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Reconsidering the variational procedure for uniaxial systems modeled by continuous free energy func-
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is briefly illustrated on the models for the classes | and Il of incommensurate-commensurate systems.
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Numerous materials which are under intense investi- Condition A:

gations in the contemporary condensed matter physics | ~.[ ¥ o af of
are thermodynamically one dimensional. The well-known f[ Z Z ju(c{fI D Yo dx =0, (1
examples are various uniaxial materials with incommen- 0 La=1j=1 duc,a x

surate and commensurate orderings [1] and quasi-ONgyhere » is the order of highest derivative of present
dimensional conductors with charge or spin density wave, the free energy functional, and is the length of
instabilities [2]. Order parameters for such systems argne system taken in the thermodynamic lirhit= . In
generally multicomponenty = (uy,us, ..., uy), and de-  particular, for free energy densities which do not depend

pend on a single spatial variable The principal task explicitly on x the condition (1) reduces to the simple
is then to find thermodynamically stable configurationsgqyality

u.(x), those which minimize the free energy functional

F. Since the latter is the one-dimensional integral, it is Fe+H=0, (2)
tempting to treat this variational problem as an equivalenfvhereF, is the averaged value of free energy ahds the

to the standard classical mechanical one [3], with the rolefrtegral constant which has the meaning of Hamiltonian
of time variable, vectors in th¥-dimensional mechanical in the equivalent classical mechanical problem (but does

configuration space, action functional, and Lagrangian athot have a direct physical meaning in the thermodynamic
tributed tox,u, F, and f, respectively, the latter being counterpart).

the free energy density. Conditions B:

In the present Letter we do not follow this widely ac- | L& 5
cepted attitude, but start from two obvious, yet substantial, — [ Z u(c’i% dx =0, (3)
differences between these two variational schemes. The LJo = 7" guca

first one is present in the very extremalization procedurewherea —1 N
In contrast to the classical mechanical trajectories, the re- The ensui’n'g.)';jis;:ussion will show that in the case of

alizable solutions_ of the Euler-Lagrange (EL) eqqationsthermodynamic functionals of the standard “mechanical”
for thermodynamic problems follow after an additional form the conditions (1) and (3) are of almost trivial

extremalization with respect to the initial (or boundary) eaning. They, however, have far-reaching implications

conditions. The seco.n_d difference concerns thg content rSst in IC models, for which, as was already pointed out,
the free energy densities. In the most interesting mode

for i A te (IC A incl ee energy densities depend in more complex ways on
for Incommensurate-commensurate ( ) Sys ems, NCUCerivativesu™. These conditions also appear to be a
ing the basic ones, they contain either terms linear i

rbowerful tool in the numerical determination of phase

. . - / — / / / . ) . ; ;
the first dgrlvz?ltlves(u_) (a’f},’ ”?’ oo lty), OF terms with diagrams, particularly for systems with nonintegrable free
higher derivativesu'”” = 77 (j > 1) (or both), in con-  energy functionals.

trast to the standard mechanical Lagrangians which do not |, order to derive the conditions A and B we start from

contain analogs of such terms. the general expression for the free energy functional
Starting from the first observation, we reformulate the L

procedure of thermodynamic extremalization, and derive, F — 1 [ f[u(x),u’(x),u”(x),...,u(”)(x);x}dx,

under assumptions specified below, the following neces- L Jo

sary conditions for any thermodynamic extremum 4)
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where f is an analytical function of its arguments, The dependence off ({u(x; A)}) on the parameters
bounded from below. Each thermodynamic extremumA is generally intricate. It may be at least partly
u.(x) of this functional has to obey the variational con- nonanalytic, as is usually the case for the functionals (4)
dition 6 F({u.}) = 0, equivalent to the Hamilton varia- with nonintegrable EL equations [4], and in particular for
tional principle in classical mechanics. This necessaryhose with free energy densitigs which are explicitly

condition leads to the EL equations x dependent. Thus, there is no efficient general way
;dl o f to extract local extrema off from the set{u(x; A)}.
Z( 1) dxi (,) = (@=1,....N), (5)  However, we can now conveniently reformulate the above

proposition that the thermodynamic extrema follow from
equwalent to the Lagrange equations in classicathe succession of the first order variation (5) and the
mechanics. The solutions of the EL Eqgs. (5) formextremalization with respect to the parametefs into
a set {u(x; A)} which generally depends ornN  an equivalent, and again sufficient, requirement that
continuous parameters(ay,...,az,ny) = A.  There the solutions of the EL equations are thermodynamic
is a freedom in the definition of the parametersextrema if they are local extrema in the dat(x)} of
A, the most usual choices being initial conditionsall configurations allowed by the functional (4). By this
[w(x0), u'(xo), ..., u®""D(xo)] where x, is an arbitrary enlargement of the set within which we are looking for
initial spatial posmon and boundary conditiofg(x;),  the local extremau.(x), we get a freedom to choose
u'(x), ... 0" D(x)iule), u'(x),...u" " V(x2)]  where arbitrarily (and suitably) the parameters with respect
x1 andx, are arbitrary end points. In classical mechanicso which the set{u(x)} is analytic and corresponding
these two choices correspond to the Newton and thextremalizations reduce to simple differentiations. This
Hamilton (variational) axiomatizations, respectively.freedom will be partly exploited here, by making two
Thermodynamic extrema, including thermodynamicallychoices of continuous parameters which will lead to the
stable configurations for whichs?F = 0, are those conditions A and B.
members of the sdu(x; A)} which extremalize the free  The first continuous parameter is introduced in the fol-
energy F({u(x; A)}) as a function of the parameters Jowing way. Let us take one thermodynamic extremum,
A. This additional property completes, together with they . (x), and define a set of functioda(x; ¢)} by
EL Egs. (5), the sufficient condition for thermodynamic
extrema. In particular, a configuration which fulfills the u(x; q) = uc(gx). (6)
conditionsd F = 0 and 6> F = 0 is thermodynamically

