Printed ISSN 1330-0008
Online ISSN 1333-9125
CD ISSN 1333-8390
CODEN FIZAE4

SUPERCONDUCTING PROPERTIES OF THERMALLY-RELAXED $\rm Zr_{80}Co_{20}$ METALLIC GLASS

IVAN KOKANOVIĆ a , BORAN LEONTIĆ a and JAGODA LUKATELA b

^aDepartment of Physics, Faculty of Science, University of Zagreb, P.O. Box 331, Zagreb, Croatia

^bInstitute of Physics, P.O. Box 304, Zagreb, Croatia

Dedicated to the memory of Professor Zvonko Ogorelec

Received 21 September 2004; Accepted 16 May 2005 Online 10 November 2006

We have studied the effect of thermal relaxation on the superconducting properties of $\rm Zr_{80}\rm Co_{20}$ metallic glass by means of differential scanning calorimetry and electrical resistivity measurements in the vicinity of the superconducting transition temperature T_c . Experimental values for the crystallisation temperature and activation energy of the crystallisation processes were derived by studying these processes at different heating rates. The T_c of the $\rm Zr_{80}\rm Co_{20}$ metallic glass thermally relaxed with a heating rate of 60 K/min to slightly below its first crystallisation exotherm is higher than in unrelaxed $\rm Zr_{80}\rm Co_{20}$ metallic glass, whereas in all other thermally relaxed samples T_c decreases with decreasing heating rates and increasing temperature of relaxation. The homogeneity of the thermally relaxed $\rm Zr_{80}\rm Co_{20}$ metallic glass is discussed by using the superconducting transition width as a criterion. The superconducting transitions of thermally relaxed $\rm Zr_{80}\rm Co_{20}$ metallic glass samples are characterised by a sharp fall in electrical resistance. This suggests that the samples are homogeneous on a spatial scale of less than the zero-temperature coherence length ξ_0 .

PACS numbers: 61.42.+h, 74.70.Mq

UDC 537.312

Keywords: $Zr_{80}Co_{20}$ metallic glass, thermal relaxation, superconductivity, transition temperature T_c , homogeneity, crystallisation exotherm, electrical resistance

1. Introduction

It has been found that the presence of crystallites in amorphous superconductors can enhance the superconducting transition width above that obtained in homogeneous sample [1]. Thus, superconductivity provides a rather sensitive tool for probing the microscopic state of amorphous alloys. Many studies have been carried out in order to understand the effect of structural relaxation on the $T_{\rm c}$ of metallic glasses [1,2]. The $T_{\rm c}$ of Zr₂X (X= Co, Ni, Pd), and Zr₃X, (X= Ni, Pd, Rh), metallic glasses have been found to decrease their values for the as-quenched state [1]. This decrease in $T_{\rm c}$ upon annealing has been linked to the decrease in the electron-phonon coupling constant, $\lambda_{\rm ph}$, created by a hardening of phonon modes as a result of relaxation of the quenched-in strains or redistibutions of the defects created by rapid quenching. The increase in $T_{\rm c}$ upon annealing in Zr-Fe metallic glasses, however, has been related to the decrease in the spin-fluctuations mass enhancement, $\lambda_{\rm sp}$ [2].

The purpose of this experiment was to study the effect of thermal-relaxation on the short-range order in $Zr_{80}Co_{20}$ metallic glass using thermal analysis, electrical resistivity and the measurements of the T_c . Zr_xCo_{1-x} metallic glasses are characterised by high room-temperature resistivities, they are paramagnetic [3] and become superconducting at temperatures below 4 K.

2. Experimental

Ribbons of $\rm Zr_{80}Co_{20}$ metallic glass were prepared by rapid solidification of the melt on a single-roll spinning copper wheel (60 m/s) in an argon atmosphere. The samples, 5 mm long, 1 mm wide and 25 μm thick, were then cut from the ribbon. The thermal stability of the $\rm Zr_{80}Co_{20}$ metallic glass was measured by means of a calibrated Perkin-Elmer DSC-4 differential scanning calorimeter using an atmosphere of purified argon gas. Heating rates of 60 K/min, 30 K/min and 10 K/min were employed. The samples were examined by X-ray diffraction, using Cu K α radiation.

