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We explore the consequences of Lorentz noninvariance (LNI) for the Eotvos experiments in

several models. It is shown that a violation of Lorentz invariance leads to an anomalous difference
in the gravitational acceleration of two test masses which depends on their composition. Using the
present experimental limits from the Eotvos experiments, we then derive a limit on the magnitude of
a possible violation of Lorentz invariance in the model of Nielsen and Picek (NP). In an Appendix
we present a detailed discussion of the contribution to the nuclear binding energy due to the weak in-

teractions, which are the presumed source of the LNI effects in the NP model.

I. INTRODUCTION

There has been renewed interest of late in the possibility
that Lorentz invariance may not be an exact symmetry of
nature. ' " On the experimental side, an analysis of
high-energy data for the K —K system' has reported
indications of an anomalous energy dependence of the
fundamental parameters ~z, Am, and g+ as determined
in the proper frame of the kaons. On the theoretical side,
various mechanisms have been . proposed for breaking
Lorentz invariance at appropriately high energies and/or
short distances. ' " Manifestations of Lorentz noninvari-
ance (LNI) that have been considered to date include an
anomalous energy (or velocity) dependence of some physi-
cal parameter, an apparent violation of angular momen-
tum conservation, and violations of parity conservation.

The object of this paper is to explore another, somewhat
less obvious, manifestation of LNI, namely, a breakdown
of the universality of free fall (UFF), i.e., of the so-called
weak equivalence principle. The connection between LNI
and UFF is of interest for several reasons: To start with,
the great precision of the Eotvos-Dicke-Braginskii (EDB)
experiments' ' places strong constraints on models of
LNI, as we discuss below, and these constraints will be-
come even tighter when current experiments with in-
creased precision are completed. Conversely, any mani-
festation of LNI would imply a breakdown of the princi-
ple of the universality of free fall, and hence of the
equivalence principle.

A general discussion of the interrelations among the
equivalence principle, UFF, Lorentz invariance, and ener-

gy conservation has been given previously by Haugan. '

For present purposes the main conclusions of that discus-
sion can be summarized as follows: The weak equivalence
principle (WEP), which is a variant of the UFF hy-
pothesis, simply restates the null result of the EDB experi-
ments, namely, the absence (to a great precision) of any

difference in the gravitational acceleration of different test
masses. However, conventional metric theories of gravity
assume a stronger version of the equivalence principle in
which one adds to the WEP the assumption that "the out-
come of any local test experiment is independent of where
and when in the universe it is performed, and independent
of the velocity of the (freely falling) experimental ap-
paratus. "' Depending on whether the "local test experi-
ment" excludes or includes gravitational forces, the result-
ing equivalence principles are termed, respectively, the
Einstein equivalence principle (EEP) and the strong
equivalence principle (SEP). The connection between the
various forms of the equivalence principle and Lorentz in-
variance is embodied in a conjecture due to Schiff He
noted that since the self-energies of dissimilar test bodies
contain different relative contributions from strong, elec-
tromagnetic, and weak interactions, it would be difficult
to understand why all bodies accelerate (gravitationally) at
the same rate in the absence of a principle establishing
that all forms of energy behaved kinematically in the
same way. Schiff was thus led to suggest that the WEP
(derived from the EDB experiments) actually implied
Lorentz invariance as well, and hence that "any complete
and self-consistent gravitation theory that obeys WEP
must also, unavoidably, obey EEP."' ' It follows that a
breakdown of Lorentz invariance also implies a break-
down of the WEP (or UFF), and hence leads to a non-null
result in the EDB experiments. Haugan' has observed
that a quantitative connection between LNI and the EDB
experiments can be derived by using energy conservation:
For a body falling in a gravitational field the decrease in
potential energy is accompanied by a corresponding in-
crease in its kinetic energy. However, in the absence of
Lorentz invariance this increase in kinetic energy will not
result in the expected increase in the body's velocity, and
so the body will appear to have experienced an anomalous
(composition-dependent) acceleration, which is what the
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EDB experiments measure.
In the present paper we analyze the consequences of

Lorentz noninvariance for the EDB experiments by ela-
borating on the LNI model of Nielsen and Picek (NP).
We have focused on this model because it leads to very
specific quantitative predictions for a wide variety of pro-
cesses, and at the same time possesses some general
features which are likely to show up in any model of
Lorentz noninvariance. In Sec. II we describe the NP
model, and in Sec. III we apply this model to calculate the
difference in the gravitational accelerations of two test
masses due to a LNI contribution to the weak interac-
tions. Section IV discusses the implications of our results,
and in the Appendix we derive the expression for the
weak-interaction contribution to the nuclear binding ener-

gy which is needed in Sec. III.