stable only if it is also a minimum in the sfi(x; A)}. The free energy functional (4) for this set becomes a

| function ofg given by

L[
Fulx;q)}) = Flg) = — [ fue@). qule). Pul(@). ... g"u () g7 ] . (7)
gL Jo

with z = gx andll(cj)(Z) = 6u£(z)/azj. The requirement| applied onto the function (7), gives the condition A,
that u.(x) is an extremum in the sef(x;q)} is ex- Eqg. (1).

pressed by The further simplification takes place for the function-
als (4) in which the free energy density does not depend

[0F(q)/9qlg=1 =0, (8) explicitly onx. Then, as in classical mechanics, there ex-

provided F(g) is a smooth function of for g = 1. Let Istsan integral constant (Hamiltonian),

us also take the thermodynamic lindit— « and assume @ Of af

that F(¢) then does not depend @n[up to the corrections = Z Z

of the order®(1/L)]. Under these assumptions, which I

will be critically examined later onF(g) may depend — Z Z( 1Yt~ 1—1)d+ af_ }

on g through only the density in Eq. (7). The latter i=2 j= dxitl 5,0

is an analytic function ofg since it is analytic with 9

respect tou/,...,u" by assumption. The derivative

for each solution of the EL Egs. (5). Using the obvious
'identity H = 1 [5 H dx, and the identity

w4 s (krmy 4" ' L e
ol dx = — E — 1)y lktm + (-1)'— d 10
] ( dx Zg X L m:0( ) u dxlfmflg 0 ( ) L j; < ) xs ( )

which follows after! successive partial integrations of the left-hand side, one reduces the expression (9) to

H=—F Z{ZZZ( 1)J+k (i—j+k— 1);1] . aj(fz)j| f Z ZJM(J)

i=2 j=0 k a=1 j=

dF(q)/dq is then well defined and the requirement (%)

Sdx.  (11)
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Here g in Eq. (10) is identified withaf/ou? from  correction which adjusts the period to be a divisorZof

Eqg. (9), andF. = F({u.}). The second term on the with an integer ratio. No analogous adjustment for the
right-hand side in Eq. (11) is negligible in the limit quasiperiodic and nonperiodic solutions is apparent. The
L — o, provided u.(x) and its derivatives are finite. conditions (13) are therefore expected to represent restric-
All thermodynamically stable extrema have this propertytive constraints on these solutions as possible candidates
sincef is bounded from below. The third term vanishesfor thermodynamic configurations.

for each thermodynamic extremum due to the condition The extremalization of the thermodynamic functional
(1). The expression (11) thus reduces to the condition A(4) with respect to the parameter s&, and its non-

Eq. (2). invariance with respect to the transformations— gx

The equality (2) is the consequence of the invarianceand u, — s,u,, in particular, become short of physical
of the functional (4) with respect to translations in justification when transposed to its mechanical counter-
and of its noninvariance with respect to the changes opart. For free energy densities which have the form of
x scale. As in classical mechanics, the former invarianceonservative Lagrangians one has= 1, and the deriva-
ensures the existence of the integral consfénand the  tives u}, u, ..., u)y enter only through a positive definite
degeneracy of the solutions of EL equations with respeaguadratic form (“kinetic energy”). The criterion (2) then
to the choice of “initial position"xy. The number of singles out only equilibrium points (homogeneous con-
parameters on which the set(x; A)} explicitly depends figurations)u = cte as possible extrema. For such so-
is then2nN — 1. Note that for all nontrivial functionals lutions the condition (8) is trivially fulfilled, sinca.(gx)
(4)onehasv = 1andn = 1,sotha2aN — 1 = 1. In  and the corresponding free enerf{y) does not depend
the simplest nontrivial cas®&/ = n = 1 the set /A has ong. The same is true for the conditions B which reduce
one parameter, i.e., jusl. to [uau’a]é = 0.

