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ABSTRACT

This dissertation focuses on the impact of detector characterization work on

searches for gravitational waves from compact binary coalescences (CBCs) in Ad-

vanced LIGO’s second observing run (O2). This observing run started on November

30, 2016, and lasted until August 25, 2017, and resulted in the identification of 8

unambiguous gravitational-wave signals, including the first observation of a binary

neutron star merger. The role of detector characterization is to leverage knowledge of

both the interferometers and the data in order to improve aLIGO’s ability to observe

gravitational-waves.

I focus on the construction of the O2 noise subtracted data set that was searched

as a part of the LIGO-Virgo Collaboration’s first gravitational-wave catalog, GWTC-

1. This data set was processed with a noise subtraction pipeline to remove the excess

noise identified at each interferometer that resulted in a 30% improvement in the

sensitive volume that aLIGO was able to probe. Equally important to the finalized

data set is the inclusion of data quality vetoes that indicate periods of instrumental

artifacts.

I also examine how these instrumental artifacts can mimic gravitational-wave

waveforms and reduce the sensitivity of searches for CBC signals, with particular

emphasis on the PyCBC pipeline. Understanding this connection is one of the key

ways that gravitational waves are differentiated from instrumental artifacts. Finally,

I detail the final results presented in the GWTC-1 catalog from a detector charac-

terization perspective, and discuss how the efforts highlighted in this dissertation

allowed for the detection of new gravitational-wave events and improved analyses of

previously identified events.
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1

Chapter 1

Gravitational Waves: Theory,

Sources, and Detectors

In 1915, Albert Einstein published the first paper on general relativity [1], revolu-

tionizing our understanding of gravity. In addition to explaining previously unsolved

problems such as the procession of the perihelion of Mercury, the theory made a wide

variety of predictions that had yet to be observed at the time of writing. One of the

first such predictions to be tested was the deflection of light by gravity.

One of the central tenets of general relativity was that masses deformed spacetime,

which then in turn influenced other masses. In the words of John Wheeler, “Space

tells matter how to move, matter tells space how to curve” [2]. However, spacetime

curvature also affects the motion of particles with no mass such as photons. In order

for this effect to be large enough to be observed at the time of Einstein’s prediction,

photons needed to pass very close to an extremely massive object. The total solar

eclipse of May 29, 1919 presented the perfect opportunity for both conditions to be

met. With the light from the sun blocked out, detailed measurements were taken

by Arthur Eddington of the deflection angle of photons from starlight passing very

near the sun, which agreed with the expected value [3]. For the first time, Einstein’s

theory of general relativity was able to make a precise prediction that can explain a

new phenomenon in our universe.

In the one hundred years since this initial success, Einstein’s theory of general

relativity has been subjected to more rigorous scrutiny; the theory has correctly pre-

dicted effects such as the size of black holes and their related photon rings [4], frame
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dragging [5], gravitational redshift [6], and the strong equivalence principle [7]. One of

the most contentious predictions of general relativity was gravitational waves. After

the initial wave solution published by Einstein in 1916 [8], the existence of gravita-

tional waves was deeply debated. It was not until the mid 1950s that the scientific

community converged on support of the concept. In 1974, the discovery of a binary

system consisting of two neutron stars by Hulse and Taylor [9] provided the first op-

portunity for this theory to be tested. As gravitational waves are emitted by a system,

they carry away energy that causes the orbit to slowly decay. Careful measurements

of the orbital phase of the system showed that the period was decreasing exactly at

the rate predicted due to gravitational wave emission [10]. This provided the first

indirect evidence for gravitational waves.

What remained elusive was the direct detection of gravitational waves. The pre-

dicted low amplitude of these waves initially led Einstein to assert that direct de-

tection may never be possible. However, advancements in precision measurements

culminating in the development of the Laser Interferometer Gravitational Wave Ob-

servatory (LIGO) finally made such a discovery within the realm of possibility [11].

On September 14, 2015, the twin LIGO detectors made coincident observations of

gravitational waves from the merger of two compact objects, each about thirty times

the mass of the sun [12]. This signal, GW150914, was not only the first gravitational-

wave detection, but also the first evidence for a population of stellar mass black holes

above 20 M� [12].

Since this initial discovery, ten additional detections of gravitational waves [13]

have been made by LIGO along with the Virgo interferometer [14]. Of the eleven

total, all but one were from binary black hole mergers. The remaining detection,

GW170817, was from the merger of binary neutron stars; this led to one of the

largest astronomical follow up campaigns in history, marking the beginning of multi-

messenger astronomy with gravitational and electromagnetic waves [15, 16].

In this dissertation, I will outline the theory and techniques that are critical for

gravitational wave detections with interferometry. I will then discuss sources of broad-

band and transient instrumental noise that limit the sensitivity of Advanced LIGO

and searches for signals from compact binary coalescences (CBCs). I will evaluate

mitigation strategies used in O2 to increase the sensitivity of aLIGO to gravitational

waves, including identification of time periods corrupted by short duration transient
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noise, subtraction of correlated noise over long durations, and studies to differentiate

transient noise from genuine astrophysical signals. Finally I will present the most re-

cent results from LIGO-Virgo observations, and how these mitigation methods have

allowed for the detection of new gravitational-wave events and improved analyses of

previously identified events. The focus will be on the second observing run (O2) of

Advanced LIGO, which ran from November 2016 to August 2017.

The remainder of Chapter 1 details how gravitational waves arise in general rela-

tivity, the astrophysical sources of such waves, and the basic design of the interferom-

eters used to detect them. Chapter 2 outlines methods used to identify gravitational

waves in interferometer data, along with an overview of the limiting sources of noise

for these analyses. Chapter 3 explains how sources of transient noise are identified in

the data and how instrumental improvements are tested to alleviate such problems.

Chapter 4 further explores the relationship between common sources of transient noise

and the algorithms used in gravitational wave detection, explicitly discussing prob-

lems of both false negatives and false positives in the analysis. Chapter 5 discusses

how the overall sensitivity of the detector was improved with by the subtraction of

broadband noise sources. Finally, Chapter 6 details the final search results for the

second observing run, and how the mitigation methods discussed in this dissertation

affect the astrophysical results from the O2 dataset.

1.1 Gravitational Waves in General Relativity

Gravitational waves are one of the central features of Einstein’s theory of general

relativity. Gravitational waves can be constructed in general relativity by starting

with a spacetime metric in a vacuum and adding a metric perturbation that obeys

a few basic assumptions. In this section, I will work through the assumptions that

are made to generate gravitational waves, and how gravitational waves appear to a

stationary observer1.

To see how gravitational waves can be constructed, we want to develop our space-

time metric for gravitational waves, gµν . To produce this spacetime metric, we begin

with the standard Minkowski metric for flat space, ηµν , that describes spacetime in

the absence of matter:

1This section loosely follows a derivation found in Flanagan [17]
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η =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (1.1)

We can now add a perturbation to this metric given by hµν such that ||hµν || � 1.

This means our chosen metric is

gµν = ηµν + hµν . (1.2)

We will now focus on this perturbation term, hµν . We will make three additional

assumptions about how this perturbation is constructed:

Spatial: htt = hti = 0

Traceless: h = hii = 0

Transverse: ∂ihij = 0

. (1.3)

These conditions are referred to as the “Transverse-traceless gauge”. In order

to fully satisfy these assumptions, this perturbation needs to obey the differential

equation

�hµν =

(
1

c2

∂2

∂t2
−∇2

)
hµν = 0 . (1.4)

It is in this way that we have shown that with these gauge choices, the metric pertur-

bation must follow a classical wave equation. Furthermore, this metric is described

by only two values,

h+ ≡ hxx = −hyy
h× ≡ hxy = hyx

. (1.5)

This means that the full metric perturbation is

hµν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 . (1.6)
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These two variables, h+ and h×, define the two polarizations of gravitational waves,

called the plus and cross polarizations, respectively.

In order to consider how this perturbation would impact test particles, we consider

a gravitational wave with only one polarization, h+, for simplicity. In this scenario, if

the gravitational wave was propagating in the ẑ direction, the metric perturbation is

hµν =


0 0 0 0

0 h+ 0 0

0 0 −h+ 0

0 0 0 0

 . (1.7)

Therefore, this perturbation would produce an equal but opposite effect in the

x̂ and ŷ dimensions. Namely, there would occur a stretching of spacetime in the x̂

direction, with compression in the ŷ direction. As the wave passes, oscillations would

occur, with each dimension successively being stretched and compressed. An example

of this behavior on a ring of test masses can be seen in Figure 1.

The amplitude of each term, ||hµν ||, is referred to as the strain produced by the

gravitational wave. Strain is the fractional change in distance in a particular direction

due to the stretching of space caused by gravitational waves. If we consider our ring

of test particles from Figure 1, let the initial diameter, when no gravitational waves

are present, to be L. Then when a gravitational wave with strain amplitude h passes

through, the ring will be compressed and stretched by a factor of h, so that the ring

width and height will now be L(1− h) and L(1 + h), respectively.

1.2 Gravitational Wave Sources

With the knowledge that gravitational waves are a well described component of gen-

eral relativity, the next step is to understand the known emission sources for these

waves, along with the strain amplitude that can be observed on Earth. In general,

the optimal scenario for gravitational wave emission involves highly massive object

moving quickly in an asymmetric manner. Specifically, a variation in the quadrupole

moment of a mass distribution leads to gravitational wave emission. Thankfully, a

number of sources that fit this description have been identified.
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Figure 1: Top: The response of a ring of test particles to plus polarized gravitational

waves. Note the stretching and compression of orthogonal axes. Bottom: The re-

sponse of a ring of test particles to cross polarized gravitational waves. Reproduced

from [18].
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1.2.1 Compact Binary Coalescence

The most straightforward way to vary the quadrupole moment of a system is to have

two objects orbiting around each other2. The expression for the observable strain

amplitude from gravitational waves is

hµν =
2G

Rc4
Ïµν . (1.8)

To see how strong gravitational waves can be, we derive Ïµν for a system that contains

two objects of mass m orbiting at a radius of r and frequency forb.

To derive Ïµν , we start with the expression for a generic quadrupole in general

relativity:

Iµν =

∫
dU(xµxν −

1

3
δµνr

2)ρ(r) . (1.9)

If we assume that the gravitational wave is polarized in the plus direction, we

can focus on a single term in this tensor, Ixx. We write this term down and then

differentiate twice with respect to time:

Ixx = 2Mr2
0(cos2 2πforbt−

1

3
)

İxx = 4Mr2
0(2πforb)(cos 2πforbt sin 2πforb)

Ïxx = 16π2Mr2
0f

2
orb(cos 4πforbt)

. (1.10)

Therefore the total strain in the x̂ direction is

hxx =
32π2G

Rc4
Mr2

0f
2
orb(cos 4πforbt) . (1.11)

Solving for hyy will give a result with identical amplitude. Therefore we find that

the expected strain is

|h| = 32G

Rc4
2Mr2

0f
2
orb . (1.12)

While we do expect some deviations from Keplerian orbits due to general relativity,

this approximation will hold to first order. With that in mind, we can calculate the

expected orbital frequency from the masses and radius of the orbit, given by

2The derivations in this section follows from Saulson [19], which in turn is sourced from Misner,

Thorne, and Wheeler [2].
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f 2
orb =

2Gm

32π2r3
. (1.13)

A particularly useful quantity when discussing gravitational waves from compact

binaries is chirp mass, given by [20]

M =
(m1m2)3/5

(m1 +m2)1/5
. (1.14)

The chirp mass is one of the best measured parameters from a gravitational wave

signal [20] because it gives, to leading order, the rate of evolution of the orbital

frequency of the binary.

Another important value is the minimum radius of an object in general relativity,

known as the Schwarzchild radius [21],

Rs =
2GM

c2
. (1.15)

The Schwarzchild radius is the location of the event horizon as predicted by general

relativity for a black hole with mass of M . This radius sets the minimum value for

the compactness of an astrophysical object, and therefore the minimum separation

distance of orbiting objects that are capable of emitting gravitational waves.

In order to achieve the highest measurable strain amplitude for a binary system,

we need extremely dense objects moving quickly. The best identified targets for

gravitational waves are stellar remnants such as black holes, neutron stars, and (for

gravitational waves at lower frequencies) white dwarfs. While it is possible to have a

system with different classes of object (for example a system with one neutron star

and one black hole) we will assume in this section for simplicity that objects are paired

with like objects. The spread of masses for the population of measured black holes

and neutron stars from both gravitational waves and electromagnetic observations

can be seen in Figure 2. A system of two binary objects will have the most rapid

acceleration of each component object just as the components are about to collide and

merge. Therefore, the largest amplitude gravitational waves are related to compact

binary coalescence (CBC) signals.
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Figure 2: Graphic representation of the catalog of gravitational wave event observed in

Advanced LIGO’s first and second observing runs, alongside black holes and neutron

stars with measured masses from electromagnetic observations. Arrows connecting

pairs of black holes represent binary mergers observed by LIGO and Virgo. Repro-

duced from [22].
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Binary Black Holes

In order to have the largest spacetime distortion, it is reasonable to first consider the

most dense objects possible moving at the fastest speeds. Black holes represent the

most compact objects in the universe, and are the expected result of a main sequence

star over 25 M� [23]. While binary black holes are not visible electromagnetically,

they are the most common type of system observed via gravitational waves due to

their small radii and large masses. We can calculate the expected strain amplitude of

a binary black hole system using the parameters of the first BBH observed by LIGO,

GW150914 [12]. We therefore set each black hole to have a mass of 35M� and the

separation distance of 350 km, (a few multiples of the black hole’s Scharzchild radius)

we find that the orbital frequency would be 75 Hz, and hence a gravitational wave

frequency of 150 Hz. This approximates one of the final orbits before merger, when

the black holes would be at their closest point. We place our binary system at 400

Mpc, again matching the measured parameters of GW150914. At this range, we find

using Equation 1.15 that the maximal observable strain amplitude would be

|h| ≈ 2× 10−21 . (1.16)

This simple approximation actually estimates the overall amplitude of gravita-

tional waves quite well! Comparing this expected strain to the observed value for

GW150914, |h| ≈ 1× 10−21, this is within a factor of 2. The observed strain for this

event, showing the increase in frequency and amplitude as the binary system inspirals

closer and closer before merger, can be seen in Figure 3.

Binary Neutron Stars

The next class of object we can consider is neutron stars, aptly named as they can be

approximated as consisting only of neutrons. These objects are also stellar remnants,

and are held up primarily by neutron degeneracy pressure. A neutron star is the

likely final result for a main sequence star that began with the mass of 10 - 25 M�

[23]. One clear advantage of a system with binary neutron stars, unlike binary black

holes, had been previously observed with electromagnetic waves before their discovery

with gravitational-waves, the most notable of which is the Hulse-Taylor system. From

observations of the double neutron star population in the Milky Way, merger rates
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Figure 3: The observed gravitational wave signal from GW150914, along with the

separation distance and orbital velocity as the binary system approaches merger.

Reproduced from [12]
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have been estimated to be ≈ 40 per million years in our galaxy [24].

Since these objects have been observed via electromagnetic methods, their param-

eters have been measured. The expected mass of a neutron star based on Milky Way

observations, as well as predictions of the point at which a star would collapse into a

neutron star [25], is 1.4M� [26]. The radius of a neutron star is less well measured,

and is dependent on the equation of state for matter at densities above those found

in the nucleus of an atom. However, a reasonable assumption about their radius is

10 km.3

Taking these two values for radius and mass, we can then calculate the orbital

frequency for when the two neutron stars touch. We find that forb is 1085 Hz, meaning

fGW is 2170 Hz. Using these values, and the measured distance to GW170817, ≈ 40

Mpc [29], we find that the maximum strain amplitude for a this binary neutron star

merger is

|h| ≈ 1× 10−21 . (1.17)

An additional feature of neutron star mergers that makes them an interesting

target is the fact that since neutron stars (unlike black holes) are comprised of matter,

it is expected that electromagnetic emission will occur alongside the merger. The first

neutron star merger was observed in coincidence with a prompt gamma ray burst [30]

as well as emission in other wavelengths that lasted for weeks after the event [16].

White Dwarfs

The final stellar remnant we will consider is white dwarfs. These are the remnants

for main sequence stars less than 10M�, including the Sun [23]. A white dwarf is

what remains after the star has shed its hydrogen and helium shell, leaving behind

the core of the star. Primarily held up by electron degeneracy pressure, white dwarfs

are compact as compared to a main sequence star, but much larger than neutron

stars or black holes. As the primary pressure comes from electron degeneracy, white

dwarfs decrease in radius as their mass increases, until a critical point is reached at

1.4M�, called the Chandrasekhar mass. At this point the object implodes, causing a

Type 1b supernova, and creating a neutron star.

3This value of the radius is consistent with the measured values from GW170817. [27, 28]
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Using the parameters of the nearest white dwarf with a measured mass, Sirius B

[31], we set each white dwarf in our binary to have a mass of 1.0 M�, which leads

to a radius of approximately 7000 km (around the size of the Earth). Following

the procedure for neutron stars, we estimate the frequency of orbit for when the

white dwarfs touch. We find an orbital frequency of 3.5 × 10−5 Hz, and therefore a

gravitational wave frequency of 7.0 × 10−5 Hz, much lower than for black holes or

neutron stars.

Furthermore, when we use these inputs for even an maximally close merger at the

center of the Milky Way, only 7000 pc, we find a maximum strain amplitude of

|h| ≈ 1× 10−27 . (1.18)

As the expected amplitude of gravitational wave strain observable from these sys-

tems in the most optimistic scenario is much lower than for neutron star or black hole

binaries, in addition to being at an extremely different frequency band, white dwarf

mergers are a not a promising candidate for detection by ground-based gravitational-

wave observatories. These systems may be observable by space-based observatories,

such as LISA [32], that will be sensitive in this frequency band and able to observe

white dwarf systems for multiple years before merger in order to better separate the

signal from background noise.

1.2.2 Gravitational Wave Transients

In addition to CBC signals, there are other proposed sources of short lived gravita-

tional waves. One of the most understood sources is supernova [33, 34, 35]. However

there are other sources such as bursts from magnetars [36] or bremsstrahlung radia-

tion from black holes in dense clusters passing close to each other [37], that may be

possible.

Supernovae, particularly Type II supernova may be good candidates for a gravi-

tational wave transient. During the collapse of the star, it is possible that a proto-

neutron star will be formed with high spin and high eccentricity that is capable of

emitting measurable gravitational waves. Furthermore, matter shockwaves from the

supernova are expected to not be isotropic, which creates an additional mechanism

for gravitational-wave emission. While the amplitude of such an event is highly model
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dependent, an estimate for the strain amplitude at 100 Hz from a supernova at 10

kpc is [35]

|h| ≈ 1× 10−22 . (1.19)

While this amplitude is comparable to the expected strain from a compact binary

merger, galactic supernova are extremely rare, with an expectation of only ≈ 3 per

century in the Milky Way [38].

Additional sources of gravitational waves, such continuous waves from pulsars

[39] or a gravitational-wave stochastic background [40], are predicted to exist, but

are detected with highly orthogonal data analysis methods to gravitational wave

transients.

1.3 Gravitational Wave Interferometers

With our knowledge of the loudest potential sources of gravitational waves, the next

reasonable step to examine the methods that allow the detection of a gravitational-

wave strain as small as 10−21.

The first design for a gravitational wave detector was a resonant bar detector

designed by Joseph Weber [41]. While it did not meet the sensitivity requirements

that we are aiming for (and hence did not detect gravitational waves) it was the first

attempt to directly measure these waves. In 1972, Rainer Weiss proposed [42] that

a detector based on the design of a Michelson interferometer [43] would be highly

effective.

The target sensitivity was finally reached with the construction of the Advanced

Laser Interferometer Gravitational-Wave Observatory (aLIGO) [11] in 2015. The rest

of this section will discuss the overall design of interferometers and the specific design

components of aLIGO that allowed it to reach its current sensitivity, along with the

limiting sources of background noise.

1.3.1 Interferometer Design

A Michelson interferometer is designed to be highly sensitive to changes in the path

length of two arms that are orthogonal to each other. A diagram of this basic setup

can be seen in Figure 4. A light source is sent into a beam splitter, which then sends
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Figure 4: Basic Michelson Interferometer design showing how light is split into two

perpendicular arms. Reproduced from [44]

the light half down one arm and half the other. At the end of each arm, there is a

mirror that reflects the light back to the beam splitter. At the beam splitter, the

light from each arm is split again, such that half of the light is sent back towards to

input, while the other half is sent to the output.

When the light is recombined at the output port, either constructive or destructive

interference occurs based on the path distance along each arm. If the path length

differs by an integer number of wavelengths, constructive interference occurs, while

a difference of a half wavelength results in destructive interference. It is in this way

that the interferometer can sense slight variations in relative length. In fact, we can

model the behavior of the interferometer from first principles using the equation of a

electromagnetic wave.
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We first assume the input to the interferometer is4

Ein = E0e
i(2πft−kx) . (1.20)

This input field then encounters a 50/50 beamsplitter with reflection and trans-

mission amplitude coefficients of

r = 1/
√

2

t = i/
√

2
. (1.21)

Therefore the light transmitted down the x̂ and ŷ axes is described as

Ex =
i√
2
E0e

i(2πft−kx)

Ey =
1√
2
E0e

i(2πft−ky)
. (1.22)

After travelling down the length of each arm, and reflecting off of the end mir-

rors, each field picks up a factor of −1. Reflecting back to the beam splitter and

recombining, the final output field is

Eout =
i√
2
E0e

i(2πft−kLx) +
i√
2
E0e

i(2πft−kLy)

= iE0e
i(2πft−k[Lx+Ly ]) cos k(Lx − Ly)

. (1.23)

However, the measurable quantity of relevance in this case is not the field ampli-

tude, but the power. Since this is simply the field amplitude squared, we find the the

total power output is

Pout = E2
0 cos2 k(Lx − Ly)

= Pin cos2 k(Lx − Ly)

= Pin/2 (1 + cos 2k(∆L))

, (1.24)

where ∆L is the difference between the two arm lengths. It is the cos 2k(∆L) term

that ultimately is sensitive to the total relative arm distance. As light travels at a

fixed speed down the arms, this difference in length causes the light to return to the

beamsplitter with a small phase difference in our final result.