II. THE LNI MODEL OF NIELSEN AND PICEK

tity Rp p"p:
g—„„p"p =m'~m' X—~"p"=m2 a—( ,'p—'+po'),

(2.5)

m~yJm, (2.6)

where m is the nucleon mass. For a&0 this is clearly not
a Lorentz-invariant expression, and it has the property
that its value in the proper frame of the nucleon varies
with the velocity v of the nucleon with respect to the pre-
ferred frame. This is similar to the behavior that arises
when the LNI effects are due to an external field whose
sources are at rest in the laboratory (or perhaps in the
frame of the galaxy, etc.). In this case the energy of a nu-
cleon in its proper frame also varies with the velocity of
that frame with respect to the field according to

(2.1)

Nielsen and Picek have suggested that LNI effects
may arise in the weak interactions due to a modification
of the Z or W-boson propagator D&,(x —y). In the usu-
al expression for Dz„(x —y) appropriate for low energies,

D& (x —y)= 2" 5 (x —y),
~w, z

we make the replacement

Rpv~8pv+&pv ~ (2.2)

jj T TTYVT

where X& is a constant tensor. To specify the form of P„,
NP impose the conditions (a) Hermiticity, X&,——X &, (b)
tracelessness, g"'+„„=0,and (c) rotational invariance (in
the preferred frame). Hermiticity of X&, is required to en-
sure that the overall Hamiltonian is Hermitian, and 7&,
can be chosen to be traceless by a suitable renormalization
of the weak coupling constant. NP further assume that
rotational invariance still holds in a frame at rest with
respect to the 3 K cosmic radiation, and implement this
with the assumption that 7& ——7 &. Taken together these
assumptions fix g». In our conventions'

x"=(x,x4 ——icx ), (2.3a)

(2.3b)

and hence,

1

3

1

3

1

3

(2.4)

~v v vvv
0

where a is an overall constant. The appeal of the NP
model lies in part in its predictive power in that 7&,
which has been determined via these arguments up to an
overall constant, can manifest itself in a variety of phe-
nomena. For the sake of generality we can, however, al-
low n to be different for each interaction.

It is important for later purposes to understand more
thoroughly the nature of the LNI effects that arise in such
a model. Consider, for example, the behavior of the quan-

(b)
FIG. 1. Contributions to the parity-conserving amplitude for

nucleon-nucleon scattering. (a) Direct diagram which gives
X(1,2) in Eq. (A5). (b) Exchange diagram which gives Y(1,2).
For purposes of evaluating M in Eq. (A4) we can set p&

——p&
I

and p2 ——p2.
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2

X
2 (plpp2pp i4 2p)-1/2

p2
(2.7)

The purpose of focusing our attention on M/ is precisely
because it is a Lorentz invariant in the absence of the con-

where y'=(I —v )
'i is the usual relativistic factor, and

J is the spin angular momentum of the quantum of the
field (J= 1 for photons, etc.).

Owing to the particular choice of Xz in the NP model,
care must be taken in extracting the LNI effects in the
EDB experiments. Consider the weak-interaction contri-
butions arising from 8' —+ and Z exchange shown in Fig.
1. As described in more detail below, we assume an effec-
tive low-energy current-current interaction at the nucleon
level, which leads to a sufficiently accurate picture for
present purposes. We then evaluate the invariant ampli-
tude ~ arising from the diagrams in Fig. 1, where ~ is
defined in terms of the S-matrix element S by'

S=1—i(2m) 6'(pi+p2 —pi —p2)

tribution from Xz . As we will see the presence of X&
leads to an explicit frame dependence of ~, in which the
violation of Lorentz invariance manifests itself at low en-
ergies as an explicit violation of Galilean invariance. To
see how this comes about let us consider as an illustration
the calculation of the charged-current contribution in Fig.
1(b) to the weak self-energy of the deuteron. From Eqs.
(2.1)—(2.4) the effective weak-interaction density is

ff(x) = J& (x)(6& +g& )J~(x)+H. c.
GF

(2.8)
J~(x) =ip(x)yz(1+ @5)n(x),

where Gz ——1.16637(2)&&10 GeV is the Fermi con-
stant, and p (x),n (x) are the field operators for the proton
and neutron, respectively. Since we are interested in the
weak contributions to the binding energy, we consider the
spin-averaged parity-conserving amplitude (~) which is
given by

