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Abstract 

Urban growth is a global phenomenon, and the associated impacts on hydrology from land 

development are expected to increase, especially in peri-urban catchments, which are newly 

developing catchments in proximity of growing cities. In northern climates, hydrologic response 

of peri-urban catchments change with the water budget and climatic conditions. As a result, 

runoff response of northern peri-urban catchments can vary immensely across seasons. During 

warm seasons, the evapotranspiration (ET) and infiltration rates are high, so urban floods are 

expected to occur during high intensity, low duration storm events. During cold seasons and 

below freezing temperatures, surficial soils are typically frozen and nearly impervious. In 

addition, the ET rate is low throughout winter. Therefore, the difference in runoff response 

between peri-urban and natural catchments is least in winter. Furthermore, winter snow 

redistribution by plowing and endogenous urban heat affect the snowmelt timing and frequency. 

Due to the limited availability of data on snow removal and redistribution activities in northern 

peri-urban catchments, cold-season hydrologic modeling for peri-urban catchments remains a 

challenging task in urban hydrology.  

 

Research on the cold season hydrologic response of peri-urban catchments are mostly limited to 

Finland, Sweden, and Canada. The resulting research gap on seasonal change in hydrologic 

response of peri-urban catchments is common to many northern settings. In the first phase of this 

study, I use intensive discharge monitoring records at several peri-urban catchments near 

Syracuse, NY to calculate and compare seasonal runoff peak flows among several peri-urban 

catchments. These are selected to provide a range of drainage area and imperviousness to clarify 
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the impact of urban development and catchment size on seasonal hydrologic behavior of peri-

urban catchments.  

It is well understood that greater peak flows and higher stream flashiness are associated with 

increased surface imperviousness and storm location. However, the effect of the distribution of 

impervious areas on runoff peak flow response and stream flashiness of peri-urban catchments 

has not been well studied. In the second phase of this dissertation, I define a new geometric 

index, Relative Nearness of Imperviousness to the Catchment Outlet (RNICO), to correlate 

imperviousness distribution of peri-urban catchments with runoff peak flows and stream 

flashiness. The study sites for this phase of the study include ninety peri-urban catchments in 

proximity of 9 large US cities: New York, NY (NYC), Syracuse, NY, Baltimore, MD, Portland, 

OR, Chicago, IL, Austin, TX, Houston, TX, San Francisco, CA, and Los Angeles, CA. Based on 

RNICO, all development patterns are divided into 3 classes: upstream, centralized, and 

downstream. Analysis results showed an obvious increase in runoff peak flows and decrease in 

time to peak as the centroid of imperviousness moves downstream. This indicates that RNICO is 

an effective tool for classifying urban development patterns and for macroscale understanding of 

the hydrologic behavior of small peri-urban catchments, despite the complexity of urban 

drainage systems. Results for nine cities show strong positive correlations between RNICO and 

runoff peak flows and stream flashiness index for small peri-urban catchments. However, the 

area threshold used to distinguish small and large catchments differs slightly by location. For 

example, for Chicago, IL, NYC, NY, Baltimore, MD, Houston, TX, and Austin, TX area 

threshold values of 55, 40, 50, 42, and 32 km2 emerged, runoff peak flows in catchments with 

drainage area below these values were positively correlated to RNCIO. This first phase of this 

study suggests that RNICO is a stronger predictor of runoff peak flow and stream-flow regime in 
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humid northern and southern US study sites, compared to more arid western US study sites. This 

difference is likely due to the greater precipitation rates and greater antecedent soil moisture 

contents for humid climates. The extent of urban infrastructure is less likely to control the 

effectiveness of RNICO for predicting runoff peak flows and R-B flashiness index for the 

selected study sites, due to the relatively similar urban development level within the peri-urban 

study catchments. 

 

Consistent forecast of peak flows across scales in flood hydrographs remains a challenge for 

most hydrologic models. Urbanization increases the magnitude and frequency of peak flows, 

often challenging the forecast ability for real-time flood prediction. Following advances in 

satellite and ground-based meteorological observations, global and continental real-time 

ensemble flood forecasting systems use a variety of physical hydrology models to predict urban 

peak flows. Artificial intelligence (AI) models provide an alternative approach to physical 

hydrology models for real-time flood forecasting. Despite recent advances in AI techniques for 

hydrologic prediction, ensemble stream-flow prediction by these methods has been limited. In 

addition, application of AI models for flood forecasting has been limited to large river basins, 

with very limited research on use of AI models for small peri-urban catchments. Flood 

forecasting in small urban catchments can be a critical task to urban safety due to the short time 

of concentration and quick precipitation runoff response. AI flood forecasting models typically 

apply upstream streamflow measurements to forecast downstream flood discharge. Therefore, 

the storm direction may change the flood travel time and time to peak, which challenges accurate 

flood forecasting. For example, if the storm direction is upstream through an AI model trained on 

the upstream gage data may fail to accurately predict peak flow magnitude and timing, at the 
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outlet, this is due to the quicker runoff response of the downstream gage compared to the 

upstream station. There has been very limited focus on the impact of storm direction on peak 

flow response of urban catchments and available literature are limited to lab-scale prototypes and 

rainfall simulators. These may not fully represent real-world flooding scenarios. Therefore, the 

impact of storm direction on flood forecasting performance of peri-urban catchments is another 

important research gap in real-time urban flood forecasting.  

In the third phase of my dissertation project, I initially assess the impact of storm direction on the 

flood forecasting performance of an Adaptive Neuro Fuzzy Inference System (ANFIS) at a peri-

urban catchment in proximity of Syracuse, NY. Next, I compare the relative utility of physical 

hydrology and AI approaches to predict flood hydrograph in peri-urban catchments. For this 

comparison, I selected ANFIS, and Sacramento Soil Moisture Accounting Model (SAC-SMA) 

for real-time ensemble re-forecasting of streamflow in several small to medium size suburban 

catchments near NYC for Hurricane Irene and a smaller storm event. The SAC-SMA model is a 

physical hydrology model that was initially developed by Burnash et al. (1973). The National 

Oceanic and Atmospheric Administration (NOAA) selected the SAC-SMA lumped model as a 

comparison baseline for participating distributed hydrologic models in the Distributed Model 

Intercomparison Project (DMIP), which aimed to identify the most suitable model for National 

Weather Service (NWS) streamflow prediction across the US 

(http://www.nws.noaa.gov/ohd/hrl/dmip/). More importantly, the NWS is currently using the 

lumped form of SAC-SMA for ensemble flood forecasting across the US (Emerton et al., 2016).  

For these reasons, I chose to employ a lumped version of SAC-SMA in my dissertation project. 

SAC-SMA performed well for both large and small events and for lead times of three to 24 

hours, but ANFIS predicted the Hurricane Irene flood discharge well only for short lead times in 
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small study catchments. ANFIS had reasonable percent bias (PBIAS) for predicting the small 

storm event for all lead times, indicating the utility of ANFIS for small events. In addition, the 

accuracy of both SAC-SMA and ANFIS models for ensemble flood prediction did not change 

significantly with catchment size and imperviousness. Overall, results of the third phase of this 

study suggest that the lumped SAC-SMA model may be a reliable option for local urban flood 

forecasting for evacuation plan lead time up to 24 hours. Due to the uncertainties in future 

climatic conditions, my study emphasizes the importance of using physical hydrology models for 

real-time flood forecasting of large events in small urban catchments. This recommendation is 

based on the finding that the performance of data-driven models may greatly decrease with the 

storm scale if the training period includes storms of magnitude less than storms in the validation 

period. 
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1. Chapter 1 (Introduction) 

1.1. Motivation 

1.1.1. Impacts of urbanization on peak flows in northern climates 

Urban floods endanger human lives, damage private property, and cause a cascade of 

environmental impacts (Jha et al., 2012; World Bank, 2013). For example, floods release 

pollutants and heavy metals into groundwater and rivers, impairing water quality 

(Markantonis et al., 2013). Furthermore, flooding can cause significant disruption to 

urban services such as transportation, water provision, housing, and education 

(Hammond et al., 2015). 

 

Global urban growth increases land surface imperviousness and elevates the flooding 

potential of urban catchments. The United Nations reported that approximately 70% of 

the world's population will live in urban areas by 2050 (United Nations, 2010). As a 

consequence of rapid urbanization in the absence of a reliable stormwater management 

system, many urban watersheds worldwide have been threatened by flooding due to 

increased surface imperviousness (Miguez et al., 2015; Smith et al., 2005). Consequently, 

the study of the influence of urbanization and increased imperviousness on hydrologic 

behavior of peri-urban catchments, which are newly developed urban catchments in 

proximity of large growing cities. 

 

In northern urban catchments, stormwater runoff peak flows vary throughout the year in 

response to the water and energy budgets. Typically, evapotranspiration, infiltration, and 

available soil water storage capacity are minimized during the cold season with a 
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resulting decrease in runoff peak flows. This is largely due to storage of a significant 

fraction of precipitation in northern catchments as snow (Heino and Hellsten, 1983; 

Valtanen et al., 2014). As a result, spring snowmelt is a large part of annual runoff 

(Koivusalo et al., 2006; Taylor, 1982, 1977). Urban snow is often redistributed or 

removed by human activities (Bengtsson and Westerström, 1992; Buttle and Xu, 1988; 

Ho and Valeo, 2005; Semádeni-Davies, 2000; Semádeni-Davies and Bengtsson, 1999). 

Study of snowmelt runoff from a rural and a suburban catchment in Peterborough, 

Ontario showed that suburban catchment reacts more quickly to snowmelt and rain-on-

snow event and produces more initial quick flow due to the microclimatic and hydraulic 

alterations caused by human activities (Buttle and Xu, 1988). Bengtsson and Westerström 

(1992) showed that daily melt rates in Lalea, Sweden is about 10 mm greater in the city 

than in rural areas as a result of increased long wave radiation. In addition, infiltration 

rate of urban soil significantly decreased in the cold season and snowmelt runoff from 

pervious and impervious areas were almost the same. Similar results were indicated by 

Ho and Valeo (2005) in an urban snow properties study at Calgary, Canada. They found 

that both the urban snow removal activities and the physical characteristic changes in 

urban environment largely influence the energy-balance of snowpacks. Antecedent soil 

moisture was found to have very little effect on frozen ground and pervious areas act 

nearly as impervious. Additionally, the timing of snowmelt in northern urban catchments 

can be altered by application of deicers to roadways and heat loss from the roof tops and 

other infrastructure. However, data available for human snow redistribution and removal 

activities are limited and snowmelt peak flow analysis remains a challenging problem in 

urban hydrology. 
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The influence of urbanization on magnitude and seasonality of peak flows in cold 

climates is not well addressed and previous studies have been mostly limited to Finland, 

Sweden, and Canada (Eimers and McDonald, 2015; Sillanpää and Koivusalo, 2015; 

Valtanen et al., 2014). Valtanen et al. (2014) studied seasonal runoff volume and peak 

flows at three urbanized catchments in southern Finland representing low, medium, and 

high urbanization levels, respectively. They found that the medium and high urbanized 

catchments produce more runoff during warm season, whereas less urbanized catchments 

have greatest runoff generation during cold season. The spring snowmelt freshet started a 

few weeks earlier in the two most urbanized catchments and the snowmelt runoff rates in 

these catchments were smaller than during summer storms. The result from this study 

suggested that the stormwater runoff in cold climates is season dependent and the impact 

of imperviousness is much less during cold season than during summer. Similarly, studies 

on a developing catchment in the city of Espoo in southern Finland (Sillanpää and 

Koivusalo, 2015) and nine urbanized catchments in southern Ontario, Canada (Eimers 

and McDonald, 2015) indicated less pronounced impact of imperviousness on peak flows 

during cold season.   

 

The first phase of this dissertation project demonstrates the impacts of urbanization on 

seasonal runoff peak flow response of northern peri-urban catchments. This is based on 

intensive field work to develop discharge records for five sub-catchments of Onondaga 

Lake watershed, in central New York State, representing a range of imperviousness from 

eleven to 48 percent. The collected discharge data are used to calculate peak flow 

magnitudes for a range of event magnitudes in the study period. The calculated peak 
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flows are then classified into four seasons and compared for different stations to study the 

impacts of urbanization on seasonal peak flows. The results support understanding of 

changes in hydrologic response of northern peri-urban catchments with changing climatic 

conditions. Study sites are in the proximity of Syracuse, NY and generate runoff from 

both spring snowmelt, which includes significant annual accumulation of lake effect 

snow and from convective summer storms, both of which cause flash floods. These 

attributes make the region a good study case for comparison of seasonal flooding.  

 

Stormwater runoff management in northern peri-urban catchments is often challenging 

due to the great seasonal variations in water budget in these catchments. Furthermore, 

many northern US cities, such as Syracuse, NY, have old stormwater infrastructures with 

combined sewer overflows that can potentially impair water quality in rivers and lakes, 

and impose significant potential costs to the municipalities. Understanding the seasonal 

variations in urban runoff volumes and peak flow magnitudes is expected to help 

municipalities better develop stormwater management plans to efficiently mitigate runoff 

peak flows, in order to reduce costs associated with urban floods and CSOs. For example, 

seasonal peak flow data could be used for real-time control of slow release valves in 

rainwater harvesting cisterns. If the magnitude of historical seasonal runoff peak flows is 

introduced to an automated flow control valve, the system could release a enough stored 

water into the sewer system before the start of a new storm event to reduce the chance of 

CSO during each season. 
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1.1.2. Impacts of urban development pattern on runoff peak flows 

The impact of increased fractional impervious area on flooding potential of urbanized 

catchments has been assessed across several international studies with a wide range of 

catchment sizes and climatic settings in several empirical and modeling studies. Example 

study locations in northern climates include several peri-urban catchments in Canada and 

Finland. For example, Nirupama and Simonovic (2007) found approximately 270% 

increase in peak flow magnitudes associated with extensive urban growth over a 27-year 

period for a large Canadian river basin. Similarly, stormwater runoff peak flows during 

summer and spring snowmelt at a small, highly impervious catchment in southern 

Finland were approximately 100% to 300% greater than those for a slightly pervious 

catchment over a 2-year study period (Valtanen et al., 2014). Flood peak discharge of 

another small Finnish catchment increased by about 50 times over the predevelopment 

condition during five years of heavy urbanization (Sillanpää and Koivusalo, 2015). 

Similarly, increased stream flashiness and in large increase in quick flows (300%) were 

associated with catchment imperviousness at several medium to large Canadian 

catchments in both rural and urban settings over a 9-year period (Eimers and McDonald, 

2015). Furthermore, runoff peak flows of a medium-size, highly urbanized catchment in 

Georgia, USA, were 30% to 100% greater than those for low development density 

catchments for the 25 largest events of a 39-year study period (Rose and Peters, 2001). In 

contrast, Zope et al. (2015) projected a marginal urbanization impact on peak flows in a 

major catchment in Mumbai City, India over 40 years of urban development but warned 

about the importance of these impacts when combined with tidal influences. Modeling 

efforts projected increased flood stage and inundated areas for a medium-size urban 
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catchment (300 km2) in Chennai Metropolitan City, India due to 30-year urban growth 

(Suriya and Mudgal, 2012) and in a large Chinese river basin (19,354 km2) over nine 

years of urbanization (Wang and Yang, 2013). The increased daily peak discharge was 

linked to the increased fractional impervious area in a medium-size highly urbanized 

catchment (78 km2) in Qinhuai River basin, China over a 30-year study period (Du et al., 

2015). 

 

Stream flashiness typically refers to the frequency, magnitude, and duration of short-term 

variations in water level and discharge. These typically increase with urbanization and 

increased imperviousness (Baker et al., 2004; Eimers and McDonald, 2015; Julian and 

Gardner, 2014). To compare these streamflow attributes across sites and time, Baker et 

al. (2004) developed a dimensionless stream flashiness index, Richards–Baker index (R-

B index): 

 

                                                 (Eq. 1) 

 

Where qi is the daily mean discharge of the ith day (m3/s) and n is the number of days in 

the study period. 

 

The application of the R-B Index (Equation 1) to data from 515 United States Geological 

Survey (USGS) stream gages over a 27-year period showed that the R-B index is 

negatively correlated with catchment drainage area and positively correlated with 

catchment imperviousness (Baker et al., 2004). They showed statistically significant 
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increases in flashiness from 1974 to 2001 due to increased imperviousness in urban 

catchments including Milwaukee, Chicago, and Detroit (Baker et al., 2004). 

 

Increased frequency and magnitude of peak flows in urbanized catchments are commonly 

attributed to increased area of imperviousness (Arnold and Gibbons, 1996; Cheng et al., 

2010). Generally, as more natural land cover is converted to impervious surface, the 

evapotranspiration (Grimmond and Oke, 1999), infiltration (Valtanen et al., 2014), and 

soil storage capacity (Bhaskar and Welty, 2012) are reduced. The result of these 

alterations to the water balance often increases the quantity of runoff and decreases travel 

time to the catchment outlet, leading to greater peak flows. Although the fractional area 

of imperviousness has been widely studied as a control criterion for urban peak flows, 

this metric does not address the complexity of imperviousness distribution in the 

catchment (Du et al., 2015). For example, Mejía and Moglen (2009, 2010a, 2010b) and 

Yang et al. (2011) found that the spatial distribution of impervious areas is an important 

control on the hydrologic response of urban catchments. Mejía and Moglen (2009) 

defined several water resources-based objective functions to optimize imperviousness 

distribution in a hypothetical catchment and concluded that applying imperviousness 

threshold policies that limit the areas of surface impervious to 10% (Schueler, 1994; 

Valtanen et al., 2014) may cause an unintended low-density sprawl across the catchment. 

Yang et al. (2011) assessed the impact of spatial distribution of imperviousness on runoff 

peak flows of several catchments in Indiana, USA, using a combined GIS and hydrologic 

modeling approach. They concluded that the spatial distribution of imperviousness is 

scale dependent; at the urban catchment scale, the effect of greater imperviousness is 
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manifested through changes to processes affecting runoff, whereas at the watershed scale, 

the influence of the urban runoff contribution is more closely related to runoff travel time 

to the point of measurement. 

 

Previous studies of the impact of imperviousness distribution on peak flows in urban 

catchments have suggested greater hydrologic impacts from land development closer to 

streams (Su et al., 2014). The physical rationale for the linkage between impervious 

surface location and peak flow can be explained by surface runoff travel time 

(Meierdiercks et al., 2010). During extreme rainfall events, impervious areas generate 

runoff earlier than pervious areas due to lower infiltration rates and more hydraulically 

efficient flow paths. As a result, they transmit early flood waves to the catchment outlet 

(Arnold and Gibbons, 1996; Du et al., 2015). These early flood waves travel through the 

catchments soil and streambed (Liebe et al., 2009) and are attenuated through time 

(Lamberti and Pilati, 1996) by losses to storage. The travel time of flood waves from the 

source to the outlet point depends on the flow path length and the proximity of 

contributing impervious areas to the catchment outlet. Therefore, the distance from 

impervious areas to the stream and then the stream outlet is the major control on flood 

wave travel time and peak flood stage (Du et al., 2015). It is well understood that 

impervious areas close to the outlet contribute greater discharge to the rising limb and 

peak of the hydrograph than impervious areas farther from the outlet. 

 

Climate and storm event characteristics such as depth, duration, and intensity may also 

impact runoff peak flow response of urban catchments. Urban catchments in 
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Mediterranean climate cities Los Angeles, CA and San Francisco, CA are typically 

flooded during long winter rainfall events from the Pacific Ocean to the land surface. On 

the other hand, urban flooding in the northeastern US typically occurs during summer 

storms and spring snowmelt events. In both western and northeastern US cites, runoff 

peak flows and flood travel time can be influenced by many parameters such as 

stormwater systems (Miller et al., 2014), catchment drainage area, imperviousness, and 

development pattern. This dissertation is motivated by the importance of understanding 

how development patterns impact flooding across several US peri-urban catchments with 

different climate conditions. I compare groups of western, northern, southern US peri-

urban catchments with a wide range of imperviousness and drainage areas to provide 

insight into the combined impact of climate and imperviousness on runoff peak flow 

response of urban catchments.  

 

Few assessments have been published on the impact of land development pattern and 

spatial distribution of impervious surfaces on peak flows in urbanized catchments. 