4This derivation follows the treatment from Saulson [19], which is in turn based on Haus [45].
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The next step is to now examine how a passing gravitational wave will effect the

interferometer. In the Transverse-Traceless gauge, the spacetime coordinates of the

mirrors are not affected by the gravitational-wave perturbation, allowing us to focus

solely on how light in the interferometer is affected by a passing gravitational wave. If

we consider the world line that the light takes through the arms, it must be ds2 = 0.

When a passing wave perturbs the spacetime metric, this means that

ds2 = (ηµν + hµν) dx
µdxν . (1.25)

To simplify the calculation, we will assume that the period of the gravitational

wave is much larger than the round trip time in the interferometer such that we can

assume the metric perturbation is constant. With this assumption, we can construct

the world line of light in the x̂ arm as follows:

ds2 = −c2dt2 + (1 + h11)dx2 . (1.26)

To find the full light travel time, we can integrate:∫ τout

0

dt =
1

c

∫ L

0

√
1 + h11dx

≈ L

c
+
L

2c
h11

. (1.27)

As the return trip takes an equal amount of time, the total round trip duration is

τrt,x =
2L

c
+
L

c
h11 . (1.28)

Similarly, the round trip duration for light in the y arm is

τrt,y =
2L

c
+
L

c
h22 . (1.29)

This means that the difference in the duration is

∆τ =
L

c
(h11 − h22) . (1.30)

If we assume that the wave is only plus polarized, then h = h11 = −h22. Therefore

for a particular strain amplitude, h, the light travel time difference is

∆τ =
2L

c
h . (1.31)
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This time difference will result in a phase difference at the output port, and

create an observed power as was shown for a difference in length between the arms.

In fact, if we consider that ∆L = Lh, the coupling between the strain amplitude of

gravitational wave and the effect on the interferometer becomes clear. Armed with

the knowledge that our interferometer is sensitive to these waves, our next step is to

design an optimal detector for the target sources. An example of the basic aLIGO

design, including all of the relevant components that will be discussed in this chapter

can be seen in Figure 5.

Fabry-Perot Cavity

In order to maximize the sensitivity of our instrument to gravitational waves, it is

important to first note the difference between the quantity we have been using to

define gravitational wave amplitude, strain, versus the value our basic interferometer

measures, the difference in path length. Strain is defined as ∆L/L for some length

L, while the total path length difference is 2∆L. Therefore if we can increase L, we

can increase ∆L for a fixed strain amplitude.

In a basic interferometer, this quantity L is simply the arm length. Therefore the

most straightforward approach to increase sensitivity is to increase the arm length.

However, there is often a limitation to this approach, not simply in terms of physics

but of construction. We can, however, look back to an innovation by Michelson on

his original design for inspiration. In the 1887 interferometer Michelson constructed

he chose to increase the path length further as compared to his original design by

folding the arms [43]. This involved adding additional mirrors at both ends of each

arm such that the light was reflected back and forth multiple times, leading to the

thus constructing a longer path length for the light in each arm.

This has been proposed in gravitational wave interferometer design (e.g. the Her-

riott Delay Line [47]), but was not utilized in either Initial LIGO or Advanced LIGO

due to the complexity of designing the large reflective surface needed to complete the

necessary reflections. Instead, aLIGO uses a different set up to increase the effective

path length beyond the 4 km length of the arms, namely Fabry-Perot cavities in each

of the arms.

In a Fabry-Perot cavity, the arm length is increased by multiple reflections, but

instead of using distinct paths, each successive reflection overlaps. If the arm length
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Figure 5: The basic structure of cavities inside of Advanced LIGO. Note the pres-

ence of Fabry-Perot cavities in each arm, the input mode cleaner, the power and

signal recycling mirrors, and the output mode cleaner. Arm length is not to scale.

Reproduced from [46]
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Figure 6: A diagram of a Fabry-Perot cavity showing both reflected and transmitted

light. This cavity is constructed of two mirrors with reflective and transmission

coefficients of r1,2 and t1,2. Inside of the cavity there will be a circulating field, given

by E. Similar to an arm of a generic Michelson interferometer, length variations in

the length of the cavity will add a phase shift to the reflected field, Er. Reproduced

from [48].

is precisely controlled, the light will resonate inside the cavity with minimal losses.

A diagram of how light resonates in a Fabry-Perot cavity can be seen in Figure 6. If

one solves the field equations for this system, one can see that variations in the length

of the cavity will add a large phase shift to the light resonant in the cavity (given by

E in Figure 6), as well as the reflected light (given by Er in Figure 6). Therefore a

Fabry-Perot interferometer can measure arm length changes in the same way that a

generic Michelson interferometer can.

One method of measuring the equivalent number of round trips light takes in a

cavity is through the finesse. This value is based on the reflection coefficient of the

two mirrors in the cavity, r1 and r2, and is [19]

F =
π
√
r1r2

1− r1r2

. (1.32)

Each of the aLIGO arm cavities has a finesse F of 450 [11], which, combined in

an arm length of 4 km, results in a light storage time of τs ≈ 2 ms. This is equivalent

to an ‘effective arm length’ of τsc/2 ≈ 2800 km.

One additional comment about the arm length is that there is a physical reasoning
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that prevents the arm length from being extended indefinitely. In order for many of

the assumptions made in this chapter to be valid, the light storage time must be less

than the period of the gravitational wave. If this is not true, the consecutive maxima

and minima from the same gravitational wave will cancel out the change in phase

of the light in the arm. Hence a cavity is optimally sensitive to gravitational waves

with periods of twice the light storage time of the cavity, and has reduced sensitivity

to those with shorter periods. For aLIGO, this means the interferometer is most

sensitive for wave with a period of 4 ms (a frequency of 250 Hz).

In addition to cavities present in the arms, aLIGO heavily utilizes cavities through-

out the interferometer. A more detailed diagram of the interferometer showing some

of these components can be found in Figure 7.

Power Recycling

In the conditions that no gravitational wave is present, almost no light is sent to

the output (anti-symmetric) port, while almost all of the light is sent to the input

(symmetric) port. In our basic interferometer design, this means that only a minimal

amount of light actually reaches the photodetector making our measurement.

In order to get an additional benefit from the light that leaves the symmetric port,

aLIGO utilizes a power recycling mirror placed at the symmetric port. This mirror

then forms an additionally cavity, resonant at the frequency of the light [49]. This

reflects the light not sent to the output photodetector back into the interferometer,

allowing the interferometer to increase the intensity of the light in arms.

Signal Recycling

Similar to the power recycling cavity, the signal recycling cavity is formed with an

additional mirror at the anti-symmetric port that makes a cavity with the arms [49].

The arms themselves are such that the frequency of the laser, fl, is resonant in the

arm cavity. When a gravitational wave passes trough the detector, the light in the

arms is modulated by the gravitational wave frequency, creating side bands at fl±fsig.
As the detector is by default in a configuration where minimal light reaches the anti-

symmetric port, the path length change by a passing gravitational wave will cause

constructive interference at the signal recycling mirror. Hence we can consider these
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sidebands to be directed towards the signal recycling mirror.

Contrary to the name of this component, the signal recycling mirror in aLIGO is

configured such that the sidebands related to a gravitational wave signal are transmit-

ted through the mirror to the photodetector. This configuration is known as resonant

sideband extraction [49]. By preferentially transmitting the gravitational wave signal,

this effective finesse of the arm cavities to light modulated by gravitational waves is

reduced. Recalling that the sensitive bandwidth of the interferometer is increased

by decreasing the finesse of the arm cavities, this configuration allows for aLIGO to

have a larger bandwidth than Initial LIGO, which did not include a signal recycling

mirror [11]. Furthermore, as the frequency of the laser, fl, is not transmitted through

the signal recycling mirror, there is no change in the finesse of the cavity for this

frequency [49]. This allows the arm cavities to maintain high finesse, and hence high

power, while maximizing the bandwidth of gravitational waves aLIGO is sensitive to.

Mode Cleaners

In order to maximize the sensitivity of the interferometer to gravitational waves, the

input laser beam must have a precise frequency and angular direction. To help stabi-

lize both of these degrees of freedom in the beam, aLIGO uses an input mode cleaner,

a triangular cavity that is just after the laser beam is sent into the interferometer.

This cavity is used to stabilize the input beam and reduce noise due to angular and

frequency fluctuations [50]. An additional concern is the presence of higher order

modes of the laser beam in the interferometer. The input mode cleaner also functions

to remove any higher order modes in the input beam [50].

An additional feature of aLIGO is the presence of radio frequency sidebands added

to the main laser that are utilized by sensors to control the interferometer. While im-

portant, these sidebands are removed before the differential arm motion is measured.

This is done with the output mode cleaner, placed just before the output photode-

tector. This cavity is only resonant for the zeroth order mode of the main beam,

preventing both the added sidebands and higher order modes of the beam (arising

from misalignment of the interferometer optics) from exiting the interferometer [51].

If these were not removed from the main beam, there would be excess power incident

on the photodetector that was not related to the differential arm length.
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1.3.2 Fundamental Sources of Noise

With the aLIGO design discussed, there are a number of sources of broadband noise

in the detector that limit the sensitivity of the interferometer to astrophysical sources.

Many of these sources are stationary, Gaussian processes, meaning that they do not

vary in time and can be approximated as a a random variable with a Gaussian distri-

bution. However, many sources that are neither stationary or Gaussian can still limit

the sensitivity. The overall level of these noise sources set the minimum strength of

a detectable signal at a given frequency for aLIGO. A comparison of the dominant

sources of broadband fundamental noise in aLIGO can be seen in Figure 8.

Additional sources of noise that occur on short time scales that can affect our

ability to isolate astrophysical signals are also highly problematic, but do not affect

the overall noise curve. An overview of these transient noise sources can be found in

Chapter 2.

Quantum Noise

Currently the most limiting fundamental noise source at frequencies above 60 Hz is

from quantum noise. This class of noise can be separated into two competing cate-

gories of noise that are dependent on the power of the laser used in the interferometer.

The first class of quantum noise is shot noise. Roughly speaking, this is the count-

ing error due to the particle nature of light. Therefore, if the number of photons, and

hence the overall power is increased, the fractional error in the power measurement

will be lowered and the relative shot noise will decrease. More precisely, when con-

verted into the error in the length measurement, this is [52, 53]

hshot(f) =
1

NL

√
~cλ

2πPin
(1.33)

with L the arm length, N the number of round trips a photon makes on average

through the arm cavity, λ the wavelength of light, and Pin the input power into the

interferometer.

Competing against shot noise is radiation pressure noise. As the power increases,

size of pressure fluctuations on the test masses increases due to the number of photon

collisions. This leads to an additional motion of the test masses that limits the
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Figure 8: Fundamental noise sources for Advanced LIGO interferometers at design

sensitivity. The total noise represents the sum of the fundamental noise sources

shown in this figure. Additional noise from technical sources not shown in this plot

is expected to also contribute to the final sensitivity curve. Reproduced from [11]
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sensitivity to gravitational waves. Similar to shot noise, the relevant equation for

how this limits the strain sensitivity is [52, 53]

hrad(f) =
N

mf 2L

√
2~Pin
π3cλ

(1.34)

with a new factor m, the mass of the test masses.

One important difference between these two types of quantum noise is their func-

tional dependence on frequency, f . Namely, hrad ∝ f−2, while hshot has no frequency

dependence. Examining how their overall amplitude is impacted by the power in

the detector, we see that shot noise is proportional to
√

1/Pin, radiation pressure is

proportional to
√
Pin. This means that in order to maximize our sensitivity, we need

to choose a input power that balances both of these competing factors. For a given

frequency, our sensitivity is maximized when hshot(f) = hrad(f). Solving for Pin, we

get

Pin = πcλmf 2/2N2 . (1.35)

Since we add these two noise sources in quadrature, the total noise is

hquan(f) =
√
h2
rad(f) + h2

shot(f) . (1.36)

Plugging in the optimal power we find that the quantum limit is

hquan(f) =
1

πfL

√
2~
m

. (1.37)

If we choose to target the loudest source previously discussed, we would like to

find the minimal noise relevant for a BBH merger. Since our ideal BBH reaches a

maximum strain at 150 Hz, we use this as the frequency of interest. We use the

aLIGO test mass value of 40 kg and an arm length of 4 km [11]. We also assume

75 round trips in the cavity, based on the light storage time. At this frequency, the

optimal power from Equation 1.35 is ≈ 70 kW. These values set the minimum noise

limit to

hquan(150 Hz) ≈ 2× 10−24/
√

Hz . (1.38)
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We can then take this value and calculate the root-mean-square (RMS) signal for

a short duration pulse around this frequency. If we approximate the BBH signal as a

pulse of duration 0.01 seconds, we have an effective bandwidth of 100 Hz. Hence the

RMS noise for this bandwidth, can be found via

hrms ≈
√
h2(f)∆f . (1.39)

for our computed quantum limit over this bandwidth, we find a strain rms of hrms ≈
2× 10−23. This is 50 times lower than the strain amplitude of GW150914!

Even if one was to run at a lower circulating power of 850 W, (the power that

aLIGO was operating at during the first observing run) the approximate strain rms

from quantum noise would be hrms ≈ 1 × 10−22, still well below our expected astro-

physical strain amplitude. When one considers that power recycling can be used to

increase the circulating power in the interferometer, this value is even more achievable.

The aLIGO configuration uses a power recycling mirror which increases circulating

power in the interferometer ≈ 42.7 times, allowing for this sensitivity to be achieved

with a modest input power of 20W [11].

Thermal Noise

At present, the next most limiting source of noise from 60 Hz to 300 Hz is thermal

noise. As the test masses are physical objects at finite temperature, their motion

is limited by the laws of thermodynamics. This residual thermodynamic motion

of the individual atoms in the surface of the test mass is an analog of Brownian

motion, where the test mass is in thermal equilibrium with an external heat bath.

Mechanical coupling with the heat bath comes through mechanical friction, and one

of the primary sources of friction in an interferometer is the coatings on the mirrors.

Coating thermal noise produces motion of the mirror surface with a noise spectrum

given by [54, 55, 56]

htherm(f) =
1

L

√
2kbT

π3/2f

1− σ2

wY
φ (1.40)

where σ and Y are the Poisson ratio and Young’s modulus of the material, w is the

radius of the beam, and φ is the loss angle of the material. Note that this is nearly

white noise, with a shallow f−1/2 dependence in the spectrum.
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At currently measured levels, thermal noise from coatings is below that of quantum

noise [56]. However, as the laser power increases, (so that quantum noise decreases)

this will soon be the limiting noise source. As well motivated models for predicting

the amplitude are not currently available, in order to develop improved coatings,

the loss angle, φ, (and hence the thermal noise levels) for each material must be

experimentally measured [57].

An additional source of thermal noise in the interferometer is from suspension

thermal noise [58, 59, 60]. Suspension thermal noise is from vibrations of the fibers

holding the mirrors. For frequencies above resonance (and in the frequency band

targeted by aLIGO), the amplitude of the noise spectrum will rapidly drop, so that

suspension thermal noise will be much lower than coating thermal noise. However,

suspension thermal noise is significant at lower frequencies and is one of the con-

tributing factors that set the minimum frequency that aLIGO can probe.

Seismic Noise

At low frequencies, the current limiting noise source is due to broadband noise from

ground motion. In order to reduce the impact of this ground motion on the test

masses, they are suspended with wires. Any ground motion is sent through the

response function of a pendulum, given by f−2 above the resonance frequency. Ad-

ditional stages further increases the isolation of the test masses from ground motion.

Adding additional isolation stages to the test mass suspensions was one of the key

improvements for aLIGO heavily which reduced the overall impact of seismic noise as

compared to Initial LIGO by [11, 61]. With four stages in aLIGO, the total response

of the suspension system is hence

hsus(f) ∝ 1

f 8
. (1.41)

Despite this mitigation, when ground motion is still limits aLIGO sensitivity at

frequencies below 20 Hz. The overall amplitude of this seismic noise is variable. High

seismic motion is generally caused by earthquakes and anthropogenic sources [62, 63].
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Newtonian Noise

Due to the location of the detector on the surface of the Earth there will be local

gravitational gradients from uneven distributions of matter around the detector that

create motion of the mirrors. As this noise source is due to the Newtonian gravita-

tional attraction between the optics and surrounding matter, it is often referred to as

‘Newtonian noise’.

Newtonian noise is dominated by the movement of the buildings housing the detec-

tors and from density fluctuations in the ground under the detectors. To counteract

forces from building movement, it is possible to adjust the tilt of the optics to reduce

the relative movement [64]. For ground density fluctuations, no mitigation strategies

have been developed at present. As most fluctuations in density are due to passing

seismic waves, this noise source is nonstationary, and cannot be counteracted by re-

ducing the relative motion. However, the frequencies of density fluctuations are quite

low, below 10 Hz, and hence are not one of the dominant sources of broadband noise

at present.

In future detectors, Newtonian noise will become one of the limiting noise sources.

To attempt to mitigate this, methods have been proposed to measure local density

fluctuations with arrays of sensors and subtract the noise from the data [64, 65, 66].

Such methods are similar to the noise subtraction techniques discussed in Chapter 5.

Additional Noise Sources

Beyond the specific broadband noise sources discussed in this chapter, aLIGO sen-

sitivity is limited by a variety of additional known and unknown noise sources [46].

The relative amplitudes of each measured noise source, along with a comparison be-

tween the sum of all known noise sources and the total noise, can be seen in Figure

9. As expected, the sum of estimated noises (black) matches well with the measured

noise level (red) above 100 Hz. In this region, the overall noise level is dominated by

shot noise. However, below this point the estimated and measured noise levels differ

significantly. This indicates that additional noise contributions are from sources not

measured or understood.

A number of known noise sources not previously discussed in this chapter are

shown, with the most significant being length control noise, alignment control noise,
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Figure 9: Noise budget for LIGO-Hanford at the start of O2. The sum of estimated

noises (black) matches the measured noise level (red) well above 100 Hz, but under-

estimates the total noise level below this frequency. Reproduced from [67].
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and beam jitter. Length and alignment control noise is a result of noise in the

control loops that keep the detector stabilized. Beam jitter, on the other hand,

is from fluctuations in the amplitude and angle of the input beam. This noise source

was especially problematic at LIGO-Hanford in O2, with amplitudes higher than

quantum noise in the 100-500 Hz region. Further discussion of beam jitter, along

with mitigation methods, is found in Chapter 5.2.
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Chapter 2

Searches for Gravitational Waves

While the design of aLIGO makes it sensitive enough to detect gravitational waves

from astrophysical sources, the rate at which such events occur in the nearby universe

is low. In aLIGO’s first and second observing runs, the observed rate of detections

was about once every 15 days of coincident detector data [13]. If we considered a

standard binary black hole merger signal to last one second, this means that only

0.0001% of data contains measurable gravitational waves! In order to identify these

rare signals in interferometer data, computing algorithms known as ‘searches’ process

the data with the goal of identifying time periods that may contain gravitational

waves.

In the rest of this section, I will give an overview of the main methods used

by the LIGO-Virgo collaboration to search for transient gravitational wave signals.

Emphasis will be given primarily to the PyCBC pipeline, a specific search algorithm

optimized to identify gravitational waves from compact binary coalescences (CBCs)

as predicted by general relativity. I will also discuss how these searches are limited

by the presence of short instrumental artifacts known as ‘glitches’, along with efforts

to characterize and mitigate these noise sources.

Portions of Section 2.4 of this Chapter is adapted from an appendix of [13] titled,

“Characterization of transient noise relevant to catalog triggers.” I was the lead

editor of this appendix, which presented an overview of what was understood about

the glitch classes at the time. This section also features original work that was not

previously featured.
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2.1 Searches for Gravitational Wave Bursts

The most general way to search for gravitational waves is with no assumptions about

the expected waveform of the signal. Instead, one can look for cases when a short,

loud signal passes through multiple detectors at almost the same time. These searches

are referred to as looking for ‘gravitational wave bursts’.

In order to understand how a gravitational wave signal can be isolated in the data,

it is useful to think about the data as not only a wave with a specific amplitude at

a given time, but also with a specific frequency profile. Therefore if we are able to

identify what specific frequencies we have excess power at, we can reduce the rate of

false positives by requiring that both detectors observe similar signals.

In order to represent the frequency structure of the data, a number of techniques

are used. The first is known as the short Fourier transform, where the signal is

decomposed into a basis of exponentials. For a timeseries x(t), the Fourier transform

X(f) is

X(f) =
N−1∑
n=0

x(n∆t) exp (2iπf(n∆t)/N) . (2.42)

The variable f represents a given frequency, for a timeseries with N samples and

a sample rate of 1/∆t. In this way the signal is broken down to specific frequency

components. If N is chosen to break the data stream into short segments, and if

the Fourier transform is repeated for every small segment of the data, the changes

in amplitude at each frequency can be tracked. This is often described as the ‘time-

frequency’ representation of the data, or a ‘spectrogram’.

In practice, burst searches tend to use more complicated bases to decompose the

timeseries. These methods allow the relevant frequencies to be better isolated in

both frequency space and time. Some of the more common bases are the Wilson-

Daubechies-Meyer transform [68] or the Q transform [69]. An example of spectro-

grams around the time of GW150914 produced with the Q transform can be seen in

Figure 10.

Once the data is broken down into this representation, burst searches look for ex-

cess power at the same frequencies at the same time in both detectors. By not making

any assumptions about the signal, there is a risk of confusing excess power from in-

strumental artifacts and excess power from astrophysical sources, thereby reducing
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Figure 10: Spectrograms of the data around GW150914 from each detector, produced

with the Q transform, adapted from [12]. The excess power from the gravitational-

wave signal is clearly visible.

the sensitivity of the search. However, this agnostic approach also allows for the pos-

sibility of unexpected signals to be found by the search, such as gravitational waves

not fully predicted by general relativity or from a source that is not well modeled,

such as the signal from a supernova.

While useful for novel sources, this method should also be sensitive to well under-

stood sources, such as gravitational waves from binary mergers. This search approach

was in fact how GW150914 was first identified in the data [70]. During O1 and O2,

a number of burst searches have been utilized, including cWB [71] and oLIB [72].

In cases when the expected signal is well modeled, however, this search method is

not optimal. Even making simple assumptions about the signal, such as a frequency

that increases with time, increases the sensitivity [13, 71]. For a waveform that

is known precisely, the optimal techniques instead rely upon a method known as

matched filtering.