GF ( iy pi+—m) ( —iy p2+m)
(M&) = —, gMf = (6„+X„„)Try~(1+y5) y,(i+@5)4 4 2 Pv Pv P 2m 2m

T(+)
12

GF 1 CX (+)
v'2 m' 3

P1 P2 710720 Pl P2 T12

(+) + — — +T12 =W1 r2 +&1 r2
(2.9)

where m is the nucleon mass, and the ~'s are the usual
Pauli spin operators [r+—= —,(r„+ir~)]. We next intro-
duce center-of-mass momentum P and the relative
momentum m. in the usual way

m)
p) = 7TJ. + P =&) +m) V,

M0
(2.10)

m)
——0,

describe the LNI effects. The calculation described above
can then be extended to an arbitrary nucleus containing X
neutrons and Z protons interacting via any combination
of charged and neutral currents. The generalization of
Eq. (2.11) is then given by Eqs. (A17) and (3.1) below,
where A and B are weak-interaction-model-dependent
constants. We present the details of this calculation in the
Appendix, and proceed in the next section to use these re-
sults to set a limit on e from the EDB experiments.

where Mp ——g.m =2m is the deuteron mass in the ab-j J
sence of any interactions. In the nonrelativistic limit the
weak-interaction terms arising from mj. contribute only to
the internal energy and can be dropped for present pur-
poses. We are thus finally left with

(WZ) = — 1+a+ v Ti2
GF 40 2 (+)
v'2 3

(2.1 1)

We see from (2.11) that for a=0 (Mt') is indeed Lorentz
invariant, but for a&0 Galilean invariance (and hence
Lorentz invariance) is violated through the dependence of
(Mi') on the center-of-mass velocity v.

It is evident from (2.11) that when the appropriate
overall factors are included, the a-independent term will
give the usual parity-conserving weak contributions to the
mass of the nucleus, while the Q.-dependent terms will

III. LIMITS ON LNI EFFECTS
IMPLIED BY THE EOTVOS EXPERIMENTS

M=Mp+M =Mp+A +aB~(1+—,v ) . (3.1)

Equation (3.1) can then be inserted into the expression for
the total conserved energy E of a test mass located at a
height z in a gravitational field,

E=M+ —,Mv +M'gz . (3.2)

In this section we use the result in Eq. (A17) to derive a
quantitative limit on o. from the EDB experiments. Let
Mp ——Mp(Z, N) denote the sum of all contributions to the
inertial mass of a nucleus (with Z protons and N neu-
trons), exclusive of the weak-interaction contribution. It
then follows from (A3) and (A17) that the total inertial
mass M =M(Z, N) is given by
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v =Up+at, z =Uot+ —,at 2 (3.4)

When the resulting expressions for E at z and z=0 are
equated we find immediately

T

11 aB M
a 1+

Mo Mo
(3.5)

Since B„/Mo varies from material to material, it follows
that for o,&0 test masses of different composition will ex-
perience different gravitational accelerations, even .if
M'=Mo. Thus for two dissimilar test masses 1 and 2 the
fractional difference in their accelerations is given by

Aa 11 B~ i Bw2~—CX (3.6)
g g 3 Mp& Mp2

a) —a2

Equation (3.6) thus establishes one of the goals of this pa-
per, namely, a quantitative relation between Lorentz
noninvariance (a&0), and a deviation from universal free
fall (ha&0).

It is of interest to contrast Eq. (3.6) to the result that
would arise from a coupling of the test masses to a long-
range hypercharge (or baryon-number) field. ' Such a
field would also produce apparent local violations of
Lorentz invariance (such as the dependence of the proper
mass of an object on its velocity in the laboratory' ), but
these would be fundamentally different in the EDB exper-
iments from those due to X„„,as we now discuss. Consid-
er, for example, the force on object 1 due to the combined
gravitational and hypercharge fields of the Earth:

In Eq. (3.2) g= g ~

is the local acceleration of gravity
(due to either the Earth or the Sun), and M' is the passive
gravitational mass.

