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Starting from the basic Landau model for the incommensurate-commensurate ma-
terials of the class I I, we derive the spectrum of collective modes for all (meta)stable
states from the corresponding phase diagram. It is shown that all incommensurate
states posses Goldstone modes with acoustic dispersions. The representation in
terms of collective modes is also used in the calculation and discussion of static
dielectric response for systems with the commensurate wave number in the center
of the Brillouin zone.
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1. Introduction

The uniaxial incommensurate-commensurate (IC) materials of the I I class have
the wave number of commensurate ordering, qc, either at the center (qc = 0) or at
the border (qc = π) of the Brillouin zone. Here the unit length is taken equal to
the lattice constant. The corresponding Landau free energy functional is then an
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expansion in terms of a real order parameter u(z) [1–4],

f [u] =
1

2L

L∫
−L

[
c

(
du

dz

)2
+ d

(
d2u

dz2

)2
+ au2 +

1

2
bu4

]
dz . (1)

Since the parameter cmay acquire negative values, it is necessary to include into the
expansion (1) the further, second derivative term, with a coefficient d presumably
positive.

The mean-field phase diagram follows from the simple variational procedure for
the functional (1). It contains disordered, commensurate, and various stable [2,3,5]
and metastable [4] periodic phases. The most important among the latter is almost
sinusoidal,

us(z) ≈
√
4

3b

(
c2

4d
− a
)
sin

(√
− c

2d
z

)
, (2)

with weak higher harmonics [2,4].

Although represented in terms of the one-component (real) order parameter, the
periodic phases like (2) are generally incommensurate with respect to the underly-
ing lattice. From the other side, it was stated [6] that incommensurate orderings,
including those close to the commensurabilities of the I I class, should have to be
represented by at least two quantities, i.e., by the amplitude and the phase of some
periodic modulation. This expectation originates from the experience with the I
class of IC systems, characterized by at least two-dimensional order parameters.
More specifically, the incommensurate orderings are then most often represented
by the modulation of the phase of a complex order parameter. Since the model (1)
apparently does not comprise a phase variable, it was interpreted as a reduction,
appropriate only for the description of the commensurate ordering, of some richer
physical models that include at least two coupled modes, i.e., one-component order
parameters. The explicit Landau model with this property was formulated by Lev-
anyuk and Sannikov [7], and widely explored afterwards [8,6,9,10]. The alternative
approaches along the same lines, attempting primarily to explain the phase dia-
gram for betaine calcium chloride dihydrate (BCCD), were also proposed [11,12].
The physical arguments for such general approach to insulators from the I I class
were given by Heine and McConnell [13].

Coming back to the model (1), it is important to emphasize that, either already
bearing the whole physical relevance (like in charge density wave materials [14]), or
being derived from a more complex starting scheme [13], it accounts for the cross-
over between orderings with real and complex order parameters. In that sense the
solutions like (2) are examples of the mean field approximation for the latter. This
can be most easily recognized by looking at the dispersion of the quadratic part of
the expansion (1) in the reciprocal space, with the biquadratic (”bottle bottom”)
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dependence on the wave number (see Eq. (6)). This dispersion is an expansion
around a pair of symmetry related minima, that in addition takes properly into
account the symmetry condition on evenness with respect to the center (or the
boundary) of the Brillouin zone. In this sense the model (1) can be qualified as
the basic one for the I I class, while the more complex Landau expansions [7] are
necessary in, physically possible, but non-generic cases when two or more hybridized
modes are simultaneously close to instability.

In order to justify the above statement at the mean-field level, one has to prove
that incommensurate periodic states of the model (1) fulfill the crucial general
property of incommensurately modulated orderings, namely that for each of them
there exists a Goldstone mode with the frequency Ω0(k) that vanishes at k =
0, and generally has a finite slope (phase velocity) ∂Ω0(k)/∂k ≡ vG in the long
wavelength limit k → 0. Such mode should exist in the whole control parameter
(e.g. temperature) range of (meta)stability for a given state. It would correspond
to standard acoustic phason branches for IC orderings in the materials of the I
class. The existence of the Goldstone mode in incommensurate states like (2) for
the materials of the I I class is to be contrasted to a widely accepted belief [9] that
these states do not have a phason mode.

