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We study the reduced single-particle density matrix �RSPDM�, the momentum distribution, and natural
orbitals and their occupancies of dark “soliton” �DS� states in a Tonks-Girardeau gas. DS states are specially
tailored excited many-body eigenstates, which have a dark solitonic notch in their single-particle density. The
momentum distribution of DS states has a characteristic shape with two sharp spikes. We find that the two
spikes arise due to the high degree of correlation observed within the RSPDM between the mirror points �x and
−x� with respect to the dark notch at x=0; the correlations oscillate rather than decay as the points x and −x are
being separated.
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I. INTRODUCTION

Exactly solvable models have the possibility of providing
important insight into the quantum many-body physics be-
yond various approximation schemes. Two such models, the
Tonks-Girardeau �1� and the Lieb-Liniger model �2�, which
describe interacting Bose gases in one dimension �1D�, have
drawn considerable attention in recent years with the devel-
opments of experimental techniques for tightly confining at-
oms in effectively 1D atomic waveguides �3–6�. The Lieb-
Liniger �LL� model describes a system of bosons interacting
via two-body �-function interactions �2�. The Tonks-
Girardeau �TG� model corresponds to infinitely repulsive
�“impenetrable core”� bosons in 1D �1,7�; this model is ex-
actly solvable via Fermi-Bose mapping, which relates the TG
gas to a system of noninteracting spinless fermions in 1D �1�.
A study of atomic scattering for atoms confined transversally
in an atomic waveguide has led to a suggestion for the ex-
perimental observation of a TG gas �8�; such atomic systems
enter the TG regime at low temperatures, low linear densi-
ties, and strong effective interactions �8–10�. The experimen-
tal realization of the TG model was reported in two experi-
ments from 2004 �4,5�. Moreover, the nonequilibrium
dynamics of the 1D interacting Bose gases including the TG
regime has been recently experimentally studied within the
context of relaxation to an equilibrium �4�. Within this paper
we analyze the reduced single-particle density matrix
�RSPDM� and related observables of certain specially tai-
lored excited eigenstates of the TG gas, which are also re-
ferred to as dark “soliton” �DS� states �11–13�.

Dark solitons are fundamental nonlinear excitations.
Within the context of interacting Bose gases, they were
mainly studied in the regime of weak repulsive interactions
�14–17� where mean-field theories �e.g., the Gross-Pitaevskii
theory, which employs the nonlinear Schrödinger equation
�NLSE�� are applicable. In the regime of strong repulsive
interactions in quasi-1D geometry, dark solitons were also
studied by using the NLSE with a quintic nonlinear term
�18–20�. In Ref. �11�, Girardeau and Wright have studied the
concept of dark solitons within the exactly solvable TG
model; they found specially tailored excited many-body

eigenstates of the TG gas on the ring �DS states�, with a dark
notch in their single-particle density, which is similar to the
dark notch of nonlinear dark solitons. The dynamics of such
excitations in a TG gas was studied by Busch and Huyet �12�
in a harmonic trap. Recently, a scheme based on parity-
selective filtering �“evaporation”� of a many-body wave
function was suggested �13� as a candidate for the experi-
mental observation of DS states. However, to the best of our
knowledge, the momentum distribution, the RSPDM, and
natural orbitals �NOs� and their occupancies have not been
studied yet for DS states. These quantities are important for a
better understanding of DS states, but may also be necessary
ingredients for their experimental detection, which provides
a motivation for this study.

The calculation of correlation functions �such as the
RSPDM� for 1D Bose gases �21–43� from many-body wave
functions �1,2,11,44–46� yields important physical informa-
tion �such as the momentum distribution� on the state of the
system. Within the TG model, the RSPDM and the momen-
tum distribution have been studied in the continuous
�21,23,24,27,28,32,35,40,43� and discrete �lattice�
�31,34,38,39,47� cases, both for the static
�21,23,24,27,28,31,32,38,43� and for time-dependent
�34,35,39,40� problems. In the stationary case, most studies
consider the ground-state properties of the TG gas. The mo-
mentum distribution for the ground-state of the TG gas on
the ring has a spike at k=0, nB�k�� �k�−1/2 �21�. In both the
harmonic confinement �24,26� and on the ring �26�, the TG
ground-state momentum distribution decays as a power law
nB�k��k−4; in Ref. �26�, it has been pointed out that k−4

decay is also valid for the LL gas �for any strength of the
interaction�. These ground states of the TG gas are not Bose
condensed �21,28�, which is evident from the fact that the
occupancy of the leading natural orbital scales as �N for
large N �27,28�. In the box confinement, the momentum dis-
tribution of a TG gas has been studied by generalizing the
Haldane’s harmonic-fluid approach �25�. Besides for the
ground states, the momentum distribution has been analyzed
in time-dependent problems including irregular dynamics on
the ring �33�, in dynamics in the harmonic potential with
time-dependent frequency �35�, and in a periodic potential in
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the context of many-body Bragg reflections �40�. A number
of interesting results for time-dependent problems have been
recently obtained within the discrete lattice model including
fermionization of the momentum distribution during 1D free
expansion �34� and relaxation to a steady state carrying
memory of initial conditions �39�.

