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Electromagnetic dipole absorption cross sections of transitional nuclei with large-amplitude shape fluctuations
are calculated in a microscopic way by introducing the concept of instantaneous-shape sampling, which is based
on slow shape dynamics as compared with fast dipole vibrations. The dipole strength is calculated by means of
the quasiparticle random-phase approximation (QRPA) for the instantaneous shapes, the probability of which is
obtained by means of the interacting boson approximation. The calculations agree well with the experimental
photoabsorption cross sections near the nucleon emission threshold, but they underestimate it at low energies.
The cumulative cross sections for the region below the threshold are a factor of 2 too low.
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Photonuclear processes, such as the absorption of a photon
inducing the emission of a neutron or the emission of a
photon after neutron absorption, are key elements in various
astrophysical scenarios, e.g., supernovae explosions or γ -ray
bursts, as well as in simulations for nuclear technology. For a
quantitative description of the relevant nuclear reactions, one
needs to know the photoabsorption cross section and the ree-
mission probability, being determined by the dipole strength
function. Direct measurements of the strength function in the
relevant energy range (typically 6–10 MeV in medium-heavy
nuclei) are not possible nowadays for most of the unstable
nuclei passed in violent stellar events. Theoretical models that
provide reliable predictions of the dipole strength function are
therefore of utter importance. Aside from the astrophysical
applications, understanding the mechanisms that determine the
dipole strength function in this energy region is a challenge of
its own to nuclear theory. The present communication proposes
and tests a new approach, which we call instantaneous-shape
sampling (ISS). It combines the microscopic quasiparticle
random-phase approximation (QRPA) for dipole excitations
with the phenomenological interacting boson approximation
(IBA) for a dynamical treatment of the nuclear shape. ISS
allows one to calculate the dipole strength function of the
many transitional nuclei ranging between spherical and well-
deformed shapes.

Traditionally, one employs phenomenological expressions
for the dipole strength function [1], which are based on the
classical model of a damped collective giant dipole resonance
(GDR). The photoabsorption cross section σγ of the GDR is
approximated by a Lorentzian curve [2,3], which may include
corrections for nuclear deformation [3]. The damping width of
the Lorentzian is treated as a parameter that is adjusted to the
experiment. However, the available data have not yet allowed
stringent tests of this extrapolation toward the low-energy tail
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of the GDR [2]. Therefore microscopic approaches that treat
at least a substantial part of the damping explicitly promise
improved predictive power.

QRPA [4], the standard microscopic approach, takes into
account the coupling of the collective dipole vibration to
the one-quasiparticle excitations, which generates the Landau
fragmentation. It also describes the splitting of the GDR caused
by a static deformation of the mean field. However, both effects
account for only a fraction of the observed width of the GDR.
The remainder is generated by the coupling of the GDR to
incoherent multiquasiparticle excitations (analog to the colli-
sional damping of Fermi liquids) and to coherent collective
excitations [4]. Quasiparticle-phonon coupling models, such
as QPM [5,6], QTBA [7], and QRPA-PC [8], account for those
additional couplings in spherical nuclei. However, principal
problems arise in transitional nuclei.

We suggest an alternative approach. We explicitly describe
the coupling of the dipole vibration to the one-quasiparticle
excitations and to the low-energy collective quadrupole exci-
tations, which represent the softest mode that couples most
strongly to the dipole mode. The typical energies of the
quadrupole excitations are h̄ω2 < 1 MeV, i.e., about a factor
of 10 less than the energies h̄ω1 of the dipole excitations.
Because the quadrupole motion is much slower than the dipole
one, we use the adiabatic approximation: by means of QRPA,
we calculate the dipole absorption cross section σγ (E,βn,γn)
for a set of instantaneous deformation parameters {βn,γn} of
the mean field. We determine the probability P (βn,γn) of
each shape being present in the ground state and obtain the
total cross section as the incoherent sum of the instantaneous
ones,

σγ (E) =
∑

n

P (βn,γn)σγ (E,βn,γn). (1)

In other words, we assume that the quadrupole deformation
does not change during the excitation of the nucleus by the
absorbed photons, which sample the instantaneous shapes of
the nucleus in the ground state. Accordingly, we call our
method ISS-QRPA. Its applicability is further discussed below.
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TABLE I. IBA parameters ζ, χ , and eB , and equilibrium defor-
mation parameters β and γ calculated by means of the micro-macro
method. In the case of shape coexistence, two sets are listed. Their
respective proportion in the ground state is given in percentage.

