 ºC) lower than the modern value in the study 

381 region. Likewise, the SAT values obtained in our study and in Schreuder et al. (2016) both 

382 indicate a negative temperature anomaly of 1‒5 ºC for the LIG warm season (Fig. 5b). These 

383 proxy-based negative MAT and SAT anomalies for the LIG are in contrast to the positive 

384 anomalies modeled for East Central Europe. To reconcile this contradiction we have three 

385 explanations. First, the uncertainties associated with ST-Δ47sc values range from ~1 to 6 ºC 

386 must be considered. Second, the lower ST-Δ47sc values are possibly due to the relatively 

387 shallow (20‒50 cm) formation depths, and the almost isothermal ST-Δ47sc values may indicate 

388 infiltration-driven cooling of soil temperatures. In this situation carbonate formation later in 

389 the drying curve (back to baseline conditions) would result in lower ST-Δ47sc values than the 

390 real values at all depths (see Ringham et al. 2016). Third, the later (MIS 5c) formation of soil 

391 carbonates cannot be dismissed. Indeed, if the soil nodules are authigenic (scenario 2), they 

392 simply reflect summer season temperatures of MIS 5c, which was a generally slightly colder 

393 period than MIS 5e (Fig. 5d-f; McManus et al., 1994; Shakun etal., 2015). In this case, the 

394 SAT values of 18.1 to 22.4 ºC (Eq. 8, Table 1), would correspond to the modern value 

395 (21.5±1.6 ºC). Therefore, further quantitative paleodata and systematic, preferably combined 

396 brGDGT/soil carbonate clumped isotope studies on MIS 5 paleosols are needed to better 

397 understand both proxies and validate model results.

398
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399 4. Conclusions

400 The paleosol complex in the Dunaszekcső loess-paleosol sequence, dated by the K-

401 feldspar post IR-IRSL method, is formed during MIS 5. All subtages of MIS 5 seem to be 

402 recorded in the sediments as demonstrated by the luminescence ages and the pedogenesis 

403 proxy (χP data). Soil carbonates at >1 m depths in the lower paleosol may have formed during 

404 the summer season of MIS 5e or 5c, while the one sampled at shallow depth could have 

405 precipitated at the end of MIS 5c or 5a in the spring-to-fall seasons. Soil carbonates (>1 m 

406 depth) yielded soil temperatures (ST-Δ47sc) of 17 to 20 ºC (sample Dsz-SC-10/1 excluded), 

407 which translates into SAT values of 17 to 20 ºC, provided that they formed in MIS 5e at a 

408 depth of 20‒50 cm. These carbonate clumped isotope temperatures, recorded in the 

409 Dunaszekcső sequence, match surprisingly well the brGDGT-based paleotemperature 

410 estimates (16‒19 ºC) for the MIS 5e period at the Surduk site in Serbia, 200 km to the south. 

411 These reconstructed SATs are by 1‒5 ºC lower than the modern value and do not match the 

412 simulated LIG/present-day temperature anomalies for the warm season in East Central 

413 Europe, which usually range from +2 to 4 ºC in most LIG model simulations. However, the 

414 ST-Δ47sc values are associated with 1‒6 ºC uncertainties (2σ), and the possibility of soil 

415 nodule formation during the MIS 5c period cannot be excluded in lack of direct U‒Th dating 

416 on these carbonates.

417 Clumped isotope temperatures and soil carbonate concretion oxygen isotope 

418 compositions allowed for reconstructing the δ18O of past rainfall, interpreted as an integrated 

419 signal of the summer season. Precipitation oxygen isotope compositions were found to be 

420 more negative (by ~0.5 ‰) than the modern value (‒6.2±0.94 ‰) measured at the closest 

421 GNIP station (Zagreb). In fact, these paleo-δ18Oprec values estimated from soil nodules are 

422 within error of the modern value at Zagreb, and these minor variations can equally be 
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423 explained by rainfall source shifts, temperature and evaporation effects during the summer 

424 season.
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763 Figure 1. Location and general climatic data of the study site (red) and two meteorological 

764 stations (blue) in Hungary. Abbreviations: PET – potential evapotranspiration, MAT – mean 

765 annual air temperature, SAT – summer season (JJA) air temperature, MAP – mean annual 

766 precipitation.