The correlation functions for TG and LL models were
studied by using various analytical and numerical methods
�21–43�. The formula that was derived and employed in Ref.
�40� allows efficient and exact numerical calculation of the
RSPDM for the TG gas in versatile states �ground state, ex-
cited eigenstates, time-evolving states �40�� and for a fairly
large number of particles. We find it suitable for this study of
DS states.

Here we numerically calculate the RSPDM correlations,
natural orbitals and their occupancies, and the momentum
distribution of DS states. We find that these excited eigen-
states of a TG gas have the characteristic shape of the mo-
mentum distribution with two sharp spikes. The two sharp
spikes arise due to the high degree of correlation observed
within the RSPDM between the mirror points x and −x with
respect to the dark notch at x=0; interestingly, the correla-
tions oscillate rather than decay as the points x and −x are
being separated.

II. MODEL

We study a system of N identical Bose particles in 1D
space, which experience an external potential V�x�. The
bosons interact with impenetrable pointlike interactions �1�,
which is most conveniently represented as a subsidiary con-
dition on the many-body wave function �1�:

�B�x1,x2, . . . ,xN,t� = 0 if xi = xj �1�

for any i� j. Besides this condition, �B obeys the
Schrödinger equation

i
��B

�t
= �

j=1

N �−
�2

�xj
2 + V�xj�	�B; �2�

here, we use dimensionless units as in Ref. �13�—i.e., x
=X /X0, t=T /T0, and V�x�=U�X� /E0, where X and T are
space and time variables in physical units, and X0 is an arbi-
trary spatial length scale �e.g., X0=1 �m�, which sets the
time scale T0=2mX0

2 /�, and energy scale E0=�2 / �2mX0
2�; m

denotes particle mass, and U�X� is the potential in physical
units. The wave functions are normalized as

dx1¯dxN��B�x1 ,x2 , . . . ,xN , t��2=1.

The solution of this system may be written in compact
form via the famous Fermi-Bose mapping, which relates the
TG bosonic wave function �B to an antisymmetric many-
body wave function �F describing a system of noninteracting
spinless fermions in 1D �1�:

�B = A�x1, . . . ,xN��F�x1,x2, . . . ,xN,t� . �3�

Here

A = �
1�i�j�N

sgn�xi − xj� �4�

is a “unit antisymmetric function” �1�, which ensures that �B
has proper bosonic symmetry under the exchange of two
bosons. The fermionic wave function �F is compactly writ-
ten in a form of the Slater determinant,

�F�x1, . . . ,xN,t� =
1

�N!
det

m,j=1

N

��m�xj,t�� , �5�

where �m�x , t� denote N orthonormal single-particle �SP�
wave functions obeying a set of uncoupled SP Schrödinger
equations

i
��m

�t
= �−

�2

�x2 + V�x�	�m�x,t�, m = 1, . . . ,N . �6�

Equations �3�–�6� prescribe the construction of the many-
body wave function describing the TG gas in an external
potential V�x�, in both the static �1� and time-dependent �11�
cases. The eigenstates of the TG system are

�B�x1, . . . ,xN� = A�x1, . . . ,xN�
1

�N!
det

m,j=1

N

��m�xj�� , �7�

where �m�x� are single-particle eigenstates for the potential
V�x�. In the rest of the paper we will discuss the eigenstates
of the TG system and their observables; hence, we drop the
time variable from subsequent notation.

The many-body wave function �B fully describes the state
of the system. However, its form does not transparently yield
physical information related to many important observables
�e.g., the momentum distribution�. The expectation values of
one-body observables are readily obtained from the RSPDM,
defined as

	B�x,y� = N� dx2 ¯ dxN�B�x,x2, . . . ,xN�*


 �B�y,x2, . . . ,xN� . �8�

The observables of great interest are the SP x density
	B�x ,x�=�m=1

N ��m�x��2 and the momentum distribution �21�

nB�k� =
1

2�
� dx dyeik�x−y�	B�x,y� . �9�

The SP density 	B�x ,x� is identical for the TG gas and the
noninteracting Fermi gas �1�; however, the momentum dis-
tributions of the two systems considerably differ �21�.

A concept that is very useful for the understanding of the
many-body systems is that of natural orbitals. The NOs �i�x�
are eigenfunctions of the RSPDM,

� dx	B�x,y��i�x� = i�i�y�, i = 1,2, . . . , �10�

where i are the corresponding eigenvalues; the RSPDM is
diagonal in the basis of NOs,
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	B�x,y� = �
i=1