The electrical resistance was measured by a low-frequency (23.2 Hz) four-probe ac method in the temperature range of 2-290 K; the precision extended to a few parts in 10^6 . The critical magnetic field ($H_{\rm c2}(T)$) measurements were performed at temperatures down to 2.5 K in magnetic fields up to 1 T, oriented transversely to the sample.

3. Results and discussion

The values of specific heat, $c_{\rm p}$, determined from the DSC measurements of the $\rm Zr_{80}Co_{20}$ metallic glass in the temperature range of 298–723 K at the heating rates of 60 K/min, 30 K/min and 10 K/min are shown in Fig. 1. The DSC trace shows two clearly resolvable exothermal peaks: the small first peak and the high, sharp second peak. The crystallisation peak temperatures $T_{\rm px}$ corresponding to the maximum of the first exotherm are designated $T_{\rm p1}$ and those corresponding to the maximum of the second exotherm are designated $T_{\rm p2}$. The values of $T_{\rm p1}$ and $T_{\rm p2}$ observed with the heating rates s=10 K/min, 30 K/min and 60 K/min are shown

in Fig. 1. The dependence of the temperatures $T_{\rm p1}$ and $T_{\rm p2}$ on the heating rate, s, was used to determine the activation energy of crystallisation $E_{\rm a1}$ and $E_{\rm a2}$. For this purpose, we used the adaptation of the method of Kissinger [4]. The values of $E_{\rm a1}$

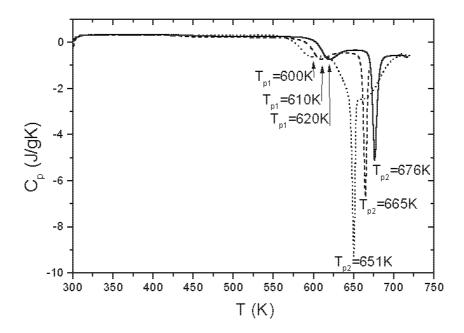


Fig. 1. The temperature dependence of $C_{\rm p}$ of the $\rm Zr_{80}Co_{20}$ metallic glass in the temperature range of 298 – 723 K at the heating rates, s: s=60 K/min (full line), s=30 K/min (dashed line), s=10 K/min) (dotted line).

and $E_{\rm a2}$ are: $E_{\rm a1}=(2.67\pm0.05)~{\rm eV}$ and $E_{\rm a2}=(2.51\pm0.05)~{\rm eV}$. Comparing our thermal data with those previously published, we find good agreement in $T_{\rm px}$, and $E_{\rm a}$ with results of Buschow ($E_{\rm a2}=2.69~{\rm eV}$) [5] and Altounian et al. ($E_{\rm a2}=2.9~{\rm eV}$) [6].

The change in the temperature-dependent electrical resistivity, relative to its value at 290 K, $\Delta \rho/\rho(290 \text{ K})$, of the thermally relaxed $\text{Zr}_{80}\text{Co}_{20}$ samples for the temperature range of 5-290 K is shown in Fig. 2. The temperature coefficient of the resistivity (TCR) of the samples thermally relaxed in the heating temperature range of 298-563 K is negative. The TCR changes sign and becomes positive for the heating temperature higher than T_{p1} . The TCR values of the thermally relaxed samples increase as the temperature of heating increases. The temperature-dependent electrical resistivity relative to its value at 4.2 K, $\Delta \rho/\rho(4.2 \text{ K})$, of $\text{Zr}_{80}\text{Co}_{20}$ metallic glass in the vicinity of T_{c} is shown in Fig. 3. The T_{c} was determined as the midway point on the resistivity versus temperature transition. The experimental data are

