
ISSN1330–0016
CODEN FIZBE7

UV AND IR ANALYSES OF THE MASS SPECTRUM IN THE
SINE-GORDON MODEL

SILVIO PALLUA and PREDRAG PRESTER

Department of Theoretical Physics, Faculty of Science, University of Zagreb,
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We study the mass spectrum of the sine-Gordon model on a cylinder in the UV and
IR regime. This is done by numerical diagonalization of the XXZ spin chain in a
transverse field which is a convenient regularization. Our results strongly confirm
the conjecture of Klassen and Melzer that sine-Gordon and massive Thirring mod-
els are not equivalent when defined on a finite cylinder. We obtain that the first
two breathers have equal scaling dimensions, contrary to the conjecture claimed in
literature.

PACS numbers: 11.10.Kk, 11.25.Hf, 11.15.Tk, 75.10.Jm UDC 538.94, 539.12

Keywords: sine-Gordon model, mass spectrum on cylinder, UV and IR regime, XXZ spin

chain in transverse field, first two breathers have equal scaling dimensions

1. Introduction
It is almost impossible to overestimate the role of the sine-Gordon model (SGM)

in modern physics. It emerges in the treatment of two-dimensional low-energy exci-
tations in a wealth of phenomena in different branches, such as tunneling of Cooper
pairs in Josephson junction [1] or field-induced gap in antiferromagnetic chain com-
pounds (e.g. Cu benzoate) [2]. We should also mention that SGM solitons are
two-dimensional analogues of cosmic strings. The reason for this wide-spread ap-
pearance of the SGM is that it gives the simplest non-trivial Lagrangian for single
(pseudo)scalar field in 2D which is compactified (”angle variable”).

Looking from a purely formal side, SGM is a perfect “laboratory” for testing
various ideas and methods1 for the following reasons. On one side it is a very

1Indeed, sine-Gordon and massive Thirring models are certainly the best understood nontrivial
massive field theories.
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complex quantum field theory (QFT) which posseses: (a) topological excitations
(solitons), (b) bound states (breathers) whose number depends on the value of the
coupling constant, (c) nontrivial vacuum (condensate) for β2 > 4π, (d) nondiagonal
S-matrix and (e) (possible) phase transition at β2 = 8π. On the other side, it is
integrable, i.e. a complete (infinite) set of conserved charges in involution exists,
which enabled nonperturbative results such as: (a) masses of all particles given by
Dashen-Hasslacher-Neveu (DHN) formula [3]

mn = 2m sin
nπβ2

2(8π − β2)
, n = 1, 2, . . . <

8π

β2
− 1 , (1)

where m is the soliton and mn nth breather mass, (b) complete on-shell solution (S-
matrix) [4], (c) S-duality2 with massive Thirring model (MTM) which establishes
equivalence of the models when the respective coupling constants are connected by
the Coleman relation [5]

1 +
g0

π
=

4π

β2
.

and identifies soliton in SGM with elementary fermion in MTM and (d) some exact
off-shell amplitudes [6] (complete off-shell solution is still missing).

Motivation for our interest in SGM and MTM are two claims which were put
forward recently. First, authors in Ref. [7] calculated mass spectrum of MTM using
two different methods and obtained that there is only one breather in the whole
attractive regime (β2 < 4π in SGM terms) with the mass different from that of
the first breather in DHN formula (1). They also claimed to have found wrong
assumptions in all previous calculations [3, 4, 8] which gave Eq. (1).

Second claim, which was originally made in Ref. [9], is that SGM and MTM are
not equivalent when defined on finite space of lenght L, and only become equivalent
on-shell when L = ∞. The authors analysed UV limit and have shown that there are
two different perturbed conformal field theories (CFT’s); a purely bosonic one and a
fermionic one, which they identified with SGM and MTM, respectively. Notice that
this means that solitons in SGM are bosons and are not equivalent to elementary
fermions of MTM.