�

i�i
*�x��i�y� . �11�

The NOs can be interpreted as effective SP states occupied
by bosons, where i represents the occupancy of the corre-
sponding NO �23�. The sum of the Fourier power spectra of
the NOs is the momentum distribution

nB�k� = �
i=1

�

i�̃i
*�k��̃i�k� , �12�

where �̃i�k� is the Fourier transform of �i�x�.
The RSPDM of the noninteracting fermionic system on

the Fermi side of the mapping is

	F�x,y� = �
m=1

N

�m
* �x��m�y�; �13�

evidently, the SP eigenstates �m�x� are NOs of the fermionic
system, with occupancy unity �23�. The fermionic momen-
tum distribution is

nF�k� = �
m=1

N

�̃m
* �k��̃m�k� , �14�

where �̃m�k� is the Fourier transform of �m�x�.
The calculation of the TG momentum distribution is pre-

ceded by a calculation of 	B�x ,y�, which we conduct accord-
ing to the method described in Ref. �40�. If the RSPDM is
expressed in terms of the SP eigenstates �m as

	B�x,y� = �
i,j=1

N

�i
*�x�Aij�x,y�� j�y� , �15�

it can be shown that the N
N matrix A�x ,y�= Aij�x ,y�� has
the form

A�x,y� = �P−1�T det P , �16�

where the entries of the matrix P are Pij�x ,y�=�ij

−2
x
ydx��i

*�x��� j�x�� �x�y without loss of generality� �40�.
Formulas �15� and �16� enable fast numerical calculation of
the RSPDM �and related quantities� for dark soliton states.

III. DS STATES ON THE RING

Within this section we analyze the RSPDM, the momen-
tum distribution, and NOs and their occupancies for excited
eigenstates of a TG gas on the ring of length L; in
other words, the external potential is zero, x space is
x� �−L /2 ,L /2�, and periodic boundary conditions are im-
posed. The many-body eigenstates of the TG gas are con-
structed from the SP eigenstates of the system via Eq. �7�.
The SP eigenstates for the ring geometry are plane waves
�1/Leikmx, with SP energy km

2 ; here, km=2�m /L and m is an
integer �48�. Apparently, the eigenstates �1/Leikmx and
�1/Le−ikmx are degenerate. This degeneracy in the SP eigen-
states induces �via Eq. �7�� degeneracy of the TG many-body
excited eigenstates. One particular subspace of degenerate
eigenstates �DEs� is spanned with

�m�x� =
1
�L

�am
− e−ikmx + am

+ eikmx� , �17�

where �am
− �2+ �am

+ �2=1 and m=1, . . . ,N; the corresponding
many-body eigenstates are

�DE =
A�x1, . . . ,xN�

�N!
L−N/2 det

j,m=1

N

�am
− e−ikmxj + am

+ eikmxj� .

�18�

Intuition suggests that, although these states are degenerate,
some of the corresponding observables, such as the SP den-
sity in x space, the momentum distribution, spatial coher-
ence, or entropy, could be quite different from one eigenstate
to another depending on their internal symmetry, which is
designated by the choice of the coefficients am

− and am
+ .

In Ref. �11�, Girardeau and Wright have pointed out that if
one constructs excited many-body eigenstates of the TG gas
on the ring as

�DS =
A�x1, . . . ,xN�

�N!
� 2

L
�N/2

det
j,m=1

N

�sin kmxj� , �19�

that is, if one chooses the coefficients as am
− = i /�2 and

am
+ =−i /�2, the SP density of these many-body eigenstates

�11�,

	DS�x,x� =
N + 1

L
−

sin� �N + 1�2�x

L
�cos�N2�x

L
�

L sin�2�x

L
� ,

�20�

has a structure closely resembling dark solitons �11� �hence
the notation �DS for the many-body wave function and analo-
gously for related observables below�. The structure of these
excited eigenstates is somewhat artificial because on the fer-
mionic side of the mapping, these states correspond to non-
interacting fermions being placed solely within the odd SP
eigenstates sin kmx. Nevertheless, such states can be excited
by filtering of the many-body wave function �13�.

Let us utilize the procedure outlined in Sec. II to calculate
the RSPDM and related one-body observables for DS states
�Eq. �19��. It is straightforward to calculate the entries of the
matrix P=1−Q �see Eq. �16��, where

Qij =
sin�2�i + j��x/L�

�i + j��
−

sin�2�i − j��x/L�
�i − j��

−
sin�2�i + j��y/L�

�i + j��
+

sin�2�i − j��y/L�
�i − j��

, i � j ,

Qii = − 2
x − y

L
+

sin�4i�x

L
�

2i�
−

sin�4i�y

L
�

2i�
, �21�

for i , j=1, . . . ,N. As for the inverse of the matrix P, and
consequently the RSPDM, we were able to find its analytical
form up to N=7 by using Mathematica. However, for larger
N we resorted to numerical calculations. It is straightforward
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to see that the RSPDMs of two DS states, for two different
values of L—say, L1 and L2—are connected by a simple
scaling,

L1	DS,L1
�xL1,yL1� = L2	DS,L2

�xL2,yL2� , �22�

where x ,y��− 1
2 , 1

2
�; thus, it is sufficient to calculate it for

just one value of L. In what follows, without losing any
generality, we choose N=L.