2.2 Matched Filter Searches

Before discussing matched filtering, it is worthwhile to discuss the more general

approach of using time-domain cross-correlation. Cross-correlation is used to mea-

sure the similarity between two time-series. For two timeseries, f and g, the cross-

correlation is defined as
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Figure 11: Example of cross correlation, showing how cross-correlation can be thought

of as the overlap between two functions. Adapted from [73].

(f ? g)(τ) =

∫ + inf

− inf

f ?(t)g(t+ τ)dt (2.43)

where f ? indicates the complex conjugate. This can be imagined as sliding the two

timeseries against each other, and recording how well the two overlap. This process

is shown in Figure 11.

The matched filter is an application of the cross-correlation, using it to measure

the overlap between a known template timeseries, and recorded timeseries data. For

the matched filter, the overlap is measured using the quantity signal-to-noise ratio

(SNR). The SNR for a matched filter with a specific waveform template h is [74]

ρ2(t) ≡ ‖ 〈s|h〉 ‖
2

〈h|h〉 (2.44)

where the inner product is defined as

〈a|b〉(t) = 4Re

∫ ∞
0

ã(f)b̃∗(f)

Sn(f)
e2πitfdf (2.45)

with s the strain data, h the template, and Sn(f) the estimated power spectral density

for the time in question. This is equivalent to cross-correlation in the frequency

domain.

In the regime where the waveform is precisely known, this method is well-known to

be optimal for identifying periods likely to contain a known signal. In practice, CBC

waveforms are known only up to approximations and often do not contain all effects

that are predicted to exist from general relativity. However, recent comparisons of
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Figure 12: Filtered data around the time of GW170814 [76] with the template from

the PyCBC search pipeline overlaid. Both the data and the template are filtered with

a bandpass filter and a series of notch filters to suppress line features. Note the high

level of match between the waveform and the data.

these waveforms with gravitational wave signals observed by LIGO have found no

measurable differences [75]. An additional practical constraint that is encountered is

that it is not possible to consider every possible parameter value for a signal. Instead,

a finite number of waveforms are used that approximate the full parameter space with

finite resolution.

A variety of pipelines based on matched filtering have been developed to search

LIGO data. PyCBC [77], GstLAL [78], MBTA [79], and SPIIR [80] were all developed

initially by members of the LIGO Scientific Collaboration (LSC) and are still used

internally by the collaboration. With the advent of open data Venumadhav et al. [81]

have also developed a matched filter pipeline independent to the LSC. The remainder

of this section will be devoted to detailing the PyCBC pipeline, which will be the

pipeline this dissertation primarily focuses on.

2.3 PyCBC Pipeline

The PyCBC pipeline is one of the matched filter searches used to identify gravitational

waves from CBC events in the first and second observing runs of Advanced LIGO

[13]. During the second observing run, the overall search space spanned, in terms of
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individual masses, from 1M� up to 500M�, including BNS, NSBH, and BBH systems

[82]. In order to effectively search this large parameter space, over 4× 105 templates

are used. Templates in the bank are chosen so that for any arbitrary set of parameters

for a signal in the search space, there will be a template in the bank that recovers

at least 96.5% of the SNR of the signal. This minimum match is higher for some

regions of the bank. This requirement produces a bank that is extremely dense for

long duration templates (such as low-mass BNS templates), and comparatively sparse

for short duration templates (such as migh-mass BBH templates). The full search

space, in terms of component masses and effective spin, is shown in Figure 13.

The search process begins by conducting a matched filter search of every single

template in the bank. Preliminary identification of candidates is performed by looking

for peaks in the SNR timeseries. If a peak is above a specific threshold (SNR of

5.5), this time is identified as a trigger. Once a trigger is noted, additional signal

consistency tests based on the details of the trigger, the parameters of the template

that produced said trigger, and the quality of the data around that time are used to

further vet interesting candidates. This process results in a single detection statistic

which is then further used to evaluate the significance of such a trigger.

2.3.1 PyCBC Detection Statistic

If aLIGO noise was perfectly Gaussian, the matched filter SNR alone would be an

optimal detection statistic. However, since the data is neither Gaussian nor stationary

over long time periods [63, 83, 84], numerous additional signal consistency tests are

required to discriminate between common instrumental artifacts and astrophysical

signals. An ideal signal consistency test would result in true astrophysical signals

being unaffected while noise triggers fail this test. In PyCBC, this is accomplished by

dividing the value of the SNR detection statistic of triggers by a factor that quantifies

the degree of mismatch between the data and what is expected for a true signal.

Chi-Squared discriminator

To provide this discriminatory power, one of the most useful tests for gravitational-

wave signals is the chi-squared discriminator [85]. The test is constructed by dividing

the frequency space spanned by the waveform template into bins of equal power,
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Figure 13: Overview of the component mass parameter space spanned by the template

bank used by PyCBC during O2 [82]. In addition to showing component masses, the

colored regions correspond to different bounds on the effective spins of the templates,

motivated by astrophysical observations of related objects.
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and checking if each bin contributes the expected amount of power. This has the

effect of measuring how well a candidate trigger matches the signal morphology of

the template. Specifically, the chi-squared discriminator for a trigger is

χ2
r =

1

2p− 2

p∑
i=1

‖〈s|hi〉 − 〈hi|hi〉‖2 . (2.46)

This value should follow a reduced χ2 distribution with 2p − 2 degrees of free-

dom. The choice of p is dynamically scaled based on the duration of each template,

so that a sufficient number of bins with measurable power are used. For example,

the GW170814 template has a duration of 0.44 seconds and uses 29 bins, while the

GW170817 template has a duration of 74.43 seconds and uses 247 bins. If the value

of the chi-squared test is greater than unity, the detection statistic for the related

trigger is reduced to produce a “re-weighted SNR”, ρ̃. This is

ρ̃ =

ρ for χ2
r ≤ 1

ρ
[

1
2

(
1 + (χ2

r)
3
)]−1/6

for χ2
r > 1

. (2.47)

The effectiveness of the chi-squared discriminator had been shown to be dependent

on the duration of the signal and the number of bins used in the test [83]. For long

duration signals, the test provides excellent rejection of many classes kinds of glitches.

For short duration signals, this test has reduced efficiency. To help address this effect

for short duration templates, an additional signal consistency test, the sine-Gaussian

discriminator, is utilized.

Sine-Gaussian discriminator

The sine-Gaussian discriminator is designed to downrank triggers with excess power

at frequencies above the expected maximal frequency of the signal at merger [86]. If

excess power is detected above this frequency, it indicates that the excess power is

not likely to have come from a CBC signal. To quantify the excess power present

at high frequencies, a number of sine-Gaussian wavelets with frequencies above this

maximum are matched filtered against the data. These wavelets are parameterized

by their frequency, f0, central time t0, and quality factor Q. In the time domain, each

wavelet can be written as
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g(t) = exp

(
−4πf 2

0

(t− t0)2

Q2

)
cos(2πf0t+ φ0) . (2.48)

A new signal discriminator can be written down as the sum of the measured

matched filter SNR squared of each individual sine-Gaussian tile. In the case of N

different tiles, this is

χ2
r,sg ≡

1

2N

N∑
i=1

ρ2
i =

1

2N

N∑
i=1

〈s|g̃i(f, f0, t0, Q)〉2 . (2.49)

Similar to the chi-squared discriminator, this statistic should follow a reduced χ2

distribution with 2N degrees of freedom for astrophysical signals. The result of this

test is then used to compute a new detection statistic, ρ̃sg, defined as

ρ̃sg =

ρ̃ for χ2
r,sq ≤ 4

ρ̃
(
χ2
r,sq/4

)−1/2
for χ2

r,sq > 4
. (2.50)

The value of 4 (as opposed to 1) is chosen as the threshold to account for the expected

variability of ρ̃sg in Gaussian noise. Values above 4 are indicative of non-Gaussian

features in the data.

This test is most useful in cases of broadband noise combined with a high mass

waveform, which has a lower termination frequency. One of the most common cases

of a glitch creating a trigger is with a short duration instrumental artifact that rings

off a short duration template. The shortest templates in the PyCBC bank are only

0.15 seconds, and only are capable of supporting a few chi-squared bins [82]. The

chi-squared discriminator has reduced power to rule out glitches that match these

templates. In this scenario, the frequency at merger of the template is quite low

(below 100 Hz) and hence the sine-Gaussian discriminator is extremely sensitive to

the observed excess power, as a broadband glitch is likely to have significant excess

power above 100 Hz. Therefore, the sine-Gaussian discriminator is able to easily

rule out a class of glitches that are not able to be down-ranked by the chi-squared

discriminator.



41

Background dependent reweighting

If we assume that the rate of triggers is given by a Poisson process, we would expect

that the probability of a trigger in the detector is given by a Gaussian probability

distribution

P (ρ2) ∝ 1

α
exp

(
ρ2

α2

)
. (2.51)

However, since a large parameter space is spanned by the template bank used in

the PyCBC search, it is unlikely that the rate and distribution is the same for vastly

different parameters. This can be accounted for by allowing the standard deviation

variable, α, to be dependent on the template parameters, θ̄, and by including an

additional parameter-dependent prefactor, µ, that accounts for the total number of

triggers. With these additions, the expected number of triggers for a specific template

is

N(ρ2, θ̄) = µ(θ̄)P (ρ2, θ̄) ∝ µ(θ̄)

α(θ̄)
exp

(
ρ2

α2(θ̄)

)
. (2.52)

In order to directly compare the significance of templates in the bank that have

vastly different parameters, one component of the PyCBC search is to directly mea-

sure the values of α(θ̄) and µ(θ̄) based on the observed distribution of single detector

triggers. Templates that have large values of α(θ̄) or µ(θ̄) are down-ranked to account

for the increased chance of producing a trigger at a given ρ value. This process is

known as template-dependent background reweighting [87].

In O2, this reweighting process was done based on the duration of the template,

so that θ̄ was equivalent to the template duration. However, including additional

parameters, such as the chirp mass and effective spin, is possible, and has been

implemented in other searches [88].

Identifying coincident triggers

Once triggers have been assigned a significance in each detector, the triggers are

compared between the two detectors to test if any occur in coincidence with each

other. In this context, a coincident trigger is one where the same template produced

a trigger above threshold with a peak time difference less than the light travel time
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Figure 14: An example of fits generated from template dependent background

reweighting for a representative period during O2. Templates are binned based on

template duration and the cumulative number of triggers is then plotted (solid line)

along with an exponential fit (dotted line). The value of α(θ̄) for each template bin

fit is labeled in the legend (Referred to here as α). Note that templates with shorter

durations have lower α values and hence are more likely to produce high-SNR triggers.
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between the detectors. For the LIGO-Livingston and LIGO-Hanford network, this is

7 ms. To account for uncertainty in the peak time, this window is further lengthened

to 10 ms [77].

Since the search looks for hundreds of thousands of different waveform templates

in the same data, there is the potential for a given time period to have triggers from

multiple different templates. It is common (and expected) that an astrophysical signal

will produce multiple triggers at the same time with a variety of templates. However,

only the trigger with the highest statistic is used to estimate the significance of the

trigger.

Time-phase consistency test

If a coincident trigger is found, an additional step of computing the final detection

statistic is testing whether the observed trigger parameters in each detector are likely

to occur from an astrophysical trigger. Due to the known sensitivity, antenna pattern,

and orientation of each detector, there exist certain combinations of the arrival time,

phase offset, and amplitude for the coincident trigger that are more likely than others.

For triggers due to noise, no correlation between these values is expected. To include

this information in the detection statistic, a series of injections that modeled the

sky location and distance of an astrophysical population of signals are performed to

empirically measure the relative likelihood of each combination.

This information is then used to down rank coincident triggers that are recovered

with unlikely combinations. Specifically, the new detection statistic is [87]

ρ̃2 = ρ̂2
c + 2 log

(
pS(θ̄)

pSmax

)
. (2.53)

where θ̄ is parameterized by the relative arrival time, phase offset, and SNR of the

coincident trigger in each detector. The variable pSmax is the probability of the most

likely set of parameters, and pS(θ̄) is the probability of the observed parameters.

2.3.2 Background Estimation

Once a detection statistic is assigned to a coincident trigger, the significance of this

value must be computed. One possible method is by estimating the rate of chance

coincidences by using a specific model of the noise background in the detectors, and



44

Figure 15: A visualization of how timeslides are created. The upper panel shows

a series of triggers in each detector timeseries, with one coincident trigger marked

with a box. The lower panel shows the timeseries shifted so that different triggers

are recovered in coincidence. This shifting procedure is repeated until the requisite

background duration is achieved.

how often different types of noise occur that are similar to the signals being searched

for [78]. However, in PyCBC the significance is empirically measured using timeslides

[77].

If one was only to use the coincident data available for each detector to estimate

this false alarm rate, then the lowest rate of coincidences that could be empirically

measured is one per the analysis time duration. In addition to the low threshold

this sets, this method would also be incapable of differentiating a chance coincidence

with one that is due to the signal being astrophysical. In a typical experiment, it is

possible to calibrate the experiment by shielding the apparatus from what is being

measured, and measuring the properties of the noise without any signal present.

However, as there is no way to prevent gravitational-wave events from occurring,

or from preventing the interferometer from detecting them, the rate of false alarms

must be evaluated using data that has both noise and real signals therein. With

timeslides, one is capable of generating large amounts of simulated data that has a

low contamination by astrophysical coincidences.
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To produce timeslides, the data from one detector is shifted by much more than

the light travel time between the detectors (7 msec)1. Triggers in each detector are

tested again for new coincidences at this time shift. A visualization of this process

can be seen in Figure 15. Because the time shifts are larger than the largest time

separation possible for a real signal, any coincidences in the new shifted dataset can

not be due to the same astrophysical signal. The number of timeslides for a given

analysis period duration Tinit and a time shift of tshift is

Nslides = (Tinit)/tshift , (2.54)

meaning that the total amount of simulated background time that is constructed via

this method is

Ttotal = Tinit ×Nslides = (Tinit)
2/tshift . (2.55)

For a typical analysis period of 5 days and a timeshift of 0.1 seconds between time

slides, this method allows ≈ 100, 000 years of simulated data to be produced, allowing

the rate of random coincidences to be measured much more precisely. An example

of the measured background via timeslides over a variety of situations can be seen in

Figure 16.

To further prevent astrophysical signals from biasing estimation of the background,

any coincidences found in the original data can be removed. However, this choice

has the potential to remove chance coincidences from the data stream that are not

astrophysical in origin, and result in underestimating the rate of random coincidences.

Both of these choices may slightly bias the measured rate of random coincidences,

but in cases when astrophysical events are rare (less than a few per analysis period)

these biases are not significant [90].

One additional source of bias in this procedure is the assumption that any given

time is equally likely to produce a trigger. If this is true, then the rate of triggers

in the coincident data is well modeled by the background. Tests of this assumption

have noted small variations in the distribution of triggers, but no clear presence for or

against coincident background data producing a higher rate of triggers. An example

of the variation of trigger rates over a two week period in O2 can be seen in Figures

1In practice, the data is typically shifted by > 100 ms.
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Figure 16: Background estimation for PyCBC Live [89] showing the variability of

the relationship between the detection statistic and the false alarm rate (FAR) for

independent analysis periods during O1. A green line is placed at the threshold for

astronomical alerts (1 per 2 months). Background estimates were computed over 5

hour analysis periods. The mapping between the detection statistic and the FAR is

stable with the notable exception of classes of astrophysical (blue) and instrumental

(red) outliers. In this case, the blue curve is from a time containing GW150914, which

produces a tail in the distribution at low FAR. The red curve is from a time period

that contained an extremely high rate of instrumental artifacts. This time period

was removed from later analyses due to the amount of corruption from artifacts.

Reproduced from [89].
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17 and 18.

2.4 Limiting Sources of Transient Noise

Despite the numerous signal consistency tests included as part of the PyCBC de-

tection statistic, there still remain a wide variety of known instrumentally-generated

transients that limit sensitivity. The fundamental, broadband sources of noise dis-

cussed in the previous section limit the recovered SNR of signals, and hence prevent

the pipeline from identifying the event. However, the pipeline sensitivity is also

bounded by the rate of loud instrumental artifacts with short time durations.

These artifacts, often referred to as instrumental transients or glitches, can cause

the matched filter to respond as it would to a real signal, and hence can produce

significant triggers in the search. The presence of these transients limits the sensitivity

by adding a long tail to the distribution of noise triggers (As is shown by the red curve

in Figure 16), forcing the analysis to set a higher threshold than would otherwise be

required to achieve a target false-alarm rate. An additional concern is when such

glitches overlap a gravitational wave signal, causing it to fail signal consistency checks

[91].

2.4.1 Classes of Noise Artifacts

A large variety of different classes have been found to produce noise artifacts that

impact the search. Of these, some classes have well known causes that have yet to be

mitigated, while others are yet to be understood. In this section, I will detail some of

the most common and problematic classes of glitches in the data for PyCBC, along

with an overview on what is known about the causes. I will also discuss possible

mitigation strategies that may exist for each glitch class. An outline of each glitch

class is detailed in Table 1. Spectrograms of each of the glitch classes discussed in

this section can be seen in Figure 19. Further details on how specific glitches can

mimic gravitational wave signals with different parameters can be found in Chapter

4.
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Figure 17: Daily variation in the rate of triggers at each site over a two week period

in O2. Coincident trigger times generated from time slides are plotted against the

local time at each site, given by Hour H (Hanford) and Hour L (Livingston). The

color refers to the density of the triggers at each combination of times. A dotted line

is also plotted indicating the location of zero lag triggers. The increased density near

13 UTC in Hanford is related to triggers from GW170817. Overall, there is indeed

some variation in the rate of triggers for different time offsets (excluding increased

trigger density due to astrophysical events).
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Figure 18: Variation of timeslide background distribution over a five day analysis

period. Each curve represents the background distribution from one 5-day timeslide.

The zero-lag background distribution is shown in green. Note that the green curve is

consistent with the median of the timeslide background curves.

Glitch SNR Frequency Range Duration Shape

Blip ≈ 10 60 - 500 Hz � 1 sec Pulse

Koi Fish > 100 10 - 1000 Hz � 1 sec Pulse

Tomte ≈ 10 10 - 100 Hz � 1 sec Pulse

Whistle < 10 > 100 Hz � 1 sec V-shape

Scattering ≈ 10 60 - 200 Hz 2 - 10 sec Arch

Scratchy < 10 < 50 Hz 10 sec - 2 min Drifting frequencies

Table 1: An overview of each glitch class listing the typical SNR, frequency range,

duration, and shape of the class. See Figure 19 for spectrograms of each glitch class.
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Figure 19: Omega Scans [69] of the common glitch classes present in Advanced LIGO

data that are discussed in this chapter. From top-left to bottom-right, these shown

classes are blip, koi fish, tomte, whistle, scattering, and scratchy.
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Blips

Blip transients [63] are short, band-limited transients that occur in both LIGO de-

tectors at a rate of roughly once per hour. Although these glitches occur in both

detectors, they do not occur in coincidence at each site. Because of their sub-second

duration and large bandwidth, these transients often have significant overlap with

the shortest templates used in matched-filter searches. Blip transients are particu-

larly problematic as they typically are not seen in any of the witness sensors used

to monitor the detector. This makes it difficult to systematically remove them from

the analyses. As such, these transients were the limiting source of loud transients in

PyCBC for high mass compact binary coalescences in O1 and O2 [83, 63, 86, 70]. An

example of how a blip can mimic a short duration template can be seen in Figure 21.

Investigations into blips have identified multiple causes [92], but the vast majority

of blips remain unexplained. For the majority of blips, they follow the rate expecta-

tions of a Poisson process, in both time and amplitude. A subset of these blips occur

in large storms, with hundreds of glitches in a few hours. Although these transients

cannot be removed from the analysis entirely, the sine-Gaussian discriminator is able

to somewhat mitigate their effect on the the PyCBC search [86].

Koi Fish and Tomte Glitches

Koi fish and tomte glitches are classes that appear similar to blip glitches, but differ in

both SNR and frequency space. Koi fish are distinguished by their high SNR values,

often above SNR 100 (while blips tend to be SNR ≈ 10). Tomte, on the other hand,

are often lower SNR than blips, and only impact frequencies below 100 Hz. Work

investigating tomte glitches has found some correlation with discharges in the mirror

that lead to a step response of the electro-static drive that controls the mirror [93].

This response appears in the frequency space as power given by ∝ f−3. This can be

seen for a representative tomte glitch in Figure 20.

Whistles

Whistles are due to the beating of different radio frequencies that are present at each

site [63]. Radio frequency (RF) modulators are used throughout the interferometer

to sense and control a number of length and angular degrees of freedom. These



52

Figure 20: ASD for a short time period around a tomte glitch as compared to a nearby

time containing no transients (referred to as a ‘clean time’). Each ASD is produced

by using a Kaiser window with a high central peak that emphasizes the transient.

Note the excess amplitude at lower frequencies proportional to f−3.
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modulators are referred to as voltage controlled oscillators (VCOs). When two VCO

frequencies cross, the beat structure between the two sources couples into the channels

that the VCO is used by. For example, one particularly problematic VCO is a part of

the control loop to reduce the variability of the input laser. When this VCO crosses

particular frequencies, the beat notes that occur pollute the main gravitational-wave

channel [94]. This behavior allows instances of whistle glitches to be predicted based

on observed radio frequencies. Whistles heavily pollute auxiliary channels, yielding

them useless for their intended purpose of detecting correlated noise around the site.

The high frequency that whistles are found at, combined with the increasing

frequency profile means that whistles can mimic long duration signals that terminate

at comparatively high frequencies. An example of a whistle glitch with a long duration

template overlaid can be seen in Figure 21.

In the past, solutions to prevent whistles have included shielding channels from

radio waves, or carefully controlling the radio frequencies present at the site as to

prevent any beatnotes from developing [95]. In O2, a combination of these strategies

allowed whistles to have only minimal impact on the gravitational wave strain channel.

Scattering

Scattered light glitches are caused by stray light that is reflected off of one of the

main interferometer mirrors that comes back into the main interferometer path, as

shown in Figure 22. This adds a spurious phase shift at the interferometer output

that can mimic a signal [63, 96, 97]. Motion of a reflective surface, such as optic

mounts, phase-shift the reflected light. Large motions result in arch-like shapes in

the time-frequency spectrograms. It is these larger motions that impact transient

searches.