'

Combining Eqs. (3.1) and (3.2), and
retaining only the leading contribution from v, we find

E=-Mo+ —,'Mov +a8~(1+ —", v )+M'gz,
(3.3)

Mo =no
If the test mass is now released at z and falls to z =0, then
its velocity u =

~

v
~

and acceleration a =
~

a
~

are given in
terms of the elapsed time t by the usual nonrel'ativistic re-
lations ( uo is the initial velocity)

f yE yi
m;~m; 1—

GfnE m).
(3.9)

and not by introducing a LNI velocity dependence as in
the NP model. The NP model and the hypercharge field
are thus examples of the two fundamental classes of EEP
violations, namely, preferred frame effects (NP) and pre-
ferred location effects (hypercharge). Further discussion
of such LNI effects can be found in Refs. 4, 15, 16, and
21. It is interesting to note from Eqs. (3.6) and (3.8) that
these two mechanisms leading to ha&0 can be dis-
tinguished by their different dependences on the composi-
tions of test bodies. It follows that if a nonzero result for
Aa were actually observed, then either or both of these
mechanisms as a source of this effect could be ruled out
by an appropriate series of measurements on a collection
of disparate test masses. It appears to be a rather general
feature of LNI mechanisms that different sources of such
effects do in fact lead to different expressions for the
composition dependence of ha.

Returning to Eq. (3.6) we insert the appropriate values
of B~/Mo from Table I, which are obtained by using the
specific numerical values of the various parameters given
in the Appendix. We find

i
a

i
&4. 1&&10 ', 95% C.L.

(Ref. 13 using Al and Au), (3.10a)

i
a

i
(1.5X10, 95% C.L.

(Ref. 14 using Al and Pt) . (3.10b)

We note from Table I and Fig. 2 that B /Mp is a very
slowly varying function across the periodic table, which
then leads to a large cancellation between the two terms in
parentheses in Eq. (3.6). The sensitivity of the EDB ex-
periments to the weak interaction can be improved some-
what by comparing elements which are as far apart as is
practicable in the periodic table. Thus if carbon and
uranium were used, the sensitivity would increase by ap-
proximately 40% compared to Al and Au, other things
being equal. For the sake of completeness we also quote
the limit on f obtained from the EDB experiments in
Ref. 4,

mEm ) 2 3'E3'i
F~ ——m&a& ———G 1 —fR GmEm (

(3.7) (6/10, 95% C.L.
Gm

(3.11a)

Here f is the hypercharge analog of the electric charge e,
G is the Newtonian gravitational constant, R is the radius
of the Earth, and mE(yE) is the Earth's mass (hyper-
charge), etc. From (3.7) it follows immediately that

f y'E

Gm pE

3'i 3'2
(3.8)

where pj:—mj/m is the mass of object j in units of the
nucleon mass. We see from Eqs. (3.7) and (3.8) that even
though a hypercharge field leads to an anomalous ac-
celeration, b.a&0, it does so by making the effective grav-
itational coupling composition dependent,

Element

C
Al
Fe
CU

Ag
Sm
pt
Au
Pb
U

z
6

13
26
29
47
62
78
79
82
92

6
14
30
35
61
88

117
118
125
146

12
27
56
64

108
150
195
197
207
238

10 8 /Mp

4.468
4.447
4.417
4.394
4.347
4.275
4.223
4.227
4.207
4.165

TABLE I. Values of 8 /Mp from Eq. (A29) for some select-
ed elements.
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0.4470 -)

0.4430—

04390—

O
0.4350—

3
CQ 0.43IO-

COo
0.4270—

using the Al-Au results of Ref. 13. The corresponding
limit from the Al-Pt data of Ref. 14 is

2

&2X10, 95% C.L.
Gm

(3.11b)

It is of interest to compare the limits on a and f im-
plied by the EDB experiments to those obtained from the
E -K system. ' Nielsen and Picek have shown that
the effect of a&0 on the KL -Ks mass difference
b,m =(mL —ms) is to impart to b, m a y dependence
which can be expressed in the form

0.4 I 90—

I I I I I I I I I I I I I I I I I I I I I I I I I

0 8 I6 24 32 40 48 56 64 72 80 88 96
Z

FICx. 2. Variation of B /Mo as a function of Z. The explicit
expression for 8 /Mo is given in Eq. (A29) in the approxima-
tion of retaining only the vector-meson-exchange contributions
toM .