Figure 1 displays contour plots of 	DS�x ,y� for N=5, 11,
17, and 25. We clearly see a characteristic pattern for each
value of N: The RSPDMs are largest close to the diagonal,
with oscillations following the x-space density from Eq. �20�.
However, there are strong correlations along the line x=−y,
indicating coherence between mirror points x and −x around
the DS center �at x=0�.

Figure 2�a� displays the momentum distribution nDS�k� of
DS states for N=11, 17, and 25. All momentum distributions
for the ring geometry are normalized as �km

nB�km�=N �the
SP momentum values km are discrete in the ring geometry�.
The momentum distributions have a characteristic shape with
a smooth hump close to the origin �k=0� and with two sharp
spikes which are located at ±kpeak= ±�m=1

N km /N= ±��N
+1� /L; the spikes indicate that there is a high probability of

finding a boson in momentum states exp�±i��N+1� /L�.
Note that due to our choice N=L, the peaks for different
values of N approximately coincide at ±��1+1/N�� ±�.

The sharp spikes at ±kpeak= ±��N+1� /L are intimately
related to the strong correlations observed at the mirror
points x and −x. This is illustrated in Fig. 3 which shows the
cross-diagonal section of the RSPDM 	DS�x ,−x� and the
function cos�2kpeakx� for N=25. There is evident correlation
between 	DS�x ,−x� and cos�2kpeakx�. Because of the symme-
try 	DS�x ,y�=	DS�y ,x�, the Fourier transform �FT� with re-
spect to exp�ik�x−y�� reduces to FT with respect to
cos k�x−y�, which is cos 2kx at y=−x; hence, from Fig. 3 it
immediately follows that the cross-diagonal behavior of
	DS�x ,−x� induces the peaks in the momentum distribution of
DS states. We would like to point out that the correlations
	DS�x ,−x� do not decay, but oscillate, as the separation be-
tween points x and −x is increased.

In order to gain more insight into the origin of the two
sharp spikes in the momentum distribution and the related
coherence between mirror points x and −x, it is illustrative to
calculate the RSPDM and the momentum distribution for
eigenstates that are degenerate �i.e., that have the same en-
ergy� to DS states, but which are less restrictive with respect
to symmetry of the coefficients am

− and am
+ . If the coefficients

(a) (b)

(c) (d)

FIG. 1. �Color online� The RSPDM of dark
soliton states, 	DS�x ,y�, for N=5 �a�, 11 �b�, 17
�c�, and 25 �d�.
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0

0.8

k

n D
S
(k
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−10 −5 5 10
0

0.8

k

n D
E
(k

)

(a) (b)
FIG. 2. �Color online� The momentum distri-

butions corresponding to DS states �a� and to de-
generate eigenstates with randomly chosen
phases �b�; figures are shown for N=11 �
 sym-
bols, blue dotted line�, 17 �diamonds, red dashed
line�, and 25 �circles, solid black line�.
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are chosen as am
− = i exp�−i�m� /�2 and am

+ =−i exp�i�m� /�2,
one obtains a whole class of eigenstates degenerate to dark
solitons, which have the form

�DE =
A�x1, . . . ,xN�

�N!
� 2

L
�N/2

det
j,m=1

N

�sin�kmxj + �m�� , �23�

where �m, m=1, . . . ,N are N phases �for �m=0, �DS=�DE�.
Figure 4 displays contour plots of RSPDMs 	DE�x ,y�,

which corresponds to some typical states �DE obtained from
Eq. �23� by randomly choosing N phases �m �with respect to
the uniform probability density in �−� ,���. We see that the
SP density for this state, 	DE�x ,x�, is not zero at x=0, which
evidently follows from the fact that sin�kmx+�m� is not an
odd function for �m�0, while 	DE�x ,x�=�m=1

N �sin�kmx
+�m��2. Furthermore, we observe that the structure of the
RSPDM along the x=−y line is absent; that is, there is no
coherence between the mirror points x and −x. A closely
related observation is that the momentum distributions of

such states do not have a pair of sharp spikes which are
present in nDS�k�; this is illustrated in Fig. 2�b� which shows
typical momentum distributions nDE�k� for N=11, 17 and 25.

Besides the RSPDM and the momentum distribution, ex-
cited many-body eigenstates of interest can be characterized
by the corresponding NOs and their occupancies. Figure 5
shows the occupancies of the NOs of the state �DS and a
typical state �DE for N=25. We observe that the occupancies
are fairly low �less than 1� for all NOs, but there is a sharp
drop in the occupancies after the 25th �Nth� NO for the DS
state. We have observed such a behavior for other values of
N as well. In contrast, the occupancies of the NOs corre-
sponding to a typical state �DE do not exhibit a sharp drop
after the Nth orbital, but decrease rather smoothly.

Figure 6 illustrates the spatial structure and the Fourier
power spectra of the NOs corresponding to the DS state for
N=25. The spatial structure of calculated NOs is either sym-
metric or antisymmetric. This is connected to the symmetry
	DS�x ,y�=	DS�−y ,−x�; due to this symmetry, it follows that
if some NO is nondegenerate, it is either symmetric or anti-

−10 −5 5 10

−1

1

x

ρ D
S
(x

,−
x)

FIG. 3. �Color online� The cross-diagonal 	DS�x ,−x� of the dark
soliton RSPDM �solid black line�, displaying long-range oscillatory
correlations between mirror points x and −x, and the cosine function
cos�2kpeakx� �red dotted line�.