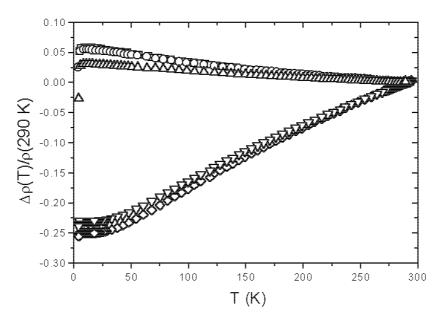


Fig. 2. The change in the temperature-dependent part of the electrical resistivity relative to its value at 290 K $(\rho(T) - \rho(290 \,\mathrm{K}))/\rho(290 \,\mathrm{K})$ of $\mathrm{Zr}_{80}\mathrm{Co}_{20}$ metallic glasses: unrelaxed (\Box) , the thermally relaxed up to 563 K with $s=60 \,\mathrm{K/min}$ (\Diamond), the thermally relaxed up to 563 K with $s=10 \,\mathrm{K/min}$ (\Diamond), the thermally relaxed up to 618 K with $s=10 \,\mathrm{K/min}$ (\Diamond), the thermally relaxed up to 653 K with $s=60 \,\mathrm{K/min}$ (\Diamond).

given in Table 1. It can be seen from Table 1 and Fig. 3 that all superconducting transitions are very sharp and the temperature difference between the 90% and 5%points of the resistivity change is typically less than 20 mK. The T_c of the samples thermally relaxed at a temperature of heating below the first exotherm changes slightly with decreasing heating rate. The $T_{\rm c}$ of the thermally relaxed ${\rm Zr}_{80}{\rm Co}_{20}$ metallic glass that underwent a heating rate of 60 K/min to slightly below the first exotherm (Fig. 1) is higher than in the unrelaxed Zr₈₀Co₂₀ metallic glass, whereas in all other thermally relaxed samples, $T_{\rm c}$ decreases with decreasing heating rates and increasing heating temperatures. Using the modified form of the McMillan equation [7], it can be shown that this change in T_c upon annealing is related to a decrease in the electron-phonon coupling constant, $\lambda_{\rm ph}$, and the spin fluctuation mass enhancement parameter, $\lambda_{\rm sf}$. The decrease in $\lambda_{\rm ph}$ created by a hardening of phonon modes as a result of relaxation of the quenched-in strains or redistribution of the defects will decrease T_c , while the decrease in $\lambda_{\rm sf}$ increases T_c . Thus, we can conclude that for the heating rate of 60 K/min, the thermal-relaxation in the thermally-relaxed sample decreases both $\lambda_{\rm ph}$ and $\lambda_{\rm sf}$, but the decrease in $\lambda_{\rm sf}$ is dominant, hence the $T_{\rm c}$ increases. The modification in the chemical short-range order due to heating above the first crystallisation exotherm resulting in evolution of the ω -Zr phase, which coexists with Co-enriched nanocrystal matrix as seen in

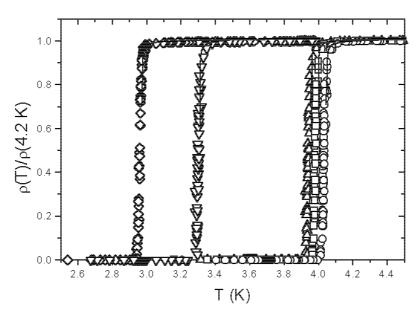


Fig. 3. The temperature-dependent electrical resistivity relative to its value at 4.2 K, $\rho(T)/\rho(4.2\,\mathrm{K})$, versus temperature below 4.5 K of $\mathrm{Zr_{80}Co_{20}}$ metallic glasses: unrelaxed (\square), the thermally relaxed up to 563 K with s=60 K/min (\bigcirc), the thermally relaxed up to 563 K with s=10 K/min (\bigcirc), the thermally relaxed up to 618 K with s=10 K/min (\bigcirc), the thermally relaxed up to 653 K with s=60 K/min (\bigcirc).

TABLE 1. Values of the heating temperature, T_a , the heating rate, s, the electrical resistivity, $\rho(290\mathrm{K})$, the temperature coefficient of the resistivity, $(1/\rho)\partial\rho/\partial T$, the superconducting transition temperature, T_c , the superconducting transition width, ΔT_c , the value of the $(\partial H_{c2}/\partial T)_{T_c}$ as determined from the slope of the measured H_{c2} versus T_c curve at $T_c(0)$, the density of states at the Fermi-level, $N^{\gamma}(E_F)$, the electron diffusion constant, D and the zero-temperature coherence length, ξ_0 .