3 Z(Z —1) e Z(Z —1)
Coul

0
(4.1)

where Rp=1.07 fm, and e is the electric charge. For the
experiment of Ref. 14 comparing Al and Pt we have

Bco &(A1) Bc,„i(Pt)
Mp(pt)

=3X10
J

a
/

from which it follows that

(4.2)

from EDB experiments, unless the pion contribution is
substantially larger than the rough estimate given in the
Appendix. However, on purely phenomenological
grounds one could well imagine models in which the LNI
mechanism manifested itself only in b,S=0 weak interac-
tions, in which case an effect would be seen in the EDB
experiments but not in the E -E system.

One can elaborate upon the phenomenological approach
by asking for the limits on a that would follow from the
EDB experiments if the source of the LNI effects were
the strong or electromagnetic interactions. Up to an
overall numerical factor, we would obtain in each case the
analog of (3.6) with B„replaced by B„or BEM for the
strong and electromagnetic interactions, respectively.
Since these constitute a larger fraction of Mp than does8, the limits on o, would be correspondingly stronger.
Consider, for example, the Coulomb contribution Bc,„l to
the nuclear binding energy. Using the semiempirical mass
formula ' this is given by

hm(a) =Am [I+—,
' a(y ——,

' )], (3.12)
1(7

I
&4X10 ', 95% C.L. (4.3)

where Am is the usual value that would obtain in a
Lorentz-invariant world. For y ~~1 this corresponds in
the notation of Refs. 1—4 to a slope parameter b~' given
by

bg ——Ta .(2) . 4 (3.13)

i
ba'

i
&1.7X10

and hence

(3.14)

ia
~

&1.3X10, 99.7% C.L. (3.15)

As shown in Ref. 4, we can also obtain from the K -E
data the limit

f /Gm &1X10 '", 99.7%%u C.L. (3.16)

IV. DISCUSSION AND SUMMARY

As noted in the Introduction, our objective has been to
establish a quantitative connection between the violation
of Lorentz invariance and the acceleration anomaly b,a /g
in the EDB experiments. Our results are given in Eqs.
(3.6) and (3.10) for the specific model of Nielsen and Pi-
cek, in which the weak interactions are the source of the
LNI effects. We see from Eqs. (3.10) and (3.15) that if the
LNI mechanism were indeed universal, the limit implied
by the E -E data would be stronger than that arising

Using the internal-fit results of Refs. 1—4 we find that at
the 3o level,

E2 k2+ 2 ~2 k2+ 2 k4yg2 (4.4)

where A ' is determined by the lattice spacing. Although
the term proportional to k would, in principle, lead to an
acceleration anomaly b,a/g&0, the magnitude of this ef-

We see that the limit on a presumed violation of Lorentz
invariance in the nuclear Coulomb interactions is quite
stringent, and those on the various components of the
strong interactions would be better still.

This discussion illustrates the value of the EDB experi-
ments in setting limits on LNI interactions, and other new
interactions as well. Since almost any coupling will show
up at some level as a contribution to the energy of a nu-
cleus, the EDB experiments provide a general filter for a
wide class of possible new interactions. As the limits on
b,a/g from the current generation of experiments im-
prove, we will thus have available an increasingly more
powerful tool for probing models of Lorentz noninvari-
ance in a variety of interactions. Further discussion of the
constraints implied by the EDB experiments for various
interactions are given in Refs. 4, 21, 22, and 24.

We conclude with a brief discussion of a model of LNI
mentioned in Ref. 3. There it was noted that a violation
of Lorentz invariance could be introduced by taking lat-
tice gauge theories seriously to the point of supposing that
space-time really was a lattice. This would then lead to a
modification of the usual relation between the energy
E(k) of a particle and its momentum k,
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feet would be too small to show up in the present-day ex-
periments. It thus appears that the best way to look for a
LNI effect of the type suggested in (4.4) is in a high-
energy experiment as discussed in Ref. 4.