AX ζ χ eB % β γ

88Sr 0.0 −1.20 0.043 100 0.0 0◦
90Zr 0.0 −1.20 0.013 64 0.0 0◦

0.60 −0.31 0.040 36
92Mo 0.25 −1.32 0.040 100 0.0 0◦
94Mo 0.29 −1.20 0.064 100 0.02 60◦
96Mo 0.20 −1.32 0.069 100 0.10 60◦
98Mo 0.0 −1.20 0.053 60 0.18 37◦

0.59 −0.03 0.106 40
100Mo 0.0 −1.20 0.053 40 0.21 32◦

0.61 −0.10 0.106 60

We adopt the QRPA version described in Ref. [9], com-
bining a triaxial Woods-Saxon potential [10] with separable
interactions. The pairing gaps are adjusted to the even-odd
mass differences. Both the E1 and M1 responses are taken
into account in calculating the total absorption cross section
σγ (E). For the E1 response, we use an isovector dipole-dipole
interaction, with its strength being adjusted to the experimental
GDR energy. The spurious center-of-mass motion is removed
as described in Ref. [9]. For the M1 response, we combine
a repulsive isovector spin-spin with an isoscalar quadrupole-
quadrupole interaction [11]. The σγ (E) is calculated by means
of the strength function method with a resolution of 100 keV.

We describe the collective quadrupole mode by IBA-1
[12], which is known to well reproduce the development
of energies and E2-transition probabilities from spherical to
well-deformed nuclei through the transition region. We assume
that the quadrupole operators in the IBA Hamiltonian and in
the E2-transition operators are proportional to each other (the
“extended consistent Q formalism”). Further we assume that
the deformation of the charge distribution, derived from IBA,
agrees with the one of the mean field, which is well founded.
The IBA Hamiltonian and the E2-transition operators are
given in Ref. [13]. The corresponding parameters ζ, χ , and
eB of the model are listed in Table I. We fix the boson number
to NB = 10, which turns out to be a sufficient flexible basis.
The probability distribution P (βn,γn) is generated by means
of the method suggested in Ref. [14]. We consider the two
scalar operators

q̂2 = [Qχ ⊗ Qχ ]0, (2)

q̂3 = [Qχ ⊗ [Qχ ⊗ Qχ ]2]0, (3)

which are formed by angular momentum coupling from the
IBA quadrupole operators Qχ

µ. The commuting operators q̂2

and q̂3 are diagonalized in the space of states generated by
coupling ten bosons to zero angular momentum. The resulting
eigenvalues q2,n and q3,n and the eigenstates |n〉 are linked to
the deformation parameters by

β2
n =

√
5

(
4πeB

3ZeR2

)2

q2,n, cos 3γn =
√

7

2
√

5

q3,n

(q2,n)3/2
, (4)

which assumes that the charge density and the mean field have
the same deformation. The probabilities P (βn,γn) = |〈0+

1 |n〉|2
are the projections of the IBA ground state |0+

1 〉 on the set |n〉.
In Ref. [15], Eq. (4) was used for the ground state expectation
values, i.e., the mean values of the deformation parameters.

Some of the studied nuclei show shape coexistence; i.e.,
the low-lying 0+

2 state and the 0+
1 ground state are understood

as mixtures of two different equilibrium shapes a and b

with c2
a and c2

b = 1 − c2
a being the fractions of each shape

in the ground state. In this case, two families of states
originate from the collective motion about the two different
equilibrium shapes, which we describe by two different IBA
Hamiltonians. Using c2

a and c2
b and the experimental energies

of the states 0+
1 and 0+

2 , we calculate the energies of the
pure states 0+

a and 0+
b and their interaction V . Assuming

the same V for the states 2+
1 , 2+

2 , 4+
1 , 4+

2 (if observed), the
energies and B(E2) values of the pure states 2+

a , 2+
b , 4+

a , 4+
b

are derived to which the IBA parameter sets a and b are fitted.
We generate the probability distributions P (βn,a,γn,a) and
P (βn,b,γn,b) for each of the two IBA Hamiltonians separately.
The probabilities for all instantaneous shapes of the ground
state are c2

νP (βn,ν,γn,ν),ν = a, b, and the sum in Eq. (1) is
taken over all combinations {n, ν}.

We applied the method to the nuclides 88Sr, 90Zr,
and 92−100Mo, for which the combination of earlier (γ,n)
measurements [1] with recent (γ,γ ′) experiments at the
Forschungszentrum Rossendorf’s superconducting electron
linear accelerator ELBE [16–19] provided absorption cross
sections σγ (E) covering the whole energy range from the
GDR down to a few MeV. The IBA parameters were obtained
separately for each nuclide by fitting the energies and B(E2)
values of the lowest 0+, 2+, 4+ states taken from the ENSDF
data base [20] and from Refs. [21,22]. We set the boson number
NB = 10. Otherwise, we followed Refs. [21,22], from which
we took the fractions c2

a and c2
b of the coexisting shapes in

90Zr and 98,100Mo. Figure 1 demonstrates that the resulting
instantaneous shapes are widely distributed across the β-γ
plane, which reflects the transitional nature of the considered
nuclei. In the cases of shape coexistence, the two sets are
distinguished by color.