Whereas most existing studies have used physical hydrology modeling approaches to 

analyze different land development scenarios (Du et al., 2015; Su et al., 2014; Yang et 

al., 2011; Zhang and Shuster, 2014). Calibration and validation of physical hydrology 

models require quantitative information and high-quality input datasets, and significant 

knowledge of hydrologic processes and modeling. Many urban municipalities and 

government authorities are interested in macro-management of urban watersheds but may 

not have enough capacity for calibrating hydrologic models. Although physical 

hydrology models can provide some insight into the behavior of natural systems, they are 
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limited by uncertainty (Jakeman and Hornberger, 1993; Singh and Dutta, 2017) and 

errors due to simplification, calibration, and validation (Yen et al., 2015) and scale effects 

(Carpenter and Georgakakos, 2006; Grayson et al., 1992; Koren et al., 1999). For 

example, stream-flows in small first-order catchments may be more responsive to small 

events than stream-flow of large catchments due to the closer match between the scale of 

the storm and catchment time of concentration (Nicótina et al., 2008; Wilson et al., 1979) 

and catchment storage capacity (Sapriza-Azuri et al., 2015). Therefore, models developed 

for a specific scale may not closely represent the processes and behavior of small urban 

catchments. 

 

In the second phase of my dissertation, I overcome these limitations by developing a new 

geometric index which can be used for urban planning. For this purpose, I took advantage 

of my field monitoring data at Onondaga lake watershed sub-catchments, comprehensive 

discharge records at several USGS gages, and the National Land Cover Dataset 2011. 

These datasets enabled simple calculation of the impact of distribution of impervious 

areas on peak flows, using geometric and statistical analysis approaches. To accomplish 

this goal, I defined a new geometric index, Relative Nearness of Imperviousness to the 

Catchment Outlet (RNICO), based on the distribution of impervious surfaces in the 

catchment and the location of catchment centroid. Based on early results, I hypothesized 

that RNICO is a broadly applicable index to classify the peak flow response of small to 

medium size study catchments (A< 40 km2). I selected 90 peri-urban catchments in 

proximity of nine large growing western, northern, and southern US cities to perform the 

analysis for different climate conditions and over a wider range of urban catchment 
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scales. To demonstrate the method, I calculated RNICO for the study sites and correlated 

it to runoff peak flows and streamflow regime indices.  

 

Results of this phase of my dissertation studies may be valuable for macro-scale 

management of urban development patterns in growing peri-urban catchments. Urban 

planners and municipalities can use the RNICO index to develop hydrologically 

sustainable development strategies for growing cites instead of allowing random urban 

sprawl. A great advantage of the RNICO index is the simplicity of the calculation based 

on land cover maps and discharge records that are typically available for many urban 

catchments worldwide. 

1.1.3. Low Impact Development (LID)  

One practical solution proposed for mitigating flood damage during high intensity, low 

duration storm events is the investment in LID to complement centralized water 

infrastructures (Sapkota et al., 2014; Tjandraatmadja et al., 2005). LIDs are small to 

medium scale structures that mitigate or capture stormwater runoff at the source. The 

captured water may be reused for local indoor and outdoor purposes (Domínguez et al., 

2017; Sojka et al., 2016; Younos, 2011). Typical examples of LID are bioretention 

systems, green roofs, detention and retention ponds, rain barrels, porous asphalts, and 

rain gardens. A primary reason for adopting LID is the positive impacts of these systems 

on the environment (Mao et al., 2017), and water resources (van Roon, 2007). For 

example, LID strategies can mitigate the stormwater runoff volume and peak flow to 

prevent local flooding in urban areas (Alves et al., 2018), improve the stormwater runoff 

quality before percolating to the groundwater (Dietz and Chester, 2018), and mitigate the 
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impact of urban heat island in urban areas by increasing the green space (Herath et al., 

2018). In addition, LID improves water security, strengthens local economy, regenerate 

and protect the natural environment in urbanized areas, and supports community well-

being (Biggs et al., 2009).  

 

The hydrologic performance of LID in northern climates may change seasonally due to 

variability across climatic and hydrologic conditions (Driscoll et al., 2015). There has 

been limited focus on assessing the seasonal performance of LID technologies in 

previous literature (Khan et al., 2013; Muthanna et al., 2008; Roseen et al., 2009). Roseen 

et al. (2009) have shown great potentials of LID in mitigating runoff peak flow 

magnitude and reducing detention time, but most of their performances used in their 

study cannot be easily translated to simple runoff volume and peak flow reduction 

metrics (Driscoll et al., 2015). In the third phase of this dissertation, I synthesize the 

current knowledge on seasonal change in runoff reduction performance of bioretention 

cells and green roofs.  

 

Although LID approaches hold the promise of mitigating surface runoff, reliability of 

such systems depends on the expected design storm’s return period. For example, a 

stormwater detention pond that is designed to operate for a precipitation event with return 

period of 25 years may fail to operate efficiently during 100- or 500-year events. One 

non-structural alternative to investments in decentralized stormwater systems is 

implementation of an early warning system to predict flooding events with an appropriate 

time lag (Jayawardena et al., 2014). A great challenge for real-time flood forecasting 

models is model selection. Previous studies on urban flood forecasting have argued that 
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AI models can be used as an advanced alternative to process-based models to improve the 

accuracy of real-time flood forecasting. However, practical application of AI models in 

real-time flood forecasting systems for small peri-urban catchments has been limited. 

This motivated me to compare the performance of an AI and a physical model for real-

time flood forecasting in small peri-urban catchments over the next phase of my 

dissertation project.   

1.1.4. Model selection challenge for real-time flood forecasting in small peri-urban 

catchments 

Real-time flood forecast systems attempt to provide emergency management authorities 

sufficient lead time to execute plans for evacuation and asset protection in urban 

watersheds during extreme rainfall events. However, developing these systems is 

complicated by spatial and temporal variations and uncertainty in rainfall distributions 

and complex rainfall-runoff relationships. As such, flood forecasting remains one of the 

most challenging tasks in hydrology (Chang et al., 2007; Wood et al., 2017). 

 

Many contemporary local and continental flood forecasting systems exploit recent 

advances in satellite and ground-based meteorological observations through probabilistic 

streamflow forecasting approaches (Cloke and Pappenberger, 2009; Day, 1985; Emerton 

et al., 2016; Gouweleeuw et al., 2005). Probabilistic flood forecasting systems, often 

called Ensemble Streamflow Prediction (ESP) systems, typically include a Numerical 

Weather Prediction (NWP) unit and a physical flood forecasting model component. The 

NWP generates a series of meteorological forecast ensembles based on different future 

climate assumptions. The NWP forecast ensembles are used to generate a series of future 
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hydrographs, called a spaghetti hydrograph (Emerton et al., 2016). This procedure is 

performed on a real-time basis and the flood forecast model component is continuously 

calibrated up to the current time using historical weather and streamflow observations. A 

great benefit of a probabilistic approach over the traditional single-run deterministic 

modeling approach is the generation of an ensemble of predicted flood hydrographs that 

facilitate uncertainty analyses (Day, 1985). A spaghetti hydrograph informs emergency 

managers about possible future flooding scenarios and guides strategies for evacuation 

and rescue. 

 

  Local and global real-time flood forecasting systems have typically used physical 

hydrology models for ensemble flood prediction during extreme events. Two important 

concerns when applying physical hydrology models in real-time flood forecasting 

systems are over-parameterization and equifinality (Beven, 2006, 2018). Physical 

hydrology models require several input variables including topography, land use, 

meteorological data, and soil characteristics. The calibration of these multiple input 

parameters increases uncertainty of estimated hydrologic variables due to the uncertainty 

of measuring or approximating model input datasets. In this case, the calibration process 

may converge to several independent model input parameter sets that converge to a 

similar value for the calibration objective function. As a result, a new challenge for model 

calibration is to identify the best of several equifinal parameter sets (Foulon and 

Rousseau, 2018), which may require human inspection on the calibration process.  
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Artificial Intelligence (AI) models are a suggested alternative to physical hydrology 

models (Napolitano et al., 2010); AI models decrease the degrees of freedom and the risk 

of equifinality in the real-time flood forecasting systems. Input data for AI models used 

for real-time flood forecasting typically include observed discharge and predicted 

precipitation (Chang et al., 2007; Nayak et al., 2005). 

  The recent increases in the use of AI models for hydrologic applications reflects the 

greater computational efficiency and ease of real-time analysis within the structure of AI 

models (Adamowski, 2008; Jain et al., 2001). AI models apply mathematical equations 

analyzing concurrent input and output time series rather than simulating physical 

processes in the watershed (Nourani et al., 2014; Solomatine and Ostfeld, 2008). 

Artificial Neural Networks (ANNs) and Adaptive Neuro-Fuzzy Inference Systems 

(ANFISs) are two of the most commonly used AI models in flood forecasting (Campolo 

et al., 2003; Chang et al., 2007; Chiang et al., 2007; Deshmukh and Ghatol, 2010; Khac-

Tien Nguyen and Hock-Chye Chua, 2012; Nayak et al., 2005; Rezaeianzadeh et al., 

2014).  

    Despite the advances in technique and availability of model input data, there has been 

very limited focus on applying physical hydrology and data-driven models for local flood 

forecasting in small peri-urban catchments. Streamflow is flashier in small peri-urban 

catchments than in large catchments due to shorter response times (Epstein et al., 2016; 

Walsh et al., 2005). Additionally, studies have shown that the statistical correlation 

between the antecedent streamflow discharge and the current discharge decreases with 

lead times (Campolo et al., 2003). Therefore, AI models that are trained with only 

antecedent discharge may not accurately forecast flood peak magnitude and timing for 
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long forecast lead times in these small catchments. However, I hypothesize that data-

driven models that are trained using the antecedent discharge and precipitation inputs 

may perform more accurately for long lead times due to the strong correlation between 

rainfall and runoff timing. As an alternative to AI models, physical hydrology models 

provide some insight into the hydrologic behavior of small urban catchments, but they are 

limited by uncertainty (Jakeman and Hornberger, 1993) and errors because of 

simplification, calibration (Yen et al., 2015), and scale impacts (Carpenter and 

Georgakakos, 2006; Grayson et al., 1992; Koren et al., 1999). For example, first-order 

streamflows in small urban catchments may be more responsive to small storm events 

compared to large catchments because of the closer match between the storm scale, 

catchment time of concentration (Nicótina et al., 2008; Wilson et al., 1979), and 

catchment storage capacity (Sapriza-Azuri et al., 2015). Consequently, physical 

hydrology models established for a specific scale, may not closely represent the 

hydrological processes and behavior of small urban catchments. Thus, several questions 

remain regarding the performance of AI and physical hydrology models in small 

catchments, especially in terms of relative utility. Further knowledge about the 

performance of physical hydrology and data-driven models for flood forecasting in small 

urban catchments is expected to be valuable for local urban flood emergency 

management at peri-urban catchments, which are the newly developed urban catchments 

in proximity of large growing cities worldwide.  

 

Storm direction may also influence the performance of real-time flood forecasting models 

in small catchments by changing the time of concentration. For example, for storms that 
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move in a downstream direction through the catchment, early flood measurements at the 

upstream gage can be used by the data-driven model to forecast downstream flood 

intensity with an appropriate lead time. In contrast, for storms moving downstream to 

upstream the stage increases earlier downstream, so the delayed upstream response may 

not appropriately predict the downstream peak flows sufficiently. Investigating this 

linkage is aimed to help understanding the strengths and limitations of data-driven 

models for flood forecasting in small urban catchments. 

 

  In the fourth phase of my dissertation project, I 1) assess the impact of storm direction 

on predictability performance of the ANFIS flood forecasting model in Ley Creek; 2) 

compare the performance of ANFIS, SWMM, and SAC-SMA for deterministic real-time 

flood forecasting in Ley Creek, and 3) compare the performance of ANFIS and SAC-

SMA models for real-time ensemble flood prediction at several small to medium sized 

suburban catchments (17 km2-150 km2) near NYC (Roodsari et al., 2018). To assess the 

impact of storm direction on flood forecasting performance of ANFIS model, the model 

is trained with different combinations of storm direction and model validation errors are 

compared among different scenarios. To evaluate the performance of ANFIS, SWMM, 

and SAC-SMA for deterministic real-time flood forecasting, all three models are used for 

a real-time flood forecasting scenario at Ley Creek catchment. To compare the skill of 

ANFIS and SAC-SMA for real-time flood forecasting during large- and small-scale 

storm events, I apply both models to re-forecast the flood hydrograph of a disastrous 

historical extreme event, Hurricane Irene, and another small storm that occurred a few 

weeks after Hurricane Irene. The models are calibrated using the historical streamflow 
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and meteorological records prior to the start day of the storm events (27 August 2011 for 

Hurricane Irene and 23 September 2011 for the small event). These models are then 

validated using streamflow prediction for three years following the event start dates to 

validate the strength of model calibration. The calibrated/validated models are then used 

for ensemble flood forecasting during the events (27-29 August 2011 and 23-25 

September 2011) using 2nd-generation NOAA Global Ensemble Forecast Re-forecast 

(GEFS/R) precipitation data (Hamill et al., 2013). I will use this analysis to test the 

hypothesis that ANFIS performs as accurately as SAC-SMA for ensemble flood 

forecasting in relatively small urban catchments for forecast lead times of three to 24 

hours. 

Results of this phase of my dissertation are aimed at understanding the strengths and 

limitations of AI models for use in local real-time flood forecasting systems in small peri-

urban catchments. In addition, research on the impact of storm direction on flood 

forecasting performance of AI models has been very limited and use of such models in 

peri-urban catchments is a frontier in flood prediction. Previous research in this area 

depended on lab-scale prototypes and rainfall simulators to address the impact of storm 

direction on runoff peak flow (Seo et al., 2012), and may not fully represent the actual 

flooding scenarios. Research on the impact of storm direction on flood forecasting 

models may advance emergency management related to urban flooding. 
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1.2. Objectives 

The goals of this dissertation are: 

1) a) to study the hydrologic behavior of peri-urban catchments during cold season, and 

b) to study the impact of urbanization and increased areas of imperviousness on runoff 

peak flows in peri-urban catchments during cold season. 

2) a) to address the impact of urban development pattern or distribution of impervious 

surfaces on runoff peak flows and stream-flow flashiness in relatively small peri-urban 

catchments (A< 260 km2), b) to develop a simple geometric index to quantify the 

distribution of impervious surfaces for macro-scale management and classification of 

urban development patterns in small peri-urban catchments, c) to apply the developed 

geometric index to predict urban runoff peak flows and stream flashiness in small peri-

urban catchments, d) to assess the effectiveness of the developed index under different 

catchments scales, and geologic and climatic conditions.  

3) To perform a statistical correlation analysis between the average runoff peak flows 

with several measurable surface properties of peri-urban catchments at different climatic 

and geologic conditions.  

4) to study the seasonal change in hydrologic performance of LIDs. 

5) To assess the impact of storm direction on the performance of ANFIS flood 

forecasting model. 

6) To apply SWMM, ANFIS, and SAC-SMA for real-time deterministic flood 

forecasting. 

7)  a) to apply ANFIS and SAC-SMA for real-time ensemble stream-flow prediction of 

the Hurricane Irene flood hydrograph in several small to medium sized peri-urban 



20 
 

catchments (17 km2-150 km2) near NYC, b) to apply both models for real-time ensemble 

flood forecasting of a small storm event at the NYC study catchment to assess the impact 

of storm scale on models performance, c) to quantify the performance of ANFIS and 

SAC-SMA for ensemble streamflow prediction of the two study storm events using 

several quantitative performance indices, d) to address the impact of catchments scale 

and physical properties on models performance for ensemble flood forecasting.  

 

I accomplished these goals via field observations, statistical analysis of my field data and 

input data from many additional USGS monitoring catchment across the US, and by 

testing physical hydrology and AI models. These efforts support the following research 

questions:  

1.3. Research questions 

Question 1: Does the cold-season hydrologic response of peri-urban catchments 

change with increased area of imperviousness? If so, how does the fractional impervious 

area impact the seasonal runoff peak flows in peri-urban catchments? 

Question 2: Does the distribution of imperviousness in peri-urban catchments 

impact runoff peak flow and stream flashiness? If so, how can we characterize these 

impacts? Can we use a simple geometric index that relates the location of the 

imperviousness to the catchment outlet?  

Question 3: Do Artificial Intelligence (AI) models perform as well as lumped 

physical hydrology models for ensemble flood forecasting in relatively small peri-urban 
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catchments? If so, how do storm size, catchment drainage area, and fractional impervious 

area affect each of the model types for ensemble flood forecasting? 

Five additional minor research questions are presented in Appendix S. 

1.4. Approach 

 This dissertation project includes two different phases: field monitoring and data 

analysis. In the field monitoring phase, I performed intensive water level and stream-flow 

(discharge) monitoring at several subcatchments of Ley Creek, a highly urbanized peri-

urban catchment in proximity of Syracuse, NY. I used these field observations and 

stream-flow discharge records from many additional USGS catchments across the US to 

address the impact of urban development pattern on hydrologic behavior of peri-urban 

catchments. The data analysis phase of this dissertation was comprised of two parts: 

statistical analysis and modeling. The statistical analysis phase consisted of a literature 

review on the seasonal performance of LID and calculated average runoff peak flow and 

volume reduction of bioretention cells and green roofs, based on prior studies. I 

calculated the average seasonal peak flows in Ley Creek subcatchments using field 

monitoring data. Next, I studied the impact of imperviousness distribution on runoff peak 

flows and stream-flow flashiness for 90 peri-urban catchments in nine large growing 

cities of the US using a newly developed geometric index (RNICO). In the modeling 

phase, I initially studied the impact of storm movement direction on the performance of 

ANFIS flood forecasting model. Next, I applied ANFIS, SAC-SMA, and SWMM for 

deterministic real-time flood forecasting at Ley Creek. Finally, I applied ANFIS and 

SAC-SMA models for ensemble stream-flow forecasting of the Hurricane Irene flood 
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hydrograph at the outlet point of nine NYC peri-urban catchments. I present the details of 

the study sites and approaches used in this dissertation in Chapter 3. 

2. Chapter 2 (Literature review) 

2.1. Impacts of urbanization on flooding 

Global urban growth and conversion of green space to impervious areas increases the 

likelihood of flood in many urban catchments (Jha et al., 2012). Urban floods threaten 

human lives, damage property, and cause a cascade of environmental impacts in urban 

catchments. These events impose substantial financial investments to municipalities and 

emergency managers to protect urban infrastructures from flooding. Therefore, there has 

been recent increased interest in the study of impacts of urbanization on runoff peak 

flows in urban catchments.  

Seasonal variations in energy and water budget, and the influence of human activities on 

snowmelt processes can greatly influence peak flow response of northern urban 

catchments. Flood events in northern catchments commonly occur during summer flash 

floods and spring snowmelt in mid-April through early March. Previous studies in 

northern urban environments agree on the significant influence of human activities on 

snowmelt processes (Koivusalo et al., 2006; Taylor, 1982, 1977). For example, urban 

snow is typically removed or re-distributed in northern urban catchments (Bengtsson and 

Westerström, 1992; Buttle and Xu, 1988; Ho and Valeo, 2005; Semádeni-Davies, 2000; 

Semádeni-Davies and Bengtsson, 1999). Furthermore, application of road salt and deicers 

on the streets, which transfer heat from the urban infrastructures to the snow, can alter the 

snowmelt timing and peak flow magnitude. Due to the limited knowledge on snow 
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removal/redistribution activities, seasonal peak flow analysis remains a challenge in 

urban hydrology.  

Previous studies on seasonal peak flow analysis for peri-urban catchments in Canada, 

Sweden, and Finland found greater daily snowmelt rates and significantly less infiltration 

rates during cold seasons and associated these effects with human activities (Bengtsson 

and Westerström, 1992; Ho and Valeo, 2005). For example, a comparison study of 

snowmelt runoff from a rural and a suburban catchment in Peterborough, Ontario showed 

that the suburban catchment reacts more quickly to snowmelt and rain-on-snow event. 