In this paper we continue our investigations (started in Ref. [10]3) on mass
spectra and scaling dimensions of operators creating particle states. Using the
conformal perturbation theory [12, 9], it can be shown that the XXZ spin chain
with an even number of sites and periodic boundary conditions in a transverse
magnetic field (σx perturbation) is spin chain regularization of the SGM ([9, 10]).
It should be mentioned that to our knowledge this is the first analysis of this spin
chain (which is believed to be non-integrable). We numerically diagonalize the spin
chain Hamiltonian up to 16 sites and extrapolate results to the infinite length
continuum limit using the BST extrapolation algorithm [13]. The same method

2Applies only in infinite volume, as we shall comment further.
3A similar analysis was done for MTM in Ref. [11].
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was previously applied to conformal unitary models perturbed by some relevant
(usually termal) operator [14]. In this way, we can obtain estimates of mass ratios
without further assumptions, particularly those criticized in Ref. [7].

Our results for the mass spectrum are in complete agreement with DHN formula
(1) and in disagreement with results of Fujita et al. [7]. Unfortunately, we could
only analyse first two breathers because higher ones lie in the continuum part of
the spectrum, and this method (contrary to Bethe Ansatz) can be used only for
isolated states.

We also confirm conclusion in Ref. [9] that SGM and MTM are not equivalent
when defined on a finite space. We calculated scale dimensions of operators creating
lowest particle states. For the (anti)soliton we confirmed conjecture from Ref. [9]
which means that these particles are bosons. Our results also confirmed conjecture
for the first breather made in Ref. [9]. But for the second breather, we obtained the
same scaling dimension as for the first breather, in contradiction with conjecture
made in Ref. [9]. This result is most interesting and completely unexpected because
it violates the picture in which nth breather can be described as bound state of n
first-breathers [3].

2. Spin chain regularization of SGM
The SGM is a (1+1) dimensional field theory of a pseudoscalar field ϕ, defined

classically by the Lagrangian

LSG =
1
2
∂µϕ∂µϕ + λ cos(βϕ) . (2)

Here λ is a mass scale (with mass dimension depending on a regularization scheme),
β is a dimensionless coupling (which does not renormalize) and one identifies field
configurations that differ by a period 2π/β of the potential (because we want to
have “ordinary” QFT with a unique vacuum).

In Ref. [9] it was shown that SGM can be viewed as a perturbed CFT when the
second term in Eq. (2) is treated as a (massive) perturbation. An unperturbed the-
ory λ = 0 (approached in UV limit) is the free massless compactified pseudoscalar
CFT (known as Gaussian model) which has central charge c = 1 and is generated
by

Lb = {Vm,n|m,n ∈ Z} . (3)

Here Vm,n are primary (“vertex”) operators whose scaling dimensions and (Lorentz)
spins are

dm,n =
m2β2

4π
+

n2π

β2
, (4)

sm,n = mn . (5)
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Because of V †
m,n = V−m,−n, we can define Hermitian combinations

V (+)
m,n ≡ 1

2
(Vm,n + V−m,−n) ,

V (−)
m,n ≡ i

2
(V−m,−n − Vm,n)

which have equal scaling dimensions and spin. Also, it can be shown that a properly
normalized perturbing operator in the SGM (2) is

cos(βϕ) = V
(+)
1,0 (6)

which means that λ has mass dimension y = 2 − d1,0 = 2 − β2/4π. From the
condition of relevancy of the perturbation, i.e. y > 0, we obtain the Coleman’s
bound β2 < 8π.

Using the above analysis, it was proposed (Appendix B in Refs. [9] and [10]) that
the XXZ spin chain with periodic boundary conditions in a transverse magnetic
field defined by the Hamiltonian

H = −
N∑

n=1

(
σx

nσx
n+1 + σy

nσy
n+1 + ∆σz

nσz
n+1 + hσx

n

)
, (7)

where σa are Pauli matrices, N ∈ 2Z, −1 ≤ ∆ < 1 (we use the usual parametriza-
tion ∆ = − cos γ, 0 ≤ γ < π), is a spin chain regularization of the SGM. The
argument has two steps; first, one must show that unperturbed theories are equiv-
alent, i.e., that Eq. (7) with h = 0 is a spin chain regularization of Lb CFT (3),
and second, that in the unperturbed theory (h = 0) perturbation operator σx

n is a
lattice regularization of V

(+)
1,0 (x). For the detailed discusion see Ref. [10].