In Ref. [23], the validity of ISS was studied for the case
of the GDR coupled to quadrupole vibrations. ISS becomes a
good approximation if η = dω1

dβ

β0

ω2
� 1, where β0 is the zero

point amplitude of the quadrupole vibration. Typical values
of η ∼ 5 indicate that ISS is a reasonable approximation. We
checked the quality of ISS in the region E < 10 MeV by com-
paring σγ (E,β) calculated by QRPA for various deformation
points β. In analyzing the shifts 
ω1 of the dominant QRPA
peaks we find that the ratio 
ω1


β
≈ dω1

dβ
scatters around a mean

value of 10 MeV. Figure 1 indicates β0 = 0.1–0.2. With h̄ω2 ≈
0.6–0.8 MeV, we find η = 2–5. This result and the observation
that the peak structure of σγ (E,β) changes in a chaotic
way over intervals of 
β = 0.05 suggest that ISS, which
incoherently combines the contributions from different shapes,
is a reasonable approach. No low-lying octupole vibrations are
observed in the considered nuclei, which justifies ignoring this
mode in ISS. The coupling to excitations other than quadrupole
becomes increasingly important with energy. We include it by
folding with a Lorentzian of width � = αE2, which depends
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FIG. 1. (Color online) Probability distributions of the instanta-
neous nuclear shapes over the β-γ plane. Coexisting distributions are
distinguished by their color.

on the photon energy E as expected for collisional damping [4].
The coefficient α is chosen to reproduce the experimental σγ

at the maximum of the GDR, which gives α = 0.0105 MeV−1

for the neutron number N = 50 and 0.014 MeV−1 for N > 50.
Figures 2–4 compare the results with the experimental data.

We include the QRPA results for the equilibrium deformations
(labeled MM in the figures) listed in Tab. I, which were
calculated by means of Strutinsky’s shell correction method,
referred to as the micro-macro (MM) method [9,11].

Let us first consider 94
42Mo52 shown in Figs. 2(a), 2(b),

and 3. It has a spherical equilibrium shape, but pronounced
transitional character, which is demonstrated by the wide
distribution of shapes in Fig. 1. The cross sections plotted
in Fig. 2(a) are obtained from the QRPA strength function
calculated with a narrow width of 100 keV, which singles
out the Landau fragmentation. The spherical QRPA shows
strong fluctuations of σ MM

γ , reflecting the degeneracy of
the spherical single-particle levels. The substantial Landau

FIG. 2. (Color online) Photoabsorption cross sections of 94Mo.
(a) Cross sections as calculated in QRPA with a narrow width
of 0.1 MeV. MM: for the equilibrium deformation; ISS: QRPA
averaged over the probability distributions for the shapes in Fig. 1.
(b) Corresponding cross sections MM-CD and ISS-CD, respectively,
as obtained in QRPA by folding with an energy-dependent Lorentzian
(see text). The experimental data (black dots) are from Ref. [17] in
both figures.

fragmentation shifts dipole strength into the threshold region.
Sampling the different instantaneous shapes levels the strong
spikes and shifts additional strength into the region below
14 MeV, such that σ ISS

γ matches nicely with the experimental
strength. Around the center of the GDR, the peak of σ ISS

γ

is broader and lower than the one of σ MM
γ ; however, it is

still too narrow and too high. This is because the QRPA
with a narrow width neglects the collisional damping that
becomes the dominant part of the resonance broadening in
that region. In Fig. 2(b), the collisional damping is included by
the above-mentioned energy-dependent width. The resulting
cross section σ ISS−CD

γ can reproduce the experimental one over
the whole energy range. For the other nuclides, the overall
agreement of σ ISS−CD

γ (E) with the data is as good as in
Fig. 2(b). The curve σ MM−CD

γ includes Landau and collisional
damping but excludes shape fluctuations. Since the peak height
σ max

γ is inversely proportional to the width �, one finds from

σ max,ISS−CD
γ

σ
max,MM−CD
γ

= 160

190
= � − �ISS

�
(5)

that the shape fluctuations contribute �ISS ≈ 1 MeV to the total
width of 5.7 MeV.
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FIG. 3. (Color online) Same as Fig. 2, but for the energy range
around the neutron emission threshold, where Sn = 9.68, 9.15,
8.64, 8.29 MeV for N = 52, 54, 56, 58, respectively. Data from
Refs. [16,17].

FIG. 4. (Color online) Same as Fig. 3, but the mean of the proton
and neutron thresholds are (Sp + Sn)/2 = 10.86, 10.16, 10.06 MeV
for Z = 38, 40, 42, respectively. Data from Refs. [17–19].