The frequency of the scattering arch, ffringe(t), can be predicted from the optic

motion by the equation [96]

ffringe(t) =

∣∣∣∣2vsc(t)λ

∣∣∣∣ (2.56)

where vsc(t) is the velocity of the optic motion and λ is the wavelength of the main

laser. The strain noise amplitude of scattered light instrumental artifacts correlates

with the velocity of the corresponding ground motion. Additionally, higher velocities
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Figure 21: Overlay of a CBC trigger template (orange) with glitches. Top: For a short

duration template, a blip glitch can easily mimic the final pulse of the waveform be-

fore merger. At this duration, the chi-squared discriminator is not able to completely

mitigate the effect of these glitches. Bottom: The end of the inspiral matches well

with the structure of a whistle glitch, producing a large number of significant triggers

when whistles are present. Note that the duration of the plotted template is multi-

ple seconds, underscoring how whistles are problematic for long duration, low mass

templates.
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Figure 22: Diagram of how scattered light occurs, with, showing the process in which

light is scattered and reflected back into the beam path. Reproduced from [46].

of optic motion lead to higher frequency content in the scattered light [96].

This motion is often observed by auxiliary sensors and is used to help identify

periods of scattering [98]. Scattered light can be present in the data for stretches

of multiple hours during periods of elevated ground motion, making it difficult to

effectively veto without removing large amounts of data [63]. Because of this, scat-

tered light is one of the most common sources of background triggers in PyCBC

[83, 99, 100].

Since scattered light typically affects low frequencies, it is often possible to mitigate

the impact by using only data from frequencies above the affected region. Because it

is often related to optics where the motions is measured, subtraction of the artifacts

based on a non-linear relationship with this optic motion detailed above may be

possible.

Scratchy

A 60-200 Hz nonstationarity, or “scratchy” glitching, appears in time-frequency spec-

trograms as excess power with slowly varying frequencies in clusters of multiple min-

utes that generally consist of individual glitches lasting 10-100 seconds [83]. The

structure of the excess power appears similar to scattered light, but at higher fre-

quencies than predicted by available measurements of optic motion. This type of

nonstationarity occurs in both LIGO-Hanford and LIGO-Livingston at a rate of 1-2

clusters per day. While correlations between excess anthropogenic seismic noise and

the nonstationarity exist, no clear witnesses have been identified. The structure of
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this class of artifact changed after mitigation of the motion of baffles used to block

stray light [101, 102]. This change suggests that baffles (sheets installed to reduce

stray light in the interferometer) may be involved in the production of the 60 - 200

Hz nonstationarity.

In previous observing runs, the rate of these artifacts caused multiple hours of data

to be vetoed. In time that is not vetoed, these transients can create significant triggers

in the background of PyCBC [83]. The long duration, variable frequencies, and lack

of a clear witness make this nonstationarity a difficult target for noise subtraction.

2.4.2 Detector Characterization Tools

One of the key science goals of the Detector Characterization Group in the LIGO

Scientific Collaboration is to study the main sources of transients and quantify their

impact on the astrophysical analyses. To support this effort, a wide variety of tools are

utilized to identify glitches [103], find statistical correlations [104, 105], and evaluate

the long term behavior of the detector [84, 106, 107].

Another important tool to understand the impact of noise is the investigation of

the loudest triggers from PyCBC Live [89], a version of PyCBC designed to analyze

the data in low latency that uses a simplified version of the detection statistic intro-

duced in this chapter. Daily result pages are produced for each detector, and allow

investigators to easily understand what sources of noise are appearing as the loudest

triggers in the background.

In addition to providing follow up of noise issues, visual inspection of spectrograms

based on significant triggers from PyCBC Live as a part of standard data quality

investigations has allowed gravitational-wave events to be identified even in cases

when both detectors were not originally in an operational state or when the SNR in

one of the detectors was below the threshold of the search. This was the case for

GW170104 [108], GW170608 [109], and GW170818 [13].
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Chapter 3

O2 Data Quality Efforts

As discussed in the previous chapter, one of the primary limitations on the sensitiv-

ity of a search pipeline to detect gravitational waves is the presence of instrumental

transients in the data. These transients are relatively common, happening, on aver-

age, once every 100 seconds. If such transients can be identified and removed from

the data stream, the overall sensitivity of the search will improve. This chapter dis-

cusses methods to identify and mitigate such transients, and their overall effect on

the sensitivity of the PyCBC search during O2.

The main goal of these mitigation methods is to cut out loud recognizable tran-

sients with known causes. We expect this to primarily help searches for short signals,

where signal consistency tests have less discriminating power. For long duration

signals, we expect only marginal benefit as the long duration, combined with the chi-

squared discriminator, allows triggers produced by glitches to be rejected. In addition

to removing glitches, an additional goal of these methods is to ensure that they do

not have the potential to reduce sensitivity to genuine signals.

As a part of the detector characterization group, I generated the data quality

products and took a part in the instrumental investigations discussed in this chapter.

I also led the group’s efforts to follow up individual noise triggers and quantify the

impact of this work on CBC searches. Further discussion of this work, along with

how it fits into the broader goals of the LIGO detector characterization group, can

be found in [110].
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3.1 Data Quality Products

The primary methods to remove transients from the data for CBC matched filter

analyses are a combination of data quality flags and gates. The choice of method

used in each case is dependent on the amplitude and duration of the identified noise

source.

3.1.1 Data Quality Flags

One of the key components of gravitational wave searches is understanding when data

is available and ready to be analyzed. Initially, searches only utilize time for which

a detector was in ‘observing mode’, as marked by operators at each site. This state

means that the interferometer was locked, at an acceptable sensitivity as measured

by the power spectral density, and free of any human interference. Despite this stan-

dard for observing, there are numerous cases when additional noise (both steady and

transient) impacts the data quality. Data quality flags are designed to indicate time

periods corrupted by instrumental noise. While the time periods that the detector is

running are recorded at the time of data production (along with a small set of other

data quality flags), the vast majority of flags must be generated post-facto.

Problematic noise at each interferometer is first identified in a number of ways.

Monitors that are included as part of the LIGO web-based summary pages [106] such

as the scattering prediction monitor [96] or overflow monitors can easily note the

presence of instrumental artifacts. Other methods include visual inspection of plots of

omicron triggers to identify any consistently loud noise sources or daily spectrograms.

An example of a daily omicron plot showing a band of triggers can be seen in Figure

23. Once abnormal glitching is observed with these methods, additional plots of the

behavior of various subsystems in the interferometer allows the cause of the glitching

to be traced. The general strategy for tracking glitch behaviour is to attempt to

identify a specific witness in the interferometer that follows the same pattern as he

glitching. This generally relies upon the timescale and frequency structure of the

glitching, such as repeating glitches at a particular frequency or glitching isolated to

a unique time period but across a wide range of frequencies.

Problematic noise sources are also identified using the search methods themselves.

As part of the PyCBC production analysis, lists of the triggers found in only a single
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Figure 23: Omicron triggers produced for a typical day. Note the presence of specific

frequencies with a large number of glitches, time variations in the glitch rate, and the

presence of glitches with SNR values above 100.

detector (as opposed to in coincidence) are vetted by analysts. As noted in the

previous chapter, the results of low latency searches, such as PyCBC Live [89], are

examined for single detector triggers that may be indicative of problematic noise.

An example of a daily output for PyCBC, showing the pipeline producing triggers

near glitches can be seen in Figure 24. Using triggers from the searches helps further

focus data quality efforts beyond just identifying excess power in the detector. Often

the most problematic glitches are not the loudest glitches, but quieter ones that can

better mimic the structure of a CBC signal. Triggers identified by these methods are

considered due to instrumental causes as opposed to an astrophysical ones because

they are not found in both detectors at the same time.

In order to produce a data quality flag for a problematic time period, the source of

the noise needs to be witnessed by an auxiliary sensor, as opposed to only being seen

in the gravitational-wave strain data. This standard is used to prevent a signal from

accidentally being removed from the data stream. This means that many classes of

glitch that are known, but do not have understood causes or any available witnesses,

(e.g. blips) are not able to be removed via these methods.

The central goal of data quality flags is that they increase the overall sensitivity



60

Figure 24: Loud glitching producing Omicron and PyCBC Live triggers. Each vertical

“band” in the PyCBC graph corresponds to a single time that produced a trigger for

a large range of templates, symptomatic of a glitch. In the period of 8-9 UTC, there

are extremely loud glitches witnessed by Omicron which correlated with significant

triggers from PyCBC Live. These types of plots serve as tools to investigate sources

of noise producing triggers in the search and pinpoint times to focus on.
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LIGO-Hanford LIGO-Livingston

Total Science Time 158.4 days 155.5 days

Time lost to Category 1 3.2 days (2.00%) 0.8 days (0.51%)

Time lost to Category 2 0.6 days (0.34%) 0.3 days (0.18%)

Table 2: Total deadtime from flags during O2. Only a small amount of the total

available time is vetoed.

of the search by removing a large number glitches without significantly reducing the

amount of time available to analyze. This is assessed during flag production by the

metrics of efficiency and deadtime. The efficiency of a flag is the fraction of omicron

triggers above a fixed SNR that are removed by this flag, while the deadtime is

the fraction of time removed. If the ratio of efficiency to deadtime is high, this is

considered a effective veto. Generally, ratios above 10 are required before a flag is

used. However, many flags have ratios of over 100. If this ratio is low, the flag may

still be removing the desired transient noise, but the time lost due to the flag is too

high. Due to this issue, many noise sources can not be flagged despite the existence

of a useful witness; this is the case for scattering, for example.

Time segments matching each flag definition during O2 are available from [111,

112] as part of the open data release. These flags are broken down for CBC searches

into two categories, referred to as category 1 and category 2 flags. A breakdown of

the total time lost to each category at each site in O2 can be seen in Table 2.

Category 1

Category 1 flags are designed to indicate times when the data recorded is not usable,

despite the initial assessment that the detector had been in observing mode. The

main figure of merit used to flag such a time is based on the non-stationary of the

strain strain channel PSD. If the detector is not stationary enough for PSD estimation

to be valid over long periods, then any resulting result from such a time would be

invalid. This is often easily checked by examining the stability of the inspiral range,

which is the average distance at which a detector could observe a BNS system (1.4 -

1.4 M�) at a SNR of 8.

Category 1 flags mark extreme data quality issues; thus, these flags are utilized



62

by all analysis groups, including those undertaking long-duration analyses that are

not typically sensitive to transients. A time period when the detector was sufficiently

non-stationary to yield a category 1 flag, along with the impact of this data on the

search, can be seen in Figure 25. Examples of category 1 flags include times where

the calibration model is tuned incorrectly, when there are failures of the computing

systems at the site, excessive anthropogenic noise such as fire alarms, and generically

high rates of glitching. In some of these cases, such as calibration issues, the data

may be recoverable, but usually a category 1 flag indicates that this time will not be

analyzed.

Category 2

Category 2 flags are used to indicate short time periods when transient instrumental

artifacts with a known coupling are present in the data. While such short transients do

not impact PSD estimation, they still can create significant triggers in CBC searches.

By indicating time periods when a known source of noise is present, the rate of false

alarms due to noise in the background of CBC searches is reduced. This has the

overall effect of increasing the significance of genuine astrophysical sources.

Since the goal of category 2 flags is to increase the sensitivity of searches, they are

designed for maximum efficiency as opposed to capturing every case of noise. For these

flags, the efficiency and deadtime statistics are of the most concern. An additional

difference between category 1 and 2 flags is that category 2 flags are often search-

specific. As different searches have different limiting sources of noise, a flag that may

increase the sensitivity of one search would result in only time lost in another.

In the PyCBC search, category 2 flags are applied by removing triggers in the

final processing stages of the pipeline. This allows continuous segments of data to be

analyzed without known transients polluting the final results.

3.1.2 Gating

The final class of data quality product used in O2 is gates. These differ from flags in

that the data during these times is altered to mitigate the related instrumental artifact

as opposed to the time merely being flagged. These are used to indicate exceptionally

loud transients that would impact the matched filter or whitening process. A common



63

Figure 25: The stability of data during a category 1 flag due to electronics glitching at

LIGO-Hanford. Top: the range during the day, showing a lack of stability, indicated

by frequent drops and slow declines during locks. Middle: PyCBC Live triggers

during the same day, showing that the glitching produced a high rate of high-SNR

triggers for short duration templates. Bottom: PyCBC Live triggers from another

day that had a stable range, showing a low rate of high-SNR triggers.
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class of noise requiring gating is glitches that cause overflows of the control loop that

provides active damping to the test masses. This overflow causes the servo to rail

against its maximal movement, resulting in a large amount of additional broadband

noise. In PyCBC, the gating is applied as described in [77], with a Tukey window.

An example of a gate applied during a glitch coincident with GW170817 can be seen

in Figure 26.

If a gate was not applied in this instance, the excess power would impact either

the whitening of the data or the matched filter response. This in turn would lead

to a large number of unphysical triggers in the search. With gating, care must be

taken to ensure that the period zeroed is sufficiently short that PSD estimation is

not impacted. If the gate is too long, the time window used in PSD estimation may

be mostly zeroes. To account for this, if a designed gate would exceed 3 seconds in

duration, the time period is instead flagged as a category 1 veto.

3.2 Instrumental Artifact Investigations

In order to provide beneficial data quality products to the analysis groups in a timely

manner, sources of problematic glitches need to be quickly identified and mitigated.

To identify problematic time periods, a wide variety of monitors are used; for example,

statistical measures of correlations between the gravitational wave strain channel and

auxiliary sensors using the tool called HVeto [104] and inspections of the loudest

triggers in the search after initial analyses are completed are both used to identify

instrumental artifacts. Once a problematic time window is recognized, additional

investigations take advantage of the large array of sensors throughout the sites. A

small subset of the available sensors is the physical environmental monitoring (PEM)

array. In order to record how the physical environment of the site changes, this array

consists of a large number of different types of sensors, including magnetometers,

seismometers, microphones, thermometers, and cosmic ray detectors. The location

of each sensor in this array, along with the specific aspect of the environment being

monitored can be seen in Figure 27. Each of these routes was utilized to produce

flags and improve the overall sensitivity and confidence in the results during O2. In

this section I will focus on three specific instrumental investigations during O2 that

led to the development of data quality flags and/or a fix at the site that resolved the
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Figure 26: Diagram describing how the the large glitch associated with GW170817

was gated and modeled. This same gating procedure is used in the searches to address

similar glitching. Specifically, a Tukey window is applied width the duration of the

glitch zeroed, and then a 0.5 second roll off from unity before and after the glitch.

After applying the gating window (gray), the gated data (blue) is zeroed at the time

of the glitch. Adapted from [15].
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identified instrumental issue.

3.2.1 Power Mains Transients

Power mains transients are an example of glitch class that was first identified from

investigations into the background of the PyCBC search. Once the glitch was noted,

spectrograms were produced of all auxiliary channels with excess power at the time of

the glitch to manually identify any glitching correlated with this time period. Through

inspection of these spectrograms, sensors monitoring the power mains at the site were

shown to have the strongest correlation.

Focusing in on the power mains channels, studies were completed to construct

an efficient veto that captured the identified glitches. An example of a time period

linked to power mains glitching, with the threshold used in the veto can be seen in

Figure 28.

While these glitches occurred only a few times per analysis period, they generally

were found in the list of loudest background triggers. Similar glitching that is rare,

but still problematic for a search, if difficult to identify by other means. Generally,

singular glitches garner little attention if the glitch is not identified as problematic

by a search pipeline.

3.2.2 Chiller Switch Transients

This class of glitches was initially identified with HVeto [104], an algorithm that looks

for statistic correlations between glitches in the gravitational-wave strain and glitches

in witness sensors, as a band of periodic glitches near 60 Hz. The winning channel

from HVeto was related to the PEM subsystem, specifically a magnetometer. The

large amplitude of the associated magnetometer transient allowed for a highly efficient

veto to be developed. This veto was particularly important for burst searches, as this

glitching was one of the loudest components of the background at the time.

Further follow up of this glitch class found that the glitching occurred in coinci-

dence with temperature fluctuations of water used to cool lasers in the end stations.

This correlation allowed for the source of the magnetometer noise to be isolated to a

chiller in the EX station that periodically switched on and off. When this occurs, a

loud glitch appeared in the gravitational wave strain channel. A comparison of the
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Figure 28: A plot of the timeseries of the power mains monitor channel at LIGO-

Livingston used to produce a flag during O2. The threshold used to generate flag

segments is indicated with a dotted line. Note the large spikes corresponding to

periods of glitching.

magnetometer noise, the chiller behavior, and glitching in the strain channel can be

seen in Figure 29.

Once the source of this noise was identified, work was completed at the site to

change the grounding configuration of the electronics at the chiller. After tests of mul-

tiple configurations and checks to see if glitching remained, a successful fix was found

that prevented further coupling between chiller power surges and the gravitational

wave strain channel [114].

3.2.3 Optical Lever Transients

Optical levers (oplevs) are used in the control loop at each site to assist in alignment of

the optics [115]. A laser beam reflecting off of the mirror is used in a servo loop to both

damp angular motion of an optic, as well as record any residual movement. During

O2, the lasers began to experience frequent bursts in the overall power, disturbing

the oplev servos. The resulting angular disturbance of the mirrors couples into the

gravitational wave strain channel. At the time, this class of glitch accounted for the

vast majority of the loudest triggers in the PyCBC background [99]. Since there was

a well understood witness of this glitching, an efficient veto was developed based each

glitching oplev photodetector. At the worst point, oplev glitching occurred in spurts
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Figure 29: A comparison of how chiller glitches appeared in different monitors. The

time periods corresponding to chiller glitches is shaded in each plot. Top: the band-

limited RMS of a magnetometer channel in the end station that witnessed the glitch-

ing, and showing large spikes during each glitch period. Middle: the recorded value of

the relevant chiller switch, showing a drop from 0 to −1 at the moment of glitching.

Bottom: a plot of omicron triggers in the gravitational-wave strain channel, showing

the presence of glitching near 60 Hz related to the chiller behavior.
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Figure 30: A spectrogram of a channel recording the output of an optical lever at

LIGO-Hanford over the cours of a day. The red bands correspond to periods of

extremely loud, broadband noise.

once every 10 minutes throughout the entire day. A spectrogram of the witness sensor

observing these power bursts can be seen in Figure 30.

Glitching was noted for multiple optical levers at LIGO-Hanford, which all re-

quired follow-up by commissioners at the site. After adjustments, further investiga-

tions were completed to test if any correlation between the gravitational wave strain

and the oplev remained. An example of observed oplev glitching before and after suc-

cessful mitigation can be seen in Figure 31. Here omicron triggers in coincidence with

oplev glitches are colored red. After mitigation, the prevalence of excess power in the

gravitational wave strain channel related to this particular oplev stopped completely.

In analyses completed after the end of O2, the most significant outlier from the

cWB search for high mass BBH signals1 was noted as similar in morphology to oplev

glitches [116]. Furthermore, the time of the candidate trigger was during the calendar

period impacted by oplev glitches. A comparison of spectrograms of the candidate

trigger and a representative oplev glitch can be found in Figure 32.

Investigations into this time period noted that the candidate trigger did occur in

1The high mass cWB search is a burst algorithm that looks for excess power in the data that

increases in frequency with time.
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Figure 31: A plot of omicron triggers found in coincidence with the oplev flag. Note

the high number of omicron triggers produced and the abrupt stop in the red region,

showing when the problem was resolved.

coincidence with a glitch in an oplev at LIGO-Hanford. The sensor witnessing this

glitching was the same sensor used to develop the original oplev flag. Although the

glitching was not loud enough to meet the original flag threshold, when the power

observed in the oplev and in the gravitational wave strain channel is compared, the

ratio matches expectations from time periods vetoed. While the observed power was

lower than a typical oplev glitch that produced loud triggers in search backgrounds,

it was still loud enough for this chance coincidence to produce a marginal trigger.

This episode illustrates an additional use of data quality products, to validate a

trigger to ensure that it wasn’t caused by a known source of noise. Validation of

candidate triggers is further discussed in Chapter 6.

3.3 Effect of Data Quality Work on the Searches

While each data quality product is designed with a different goal in mind, the end

result should ideally be an increase in observing time, during which the detector is

sensitive to gravitational wave events from the largest possible volume of space. To

evaluate the effect of these products, I will focus primarily on their impact on the
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Figure 32: A comparison of the most significant IMBH trigger identified in O2 and

a known time period impacted by glitching from optical levers. Top: an omega scan

of a representative oplev glitch in May at LIGO-Hanford. Bottom: an omega scan

of the loudest foreground trigger in the IMBH search. Note the similar morphologies

and frequencies.
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PyCBC search. PyCBC is one of the searches used to tune data quality products, and

is hence is likley to achieve the maximal effect of this work. However, the improve-

ments discussed in this section should apply broadly to other searches of LIGO data

for gravitational-wave transients, such as those focused on identifying gravitational-

wave bursts.

3.3.1 Data Quality flags

The most straightforward way to evaluate the impact of data quality flags is the

number of triggers present in the search before and after the inclusion of data quality

flags. By design, the total number of triggers should be reduced after the inclusion of

flags. We can gain further insight by investigating the effect on templates of different

duration. The background distribution for different template duration is known to

drastically differ [83]. Specifically, the number of loud short duration triggers is much

higher than long duration triggers.

Looking at an analysis of 5 days of coincident data during O2, we plot the total

number of triggers for various template durations. A comparison for cases with and

without data quality flags can be seen in Figure 33. As expected, the bin with the

shortest duration has the most triggers at high values of the PyCBC ranking statistic.

This bin has the largest improvement due to the inclusion of data quality flags.

Examining the number of triggers binned by template duration is ideal in the con-

text of background reweighting, discussed in Section 2.3.1. With the inclusion of this

feature in the detection statistic, an excess of triggers with short template durations

does not affect the sensitivity of the search to long-duration signals. Improvements

due to data quality flags were concentrated in the part of the template bank most in

need of improvement.

Perhaps the best measure of the benefit of data quality flags is their effect on the

overall “reach” of the search, as quantified in the volume-time product (VT). While

flags decrease the overall time that data is available, removing periods corrupted by

noise increases the range to which the search can identify a gravitational-wave signal.

This leads to an overall increase in VT when flags are applied.