(a) (b)

(c) (d)

FIG. 4. �Color online� The RSPDM of typical
eigenstates �DE �Eq. �23�� for N=7 �a�, 11 �b�, 17
�c�, and 25 �d�.

1 40 80
0

1

j

λ j

FIG. 5. �Color online� The occupancies of the NOs for the state
�DS �black diamonds� and a typical state �DE �red squares�, for N
=25 particles. The sharp drop in the occupancies of �DS occurs
between N and N+1.
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symmetric; if two NOs are degenerate �their occupancies are
identical�, they can be superimposed to yield one symmetric
and one antisymmetric NO. Our numerical study shows that
the low-order �leading� NOs are localized in space, but broad
in k space; Fig. 6�a� depicts the x-space structure, and Fig.
6�b� show the k-space structure of the first and third NOs. We
see that these low-order NOs do not contribute to the sharp
peaks observed in the momentum distribution of DS states.
Further inspection of the NOs reveals that those NOs just on
the upper side of the sharp drop in  j �Fig. 5� are in fact
responsible for the sharp peaks: Figures 6�c� and 6�d� display
the x-space and k-space structures, respectively, of the 24th
and 25th NOs �N=25�. The total momentum distribution �red
squares, dotted line in Fig. 6�d�� can be written as

�i=1
� i�̃i

*�k��̃i�k�; a contribution to this sum stemming from
the 24th and 25th NOs is shown in Fig. 6�d� with black solid
line. Evidently, for this DS state where N=25, the 24th and
25th NOs give rise to the peaks in the momentum distribu-
tion.

It is interesting to note that when all phases are chosen to
be �m=� /2, then all of the fermionic NOs are �cos�kmx�,
and we again observe a higher degree of correlation between
mirror points in the RSPDM and peaks in the momentum
distribution �not shown�.

All of the observations above indicate a somewhat smaller
degree of order in the degenerate eigenstates �DE than in
dark solitons �DS, which follows from the random �disor-
dered� choice of the phases �m. This is further underpinned in
Table I, which shows the entropy S=−�ipi ln pi, where pi
=i /N, for the dark soliton states �DS and typical �DE states.
The entropy of states �DE is systematically larger than in the
states �DS.

From our observations it follows that the many-body state
�DS contains a distinct component, which can be interpreted
as a standing wave populating momentum modes at ±kpeak.
In the effective single-particle picture, we see that this com-
ponent gives rise to the population of the natural orbitals

close to �and including� the Nth NO. However, it should be
pointed out that this component is fairly small; i.e., it yields
a small occupation of these effective SP states.

In a similar fashion to the excited �DS state, the ground
state of the TG gas on the ring yields a distinct population of
the zero-momentum mode �21�; in this case, however, the
zero-momentum mode is the leading natural orbital and its
population is fairly large �it scales as �N �28��. Even though
the TG states are not Bose condensed, they can sharply
populate a single-momentum mode because bosons do not
obey the Pauli principle and consequently more than one
boson can occupy a single-momentum state �which is not the
case for noninteracting fermions�.

It is interesting to note that on the Fermi side of the map-
ping, the momentum distribution of noninteracting fermions
nF�k� is uniform up to the Fermi edge �excluding the zero-
momentum mode at k0=0� and does not depend on the ran-
domly chosen phases �m:

nF,DS�km� = nF,DE�km� = �1

2
if 1 � �m� � N

0 otherwise.
� �24�

Namely, the SP eigenstates sin�kmx+�m� are NOs of the fer-
mionic system. The Fourier power spectrum of each SP state
sin�kmx+�m� �which determine the fermionic momentum dis-
tribution via Eq. �14�� does not depend on the phase �m. Each
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FIG. 6. �Color online� The NOs of a DS state
in x space �left column� and their power spectra
in k space �right column� for N=25. �a� The first
�1�x� �black solid line� and third �3�x� �red dot-
ted line� NOs. �b� The Fourier power spectrum of

the first ��̃1�k��2 �black circles, solid line� and

third ��̃3�k��2 �red diamonds, dotted line� NOs.
�c� The 24th �red dotted line� and 25th �black
solid line� NOs in x space. �d� The momentum
distribution �red squares, dotted line� in compari-
son to the contribution from the 24th and 25th

NOs: �i=24
25 i��̃i�k��2 �black circles, solid line�.

TABLE I. The entropy S of dark soliton states and typical �DE

states for different values of the number of particles N.

N S��DS� S��DE�

11 2.90 3.21

17 3.39 3.66

25 3.83 4.05
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fermionic NO sin�kmx+�m� can be written as a superposition
of two plane waves sin�kmx+�m�= �eikmx+i�m −e−ikmx−i�m� /2i.
Evidently, the mean value of the momenta pointing
in the positive �negative� direction is ��N+1� /L
�−��N+1� /L�; that is, it is identical to kpeak. When the fer-
mionic states are mapped to the TG states, a wave function
component which distinctively populates momentum modes
at ±kpeak can appear. This occurs when the phases �m act
coherently; i.e., it is evident that a random choice of the
phases �m destroys the observation of the two spikes con-
nected with this component.