T_a	s	$\rho(290 \mathrm{K})$	$\frac{1}{\rho} \frac{\partial \rho}{\partial T}$	T_c	ΔT_c	$\frac{\partial H_{c2}}{\partial T}$	$N^{\gamma}(E_F)$	D	ξ_0
±1		±5	-0.1×10^{-4}	± 0.01	± 0.005	± 0.1	± 0.1	± 0.1	±5
K	,	$\mu\Omega \mathrm{cm}$	1/K	K	K	T/K	sta./eV at.	$10^{-5} {\rm m}^2/{\rm s}$	10^{-10}
295	0	170	-3.3×10^{-4}	3.98	0.020	-3.5	2.4	3.27	42
563	60	168	-3.3×10^{-4}	4.03	0.015	-3.4	2.3	3.37	42
563	10	160	-1.9×10^{-4}	3.95	0.015	-3.2	2.3	3.47	43
618	10	132	18.9×10^{-4}	3.30	0.015	-3.0	2.5	3.7	52
653	60	115	20.9×10^{-4}	2.95	0.017	-2.4	2.5	4.7	58

the X-ray diffraction measurements [8], plays an important role in determining the

 $T_{\rm c}$ of thermally-relaxed samples subjected to different heating temperatures. Their superconducting properties are characterised by a somewhat sharper electrical resistive transition than observed in an unrelaxed sample (Table 1). This suggests that the thermally-relaxed samples are homogeneous on a spatial scale of less than the zero-temperature coherence length ξ_0 . The value of ξ_0 was estimated by fitting Eq. (1) to the experimental data given in Fig. 3 and is given in Table 1. The results of the fit are shown as solid lines in Fig. 3. The fluctuating conductivity in the vicinity of the $T_{\rm c}$ consists of two terms: the Aslamazov-Larkin term [9] which originates from the virtual Cooper pairs created by thermal fluctuations and the Maki-Thompson term [10] coming from the interaction of normal conducting electrons and the superfluid

$$\frac{\rho(T)}{\rho(4.2K)} = A - \frac{e^2 T_c^{1/2} \rho(4.2K)}{32\xi_0 (T - T_c)^{1/2}} \left(1 + \frac{4}{1 + [C/(T - T_c)]^{1/2}} \right),\tag{1}$$

where A is a free parameter, $e^2 = 2.43 \times 10^{-4} \Omega^{-1}$, $C = \pi \hbar/8k_B\tau_i$, and $\tau_i = \alpha_i T^{-2}$ is the inelastic scattering time. The value of $\alpha_i = (1.5 \pm 0.2) \times 10^{-10} \text{ sK}^2$, as determined from the fit, is in good agreement with the one obtained from the electrical resistivity measurements at higher temperatures [11].

The values of the density of electron states at the Fermi level, $N^{\gamma}(E_F)$, derived from Eq. (2), are given in Table 1,

$$N^{\gamma}(E_F) = -9.451 \ 10^{-10} \frac{M}{\rho d} \left[\frac{\partial H_{c2}}{\partial T} \right]_{T_c},$$
 (2)

where the prefactor in Eq. (2) is chosen so that $N^{\gamma}(E_F)$ comes out in states/(eV atom), M is the molecular weight in grams, d=6.9 g/cm³ the density of sample, ρ the electrical resistivity in Ω cm and $(\partial H_{\rm c2}/\partial T)_{T_c}$ is assumed in \emptyset/K . The value of the $(\partial H_{\rm c2}/\partial T)_{T_c}$ was determined from the slope of the measured $H_{\rm c2}$ versus $T_{\rm c}$ curve at $T_{\rm c}(0)$ and is given in Table 1. The absolute value of $(\partial H_{\rm c2}/\partial T)_{T_c}$ decreases with decreasing heating rates and increasing heating temperatures (Table 1). The values of the electron diffusion constant, D, are derived from the relation $D=(e^2N^{\gamma}(E_F)\rho)^{-1}$ and are given in Table 1. It can be seen from Table 1 that the values of D increase with increasing relaxation temperature and decreasing heating rate.