This supports the concept that greater initial quick flow is related to microclimatic and 

hydraulic alterations caused by human activities (Buttle and Xu, 1988). In another similar 

study, Bengtsson and Westerström (1992) showed that daily snowmelt rates in Lalea, 

Sweden are nearly 10 mm greater than in rural areas, as a result of increased absorbed 

radiative energy. In addition, urban infiltration rates into soil significantly decreased 

during the cold season so that snowmelt runoff from pervious and impervious areas were 

similar. Ho and Valeo (2005) show similar response in urban snowmelt studies in 

Calgary, Canada, i.e. urban snow removal activities and differences in  in urban 

environment largely influence the energy-balance of snowpacks. Nevertheless, 

antecedent soil moisture had very little effect on runoff from frozen soil which behaved 

similarly to impervious surfaces.  

Most studies on urban runoff peak flows in cold climates have been limited to Canada, 

Sweden, and Finland, with much of the available literature focused on snowmelt runoff. 

There has been limited focus on seasonal comparison of runoff peak flows. To fill this 

research gap, I study the seasonal changes in runoff peak flows in several northeastern 
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US peri-urban catchments. I use a set of intensive field observations and discharge 

monitoring records from a network at several subcatchments of Onondaga Lake 

watershed to calculate seasonal runoff changes in runoff peak flows within the study 

sites. My study catchments include a wide range of fractional impervious area from 11 to 

48 %, which supports study of the impact of increased area of imperviousness on the 

magnitude and frequency of runoff peak flows.  

2.2. Impacts of urban development pattern on flooding 

Increased surface imperviousness can increase urban runoff peak flows by a factor of up 

to fifty, as shown by both empirical and modeling approaches across climates. A 

longitudinal study of urban development in a large Canadian basin (5825 km2) showed 

increased runoff peak flow magnitudes by three times the pre-development condition 

(Nirupama and Simonovic, 2007). A paired study of  summer and spring discharge from 

highly developed urban (0.06 km2) and rural (0.13 km2) catchments in Finland also 

showed up to a threefold increase in peak flows with urbanization (Valtanen et al., 2014). 

Also in Finland, five years of heavy urbanization in a small (0.13 km2) catchment 

increased peak flows by a factor of fifty over 5 years (Sillanpää and Koivusalo, 2015). 

Similarly, increased imperviousness caused significantly greater high flow frequency and 

increased stream flashiness in several medium to large (43-205 km2) rural and urban 

Canadian catchments for a nine-year study period (Eimers and McDonald, 2015). Flood 

peak discharge of large storm events over a 39-year study period in a large (225 km2), 

highly developed urban catchment in Georgia, USA were up to two times greater than for 

several large rural catchments (187-1015 km2) (Rose and Peters, 2001). In contrast, Zope 

et al. (2015) found a negligible effect of four decades of urban growth or about 60 % 



25 
 

increase in built-up areas in a medium size (73 km2) catchment in India, but cautioned 

about the combined impacts of urban development and coastal tides. Suriya and Mudgal 

(2012) predicted elevated flood levels and increased inundated areas due to a thirty-year 

urban sprawl in a large (300 km2) urban basin in India.  

Historically, the fractional impervious area is linked to increased magnitude and 

frequency of urban runoff peak flows (Arnold and Gibbons, 1996; Cheng et al., 2010). 

Conversion of green space to impervious surface generally decreases infiltration 

(Valtanen et al., 2014), evapotranspiration (Grimmond and Oke, 1999), and catchment 

soil storage volume (Bhaskar and Welty, 2012). These alterations to the water balance are 

manifested as decreased flood travel time and elevated surface runoff volume and more 

intense peak flows. Fractional impervious area has been widely used for assessing the 

impact of urbanization on flooding in urban catchments, but this criterion may not fully 

represent the complexity of the distribution of impervious surfaces within urban 

catchments (Du et al., 2015). It is well understood that the distribution of impervious 

areas within urban catchments can affect peak flows (Mejía and Moglen, 2010a, 2010b, 

2009; Yang et al., 2011). For example, Mejia and Moglen (2010) used several water 

resources objective functions to optimize the distribution of impervious areas in several 

hypothetical urban catchments and found that restraining catchment imperviousness to 

10% , as defined in previous literature (Schueler et al., 2009; Schueler, 1994; Valtanen et 

al., 2014), may lead to an unplanned low density urban growth within the catchment. 

Yang et al. (2011) used a GIS-bases physical hydrology model approach to address the 

impact of the distribution of impervious areas on peak flows in several urban catchments 

in Indiana, USA. They found a significant impact of runoff processes on urban peak 
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flows for catchment scales and higher influence of runoff travel time to the catchment 

outlet for large river basins.  

The concept that urban development patterns can alter runoff peak flows and stream 

flashiness through the location of impervious areas within the catchment in urban 

catchments is not new (Mejía and Moglen, 2010a, 2010b, 2009; Yang et al., 2011), a 

deterministic approach to address such impacts has not been developed for general use. 

Most studies have focused on site-specific hydrological modeling approaches to address 

the impact of different hypothetical urban sprawl scenarios. Although physical models 

can provide insight into the behavior of a natural system, they are limited by uncertainty 

of data input and model parameter calibration. To overcome this limitation and fill this 

research gap, I developed a new simple geometric index (RNICO) to account for the 

relative proximity of impervious areas within urban catchments to the catchment outlet. 

An advantage of RNICO compared to modeling approaches presented in previous 

literature is that it only requires land cover maps and stream-flow discharge records. 

These are typically accessible for most urban catchments worldwide. More importantly, 

the simplicity of calculating RNICO supports broad-scale planning and management of 

urban development in peri-urban catchments. Such an approach could be an important 

tool for urban planners and municipalities with limited knowledge of hydrology and 

modeling.  

2.2. Real-time flood forecasting 

Historically, local ensemble stream-flow prediction systems have applied different 

physical hydrology models and numerical weather prediction data sources for simulating 

rainfall-runoff processes during extreme events such as flash floods or hurricanes. For 
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example, Marty et al. (2013) used the lumped TOPSIMPL model and Probabilistic 

Quantitative Precipitation Forecast (PQPF) at daily and sub daily (six hours) time steps to 

re-forecast the flood hydrographs of five major flash flood events in southern France 

between 2005 and 2008. They generated hourly streamflow forecast ensembles for lead 

times of up to 48 hours for a range of catchment scales from 100 to 600 km2 and 

indicated that streamflow forecasts depend on the accuracy of PQPF, while using both 

daily and sub daily weather sources considerably increased the TOPSIMPL model 

performance. A semi-distributed rainfall-runoff model (PREVAH) and weather forecast 

ensembles of two radars (NORA and REAL-C2) were used to re-forecast several flash 

flood event hydrographs in the southern Swiss Alps between 2007 and 2010 (Liechti et 

al., 2013) and found that the REAL-C2 radar forecast ensembles provided a better 

performance results compared to the NORA radar. More recently, Hally et al. (2015) 

used a multi-model software, Meteorological Model Bridge (MMB), that applied multiple 

semi-distributed physical hydrologic and atmospheric prediction models to re-forecast the 

hydrograph of the tragic flood event on 4 November, 2011 at Genoa, Italy. They found 

that the multi-modeling aspect of MMB model is a is a useful tool to generate more 

accurate predictions during large storm events. Similarly, Mengual et al. (2015) used the 

semi-distributed Hydrologic Modeling System (HEC-HMS) and rain gage data through 

both probabilistic and deterministic approaches to re-forecast the hydrograph of the 

disastrous flash flood event of 28 September, 2012 in Murcia, Spain. Based on the 

forecast results for lead times of 48 hours, they emphasized the benefit of a probabilistic 

approach that accounts for weather prediction uncertainties for short-term flood 

prediction systems. Similarly, Saleh et al. (2016) applied the semi-distributed HEC-HMS 
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model and 21 precipitation ensembles of the Global Ensemble Forecast System 

(GEFS/R) for short-term flood forecasting in the Hudson River Basin, New York during 

Hurricane Irene. They generated streamflow forecast ensembles for lead times of 24 to 72 

hours and showed that the probabilistic approach improves short-term streamflow 

predictions by carrying more useful information than a traditional single-run 

deterministic modeling approach. These studies support the use of ensemble flood 

prediction to develop improve flood forecasts over traditional deterministic modeling 

approaches, especially for river basins greater than 100 km2. However, the effectiveness 

of the ensemble flood forecasting approach for urban catchments less than 100 km2 

remains unclear due to the limited number small catchment studies in urban settings. 

 

  Continental flood forecasting systems worldwide use a variety of rainfall-runoff models 

based on deterministic and probabilistic approaches. In Europe, the European Flood 

Awareness System (EFAS) applies Lisflood (Knijff et al., 2010) and the European 

Hydrological Predictions for the Environment (E-HYPE) uses the HYPE model 

(Lindström et al., 2010). Lisflood uses precipitation, temperature, and evaporation 

forecast ensembles as input to simulate hydrologic and flow routing processes (Emerton 

et al., 2016). The model simulates twenty-two years of historical discharge using Lisflood 

to find reference flooding thresholds. In contrast, E-HYPE applies deterministic 

Numerical Weather Prediction (NWP) as input for a distributed rainfall-runoff HYPE 

model to simulate hydrologic processes such as evapotranspiration, snowmelt, and 

groundwater recharge. In Australia, the Flood Forecasting and Warning Service (FFWS) 

uses a combination of GR4J, GR4H, and Unified River Basin Simulator (URBS) models 
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for rainfall-runoff simulation and a Muskingum approach for channel routing (Emerton et 

al., 2016). In the United States, the NWS runs the Hydrologic Ensemble Forecast System 

(HEFS) using the lumped Sacramento Soil Moisture Accounting (SAC-SMA) model 

(Burnash et al., 1973). HEFS receives forecast ensembles of precipitation and 

temperature to simulate rainfall-runoff in hourly to seasonal time steps. Although most 

continental flood forecasting systems use physical hydrology models, there is no single 

recommended approach for using data-driven models for ensemble flood forecasting.   

 

Several previous studies have used AI models for deterministic flood forecasting in large 

river basins. For example, Campolo et al. (2003) used an ANN model for real-time flood 

stage prediction at a large river basin (4000 km2) in Italy using rainfall, hydrometric and 

dam operation information and indicated accurate forecast results for lead times of up to 

six hours. Results of training ANFIS and ANN models for hourly flood forecasting in a 

large Indian river basin (1350 km2) using antecedent rainfall and runoff input datasets 

showed better performance of ANFIS compared to ANN (Nayak et al., 2005). Using a 

combination of satellite and rain gage precipitation records as input for a recurrent neural 

network (RNN) showed an increase in the accuracy of forecasting typhoon flood peaks at 

a medium size river basin (204 km2) in Taiwan (Chang et al., 2007).  However, the 

effectiveness of this improvement in model performance decreased by increasing the 

number of rain gages. For daily flood stage forecasts, ANFIS was shown to have 

excellent performance for predicting flood stage at a very large river basin (790,000 km2) 

in Laos (Khac and Chua, 2012). 
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Storm direction can affect the hydrologic response of small catchments by changing the 

time of concentration (Seo et al., 2012). This difference in storm direction may change 

the prediction performance of data-driven models trained by upstream gage. For example, 

for storms that move downstream through the catchment, early flood measurements at the 

upstream gage can inform a data-driven model to forecast the downstream flood intensity 

if provided sufficient lead time.  In contrast, for storms moving upstream, the stage 

increases earlier downstream, so the delayed upstream response may not predict the 

downstream peak flows sufficiently. There has been very limited research on the impact 

of storm direction on the performance of flood forecasting models. Previous research in 

this area depended on lab-scale prototypes and rainfall simulators (Seo et al., 2012), and 

may not fully represent the actual flooding scenarios. Investigating this linkage helps 

understanding the strengths and limitations of data-driven models for flood forecasting in 

small urban catchments. I study the impact of storm direction on the performance of data-

driven models for flood forecasting in small urban catchments as part of the second phase 

of this dissertation.  

The previous literature indicates that the practical application of AI models has been 

limited for real-time flood forecasting systems due to limited trust in training algorithms 

for these models. This is especially the case for small peri-urban catchments, where the 

time of concentration is short and catchments response time to precipitation events is 

great, model selection for real-time flood forecasting is an important concern. To address 

this concern, I will compare the performance of AI and physical models for small urban 

catchments. Therefore, the second phase of this dissertation demonstrates the use of 

ANFIS and SAC-SMA models in real-time flood forecasting systems. I chose to re-
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forecast the Hurricane Irene flood hydrograph at the outlet of nine peri-urban catchments 

near NYC which were extensively flooded and damaged during the event. Results of this 

phase of the study demonstrate relative performance of AI and physical model for an 

important flood event. Ideally, this demonstration demonstrates the benefits and 

drawbacks of AI models as an alternative to physical hydrology models in practical real-

time flood forecasting systems.     
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3. Chapter 3 (Methods) 

3.1. Field monitoring 

3.1.1. Study sites 

Ley Creek is an urbanized catchment, in the eastern part of Onondaga lake watershed 

north of the city of Syracuse, New York (43°04'38", 76°10'13"). The catchment drains 78 

km2 of low-gradient glaciated lake margin with elevations ranging from 111 to 208 m. 

About 40 % of the catchment is impervious due to the presence of a central commercial 

district and Hancock International Airport (Table 1). Ley Creek outlet is a third order 

stream with three main sub-branches: north branch, south branch, and main branch. North 

and south branches converge near I-90 to form the main branch (Figure 1). Except for the 

natural wetlands and forests on northeastern side of the catchment, the watershed has 

extensive areas of impervious land covers including residential, commercial, and local 

industries (Figure 2). Additionally, most soils the catchment are characterized as having 

low to moderate drainage potential. Much of the catchment is equipped with drainage 

infrastructure. The area has a humid continental climate with the thirty-year average 

annual, minimum, and maximum temperatures of 9, −10, and 28 ◦C respectively (NOAA, 

2000). The annual average effective depth of precipitation and snow for the period 1948-

2014 are 980 and 2970 mm, respectively (Figure 3).  
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Figure 1. Topography and the location of monitoring stations at Ley Creek. 
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Figure 2. Land cover classification map in Ley Creek (NLCD, 2011) 
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Gage ID Subcatchment name
Area 

(km2)
Imperviousness (%)

1 Ley Creek Dr. 10 36

2 Lemoyne Ave 58 33

3 Deere Rd. 7 43

4 Old Ct. St. 5 49

5 Stm Pond 5 48

6 Thompson Rd. 24 17

7 Fly Rd. 11 11

8 Park St. USGS 72 34

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Annual precipitation records at Hancock International Airport, Syracuse, NY 

(NOAA, 2016) 

 

Table 1. Descriptions of the eight study subcatchments at Ley Creek, Syracuse, NY 
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Poor channel conditions and rapid urbanization have contributed to several floods in Ley 

Creek from 1950 to 1970. Spring snowmelt flooding caused extensive damage in March 

1950, March 1960, and March 1964 ( FEMA, 2012). The Onondaga County Department 

of Drainage and Sanitation responded by increasing the channel dimensions and rerouting 

Ley Creek through the Town of Salina Landfill in 1970. These flood mitigation plans 

have shown relatively positive outcomes, however Ley Creek continues to flood beyond 

its banks periodically (USEPA, 2014) (Figure 4). The high flood potential, present 

condition of the catchment, and likely future increases in summer precipitation intensity, 

warrants research on land use management and stormwater control strategies to reduce 

the flood risk in Ley Creek, and as an example study for flood forecasting in other small 

urban catchments.  
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                     (a)                                                                                       (b)  

 

 

 

 

 

    

                        (c)                                                                                     (d) 

Figure 4. Images from the flooding event at Ley Creek on 7 July 2015. Panels a and b 

show the road closure due to flooding at the intersection of Ley Creek Dr. and 7th N. St. 

and panels b and c show backwater pooling at bridges near the intersection of Thompson 

Rd. and E. Molloy Rd in De Witt, NY. 

3.1.2. Monitoring stations 

Water level was monitored at the culvert inlets at screened wells constructed of 5 cm 

diameter PVC using HOBO U20-L temperature and pressure sensors (Onset Computer, 

Bourne MA USA). Stream conditions varied widely between base flow and peak flows, 

so two gaging methods were combined to estimate discharge over the range of observed 

stage and velocity at non-USGS monitoring stations. For base flows, stream discharge 
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ranging from 0.004 to 1.72 m3/s was measured with ultrasonic Doppler gaging device 

(Sontek YSI, San Diego CA) using USGS stream-gaging technique (Buchanan and 

Somers, 1969) and stage discharge relationships were developed using stream gaging 

records (Rantz S. E. et al., 1982): 

bcGaQ )(                                                                      (Eq. 2) 

Where Q: Discharge (m3/s); G: recorded stream depth (m); a & b: rating curve 

coefficients; and c: gage height in which discharge equals zero at the station. km2 

 

The inlet control assumption was applied to calculate high flows for unsubmerged culvert 

conditions from geometry of the inlet using standard hydraulic formulae (Haderlie and 

Tullis, 2008, 2008; Norman J. M. et al., 2001; Tullis and Anderson, 2010): 
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Where Hw: headwater depth (m)  

D: interior height of the culvert (m)  

A: culvert intersection area, (m2);  

Hc: specific head at critical depth (dc + 
୚ౙ

మ

ଶ୥
 ), m;  

M: 1.811 for SI units;  

S: culvert slope, 
୫

୫
;  

K and M: constants (function of culvert type and geometry). 
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Gage 
ID

Site category Subcatchment name
Area 

(km2)

Average 
Imperviousness 

(%)

LOW1 Ley Creek North-Fly Rd. 11 11

LOW2
Upstream Harbor Brook 

USGS gage
25 12

LOW3
Downstream Harbor Brook 

USGS gage
28 17

INT1 Park St. USGS gage 72 34

INT2
Ley Creek South-
Stormwater Pond

5 48

Low 
Urbanization

Intermediate 
Urbanization

3.2. Data analysis 

3.2.1. Seasonal peak flow analysis for Ley Creek  

3.2.1.1. Study sites 

Five subcatchments of Onondaga Lake watershed were selected for the first part of the 

study (Table 2, Figure 5): three low urbanized (imperviousness of 11 % to 17 %, LOW1, 

LOW2, and LOW3) and two moderately urbanized (imperviousness of 34 % and 48 %, 

INT1 and INT2). These study sites have a relatively low-gradient topography and more 

than half of the catchments (on the downstream part) is urbanized. All subcatchments are 

partially developed with relatively high density residential and commercial land uses 

except for LOW1 (imperviousness of 11%) which is predominantly wetlands.  

 
Table 2. Descriptions of the five study subcatchments at Onondaga Lake Watershed 
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Figure 5. The location and land cover map of the study subcatchments at Onondaga Lake 

watershed, at Syracuse, New York 

3.2.1.2. Seasonal runoff peak flow calculation 

I selected seventy-nine runoff events from October 2014 to December 2015 for analysis. 

Each individual storm event was defined by measured rainfall of more than 3 mm 

followed by no rain at least four hours. Events were classified into four seasons based on 

Equinox and Solstice dates (20 March, 21 June, 22 September, and 21 December). 

Snowmelt events were indicated by hydrograph peaks associated with periods of positive 
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temperature or rain-on-snow events during March and early April 2015. Average 

seasonal and annual peak flow magnitudes were calculated for each subcatchment. 

 

Land cover in each subcatchment was determined by delineating the watershed with 

ARC-HYDRO extension of ARCMAP10.3 and overlaying it with land cover shape file.  

Geographic site information including catchment boundary, water bodies, rivers, land 

use, and land cover layers were obtained from National Land Cover Dataset and Digital 

Elevation Model (DEM) maps were obtained from Cornell University Geospatial 

Information Repository. The DEM maps and watershed boundary layers were exported to 

ARCMAP 10.3. Monitoring station locations were specified and subcatchments 

corresponding to different monitoring stations were delineated with ARC-HYDRO. Land 

cover layers were clipped to the extension of delineated subcatchments. NLCD Land 

cover maps are in .tiff format which is not suitable for geometric calculations. Therefore, 

raster-to-polygon command in ARCMAP was used to convert .tiff to polygon for each 

subcatchment. Based on the definition of color codes, corresponding fractional 

impervious areas were calculated for different subcatchments (Table 2). 