767

768 Figure 2. Air/soil temperatures a) over the year and b) the relationship between mean summer 

769 air (2 m) and soil temperatures measured at 1, 0.5 and 0.2 m depths at the Szeged 

770 meteorological station. Data reported are averages of six consecutive years from 2005 to 

771 2010. Soil temperatures were measured at 0.1, 0.2, 0.5 and 1.0 m depths, while air 

772 temperature at 2 m as indicated with a thick blue line in panel a). Linear equations shown in 

773 panel b) are Eq. (8), (9) and (10) in the main text (section 3.1).

774

775 Figure 3. Modeled and reconstructed soil temperatures (ST-Δ47sc) a) and carbon/oxygen 

776 stable isotopic compositions b) of soil carbonates as a function of depth in the S1 paleosol at 

777 Dunaszekcső. The green line in panel a) is the best-fit summer season soil temperature curve 

778 (modeled - 0.4 ºC) for the soil carbonate Δ47 data, intersecting the soil surface at TºC(47)0 = 

779 22.0, being the “effective surface temperature” defined by Quade et al. (2013). Soil 

780 temperature modeling details are found in the Methods section. MAT is modern mean annual 

781 air temperature in ºC.

782

783 Figure 4. Seasonal oxygen isotope composition of precipitation as a function of air 

784 temperature at the Zagreb GNIP station from 1980 to 1995. The range of reconstructed 

785 δ18Oprec values from soil carbonates (>1 m depth) are also shown.

786
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787 Figure 5. Lithology A), Δ47-based soil (ST-Δ47sc, green dot) and calculated summer air 

788 temperatures (SAT, red dot) B), pedogenic magnetic susceptibilities (χP) and mean annual 

789 precipitation (MAP) C) as a function of depth in the Dunaszekcső loess-paleosol record. The 

790 sediment sequence was dated by the infrared stimulated luminescence (IRSL) method, and the 

791 given post-IR IRSL ages are reported in Table 3. Modern MAT and SAT as given in Figure 1. 

792 The brGDGT-based temperature range is from Schreuder et al. (2016). The LR04 benthic 

793 δ18O record for MIS 5 D) (Lisiecki and Raymo, 2005), as a proxy of global ice volume and 

794 deep ocean temperature, is also shown and correlated with the pedogenic susceptibility (χP) 

795 record. Ages of MIS boundaries and sub-stage peaks after Lisieczki and Raymo (2005). 

796 Estimated summer sea surface temperatures (SSTs) from site ODP-980 in the subpolar North 

797 Atlantic (Oppo et al., 2006) and Greenland δ15N-based temperatures (Kindler et al., 2014), 

798 with potential correlations (dotted lines, Sánchez Goñi, 2007; Wohlfart, 2013), are also 

799 displayed. Greenland stadial/interstadial periods are after Rasmussen et al. (2014).

800

801

802

803 Table captions

804

805 Table 1. Soil carbonate stable and clumped isotopic compositions from the Dunaszekcső 

806 sequence S1 paleosol, and calculations of paleoenvironmental parameters
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Table 1. Soil carbonate stable and clumped isotopic compositions from the Dunaszekcső sequence S1 paleosol, and calculations of paleoenvironmental parameters
Depth (m) From soil 

surface (m)
Sample codes Replicates δ13Csc 

(V-
PDB)

SE δ18Osc 
(V-

PDB)