We assess the VT to which the search is sensitive using “software injections” of

a simulated astrophysical population. Each individual injection is analyzed by the

search and assigned a significance. We can then calculate the maximum distance the
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Figure 33: Plots of the number of single detector triggers before and after the inclusion

of data quality flags. Triggers are binned based on the duration of the template and

plotted separately. For each duration bin, the solid line corresponds to the cumulative

number of triggers, while the dotted line is an exponential fit of the data. Left: single

detector triggers produced by an analysis without data quality flags. Right: single

detector triggers produced by an analysis with data quality flags. Note the large drop

in total number of short-duration triggers after the inclusion of data quality flags.
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Figure 34: A plot of the ratio of volume-time (VT) that the PyCBC search was

sensitive to before and after the inclusion of data quality flags. These flags had

negligible impact for low mass templates, but up to a 30% increase in VT for the

highest mass templates.

search is able to recover a signal below a chosen FAR value. This limit, combined

with the total time analyzed by the search, is used to compute the total VT of the

search at a chosen FAR.

We analyze periods of data during O2 with the PyCBC pipeline, with and with-

out the category 1 and 2 flags. After calculating the VT of each analysis, we plot

the ratio of the two values in Figure 34. Error bars are the maximal error if the

measurements were fully independent, and hence overestimate the actual error by a

significant amount.

Similar to the result seen in Figure 33, the largest impact is for the largest chirp

mass templates (which have the shortest duration). At low chirp mass, there is a

minimal loss in VT, indicative of the case where data quality flags have only marginal

gains in the distance that the search can observe a signal. This, combined with a loss

in analyzable time due to data quality flags, leads to a reduction in VT. As the effect

of data quality vetoes differs so drastically across the bank, it may be possible to

increase the sensitivity of the search by only applying vetoes to parts of the PyCBC

template bank where these vetoes lead to improvements.

Comparing this result with [83], there is a reduced benefit from data quality flag
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during O2 than during O1. This difference is related to numerous search improve-

ments since O1. Specifically, the inclusion of template-duration-dependent back-

ground reweighting in O2 has made it so that data quality issues only affect short-

duration parts of the bank, while coherence tests, along with the sine-Gaussian dis-

criminator, reduced the likelihood of a glitch producing a significant trigger. If the

ranking statistic from O1 were still being used, there would have been a substantially

greater benefit to applying data quality products to the search.

3.3.2 Gating

When a long-duration signal occurs, there is a non-trivial probability that a glitch

will overlap with the signal. In this scenario, the detection statistic of the trigger will

be reduced; a short-duration glitch will add excess power to one of the chi-squared

bins, even though the signal itself may match the template quite well. While a typical

(SNR ≈ 8) glitch does not heavily bias this signal consistency test, this that could

happen for a glitch with high enough SNR; we apply gates to remove a small amount

of data around the high SNR glitch, allowing the long signal to be recovered cleanly.

In contrast to data quality flags, the main goal of gating is not to increase the

VT of the search. The rarity of glitches that requiring gating means that the number

of triggers removed by gates does not have a significant impact on the integrated

volume of the sensitivity of the search. Furthermore, the overall effect of ex post

facto gates developed in O2 was reduced in the PyCBC search by the inclusion of

features in PyCBC [77] that result in a similar set of times being automatically gated

in the data conditioning step of the search. Instead, the main benefits of the gating

products discussed in this chapter is to ensure that loud glitches do not prevent

the recovery of long-duration signals, and to ensure that no unphysical triggers are

produced due to these glitches.

An example of the re-weighted SNR recovered for an injection overlapping an

overflow (that was not gated) can be seen in Figure 35. Without gating the glitch,

the injection would not be recoverable. This is true no matter where in the signal

the glitch occurs. While an exceptionally loud event may still be recoverable (SNR

> 20), a signal at a more likely SNR value (SNR 10-15) would not be. The inclusion

of gates was especially important for the estimation of the significance of GW170817.

The presence of an extremely loud glitch that occurred within one second of merger
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Figure 35: The change in recovered newSNR due to the presence of an overflow

without gating. A binary neutron star merger template is injected at various time

around the glitch and then recovered by PyCBC. In all cases, the optimal SNR was

20. The region where the template directly overlaps the glitch is shaded. The reduced

recovery values in this region are due to signal consistency tests down-weighting

the trigger. This shows the importance of gating such glitches; note that the effect

continues through the entire length of the template.

for this signal, as shown in Figure 26, prevented this event from being identified as a

coincident event by the search. Instead, GW170817 was first identified as an extremely

significant signal in only the LIGO-Hanford detector [15]. Manual inspection of the

LIGO-Livingston data revealed the presence of both the signal and the loud glitch

that prevented recovery. Searches of the data later used the gates discussed in this

chapter, which allowed GW170817 to be identified as a highly significant, coincident

event.
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Chapter 4

Impact of Gravity Spy Glitches on

PyCBC

While it has already been discussed how glitches in the data can impact the sensitivity

of the PyCBC search, this has only been in the context of removing time periods

corrupted by glitching from the search. In this chapter, I will instead focus on how

we can utilize knowledge of individual glitch classes to study periods impacted by

such transients. As these periods are known to produce triggers in the search, this

data is only usable if we can effectively differentiate a trigger caused by a glitch from

a trigger related to an astrophysical signal.

The importance of this approach is highlighted by the case of GW170817. The de-

tection of GW170817 was initially complicated by the presence of a loud instrumental

noise transient that had to be removed before analysis could be completed [15, 117].

When a candidate signal is identified by the search pipeline, rigorous studies can be

undertaken regarding the time in question to understand if the trigger is related to

instrumental causes [13, 99, 118]. Tests to quickly evaluate the data quality around a

candidate signal were also routinely completed as part of the O2 EM follow up process

[119]. For GW170817, the presence of the glitch was found to not be correlated to the

gravitational-wave signal due to the vastly different time-scales involved (the signal

was clearly visible in spectrograms for over a minute, while the glitch lasted less than

a second), as well as due to the high SNR of the gravitational-wave signal. However,

the differentiation between glitch and signal is not as clear in most cases.

This chapter demonstrates how the most problematic glitch classes affect matched
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filter searches for gravitational waves from CBC sources in order to improve our ability

to better differentiate glitches from gravitational waves. In order to identify periods

that are corrupted by known classes of glitches, we take advantage of Gravity Spy,

a machine-learning based image classifier [102]. I examine the response to these

glitches by the PyCBC search pipeline, one of the pipelines used to find CBC signals

with aLIGO [77, 87, 120]. I show how these glitches can mimic waveforms from

astrophysical sources of gravitational waves in Section 4.3 and quantify the likelihood

of a given glitch from each glitch class to create a highly significant trigger in PyCBC

in Section 4.4. I then propose a method in Section 4.5 that takes advantage of Gravity

Spy classifications to more accurately measure the impact of these glitch classes on the

estimation of false alarms in the background of PyCBC and to evaluate if candidate

signals are consistent with the expected response of the search to a population of

glitches. These studies will be detailed in a paper currently in preparation, of which

I am the lead author.

4.1 PyCBC Trigger Set

In order to directly examine how the PyCBC search couples with the detector data,

in this chapter we will be taking a close look at the full set of triggers produced in

the search. In this chapter we utilize triggers generated from the the PyCBC searches

associated the GWTC-1 catalog [13]. A more detailed look at the most significant

triggers from this set is in Chapter 6.

Throughout this chapter, we will be looking at both single-detector and coincident

triggers. In this situation, these terms are not exclusive, such that the term ‘single-

detector’ refers to all triggers from a single detector, including those that may be later

identified as coincident. In each case, however, the detection statistic used differs, as

is discussed in Chapter 2.

Single-detector triggers are ranked using only SNR, the Chi-squared discriminator,

and the sine-Gaussian discriminator. These signal consistency tests are all based on

the quality of the data in a single detector, and provide the most direct look at how

the data can mimic a CBC template.

Later in this chapter, coincident triggers are also considered. In this situation, the

impact of background dependent reweighting and the time-phase consistency tests are
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included. Background dependent reweighting is especially of interest in this chapter,

as the ability of a specific glitch class to mimic a CBC templates is strongly dependent

on the parameters of the template.

While Chapter 3 detailed how problematic noise sources can be identified and

vetoed, that process is parameter-agnostic, meaning that the pipeline is not capable

of applying different data quality products for different template parameters. In

this chapter, however, we will carefully examine how different glitch classes impact

different parts of the bank.

4.2 Gravity Spy Classification

In order to classify glitches in this chapter, we use Gravity Spy[102, 121], a machine

learning based classification tool that utilizes citizen science efforts. Gravity Spy has

been used by the detector characterization group in efforts to quantify glitch rates and

identify large sets of similar glitches [122, 123, 124, 125, 126, 127, 128, 129, 130, 131],

as it can quickly and accurately identify common classes of instrumental artifacts

in the detector. These studies have generally been aimed at understanding detector

performance and the sources of these glitch classes. However, Gravity Spy is also

useful for studies such as those discussed in this chapter that are focused on searches

for gravitational waves, as it provides a method to develop an initial dataset of glitches

to investigate that is independent of the ways the data is analyzed by the searches.

In this section I will detail the relevant data selection process for the Gravity Spy

pipeline including possible selection effects relevant to this study. Full details on the

classification methods for Gravity Spy can be found in [102].

At its core, Gravity Spy is an image classifier based on convolutional neural net-

work methods [132]. Before this is possible, time periods containing glitches must

be identified and the relevant detector data translated into an image format that the

neural network can process. To identify a glitch, the Gravity Spy pipeline takes ad-

vantage of the Omicron pipeline [103]. Omicron uses a set of sine-Guassian wavelets

to identify excess power events in detector data. Any excess power event with a SNR

above 7.5 is reported to the pipeline. Once a time is selected, the time series data

is transformed into a spectrogram using an Omega Scan [69]. This representation

provides the input that both the machine learning classifier and citizen scientists will
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Figure 36: Omega Scans [69] of the four problematic Gravity Spy glitch classes dis-

cussed in this chapter. The glitch classes blips (top-right), koi fish (top-left), scat-

tering (bottom-left) and scratchy (bottom-right) are highlighted here due to their

known impact on the PyCBC search. Note the diversity in duration and morphology

for each glitch class.
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use in their classification efforts. This glitch image is fed into the classifier and a

confidence score ranging from 0.0 to 1.0 is given for each category. The total sum

over all categories is 1.0, with the highest numeric value representing the most likely

classification.

The SNR threshold from Omicron is used to ensure that a clearly defined glitch

will be visible in the Omega Scan representation. In the context of using these

classifications for understanding the effect of glitches on search pipelines, this does

provide some bias, as noise sources problematic to the searches may not meet this

threshold. This consideration is especially important for long duration signals that

are not expected to be identifiable in this representation.

Another important consideration is the set of possible classifications that Gravity

Spy can provide. While there is a “None of the Above” and “No Glitch” class that

the pipeline can utilize, the classification is mostly limited to predetermined classes

from a training set [121]. Therefore, if a glitch unknown to the pipeline is classified,

the result has a much higher chance of being incorrect, and hence contaminating the

glitch set. To counteract this issue, we set a minimum confidence of 0.95 for all glitch

classes to reduce the risk of contamination.

Of the classes Gravity Spy has in its training set, we will focus on four in this

chapter: “blip”, “koi fish”, “scattered light”, and “scratchy”. Omega Scans of repre-

sentative examples of each of these glitches can be seen in Figure 36. These four are

chosen as they have been previously identified as problematic for searches for gravita-

tional waves from compact binaries [13, 83]. These classes are also some of the most

common glitches in the LIGO detectors, allowing for a broad statistical study. Fi-

nally, each of these classes has yet to be completely mitigated via instrumental means

in the LIGO detectors. Due to this, it is likely these glitch classes will be present

in future observing runs and continue to limit the sensitivity of searches. Additional

details on the sources of these glitch classes can be found in Chapter 2.

4.3 How Different Kinds of Glitches Mimic Traits of Signals

PyCBC signal consistency tests have been shown to to discriminate between glitches

and astrophysical signals [83, 86, 77, 87, 74]. However, the wide range of template

parameters included in the search [82], combined with the wide variety of instrumental
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Figure 37: An overlay of a timeseries of a representative CBC template and detector

data around a blip glitch. Both of the timeseries have been filtered with bandpass

filters to isolate the most sensitive region of 35-500 Hz. This visualization serves to

show the similarity between a blip glitch and a CBC template after the response of

the detector is considered.

artifacts, means that this discriminating power is not uniformly effective across the

entirety of the search parameter space [83].

One of the glitch classes were this concern is easily demonstrated is the blip class.

When plotted against a timeseries of the data around a representative blip glitch,

the match between a blip and a particular template is apparent, as shown in Figure

37. As visible in Figure 37, the characteristics of blip waveform are a few short, loud

cycles, similar to a sine-Gaussian pulse [63, 86, 92]. As the detector is less sensitive at

lower frequencies, a template that reaches merger by 100 Hz will be in the observable

band for only a few gravitational wave cycles and qualitatively match the model for a

representative blip. Such templates correspond to some of the most massive systems

in the PyCBC template bank, and have been noted as one of the limiting sources of

noise for searches for gravitational waves from high mass binary black holes [133, 70].

In order to understand how the PyCBC search responds to the classes of glitches

we are focusing on, we analyzed short segments of data around glitches noted by

Gravity Spy as from a specific glitch class and recorded all PyCBC triggers that met

a minimum detection statistic value. Multiple seconds of data after the glitch were

included to ensure that triggers intersecting the inspiral component of the waveform
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Figure 38: Histograms of the maximum sine-Gaussian SNR, ρ̃sg recorded for triggers

found in different parts of the PyCBC template bank parameter space during time

periods corrupted by each glitch class. Triggers are plotted based on the component

masses of the relevant templates. The glitch classes of blips (top-right), koi fish (top-

left), scattering (bottom-left) and scratchy (bottom-right) show different maximum

detection statistics overall as well as varying number of triggers.

were correctly recorded. We then plot these triggers based on their component masses

to understand which parameters are more likely to record loud triggers due to the

glitching. This process is completed for each of the four classes of glitch focused

on in this chapter. Results of this visualization for single detector triggers from

the LIGO-Hanford detector can be seen in Figure 38. Results for triggers from the

LIGO-Livingston detector are qualitatively similar.

One of the more interesting features that appears in the projection onto the tem-

plate bank is the presence of a tower of loud triggers at m1 = 100M� and a high mass

ratio seen in the blip example. This particularly stands out as the loudest triggers

are not found by the templates with the largest component masses. Investigating
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this further, we noted that this feature corresponded to the shortest templates in the

template bank with maximally anti-aligned spins. In the O2 PyCBC template bank,

a minimum duration of .15 seconds was set for all templates [82]. When the compact

objects have spins that are maximally anti-aligned, this minimum duration corre-

sponds to a maximum total mass of Mtot ≈ 100M�. Furthermore, this configuration

leads to a more rapid frequency evolution in comparison to aligned templates with

the minimal template duration. We also note that the loudest single detector triggers

from the search were related to blip glitches. Triggers related to koi fish glitches (Fig-

ure 38 top-right) show qualitatively similar behavior to blip triggers, with the largest

probabilities found at high masses and spins.

Examining the scattered light triggers shown in Figure 38 (bottom-left), we ob-

serve the behaviour that was initially expected for blips. Namely that the loudest trig-

gers correspond to the templates with the largest component masses. These triggers

also correspond to the minimal template duration for the bank, but with maximally

aligned spin instead of anti-aligned. Triggers related to scratchy glitches (Figure

38 (bottom-right)) show no clear clustering of loud triggers in this representation,

indicative of the broad range of parameters for triggers during scratchy periods.

While this visualization method does demonstrate which glitch classes contribute

to the loudest background triggers observed by PyCBC, this contribution could be

from a single outlier in a given glitch class. In order to assess how pervasive the

impact is of each glitch class, the behavior of the entire glitch population needs to

be assessed. If a glitch class is capable of producing significant triggers during every

recorded instance, this is much more likely to produce a coincident trigger in the

search than an individual loud outlier from a single detector.

4.4 Probability of Creating Triggers

In order to present the likelihood of a common glitch producing a significant trigger

in a way that can be used in both automated and human based follow up of candidate

triggers, we next attempt to asses the likelihood of a single glitch producing a trigger.

In this section we calculate the probability of a given glitch in a specific class creating

at least one trigger of a fixed detection statistic. We then further plot this information

against total mass and effective spin for a given system. This method prevents a single
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glitch from dominating our statistics, and helps us understand the population more

fully.

For each class of glitch in our data set, we test to see the likelihood that a single

glitch from this class produces a trigger above a detection statistic threshold (in this

case ρ̃sg > 7.0 in each bin) in each part of the template bank parameter space. This

value was chosen because a trigger of this detection statistic value combined with the

minimal value possible in the other detector (ρ̃sg ≈ 5.5) would result in a candidate

with a combined network detection statistic of ρ̃sg,net > 9.0, which is sufficient to

separate itself from the background. We choose to bin the parameter space spanned

by the O2 PyCBC template bank uniformly in both χeff (the effective spin of the

system) and log(Mtotal) to help account for the reduced density of templates at high

Mtotal.

In each template bank bin, we count the fraction of glitches in a given class that

produced at least one trigger above the chosen threshold that have parameters con-

sistent with the bin in question. This value is used as the probability of creating a

trigger in that template bank bin. Since each bin probability is calculated indepen-

dently, the total probability summed over all bins is not bounded by 1. In fact, it is

possible for a given glitch instance to create triggers recorded in multiple bins. This

allows the full extent of the glitch overlap with the template bank to be recorded.

The results of this study can be seen in Figure 39 for the four glitch classes considered

in this chapter and for all of the template bank bins.

For blip glitches, (Figure 39 top-left) we see clustering of the most likely part

of the parameter space near maximal total mass and anti-aligned spin, but with

a low probability of producing a trigger. Outside of this cluster the probability is

negligible. This contrasts the results shown in Figure 38 (top-left) that suggested

a more pervasive overlap. Combined, these results show that while singular blip

glitches can produce significant triggers in the search, the overall population is far

less susceptible. It is important to note that blips are one of the most common classes

of instrumental transient found in the detectors, so the low probability shown here

may still impact the sensitivity of the search.

As shown in Figure 39 (top-right), koi fish glitches have a similar profile to blip

glitches, producing very few triggers and only at high masses.

Scattered light glitches impact short duration highly aligned spin templates, as
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Figure 39: Probability of producing a trigger above sine-Gaussian SNR of 7.0 in

specific regions of the template bank parameter space for each glitch class. blips

(top-right), koi fish (top-left), scattering (bottom-left) and scratchy (bottom-right)

each show maximum probabilities in different parts of the parameter space.
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Figure 40: Probability of producing a trigger above a reduced SNR (ρ̃) of 7.0 for blip

(left) and koi fish (right) classes. Note the large difference with the probability plots

which use the sine-Gaussian discriminator as a component of the detection statistic.

The scattered light and scratchy classes (not shown) saw only minimal changes.

shown in Figure 39 (bottom-left). These templates experience a ‘hang-up’ effect [134],

resulting in a template that can match the arch-like morphology of a representative

scattered light glitch.

Scratchy glitches (Figure 39 bottom-right) overlap best with templates that have

total masses of 10-100 M� and are highly spinning. Further investigation into this

parameter space shows that this region also corresponds to templates with high mass

ratios, such as those from neutron star - black hole (NSBH) systems. While scratchy

glitches are rarer than the other classes identified in this chapter, the likelihood of a

single glitch producing a significant trigger is high for a wide range of parameters, a

contrasting situation to blips and koi fish.

One important note is that the total duration of scratchy glitches is quite signifi-

cant, up to multiple minutes, as opposed to blip and koi fish glitches that last tenths

of seconds. While this does increase the chance of a trigger being due to chance, the

excess shown in Figure 39 (bottom-right) is higher than we would expect from colored

Gaussian noise alone.

We also can examine how specific aspects of the detection statistic impact the like-

lihood of a trigger being produced. Instead of using the sine-Gaussian SNR statistic,

we switch to using reduced SNR, the detection statistic used for initial analyses of
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aLIGO’s first observing run [77, 12]. For the blip and koi fish classes, this substan-

tially changed the likelihood of producing a trigger. The results of this can be seen

in Figure 40.

For blip glitches, we see clustering of the most likely part of the parameter space

near maximal total mass and anti-aligned spin. In this region, particular parts of the

space cause significant triggers up to 10% of the time. The rest of the parameter

space shows extremely low likelihood of any blip glitch causing a significant trigger.

The confinement of the probability to a small part of the parameter space suggests

that there is a high match between these template parameters and the glitches.

Without the benefit of the sine-Gaussian discriminator, koi fish glitches can mimic

a wide variety of high mass templates, indiscriminate of their effective spin. This cor-

responds to the entire region of the template bank where the templates are at the

minimum duration. This suggests that the largest contributing factor to whether a

koi fish glitch can produce a trigger with specific template parameters is the template

duration as opposed to the similarity between the template and the glitch. At this

short template duration, PyCBC consistency tests have less discriminating power,

leading to an increased chance of a template being recovered with a significant detec-

tion statistic.

The high level of mitigation seen between Figures 39 and 40 underscores the

importance of signal consistency tests in increasing the sensitivity of searches. As the

sine-Gaussian discriminator was originally developed to combat both blips and koi fish

[86], it is unsurprising that there is such a significant change. However, the scratchy

and scattering classes only saw minimal improvement. If similar glitch-targeted tests

for these classes can be developed, they are likely to lead to significant improvements

in the sensitivity of the search.

For each glitch class, there does appear to be a range of parameters for which

a candidate trigger in time coincidence would likely be caused by the presence of

the glitch. For example, a high mass, anti-aligned BBH trigger noted during a time

flagged by Gravity Spy is consistent with the expected triggers produced by the

observed blip population. Conversely, the mass and spin parameters of previously

observed BBH and BNS signals [13] are not consistent with blips, and hence there

is minimal risk of falsely using these results to cast doubt on a similar signal. At

lower masses, the most problematic region is the correlation between templates with
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high mass ratios and high spins (such as from an NSBH waveform) and scratchy

glitches. Such correlations can be used to quickly follow up candidates after they are

identified by the search. If no overlap is found, the trigger is unlikely to be related

to the identified instrumental artifact. Alternatively, if the template parameters are

consistent with those expected from the relevant glitch class, additional investigations

to understand causality between the artifact and candidate trigger are warranted.