3.2.2. Impacts of urban development pattern on peak flows  

3.2.2.1. Study sites 

Ninety peri-urban catchments in proximity of nine large growing western, northern, and 

southern US cities are selected for analysis (Figure 6 and Table 3). Site IDs for each city 

are assigned based on the drainage area while the smallest catchment has ID=1 and the 

largest site has the greatest ID number. The drainage area of the study catchments range 

of from 1 to 255 km2 and imperviousness from 4 to 56 %. 
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Figure 6. Land cover maps and location of the study catchments: NYC, Syracuse, NY, 

Chicago, IL, Baltimore, MD, Austin, TX, Houston, TX, Portland, OR, San Francisco, 

CA, and Los Angeles, CA. The background colors which are described in the legend are 

defined based on the NLCD 2011 land cover dataset. Catchment boundaries are presented 

with solid black lines. Numbers on the maps represent catchment IDs. Scale bars for each 

city represents 20 kilometers. 
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Table 3. Study site characteristics 
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Several storm events between October 2009 and September 2012 (about 40 events for 

western US cities, around 60 to 90 events for southern US cities, and about 100 events for 

northern US cities) were selected for analysis. I chose this window to match the 2011 

National Land Cover Dataset (http://www.mrlc.gov/nlcd2011.php). Precipitation data for 

all cities except for Syracuse were obtained from the Phase 2 of the North American 

Land Data Assimilation System (NLDAS-2) using the HydroDesktop 1.4 software (Ames 

et al., 2012). Precipitation records for Syracuse sites were obtained from two locations: 

Metropolitan Syracuse Wastewater Treatment Plant (Metro) 5-min records and 1-hr 

records at Hancock International Airport (Table 4). The distance between Metro and 

Hancock is about 7 km (Figure 1). The storm-tracking results using NEXRAD Level 3 

radar data from the National Oceanic and Atmospheric Administration at the study area 

showed that most storms with depth greater than 3 mm during the study period are from 

the Northwest. These stations show similar records with a short time lag, so the higher 

temporal resolution Metro records were used as the primary reference, and missing 

observations were filled from the Hancock record. Streamflow discharge records from 

water year 2009 to water year 2012 for all cities except for Syracuse were obtained from 

the corresponding USGS gages (Table 3). For Syracuse, USGS gage data were only used 

for site 4 and new gaging stations were established at the outlet of sites 1 to 3 and real-

time stream-flow discharge monitoring were performed between October 2014 and 

January 2016 (as noted in section 3.1.2). Runoff components for each event were 

separated using the approach of Nathan and McMahon (1990). 
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Table 4. Descriptions of weather stations used in Syracuse, NY. 

 

 

 

 

Land cover information for the study catchments was obtained from the National Land 

Cover Database (NLCD) 2011: Catchment boundaries were delineated using the USGS 

stream auto delineation tool (http://water.usgs.gov/osw/streamstats/) and used to clip the 

NLCD 2011 layer for the United States. The resulting raster files were converted to shape 

files of catchment area, impervious areas, and stream reaches to facilitate geometric 

analysis. Impervious areas were defined as medium to high density development. 

Fractional impervious area was calculated for each catchment on an area basis (Table 3). 

To assess the impact of imperviousness distribution on flooding, the correlations between 

the runoff peak flow and nearness of the centroid of impervious areas to catchment outlet 

was determined. 

3.2.2.2. RNICO index 

I developed a new geometric index, RNICO, as follows: 

(Eq. 4) 

 

where di equals the distance between imperviousness centroid and the outlet, and dc is the 

distance between the centroids of catchment and the outlet (Figure 7a). 
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 Figure 7. Schematic diagram of geometric parameters used for calculating (a) 

Relative Nearness of Imperviousness to the Catchment Outlet (RNICO) and (b) the three 

possible development pattern classes based on the RNICO index. (X1, Y1) to (Xn, Yn), 

impervious surface elements centroid location; (Xc, Yc), resultant geometric centroid 

location of all impervious surface elements in the catchment; (Xb, Yb), catchment 

centroid location; (Xo, Yo), catchment outlet location; di, distance between 

imperviousness centroid and the outlet; and dc, distance between the centroids of 

catchment and the outlet. 
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To remove the effect of catchment scale, the fractional distance (di/dc) between the 

centroid of imperviousness (Xc, Yc) and centroid of the catchment (Xb, Yb) and the 

catchment outlet (Xo, Yo) is calculated to represent relative remoteness of the 

imperviousness from the outlet (Figure 7). The calculated fraction is subtracted from one 

to indicate relative nearness to the outlet (Equation 2). ARCMAP 10.3 geometric 

calculation module is used to find the centroid of basin and impervious areas. 

With the RNICO index, all development patterns are classified into three main classes 

(Figure 7b): upstream urbanization (UU; RNICO < 0), centralized urbanization (CEN; 

RNICO = 0), and downstream urbanization (DU; RNICO > 0). The maximum theoretical 

value of RNICO (1.0) occurs when all impervious areas are located at the catchment 

outlet.  

3.3. Hydrologic modeling 

In this phase of my dissertation, I used two physical hydrology models: SWMM 5.0 and 

SAC-SMA, and an ANFIS model for hydrologic modeling, and real-time deterministic 

and ensemble flood forecasting.  

3.3.1. SWMM 5.0 model 

SWMM model was first developed by Metcalf and Eddy (1971) to calculate surface 

runoff from catchment geometry. Catchment geometrical characteristics used in SWMM 

include the length of the plane (L), surface area (A), and runoff slope (J0). United States 

Environmental Protection Agency (USEPA) has been improving the original SWMM 

model by adding groundwater, snowmelt and evapotranspiration components, and urban 
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drainage infrastructure design module through a free comprehensive software package 

(Rossman L., 2010). 

3.3.2. SAC-SMA model 

The SAC-SMA model is a physical hydrology model that was initially developed by 

Burnash et al. (1973) to distribute humidity characteristics at different levels of soil for an 

accurate streamflow simulation (Foehn et al., 2016). The Hydrology Laboratory of 

NOAA’s NWS selected the SAC-SMA lumped model as a comparison baseline for 

participating distributed hydrologic models in the Distributed Model Intercomparison 

Project (DMIP), which aimed to identify the most suitable model for NWS streamflow 

prediction across the US (http://www.nws.noaa.gov/ohd/hrl/dmip/). More importantly, 

the NWS is currently using the lumped form of SAC-SMA for ensemble flood 

forecasting across the US (Emerton et al., 2016). For these reasons, I employ a lumped 

version of SAC-SMA.  SAC-SMA requires precipitation and potential evapotranspiration 

as input to simulate streamflow. I use the Turc approach for calculating the potential 

evapotranspiration using air temperature data (Turc, 1955). However, I posit that changes 

in antecedent moisture due to ET may not greatly impact flood hydrographs due to the 

short time scale of flood events. The moisture accounting procedure used in the SAC-

SMA model is structured based on a simple approximation of soil moisture (Burnash, 

1995). SAC-SMA uses 17 parameters to represent upper and lower soil zones and 

catchment characteristics. The key parameters of the model include the upper and lower 

zone tension water capacity, free water capacity, and percolation parameters that should 

be adjusted during model calibration (Gan et al., 2014; Herman et al., 2013). Total 

computed surface runoff includes direct runoff from impervious surfaces and saturated 
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soils, and interflow resulting from free water storage and base flow components 

(Burnash, 1995) that can be modeled for a range of temporal resolutions from sub-hourly 

to monthly time steps. 

  SAC-SMA was calibrated using the Multi-Step Automatic Calibration Scheme (MACS; 

Hogue et al., 2000) that applies the procedure followed by NWS during manual 

calibration. In this procedure, all SAC-SMA model parameters were initially calibrated to 

minimize the RMSE of log-transformed streamflow observations and predictions. The 

upper zone parameters were then adjusted using the RMSE of the real data while lower 

zone parameter values remain fixed from the previous calibration. Finally, the lower zone 

parameters were re-adjusted using the RMSE of the log-transformed data while upper 

zone parameter values remained fixed from the previous step. 

3.3.3. ANFIS model 

  ANFIS is a data-driven model that combines the human logic of fuzzy inference 

systems (FIS) with the adaptive capability of training artificial neural networks (ANNs) 

(Jang and Chuen-Tsai Sun, 1995). FIS is the theory of solving fuzzy processes (Zadeh, 

1965) that are controlled by unclear, uncertain, or incomplete information using several 

if-then statements and numerical methods called membership functions. Membership 

functions define the degree of truth of each fuzzy statement using a value of between 0 

and 1. Decisions on the number and shape of membership functions for a fuzzy system 

require the addition of human knowledge. However, ANN’s training module can be used 

to create appropriate membership functions and if-then rules to approximate an output 

dataset. The FIS structure is unable to dynamically adjust with the environmental change 
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in datasets. To overcome this shortcoming, the learning capability of ANN was added to 

ANFIS. 

  FIS selection is an important part of an ANFIS model. Two widely used FIS functions 

in the literature are the Mamdani function (Mamdani and Assilian, 1999) and the Sugeno 

function (Takagi and Sugeno, 1983). This study applies the Sugeno FIS function as it has 

been commonly used for streamflow discharge forecasting in previous literature (Chang 

and Chang, 2006; Rezaeianzadeh et al., 2014; Shiri and Kisi, 2010). An example of a 

simple first-order Sugeno FIS with two inputs, two membership functions, and two rules 

is shown in Figure 8a. Figure 8b shows the equivalent ANFIS system for the same FIS. 

The if-then rules structure of the first-order FIS shown in Figure 8b can be expressed as 

(Farokhnia et al., 2011): 

  Rule 1: If x is A1 and y is B1 then f1=p1x+q1y+r1                       (Eq. 5) 

  Rule 2: If x is A2 and y is B2 then f2=p2x+q2y+r2                       (Eq. 6) 
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Figure 8. Sample of a first-order Sugeno FIS (a); and its equivalent ANFIS (b) 

(Farokhnia et al., 2011; Ghalkhani et al., 2013). 

 where Ai and Bi are the membership functions of inputs x and y, respectively; fi 

approximates output within the fuzzy region specified by the ith fuzzy rule and pi, qi, and 

ri are the parameter sets for calculating fi that are optimized alongside the membership 

function shape parameters during the training process.  

  ANFIS predicts an output parameter from input variable(s) through a multilayer 

structure (Figure 8b). In layer 1 (also called a Fuzzifier), input variables are translated to 

linguistic labels such as low, medium or high using membership functions. In layer 2 

(Implication layer), the membership function values associated with different input 

variables from layer 1 are multiplied to represent the strength of different fuzzy rules 

(w୧). In layer 3, weights of different fuzzy rules are normalized. Finally in layer 4, the 

normalized weights from layer 3 are used to predict an output parameter using the pi, qi, 
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and ri parameter sets that are previously optimized using a gradient descent algorithm 

(Snyman, 2005).  

AI models are typically trained using the input variables that have the highest Pearson 

correlation coefficient with the outputs (Sudheer et al., 2002). For hydrologic modeling, 

AI model input variables typically include the antecedent observed discharge and 

accumulated precipitation for lead times with the highest Pearson correlation coefficient. 

I trained ANFIS using the antecedent observed discharge and accumulated precipitation. 

This selection was based on the observation of greatest Pearson correlation coefficient 

values between the current discharge at each time step (Qt) and the antecedent 

precipitation and discharge inputs (Qt-N). I note that because the ANFIS model is 

dependent on antecedent observed discharge (Qt-N) and forecast lead time, the model 

must be calibrated and validated for each lead time. 

3.3.4. Effect of storm direction on the performance of ANFIS 

Storm directions through the Ley Creek catchment were indicated by the dominant wind 

direction at the two weather stations in near Onondaga Lake (Figure 1). Dominant wind 

direction for a single storm event at each weather station is assumed as the most 

frequently reported direction from the beginning of the storm to the rainfall center of 

mass which is defined as the center of area under the hourly precipitation (mm) versus 

time (hours) plot. Only storm events with conclusive wind direction at the two stations 

are used in the study (for example, if the dominant wind direction in the two weather 

stations were the opposite for a storm event, it will be excluded from the analysis). I note 

that results of storm tracking using the NEXRAD Level 3 radar data for several storm 

events indicated an agreement between the wind directions in the two weather stations 
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and the actual direction of storm movements through the catchment. A total of 68 storm 

events between 24 June 2014 to 10 January 2016 were detected including 41 storms 

moving upstream to downstream (UD) and 28 storms moving downstream to upstream of 

the catchment (DU).  

Three independent modeling scenarios were developed using different combinations of 

training data: 1) 20 UD storm events, 2) 10 DU+10 UD storms, and 3) 20 DU datasets. 

For all three scenarios, test periods included 5 DU+5 UD. For each modeling scenario, 

100 independent combinations of storms were selected from the observed storms using 

the Sample function (in R programming language without replacement). 

ANFIS was trained by water level data at the upstream station (Gage 2 in Table 1, 

Lemoyne Ave.) as input to predict discharge at the downstream station (Gage 8 in Table 

1, Park St. USGS) for a lead time of 2-hours. Data at both stations were recorded at 15-

min intervals. The highly correlated lagged input datasets (water levels at Lemoyne Ave 

station), dt-2hrs, dt-2.25hrs, and dt-2.5hrs, were used to train the ANFIS model. Finally, the 

performance of the flood forecast model is assessed by MSE, RMSE, Mean Error (ME), 

and R2 between observed and modeled values. 

3.3.5. Real-time deterministic flood forecasting 

The goal of this analysis is to compare the performance of ANFIS with two physical 

hydrology models, SAC-SMA and SWMM, for real-time deterministic flood forecasting 

at Ley Creek. Physical hydrology models are calibrated for observed discharge records 

during water years 2010 to 2013 using three different strategies (lumped, semi-lumped, 

and semi-distributed) and are validated for water years 2014 to 2015. Finally, different 
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statistical performance parameters for flood forecasting with lead times of one to six 

hours for different flow conditions (low, moderate, and high) are calculated and 

compared between ANFIS and all calibrated physical hydrology models.  

3.3.5.1. Building multi-step-ahead forecasting models 

All models were calibrated for water years 2010 to 2013 and validated for water years 

2014 to 2015 using hourly observed discharge records at USGS gage number 04240120 

at Park Street, Syracuse, NY. Hourly precipitation and temperature records are obtained 

from Hancock International Airport weather stations within the catchment. Three 

different strategies are used to calibrate physical hydrology modes: Lumped, Semi-

Lumped, and Semi-Distributed (Figure 9). RS MINERVE hydrologic-hydraulic modeling 

package (Foehn et al., 2016) is used to simulate SAC-SMA and SWMM models. A 

degree-day snowmelt module in RS MINERVE (Snow-GSM) is used to simulate the 

snowmelt runoff. Evapotranspiration is calculated using Turc approach (1955). 

Kinematic Wave method is used to rout the stream-flow from source to the outlet through 

the channel (Miller, 1984). 
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Figure 9. Schematic view of lumped (a and b) semi-lumped (c and d), and semi-

distributed calibration strategies (e and f) used for SAC-SMA and SWMM models in RS 

MINERVE software. For all modeling scenarios, the Kinematic Wave and Snow-GSM 

degree-day approaches are used for flood routing and snowmelt runoff volume 

calculation, respectively. The lumped model assumes one parameter set for model 

calibration (ϕ1, ϕ2,…, ϕn) and does not divide the catchment into subcatchments. The 
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semi-lumped model divide the catchment in three subcatchments and assumes similar 

parameter sets for all subcatchments (ϕ1, ϕ2,…, ϕn). The semi-distributed model divides 

the catchment into three subcatchments and assumes different parameter sets for each 

subcatchment.  

To build a real-time deterministic flood forecasting system, physical hydrology model 

predictions are updated using the observed discharge values (Figure 10). To perform this, 

the difference between the modeled future discharge (Qt+1) and the current modeled 

discharge (Qt) is added to the current observed discharge (Qt, observed). This approach 

increases the real-time flood forecasting performance of the physical hydrology model by 

reducing the uncertainties and errors due to the modeling.     

 

 

 

 

 

 

 

Figure 10. Real-time transformation of modeled discharge from SAC-SMA and SWMM. 

 

The ANFIS real-time flood forecasting model was built in five steps: dataset creation, 

correlation analysis, optimization, calibration, and validation. First, discharge and 
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precipitation time series with lag times of one to 48 hours (Qt-1hr, Qt-2hrs,…, Qt-48hrs and Pt-

1hr, Pt-2hrs,…, Pt-48hrs) are created. Second, the correlation coefficients between the current 

discharge and all lagged discharge and precipitation values are calculated. Next, a set of 

highly correlated discharge and precipitation lagged datasets are entered to Soccer 

League Competition (SLC) optimization algorithm (Moosavian and Roodsari, 2014a; 

Moosavian and Roodsari, 2014b) to find the five optimal lagged datasets with the 

minimum RMSE of the ANFIS model. Finally, ANFIS is calibrated and validated using 

the optimal discharge and precipitation lagged datasets. 

3.3.6. Real-time ensemble flood forecasting 

3.3.6.1. Study site description 

 In August 2011, Hurricane Irene caused several deaths and severe property damage to 

the eastern coast of the US. Property damage was approximated at about USD 1.5 billion 

in NY (http://www.fema.gov/ar/disaster/4020) and USD 1 billion in New Jersey (Saleh et 

al., 2016). During Hurricane Irene, a total of between 15 and 25 cm of accumulated 

precipitation occurred in a period of less than two days. Flood levels at most streams in 

proximity of NYC exceeded the major flood threshold defined by National Oceanic and 

Atmospheric Administration (NOAA) (Table 5). Emergency management agencies 

evacuated millions of people from the flood-prone regions to limit loss of life. 

Nevertheless, several deaths occurred in flooded areas during the event. I simulated the 

flood hydrographs for nine peri-urban catchments near NYC that were severely impacted 

by Hurricane Irene (Figure 11 and Table 5). Study catchment drainage areas range from 

small (17 km2) to medium (150 km2) sizes. The initial set of seventeen catchments for 

analysis was divided bases on careful inspection of land cover and catchment hydraulic 
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connectivity, which showed that eight catchments have stormwater reservoirs close to the 

outlet that dampen the outflow hydrograph during storm events. Therefore, nine 

catchments without stormwater control infrastructure were selected for analysis. These 

nine catchments are slightly to moderately developed, with impervious area ranges from 

12% to 25%. The soil in the study area consists of approximately 40% silt, 10% clay, and 

50% sand and has a high runoff potential (Falcone, 2011).  

Table 5. Descriptions of the study sites in proximity of NYC. 
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Figure 11. Land cover map of the study catchments. Land covers associated with low 

density development, medium- and high-density development, forest and wetland, open 

water, and planted/ cultivated are shown by white, red, green, blue, and yellow, 

respectively. Catchment ID numbers indicate drainage area, increases from 1 and 9. 

Table 5 provides detailed information about the study catchments. 

Subcatchment drainage areas in Table 5 were calculated using the USGS StreamStats 

auto delineation tool (http://water.usgs.gov/osw/streamstats/). Statistics for calculating 

the mean historical annual gaged peak flow and the gaged peak flow during Hurricane 

Irene were obtained from the corresponding USGS gages. The NOAA major flood 

thresholds were obtained from the USGS website (http://waterwatch.usgs.gov). This 

threshold value, defined by the NWS, represents the volumetric discharge that, when 

exceeded, signifies a major flood event. Note that the NOAA major flood threshold 
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values that are presented in Table 5 were recently removed or changed at the USGS 

website for unknown reasons.  

3.3.6.2. Model Input Data and Simulation Periods  

  Meteorological data including hourly precipitation and temperature data were obtained 

from Phase 2 of the North American Land Data Assimilation System (NLDAS-2) using 

the HydroDesktop version 1.4 software (Ames et al., 2012). I focus on model application 

to two different events: (1) Hurricane Irene, and (2) a smaller storm in NYC during 

September of 2011. The total accumulated precipitation for the small storm during 2011 

was about 35 mm, which is approximately one-fifth of that for Hurricane Irene (160 mm), 

and the duration of small event was about half a day, which is around one-third of that for 

Hurricane Irene. The historical observed streamflow discharge records from 1 October 

2004 to 1 October 2014 were obtained from the corresponding USGS gages (Table 5). 