Before closing this section we should say that in all our
numerical calculations, the phases of the states �DE were
chosen at random �with respect to the uniform probability
density in �−� ,���. A random choice of the phases yields a
typical state �DE in the sense that one-body observables,
such as the momentum distribution, of typical states approxi-
mately coincide. In order to verify this assumption Fig. 7
displays momentum distributions for ten eigenstates �DE

�N=11 particles�, obtained by ten randomly chosen configu-
rations �m �m=1, . . . ,N� of the phases. The momentum dis-
tribution only slightly varies from case to case with one ex-
ception that exhibits two �relatively small� dark solitonic
spikes. Exceptions from the typical behavior will be harder
to see for larger values of N, because in this case the param-
eter space spanned by N phases �m is larger and it is harder
to correlate the phases by chance, which could yield charac-
teristic solitonic spikes in the momentum distribution.
Hence, we can conclude that our observations regarding the
class of states �DE from Eq. �23� hold for practically all of
these states in the sense stated above.

IV. DS STATES IN A PARITY-INVARIANT WELL-SHAPED
POTENTIAL

The concept of dark solitons can be extended to various
types of parity-invariant potentials �e.g., see �13��. DS states
are found in harmonic confinement �12� periodic lattices
�13�, well-shaped potentials �13�, and so-forth. In Ref. �13� it
was shown that by parity invariant filtering of the many-body
wave function one could in principle excite the TG gas into a
DS state. Let us compare the RSPDM and the momentum
distribution of DS states on the ring and in a parity-invariant
potential Vc�x�=Vc

02+�i=1,2�−�i+1 tanh xw�x+ �−�ixc�� �Vc
0

=15, xw=8, and xc=25�. In such a potential, DS states are
constructed by populating the first N odd SP eigenstates on
the Fermi side of the map. Figure 8�a� displays the RSPDM,
while Fig. 8�b� displays the momentum distribution of such
an excited eigenstate for N=10. We clearly observe that the
structure of the RSPDM and the momentum distribution is
similar to that of DS states on the ring; the RSPDM has
off-diagonal mirror-point correlations, while the momentum
distribution has two sharp spikes. Furthermore, Fig. 8�c� dis-
plays the occupancies of the NOs, which clearly exhibit a
large and sudden drop after the Nth NO. Figure 8�d� shows
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FIG. 7. Momentum distributions for ten different states �DE �Eq.
�23�� chosen at random, by randomly choosing ten sets �m �m
=1, . . . ,N� of phases �see text for details�.
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FIG. 8. �Color online� The RSPDM �a�, mo-
mentum distribution �b�, and occupancies of the
NOs �c� for a DS state �N=10� in a parity-
invariant well-shaped potential. �d� The momen-
tum distribution �black dotted line� in comparison
to the contribution from the ninth and tenth NOs:

�i=9
10 i��̃i�k��2 �red solid line�.
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the contribution from the �N−1�th and Nth NOs to the mo-

mentum distribution: �i=9
10 i�̃i

*�k��̃i�k�; clearly, these NOs
are responsible for the peaks in the momentum distribution.

The observations presented in Fig. 8 suggest that the be-
havior of the one-body observables of DS states, such as the
two sharp spikes in the momentum distribution and correla-
tion between the mirror points in the RSPDM, can be found
in various types of parity-invariant potentials.

V. CONNECTION TO INCOHERENT LIGHT

We would like to point out that the behavior of incoherent
light in linear �49� and nonlinear �50–53� optical systems has
many similarities to the behavior of interacting �partially
condensed or noncondensed� Bose gases �13,53–55�. The dy-
namics of incoherent light in nonlinear systems attracted
considerable interest in the past decade since the first experi-
ments on incoherent solitons �50� in noninstantaneous non-
linear media were conducted. A number of important results
were obtained �for a review, e.g., see Ref. �51�� since then.
Among the recent results one finds, e.g., the experimental
observation of incoherent solitons nonlinear photonic lattices
�52� and thermalization of incoherent nonlinear waves �53�.
We believe that many of the phenomena observed with inco-
herent light in optics �50–53� can find their counterpart in the
context of Bose gases.

In Ref. �13� it has been pointed out that there is math-
ematical relation between the propagation of partially spa-
tially incoherent light in linear 1D photonic structures and
quantum dynamics of a TG gas. More specifically, the cor-
relation functions describing incoherent nondiffracting

beams in optics �49� can be mapped �13� to DS states. How-
ever, it should be emphasized that the spatial power spectrum
of these incoherent beams corresponds to the momentum dis-
tribution of noninteracting fermions; i.e., it profoundly dif-
fers from the momentum distribution of DS states in a TG
gas discussed here.