4.5 A Method to Utilize Glitch Classification in Significance

Estimates

As discussed in the previous section, some of the most likely regions in the PyCBC

parameter space for a glitch to produce a trigger are those with high spins and high

ratios of component masses. Combining current upper limits on the rate of mergers

from highly spinning BBH and NSBH systems with the rate of problematic glitches

in aLIGO data suggests that any given candidate trigger in time coincidence with a

glitch is most likely due to the presence of the instrumental artifact. However, this

does not preclude the possibility of a real astrophysical signal occurring in coincidence

with a glitch. In this scenario, it may be possible to include the additional information

we have about the expected overlap with the candidate trigger parameters and the

glitch population to re-evaluate the significance of the signal. In this section we

outline a procedure to calculate the significance of a trigger found in time coincidence

with a time flagged by Gravity Spy as belonging to a specific glitch class. We focus

on blip glitches as a test case since they are one of the most common glitches in both

detectors and have very defined regions of the parameter space where overlap between

signals and glitches occur.

To understand the the trigger rate changes during glitching in different parts of

the parameter space, we compare trigger rates from generic times versus only times

that are known to contain glitches. We then sort triggers from each period into a BNS

category (Mchirp < 2.0M�) and a BBH category (Mchirp > 5.0M�). A comparison

of the rate of triggers versus network ranking statistic ρ̃sg,net for the entire analysis

period and around blip glitches is shown in Figure 41. If we examine the trigger

rate during the entire analysis period versus during short time periods around blip

glitches, we see that there is indeed in increased rate of triggers‘ at fixed ranking
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statistic for times around blip glitches. Furthermore, this increase is only apparent

for the BBH category, with only minimal increases for the BNS category. This agrees

with our expectation that blip glitches are responsible for a high rate of triggers.

As was shown with GW170817, it may still be possible to detect a gravitational-

wave signal during a time period corrupted by glitching. A critical component of

this detection was establishing that the observed glitch could not have accounted for

the BNS signal in the data [15, 117]. In order to facilitate significance estimates of

additional candidates, Gravity Spy classifications, combined with our knowledge of

the overlaps between template parameters, can be used to evaluate if the candidate

trigger could plausibly be related to the observed transient.

Blip glitches present a clear use case for this follow up. This class is known to

impact only an isolated part of the parameter space. Specifically, we would expect

that low mass BNS triggers would be unrelated, while high mass BBH triggers may be

due to the presence of a glitch. In order to account for the expected variation in the

background distribution across the template bank, we include parameter dependent

background reweighing that measures the rate of triggers with respect to template

duration and downranks templates that are shown to occur more frequently [87]. As

BNS and BBH signals have vastly different template durations, we would expect both

classes of signals to be affected differently by the inclusion of this term to the ranking

statistic when compared against our expected triggers from blips.

To demonstrate how the significance of each signal model is affected by a corre-

lation with blip glitches, we perform a series of astrophysical software injections of

both BNS and BBH signals into real aLIGO data. We first calculate the inverse false

alarm rate (IFAR) of each injection using the background distribution measured from

a 5 day analysis period as a control. We empirically measure the distribution of single

detector background triggers during times period flagged by Gravity Spy as blips with

0.95 confidence, and use this as the input for the background re-weighing procedure.

We then reevaluate the IFAR of each injection with this new background distribution.

As these signals were not injected to directly overlap periods corrupted by glitching,

they represent an ideal scenario where there is a glitch has no impact on the recovery

of an unrelated astrophysical signal. A comparison of the recovered IFAR for each

injection with the standard and blip-focused background distribution can be seen in

Figure 42, along with a 1-1 line indicating where the recovered IFAR is consistent
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Figure 41: A comparison of the false alarm rate (FAR) based on all times in the

analysis and only times coincident within 2 seconds of blip. The trigger rate is much

higher during blip periods for BBH triggers, supporting the previous conclusion that

there is an increased chance of producing a trigger coincident with this source of noise.

Top: Difference in trigger rate for BBH triggers. Bottom: Difference in trigger rate

for BNS triggers.
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between the two cases. Note that Figure 42 (top) shows only BNS injections and

Figure 42 (bottom) shows only BBH injections.

Comparing the two injection sets, there is a clear difference in the distribution

with respect to the 1-1 line. BNS injections were recovered at approximately the

same IFAR in both cases, showing that times corrupted by blips are equally likely

to produce a BNS trigger as an average time. The BBH injections, on the other

hand, have a clear separation from the 1-1 line. Specifically, the IFAR of injections

recovered is lower when a background based on blips is used versus a standard time.

Since blip times are more likely to produce triggers with BBH parameters, these

injections are naturally downranked. However, loud injections are still recovered at

IFAR of greater than 1 year, which would be sufficiently significant to separate itself

from the background and to be identified as a candidate of interest.

This method provides a natural way to evaluate candidate triggers that occur

during periods of known noise. In the above example, a BNS signal in coincidence

with a blip would not be down ranked, while a BBH signal at this time would be

have a reduced significance due to this time correlation with the glitch. While only

blips were focused on in this section, this procedure can be repeated for all glitch

classes that are sufficiently common enough for an expected background distribution

to be measured. As a high fraction of significant outliers from matched filter searches

have been shown to occur during such periods of transient noise [13], this method

can provide further quantitative evidence that a candidate trigger is unlikely to be

related to the instrumental artifact that it occurs in time coincidence with. In general,

the presence of a glitch does not preclude the possibility that a candidate trigger is

astrophysical, but only reduces the likelihood of astrophysical origin as compared to

a candidate trigger that does not overlap a known instrumental artifact.

As this method provides a method to rerank triggers based on classification in-

formation from Gravity Spy, such a procedure can be implemented in the ranking

statistic. One possible method to include this information is to separately evaluate

triggers during times categorized by Gravity Spy as glitches and times where no glitch

is identified. This would allow the search to benefit from an increased sensitivity dur-

ing time periods where no glitching occurs, and to more accurately rank candidates

related to glitching. Down ranking triggers during glitches instead of removing them

from the analysis has the benefit of not removing the possibility of detecting a signal
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Figure 42: Recovered IFAR for a set of injections compared against the background

from all time during an analysis (x-axis) versus the background during only blip times

(y-axis). In each plot a 1-1 line is included for reference. For BNS injections (top),

there is no affect on the recovered IFAR. For BBH injections (bottom), the high rate

of triggers with similar template duration during blip times reduces the significance

of the injections. This provides a natural way to evaluate a candidate trigger that is

coincident with a known source of noise in the detector.
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during a glitch. If an astrophysical signal was classified as a glitch due to a highly

similar morphology with a glitch class, this method would not prevent detection. Fur-

ther studies evaluating the safety of this method, and the utilization of Gravity Spy

classifications to rank candidate triggers, is warranted.

One limitation of this method is based on which parameters are used as part of

the background reweighting. As has been shown in this chapter, one single variable

will not neatly delineate templates into groups impacted and not impacted by a

glitch class. Therefore, this method will only be effective in the situation that the

background is modeled by parameters that effectively describe the overall distribution

of triggers. Detailed investigations into what parameters would be best for each glitch

class may be resolved in future investigations.

4.6 Future Applications

This chapter emphasizes that the non-stationary features of aLIGO data currently are

one of the limiting factors for sensitivity of the analyses identify gravitational waves.

This is especially problematic for novel sources including mergers of intermediate

mass black holes [133, 135] and neutron star - black hole [136] systems. As each

of these regions of the current template bank are impacted differently by each of

the glitch classes, there is unlikely to be a single method to efficiently differentiate

these novel sources from common instrumental artifacts. Focused work to design

consistency tests that account for known problematic glitch morphologies is needed.

Alternatively, developing robust mitigation techniques for each of these common glitch

classes will have tangible effects on the overall sensitivity of the searches.

At the present, the quantifiable metrics developed in this chapter can also be used

to guide event validation of candidate triggers. When evaluating whether to initiate a

search for an electromagnetic counterpart, being able to predict whether a significant

trigger is likely due to the presence of a common glitch will allow more informed

responses. As many EM counterparts to a gravitational wave signal occur within

minutes of merger [137], quick follow up is critical. Gravity Spy classifications are

planned to be included in automated follow up in LIGO-Virgo’s third observing run

and the results of this study can be used to translate these classifications into easily

used metrics to determine the likelihood of the candidate being related to a common
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glitch. Since the regions where a glitch is most likely to produce a trigger correspond

with regions were a lower event rate is expected, understanding if a candidate of

interest is a rare astrophysical signal or a common glitch is especially important to

guide astronomical observations.

As aLIGO reaches design sensitivity and the rate of detections increases, signals

found near noise transients in the data will become a much more common situation.

Already in the recent results from O2, a large number of marginal triggers have been

identified in time coincidence with noise transients [13]1. Future progress will be

facilitated both by continual instrumental work to the reduce the rate of glitches as

well as by further studies of how to distinguish glitches from genuine signals.

1See Chapter 6 for additional discussion of the impact of these noise transients.
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Chapter 5

Linear Noise Subtraction

It has been previously shown that it is possible to increase the sensitivity of the

aLIGO detectors by subtracting instrumental noise from the gravitational-wave strain

data [65, 138, 139, 140, 66]. For source parameter estimation [141] of previously

published gravitational-wave signals from O2, a MATLAB-based noise subtraction

algorithm was used to subtract instrumental noise using an associated witness sensor

for 4096 seconds around identified events [142, 143]. This was the first instance of

noise subtraction being used in the analysis of gravitational-wave events. However,

this process was not designed with the intention of subtracting noise from the entire

O2 data set.

Since this initial analysis, a Python-based implementation of noise subtraction

was developed that prioritizes parallel processing and computational efficiency with

the goal of subtracting instrumental noise over the entirety of the second observing

run. Considering that each individual interferometer recorded over 150 days of data,

one of the key considerations was the size of the data set that this noise subtraction

pipeline needed to process. The methods used in this pipeline are general enough

to allow any linearly coupled noise source with a clear witness to be subtracted out

efficiently.

This chapter describes the method used to subtract noise due to beam jitter, de-

tector calibration lines, and mains power lines in O2 and reports the improvement to

search sensitivity gained by applying this method. Section 5.1 outlines the workflow

used to process the data set in parallel. Section 5.2 characterizes the instrumental

noise sources that were subtracted from the O2 data set. Section 5.3 describes the
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tests that were done to ensure that the subtraction process was not capable of remov-

ing genuine astrophysical signals. Section 5.4 presents the effects of noise subtraction

on the aLIGO noise spectrum and on the sensitivity to simulated astrophysical signals.

I was the lead developer for the noise subtraction pipeline and produced the

finalized noise-subtracted dataset discussed in this chapter. This chapter is adapted

from [144], of which I am the lead author. The complete noise-subtracted dataset is

available as a part of bulk data release for aLIGO’s second observing run, and can be

accessed through the Gravitational-Wave Open Science Center [112, 111].

5.1 Subtraction Pipeline Overview

5.1.1 Measurement of Transfer Functions

The assumption of a linear transfer function is motivated by the high coherence

between witness sensor signals and gravitational-wave strain data. Figure 43 shows

the coherence between witness sensors and gravitational-wave strain for three types

of instrumental noise subtracted in O2. These noise sources are further detailed in

Section 5.2.

For a given noise source, we assume that our measured gravitational wave strain

data, h(t), contains a noise component that can be modeled as the convolution of an

unknown transfer function c′(t) and the output of a witness sensor a(t),

h(t) = h′(t) + a(t) ∗ c′(t). (5.57)

This noise component can be removed from the strain data by filtering the witness

sensor data with this transfer function and subtracting its contribution to the mea-

sured strain, resulting in a residual strain denoted h′(t). This transfer function can

be conveniently calculated in the frequency domain, so that the subtraction takes the

form

h̃(f) = h̃′(f) + ã(f) · c̃′(f). (5.58)

Adapting the methodology and notation from [145], we begin by considering our

data as time series that are sampled at time interval ∆t over a time period T . This

results in M = T/∆t samples, denoted by Y (j) for j = 0, ...,M − 1. We denote the
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Discrete Fourier Transforms of each data stream as Ỹ (k) for k = −M/2, ...,M/2, so

that the k’th bin corresponds to a frequency f = k/T . We then split the frequency

space into bands of width F given by

f ∈ [fb, fb+1) with fb =
bF

T
(5.59)

for b = 0, ...,M/2F . The transfer function is measured independently over each of

these frequency bands and is constructed using frequency domain inner products

between the relevant data sets. For two data sets Y1 and Y2 the inner product over

a specific frequency band b is calculated as the cross-power spectrum summed over

that frequency band:

c̃12(fb) =

f(b+1)∑
f=fb

Ỹ1(f)Ỹ2
∗
(f). (5.60)

A measurement of the transfer function for uncorrelated noise, for which each

frequency bin has a random phase, should find no significant coupling as multiple

uncorrelated data points are averaged over to calculate the transfer function. To help

reduce the risk of spurious correlations being measured, we set a minimum threshold

on the value that the transfer function can take as a fraction of the maximum value

and set the value of the transfer function to zero in any band whose value is below that

threshold. We found that a uniform fractional threshold of 2.5× 10−9 was sufficient

for the noise sources considered in this work, but in practice this value can be tuned

for different use cases.

In the case when multiple sensors witness the same noise, there will be a mea-

surable correlation between each of the sensors, resulting in oversubtraction if not

accounted for. For N witness sensors Y1, ...YN and a target data stream to subtract

noise from, Y0, the set of frequency domain transfer functions c̃′01, ...c̃
′
0N that contain

independent noise is the solution to the matrix equation [146]
c̃′01(fb)

c̃′02(fb)
...

c̃′0N(fb)

 =


c̃11(fb) . . . c̃N3(fb)

c̃12(fb) . . . c̃N2(fb)
...

. . .
...

c̃1N(fb) . . . c̃NN(fb)


−1 

c̃01(fb)

c̃02(fb)
...

c̃0N(fb)

 (5.61)
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Figure 43: Coherence between witness sensors and gravitational wave strain for three

types of instrumental noise subtracted in O2 at LIGO-Hanford: beam jitter, power

mains, and calibration lines. The measured coherence demonstrates significant linear

coupling between these witness sensors and the strain data, motivating the use of

linear subtraction methods. Reproduced from [144].

These independent transfer functions can then be used for noise subtraction as

described in Equation 5.58. This process allows additional sensors that may witness

different features of the same noise source to be added to the noise subtraction process

without risking oversubtraction.

5.1.2 Calculation of Coupled Noise

Advanced LIGO data is not stationary on the time scale of hours [83, 84], meaning

the transfer functions used to subtract each noise source will vary over the time period

that the noise subtraction is applied. This necessitated the development of methods

to understand the stability and accuracy of the transfer function estimation on long

timescales.

High amplitude non-Gaussian instrumental artifacts that can impact the measure-

ment of transfer functions are removed from the strain data before transfer functions

are calculated. This is done by applying an inverse Tukey window that zeroes the
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data containing each instrumental transient. Instrumental transients are identified for

removal by marking any times where the whitened time series exceeds a value of 100.

This process is identical to the windowing done in [15] and described in Chapter 3.

A continuous measurement for long stretches of data is approximated by calculating

transfer functions with overlapping finite measurement windows, called “sections.”

A visualization of this process is shown in Figure 44. After calculating the transfer

functions and projected noise contributions for each individual window, each section

of projected noise is multiplied by a Hann window and smoothly added together with

50% overlapping sections.

In the case that the transfer function is truly constant, this method is identical

to applying a single transfer function over the entire period. The transfer function

for each witness sensor is constructed to be uncorrelated with the transfer functions

from other witness sensors, resulting in noise projection time series that are also

independent. This allows each noise time series to be subtracted from the strain data

independently. Once all targeted noise contributions are subtracted, we refer to the

data as “cleaned”.

5.1.3 Workflow Implementation

One of the key features of this implementation is the throughput at which the subtrac-

tion can be done over long stretches of data. The pipeline takes advantage of the Pe-

gasus workflow methods implemented in the PyCBC software package [147, 77, 120],

which allows for parallelized calculation of transfer functions. Since the transfer func-

tions for different noise sources can be calculated independently, the workflow was

able to measure transfer functions for each noise source and generate projected strain

data in parallel. In addition, the data set was broken up into distinct sections of

continuous detector operation that were processed in parallel. The limiting factor in

the subtraction process is the availability of computing nodes. Applying this method

using available resources with 14 witness sensors allowed for two weeks of data from

one detector, approximately 65 gigabytes, to be processed in only a few hours.
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Figure 44: Visualization of how transfer function measurements are tiled in time.

Transfer functions are measured in time windows (typically 1024 seconds) with 50%

overlap. For a given time, the transfer function between the witness sensor and h(t) is

measured and the witness data are filtered to generate their projected contributions

to h(t). A Hann window is applied to each section of projected data before adding

them together, resulting in a single projected h(t) time series that has incorporated

the time dependence of the transfer functions. Reproduced from [144].
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5.2 Noise sources

During O2, multiple sources of linearly coupled noise were identified. These fell into

two main categories: beam jitter noise that led to broadband noise contributions and

narrow line artifacts from power mains and calibration lines. Both of these noise

classes were identified and subtracted for analyses on previously published events, as

described in [142]. This section describes each noise source and the witness sensors

used in the subtraction process.

5.2.1 Jitter Noise

The main source of linearly coupled noise identified during O2 was related to jitter

of the pre-stabilized laser (PSL) beam in angle and size [143, 148, 149]. The PSL

is responsible for generating the frequency- and intensity-stabilized input laser beam

that is injected into the interferometer. Upgrades to this subsystem undertaken in

preparation for O2 led to different configurations of the PSL between LIGO-Hanford

and LIGO-Livingston.

The configuration of the PSL at LIGO-Hanford during O2 included the addition

of a high powered oscillator (HPO) that was designed to increase the laser power

injected into the interferometer up to 200 W [148, 11]. The optical components used

in the HPO required continuous heat dissipation via water cooling. Vibrations from

water flow coupled to the table that supports the optical components used to control

the beam angle, introducing jitter in beam angle and size [143, 149].

Fluctuations in beam angle are measured using quadrant photodiodes that sense

the light reflected from the input mode cleaner (IMC) [150], which is used to filter

higher order optical modes from the input beam. In February 2017, an additional

sensor sensitive to radial beam distortions was installed [151]. In total, 7 readouts of

beam angle and size (4 derived from quadrant photodiodes and 3 derived from the

bullseye photodiode) were used to measure and subtract noise due to beam jitter.

During O2, the coupling of beam jitter into the output of the detector was further

complicated by the presence of an axially asymmetric point absorber that was present

on one of the test masses at LIGO-Hanford [152]. Thermal deformations are generally

corrected with the use of the the Thermal Compensation System (TCS), which heats

and deforms the mirrors [153], but this system is not capable of compensating for a
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pointlike deformation. This deformation may have caused beam size and angle fluc-

tuations to more strongly couple into the gravitational-wave strain data. Mitigating

beam jitter noise required replacement of the HPO stage in the PSL and the test

mass with the point absorber. Due to the invasive nature of this work, mitigation

was not possible until after the end of the observing run.

Jitter noise related to beam size and beam angle fluctuations was present at LIGO-

Hanford throughout all of O2, with increased coupling towards the end of the run.

Variations in the beam angle led to broadband noise contributions, while variation in

beam angle was coupled strongly at mechanical resonances of optic mounts between

100 and 700 Hz. The sensors used to witness these noise sources were digitally

sampled at 2048 Hz, which sets the maximum frequency at which this jitter noise can

be subtracted at 1024 Hz. The broadband coupling may have introduced noise above

this frequency, but is not addressed in this work.

At LIGO-Livingston, the HPO was not included in the O2 configuration, and no

asymmetries in the test masses were noted, leading to no noticeable jitter coupling in

the gravitational-wave strain data. For this reason no jitter subtraction was done with

the LIGO-Livingston data, which accounts for the lack of broadband noise subtraction

seen in the spectrum shown in Figure 47.

5.2.2 Line Artifacts

The gravitational-wave strain data demonstrates several noise features that are nar-

rowband, appearing as sharp lines in the frequency domain that can affect long du-

ration searches and parameter estimation. The strain data contains excess noise at

60 Hz and its harmonic frequencies at both sites due to coupling of the power mains.

These lines can be subtracted out using 3 witness sensors that directly measure the 3-

phase voltage provided by the mains power grid at each observatory. In addition, the

calibration lines discussed in Section 5.3.4 are applied using two methods. One set of

calibration lines are digitally injected into actuation signals that control the position

of the optics. Each digital excitation signal can be subtracted using the recorded ex-

citation at the injection point. A second set of calibration lines are applied to the test

masses via radiation pressure using the photon calibrator [154] and can be measured

and subtracted using a single photodetector that monitors the power of the photon

calibrator beam.
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Figure 45: Recovery of a hardware injection before and after cleaning. Left: SNR

timeseries around the injection before noise subtraction. Right: SNR timeseries

around the injection after noise subtraction. After subtraction, the signal is recovered

at an increased SNR without impacting the timing of the signal, demonstrating that

the subtraction process does not negatively impact recovery of signals in the data.

5.3 Diagnostics

5.3.1 Sensor Safety

Before using the witness sensors described in Section 5.2 to subtract correlated noise,

each sensor’s sensitivity to gravitational waves, or “safety”, was estimated. To es-

tablish safety, a series of sine-Gaussian waveforms were injected into the detector

to excite the degree of freedom that is sensitive to gravitational waves [155]. If an

excitation of this degree of freedom coupled into the readout of any witness sensors

in a statistically significant way [104], those sensors were considered capable of acci-

dentally subtracting away real gravitational-wave signals and were marked as unsafe.

All of the witness sensors used for noise subtraction were determined to be incapable

of witnessing and subtracting away gravitational-wave signals.