Observed meteorological and discharge data from 1 October 2004 to 27 August 2011 

were used for model calibration for Hurricane Irene. Similarly, observed datasets from 1 

October 2004 to 23 September 2011 were used for model calibration for a small storm 

event that occurred a few weeks after Hurricane Irene. The calibrated models were then 

validated for the following three years to ensure robustness. Finally, the GEFS/R 

precipitation data inputs and the observed temperature and discharge records for the 

events 27-29 August 2011 and 23-25 September 2011 were used to force the 

calibrated/validated models for ensemble stream-flow prediction. 

3.3.6.3. Real-time flood forecasting system 

  I implemented a real-time ensemble flood forecasting approach to re-forecast the flood 

discharge at nine USGS gages (Table 5) located at the outlet of the study sites for 
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Hurricane Irene and a smaller storm event that occurred a few weeks after Hurricane 

Irene. Eleven ensemble members of the GEFS/R precipitation (10 members + 1 control 

member) with a temporal resolution of three hours were used to force the calibrated 

models to forecast the streamflow discharge during the two study events. As the available 

GEFS/R precipitation data are produced only once daily at 00 Universal Time 

Coordinated (UTC), a meteorological and discharge data updating component was added 

to the system to update the precipitation and streamflow discharge inputs for sub-daily 

forecasts (lead times of three, six, and nine hours). For example, precipitation and 

streamflow data inputs corresponding to the forecasts for a lead time of three hours were 

updated at three-hour intervals using the observed data and models were re-run after 

every single update in the input database to correct the future discharge forecast. This 

updating component corrects the initial conditions of the predictor model (for SAC-SMA 

or ANFIS) for sub-daily predictions based on the most recent meteorological and 

streamflow observations within the forecast system. For SAC-SMA, a data-assimilation 

technique was used to update model parameters based on discharge observations. In this 

approach, SAC-SMA was re-calibrated at each update by allowing parameters to vary 

between 10% below and above the original parameter values to account for uncertainty in 

these estimates. This approach also supported real-time assimilation of observations, 

leading to improved agreement between modeled and observed discharge. This input data 

updating process also decreased the uncertainty and errors of the forecasted discharge 

values that arose from uncertainties in the daily GEFS/R meteorological predictions. 

Finally, the performance of the forecast models is assessed using the indices described in 

Table 6.  
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Table 6. Statistical indices used to assess model performance. Qi
f and Qi

o: the ith 

forecasted and observed discharge, respectively. NP: number of time steps during the 

storm event that both the observed and predicted discharge (the average of eleven 

forecast ensemble members) are greater than the NOAA major flood threshold; and NO: 

number of time steps during the storm event that the observed discharge values are 

greater than the NOAA major flood threshold. ARAD shows the average modeling error 

over the simulation period (Reilly and Kroll, 2003). For instance, ARAD=0.15 indicates 

that the model is on average 15 % different from the real observations regardless of over 

or underestimation.  
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To evaluate the effectiveness of models for predicting the major flood condition, I have 

developed a simple index, called “Prediction Reliability (PR)” (Table 6), similar to the 

Color-coded threshold exceedance diagram which was previously used by Saleh et al. 

(2016) in a similar study. The PR index is defined as the ratio of the number of time steps 

during the study storm event that both predicted and observed discharge values are 

greater than the NOAA major flood threshold (NP) to the number of time steps with 

observed discharge greater than the NOAA major flood threshold (NO). This index 

indicates the reliability of a real-time flood forecast model for emergency management 

conditions during extreme events which is necessary for evacuation and protection plans 

in urban catchments. Values near one represent greater predictability performance of the 

model and values near zero represent poor prediction. Note that this index is only 

meaningful for extreme events when the flood stage in the river exceeds the NOAA flood 

threshold. For example, in this study, PR is used only for Hurricane Irene and is not 

applicable for the small storm event. One problem with the PR index is that it favors 

models that generally overestimate floods.  

 

 

 

 



64 
 

4. Chapter 4 (Results and Discussion) 

4.1. Seasonal change in urban runoff peak flows at Ley Creek 

4.1.1. Results 

Seasonal hydrographs resulting from cumulative precipitation depths of approximately 

one cm for the five subcatchments in Onondaga Creek Watersheds (Table 2) showed a 

relatively similar behavior for the wetland dominant (LOW1) and the most urbanized 

catchment with the retention pond (INT2) (Figures 12a and e). The greatest peak flows at 

these two sites occurred during late winter and spring, whereas summer peak flows were 

generally less. Furthermore, autumn peak flow in both catchments was significantly 

greater than summer peak flow. In contrast, the remaining sites (LOW2, LOW3, and 

INT1) had peak flows of about the same magnitude during summer and autumn (Figure 

12b, c, and d). The spring peak flow was several times higher than winter peak flows in 

LOW2 and LOW3, and just slightly greater than the winter peak flow for INT1.  
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a)  
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Figure 12. Seasonal hydrographs for a one cm rain event at LOW1 (a) and LOW2 (b). 

Events shown on the graph include 8 April 2015 (Spring), 28 October 2015 (Autumn), 20 

August (Summer), and 27 December 2015. 
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c) 

 

 

 

 

 

 

 

 

 

d) 

 

 

 

 

 

 

 

 

 

Figure 12 (continued). Seasonal hydrographs for 1 cm rain event at LOW3 (c) and INT1 

(d). Events shown on the graph include 8 April 2015 (Spring), 28 October 2015 

(Autumn), 20 August (Summer), and 27 December 2015. 
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e) 

 

 

 

 

 

 

 

 

 

Figure 12 (continued). Seasonal hydrographs for 1 cm rain event at INT2 (e). Events 

shown on the graph include 8 April 2015 (Spring), 28 October 2015 (Autumn), 20 

August (Summer), and 27 December 2015. 

   

Urbanization increased surface runoff peak flows during all seasons, but the rate of 

increase was highly variable among seasons (Figure 13). For example, the average 

summer peak flow in the urbanized catchments were nearly three times greater than the 

natural catchment. For spring and autumn, the average urbanized catchment peak flow 

increased by 98 % and 73 % over the reference catchment, respectively, slightly less than 

the difference in annual average peak flow (105%). By contrast, this difference was only 

6% for winter. Spring snowmelt in all catchments commenced in mid-March and 

concluded in early April. Ten snowmelt events were counted for all catchments except 

INT1 with has 16 melt events.  
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Figure 13. Average annual and seasonal runoff peak flows for wetland dominant (LOW1) 

and urbanized (the remaining) catchments. Values shown on the chart represent the 

difference between the natural catchment and the average of all urbanized catchments. 

 

Annual peak flow differed by 0.04 mm/hr between LOW1 and LOW2 with an increase in 

imperviousness of only 1 % (Figure 14). Seasonality of peak flows (deviation from 

annual average) also increased significantly for this threshold of imperviousness.  
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Figure 14. Average annual and seasonal runoff peak flows for the studied catchments as a 

function of imperviousness. Events associated with different seasons are plotted with 

open circle (Spring), open triangle (Summer), plus sign (Autumn), multiplication sign 

(Winter), and solid circle (Annual).  

According to Figure 14, runoff peak flow in urbanized catchments did not necessarily 

increase with fractional impervious area:  the most impervious catchment (48%) includes 

a relatively large stormwater pond at the outlet yet had smaller annual average peak flow 

compared to INT1 (34%). The seasonal deviation of peak flows from the annual average 

at the former catchment (INT2) was also less than that for INT1. This shows that the 

stormwater pond effectively reduces the impact of urbanization at INT2. Another 

possible explanation for the smaller peak flows at INT2 than INT1 may be the shorter 

channel length and greater contribution of the stormwater system to mitigating runoff 

peak flows at INT2. A great fraction of the stream-flow at INT2 receives precipitation 

runoff from the 690 highway, and local commercial districts. Stormwater network maps 
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are not available for Ley Creek, so it is difficult to approximate the runoff contribution 

from the commercial districts. Nevertheless, it is likely that some of the commercial 

properties at INT2 are connected to the urban stormwater system and not to the south 

branch of Ley Creek.  

4.1.2. Discussion 

The results suggest that the impact of urbanization on flooding is greater in summer than 

spring and winter. In addition, the annual average runoff peak flow in the study 

catchments increases with urbanization in agreement with previous findings (Arnold and 

Gibbons, 1996; Cheng et al., 2010; Valtanen et al., 2014). As hypothesized, the extent of 

this impact varies between seasons: average seasonal peak flows for urban catchments 

were almost three times greater than for the natural catchment while this difference was 

only 6% for winter. Similarly, previous literature reported greater (Buttle, 1990; 

Dougherty et al., 2006; Valtanen et al., 2014) impact of imperviousness on runoff volume 

in urbanized catchments during warm seasons. The water budget in LOW1 catchment 

during summer and fall is highly influenced by wetlands. In this catchment, 

evapotranspiration, infiltration, and soil storage capacity and lower ground water base 

depth in channel result in lower surface runoff rates. However, during winter, both 

pervious and impervious surfaces contribute to surface runoff due to the formation of 

large areas of saturated, compacted or frozen impervious soils. Therefore, differences 

between the hydrologic behaviors of natural and urbanized catchments is decreased 

during winter and spring. Average spring runoff peak flows were greater than the annual 

average in all catchments, but for the urbanized cases (imperviousness from 12 to 48%), 

they were considerably less than summer peak flows. This finding is in contrast with 
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results of Semádeni-Davies and Bengtsson (1999) who have indicated that the greatest 

discharge in urbanized catchments with 30 to 80% imperviousness occurs during spring. 

However, significant summer peak flows are common due to the extremely wet 

conditions during summer. 

Furthermore, the results indicate that the snowmelt timing does not change for urbanized 

catchments in the studied range of imperviousness (11-48 %): snowmelt in all catchments 

initiated during mid-March 2015 and ended through early April. This is in contrast with 

results of Valtanen et al. (2014) who reported earlier-than-usual spring snowmelt peak 

flows at two urbanized catchments in Finland. In this study, the number of snowmelt 

events for the rural catchment (n=10) equaled those for the most urbanized catchment 

(imperviousness = 48%). However, the moderately urbanized catchments 

(imperviousness = 34%) had a greater number of snowmelt events (n=16). A smaller 

number of snowmelt events in the highly urbanized catchment is likely due to the 

moderating impact of the stormwater pond. The previous literature has also indicated a 

larger number of smaller melt events due to urbanization (Buttle, 1990; Semádeni-

Davies, 2000). Changes in snowmelt timing and frequency are also associated with 

human disturbances such as snow redistribution, removal, ploughing, and transportation 

activities in urban catchments (Bengtsson and Westerström, 1992; Buttle and Xu, 1988; 

Semádeni-Davies and Bengtsson, 1999). 

Analysis of seasonal and annual runoff peakflows, showed an imperviousness threshold 

of 11% for responsiveness of urban stream-flows, above this threshold, urban stream-

flows experienced a substantial increase in annual average peak flows and greater 

seasonal changes in peak flow magnitudes. In this case, there was a substantial difference 
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in annual and seasonal runoff peak flows between LOW1 and LOW2 with 

imperviousness of 11 and 12%, respectively. Stream stability threshold data are limited, 

however, there is some evidence that the impact of imperviousness on urban streamflow 

can be detected when imperviousness exceeds 5-10 % (Schueler et al., 2009; Schueler, 

1994; Valtanen et al., 2014). Interestingly, the seasonal variation of runoff peak flows 

was extremely high for all urbanized catchments with imperviousness of higher than the 

stability threshold (11%). The most highly impervious catchment (48%) had a large 

stormwater pond near the outlet and was an exception to this behavior. This difference in 

runoff response demonstrates the positive impact of appropriately designed detention 

storage ponds.  

4.2. Impacts of urban development pattern on runoff peak flows 

4.2.1. Results 

To address the impact of impervious surface distribution on runoff peak flows, I 

investigated the correlation between RNICO with runoff peak flows and flow regime 

indices for ninety US peri-urban catchments (Table 3 and Figure 6). I present the results 

in two sections, climate and hydrology. The meteorological weather conditions including 

precipitation and temperature records for the study period at the study sites are reported 

in the climate section. The hydrology section describes the observed runoff peak flow 

analysis results, and the correlation analysis between RNICO with runoff peak flows and 

flow regime indices at the study sites are presented. 

4.2.1.1. Climate 

For all study locations, the probability density function (Kernel Density Estimates 

(Skorski, 2019)) of North American Land Data Assimilation System (NLDAS-2) radar 
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precipitation event’s depth, duration, and average intensity were similar for the three-year 

study period, as were the long-term probability density function for event’s precipitation 

depths less than one cm (see Figure 15 for Los Angeles and San Francisco). Furthermore, 

results of storm tracking using the NEXRAD Level 3 radar data at different study 

locations showed that most precipitation events with depths greater than one cm have 

nearly complete coverage of the relatively small study sites. For these reasons, we chose 

to use only storms with depth greater than one cm for this study. A total of 250, 550, and 

750 storm events up to a depth of 60 cm were detected at western, southern, and northern 

US study sites, respectively. Screening by the one cm criterion reduced the event number 

to about 40, 75, and 100 precipitation events for analysis in western, southern, and 

northern US study sites, respectively.   
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Figure 15. Smoothed probability density function (the Kernel Density Estimates (Skorski, 

2019)) plot of NLDAS-2 radar precipitation depth (a), duration (b), and average intensity 

(c) for the study period (October 2009 to October 2012) and for October 1986 to October 

2009 at San Francisco and Los Angeles. Plots are generated using the density function in 

R programming language. Note that the curve smoothing approach has caused 

meaningless negative values within all three figures. As a result, the area under the 

probability density functions on the positive side of the x-axis is not equal to 1, since a 

fraction of the smoothed plots are on the negative side of the x-axis are not shown. I 

preferred to use the smoothing approach for visualization because it better demonstrates 

the trend and shape of probability distributions, especially for the right-hand side tail of 

the plots which is the focus of this research.  

 

4.2.1.2. Hydrology 

Example hydrographs show differences between the peak flow response of catchments 

with different sizes and imperviousness (Figure 16). For the sites with similar fractional 

impervious area, streams in smaller catchments such as Site 13 show a flashier behavior 
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than in medium (Site 2) and larger catchments (Site 4) even for low-intensity 

precipitation. In contrast, for the sites with similar drainage area, streams of catchments 

with greater fractional impervious area such as Site 8 show greater flashiness than those 

of medium (Site 3) and less impervious catchments (Site 11). Time to peak flows in 

small, highly impervious catchments are less than in larger and lower impervious 

catchments (Gericke & Smithers, 2014; McCuen, Wong, & Rawls, 1984; McGlynn, 

McDonnell, Seibert, & Kendall, 2004). The magnitude and frequency of peak flows are 

also greater in the smaller and more impervious catchments due to the difference in time 

of concentration (Eimers & McDonald, 2015; Valtanen et al., 2014). 
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Figure 16. Flood hydrographs of six study catchments at NYC. Charts a, b, c, and d represent precipitation events on 14 August 2011 

(160 mm), 27 August 2011 (230 mm), 19 October 2011 (25 mm), and 27 October 2011 (16 mm), respectively. The X- and Y-axis on 

the figure show time and runoff peak flow (mm/hr).   
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The RNICO index was positively correlated to runoff peak flows in all study sites, but the 

strength of this correlation was site- and scale-dependent (Figure 17). To understand the 

linkage between catchment size and the predictive power of RNICO, an area threshold 

value was defined to distinguish between small and large catchments. To calculate the 

area threshold value for each city, all study catchments for that city were sorted by 

descending drainage area. For each site, we evaluated the strength of the Pearson 

correlation coefficient between RNICO and average runoff peak flow, then selected an 

area threshold value based on a transition from strong to weak correlation. In this case, 

small catchments with upstream urbanization in Figure 4 had negative RNICO values 

which results in lesser runoff peak flows. For Chicago, NYC, Baltimore, Houston, and 

Austin, where there were a larger number of study catchments, catchment area threshold 

values of 55, 40, and 50, 42, and 32 km2 were observed, respectively. RNICO values in 

catchments with drainage areas less than these area thresholds were strongly correlated to 

runoff peak flow magnitudes (Figures 17a-e). For these cases, the average runoff peak 

flows at the catchments with drainage area greater than the area threshold values 

remained relatively constant within the study sites. Syracuse, Portland, San Francisco, 

and Los Angeles had fewer number of study sites with no evident area threshold values. 

However, there was still a strong positive correlation between RNICO and runoff peak 

flows in these cities (Figures 17f-i).  
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Figure 17. Box-and-whisker plot of runoff peak flows versus RNICO for Chicago, IL 

(CHI, 17a), Houston, TX (HOU, 17b), New York (NYC, 17c), Baltimore, MD (BAL, 

17d), Austin, TX (AUS, 17e), Syracuse, NY (SYR, 17f), Portland, OR (POR, 17g), San 

Francisco, CA (SF, 17h), and Los Angeles, CA (LA, 17i). The values on the x-axis 

represent the RNICO index (see Section 3.2.2.2). The sites with negative RNICO are 

upstream urbanized (UU class in Figure 7b) and have lesser runoff peak flows. The three 

data series represent maximum runoff peak flows in small sites (black open circles), 
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average runoff peak flows for small sites (green solid triangles) and average runoff peak 

flows for large sites (black solid circles). Results for Syracuse, NY and NYC are 

reprinted from Roodsari and Chandler (2017). Equations of linear regressions are 

presented in Table Q1 in Appendix Q. 

To investigate the impact of imperviousness distribution on stream-flow regime, the 

statistical correlation between RNICO and stream-flow regime indices including 

Richards-Baker Flashiness index (RBF) for Chicago, NYC, and Portland were studied 

(Figure 18). Similar analysis was performed for the coefficient of variation of mean daily 

flow (CV) (Figure Q1 in Appendix Q). Results indicated that RNICO can be a stronger 

predictor of stream-flow regime than fractional impervious area for the studied locations, 

especially for smaller catchments. For small catchments in NYC (A<40 km2), both 

RNICO and imperviousness percentage had strong positive statistical correlation with 

flow regime indices (R2>0.7; Figure 18b) (Roodsari and Chandler, 2017). For large study 

catchments in NYC (A>40 km2) and Chicago (A>55 km2), there were weak statistical 

correlations between RNICO and imperviousness percentage with stream-flow regime 

indices (Figures 18a and 18b). Due to the limited number of study catchments in 

Portland, I did not investigate the area threshold value for this city. Surprisingly, the 

percent imperviousness for Portland catchments with drainage areas ranging from 7 to 80 

km2 was negatively correlated with CV (Figure Q1, Q1c2) and showed weak statistical 

correlation with RBF (R2=0.02; Figure 18c, 18c2). On the other hand, RNICO of Portland 

study catchments was positively correlated with both RBF (R2=0.54) and CV (R2=0.2), 

indicating a higher influence of imperviousness distribution on stream-flow regime 

compared to development level in these sites. For small catchments in Chicago (A< 55 
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km2; Figure 18a), the Pearson correlation coefficient between RNICO and RBF 

(R2=0.41) was much greater than for those between the fractional impervious area and 

flow regime indices (R2=0.41; Figure 18a, 18a2). Similarly, the Pearson correlation 

coefficient between RNICO and CV (R2=0. 71) was much greater than for the Pearson 

correlation coefficients between the fractional impervious area and CV (R2=0.41) (Figure 

Q1, Q1a).  
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Figure 18. Plots of RNICO (18a1, 18b1, and 5c1) and imperviousness (18a2, 18b2, and 

18c2) versus Richards-Baker flashiness index (RBF, solid circle) for Chicago, IL, New 

York, NY (Roodsari and Chandler, 2017), and Portland, OR. Blue and black symbols 

represent plotting points associated with small and large sites, respectively. Regression 

equations are presented in Table Q2. 
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  Chicago had the greatest number of study catchments with variety of shapes, which 

could potentially lead to a great variation in time to peak flow. The impact of 

imperviousness distribution on time to peak flow was investigated for 18 study 

catchments in Chicago with drainage areas ranging from 20 to 230 km2 (Figure 19). Time 

to peak flow was initially calculated as the time difference between the start of storm 

event to the time of maximum peak flow at the catchment outlet. To remove the influence 

of catchment scale, the approximate time to peak was normalized by the estimated 

maximum flow path distance to the outlet gage. The maximum flow path length was 

estimated using the USGS stream auto-delineation software. Results showed a negative 

correlation (R2=0.41) between RNICO and the mean normalized time to peak of the 5 

small study catchments (A<55 km2). This may indicate that the downstream urbanization 

decreases the flood travel time within the small study sites in Chicago. For 13 large study 

catchments in Chicago (A>55 km2), the normalized time to peak widely varied for most 

study sites, but the average normalized time to peak remained relatively constant. 
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Figure 19. Box-and-whisker plot of normalized time to peak flow versus RNICO for 

Chicago, IL. Time to peak was measure as the time difference between the rainfall 

initiation and the time when the maximum runoff peak flows occurs in the catchment 

outlet point. To remove the impact of catchment scale, the measured time to peak was 

normalized by the maximum flow path length within the catchment. 