A, rr(x) = [J&'(x) J"(x)
2

+J„'"'(x)J'"'(x)](5„+X„), (A 1)
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4p

(A2)

APPENDIX. CALCULATION
OF THE WEAK-INTERACTION CONTRIBUTION

TO THE NUCLEAR SELF-ENERGY

In this Appendix we calculate the weak-interaction con-
tribution to the self-energy of an arbitrary nucleus in the
presence of 7& . Our discussion and results closely paral-
lel those of Haugan and Will, except that now some ad-
ditional care must be taken to properly treat the LNI con-
tributions. For our purposes it is sufficient to consider
the effective low-energy interaction which arises from
weak vector-meson exchange:

5, Ap, 3„, ap, and a„are phenomenological parameters,
whose values in some specific models will be discussed
below. As noted previously, a description of A, f~ in
terms of fundamental quark fields (rather than in terms of
phenomenological nucleon fields) would not change the
results enough to be of interest at the present stage. We
will return at the end of this Appendix to discuss this
question in greater detail. The weak contribution M~ to
the nucleon self-energy is given by

M~= dx 0 Adg 0 (A3)

where
~

0) denotes the ground-state nuclear wave func-
tion. We can write M~ in the general form

M„= g fd x) d x/2( (1)gg, (2)[X(1,2)$(( 1)gg(2) —Y(1,2)P((2)P), (1)]5 (x) —x2),2 k, l
(A4)

where the factor —, corrects for double counting in g& '&, and the presence of 5 (x) —x2) reflects the short range of the
vector-meson-exchange contribution to the weak interactions. Qq(1) denotes the wave function for particle 1 in the nu-
clear state k, and g& &

accounts for the possibility that nucleons 1 and 2 can be in any of the nuclear states. The sum-
mation over k, l extends over all the quantum numbers of the nuclear levels including their isospins. However, the spin
quantum number has already been summed over in obtaining X(1,2) and Y(1,2) which are given by

( iy p, +m—) ( iy p2+m)—
X(1,2) = —,'(5~„+X„„)Tr y„(1+5,y, ) Tr,y(1 +52y& ) 7

2tPl 2m

(A5)
( iy p, +m)— ( iy p, +m)—

Y(1,2) = 4 (5& + X& )Tr y&(1+5)yq) y„(1+52y~) r
2tPl 2Pl

Here the parameters 512 denote any of the constants 5,
a~, or a„ in Eqs. (A2)—(A3), and r denotes one of the iso-
spin factors

~(+)
+1p %2p &

7 1n +2n ~ +1n +2p ++1p %2n (A6)

In order to extract the momentum-dependence of M we
have partially undone the usual nonrelativistic approxima-
tion for the wave function pr, (1),

Pr, (1)=Rr,(r))X(T))X(cr)) . (A7)

Rq(r) ) is the spatial wave function and X(o) ) and X(r) )

are Pauli spinors for spin and isospin, respectively. Since
X(cr, ) arises from the use of the approximation

p)
——0

u (p), cr) ) ~ X(o ) )

for the free-particle Dirac spinor u(p), o ) ), we have sim-
ply replaced X(cr) ) by u(p&, o)) in (A7) in order to obtain
the leading momentum-dependent contributions in (A4).
The single-particle momenta pz can then be rewritten in
terms of the center-of-mass momentum P and the relative
momenta nJ as in Eq. (2.10). The effect of the substitu-
tion (A8) is then to boost the nucleus to the momentum P
in such a way that each individual nucleon is boosted to a
momentum pi with gpJ =P. Note that since we are only
interested in the leading contribution of O(P/M), we can
safely use the nonrelativistic definitions of the center-of-
mass and relative coordinates given in (2.10) in place of
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the more complex relativistic formulas. The relative
momenta mj act on the internal wave functions Rk and
lead to velocity-dependent corrections to the nuclear wave
functions, which can be neglected for present purposes.
With the approximation of neglecting nz, the sum over

I

spins in (A5) then allows us to express X(1,2) and Y(1,2)
in terms of the center-of-mass momentum P. The sum
over isospins can be carried out in the following way.
Consider, for example, the isospin average (T'+') of
~(+)

( T'+') =gg, (1)g,(2)T'+'[aX,(1)g,(2)—bg, (1)X,(2)]
7 ) 7

=gg, (1)g, (2) —,(1—r), r2, )[aX,(1)g, (2)—M', (1)X,(2)],
7 7T

(A9)

where a and b denote the spatial part of the matrix ele-
ment in (A4). In obtaining (A9) we have used the identi-
ties