SGM defined on a cylinder4 is now obtained from the spin chain (7), where

β =
√

2(π − γ) , (8)

in the scaling limit N → ∞, h → 0 while keeping fixed scaling parameter µ̃

µ̃ ≡ hNdλ = hN2−β2/4π = hN3/2+γ/2π. (9)

In this limit, the mass gaps of the chain (7) are expected to satisfy a scaling law

m̃i = h1/dλG̃i(γ, µ̃) = h(2−β2/4π)−1
G̃i(γ, µ̃). (10)

where γ is connected to β by Eq. (8).

4Space is compactified on a circle with circumference L and time is infinite.
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It it easy to see [10] that µ̃ ∝ Ldλ , and the constant of proportionality is not
important because we are interested here only in the L → ∞ (µ̃ → ∞) and L → 0
(µ̃ → 0) limits.

It is important to observe that although perturbative CFT analysis was used to
obtain spin chain regularization, the results obtained using this regularization are
in fact nonperturbative. One of the reasons is that it is widely believed that for the
CFT perturbed by a relevant (i.e. superrenormalizable) operator, a perturbative
expansion has a nonvanishing radius of convergence in two dimensions5. Taking
this into account, it is natural to assume that Hilbert space of the full theory is
isomorphic to that of the unperturbed theory. In fact, agreement of our results
with SGM and MTM mass-spectra in the L → ∞ limit (as given by (1)) indirectly
confirms those assumptions.

3. Mass spectrum
Our goal here is to calculate the mass ratios of particles in the SGM in the

L → ∞ limit using conection with the spin chain (7). First, we must numerically
calculate the mass gaps of the spin chain for finite N and h. This was done for up to
18 sites using the Lanczos algorithm. Then, we must make a continuum (scaling)
limit, i.e., take N → ∞ and h → 0, keeping µ̃ fixed. Finally, we should make
L → ∞, i.e., µ̃ → ∞ limit. In practice, it is preferable to do the following [14]: first
take N → ∞ with h fixed and afterwords extrapolate to h → 0. The difference is
that in the latter case one does µ̃ → ∞ before h → 0. These limits are performed
using the BST extrapolation method [13].

In Ref. [10], we considered a number of values of coupling −1 ≤ ∆ < 1 (or√
2π ≥ β > 0). Starting from ∆ = −1, the spectrum contains five clearly isolated

states which we name vacuum, soliton, antisoliton, first and second breather. All
other levels form “continuum,” i.e., they “densely” fill the region between about
2 × (mass of first breather) and some Emax. Soliton and antisoliton energies are
not degenerate which is a consequence of breaking Z2 symmetry on the spin chain.
Exactly at ∆ = −1, we have6 m̃B1 = m̃S < m̃A < m̃B2. As we increase ∆
m̃S , m̃A and m̃B2 monotonically increase (relative to m̃B1), where m̃S and m̃A

increase faster than m̃B2 and at ∆ ≈ −0.1 disappear into the “continuum” (i.e.,
m̃S,A > 2m̃B1), while m̃B2 asymptotically approach 2m̃B1. This was a crude picture
visible already from raw data before extrapolation N → ∞ and h → 0, and it is
expected from the DHN formula (1). Observe that the exact degeneracy of soliton
and first breather masses at ∆ = −1 is present in Eq. (1).

As an example, we shall now make continuum analysis for the coupling ∆ = −0.4
(β2 = 3.96), which was not fully presented in Ref. [10]. In Fig. 1 we present
numerical results for the scaled gaps (scaling functions of mass gaps) G̃a, a ∈
{S,A,B1, B2}. This is, of course, a check of the scaling relation (10). BST extra-

5With appropriate IR and, if necessary, UV cutoffs
6We employ an obvious notation for mass gaps; m̃S for soliton, m̃A for antisoliton and m̃Bn

for nth breather, where n = 1, 2.
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Fig. 1. Scaling functions G̃a(β, µ) for the isolated gaps of Hamiltonian (7) at ∆ =
−0.4 (or β2 = 3.96).

polations N → ∞ (with fixed h) of scaled gaps for h = 0.8, 0.5, 0.3, 0.2 are given in
Table 1. Finally, (partially) extrapolated mass ratios

r̃a(∆, h) = lim
N→∞
h fixed

m̃a

m̃B1
= lim

N→∞
h fixed

G̃a

G̃B1

, a ∈ {S,A,B2}

180 FIZIKA B (Zagreb) 10 (2001) 4, 175–186



pallua and prester: uv and ir analyses of the mass spectrum in . . .