   

The effectiveness of the RNICO index for urban development pattern classification was 

also tested by plotting the runoff peak flows and time to peak for the three development 

pattern classes (Figure 20). Results showed an obvious increase in runoff peak flows and 
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decrease in time to peak when moving from UU class to CEN and DU classes. This trend 

indicates that the RNICO index is an effective classification tool to represent the changes 

in runoff peak flow magnitude and timing in the NYC study catchments, despite the 

complexity of urban drainage systems within the study sites.  

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 20. Runoff peak flows and time to peak versus RNICO for the three urbanization 

classes of NYC study catchments. Time to peak was calculated as the time between the 

occurrence times of maximum rainfall intensity and the runoff peak flow. UU, CEN, and 

DU represent upstream urbanization, centralized urbanization, and downstream 

urbanization.  

To compare the peak flow response of study sites, rainfall total depth (cm) versus runoff 

peak flows (mm/hr) were plotted for the western and northern US study sites (Figure 21). 
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Black and red symbols in Figure 21 represent long precipitation events (storm duration> 

6 hours) and flash floods (storm duration ≤ 6 hours), respectively. For the northern cities 

(Chicago, NYC, and Baltimore) where there were more study sites, triangle and circle 

symbols were used to represent small and large study sites, respectively (Figures 21a, 

21b, and 21c). For Portland, San Francisco, and Los Angeles, only triangle symbols were 

used (Figures 21d, 21e, and 21f).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Scatter plots of runoff peak flows (mm/hr) versus storm depth (cm) for 

different cities. Black and blue symbols represent long precipitation events (duration > 6 

hours) and flashfloods (duration ≤ 6 hours), respectively. Triangle and circle symbols 

were used to represent small and large study sites, respectively. For Portland, only 

triangle was used as there was a few study sites. The dashed lines indicate the 0.9 
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quantile of event peak flow depth which is rounded to the nearest quarter and is presented 

as an arbitrary threshold to flooding (X). 

 

Comparison of scatter plots of precipitation depth versus peak flow suggested a 

difference between the hydrologic responses of northern and western US study sites 

(Figure 21). The 0.9 quantile was rounded to the nearest quarter and used to define an 

arbitrary flooding threshold (X) for different cities. The X values ranged from 0.25 

(Chicago, IL) to 6 mm/hr (Baltimore, MD). For northern cities, small catchments (A< 55, 

40, and 50 km2 for Chicago, NYC, and Baltimore, respectively) were flooded by both 

flash floods and extended rainfall, but large catchments were flooded infrequently 

(Figures 21a-c). In eastern sites, flooding in large catchments resulted from precipitation 

events with duration greater than 24 hours and non-zero antecedent soil moisture values. 

In contrast, the western US study sites (Figures 21d-f) were often flooded during long 

precipitation events and were less responsive to flash flood events. This different 

behavior in the western US catchments likely reflects effect of the drier climate, longer 

time between storm events, and low antecedent soil moisture contents. In this case, a 

large fraction of flash flood precipitation is captured by the soil as initial abstraction. On 

the other hand, high runoff response of the western US catchments in Los Angeles and 

San Francisco during long precipitation events may be attributed to increased antecedent 

soil moisture contents and occasioned soil saturation. It is noteworthy that many natural 

settings in arid western settings are prone to extreme flash flooding.  
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4.2.2. Discussion 

This study presents a new geometric index (RNICO), which is simply calculated from 

land cover and catchment geometry, as an approach to represent the hydrologic behavior 

of small peri-urban catchments. The results of analysis from several cities demonstrate 

that RNICO can be an effective tool for classifying the outcome of different urban 

development patterns on urban flooding behavior. The RNICO index allows all urban 

developments to be grouped into three main classes: UU, CEN, and DU (Figure 7). 

Results of applying this classification method on the NYC study sites showed the 

effectiveness of RNICO for representing changes in runoff peak flows and time to peak 

(Figures 19 and 20). 

Previous studies have applied complex physical hydrology and numerical modeling 

approaches (Du et al., 2015; Yang et al., 2011; Yeo and Guldmann, 2006) to address the 

impact of development pattern on the hydrology of urban catchments. For example, a 

similar index has been developed by Du et al. (2015) to assess the distribution of 

imperviousness impact in urban catchments. A drawback of this method is that it requires 

Hydrologic Modeling System (HEC-HMS) model to calculate discharge before and after 

each hypothetical development scenario. This approach also requires additional 

parameter sets such as multi-temporal and multi-spectral satellite images, soil maps, and 

digital elevation models of the study area for HEC-HMS model calibration and 

validation. An advantage of the presented RNICO method is the reduced complexity 

compared to the traditional hydrologic modeling approaches. 
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A drawback of the RNICO index is an inability to account for the impact of stormwater 

systems and the complex hydrologic connectivity in urban catchments which can greatly 

increase stream flow flashiness. This limits the application of RNICO to macro-scale 

assessment of hydrologic behavior of low to moderately developed peri-urban catchments 

within a similar region. For longitudinal study of urban development in a single 

catchment, RNICO may fail to represent the impacts of contemporaneous changes in 

climate, land use/land cover, and imperviousness as longitudinal studies require detailed 

assessment of changes in hydraulic and hydrologic systems of the study catchment 

through time. For paired catchment studies, application of RNICO index may be limited 

to an ideal scenario in which two urban catchments with similar shape, soil properties, 

drainage area, imperviousness, and stormwater networks are present in one geographic 

location. For both longitudinal and paired studies, I suggest using physical hydrology 

modeling approaches.   

The strength of the correlation between RNICO and runoff peak flows for several 

suburban catchments supports the concept that the impact of development pattern on 

flooding is dependent on scale and geology (Roodsari & Chandler, 2017; Yang et al., 

2011). For instance, the studied catchments in NYC (Figure 17c) and Syracuse (Figure 

17f) were selected at a range of scales and imperviousness with different catchment 

geology and physical properties. Syracuse catchments include glacial lacustrine deposits, 

and NYC sites are mostly metamorphosed sediments. The average clay content of 

Syracuse catchment soils (20%) is double that of NYC catchments (10%). In addition, the 

average amount of sand in NYC catchment soil (50%) is much greater than for Syracuse 

(30%). This difference emphasizes the much greater runoff production potential for 
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undeveloped land in Syracuse catchments compared to NYC. However, the observed 

runoff discharge at Syracuse sites was typically about one tenth of those at NYC sites 

(Figure 17a). One reason for the smaller observed peak flows for sites near Syracuse is 

the great channel modification in some relatively undeveloped corridors, which reduces 

the magnitude of peak flows. Furthermore, the range of storm precipitation depths over 

the study period was much less for Syracuse (3 mm to 7.6 cm) than for NYC (1 to 23 

cm), which contributed to a large difference in peak flow for the two locations. 

The range of runoff peak flows varied widely for all but the western study cities (Figure 

17). For instance, the greatest observed runoff peak flow for NYC was 14 mm/hr. 

However, the greatest observed runoff peak flow for Portland, OR was less than 3 mm/hr. 

Detailed analysis of the study storms indicated that peak flows greater than 10 mm/hr, as 

observed in northern (Figure 17c) and southern (Figure 17b and 17e) cities followed by 

very large storms or hurricanes during the study period. For example, the maximum 

runoff peak flow for catchments near NYC (13.6 mm/hr) were at the Second River at 

Belleville, NJ, which occurred on August 28, 2011 during a tropical cyclone (Hurricane 

Irene). Tropical cyclones may strike Oceanic and Mediterranean climate cities in western 

US, but the wind force and destructive power of these storms can be greatly mitigated 

after landfall. The lack of destructive large storm events at the western US cities over the 

study period explains the smaller range of observed runoff peak flows in western cities. 

Urban development pattern was a stronger predictor of RBF than percentage of 

imperviousness for small urban catchments (Figure 18). Traditionally, imperviousness 

percentage is used as a predictor of runoff peak flows and stream flow regime in urban 

catchments. However, the results for Portland showed a weak correlation of the percent 



90 
 

imperviousness with RBF (Figure 18c, 18c2). This indicates that the RNICO index can 

better represent the impact of urbanization on runoff peak flows in small catchments than 

the percent imperviousness due to the geometric analysis considerations in RNICO. 

The time to peak flow for Chicago catchments was positively correlated to RNICO, but 

there was a great uncertainty associated with normalized time to peak within the study 

catchments (Figure 19). The normalized time to peak ranged from 1 to 120 minutes/km. 

The main source of uncertainty for time to peak flow in Chicago catchments can be due 

to the urban stormwater networks and artificial hydraulic pathways in these catchments. 

In addition, the storm direction through the catchment can increase this complexity by 

altering the flood travel time. Furthermore, Chicago is adjacent to a large lake and has a 

shallow groundwater table. This increases the complexity of hydrologic behavior of 

Chicago sites.  

Comparison of the runoff peak flows versus precipitation total depth between western 

and northern US catchment indicated the marked impact of climate on hydrologic 

response of urban catchments (Figure 21). For northern cities, small catchments (A< 55, 

40, and 50 km2 for Chicago, NYC, and Baltimore, respectively) were flooded during both 

flash floods and long precipitation events, but large catchments were infrequently flooded 

(Figures 21a-c). In these cases, flooding in large catchments resulted from precipitation 

events longer than 24 hours and antecedent soil moisture content status greater than zero. 

In contrast, the western US study sites (e.g. Portland in Figures 21d) were often flooded 

during long precipitation events and flash flood events were less common. This 

contradictory behavior in the western US catchments is typical of drier climates and 

longer intervals between storm events. In this case, the runoff peak flow rate is expected 
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to decrease (Berthet et al., 2009; Grillakis et al., 2016). On the other hand, high runoff 

response of the western US catchments during long precipitation events may be driven by 

greater antecedent soil moisture content (McMillan et al., 2018; Zehe & Blöschl, 2004). 

I found that the threshold of imperviousness used in previous literature (Schueler et al., 

2009; Schueler, 1994; Valtanen et al., 2014) to distinguish between the impacted and less 

affected urban stream-flows may be scale dependent. Although stream stability threshold 

data are limited, there is some evidence that the impact of imperviousness on urban 

streams is shown for fractional impervious areas of 0.05–0.1. In this study, large 

catchments such as 6, 14, and 15 in NYC with fractional impervious area from 0.15 to 

0.26 were hydrologically stable, but small (A < 40 km2) NYC catchments with fractional 

impervious area of greater than 0.12 showed greater peak flows and flashiness. 

Correlation analysis among average runoff peak flows and stream R-B flashiness index 

with several physical and environmental factors (Falcone, 2011) indicated the great 

impact of urbanization on runoff peak flow and stream flow flashiness (Figure 22 and 

Table 3). Although several parameters showed strong correlation to runoff peak flows, 

only the parameters that make physical sense such as stream sinuosity, average sand 

content, artificial pathways, and land development were identified as significant 

parameters (Figure 8). Average soil sand content and land development can directly 

impact the runoff volume and peak flows by altering the infiltration rates. Stream 

sinuosity and artificial pathways can indirectly affect the runoff peak flow by changing 

the flood travel time. A complementary multilinear statistical analysis and corresponding 

diagnostic tests were also performed for the six cities in Figure 22, and in Appendix Q. 
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Results indicate that only urbanization parameters (IDs 11, 12, and 13) are strong 

predictors of the runoff peak flow.  

The greatest influence of urban development pattern (RNICO) on peak flow magnitudes 

was observed in NYC, Los Angeles, and Chicago (Figure 22). For other study cities, 

RNICO was positively correlated to the runoff peak flows, but it was not the strongest 

predictor of runoff peak flows.  

Correlation analysis results also indicated that catchment physical properties such as soil 

may be similarly important as land development (Table 4 and Figure 22). For example, 

the average soil sand content was negatively correlated with runoff peak flows in NYC 

(Figure 22). A similar analysis for San Francisco indicated the strong impact of soil 

permeability on runoff peak flows, in spite relatively high influence of RNICO and 

urbanization (Figure 22). Surprisingly, the stream sinuosity was the strongest predictor of 

runoff peak flows in Baltimore. For Portland, there were several parameters with higher 

Pearson correlation coefficient values and runoff peak flows than RNICO, but the nature 

of those correlations did not physically make sense.  
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Table 7. Environmental and physical parameters used in statistical analysis for six cities 

presented in Figure 22 (Falcone, 2011). 

ID Definition Category 

a shape (compactness) Morphology 
b stream density (km/km2) 

Hydraulics 
c stream sinuosity 
d lakes/ponds (%) 

e 
dam density (# of 

dams/100km2) 
f mean catchment slope (%) 

Topography 
g 

mean catchment aspect 
(degrees) 

h average permeability (in/hr) 
Soil i average clay content (%) 

j average sand content (%) 
k artificial pathways (%) 

Urbanization l land development (%) 
m RNICO 
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Figure 22. Pearson correlation coefficient (r) for average peak flow and several 

parameters including shape (a),  stream density (b), stream sinuosity (c), lakes (d), dam 

density (e), mean catchment slope (f), mean catchment aspect (g), average permeability 

(h), average clay content (i), average sand content (j), artificial pathways (k), land 

development (l), RNICO (m) (Table 7).  RNICO (red) and other parameters strongly 

correlated to runoff peak flow (blue) highlighted correlations make physical sense. These 

parameters can either directly impact the runoff peak flow by altering the infiltration rates 

(j and l) or indirectly affect the runoff peak flow and volume by changing the flood travel 

time (c and k). Statistically significant parameters are shown with star labels. The 

horizontal dashed line indicates the maximum (1) and minimum (-1) possible r values. 

The vertical dashed lines separate different categories of parameters explained in Table 7. 

For instance, parameters f and g are separated from other parameters as they are both 
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associated with the catchment topography. Stepwise regression analysis with diagnostic 

test results are presented in Appendix L.  

4.3. Seasonal hydrologic performance of LID  

4.3.1. Results and Discussion 

   Runoff reduction performance for bioretention systems decreased significantly between 

warm and cold seasons (Figure 23). However, this change was highly variable within 

different study locations, and the impact of season change on the total stormwater volume 

reduction was often marginal. The decrease in the runoff volume reduction performance, 

as reported in previous studies, can be explained by the decrease in plant cover and 

associated evapotranspiration during cold seasons. It should be noted that the impact of 

seasonal change in the performance of bioretention cells can be negligible if the sizing 

and capture volume of these systems satisfy the design requirements for both warm and 

cold seasons.    
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Figure 23. Summary of volumetric stormwater capture, loss and leakage during warm and 

cold seasons for bioretention cells based on studies in the literature, summarized as 

percent volume reduction of inflowing water. The values shown are of performance by 

individual events (Driscoll et al., 2015). 

Among the available literature on seasonal performance of bioretention systems, Khan et 

al. (2013) reported the smallest decrease in hydrologic performance of these systems, 

which may be due to the overdesigning their site relative to their drainage area or an 

efficient site maintenance during the cold season. The overall stormwater retention 

volume of the sites presented in the other two studies were greatly decreasing from warm 

to cold season. The negative performance values for these two studies (Figure 23) is 

likely an outcome of poor winter maintenance of the parking areas in the study sites. 

Storage of snow piles on bioretention cells appears to decrease winter runoff reduction of 

these infrastructures due to the formation of compacted snow, ice and soil frost, which 

significantly decrease infiltration.      
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Furthermore, I found that the hydrologic performance of green roofs is more likely 

controlled by the event depth than the season (Carson et al., 2013; Schroll et al., 2011; 

Figure 24). Nevertheless, there was a small decrease in precipitation retention 

performance of green roofs from warm to cold season. This is likely a result of different 

evapotranspiration rates, ice formation in the growth media, and melt of accumulated 

snow and ice during rain-on-snow events.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Representative summary of volumetric stormwater capture, loss and leakage 

during the warm and cold season from Schroll et al. (2011), summarized as percent 

volume reduction of rainfall. Data displays performance by individual events (Driscoll et 

al., 2015). 
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4.4. Effect of storm movement direction on the performance of ANFIS  

4.4.1. Results and Discussion 

The results indicated that the impact of storm movement direction on the performance of 

ANFIS model in Ley Creek catchment is marginal. Although, standard deviation of errors 

and RMSE of the three modeling scenarios were slightly different during the training 

period, all performance parameters were similar within the three study scenarios (Figure 

25). Marginal impact of the storm movement direction on ANFIS model performance can 

be due to the relatively small drainage area of the catchment (78 km2) and short time of 

concentration (2-6 hours) compared to the duration of storm movement through the 

catchment. I should note this impact could be more important for large catchments with 

greater time of concentration. In this case, water level or discharge data at the upstream 

stations (headwater streams) could be valuable for predicting the flood level at the 

catchment outlet.  
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Figure 25. ANFIS model error indices for predicting the outflow discharge at Ley Creek 

catchment for the three wind direction scenarios show low variability within a similarly 

narrow range for the three storm direction scenarios. Three independent modeling 

scenarios include: 1) training data includes 20 upstream-downstream (UD) storm events, 

2) training data includes 10 DU (downstream-upstream) +10 UD storms, and 3) training 

data include 20 DU datasets. For all three scenarios, test periods included 5 DU+5 UD. 
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For each modeling scenario, 100 independent combinations of storms were selected from 

the observed storms using the Sample function (in R programming language without 

replacement). 

 

4.5. Real-time deterministic flood forecasting  

4.5.1. Results and Discussion 

Visual inspection of simulated versus observed flood hydrographs showed that all tested 

models (ANFIS, SAC-SMA, and SWMM) perform reasonably well during both 

calibration and validation periods (Figure 26). However, SWMM overestimated large 

peak flows during the calibration period relative to the other two models.  
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Figure 26. Simulated versus observed flood hydrographs during calibration (top) and 

validation (bottom) periods for three-hour advance forecasts from 1 June 2014 to 1 July 

2014. Values for SAC-SMA and SWMM are the average of three calibration strategies. 

 

Comparison analysis between the calculated statistical parameters for different calibrated 

models showed that all models perform better during high and moderate flow conditions 

compared to low flow conditions (Figures 27). NSE of high and moderate flow 

conditions ranged from 0.1 to 1.0, but for low flow conditions, NSE varied between -0.1 

to 0.55 during calibration and -0.6 to 0.05 during validation period. Poor low flow 

representation in SWMM and ANFIS could be due to the absence of a groundwater 
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modeling component. SAC-SMA has a basic groundwater component that requires 

modifications for accurate low flow simulation (Matonse and Kroll, 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Performance analysis results for SAC-SMA, SWMM, and ANFIS for the 

validation period (water years 2014 to 2015). All performance parameters were 

calculated for lead times of one to six hours for three independent flow conditions: low 

flows, moderate flows, and high flows. Low flows were defined as periods in which 

observed discharge values were smaller than the first quartile (Q25%), moderate flows as 

the observed discharge values of between the first and third quartiles (Q75%), and high 

flows as observed discharge values of larger than the third quartile.  
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ANFIS was the least accurate model during the validation period, likely due to the large 

ARAD values (Figure 27). For moderate and high flow conditions in this period, MSE 

and NSE values of ANFIS varied in a relatively similar range with most physical 

hydrology models, but ARAD range for this model (0.1- 0.6) was much larger than that 

for physical hydrology models (0-0.28). The only condition in the validation period when 

ANFIS performed as well as physical hydrology models was for high flow condition 

forecast with lead times of less than three hours (Figure 27a). ANFIS has been little used 

for flood forecasting in small urban catchments, possibly due to the difficulty of 

modeling the short time of concentration and quick discharge variations in the rising limb 

of the flood hydrograph of small urban catchments with ANFIS. However, in contrast to 

our finding, results of applying ANFIS for large river basins have shown relatively strong 

performance of this model for flood forecasting with lead times of up to six hours 

(Campolo et al., 2003; Nayak et al., 2005).  