T'+'= —,
' (1 r„r2—, )P, , P, = —,(1+v) r2),

contributions with ~ = —1 and Z contributions with
~'=+ 1 it follows that

I~7~72 =72'~
(AIO) b2 [A ——(X —Z) ]= 2bXZ —. (A13)

where 7 and g' are two different Pauli isospinors. For
fixed ~ the sum over z' extends over all nucleons except
for the last one (denoted by r'). If the nucleon in question
is a proton in a nucleus with Z protons and X neutrons,
then the sum over ~' extends over 2 —1 nucleons and
Z —1 protons. For our purposes we can approximate
3 —1=2 and Z —1=Z which leads to a simplification of
the final expression for M . Since the result of (A 10) is
to effectively replace T'+' by —,(1—r~, r2, ) which is a di-
agonal operator, we can use the normalization condition
on the Pauli isospinors,

X (1)X (1)=5 (A 1 1)

to write (A9) in the form

The averaging over the other isospin factors can be car-
ried out in a similar fashion, and resnlts are presented in
Table II.

Having carried out the sum over spins and isospins, it
remains to evaluate a and b in Eq. (A12) by carrying out
the integrals over the nuclear wave functions. This can
easily be done by making use of the 6 function in (A4),
and noting that by virtue of the normalization of the wave
functions,

X) k X) k XI ——1

We can approximate /krak by 1/ V, where Vis the nuclear
volume. This gives

I d x I (t'k(xl)ol (xl)ok(xl )ol(xl) —I ~V ~

( T'+') =g —,
' (1 ~v')(a5„— b), —

T7 1

(A12)
V=A4mRo /3, Ro ——1.07 fm .

(A15)

where ~=+ 1 and ~'=+ 1 are the eigenvalues of ~~, or r2, .
It follows that the contribution proportional to a in (A12)
vanishes, leaving only the exchange contribution propor-
tional to b, which arises from Fig. 1(b). Since there are X

In principle, one could, of course, evaluate the integral in
(A4) numerically but the approximations leading to (A15)
are sufficiently good for present purposes. Combining all
of the preceding results we find

M~=2 Gp. V ' [2(h —1)+ (1+6, )W, ]XZ+
m ~ Wp+(a~ —1)+ ~ (1+ap )8') A~ Z

m 2m

+ —
2

8 2+(a„—1)+.
~ (1+a„)8') A„X — 8'2ApA„NZ

m
(A16a)

8') ——m (1+a+—', av~),

W2 ——m ( —1+a+ —,av ) .
(A16b)

The presence of the velocity-dependent terms 8'& and 8'z in M„ is now the specific manifestation of Lorentz noninvari-
ance and, as expected, these vanish when +=0. We can now write the final expression for M in the form

M~ =A~+aB~+ —,aB~v

A =2 ~ GF V 'IXZ[(35 —1)+22„A~]+—,'X A„(1+3a„)+—,'Z Ap (1+3a~ )I,
8~=6+2 ~ V 'INZ[(b, +1)—A~A„]+ —,X A„(a„—1)+ , Z A~ (a~ 1)I . ——

(A17a)

(A17b)

(A17c)
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TABLE II. Results of isospin averaging for various opera-
tors.

Isospin operator =f(r)

Combined with (A19) and (A21) these lead to
—3.5 &H( '/H'+'&1. 5,

(A23)

&1p &2p

1y +2'
&jp+2g ++1g+2p

b ( —2NZ)
aZ +b( —Z )

aN +b( —N )

a (2NZ)

For a =0, Eq. (A17) reduces to the result given in Eq. (10)
of Haugan and Will.

In the standard Glashow-Salam-Weinberg model of the
weak interactions, the various parameters appearing in
Eqs. (A2) and (A17) have the following values:l4

1
Qp =

1 —'4 sin 0~

Ap ———, —2ssn Og

b.=Gg /Gl ——1.25 .

a„=1,

(A18)

These values of the parameters are appropriate to our sim-
plified model in which the proton and neutron couple
directly to 8'—+ and Z . In a more realistic model in
which the fundamental fermion fields are quarks, the
various parameters will be renormahzed due to QCD ef-
fects. We can estimate the magnitude of these effects
from the results already obtained for the parity-violating
(PV) weak Hamiltonian. Consider, for example, the
PV operator H'+' proportional to T'+', which arises
from weak p

+—exchange. Naively, we expect H'+' to be
of order

2

10
V'2 ~ v'2 m

(A19)

The effect of QCD corrections on the contribution from
T'+', which is the sum of an isoscalar and isotensor,