TABLE 1. Estimates for the scaled gaps G̃a(β,∞) as a function of h at ∆ = −0.4
(β2 = 3.96). The numbers in brackets give the estimated uncertainty in the last
given digit.

h G̃B1 G̃S G̃A G̃B2

0.8 4.220189 (4) 6.4723 (1) 7.5657 (5) 7.936 (4)

0.5 4.2203 (1) 6.740 (1) 7.509 (4) 7.96 (1)

0.3 4.22820 (5) 6.93 (1) 7.45 (2) 7.97 (2)

0.2 4.233 (1) 7.00 (3) 7.37 (5) 8.06 (7)

are given in Table 2 together with the predictions from DHN formula (1) and Fujita
et al. formula [7]. Although we were not able to make final extrapolation h → 0,
one can see that our results are in full agreement with DHN and reject the results
of Fujita et al.

TABLE 2. Estimates for the mass gap ratios r̃a(∆, h) as a function of h at ∆ = −0.4
(β2 = 3.96). We also added predictions obtained from Eq. (1) (DHN) and Fujita
et al.

h
r̃a 0.8 0.5 0.3 0.2

DHN Fujita

S 1.53365 (3) 1.5970 (2) 1.639 (3) 1.654 (8) 1.724 1.367

A 1.7927 (1) 1.779 (1) 1.762 (6) 1.74 (1) 1.724 1.367

B2 1.880 (1) 1.886 (3) 1.885 (5) 1.90 (2) 1.914

4. UV limit and scaling dimensions of particle states
Let us now turn our attention to the UV limit of our results for the spin chain

(7). We mentioned in Sect. 2 that it is obtained when µ̃ → 0. From conformal
perturbation theory, we expect the scaling relation

m̃a = ζh2π/(3π+γ)
[
2πdaµ̃−2π/(3π+γ) + H̃a(γ, µ̃)

]
(11)

where da is the scaling dimension of the state a, and ζ is the well-known normal-
ization factor,

ζ =
2π sin γ

γ
.

From Eq. (11) we can obtain the scaling dimensions of the particle states S, A, B1
and B2 from the condition that H̃a should be less singular than G̃a. In Fig. 2 we
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show numerical results, again for ∆ = −0.4 for reduced scaling functions, where
we used values from Table 3 for scaling dimensions. One can see that the scaling
relation (11) is very well satisfied.

Let us now make a few comments on the results shown in Table 3. First of all,
we see that soliton and antisoliton are spin zero particles, which means they are
not equivalent to elementary fermion and antifermion of MTM (which are spin-1/2)
when L is finite. For the first breather, we obtained expected result because in the
UV limit, it is created by

V
(−)
1,0 ∝ sin(βϕ) ∝ ϕ + O(ϕ2) ,
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0 30 60 90µ
0
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Fig. 2. Reduced scaling functions H̃a(β, µ) at ∆ = −0.4 (or β2 = 3.96).
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TABLE 3. Scaling dimensions of particle states in SGM as conjectured from our
numerical results.

State Operator Scaling dimension

soliton V0,1
π

β2
=

1
2

(
1 − γ

π

)−1

antisoliton V0,−1
π

β2
=

1
2

(
1 − γ

π

)−1

1st breather V
(−)
1,0

β2

4π
=

1
2

(
1 − γ

π

)
2nd breather V

(+)
1,0

β2

4π
=

1
2

(
1 − γ

π

)
i.e., by “regularized” elementary SGM field7. We should emphasize that these re-
sults were first conjectured in Ref. [9] using conformal perturbation theory and
were first explicitely calculated in Ref. [10].

In Ref. [9], it was conjectured that the nth breather is created in the UV limit
by the operator V ((−)n)

n,0 with the scaling dimension n2β2/4π. The argument goes
as follows. Let us take the SGM coupling constant β small and expand DHN mass
formula (1)

mn = nm1

[
1 − 1

6
(
n2 − 1

) (
β2

16

)2

+ O(β6)

]
. (12)

It looks like the nth breather could be viewed as loosly bound state of n 1st
breathers. Indeed, this can be confirmed using ordinary perturbation theory. We
can expand the SGM Lagrangian (2) as

LSG =
1
2
∂µϕ∂µϕ − 1

2
λβ2ϕ2 +

1
4!