VI. SUMMARY

We have employed a recently obtained formula �40� to
numerically calculate the RSPDM correlations, natural orbit-
als and their occupancies, and the momentum distribution of
dark solitons in a TG gas. We have found that these excited
eigenstates of a TG gas have characteristic shape of the mo-
mentum distribution, which has two distinguished sharp
spikes; while most of the paper is devoted to the ring geom-
etry, where the spikes are located at kpeak= ±��N+1� /L �N is
the number of particles and L is the length of the ring�, we
have shown results which suggest that such behavior is gen-
eral for DS states in parity-invariant potentials. It has been
shown that the spikes in the momentum distribution are
closely connected to the cross-diagonal oscillatory long-
range correlations between mirror points �x and −x� in the
RSPDM. This behavior of DS states follows from the fact
that they are specially tailored; in the ring geometry, it has
been shown that the two spikes and a special form of spatial
coherence are lost for most eigenstates that are degenerate to
DS states.

ACKNOWLEDGMENT

This work was supported by the Croatian Ministry of Sci-
ence �Grant No. 119-0000000-1015�.

�1� M. Girardeau, J. Math. Phys. 1, 516 �1960�.
�2� E. Lieb and W. Liniger, Phys. Rev. 130, 1605 �1963�; E. Lieb,

ibid. 130, 1616 �1963�.
�3� F. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bour-

del, J. Cubizolles, and C. Salomon, Phys. Rev. Lett. 87,
080403 �2001�; A. Görlitz, J. M. Vogels, A. E. Leanhardt, C.
Raman, T. L. Gustavson, J. R. Abo-Shaeer, A. P. Chikkatur, S.
Gupta, S. Inouye, T. Rosenband, and W. Ketterle, ibid. 87,
130402 �2001�; M. Greiner, I. Bloch, O. Mandel, T. W. Han-
sch, and T. Esslinger, ibid. 87, 160405 �2001�; H. Moritz, T.
Stöferle, M. Kohl, and T. Esslinger, ibid. 91, 250402 �2003�;
B. Laburthe Tolra, K. M. O’Hara, J. H. Huckans, W. D. Phil-
lips, S. L. Rolston, and J. V. Porto, ibid. 92, 190401 �2004�; T.
Stöferle, H. Moritz, C. Schori, M. Kohl, and T. Esslinger, ibid.
92, 130403 �2004�.

�4� T. Kinoshita, T. Wenger, and D. S. Weiss, Science 305, 1125
�2004�.

�5� B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I.
Cirac, G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch, Nature
�London� 429, 277 �2004�.

�6� T. Kinoshita, T. Wenger, and D. S. Weiss, Nature �London�
440, 900 �2006�.

�7� In the limit of infinitely strong �-function interactions, the

Lieb-Liniger gas becomes a gas of impenetrable bosons in
1D—i. e., the TG gas.

�8� M. Olshanii, Phys. Rev. Lett. 81, 938 �1998�.
�9� D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven, Phys.

Rev. Lett. 85, 3745 �2000�.
�10� V. Dunjko, V. Lorent, and M. Olshanii, Phys. Rev. Lett. 86,

5413 �2001�.
�11� M. D. Girardeau and E. M. Wright, Phys. Rev. Lett. 84, 5691

�2000�.
�12� T. Busch and G. Huyet, J. Phys. B 36, 2553 �2003�.
�13� H. Buljan, O. Manela, R. Pezer, A. Vardi, and M. Segev, Phys.

Rev. A 74, 043610 �2006�.
�14� S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A.

Sanpera, G. V. Shlyapnikov, and M. Lewenstein, Phys. Rev.
Lett. 83, 5198 �1999�; J. Denschlag et al., Science 287, 97
�2000�.

�15� R. Dum, J. I. Cirac, M. Lewenstein, and P. Zoller, Phys. Rev.
Lett. 80, 2972 �1998�.

�16� Th. Busch, and J. R. Anglin, Phys. Rev. Lett. 84, 2298 �2000�.
�17� A. E. Muryshev, G. V. Shlyapnikov, W. Ertmer, K. Sengstock,

and M. Lewenstein, Phys. Rev. Lett. 89, 110401 �2002�.
�18� E. B. Kolomeisky, T. J. Newman, J. P. Straley, and Xiaoya Qi,

Phys. Rev. Lett. 85, 1146 �2000�.
�19� D. J. Frantzeskakis, N. P. Proukakis, and P. G. Kevrekidis

BULJAN et al. PHYSICAL REVIEW A 76, 043609 �2007�

043609-8



Phys. Rev. A 70, 015601 �2004�.
�20� M. Ögren, G. M. Kavoulakis, and A. D. Jackson, Phys. Rev. A

72, 021603�R� �2005�.
�21� A. Lenard, J. Math. Phys. 5, 930 �1964�; T. D. Schultz, ibid.

4, 666 �1963�; H. G. Vaidya and C. A. Tracy, ibid. 42, 3
�1979�.

�22� D. B. Creamer, H. B. Thacker, and D. Wilkinson, Phys. Rev. D
23, 3081 �1981�; M. Jimbo and T. Miwa, ibid. 24, 3169
�1981�.