4. Conclusion

We have studied the effect of thermal relaxation on the superconducting properties of $\rm Zr_{80}Co_{20}$ metallic glass by means of differential scanning calorimetry and electrical resistivity measurements in the vicinity of the superconducting transition temperature, $T_{\rm c}$. The value of $T_{\rm c}$ of the thermally relaxed $\rm Zr_{80}Co_{20}$ samples, using a heating rate of 60 K/min to slightly below its first crystallisation exotherm, is higher than in unrelaxed $\rm Zr_{80}Co_{20}$ samples, whereas in all other thermally-relaxed

samples, the $T_{\rm c}$ decreases with decreasing heating rates and increasing heating temperature. The homogeneity of the thermally relaxed $\rm Zr_{80}Co_{20}$ metallic glass is judged to be high as evidenced by a small superconducting transition width and sharp electrical resistive transition. This suggests that the homogeneity is on a spatial scale of less than the zero-temperature coherence length ξ_0 . The resistivity decrease of the thermally-relaxed $\rm Zr_{80}Co_{20}$ is caused mostly by the increase of the electron diffusion constant, D (Table 1).

References

- [1] S. J. Poon, Phys. Rev. B 27 (1982) 5519.
- [2] M. Sabouri-Ghomi and Z. Altounian, J. Non-Cryst. Solids 205-207 (1996) 692.
- [3] I. Kokanović, B. Leontić and J. Lukatela, Fizika A (Zagreb) 10 (2001) 113.
- [4] H. E. Kissinger, Anal. Chem. 29 (1957) 1702.
- [5] K. H. J. Buschow, J. Phys. 14 (1984) 593.
- [6] Z. Altounian, R. J. Shank and J. O. Strom-Olsen, J. Appl. Phys. 58 (1985) 1192.
- [7] J. M. Daams, B. Mitrovic and J. P. Carbotte, Phys. Rev. Lett. 46 (1981) 65.
- [8] I. Kokanović, B. Leontić and J. Lukatela, Mat. Sci. Engineering A 375-377 (2004)
- [9] L. G. Aslamazov and A. I. Larkin, Phys. Lett. A 26 (1968) 238.
- [10] K. Maki, Theor. Phys. 39 (1968) 897; R. S. Thompson, Phys Rev. B 1 (1970) 327.
- [11] I. Kokanović, B. Leontić and J. Lukatela, Physica B 284-288 (2000) 1970.

SUPRAVODLJIVA SVOJSTVA TOPLINSKI-OPUŠTENOG METALNOG STAKLA $\rm Zr_{80}Co_{20}$

Proučavali smo učinak toplinskog opuštanja na supravodljiva svojstva metalnog stakla $Zr_{80}Co_{20}$ pomoću diferencijalne pretražne kalorimetrije i mjerenjem električnog otpora oko temperature supravodljivog prijelaza $T_{\rm c}$. Odredili smo eksperimentalnu temperaturu kristalizacije i aktivacijsku energiju kristalizacijskih procesa njihovim proučavanjem pri različitim brzinama zagrijavanja. Iznos $T_{\rm c}$ toplinski opuštenog metalnog stakla $Zr_{80}Co_{20}$ pri brzini grijanja 60 K/min do malo ispod njegove prve isotermne kristalizacije veći je nego u neopuštenom metalnom staklu $Zr_{80}Co_{20}$, dok se u svim ostalim toplinski opuštenim uzorcima $T_{\rm c}$ smanjuje pri usporenom zagrijavanju i povećanoj temperaturi opuštanja. Raspravljamo homogenost toplinski opuštenog metalnog stakla $Zr_{80}Co_{20}$ na osnovi širine supravodljivog prijelaza. Značajka supravodljivih prijelaza uzoraka toplinski opuštenih metalnih stakala $Zr_{80}Co_{20}$ jest nagao pad električnog otpora. To ukazuje na homogenost uzoraka u njihovim djelićima koji su manji od duljine koherencije na apsolutnoj nuli, ξ_0 .