4.6. Real-time ensemble flood forecasting  

4.6.1. Results 

4.6.1.1. Calibration/Validation   

Across all catchments, both 3-hourly ANFIS and SAC-SMA models performed 

reasonably well in the calibration (2004-2011) and validation (2011-2014) periods. NSE 

values ranged from 0.72 to 0.87 (Table 8). RelBIAS values, SAC-SMA calibration 

datasets, and calibration hydrographs are presented for individual watersheds in 

Supplementary Material/Appendix (Table A1, Table A2, and Figure A1). Values 

presented in Table 8 represent average performance across the eleven forecast ensemble 

members for all study sites. Calibration and validation performance indices for ANFIS 
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decreased with forecast lead time for both events. This was consistent with the observed 

decrease in the statistical correlation between Qt-lead time and Qt. Similarly, relative bias 

(RelBIAS) of the ANFIS model over the calibration period for Hurricane Irene increased 

from 0.08 to 0.15 when forecast lead time increased from three to 24 hours. For SAC-

SMA, the most and least impervious study sites (sites 7 and 1) had the smallest and 

greatest RelBIAS values, respectively. However, I did not find any trends between 

performance indices (including RelBIAS) and either catchment imperviousness or 

drainage area. For ANFIS, performance indices varied within the sites and with lead time. 

For example, sites 3 and 8 for the 3-hour lead time, and sites 4 and 1 for the 24-hour lead 

time, had the smallest and greatest RelBIAS values for the calibration period, 

respectively. 

 

Table 8. Average performance indices for the nine study sites near NYC over the 

calibration (1 October 2004 to 27 August 2011 for Hurricane Irene and 1 October 2004 to 

23 September 2011 for the small event) and validation (27 August 2011 to 27 August 

2014 for Hurricane Irene and 23 September 2011 to 23 September 2014 for the small 

event) periods.    
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4.6.1.2. Performance during extreme events   

For simulated real-time flood forecasting, agreement between the observed and simulated 

hydrographs varied most between models for forecasts of Hurricane Irene; this makes 

sense given this extremely rare flood event. Forecasts are included for both ANFIS and 

SAC-SMA for Hurricane Irene (Figure 28a) and a small storm event (Figure 28b) for a 

single watershed (site 7). Flood forecast results for site 7 are shown in Figure 28 and 

hydrograph simulation patterns were similar across the other study sites. Note the 

difference in discharge magnitudes of these two storm events in Figure 28. Observed and 

ensemble forecasted flood hydrographs for the smallest and largest study sites (sites 1 

and 9) and minimum, average, and maximum RelBIAS among the eleven forecasted 

ensemble members for individual catchments are presented in Supplementary 

Material/Appendix (Figure A2, Tables A2 and A3). 
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Figure 28. Observed and ensemble forecasted flood hydrographs of site 7 for Hurricane 

Irene (a) and the small storm event that occurred a few weeks after Hurricane Irene (b). 

Lead times for forecasting increase from left to right. 

 

  ANFIS-simulated real-time forecasted hydrographs for Hurricane Irene was best for the 

shortest lead times, and greatly decreased as the lead times approached 24 hours (Figure 

29a). ANFIS forecast performance of Hurricane Irene declined in terms of average NSE 

(from 0.85 to 0.4) for increasing forecast lead times from three to 24 hours (Figure 32a). 

ANFIS largely under-predicted peak flow for Hurricane Irene for forecast lead times of 

24 hours (Figure 29a). Accordingly, average RelBIAS values for ANFIS for 24-hour lead 
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time ranged from -0.45 to -1.1 (Table A3). However, when applied to simulate the flood 

hydrograph for a small storm event across three to 24-hour lead times, ANFIS performed 

reasonably well (Figure 29b). Average RelBIAS values for ANFIS for the small event 

ranged from -0.16 to 0.41 (Table A3). Although the ANFIS model failed to match the 

peak discharge for Hurricane Irene at the longest lead times (Figure 29a), the model 

performed reasonably well for the smaller storm event, bracketing streamflow 

observations. 
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Figure 29. Model errors shown as (a) NSE coefficient and (b) Prediction Reliability (PR) 

index for SAC-SMA and ANFIS across the nine study catchments applied to simulate 

Hurricane Irene flood hydrographs. Numbers on each graph represents study site IDs 

(column 1 in Table 5) ordered by increasing drainage area. The PR index was calculated 

for the five study catchments for which the NOAA major flood threshold was exceeded 

(Table 5). 

SAC-SMA performed well when simulating event hydrographs for both storms. Average 

RelBIAS values ranged from -0.2 to 0.48 (Table A4). Also, NSE values for Hurricane 

Irene ranged from 0.65 to 0.9 (Figure 30a). Figure 29 shows that SAC-SMA forecasts for 
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ensemble members tended to bracket streamflow observations regardless of lead time. 

However, at the longest lead times, SAC-SMA tended to over-predict peak discharge for 

both Hurricane Irene and the smaller event.  This over-prediction decreased for shorter 

lead times. 

  For five catchments where NOAA major flood thresholds were reported (Table 5), the 

Prediction Reliability (PR) for SAC-SMA for Hurricane Irene did not change 

substantially with lead time, while PR for ANFIS decreased substantially with lead time 

for most sites (Figure 29b). For ANFIS, catchments 1 and 4 encompass the range of PR 

values. Note that NSE value of ANFIS for catchment 1 was the greatest among all study 

catchments. In this case, PR may better represent performance than NSE, as it can 

identify both under-prediction (in this case) and over-prediction of a flood hydrograph, 

important information for emergency management.  I also present results of correlation 

analysis between PR and other indices used in this study (Table A4). The small Pearson 

correlation coefficient values between PR and other indices could indicate the 

independent nature of this index from other indices.   

  Finally, I sought to test whether catchment size or forecast lead time had greater impact 

on model performance (Figure 29) especially with respect to NSE. Both SAC-SMA and 

ANFIS models had strong NSE values for the lead times of 3 and 6 hours, but the NSE of 

ANFIS dramatically decreased over lead times between 9 to 24 hours.  For example, NSE 

values for ANFIS for catchment 5 increased from 0.28 to 0.36 when forecast lead time 

increased from 9 to 24 hours, which was unexpected (Figure 29a). Similarly, NSE value 

for SAC-SMA for catchment 3 increased slightly between 9 to 24 hours lead time (Figure 

29a). 
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  Performance indices for both models were insensitive to catchment size and 

imperviousness but varied with forecast lead time. Figure 30 compares results for the 

average of 11 ensemble members versus catchment drainage areas for different forecast 

lead times with respect to RelBIAS, RelMSE, and ARAD. Similarly, performance results 

versus catchment imperviousness are shown in Supplementary Material/Appendix 

(Figures A4 and A5). While performance indices for both models varied in a relatively 

similar narrow range for forecast lead times of three to nine hours, I found performance 

diverged between models as lead times approached 24 hours. In particular, while 

performance indicators remained high for SAC-SMA, performance declined for ANFIS 

simulations with 24-hour lead times as compared to three, 6, or 9 hour lead times 

regardless of catchment size.  For example, ARAD values of both model simulations of 

Hurricane Irene flood hydrographs ranged from 0 to 0.45 for lead times of three to nine 

hours, but increased to 0.7 for ANFIS when forecasted lead times reached 24 hours. The 

only observed influence of watershed size was with respect to SAC-SMA forecasts for 

longer lead times. I note that for lead times of both 9 hours and 24 hours, SAC-SMA 

performance tended to improve with watershed size (closer to 0) for ARAD, whereas this 

was not true for any other performance index. I found comparable results for ANFIS and 

SAC-SMA for short lead times for the smaller event.  However, for the longest lead 

times, ANFIS outperformed SAC-SMA, with slightly lower values of performance 

indices regardless of watershed size. 
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Figure 30. Performance indices for SAC-SMA and ANFIS averaged across the eleven 

ensemble members with varied lead times plotted against catchment drainage area. 

Results in this figure represent the Hurricane Irene flood hydrograph simulation. Plots for 

short lead times (3, 6, and 9 hours) are separated from the 24 hours. As can be seen, 

model performance indices for both models are insensitive to catchment size and 

imperviousness but vary with forecast lead time. 

4.6.2. Discussion 

4.6.2.1. Model performance and uncertainty outside of extreme event forecasts 

    Both SAC-SMA and ANFIS models performed reasonably well during calibration and 

validation periods with NSE values greater than 0.7. Deterministic flood forecasting 

applications of the SAC-SMA model in previous studies have shown both similar and 
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different performance results over a wide range of catchment scales and climate 

conditions when compared to my ensemble-based approach findings. For example, Ajami 

et al. (2004) and Reed et al. (2007) used a spatially distributed SAC-SMA model for 

streamflow forecasting in large US river basins. They found NSE and bias values similar 

to my findings (Table 7). Others have found larger estimated biases than I observed (e.g., 

Khakbaz et al. (2009)). Taken together, these studies indicate that the model performance 

in this study is comparable to other study applications of the SAC-SMA model in 

deterministic streamflow prediction. 

  To enable a real-world simulation of model forecasting, I do not investigate or compare 

the relative impacts of sources of uncertainty in this study, calibrating SAC-SMA 

following procedures used by the NWS. However, I recognize that different sources of 

uncertainty with respect to model parameters and input data ultimately shape results with 

respect to both models.  It is noteworthy that the greater number of input parameters for 

SAC-SMA (17 parameters) as compared to ANFIS (3 parameters) increases the number 

of uncertainty sources and the risk of equifinality (Beven, 2006), an initial motivating 

factor for comparing these two models. For the ANFIS model, the main sources of 

uncertainty are intrinsic to: the measured precipitation and discharge values used for the 

model calibration; uncertainty due to the length of calibration period and the presence of 

events similar to the validation storm event; and the uncertainties of GEFS/R 

precipitation ensembles for the validation period, which was previously discussed as 

further sources of discrepancy between ANFIS and SAC-SMA performance. During the 

discussion of real-time forecasting, I posit that the most important sources of uncertainty 

in streamflow forecasts for both models are associated with the uncertainties of GEFS/R 
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precipitation ensembles. I note that this is in agreement with recent studies, which have 

also found high sensitivity of real-time flood forecasting models to the predicted 

precipitation inputs (Amengual et al., 2015; Liechti et al., 2013; Marty et al., 2013; Saleh 

et al., 2016). 

4.6.2.2. How does model performance vary with lead time? 

  The presented study evaluates the performance of a lumped physical hydrology model 

(SAC-SMA) and an AI model (ANFIS) through a real-time ensemble flood forecasting 

approach. My results suggest that the forecast performance of both models decreases with 

forecast lead time, which is in agreement with results of previous findings (Campolo et 

al., 2003; Nayak et al., 2005; Saleh et al., 2016). For short lead times (three and six 

hours), precipitation input data updates, as I treated forecasts as a real-time exercise, 

likely resulted in smaller errors and uncertainties with respect to GEFS/R precipitation 

data inputs. In contrast, forecasts corresponding to longer lead times had poorer 

performance, likely given the relatively short time of concentration in the study 

catchments (1 hour to 6 hours).  I note that accurate flood forecasting close to the event 

can be still valuable for emergency evacuation plans in small urban catchments, which 

require less time compared to large river basins.  

  Surprisingly, the predictive ability of models increased slightly between lead times of 9 

to 24 hours. These unexpected increases in the performance of models for such lead times 

may be related to the underlying processes of the updating system or uncertainties of the 

GEFS/R precipitation inputs for 24-hour lead time due to variability in rainfall 

predictions. Also for this range of lead times, SAC-SMA generally over-estimated peak 

flow magnitudes as the GEFS/R precipitation data for both Hurricane Irene and the 
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smaller precipitation event were slightly greater than the observed precipitation amounts 

(Figure 28). Note that this over-prediction of peak flow magnitude is not necessarily 

detrimental, as it still correctly reports the major flood condition status in the catchment 

and may be similarly useful for emergency management.  

4.6.2.3. Comparing ANFIS to SAC-SMA for extreme event forecasts 

  While forecast performance for ANFIS and SAC-SMA was similar for shorter lead 

times, performance diverged as lead times increased to 9 and 24 hours (Figure 30). At 

lead times of 24 hours, SAC-SMA outperformed ANFIS with respect to all performance 

indices.  ANFIS under-estimated peak flow magnitude of Hurricane Irene for lead times 

greater than three hours. In addition, comparison of the PR index for the SAC-SMA and 

ANFIS models for Hurricane Irene indicated that SAC-SMA was more reliable than 

ANFIS for predicting the major flood condition and emergency management at the nine 

study sites (Figure 29b). For the five sites with reported NOAA major flood thresholds, 

SAC-SMA had a high PR coefficient for all lead times, while the PR index for ANFIS 

dramatically decreased with lead time. Thus, I expect ANFIS is most reliable for flood 

forecasting with short lead times (Figure 30). 

  An important consideration related to the poor performance of ANFIS for Hurricane 

Irene likely the dearth of very large storm events or hurricanes in the training period 

(2004-2011). Due to the learning nature of the ANFIS model, these types of models can 

only provide accurate predictions if the training period includes storms of magnitude 

equal to or greater than storms in the validation period. Unfortunately, continuous 

streamflow discharge data for the study sites were only available for a limited period 

(2004-2011) during which no other storms as large as Hurricane Irene occurred, and 
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represents a real-world scenario where data in small catchments may be limited. This also 

highlights the importance of ongoing streamflow discharge monitoring in small urban 

catchments, especially for extreme events, for more accurate future flood forecasting.  

  Poor performance of ANFIS for long lead times was likely also due to weak statistical 

correlations between the antecedent discharge (Qt-lead time) and the observed discharge at 

each time step (Qt) for the relatively short times of concentration in the study catchments 

(1 hour to 6 hrs). I infer that antecedent discharge is not an effective input parameter for 

ANFIS for lead times greater than three hours. In contrast to my finding, previous studies 

have found good predictability performance of AI models for large river basins with long 

times of concentration (Campolo et al., 2003; Khac-Tien Nguyen and Hock-Chye Chua, 

2012; Nayak et al., 2005; Rezaeianzadeh et al., 2014). As there has been very limited 

focus on applying data-driven models for real-time flood forecasting in relatively small 

urban catchments in the previous literature, this study is one of the first to show potential 

tradeoffs in model frameworks for real-time flood forecasting. 

  I note that forecast performance was similar for ANFIS and SAC-SMA for the smaller 

storm (Figure A3). In this case, I found ANFIS outperformed SAC-SMA for long lead 

times. This suggests that both models can be reliable options for real-time flood 

forecasting in small urban catchments for predicting small storm events. 

  The presented results for Hurricane Irene suggest that the lumped SAC-SMA model in 

this study performs as well as a semi-distributed HEC-HMS model which was recently 

applied for real-time ensemble forecasting of Hurricane Irene in the Hudson River basin 

(Saleh et al., 2016). For example, Saleh et al. (2016) reported NSE values greater than 



116 
 

0.75 PBIAS less than 10% for most of their study catchments in the Hudson River basin, 

similar to performance in my study. Note that Saleh et al. (2016) used the 21 GEFS/R 

members that were briefly accessible from the NOAA website. This study applied only 

the 11 GEFS/R members that are currently available. In addition, Saleh et al. (2016) 

studied relatively large catchments with drainage areas ranging from 141 km2 to 979 km2 

and forecast lead times of 24 to 72 hours, whereas this study considered smaller 

catchments (17 km2 to 150 km2) and shorter forecast lead times (three to 24 hours). Good 

performance of the lumped SAC-SMA model with a limited number of the GEFS/R 

precipitation members for daily and sub-daily flood forecasts in the relatively small 

catchments leads the conclusion: Lumped SAC-SMA may be a reliable option for local 

urban flood forecast, especially for events with forecast lead time of up to 24 hours is 

sufficient for implementing evacuation and rescue plans.  

  The model performance indices for the nine study catchments with drainage areas 

ranging from 17 to 150 km2 and fractional impervious areas ranging from 12% to 25% 

indicate that the accuracy of both SAC-SMA and ANFIS models for ensemble flood 

prediction may not change significantly with catchment size and imperviousness (Figures 

30, A4, and A5). I did not find a strong statistical correlation between model performance 

indices including RelBIAS, RelMSE and ARAD with catchment drainage area and 

fractional impervious area while these indices varied in a relatively similar range within 

the study sites (Figures 30, A4 and A5). However, the scope of my study has a limited 

climatic and spatial extent, and I caution that relationships between catchment size and 

imperviousness may differ for other areas. Due to the limited number of study catchments 

in this study, I suggest that applying SAC-SMA and ANFIS models for real-time flood 
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forecasting in a greater number of small suburban catchments over a wide range of 

fractional impervious area, drainage patterns, and climates should be made to assess the 

sensitivity of model performance indices on the different catchment characteristics. 

 

5. Chapter 5 (Synthesis and conclusions) 

5.1. Impacts of Urbanization on Flooding 

The goal of the first phase of my dissertation studies was to understand the seasonal 

changes in hydrologic behavior of peri-urban catchments in Northern climates. For this, I 

monitored five peri-urban catchments in proximity of Syracuse, NY with imperviousness 

ranging from 11 to 48%. The least urbanized site (LOW1) is dominated by wetlands and 

other four study catchments are moderately urbanized. This gave me an opportunity to 

compare the peak flow response of natural and urban catchments. In addition, the most 

urbanized catchment (INT2) had a large stormwater pond near its outlet, which mitigates 

the impact of flooding. This also opened a new opportunity for me to address the 

effectiveness of such urban infrastructures in flood mitigation. 

 

Seasonal peak flow results at the five subcathments of Ley Creek indicated that the 

impact of urbanization on flooding greatly increases for imperviousness greater than 

11%. Historically, urban ecologists have used the average imperviousness as an indicator 

for assessing the stream ecological condition. They found an imperviousness threshold of 

5-10% for stream ecological stability meaning that any imperviousness above this 

threshold can cause significant change in the stream ecosystem. Similarly, I investigated 



118 
 

the linkage between imperviousness and peak flow response of urban catchments. The 

results showed that increasing imperviousness to 11-12% is apparently a tipping point for 

peak flow response of urban catchments. I propose that an imperviousness threshold of 

11% may be used as the hydrologic stream stability threshold. This threshold would 

indicate that the magnitude and seasonal variation of runoff peak flows in urban 

catchments are likely to increase for imperviousness 11%. 

 

The stormwater pond at the outlet of INT2 greatly mitigated runoff peak flows in this 

catchment. Although INT2 had the greatest imperviousness (48 %), it had lesser runoff 

peak flows than other study catchments. Furthermore, INT2 had lesser peakflow 

variability between four seasons. This leads me to conclude that green stormwater 

infrastructures may be an effective solution for mitigating the impact of urbanization on 

flooding.  

 

Comparison of mean seasonal and annual peak flows between natural (e.g. LOW1) and 

urbanized catchments (e.g. INT1) indicated that urbanization increases the magnitude of 

peak flows during all seasons. However, the percent increase in runoff peak flow 

magnitude greatly varies across warm and cold seasons. The greatest difference in peak 

flows was observed during summer (298%) and the least difference was observed during 

winter (6%). The greater peak flows of urban catchment compared to the natural 

catchment is associated with higher antecedent moisture condition in urban catchment 

soil. Higher summer ET rates in the natural catchment lowers the groundwater level and 

increase the soil storage capacity. Therefore, a great fraction of precipitation is stored in 
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the soil and less runoff is generated. In contrast, the difference between the runoff 

response of natural and urban catchments is minimized during winter due to the impact of 

frozen soil which behaves as an impervious area.  

5.2. Impacts of Urban Development Pattern on Flooding 

I addressed the impact of development pattern on flooding in peri-urban catchments in 

the second phase of my dissertation. I developed a new geometric index (RNICO) based 

on the distribution of impervious areas throughout the catchment. My results indicated 

that the RNICO index is a powerful tool for addressing the impact of urbanization on 

runoff peakflow and streamflow flashiness. Based on RNICO, all urban catchments can 

be classified into one of these three classes: UU, CEN, and DU. Comparison of the peak 

flow response of three urbanization classes in NYC sites indicated that RNICO is useful 

for urban development classification. 