�23� M. D. Girardeau, E. M. Wright, and J. M. Triscari, Phys. Rev.
A 63, 033601 �2001�; G. J. Lapeyre, M. D. Girardeau, and E.
M. Wright, ibid. 66, 023606 �2002�.

�24� A. Minguzzi, P. Vignolo, and M. P. Tossi, Phys. Lett. A 294,
222 �2002�.

�25� M. A. Cazalilla, Europhys. Lett. 59, 793 �2002�.
�26� M. Olshanii and V. Dunjko, Phys. Rev. Lett. 91, 090401

�2003�.
�27� T. Papenbrock, Phys. Rev. A 67, 041601�R� �2003�.
�28� P. J. Forrester, N. E. Frankel, T. M. Garoni, and N. S. Witte,

Phys. Rev. A 67, 043607 �2003�.
�29� D. M. Gangardt and G. V. Shlyapnikov, Phys. Rev. Lett. 90,

010401 �2003�.
�30� G. E. Astrakharchik and S. Giorgini, Phys. Rev. A 68,

031602�R� �2003�.
�31� M. Rigol and A. Muramatsu, Phys. Rev. A 70, 031603�R�

�2004�.
�32� D. M. Gangardt, J. Phys. A 37, 9335 �2004�.
�33� G. P. Berman, F. Borgonovi, F. M. Izrailev, and A. Smerzi,

Phys. Rev. Lett. 92, 030404 �2004�.
�34� M. Rigol and A. Muramatsu, Phys. Rev. Lett. 94, 240403

�2005�.
�35� A. Minguzzi and D. M. Gangardt, Phys. Rev. Lett. 94, 240404

�2005�.
�36� J. Brand and A. Yu. Cherny, Phys. Rev. A 72, 033619 �2005�.
�37� P. J. Forrester, N. E. Frankel, and M. I. Makin, Phys. Rev. A

74, 043614 �2006�.
�38� D. M. Gangardt and G. V. Shlyapnikov, New J. Phys. 8, 167

�2006�.
�39� M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Phys. Rev.

Lett. 98, 050405 �2007�.
�40� R. Pezer and H. Buljan, Phys. Rev. Lett. 98, 240403 �2007�.
�41� F. Deuretzbacher, K. Bongs, K. Sengstock, and D Pfannkuche,

Phys. Rev. A 75, 013614 �2007�.
�42� J.-S. Caux, P. Calabrese, and N. A. Slavnov, J. Stat. Mech. J.

Stat. Mech.: Theory Exp. 2007, P01008 �2007�.
�43� Y. Lin and B. Wu, Phys. Rev. A 75, 023613 �2007�.
�44� J. G. Muga and R. F. Snider, Phys. Rev. A 57, 3317 �1998�.
�45� K. Sakmann, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum,

Phys. Rev. A 72, 033613 �2005�.
�46� M. T. Batchelor, X.-W. Guan, N. Oelkers, and C. Lee, J. Phys.

A 38, 7787 �2005�.
�47� The behavior of the discrete HCB-lattice model is not fully

equivalent to the TG model in a continuous potential; e.g., see
M. A. Cazalilla, Phys. Rev. A 70, 041604�R� �2004�.

�48� For simplicity, here we focus only on an odd number of par-
ticles on the ring. If N is even, then km=2�m /L+� /L and m is
integer �see footnote 6 in Ref. �2��.

�49� J. Turunen, A. Vasara, and A. T. Friberg, J. Opt. Soc. Am. A 8,
282 �1991�; A. V. Shchegrov and E. Wolf, Opt. Lett. 25, 141
�2000�.

�50� M. Mitchell, Z. Chen, M. Shih, and M. Segev, Phys. Rev. Lett.
77, 490 �1996�; M. Mitchell and M. Segev, Nature �London�
387, 880 �1997�; Z. Chen, M. Mitchell, M. Segev, T. Coskun,
and D. N. Christodoulides, Science 280, 889 �1998�.

�51� M. Segev and D. N. Christodoulides, in Incoherent Solitons in
Spatial Solitons, edited by S. Trillo and W. Torruellas
�Springer, Berlin, 2001�, pp. 87–125.

�52� O. Cohen, G. Bartal, H. Buljan, J. W. Fleischer, T. Carmon, M.
Segev, and D. N. Christodoulides, Nature �London� 433, 500
�2005�.

�53� S. Pitois, S. Lagrange, H. R. Jauslin, and A. Picozzi, Phys.
Rev. Lett. 97, 033902 �2006�; for a recent review, see A. Pi-
cozzi, Opt. Express 15, 9063 �2007�, and references therein.

�54� M. Naraschewski and R. J. Glauber, Phys. Rev. A 59, 4595
�1999�.

�55� H. Buljan, M. Segev, and A. Vardi, Phys. Rev. Lett. 95,
180401 �2005�.

SINGLE-PARTICLE DENSITY MATRIX AND THE… PHYSICAL REVIEW A 76, 043609 �2007�

043609-9