5.3.2 Recovery of Simulated Compact Binary Coalescence Signals

To ensure the noise subtraction process would not corrupt an astrophysical signal, a

set of simulated compact binary coalescence (CBC) waveforms was digitally inserted

over five days worth of aLIGO data from both detectors. The data set containing

these simulated signals was processed by the PyCBC astrophysical search algorithm
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[77, 120], used to search for signals from stellar-mass neutron star and black hole bi-

naries, in order to compare the recovery of the simulated signals before and after noise

subtraction. For each recovered signal, a coincident ranking statistic that represents

the significance of an event found in multiple detectors in the detector network is cal-

culated. Figure 46 shows the recovered coincident ranking statistic of each simulated

signal before and after subtracting noise from the data set. After noise subtraction,

all of the simulated signals were recovered with a ranking statistic that is consistent

with or better than the ranking statistic before subtraction. In addition, there is a

population of simulated signals that were not recovered in the original analysis but

were found as coincident events after noise subtraction. As a final test, hardware

injected CBC signals [155] were successfully recovered after performing noise sub-

traction. These hardware injections were recovered with increases in ranking statistic

consistent with changes seen in software injections, as is shown in Figure 45.

5.3.3 Simulated Noise Tests

To verify that the noise subtraction process is effective for generic noise sources, ar-

tificial noise was added to aLIGO strain data and processed using the same method.

The first test attempted to subtract artificial correlated noise. This noise was con-

structed by generating Gaussian noise, passing it through a transfer function that had

similar features to the jitter transfer function, and summing it into the strain data.

When provided with the strain data and the Gaussian noise, the noise subtraction

algorithm was able to reconstruct the transfer function used to project the Gaussian

noise into the strain data and subtract out the excess noise. The amplitude spectral

density of the resulting data was consistent with the original data to within ±3% at

all frequencies.

The second test was to subtract out random, uncorrelated noise which had not

been added to the strain data. When provided with the strain data and the uncorre-

lated Gaussian noise, the algorithm subtracted a minimal amount of random noise.

Similarly, the amplitude spectral density of the resulting data was consistent with the

original data to within ±2% at all frequencies.
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Figure 46: Recovered network ranking statistic for simulated gravitational wave sig-

nals before and after applying noise subtraction. The colorbar indicates the chirp

mass [20] of each event, which spans a large astrophysical parameter space includ-

ing binary neutron star, neutron star - black hole, and binary black hole signals.

After noise subtraction, the simulated signals are recovered with a network ranking

statistic that is greater than or equal to the ranking statistic without noise subtrac-

tion. In addition, several quiet simulated signals that were below the threshold of the

search pipeline were recovered after noise subtraction due to being below the mini-

mum threshold of signal to noise ratio of 5.5 in both detectors. These are indicated

with triangles. Reproduced from [144].
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5.3.4 Effect on Calibration

One important feature of aLIGO data is the presence of continuous, narrowband si-

nusoidal injections, or “calibration lines”, which are used to calibrate the data [156].

This calibration is performed on data that does not have noise subtracted, there-

fore tests were conducted to ensure that the calibration of the data was still valid

after cleaning. A set of noise-subtracted data was produced using data from LIGO-

Hanford that did not subtract away calibration lines in order to measure the impact

of broadband noise subtraction on the data calibration process. Both the cleaned

and uncleaned strain data were demodulated at the calibration line frequencies and

the amplitude and phase were averaged in 300 second bins. The amplitude ratio and

phase offset of each resulting measurement were calculated and are used as metrics

for consistency.

To accumulate a statistically significant measurement of the calibration line con-

sistency, 6.65 days of data were analyzed and the 1 σ errors on the distribution of

amplitude ratios and phase offsets are reported. For the 36.7 Hz and 1083.7 Hz cali-

bration lines at LIGO-Hanford, the amplitude ratio was consistent with 1 to within

±0.014% and the phase offset was consistent with 0◦ to within ±0.0078◦. The 331

Hz calibration line (Located at a frequency where a non-negligible amount of power

is expected to be subtracted off due to beam jitter) has an amplitude ratio that is

consistent with 1 to within ±0.15% and a phase offset that is consistent with 0◦ to

within ±0.087◦. As typical calibration uncertainties are ±4% [157], these measure-

ments confirm that the noise subtraction process did not significantly impact the

overall calibration of the strain data.

5.3.5 Impact of Nonstationary Data

While generally stable, the witness sensors used for transfer function estimation some-

times contain transient noise. In cases where the witness sensor has transient excess

power that is not linearly correlated to the gravitational-wave strain, the transfer

function is overestimated and the noise subtraction algorithm removes too much pro-

jected noise from the strain data. However, when the transient noise is linearly

correlated to the gravitational-wave strain, transient noise can be subtracted from

the gravitational-wave strain data. This linear subtraction of transient noise was
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commonly found during periods of transient noise in the power mains.

The most impactful cases of oversubtraction due to excess power that is not lin-

early correlated with the gravitational-wave strain were noticed during review of the

cleaned data set, and occur when there is transient noise in the photon calibrator used

to inject calibration lines into the detector. To avoid this overestimation, the noise

subtraction process is halted for 3 seconds around these transient noise artifacts. As

these noise artifacts last less than one second, this veto period was chosen to ensure

that the effect of the transient on transfer function measurement was completely mit-

igated. Once times where witness sensors contain transient noise are removed, the

nearby noise-subtracted data shows no evidence of oversubtraction as compared to

time periods disjoint from the excess noise.

Additional oversubtraction may occur if a feature of a witness sensor is spuriously

correlated with the gravitational wave data. While such features are not observed

on the timescales that the subtraction process is computed over, narrowband noise

features from beat notes in the photon calibrator system may appear when signals are

averaged on the timescale of multiple hours. The total bandwidth affected by these

spurious correlations is less than 0.1 Hz and can be removed from long timescale

analyses with the use of notch filters [158].

5.4 Results

5.4.1 The O2 Data Set

The noise subtraction algorithm was used to clean the entire data set from Advanced

LIGO’s second observing run, which spanned 9 months. The final version of cali-

brated data [156, 157] was used as the input to the noise subtraction pipeline. For

computational efficiency, data which were considered unfit for astrophysical analysis

[83, 94, 99, 118] were not processed. Additional time losses were due to removal of

time periods corrupted by bandpass filters applied in the subtraction process and the

excision of data where witness sensors were unsuitable for reliable transfer function

measurement, as noted in Section 5.3.5. In all, only 0.05% of strain data was discarded

as a result of the noise subtraction process. The final cleaned data set contains 118

days of coincident data. This value is greater than the coincident livetime reported

in [15] due to the inclusion of additional time with updated calibration [157, 156].
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5.4.2 Effects on the Noise Curve

The noise subtraction process is capable of removing both narrowband and broadband

spectral features. Figure 47 shows the amplitude spectral density of the strain data

from the Hanford and LIGO-Livingston detectors before and after noise subtraction.

The narrow lines removed at 33, 60, 120, 180, 331, and 1083 Hz, detailed in Section

5.2.2, are related to detector calibration lines and power mains harmonics. Broadband

subtraction in LIGO-Hanford data is a result of removing noise related to beam jitter.

Due to the 2048 Hz sampling rate of the witness sensors and a low pass filter applied

to reduce corruption near the Nyquist frequency, broadband noise is only subtracted

up to 1024 Hz. A high pass filter applied at 13 Hz set the minimum frequency at

which broadband noise was subtracted.

The same procedure was used to address noise sources present in the LIGO-

Livingston detector. Line artifacts due to calibration lines and harmonics of the

power mains were removed. As previously noted, beam jitter noise did not contribute

significantly to the LIGO-Livingston data and was not subtracted.

We can characterize the benefit of the noise subtraction process with the “inspiral

range”, which is the average distance at which a detector could observe a BNS system

(1.4 - 1.4 M�) at a signal to noise ratio (SNR) of 8. The inspiral range during O2 at

LIGO-Hanford before and after noise subtraction is shown in Figure 48. After noise

subtraction, the inspiral range at LIGO-Hanford increased by ∼ 20% when averaged

over all of O2 with a peak increase of ∼ 50% towards the end of the observing run.

The change in inspiral range at LIGO-Livingston was negligible over the course of

O2 due to the lack of broadband noise subtraction. The effect of noise subtraction

on the overall network sensitivity of the detectors is discussed in Section 5.4.3.

5.4.3 Effect on Astrophysical Analyses

The figure of merit used for quantifying sensitivity of a search compact binary coales-

cences is the sensitive volume of the search multiplied by the time duration of analyzed

data, which is known as volume-time (V-T). While this volume can be approximated

using the inspiral range as a measure of sensitive distance, that method does not fully

account for the effects of data containing non-Gaussian noise artifacts on astrophys-

ical search sensitivity, as well as the sensitivity of the entire interferometer network.
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Figure 47: Top: Amplitude spectral density (ASD) of LIGO-Livingston (L1) grav-

itational wave strain data before (green) and after (blue) noise subtraction from a

representative day of data during O2. Narrowband features from calibration lines

and power mains were subtracted from the L1 strain data. There were no broadband

noise sources with an appropriate witness sensor that could be subtracted from the

L1 strain data. Bottom: Amplitude spectral density of LIGO-Hanford (H1) grav-

itational wave strain data before and after noise subtraction from a representative

day of data during O2. In addition to narrowband features from calibration lines and

power mains, broadband noise was subtracted between 80 - 1000 Hz using beam jitter

witness sensors. Reproduced from [144].
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Figure 48: Inspiral range of the LIGO-Hanford (H1) detector over the course of

O2 before (green) and after (blue) noise subtraction. The dashed line indicates the

installation of the bullseye photodiode, a witness sensor used for subtraction of noise

due to beam jitter. The large decrease in range after week 32 for both the Original

and Cleaned range was due to the impact of an earthquake near the site [159]. LIGO-

Livingston (L1) had no broadband noise subtraction, the increase in inspiral range

was negligible and is not shown. Reproduced from [144].

V-T can be measured by injecting a population of simulated gravitational-wave sig-

nals into the data and attempting to recover them with a search pipeline [77]. For

each search pipeline, a background distribution is generated that excludes coincident

events in order to estimate the effects of detector noise on the search algorithm. Each

recovered signal is then compared to this background and assigned an inverse false

alarm rate (IFAR) that quantifies how likely it is that such a signal was caused by

coincident instrumental artifacts rather than an astrophysical source. To estimate

the increase in sensitivity due to noise subtraction, V-T of the PyCBC search was

measured before and after noise subtraction using identical injection sets. As multiple

values can be used as a cutoff to determine if a signal is recovered, we examined the

V-T for IFAR values of both 100 years and 1000 years. This is the same process as

was used to estimate the change in sensitivity before and after the inclusion of data

quality products in Chapter 3. The ratio of V-T before and after noise subtraction

binned by chirp mass is shown in Figure 49.

The large increase to the sensitive volume of the detector network, combined with

a negligible reduction in available coincident time, led to a significant increase in

V-T over the course of O2. Averaging over all mass bins, a 30% increase in V-T
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Figure 49: The ratio of volume-time (V-T) the PyCBC search was sensitive to during

O2 before (original) and after noise subtraction (clean) binned by chirp mass. Black

represents the volume-time that the search was sensitive to for signals with an inverse

false alarm rate (IFAR) of 100 years, while Blue corresponds to signals with an IFAR

of 1000 years. Error bars show 1 sigma error. On average, a 30% increase in V-T was

measured over the course of O2. Reproduced from [144].

was measured over the course of O2. Particularly, the largest gains in sensitivity were

realized for chirp mass between 1.74 M� and 8.07 M�. This is a parameter space that

aLIGO has not previously detected signals in, and hence has a largely unconstrained

rate, in addition to being the location of the observed NS-BH mass gap [160, 161, 162].

One observed effect that led to a difference in measured V-T versus V-T extrap-

olated from estimating sensitive volume as a sphere with radius equal to the inspiral

range was the impact of the noise subtraction process on instrumental artifacts. While

the noise subtraction process reduced the broadband noise in the detector, it did not

affect the amplitude of noise artifacts unrelated to the noise sources addressed by the

noise subtraction pipeline. With a lower noise floor and no change in their absolute

amplitude, artifacts already present in the data were found to increase in SNR. As

one of the primary limitations of an astrophysical search’s ability to recover signals

is the rate of loud noise artifacts [83], these SNR increases limit the increase in V-T

due to noise subtraction.
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Figure 50: Amplitude spectral density of LIGO-Hanford (H1) gravitational wave

strain data before and after noise subtraction from a representative day of data during

an engineering run preceding O3. In addition to narrowband features from calibration

lines and power mains, a small amount of broadband noise was subtracted below 40

Hz related to alignment sensing control (ASC) noise.

5.5 Application in future observing runs

The versatility of the noise subtraction method discussed in this chapter to remove

known sources of noise makes it a useful tool to address a variety of noise sources

in future observing runs. While beam jitter and line artifacts are the only noise

sources subtracted from this data set, noise from feedback loops used to sense and

control the length and alignment of optical cavities in the aLIGO detectors have been

shown to contribute noise at lower frequencies [142] and are potential candidates for

subtraction in future observing runs. Before aLIGO’s third observing run, the test

mass with the point absorber at the LIGO-Hanford detector was replaced and the

PSL configuration updated, which has reduced noise contributions due to beam jitter.

Preliminary tests of noise subtraction with this pipeline for noise sources identified in

the engineering run preceding aLIGO’s third observing run have found only minimal

improvements in the range [163]. A comparison of the noise curve for LIGO-Hanford

during this time period can be seen in Figure 50.

The sensitivity gains demonstrated in this paper show that a robust offline noise

subtraction pipeline is an integral aspect of achieving maximum sensitivity in gravitational-

wave detectors. The 30% increase in sensitivity of aLIGO to compact binary coales-

cences after noise subtraction allowed for an increased volume of spacetime to be

searched for gravitational waves. In the following chapter, the results of the CBC
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analysis based on this dataset is discussed. Although not quantified in this chapter,

the noise subtraction process will also lead to general increases in the sensitivity of

searches for gravitational waves using aLIGO data, such as those for continuous waves

[39], stochastic [40], and unmodeled burst sources [72, 71, 164].
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Chapter 6

O2 Catalog of Gravitational Wave

Signals

This chapter discusses the final astrophysical search results of aLIGO’s second ob-

serving run, and the impact on the searches of the data quality products that were

discussed in preceding chapters. Two matched filter pipelines, GstLAL [78] and Py-

CBC [77], analyzed the noise-subtracted data. In this chapter, the PyCBC results

will be highlighted and discussed, although triggers that were only identified by Gst-

LAL will also be mentioned in the context of understanding how noise subtraction

and data quality issues affected the analysis of these candidates. However, as PyCBC

was used in quantifying the impact on sensitivity of both the noise subtraction and

data quality products in this dissertation, it is this pipeline that provides the best

opportunity to test if the final results met the expectations discussed in the previous

chapters.

This chapter prominently features results that were a part of the LVC collabora-

tion’s GWTC-1 catalog [13]. I was involved in this work as the lead for the PyCBC

reanalysis of noise-subtracted data, both running the pipeline and interpreting the

performance in this new dataset. I also served as the event validation lead for the

LIGO Detector Characterization Group, coordinating follow up investigations of the

individual triggers that made up this catalog; I was also the technical liaison from

the group for the catalog. Many of the investigations discussed in this chapter were

also performed as part of the final review process for the noise-subtracted dataset.
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6.1 PyCBC Search of noise-subtracted data

Initial results from the searches, first in low latency (e.g. PyCBC Live [89]) and then

over five day periods were performed with a preliminary calibration and without noise

subtraction1. With finalized calibration and with the significant increase in sensitivity

due to noise subtraction, the data was searched again with the hope of identifying

new events. The sensitivity of each detector over this entire period is shown in Figure

51.

Outside of the improved gravitational-wave strain channel, this analysis was able

to use the finalized version of all data quality products for the observing run; the most

important addition was the use of gates based on auxiliary channel information for

the entirety of O2. No changes were applied to the detection statistic calculation or

background estimation methods between the analysis of GW170817 and this search.

As a part of this analysis, individual run periods were analyzed to identify if the

noise subtraction had resulted in unanticipated effects on the search, such as creating

non-physical triggers or preventing injections from being recovered. No problematic

artifacts were identified through this check. However, it was noted that a large num-

ber of short-duration glitches produced higher SNR triggers after noise subtraction.

This was most likely due to the lower noise levels after subtraction that elevated the

prominence of the glitches. This effect led to interesting connections between the

PyCBC detection statistic and the search results that will be discussed later in this

chapter.

6.1.1 Classification of Significant Triggers

The catalog considered triggers that were found with a false alarm rate below 1 per

month. These triggers were labeled as ‘GW’ if they had a high enough probability that

the trigger was astrophysical. This probability is based on a comparison between the

probability that the trigger is drawn from the background distribution of noise versus

the probability that it was drawn from the distribution of astrophysical signals. If

signals are distributed homogeneously in the universe, the distribution of signal SNRs

1While noise subtraction was available for analyses of short time periods around some events,

noise subtraction was not applied to the data that was searched.
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Figure 51: Range of LIGO-Livingston, LIGO-Hanford, and Virgo during O2. Note

that this is after noise subtraction is applied for both LIGO sites. Reproduced from

GWTC-1 [13].

(ρ), is such that

s(ρ) = Rρ−4 (6.62)

where the normalizing constant R is based on the overall rate of signals. If the mea-

sured background distribution, b(ρ), is also known, then the astrophysical probability

is [165]

pastro(ρ) = s(ρ)/[s(ρ) + b(ρ)] . (6.63)

As this model relies upon the rate of signals to accurately calculate the astrophysical

probability, it is possible to measure this probability with a significant number of

observations of the relevant type of signal, but difficult when this isn’t the case.

This probability can be further refined by considering the probability distribution of

multiple different signal populations [166].

For GWTC-1, candidates that had an astrophysical probability of above 0.5 were

then labeled ‘GW’ [13]. All other triggers are referred to only by their date.
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6.1.2 Identified Gravitational Wave Signals

Over the course of O2, seven gravitational-wave candidates with the GW label were

identified with the PyCBC pipeline. Of these, four had been announced prior to

the release of the catalog: GW170104 [108], GW170608 [109], GW170814 [76], and

GW170817 [15]. Three unreleased events were found in the noise subtracted analysis:

GW170729, GW170809, and GW170823. One additional gravitational wave event,

GW170818, was also identified by (only) the GstLAL analysis of the noise-subtracted

data. Spectrograms of these BBH events, along with reconstructions of the underlying

waveform using a variety of methods, can be seen in Figure 52. Each event shows the

typical chirp structure, with varying durations and intensities.

The gravitational-wave event GW170809 was identified by both PyCBC and Gst-

LAL due to the use of noise-subtracted data. The event GW170818 was also identified

by GstLAL for the same reasons.

Among the eight identified O2 events, seven are binary black hole mergers, and

one is a binary neutron star merger (GW170817). A cumulative histogram of the

triggers identified by PyCBC in O1 and O2, with GW events labeled, can be seen in

Figure 53. Models for the noise background and the astrophysical signal foreground

are shown, along with their sum. The cumulative number of triggers above a fixed

detection statistic is shown to match the plotted signal model, which assumes that

events are distributed homogeneously in the universe. Particularly of note is the steep

slope in the noise model contrasted with the shallow slope of the signal model. This

clearly shows that above the value where the two models predict an equal number of

triggers, almost all triggers must be astrophysical, while the converse is true below

this value.

6.1.3 Identified Marginal Triggers from PyCBC

The reanalysis identified only 1 trigger in O2 with false alarm rate below 1/month

that was not labeled a ‘GW’. This trigger, labeled by date, is 170616. This trigger

was of particular interest due to its false alarm and the recovered masses from the

search. A spectrogram of the time around the trigger with the inspiral track overlaid

can be seen in Figure 55. Additional details about 170616 can be found later in this

section.
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Figure 52: Waveform reconstructions of the 10 observed BBH signals observed in O1

and O2. For each signal, the left panel shows a spectrogram of the signal at LIGO-

Livingston, while the right shows the reconstructed waveform based on BayesWave

[164], LALInference [141], and cWB [167]. Reproduced from GWTC-1 [13].
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Figure 53: PyCBC cumulative histogram of identified BBH triggers during O1 and

O2 with signal and background model overlaid. The observed triggers are shown

in black, with significant individual triggers labeled. The overall search result is in

agreement with a simple model of the distribution of triggers from the combination

of an astrophysical signal and background noise model. Reproduced from GWTC-1

[13].
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Based purely on the false alarm threshold of 1 per month and the analysis time

of ≈ 4 months, we would expect to identify ≈ 4 triggers passing this threshold due

to Gaussian noise alone. While recovering only one is below the median value, it

is not out of line with expectations. Based on the expected counts from a Poisson

distribution, recovering this many events or fewer will occur ≈ 10% of the time.

Furthermore, this number is highly sensitive to the threshold chosen, as the total

number of events at this significance due to noise is low.

6.1.4 Identified Marginal Triggers from GstLAL

The analysis of the noise-subtracted data by GstLAL identified an additional 10

triggers that were below a false alarm rate of 1 per month but were not labeled

GW. These 10 were distinct from the single such trigger identified by PyCBC. This

difference in trigger sets is likely due to configuration differences between the pipelines,

in both the data that makes up the analyses and the analyses themselves. These

differences result in each pipeline being impacted by various noise sources differently,

and hence would recover a different set of triggers that are due to noise.

The total number of marginal triggers identified by GstLAL (10) is much higher

than the expected number based on a threshold FAR of 1/month. This large number is

highly unlikely to be due to chance if the data obeys a Poisson distribution. However,

at FAR thresholds close to the amount of time analyzed, it is difficult to precisely

calculate a false alarm rate due to the large variety of different noise features that are

present throughout the observing run.

These triggers, along with the trigger identified by PyCBC, are listed in Table 3.

The triggers are listed with their UTC time, the recovered FAR, network SNR, and

chirp mass of the most significant trigger from the search.