The requirement Ω0(k = 0) = 0 guarantees the presence of translational degen-
eracy of the ordered state. In the particular case (1), this means that the periodic
solutions should be invariant to translations z → z + z0 with arbitrary z0. This is
obviously fulfilled, since the kernel in the functional (1) does not depend explicitly
on z.

It remains to find out whether there exists a Goldstone mode with a nontrivial
dispersion [Ω0(k) /=0 for k /=0], and, if so, to determine its properties at the critical
lines of the phase diagram for the model (1). With this aim, we calculate in the
present work the spectra of collective modes for all basic orderings that follow from
the corresponding Euler-Lagrange equation. To this end, we generalize the usual
eigenvalue problem for collective modes to the systems with non-standard free en-
ergy densities, in particular to those like (1) with higher-order terms in the gradient
expansion. Details of this method are presented in Ref. [15]. Combining analytic
and numerical analysis, we show that the Goldstone modes for the incommensurate
orderings like (2) exist in the whole range of their stability. Furthermore, it appears
that collective modes of the model (1) have some peculiar, experimentally observ-
able, properties. For illustration we discuss the contribution of collective modes
to the dielectric response of the I I class materials for which the order parameter
coincides with their electric polarization.

In Sect. 2 we continue by considering collective modes for the sinusoidal state (2)
and for the disordered state of the free energy (1). The expressions for corresponding
dielectric susceptibilities are derived in Sect. 3. The concluding remarks are given
in Sect. 4.
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2. Collective modes

The Euler-Lagrange equation for the model (1) reads

d
d4u

dz4
+ c
d2u

dz2
+ au+ bu3 = 0. (3)

Given a solution u0(z) of this equation that also satisfies additional extremalization
requirements [16], the corresponding eigenvalue problem is defined by

DηΩ ≡ dη′′′′Ω (z) − cη′′Ω(z) +
[
a+ 3bu20(z)

]
ηΩ(z) = Ω

2ηΩ(z). (4)

The spectrum of collective modes for a given (meta)stable solution u0(z) is defined
by those non-negative values of Ω2 for which the problem (4) has normalizable
solutions ηΩ(z). For periodic orderings, u0(z+2π/Q) = u0(z), we adopt the Floquet
analysis of this problem [15]. In particular, it is convenient to use for such orderings
the Bloch representation ηΩ(z)→ ηn,k(z), with

ηn,k(z) = e
ikzΨn,k(z), Ψn,k

(
z +
2π

Q

)
= Ψn,k(z) . (5)

The wave number k is limited to the first Brillouin zone formed by the incommensu-
rate modulation, −Q/2 ≤ k ≤ Q/2, and n is the branch index. The formulation (5)
enables the extension of the numerical method, developed for finding the solutions
u0(z) [4], to the calculation of dispersions Ωn(k) and Bloch functions Ψn,k(z).

While the previous calculations of the spectrum of collective modes for the
incommensurate solution us given by Eq. 2 were approximative [17], the present
approach (4,5) enables exact results, as shown in Fig. 1. The necessary condition
for the (meta)stability of this and other periodic solutions is c < 0. Then it is
convenient to introduce the parameter λ ≡ ad/c2 and reduce the model (1) to a
single parameter problem [4]. The lowest among branches from Fig. 1, that with the
long wavelength dispersion Ω0(k) = vGk, is the Goldstone mode. As is seen from
Fig. 1c, the phase velocity vG tends to zero as λ approaches the lower stability edge
at λs = −1.835 (Fig. 1a), and remains finite at the second-order phase transition
to the disordered state at λid = 0.25 (Fig. 1b). In the latter figure we use both,
Brillouin and extended, schemes for the k-space, since the former becomes irrelevant
for λ ≥ λid. The collective modes then reduce to the unique dispersion curve for
the disordered state,

Ω2d(k) = a + ck
2 + dk4, (6)

defined by the gradient expansion in Eq. (1).