  

A potential application of RNICO is for sustainable urban planning in growing cities. For 

this purpose, the correlation between RNICO and a target variable such as runoff peak 

flow is assessed using the historical land cover information and data records of the target 

variable. Based on this correlation, an RNICO-target equation is generated. Then the 

future changes in the target variable due to a new development scenario is approximated 

using the RNICO-target equation. To perform this, the future RNICO is calculated from 

the hypothetical future land cover information and is used as input for the RNICO-target 

equation. This can help urban planners to select the most sustainable development 

scenario to minimize the impact of urbanization on a measurable parameter of interest. 
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My results also suggested that RNICO is a stronger predictor of peakflows in humid 

climates than for oceanic and semi-arid climates such as in the western US. Catchment 

soil in humid climate cities is often saturated. In this case, much of the precipitation 

contributes to runoff generation. However, the catchment soil in semi-arid and arid 

climates is often dry with a high storage capacity. Therefore, a great fraction of 

precipitation events is often stored in the soil and decreases flood response of urban 

catchments. Storm characteristics can also play an important role in runoff response of 

urban catchments. For instance, flooding in humid climate (e.g. in Syracuse, NY) often 

occurs during summer flashfloods when the soil is saturated. On the other hand, flooding 

in oceanic climate (e.g. in Portland, OR) often occurs during light drizzles over the 

course of several days. In this case flooding generally occurs due to slow infiltration 

which challenges the ability to predict runoff response due to the intermittent nature of 

the storm and slow response of the stream flow. The maximum gaged runoff peakflows 

in Portland exponentially increased with RNICO which was different from other study 

locations and requires further study (Figure 17). 

5.6. Real-time ensemble flood forecasting 

  I applied a lumped physical hydrology model, SAC-SMA, and one of the most widely 

used data-driven models in hydrologic forecasting, ANFIS, to re-forecast streamflow 

discharge at several small to medium size peri-urban catchments near NYC during 

Hurricane Irene and another small storm event. Comparison of various statistical 

performance indices for SAC-SMA and ANFIS indicated that SAC-SMA performs 

reasonably well for flood prediction in relatively small urban catchments (drainage area < 

150 km2) with NSE values mostly greater than 0.75, but ANFIS largely under-predicted 
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the rising limb and the peak flow of Hurricane Irene flood hydrographs, especially for 

lead times greater than three hours. While ANFIS performance was poor when 

forecasting Hurricane Irene hydrographs, performance was relatively high when 

forecasting a smaller but still extreme storm event. It is inferred that the poor 

performance of ANFIS for Hurricane Irene is likely due to the absence of similarly large 

storms included in the training period.  

  This study also suggests that the flood forecasting performance of the lumped SAC-

SMA and ANFIS models may not depend on the catchment scale and fractional 

impervious area for relatively small urban catchments. Quantitative performance 

parameters (RelBIAS, RelMSE, and ARAD) for both models varied in a relatively 

similar range for the nine study sites with drainage areas ranging from 17 to 150 km2 and 

fractional impervious areas ranging from 12 to 25%. However, it is suggested to examine 

these models for real-time flood prediction systems in a greater number of small to 

medium-sized catchments with a wide range of imperviousness, drainage patterns, and 

climate to study the model’s sensitivity to different characteristics of the catchments and 

their performance under varying conditions. 

  Despite better performance of SAC-SMA compared to ANFIS for predicting the flood 

hydrograph of Hurricane Irene in the nine study catchments, the use of AI models shows 

some promise as an alternative to physical hydrology models in local urban flood 

forecasting systems if a long training period with a wide range of storm scales from small 

to large are available for the site. An important benefit of AI models is the short training 

time that may require less data and expert knowledge. Furthermore, the small number of 

input parameters in AI models helps decrease the sources of uncertainty and the risk of 
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equifinality (Beven, 2006) which may be a concern for most physical hydrology models. 

Therefore, results of AI models with appropriately long training periods in small urban 

catchments could be used to provide simple real-time systems for urban flood warning 

systems and control outputs of physical hydrology models that are more computationally 

expensive and require significant expert knowledge for model calibration and validation. 

Indeed, the performance of ANFIS forecasts for short forecast lead times was comparable 

to SAC-SMA forecasts, despite the large increase in degrees of freedom associated with 

the large number of model parameters associated with SAC-SMA.  However, the 

importance of applying physical hydrology models for the real-time flood forecasting 

systems is emphasized due to uncertain future climatic conditions and potential changing 

physical characteristics of a watershed. The streamflow hydrograph for the future 

extreme events may not be accurately predicted by AI models, which are learning 

algorithms that are highly dependent on past memory. Overall, this phase of the study 

demonstrates accurate flood forecasting in small watersheds requires long continuous 

periods of streamflow discharge monitoring and higher temporal resolution of predicted 

precipitation inputs. More importantly, flood hydrographs of extreme events in small 

catchments should be accurately and continuously recorded to increase the predictability 

power of both physical hydrology and data-driven real-time flood forecasting models.   
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6. Chapter 6 (Recommendations for future research) 

In this dissertation, I provided new insights into statistical and modeling approaches for 

urban flood management. However, many more questions remain to be answered in 

future studies to complement my findings. In this section, I suggest some research 

directions for future studies. 

6.1. Impacts of urbanization on flooding 

 Stormwater networks can greatly influence the seasonal peak flow response of peri-

urban catchments by altering the hydraulic flow path lengths and travel times. However, 

information on stormwater networks in urban catchments are generally categorized as 

classified information and are generally inaccessible to the public. I suggest studying the 

impact of stormwater networks on peak flow magnitude and time-to-peak flow to 

complement my results.    

6.2. Impacts of urban development pattern on flooding 

The RNICO index cannot account for the interference of stormwater drainage networks 

on discharge. However, it is hypothesized that the impact of stormwater networks is 

negligible in low to moderately urbanized study catchments. This assumption may not be 

valid for highly developed catchments due to the considerable influence of drainage 

networks on the response of these catchments. To increase the effectiveness of RNICO 

for flood prediction in highly developed urban catchments with dense stormwater 

networks, the total length of stormwater conduits and/or the total area of stormwater 

catch basins may be used as weighting factors for RNICO. 

The geometric distances used for calculating RNICO are defined based on straight line 

connections from the catchment outlet to the basin centroids (dc) and areas of 
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imperviousness centroid (di). These lines do not closely represent the actual hydrologic 

pathways and lengths of catchment drainages. To increase the value of the RNICO index 

for catchments with irregular shapes, inclusion of known pipelines and channels for 

routing, or for variable source areas, may improve the index beyond the straight line 

approach developed here.  

Another limitation was the relatively small number of USGS monitored peri-urban 

catchments in proximity of large growing cities. Especially in western US, most urban 

stream-flows are often intermittent. Secondly, there are fewer USGS stream-flow 

monitoring stations in the western US urban catchments compared to the northern US. 

Due to the limited number of small catchments in the western US, the correlation 

between RNICO and average runoff peak flow may be influenced by other physical 

properties such as fractional impervious area and urban drainage system. To decrease the 

uncertainty of analysis for western US study sites, an analysis of a greater sample number 

of small suburban catchments with a wide range of fractional impervious area and 

drainage patterns for the western US is suggested.  

6.3. Impact of storm direction on flood forecasting performance of ANFIS 

My results indicated a marginal impact of storm direction on the performance of ANFIS 

flood forecasting model in Ley Creek (78 km2) due to the relatively short time of 

concentration (1-5 hours). This analysis was limited by the temporal resolution of 

discharge from the USGS gage (15 minutes). It is suggested to perform a similar analysis 

with a higher temporal resolution of discharge to more accurately approximate the peak 

flow magnitude and time to peak flow and address the impact of storm direction on flood 

forecasting. Also, I note that this impact can be more important in large river basins 
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(A>78 km2), in which storm coverage area is typically smaller than the catchment 

drainage area. In this case, the storm location can affect the time of concentration and 

peak flow occurrence time, and water level data for the sub-branches of the catchment 

can be valuable inputs for an ANFIS model that is developed to predict flood level at the 

catchment outlet. I suggest applying the same methodology for flood forecasting in a 

large urbanized river basin to assess the impact of catchment scale for mentioned 

analysis.  

6.4. Real-time ensemble flood forecasting 

A limitation of the analysis in the second phase of this study was to access the historical 

numerical weather predictions that were used by NOAA for practical flood forecasting. 

Although this study used 11 GEFS/R precipitation ensemble members that are currently 

available from NOAA database, the actual precipitation prediction data used by NOAA 

include 21ensmeble members. To improve model performance and decrease the 

uncertainty of analysis, application of the 21 ensemble members is suggested. However, 

finding access to the 21 ensemble members from the NOAA database can be difficult 

without special permission from that organization. 

 Flood forecasting results for the nine NYC peri-urban catchments did not indicate a 

strong statistical correlation among model performance indices and catchment drainage 

area and imperviousness. As all study catchments are near NYC, this finding may be only 

valid for this study location and may differ for other geographic locations. Therefore, a 

similar analysis on different study locations with a wide range of imperviousness, 

climate, and drainage patterns is suggested.   
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As previously discussed in the results section, the ANFIS model performed poorly for 

predicting the Hurricane Irene flood hydrograph for lead times greater than 3 hours. I 

suggest that poor performance of ANFIS for predicting the flood hydrograph of 

Hurricane Irene is due to the lack of a similar large storm/hurricane in the training period 

(2004-2011). Data-driven models are training algorithms and their performance can be 

highly affected by the quality of training data inputs. To test the validity of my 

hypothesis, I suggest applying ANFIS for predicting the flood hydrograph of a more 

recent hurricane to extend the training period for this model and assess the impact of 

training data quality on the accuracy of predictions.  
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Appendix A: Real-time ensemble flood forecasting 

Table A1: RelBIAS values for individual watersheds for calibration (2004-2011) and 

validation (2011-2014) periods. 

   

 

 

 

 

 

 

 

 

 

 

Table A2: Calibration datasets for the SAC-SMA model for the nine study catchments 
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 Figure A1: Observed versus simulated discharge values for SAC-SMA and 

ANFIS models for the calibration period. We focus on a 5-month period from 3/1/2011 to 

8/1/2011 because of the difficulty in showing all data points for the 7-year calibration 

period for all sites. We note that the selected 5-month period includes the wettest and the 

driest part of the year in the study region. 
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Figure A2: Observed and ensemble forecasted flood hydrographs of the smallest study 

site (site 1, Fig. A2-a) and the largest study site (site 9, Fig. A2-b) for Hurricane Irene. 

Lead times for forecasting increase from left to right 
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Table A3: RelBIAS values of ANFIS for predicting the Hurricane Irene and the small 

storm event flood hydrographs at the nine study catchments. Min, avg, and max values 

represent minimum, average, and maximum RelBIAS among the eleven forecasted 

ensemble members at the corresponding catchment. 

 

 

 

 

 

 

 

 

 

  

Table A4: RelBIAS values of SAC-SMA for predicting the Hurricane Irene and the small 

storm event flood hydrographs at the nine study catchments. 
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Table A5: Pearson correlation coefficient (r) between the PR index and other 

performance indices used in this study. We note that values in this table are calculated 

based on n=5 which equals the number of sites with NOAA flood threshold (Table 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A3. Performance indices for SAC-SMA and ANFIS averaged across the eleven 

ensemble members varied lead times plotted against catchment drainage area. Results in 

this figure represent the flood hydrograph simulation for the small storm event during 

September 2011.  
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 Figure A4. Performance indices for SAC-SMA and ANFIS averaged 

across the eleven ensemble members varied lead times plotted against catchment 

imperviousness. Results in this figure represent the flood hydrograph simulation for 

Hurricane Irene.  
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Figure A5. Performance indices for SAC-SMA and ANFIS averaged across the eleven 

ensemble members varied lead times plotted against catchment imperviousness. Results 

in this figure represent the flood hydrograph simulation for the small storm event during 

September 2011.  
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Appendix B: Culvert geometries for Ley Creek monitoring stations 

 

 

 

 

 

 

 

 

 

 

 

Figure B1. Monitoring station 1 at West 2nd St., East Syracuse, NY. Figures B1a and 

B1b show culvert inlet and plan views of this site, respectively. 

 

 

 

 

 

 

 

 

 

 

Figure B2. Monitoring station 2 at Beartrap Creek, Ley Creek Dr., Syracuse, NY. Figures 

B2a and B2b show culvert inlet and plan views of this site, respectively. 
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Figure B3. Monitoring station 3 at Fly Rd, Syracuse, NY. Figures B3a and B3b show 

culvert inlet and plan views of this site, respectively. 
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Appendix C: R script for correcting NLDAS radar precipitation data  
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Appendix D: R script for precipitation event analysis: isolating individual 

precipitation events based on the corrected NLDAS precipitation input data.  
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Appendix E: R script for peakflow analysis: extracting peak flow magnitude and 

timing for different precipitation events in the study period 
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Appendix F: R script for plotting different figures of phase one of the study 
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Appendix G: R script of functions for plotting different figures of phase one of the 

study for Chicago, IL 
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Appendix H: R script for correlation analysis between mean runoff peak flows and 

different physical parameters  
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Appendix I: R script for plotting flood hydrographs of four NYC study catchments  
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Appendix J: R script for importing GEFS/R precipitation and temperature 

ensemble files from NETCDF format to Excel 
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Appendix K: R script for correcting stream-flow discharge data of the USGS gages 
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Appendix L: R script for NLDAS2 precipitation and temperature data 

manipulation for calibrating/validating flood forecasting models 
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Appendix M: R script for finding periods of missing discharge records for study 

USGS gages  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 



161 
 

Appendix N: R script for generating spaghetti plots 
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Appendix O: R script for input data manipulation for the ANFIS model 
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Appendix P: MATLAB script for training and testing the ANFIS flood forecasting 

model 
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Appendix Q: complementary tables and figures for RNICO analysis 

Table Q1. Linear equations (Y=aX + b) for nine cities presented in Figure 4. Parameters 

X and Y represent RNICO and Runoff peak flows, respectively. 

City  Dependent variable (Y) 
Regression parameters 

R2 
a b 

Chicago, IL 
(CHI) 

Max. Peak, small site 3.68 2.39 0.67 

Avg. Peak, small site 5.57 2.03 0.97 
Avg. Peak, large site - 0.1 - 

New York, NY 
(NYC) 

Max. Peak, small site 57.61 6.89 0.91 
Avg. Peak, small site 13.27 1.28 0.95 
Avg. Peak, large site - 0.15 - 

Baltimore, MD 
(BAL) 

Max. Peak, small site 74.46 24.46 0.75 
Avg. Peak, small site 9.79 3.61 0.55 
Avg. Peak, large site - 0.43 - 

Portland, OR 
(POR) 

Max. Peak 4.86 0.35 0.72 
Avg. Peak 0.36 0.14 0.7 

Houston, TX 
(HOU) 

Max. Peak, small site 5.67 38.44 0.91 
Avg. Peak, small site 9.5 1.06 0.85 
Avg. Peak, large site - 0.4 - 

Austin, TX 
(AUS) 

Max. Peak, small site 523.29 62.07 0.94 
Avg. Peak, small site 103.03 10.53 0.97 
Avg. Peak, large site - 2 - 

Syracuse, NY 
(SYR) 

Max. Peak 0.11 0.04 0.86 
Avg. Peak 0.82 0.07 0.97 

San Francisco, 
CA (SF) 

Max. Peak 5.4 0.92 0.45 
Avg. Peak 1.08 0.28 0.56 

Los Angeles, 
CA (LA) 

Max. Peak 1.29 2.88 0.11 
Avg. Peak 1.67 -0.19 0.75 

 

 

 

 

 

 



168 
 

Table Q2. linear equations (Y=aX + b) for three cities presented in Figure 18a. 

Parameters X and Y represent RNICO (or imperviousness) and R-B flashiness index, 

respectively. 

City name 
Equation 

#  
Site 
scale 

X 
equation 

parameters R2 
a b 

Chicago, IL 
(CHI) 

1 small RNICO 0.47 0.7 0.4 
2 large RNICO - 0.4 - 
1 small Imperviouness (%) 0.01 0.4 0 
2 large Imperviouness (%) - 0.4 - 

New York, 
NY 

 (NYC) 

1 small RNICO 2.95 0.7 0.9 
2 large RNICO - 0.4 - 
1 small Imperviouness (%) 0.03 0.2 0.8 
2 large Imperviouness (%) - 0.4 - 

Portland, OR 
 (POR) 

- small RNICO 0.31 0.4 0.2 
- small Imperviouness (%) - 0.5 - 

 

Table Q3. linear equations (Y=aX + b) for three cities presented in Figure 18b. Parameters X and 

Y represent RNICO (or imperviousness) and coefficient of variation of daily mean discharge 

values, respectively. 

City name 
Equation 

#  
Site 
scale 

X 
equation 

parameters R2 
a b 

Chicago, IL 
(CHI) 

1 small RNICO 1.7 2.6 0.7 
2 large RNICO - 1.8 - 
1 small Imperviouness (%) 0.05 0.5 0.4 
2 large Imperviouness (%) - 1.8 - 

New York, 
NY 

 (NYC) 

1 small RNICO 8.18 2.2 0.7 
2 large RNICO - 1.7 - 
1 small Imperviouness (%) 0.08 0.6 0.8 
2 large Imperviouness (%) 0 1.7 0.4 

Portland, 
OR 

 (POR) 

- small RNICO 2.01 1.2 0.5 

- small Imperviouness (%) 
-

0.01 
1.9 0.4 
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Figure Q1. Plots of RNICO and imperviousness versus the coefficient of variation of daily mean 

discharge values (CV, 
௙௧య

௦
) for Chicago, IL, New York, NY (Roodsari and Chandler, 2017), and 

Portland, OR. Equations of linear regressions are presented in Table Q3. 
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Appendix R: Multilinear regression analysis and diagnostic test results for average 

runoff peak flow and physical and environmental parameters 

 

Table L1. Results for stepwise regression among significant environmental physical 

parameters (Xi) and the average runoff peak flow (Y), and diagnostic tests for the six 

cities in Figure 22. 

City name Significant 
parameter (s) 

Regression equation 
(Y represents 

average runoff peak 
flow (mm/hr) and Xn 
is an input defined in 

Table 7) 

Adjusted 
R2 

variance-
inflation 

factor (VIF) 
(typically, 
values less 
than 10 are 
desirable) 

Probability Plot Correlation 
Coefficient (PPCC) test results 

Number 
of data 
points 

(n) 

rα=0.05 Calculated 
r value 

Chicago Xm Y=5.57Xm+2.03 0.96 NA 5 0.879 0.970 
NYC Xm, Xk Y=7.16e-03 Xm +2.0

8e-05Xk+ 

9.034e-04 

0.91 4.44 4 0.867 0.996 

Baltimore Xm, Xl Y=6.77 Xm +0.04Xl-
0.23 

0.68 1.15 7 0.897 0.998 

Portland Xm Y=0.36 Xm +0.14 0.60 NA 5 0.879 0.936 

San 
Francisco 

Xm, Xl Y=0.98 Xm +0.002Xl

-0.120 
 

0.99 2.11 5 0.879 0.992 

Los 
Angeles 

Xm Y=1.67 Xm -0.195 0.63 NA 4 0.867 0.960 
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Figure L1. Diagnostic tests for the multilinear regression equation for NYC presented in 

Table L1. 
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Figure L2. Diagnostic tests for the linear regression equation for Chicago, IL presented in 

Table L1. 
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Appendix S: Marginal research questions 

Question 1: Does the scale of a peri-urban catchment matter for assessing the 

impact of the distribution of surface imperviousness on runoff peak flows? If so, what is 

the catchment drainage area threshold value associated with this assessment? Does this 

area threshold value vary substantially with the catchment’s geographic location?  

Question 2: Do climate and geographic location of peri-urban catchments impact 

the connectivity of urban development pattern with runoff peak flows and stream 

flashiness? If so, in which climates may we expect to find a stronger linkage between the 

urban development pattern and peak flow response of small peri-urban catchments? 

Question 3: How do measurable surface properties including morphologic, 

hydrologic, and topographic parameters affect runoff peak flows in peri-urban 

catchments? 

Question 4: Based on the previous literature, how do the hydrologic performance 

of varying LIDs such as green roof and bioretention systems change from warm to cold 

season?  

Question 5: Does the storm movement direction relative to the catchment 

drainage orientation impact the performance of data-driven models for flood forecasting 

in small peri-urban catchments?  
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