Figures 3 and 4 zoom into the region near the nucleon
emission thresholds. The M1 contribution to σγ is about 5%,
which is consistent with the scarce experimental information
[18]. While still fluctuating, σ ISS

γ describes well the experi-
mental strength on the average (cf. Table II). The inclusion of
collisional damping in σ ISS−CD

γ levels the fluctuations in the
ISS-CD curves, but barely adds any dipole strength. Hence,

TABLE II. Comparison of cumulative cross sections 
 and mean energies Ē. Data from Refs. [16,17]. TRK stands for Thomas-Reiche-
Kuhn sum rule.

E1–E2 
exp 
exp 
ISS−CD 
ISS−CD 
ISS 
MM Ēexp ĒISS−CD ĒISS ĒMM

(MeV) (mb) (% of TRK) (mb) (% of TRK) (mb) (mb) (MeV) (MeV) (MeV) (MeV)

92Mo:
5.1–10.06 30.5 ± 3.8 2.2 ± 0.3 18.6 1.4 21.2 20.1 8.6 8.9 9.0 9.0
9.06–13.06 93.9 ± 6.1 6.9 ± 0.4 93.5 6.8 102.4 85.9 11.4 11.7 11.7 11.6
13.06–20.0 917.8 ± 15.9 67.0 ± 1.2 935.3 68.3 1206.5 1229.2 16.8 16.5 15.9 15.9

96Mo:
4.3–9.15 23.7 ± 4.5 1.7 ± 0.3 13.9 1.0 11.7 13.0 7.3 8.1 8.4 8.5
8.15–12.15 82.2 ± 8.7 5.8 ± 0.6 80.9 5.7 85.3 69.8 10.7 10.8 10.9 10.8
12.15–20.0 871.4 ± 13.0 61.5 ± 0.9 894.8 63.1 1263.5 1284.6 16.3 16.3 15.8 15.8

100Mo:
4.3–8.29 20.0 ± 2.7 1.4 ± 0.2 8.6 0.6 5.9 4.7 6.7 7.2 7.2 7.4
7.29–11.29 70.2 ± 10.3 4.8 ± 0.7 73.9 5.0 82.6 56.2 9.8 10.1 10.3 10.0
11.29–20.0 945.8 ± 26.4 64.7 ± 1.8 941.3 64.4 1307.8 1341.8 15.9 15.9 15.7 15.5
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the dipole strength near the nucleon emission threshold is
determined by the Landau fragmentation of the instantaneous
shapes, each of which contributes with its ground state
probability. While the resulting dipole strength deviates from
a Lorentzian shape, it shows remainders of the underlying
particle-hole structure.

Table II shows the cumulative cross sections and averaged
energies


 =
∫ E2

E1
σ (E) dE, Ē =

∫ E2

E1
Eσ (E) dE/
. (6)

We chose three energy intervals (E1–E2) for each Mo
nuclide: (1) from the energy below which the experimental
data are incomplete to the pertinent threshold energies Sn or
(Sn + Sp)/2 (first row), (2) the astrophysically relevant region
from 1 MeV below to 3 MeV above the threshold energies
(identical with the intervals in Figs. 3 and 4) (second row),
and (3) the GDR region above the second interval extending to
20 MeV (third row). In the astrophysical region, the experiment
is very well reproduced by 
ISS−CD and ĒISS−CD. The 
ISS are
somewhat too large, whereas the 
MM are too small. For the
low-energy region, 
ISS−CD underestimates the experiment
by a factor of 2. The reason is that the negative parity two-
quasiparticle states start at about 5 MeV, which is the minimal
energy to excite a particle to the next shell. The repulsive

interaction does not shift strength to lower energy. The missing
experimental strength should be attributed to negative parity
two-phonon excitations, which are not taken into account.
Similar agreement of the calculations with experiment is found
for the nuclides not included in the table.

In summary, we propose a novel method (ISS-QRPA) for
calculating the dipole strength function of nuclei with large-
amplitude shape fluctuations, which combines the interacting
boson model (IBA) with the quasiparticle random-phase
approximation (QRPA). The method is based on the existence
of two time scales: the slow shape dynamics and the fast dipole
vibrations. Instantaneous-shape sampling (ISS) assumes
(i) that the photoabsorption occurs at a fixed shape—described
by QRPA—with the probability given by the IBA. We studied
the transitional nuclides with (Z = 38, 40, 42; N = 50) and
(Z = 42, N = 52, 54, 56, 58). ISS-QRPA well reproduces
the experimental photoabsorption cross sections σγ around
the nucleon emission threshold, where σγ is determined
by the Landau fragmentation and the fluctuating shapes. At
low energy, the theory underestimates the experimental σγ ,
the cumulative cross section for the region below the threshold
being a factor of 2 too low.
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