For functionals (4) with an explicit dependence of As was announced in the introduction, the utility of the
f, the insertion of the EL Egs. (5) into the expressionconditions A and B becomes apparent for the functionals
(1) leads to the relatiorF, = —H(L), where H(L) is  (4) which have richer dependences on the derivativas of
given by the, nowr dependent, expression (9).at= L.  and allow for thex-dependent stable configurations. For
Since the right-hand side in this relation dependsLon illustrations we take the basic models for the classes | and
it is inconsistent with at least one of two assumptions orll of IC systems [1], defined by [5]
the analyticity ofF(¢) specified below Eq. (8). We come 1
to the conclusion that whenever the free energy density f=—=(¢'— 8)? — V(o) (14)
depends explicitly onx, all thermodynamic extrema 2
are isolated nonanalytical points of the correspondingnd [6]
functional (4) with respect to changes ofscale. This 1
fundamental property is the reason why the condition A f="? = )?+ x?+ 5u4, (15)
does not hold for such functionals.

Our second choice of continuous parameters from th
set{u(x)} is defined by the scaling, — s,u, for any
1 = a = N. The steps equivalent to those specified b
Egs. (6)—(8) can be repeated now for eacHor which
F(s,) is a smooth function. The corresponding condition

éespectively.
The decisive term in the model (14) is the Lifshitz

invariant 5¢’. ¢ is the phase variable, so tht(¢ +

27r) = V(¢), the simplest choice being the sine-Gordon

Smodel with a single umklapp terrir,(¢) « cosp ¢, where

p is an integer. The problem (4), (14) is entirely solvable
[0F(sa)/05als,—1 = 0 (12)  [5,7], since the corresponding EL equation is integrable

then reduce to the conditions B. Performing partialand the setA has one parameter, e.¢{, Here we show

integrations and inserting EL Egs. (5) into Eq. (3), onehow the condition A enables an elegant derivation and an

finally gets the conditions original interpretation of the solution. The condition A for
=N Ji of L the functional (4), (14) reduces to
- (1) (—1yY — 7:| =0, (13) 2
ua . . )
LLZO JZo dxl g ™0 |, 208 =1.= | $l(d)dd
0

which are constraints on the boundary values of the ther- o
modynamic extrema. Note that the boundary (“surface”) = f \/2[—FC + 8%2/2 — V(¢p)]ldp . (16)
terms are the leading ones here, in contrast to the condi- 0

tion A in which the analogous terms are only negligible The determination of the thermodynamic phase diagram,
O (1/L) corrections to the finite volume terms of the orderi.e., of the dependence d@. on the control parameters

O (L°). Obviously, any periodic solution of EL equations present in the model (14), is thus reduced to the calcula-
satisfies the conditions (13). To this end it suffices to takdion of the integral.. The relation (16) also states that for
into account corrections of the ord@r(1/L) coming from  a thermodynamic extremum the corresponding mechanical
the boundary terms in conditions A and B, in particular aaction variable is just equal to the Lifshitz paramefér
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The dependence of the perigdof the stable configura- the problem (15) are very probably periodic. Note that
tion on control parameters follows from the known rela-by conditions (17) and (18) we have fixed two out of
tion for mechanical systems with one degree of freedomthree parameters from the séd for the problem (15).
P = dl./dH [8]. Finally, the corresponding configura- Very probably ¥ is not analytic for any choice of the re-
tion ¢.(x) follows from the quadrature of the EL equation maining third variational parameter, in close connection
with analready determined value @f. Thus, using the with the nonintegrability of the EL equation and the cor-
equality (2) we avoid a more tedious procedure used in theesponding chaotic structure of the portrait in the phase
analyses of the models (14) [5,7], namely, the entire intespace(u, u’, u”, u'").
gration of the EL equation (with freH) followed by the Having these and other [10] examples in mind, we
minimization of the free energ¥(H) as a function ofd. connect the limitations of the present method with the
Since the transformation (6) already exhausts the freedegree of the nonintegrability of a given functional by
dom in the choice of variational parametefé for the the following conjecture: larger is the number of missing
model (14), the condition B which is now given by integral constants (in the classical mechanical sense),
[¢(¢' — 8)]5 = 0, cannot be an additional constraint, smaller is the number of analytic conditions for the
but may only reproduce some already derived propertghermodynamic extrema (like those given by conditions
of the extremumg,.. This condition states that the con- A and B).
figuration ¢. has a slope¢’ = § at the pointsx = In conclusion, necessary conditions for uniaxial ther-
0,P,2P,...,NP, whereP is a period andV is a large modynamic extrema are obtained from the extremalization
(macroscopic) integer. It indeed follows independentlywith respect to space and order parameter scales. This
from the EL equation and the condition (16). procedure proves to be feasible for the free energy densi-
Various criteria suggest [9] that the model (15) isties which are not explicitly dependent on the space vari-
nonintegrable due to the presence of the second derivatiable. In particular, we show that in this case the sum of
of the real order parametet. Very probably H =  the averaged free energy and the integral constant (Hamil-
W? — )? — 20" — 2? — %u‘* is the only integral  tonian) vanishes for each thermodynamic extremum. Be-
constant among three parameters in the $kt The sides their general significance, the present results will

condition A now reads be certainly of practical use in analytical and numerical
. analyses of particular models for uniaxial systems.
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