T+ =tP —t2,

0.4S &H(2)yH(+) &0.50.
We see from (A23) that the effect of the QCD corrections
is to enhance the antisymrnetric I =0 contribution and to
suppress the symmetric I =2 contribution. The net result
is that H'+'T'+' can be enhanced by as much as a factor
of 3.3. Actually the effects of QCD are somewhat more
complicated: Since the summation over the nucleon iso-
spins gives

( ro ) =a —,
' (N Z)'+—b( —2NZ),

(t, ) =a ,'(N-Z)—', (A24)

it follows that QCD corrections not only change the
overall scale of the effects but also change the dependence
of 3 and 8 on N and Z. We note that in contrast to
the case for the charged currents, the parity-conserving
(PC) neutral-current contributions cannot be related in a
straightforward way to the analogous parity-violating
ones. (There is, for example, no axial-vector analog of the
electromagnetic current. ) The extensive theoretical
analysis which would be required for a complete treat-
ment of these effects is not warranted at present, and in
any case is unlikely to substantially modify A or B .
Moreover, more significant uncertainties might arise from
weak PC ~ exchange whose contributions we have not in-
cluded in (A17). Here the PV and PC dynamics and
kinematics differ in a way that might lead to a substantial
relative enhancement in the PC case. The main contribu-
tions to the weak NNlr vertices (both PV and PC) come
from the product of +1 and —1 helicity neutral currents
(the so-called "penguin" contributions3 ), and the theoreti-
cal result is in reasonable agreement with the data. '
Since the weak PV NNm amplitude is 5 wave, whereas
the PC amplitude is P wave, kinematic factors such as
( m„d are quark masses)

1

t0 TV1 +2 ~

1 1

r2 = l (rlzr2z T rl r2)

is to renormalize each of these pieces differently:

H(+) T(+) H"'t, —H"'t, ,

1/2

H(0) 3g g ( ) H(2) y
( )

~

2

(A20)

(A21)

m —mll P

md —mu
2 2

in the PV case might be replaced by much larger factors
such as

2m

(mg+md)

in the PC case. We might thus expect a relative
enhancement of the PC amplitude of order

Here gp is the strong pNN coupling constant (go=2. 79),
and h&J' are the weak PV NNp amplitudes in the iso-
spin states j=0,2. These amplitudes are obtained by
combining data on PV transitions with various theoretical
arguments, but are only approximately known at present.
The best estimates of h&

' are

2m (mg —md )
A ( NNlr) pc-A (NNm)pv.

mg +md mp —m~

=10 A(NNlr)pv=aA(NNm. )pv, (A25)

2 1 &( 10 & Ap & 0 89 Q 10

—0.30X10 '&hp '/~6( —0.27X10
(A22)

where we have used the current-quark masses. To actual-
ly estimate the magnitude of the PC lr-exchange contribu-
tion to A„and B~ we should replace GF in (Al) roughly
by
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GF-g ~~A(NNm)pv~(m ) (A26)

Kg-~~A(NN7T)pv(GFm- ) 7X10 K 7. (A27)

Given the theoretical uncertainties involved in the preced-
ing calculation, the best we can do at present is to esti-
mate the m-exchange contribution as we have done. Our
results suggest that pion exchange may in fact be more
important than vector-meson exchange, which would then
imply a correspondingly stronger limit on cx from Eq.
(3.6). Moreover, if the dependence of the pion-exchange
contribution on Z, N, and A were such that B /Mo in
Eq. (3.6) varied more rapidly across the periodic table
than is the case for vector-meson exchange, then the near
cancellation that presently takes place in Eq. (3.6) would
be prevented. This again would enhance the weak contri-

where g ~&—13.5 is the strong XX~ coupling constant.
This leads to a net enhancement of the PC amplitude of
.order

Mo ——(1 amu)A =0.932A GeV/c

Combining (A28) and (A17) we can then write

B ~Z Z2Ii)
1 705

XZ 0 082
Z

10 8

g2 g2

(A28)

1.705——1.623 && 10Z Z 8 (A29)

The values of B„/Mo are given in Table I for some select-
ed elements, and the variation of B~ /Mo across the
periodic table is shown in Fig. 2.

bution to the binding energy, and would further tighten
the limits on a.

Given the various uncertainties in the weak PC ampli-
tude, the most reasonable approach to obtain a quantita-
tive limit on a is to simply use the results in (A16)—(A18)
with the parameters as specified. We have taken
sin 0~——0.23, and have expressed Mo in the form
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