SE δ47 Δ47 (‰) SE ST 
(ºC)a

±ST 
uncertainty 

(ºC)b

SAT_ 
1 (ºC)c

SAT_ 0.5 
(ºC)c

MAT 
(ºC)d

δ18Oprec (V-
SMOW)e

±δ18Oprec 
uncertaintyf

12.95-13.10 0-0.15 DSZ-SC-1 9 -8.99 0.02 -7.19 0.03 -2.148 0.725 0.005 10.4 1.3 10.3 10.8 11.1 -7.89 -0.03

14.00-14.15 1.05-1.20 DSZ-SC-8 8 -8.99 0.02 -7.78 0.03 -2.783 0.690 0.014 19.9 4.0 22.4 20.0 9.9 -6.45 -0.03

14.15-14.30 1.20-1.35 DSZ-SC-9/1 7 -9.20 0.02 -7.33 0.05 -2.507 0.698 0.011 17.6 3.1 19.5 17.8 10.9 -6.48 -0.05

14.15-14.30 1.20-1.35 DSZ-SC-9/2 9 -8.87 0.05 -7.35 0.08 -2.223 0.702 0.011 16.5 3.1 18.1 16.7 10.8 -6.72 -0.08

14.30-14.45 1.35-1.5 DSZ-SC-10/1 8 -9.41 0.02 -7.50 0.07 -2.843 0.757 0.007 2.7 1.7 0.3 3.2 10.5 -9.97 -0.07

14.30-14.45 1.35-1.5 DSZ-SC-10/3 7 -8.92 0.04 -7.45 0.05 -2.376 0.700 0.023 17.1 6.1 18.9 17.3 10.6 -6.70 -0.05

Abbreviations

aSTs (soil temperatures) were calculated using the travertine Δ47-temperature calibration by Kele et al. (2015), recalculated with the new Brandt parameters (Breitenbach et al., 2018; Bernasconi et al., 2018)

bMean uncertainty of ST, calculated from the SE of Δ47 (calibration equation errors are not included)

cSATs (summer season air temperatures) for 1 and 0.5 m depth were calculated using Eqs. (8)-(9)

dMAT (mean annual air temperature) values were derived using T (ºC) = (δ18Osc (V-PDB) + 12.65)/0.49 (Dworkin et al., 2005)

ePaleoprecipitation oxygen isotopic compositions were calculated from δ18Osc and Δ47-based ST data using the low-temperature calcite-water oxygen isotope fractionation equation of Kim and O'Neil (1997)
fUncertainty of precipitation oxygen isotopic compositions was calculated by propagating standard errors of soil carbonate oxygen isotope values and does not include uncertainties associated with Δ47-based temperature 
estimates



Table 2. Parameters for soil temperature modeling
Parameter Value Source
Average air temperature, Tavg (Cº) 11.6 closest meteorological station
Annual amplitude of surface soil temperature, A0 12 closest meteorological station
Thermal conductivity, κ (W/m*K) 1.7 Wu and Nofziger (1999)
Volumetric heat capacity, cv (J/m3*K) 1800000 Wu and Nofziger (1999)
Thermal diffusivity, DH (m2/s); DH = κ/cv 0.000000944
Radial frequency, ω (2π/yr in seconds) 0.000000199
Damping (1/e folding) depth, d (m); d = (2DH/ω)1/2 3.079
Soil depth, z (m) 0-2  



Table 3. IRSL chronology of the S1 paleosol at Dunaszekcső

Sample 
depth (m)

Sample 
code

Water 
content 
(%)

Dose rate 
(Gy/ka)

 pIR IRSL 
225 age 
(ka)

±1σ pIR IRSL 
290 age (ka)

±1σ Source

11.75 Dsz-4 15±5 3.14±0.12 62.6 2.6 76.6 3.0 Újvári et al. (2014)
12.75 Dsz-5 20±5 3.02±0.11 84.7 3.1 84.4 4.6 Újvári et al. (2014)
13.40 Dsz-6 20±5 3.75±0.13 76.6 3.3 78.0 3.9 Újvári et al. (2014)
14.90 Dsz-6b 20±5 2.91±0.12 124.0 5.0 this study
15.35 Dsz-7 20±5 2.76±0.11  164.0 7.0 154.0 8.0  Újvári et al. (2014)