λβ4ϕ4 + O
(
(βϕ)6

)
and see that for small β it reduces to an attractive scalar ϕ4 theory with bare mass
λβ2 and coupling constant λβ4. It is well-known that the non-relativistic limit of
this theory gives the potential between elementary bosons V (x) = −(β2/8)δ(x),
which is attractive. Since the interaction is weak, one can compute the binding
energy of n bosons solving the non-relativistic n-body Schrödinger equation. Exact
result for the ground state gives lowest-order term in Eq. (12). In Ref. [3], this
calculation was extended to two-loop order (β8) in the n = 2 case (2nd breather),
and result agreed with the DHN formula.

Now, we have seen that elementary boson is the first breather, and that operator
which creates it in the UV limit is V (−)

1,0 . From the operator product expansion one
can see that regularized product of n operators is

: (V (−)
1,0 )n : = V ((−)n)

n,0 . (13)

7In the UV limit, ϕ is not well defined operator, i.e., it does not satisfy Wightman axioms.
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Using this, the authors in Ref. [9] conjectured that the operator which corresponds
to the nth breather is V ((−)n)

n,0 .

Surprisingly, our results show that scaling dimension of the 2nd breather is
exactly the same as that of the 1st breather. This clearly follows from Fig. 3, where
we show numerical values for the ratio of the mass gaps m̃B2/m̃B1, and scaling
relation (11) in the UV limit (µ̃ → 0). Notice that the above conjecture would
predict that the ratio in Fig. 3 should converge to 4 when µ̃ → 0.

0 30 60 90

µ

1

1.4

1.8

rB2

Fig. 3. Ratios of mass gaps m̃B2/m̃B1 at ∆ = −0.4. It is clear that it is equal to
1 in the UV limit µ̃ → 0, so from Eq. (11) follows that first and second breather
have equal scale dimensions.

So, our results predict that the operator connected to the second breather is
V (+)

1,0 , because it is the only operator with the same dimension as V (−)
1,0 which is

connected to the first breather. After this result was first obtained in Ref. [10] it
was subsequently analytically confirmed in Ref. [15] using extension of the nonlinear
integral equation (NLIE) method.

5. Conclusion
In this paper, we have analysed both infrared (L → 0) and ultraviolet (L → ∞)

limits of sine-Gordon model defined on a cylinder with the circumference L. We used
perturbed CFT aproach, as described in Ref. [9], to find spin chain normalization
of the model which was used to numerically calculate the mass-spectrum.

In the IR limit, our results agree with the DHN formula for masses of breathers,

184 FIZIKA B (Zagreb) 10 (2001) 4, 175–186



pallua and prester: uv and ir analyses of the mass spectrum in . . .

and disagree with the recent claims of Fujita et al. Taken together with the results
for massive Thirring model [11], our results also confirm Coleman duality relation.

Analysis of the UV (conformal) limit have confirmed the conjecture of Klassen
and Melzer [9] that sine-Gordon and massive Thirring models are not equivalent
when defined on a finite cylinder, and only become equivalent on-shell when L = ∞.
Our results clearly confirm that soliton in the SGM has different scaling dimension
than elementary fermion in MTM (the former is boson while the latter is fermion).
We also calculated scaling dimensions of the first two breathers. While for the first
breather our results confirmed conjecture made in Ref. [9], for the second breather
we obtain a different result, i.e., that it has the same scaling dimension as the
first breather. This result is not only interesting, but also surprising because it is
in contradiction with intuition gained from perturbative calculations. After it was
first obtained in Refs. [10, 11], this result was afterwards confirmed in Ref. [15]
using different methods.
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UV I IR ANALIZE MASENOG SPEKTRA U SINUS-GORDONOVOM
MODELU

Proučavamo maseni spektar u sinus-Gordonovom modelu u UV i IR uvjetima. To
se čini numeričkom dijagonalizacijom spinskog lanca XXZ u poprečnom polju koje
je pogodna regularizacija. Naši rezultati snažno potvrd–uju pretpostavku Klassena
i Melzera da sinus-Gordonov model i Thirringov model nisu ekvivalentni ako su
definirani na konačnom valjku. Dobivamo da prva dva disalna stanja imaju jednake
skalne dimenzije, suprotno pretpostavki koja se navodi u literaturi.
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