6.2 Impact of Noise Subtraction on Search Result

The noise-subtracted dataset that was prepared for both LIGO-Hanford and LIGO-

Livingston was the first time that noise-subtracted data was used in the search. This

section will discuss how the final result compared to expectations and how noise

subtraction impacted the recovery of individual events.
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Date UTC Search FAR [y−1] SNR Mdet [M�]

161202 03:53:44.9 GstLAL 6.00 10.5 1.54

161217 07:16:24.4 GstLAL 10.12 10.7 7.86

170208 10:39:25.8 GstLAL 11.18 10.0 7.39

170219 14:04:09.0 GstLAL 6.26 9.6 1.53

170405 11:04:52.7 GstLAL 4.55 9.3 1.44

170412 15:56:39.0 GstLAL 8.22 9.7 4.36

170423 12:10:45.0 GstLAL 6.47 8.9 1.17

170616 19:47:20.8 PyCBC 1.94 9.1 2.75

170630 16:17:07.8 GstLAL 10.46 9.7 0.90

170705 08:45:16.3 GstLAL 10.97 9.3 3.40

170720 22:44:31.8 GstLAL 10.75 13.0 5.96

Table 3: Marginal triggers from the two matched-filter CBC searches. The search

that identified each trigger is given, and the false alarm and network SNR. This

network SNR is the quadrature sum of the individual detector SNRs for all detectors

involved in the reported trigger. The detector chirp mass reported is that of the most

significant template of the search. Reproduced from [13]
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Expected Increases

Comparing significant triggers recovered before and after the noise subtraction, there

are two ways that a trigger could be elevated into a trigger of interest by the noise

subtraction. In order for a trigger to not be identified in the original dataset, the

trigger either needs to be recovered in coincidence, but below a ranking statistic of

≈ 8.5 (as to not be considered significant), or not be recovered in coincidence, due to

the trigger failing a threshold (such as the requirement that each PyCBC trigger has

SNR above 5.5) in a single detector.

In the first case, a trigger with a ranking statistic of 8.5 would receive up to a

15% increase due to the noise subtraction. This would result, at best, in the trigger

having a finalized detecting statistic of below 10.0; as a result, the trigger would have

a FAR of � 1/100 years. This was the case for the trigger 170616, which was not

identified in analyses of data before the noise subtraction.

For a trigger to be recovered at a much lower FAR, the trigger would need to be

in the second category, where the trigger failed a specific threshold. If the threshold

was passed after noise subtraction, combined with the trigger being highly significant

in the other detector, it may be possible that a trigger would be identified at a

FAR � 1/10, 000 years. However, as loud single detector triggers are often manually

followed up as part of detector characterization monitoring of the data, it is likely that

such a trigger would have already been identified in the data before noise subtraction.

This was the case for GW170818, which was initially identified as a significant single-

detector trigger, and then identified in coincidence with the use of noise-subtracted

data.

We can also use the final results to revisit the increase in sensitivity that was

promised from noise subtraction. Based on the expectations discussed in Chapter 5,

we should see a 30% increase in the sensitive volume, and hence the recovered number

of events. Using the same threshold as before (FAR of 1 per 100 years), there were

six gravitational wave events found in the noise-subtracted dataset. Comparing the

original and noise subtracted results, one additional event was identified (GW170809).

Therefore, the increase in the number of detected gravitational-wave events is 20%.

This is well in line with the original prediction, especially with the large variability

due to low number statistics that is expected.
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Next we look at the recovery of individual events in the catalog, noting how noise

subtraction and data quality work impacted their significance. Due to the large

ranges in time, template parameters, and false alarm rate of these triggers, these

efforts impacted the triggers differently.

GW170104

While GW170104 had already been identified before analysis of the noise-subtracted

data set, it was not until the catalog analysis that any noise-subtracted data around

this event was implemented. This is in contrast to the other previously released events,

which had search results based on data without noise subtraction, but parameter

estimation based on noise-subtracted data.

During the month of January, when this event occurred, noise subtraction provided

a modest increase in sensitivity at LIGO-Hanford, increasing the range by ≈ 5%.

Further discussion of this trigger is found alongside parameter estimation results in

Section 6.3.

GW170729

The event GW170729 was a newly identified trigger, and was also the largest stellar

mass black hole discovered, as well as the furthest identified gravitational-wave event.

Due to this large mass, the template duration was extremely short, and hence was

found in part of the background that had the highest rate of triggers. This meant

that the significance of this event was strongly connected to the SNR distribution

and rate of short duration glitches in the detectors.

As previously noted, some of short duration glitches caused higher SNR back-

ground triggers in the search after noise subtraction than before. Since these glitches

were not related to the broadband noise being subtracted, their overall amplitude was

constant, while the broadband noise was reduced. This led to an increased SNR for

these glitches. Since the background distribution increased alongside the increase in

recovered SNR from the event itself, the significance of GW170729 did not change as

much as would be expected from the SNR increase alone.

These competing factors resulted in the network SNR increasing from 9.06 to 9.80,

while the FAR only decreased from 1.89 per year to 1.37 per year. Therefore, while
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the use of noise subtraction allowed this trigger to be recovered at a higher SNR, it

did not increase the significance of the trigger.

GW170809

The event GW170809 was the only new trigger identified by the PyCBC reanalysis

that was found with a FAR below 1 per 100 years. This trigger was not found as

a significant coincident trigger before noise subtraction due to the requirement that

both LIGO-Hanford and LIGO-Livingston recover an SNR of above 5.5. Analyses of

the data that did not use this threshold found that the most significant trigger would

have been SNR ≈ 5 at LIGO-Hanford. Therefore, with the modest increase in SNR

due to noise subtraction, the trigger was above threshold in both detectors.

The parallel analysis done with GstLAL used a lower SNR threshold than PyCBC,

and was hence able to recover the trigger both before and after noise subtraction.

GW170818

The trigger GW170818 was a gravitational-wave event that was only identified as

significant in analyses of noise-subtracted data. This event is also the best localized

BBH event, in terms of square degrees of sky area, to date.

This event was identified as a ‘chirp-like’ trigger in investigations of the loud-

est background triggers at LIGO-Livingston during the analysis of the preliminary

dataset, but no counterpart was seen in the LIGO-Hanford data. At the time, no

trigger above SNR 4 was identified at LIGO-Hanford, and hence the trigger was not

considered of interest. However, in the noise-subtracted data, the trigger experiences

the expected 25% increase in signal strength that raised the recovered SNR to 4.2,

as can be seen in Figure 56. This change, along with a comparable strength trigger

at Virgo, allowed the event to be found at a significant FAR in the noise-subtracted

data.

This trigger was still identified as only a single detector trigger by the PyCBC

search, as the LIGO-Hanford SNR was below the threshold of 5.5. The GstLAL

search, which uses a lower threshold, was able to recover this event as a triple-

coincident event in LIGO-Hanford, LIGO-Livingston, and Virgo. A spectrogram

of the time around the event for LIGO-Livingston and LIGO-Hanford can be seen in
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Figure 54: Spectrograms of GW170818 with the inspiral track overlaid. Top: LIGO-

Livingston. Bottom: LIGO-Hanford.
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Figure 54.

Trigger 170616

The trigger 170616 was the only trigger recovered by PyCBC with a FAR below 1

per month that was not subsequently labeled ‘GW’. This was due to the marginal

significance of the trigger, at 1 per 6 months, combined with the low chirp mass of

2.75 M�. This chirp mass and component masses is suggestive of a neutron star -

black hole binary system or a low-mass binary black hole system, both of which have

yet to be observed via either electromagnetic or gravitational - wave observations.

The lack of a previously observed population of signals matching this new trigger

(as compared to the population of BBH signals observed) prevents this astrophysical

probability from being directly calculated. However, the high FAR combined with

the low expected rate of astrophysical events suggests that the chance of this event

being astrophysical in origin is low.

The trigger 170616 also benefited from the noise subtraction, only being discovered

in coincidence in the subtracted data set. Comparing the SNR recovered before and

after subtraction, the SNR increased as expected at LIGO-Hanford from subtraction,

as seen in Figure 57.

Further complicating this trigger is the presence of a number of glitches that

overlap the inspiral track of the trigger template at LIGO-Hanford. These glitches,

along with the inspiral track, can be seen in Figure 55. These transients were found

to be due to scattered light artifacts. Subtraction of these glitches with BayesWave

[164] was attempted, which was able to subtract some of the excess power without

reducing the SNR of the trigger.

While this trigger is unlikely to be astrophysical, it does represent the most sig-

nificant trigger found to date that lies in the region between typical BBH and NSBH

systems. If 170616 is indeed astrophysical in origin, it may be a glimpse of detections

of other low-mass systems that may come in the next observing run.

6.3 Impact of Noise Subtraction on Parameter Estimation

As a final check on the performance of the noise subtraction, we can examine how well

measured different parameters of a gravitational-wave event are recovered before and
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Figure 55: Spectrograms of trigger 170616 with the inspiral track overlaid. Top:

LIGO-Livingston. Bottom: LIGO-Hanford.
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Trigger SNR pre-subtraction SNR post-subtraction Ratio post/pre

GW170104 8.17 8.67 1.06

GW170608 9.65 12.42 1.28

170616 5.41 5.89 1.09

GW170729 5.45 7.27 1.33

GW170809 4.60 6.15 1.33

GW170814 6.55 9.38 1.43

GW170817 15.54 18.69 1.20

GW170818 3.39 4.23 1.25

GW170823 6.64 6.57 0.99

Table 4: Recovered SNR in LIGO-Hanford for each of the GWTC-1 Triggers before

and after subtraction, along with the ratio of the SNR after:before. In all cases,

the recovered SNR after subtraction was either higher than or consistent with the

recovered SNR before subtraction. On average, the observed increase in SNR was

≈ 20%.
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Figure 56: SNR timeseries of GW170818 at LIGO-Hanford based on both before

(original) and after noise subtraction. Note the increase in the height of the central

peak, indicating that the signal was recovered with an increased SNR.
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Figure 57: SNR timeseries of trigger 170616 at LIGO-Hanford based on both before

(original) and after noise subtraction.
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Figure 58: SNR timeseries of GW170817 at LIGO-Hanford based on both before

(original) and after noise subtraction.
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Figure 59: SNR Timeseries of O2 BBH signals at LIGO-Hanford. In all cases, the

signals were recovered at either a consisent or increased SNR after subtraction.
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Parameter Discovery Paper GWTC-1

Primary mass m1/M� 31.2+8.4
−6.0 31.0+7.2

−5.6

Secondary mass m2/M� 19.4+5.3
−5.9 20.1+4.9

−4.5

Chirp mass M/M� 21.1+2.4
−2.7 21.5+2.1

−1.7

Effective inspiral spin χeff −0.12+0.21
−0.30 −0.04+0.17

−0.20

Source redshift z 0.18+0.08
−0.07 0.19+0.07

−0.08

Table 5: Recovered properties of GW170104 before and after subtraction. Note that

the 90% credible regions are smaller by ≈ 20% after subtraction, indicating increased

precision in the measurement. Values reproduced from [108, 13].

after subtraction. Parameter estimation is performed with the LALInference software

library [141]. As parameters are more easily resolved as the signal becomes louder,

the noise subtraction process should increase the precision of parameter estimation.

In this section, we will be quoting results based on the 90% credible region, which

indicates the interval that has a 90% chance of containing the true value.

As noise subtraction was available for short time periods in O2 before the intro-

duction of the noise subtraction pipeline discussed here, the majority of gravitational

wave events previously announced were analyzed with noise subtracted data. How-

ever, as mentioned before, GW170104 was identified before noise subtraction was

available. Therefore, this event provides an opportunity to directly compare results

for parameter estimation before and after noise subtraction2.

Using the results from [108] and [13], we compare the derived source property

distributions and median values. In Figure 60, the credible region for the component

masses of the system are plotted alongside each other. Between the two examples, the

recovered values are consistent with each other, with the total area spanned by the

credible region smaller after noise subtraction. Furthermore, if we examine Table 5,

we can see that the credible regions are smaller by ≈ 20% with the noise subtracted

results.

2It is important to note that the calibration version between these two datasets also is different,

which may also create unquantified differences. However, these differences are expected to be lower

than those due to noise subtraction based on [168]
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Figure 60: Comparison of measured component masses for GW170104 before (Dis-

covery Paper) and after (GWTC-1) subtraction. Contours are drawn for the 50%

and 90% credible regions. Note that the recovered parameters are consistent in both

cases, with a smaller credible region after subtraction.
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6.4 Impact of Noise Transients on Search Result

Now we turn to a summary of the detector characterization information for each

marginal trigger, indicated in Table 6. Following a subset of procedures used for

previous gravitational-wave detections [63], we evaluated the possibility that artifacts

from instrumental or environmental noise could have caused each of the marginal

triggers. Using auxiliary sensors at each detector, as well as the gravitational-wave

strain data, we evaluated the state of the detectors at the time of each marginal

trigger, identified and investigated any artifacts in the data due to noise, and tested

whether any identified artifacts might explain the excess SNR observed in the analysis.

Of the marginal triggers presented in this catalog, 8 have excess power from known

sources of noise that overlaps the inspiral track of matched-filter template of the

trigger. For 4 of these cases, the observed instrumental artifact overlaps the signal

region, and accounts for the observed trigger. These classifications, along with the

specific artifact class related to each trigger, can be found in Table 6.

To determine whether artifacts identified as noise ‘accounts for’ marginal triggers

there are two metric used: 1) whether the type of noise had been previously shown

to produce an excess of triggers consistent with the properties of the trigger present

and 2) whether the noise artifact is able to account for the presence of the trigger as

reported by that search, including SNR and time-frequency evolution, without the

presence of an astrophysical signal.

A significant trigger due to noise is not inconsistent with the false alarm rates

reported by the searches. It is expected that a substantial fraction of marginal events

at the false-alarm rate values reported are caused by noise, given the background

of the searches and the rate of signals. However, the complete dataset of available

auxiliary channels is not utilized by the search. Including information from these

sources can help interpret the results of the searchers and identify triggers that are

related to instrumental noise.

It is also important to note that the absence of evidence that a trigger is due to

noise (either due to instrumental artifacts or Gaussian noise) is not evidence of the

absence of such an impact. Therefore triggers that are not related to known sources

of noise are not guaranteed to be astrophysical.
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Date Data Quality Artifact Class

161202 Artifacts account for Scratchy

161217 Artifacts account for Scattering

170208 Artifacts present, not related Scattering

170219 No artifacts -

170405 Artifacts present, not related Short-Duration

170412 Artifacts can account for Scratchy

170423 No artifacts -

170616 Artifacts present, not related Scattering

170630 Artifacts present, not related Short-Duration

170705 No artifacts -

170720 Artifacts account for Scattering

Table 6: Marginal triggers from the two matched-filter CBC searches along with a

data quality statement for each trigger. In the case of an instrumental artifact present,

the specific artifact class in question is listed. Adapted from [13].

The marginal triggers in this section are discussed based on the type of instru-

mental artifact that the triggers occurred in time coincidence with and the overall

level of impact. Further discussion on the causes and mitigation strategies for these

artifacts can be found in Chapter 2.

No noise artifacts present: 170219, 170423, 170705

Investigations into this set of marginal triggers have identified no instrumental arti-

facts in time coincidence with the triggers.

Light scattering accounts for: 161217, 170720

All marginal triggers in this class and the next are in time coincidence with artifacts

from scattered light in one of the detectors. Scattered light leads to excess power

at low frequencies that appear in time-frequency spectrograms as arch-like shapes.

In some cases the frequencies affected are above the minimum frequency used in the

analysis. When this happens, scattered light transients can create significant triggers
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Figure 61: Spectrograms of striggers impacted by scattered light. Top: trigger 161217

at LIGO-Livingston. Bottom: trigger 170720 at LIGO-Livingston.
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in matched-filter searches [83, 99, 100].

The two marginal triggers 161217 and 170720 occurred during periods of scattered

light affecting frequencies up to 80 Hz with high-amplitude arches. In both cases,

significant overlap with the trigger template and the excess power from scattering

was observed. Investigations into the status of the observatories at the times in

question identified high amplitude ground motion correlated with the scattering.

The marginal trigger 161217 occurred during a period of high-amplitude ground

motion at LIGO-Livingston caused by storm activity. During this storm activity,

the LIGO-Livingston detector was not able to operate continuously for longer than

10 minutes. The presence of intense scattering artifacts contributed to the unstable

state of the interferometer and accounts for the SNR of the marginal trigger. As each

lock stretch has a different distribution of triggers related to artifacts, it is difficult

to accurately measure the background distribution in such a time. Furthermore, the

factors that led to the detector not being capable of sustaining lock are also likely

to render the available data less stable than a typical period of science-mode-quality

data. Because of the short observing duration, this time period was not analyzed by

the PyCBC search.

Within 20 seconds of trigger 170720, excess ground motion from earthquakes

forced the LIGO-Livingston detector to drop out of its nominal mode of operation.

Before the detector dropped out of the observing state, the data was heavily polluted

with scattering artifacts that accounts for the SNR of the trigger. A data quality flag

indicating the presence of an earthquake was active within 10 seconds of this trigger.

However, this specific flag was constructed with a resolution of 60 seconds. If instead,

the ground motion was evaluated at a cadence of 1 second, the time of trigger would

have met the standard for the data quality flag. Artifacts related to scattered light

were also observed at LIGO-Hanford at this time.

The PyCBC search does not consider times near the edges of observing periods,

as time stretches close to lock losses are likely to be corrupted by the factors that

lead to the detector losing lock. Therefore, this time period was also not analyzed by

the PyCBC search.
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Figure 62: Spectrogram of trigger 170208 at LIGO-Hanford.

Light scattering present: 170208, 170616

Investigations into triggers 170208 and 170616 have found that light scattering does

not introduce significant power above 30 Hz that overlaps the inspiral track of the

triggers. In the case of these triggers, a slight overlap with excess power from scat-

tering was observed. Multiple efforts, including BayesWave [164] glitch subtraction

and gating [77], were used to mitigate the scattered light artifacts. After subtraction

of the noise artifacts, the data was reanalyzed to evaluate whether the excess power

subtracted could have accounted for the trigger. In both cases, the marginal trigger

remained with similar significance, suggesting that the observed scattering artifacts

could not have accounted for the SNR of the marginal trigger.

Scratchy glitches account for: 161202, 170412

This class of marginal triggers occurred during periods of transient noise artifacts

corresponding to scratchy glitches. Previous work [83] has shown that periods of

scratchy glitching can cause significant triggers in the searches, impacting the ability

of searches to accurately measure the noise spectrum of the data and contributing

excess noise to matched-filter searches. Triggers 161202 and 170412 demonstrate

significant overlap with excess power from the nonstationarity noise. BayesWave [164]

glitch subtraction was unable to completely mitigate the relevant scratchy glitch due

to its long duration.
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Figure 63: Spectrograms of triggers impacted by scratchy glitches with the inspiral

track of the relevant trigger template plotted in orange. Top: Trigger 161202 at

LIGO-Hanford. Bottom: Trigger 170412 at LIGO-Hanford.
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Figure 64: Probability of PyCBC triggers in O2 during scratchy glitches, as a function

of mass ration and effective spin. The two catalog triggers related to scratchy glitches

are marked with white pentagons. Coloring corresponds to the fraction of scratchy

glitches in O2 that produced a trigger in that parameter bin above a detection statistic

of 7.0.

These triggers can also be compared against the most likely paramters of trig-

gers overlapping scratchy glitches.3 Plotting the PyCBC triggers identified alongside

scratchy glitches in O2, we also add marks to indicate the parameters of these two

triggers, as seen in Figure 64. The two triggers have vastly different parameters,

yet still fit into regions of the parameter space where scratchy glitches are known

to produce triggers. One trigger is found with anti-aligned spin and a modest mass

ratio, while the other is found with aligned spin and an extreme mass ratio. This fur-

ther motivates the statement that these triggers are accounted for by their temporal

coincidences with a scratchy glitch.

3Additional details on this study can be found in Chapter 4.
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Short-duration, high-amplitude artifacts present: 170405, 170630

The marginal triggers in this class occur in time coincidence with short-duration,

high-amplitude noise transients that are removed in the data-conditioning step of the

search pipelines [77] with gates, as discussed in Chapter 3. The times surrounding

these transients do not demonstrate an elevated trigger rate after the transient has

been removed with a gate. Trigger 170405 is in coincidence with this class of transient

at LIGO-Hanford, and trigger 170630 is in coincidence with this class of transient at

LIGO-Livingston. As triggers 170405 and 170630 were identified as significant after

removal of the short-duration transients, the presence of noise artifacts cannot account

for the SNR of these marginal triggers.
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Figure 65: Spectrograms of triggers impacted by short-duration, high amplitude

glitches. In each case, the inspiral track of the template is plotted in orange. Top:

trigger 170405 at LIGO-Hanford. Bottom: trigger 170630 at LIGO-Livingston.
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Chapter 7

Future Prospects

The second observing run with Advanced LIGO and Advanced Virgo marks a num-

ber of important milestones in the field of gravitational-wave astronomy. This is

the first instance of a three-detector network made up of second generation interfer-

ometers. It also included, to date, the most massive gravitational-wave event, the

least massive event, and the most distant event, as well the first event observed with

both gravitational and electromagnetic waves. All of these steps have resulted in

turning gravitational-wave observations from a promised future into an everyday oc-

currence. At the time of the publication of this dissertation, aLIGO and aVirgo have

already begun their third observing run, which is expected to result in an event rate

of over 1 per week. Publicly released alerts, indicating the presence of a significant

gravitational-wave candidate, are facilitating worldwide follow up campaigns of these

triggers, with the hope of repeating and extending the observations of GW170817.

Looking forward, is is now relevant to ask what additional discoveries are on

the horizon with gravitational-wave observations. Many kinds of compact binary

coalescences have yet to be detected, including events with high spins, high mass

ratios, and objects from mass regimes not expected to occur as a product of typical

stellar evolution, such as black holes below 5M� or above 50M�. However, these

regions are perhaps the most problematic from a data quality perspective. This

means that continued exploration of the methods discussed in this dissertation will

be an important aspect of ensuring that analyses of gravitational-wave data are both

capable of identifying novel events and confirming that these events are astrophysical

in origin.
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These efforts will be complicated, going forward, by the extremely high event

rate that is expected in current and future observing runs. Instead of focusing on

individual events, detector characterization work must now be able to handle a large

number of concurrent events, stressing the need for both automated follow ups and

quantitative metrics for interpreting the data. Many of the techniques discussed in

this dissertation will be an important part of these future validation procedures.

Even as there is a drive to work efficiently to handle regular data quality issues,

there will always be novel issues that need human input and expertise as a part anal-

yses of gravitational-wave events. The first and second observing runs of aLIGO have

shown that even with a low event rate, there is a high likelihood of an event occurring

near a significant, unexpected data quality issue that requires intervention. As the

event rate increases, this chance only grows. In order for the field of gravitational-

wave astrophysics to take full advantage of the highly sensitive interferometers that

are now online, there will always be a need to think carefully about how the phys-

ical realities of these instruments differ from their idealized models, and how these

differences impact our understanding of the gravitational-wave events they observe.
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