Other collective modes for us are massive. The dispersion curves for three of
them are also shown in Fig. 1. The gap of the lowest-lying one, Ω1(0), tends to zero
as λ → λid. As is seen in Fig. 1b, at the very transition to the disordered state,
λ = λid, this mode has an acoustic dispersion, with the phase velocity equal to vG,
i.e., to that of the Goldstone mode.
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The spectra of collective modes for other, metastable, periodic solutions of
Eq. (3) resemble to that of us. In particular, for all of them the phase veloci-
ties of Goldstone modes vanish as the parameter λ tends towards both edges of
metastability for a given solution [15]. This is to be contrasted to vG for us, which
remains finite at one edge, i.e., at λid (Fig. 1c).
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Fig. 1. The dispersion curves for the lowest collective modes of the incommensurate
state (2), for λ = −1.8 > λs (full lines), λ = − 0.5 (dashed lines) (Fig. 1a), and
for λ = λid = 0.25 in the Brillouin (full lines) and extended (dashed line) schemes
(Fig. 1b). The dependence of the phase velocity of the Goldstone mode on the
parameter λ is shown in Fig. 1c.

3. Dielectric susceptibility

The straightforward use of the above Bloch basis (5) leads to the dielectric
susceptibility for the incommensurate state us, expressed in terms of branches of
collective modes. In the static limit which is under consideration here, it is given
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by

αi =
d

c2

[
|g|2
v2G
+
∑
n/=0

|ψn|2
Ω2n(0)

]
. (7)

The first term is the response from the Goldstone mode. Here g ≡ 1
2L

L∫
−L
Ψ
(1)
0 (z)dz,

and Ψ
(1)
0 (z) is the coefficient in the long wavelength expansion of the corresponding

Bloch function (5),

Ψ0,k(z) =
1√N
dus(z)

dz
+ kΨ

(1)
0 (z) + ... , (8)

where N is the normalization constant. The expansion of N in powers of k does
not contain the term linear in k, i.e., in the lowest order approximation it is given
by

N = 1

2L

L∫
−L

(
dus(z)

dz

)2
dz . (9)

The residual sum in Eq. (7) includes the contributions from massive collective
modes, i.e., those with finite gaps Ωn(0). Corresponding oscillatory strengths are
given by

|ψn|2 ≡
∣∣∣∣∣∣
1

2L

L∫
−L
Ψn,k=0(z)dz

∣∣∣∣∣∣
2

. (10)

It can be shown [18] that the coefficient g remains finite as λ approaches the
stability edge at λs = −1.835, so that then αi diverges as v−2G . From the other side,
this coefficient vanishes together with the function Ψ1(z) at the transition to the
disordered state (λ = λid = 0.25). Since vG remains constant, it becomes clear from
the expression (7) that in this limit the finite contribution to αi comes from the
residual sum. When calculated directly, by expanding the linear response equation
in powers of λid − λ, this contribution reads [18]

αi(λ) ≈ d

c2
1

1
2
− λ

[
1 +

2 (λid − λ)2(
1
2 − λ

) (
5
2 − λ

) + ...
]
. (11)

The previous calculations [3,19] were limited only to the leading term in this ex-
pansion.

A careful inspection of the residual sum in (7) shows that it contributes to the
susceptibility (11) only via one mode, denoted by Ω2 in Fig. 1. We note that the
oscillatory strength (10) of the lowest massive mode Ω1 vanishes, so that it does not
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dananić et al.: acoustic collective excitations and static dielectric . . .

contribute to the susceptibility (7). The mode Ω2 ”survives” the phase transition at
λid, and remains the only contribution, presented by the dashed curve in Fig. 1b.
The dielectric susceptibility in the disordered state at λ > λid is given by

αd =
1

Ω2d(0)
=
1

a
. (12)

Thus, at the phase transition from the incommensurate to the disordered state
the dielectric susceptibility varies continuously, but with a finite jump in dα/dλ at
λ = λid.
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Fig. 2. Dielectric susceptibilities for the incommensurate state (full line), commen-
surate state (dashed line), and disordered state (dotted line) as functions of the
parameter λ. The critical values of λ shown in the figure, are introduced in the
text.

To summarize the above discussion of the dielectric responses αi and αd, we
show in Fig. 2 their dependence on the parameter a (i.e. on temperature). Other
parameters are fixed. Figure 2 also includes the susceptibility for the commensurate
solution uc = ±

√−a/b, which is stable in the ranges λ < −1
8
for c < 0, and a < 0

for c > 0. It is separated from the disordered state ud by the second-order transition
at the line a = 0, c > 0, and from the incommensurate state us by the first-order
transition, defined by the line c < 0, λ ≈ −1.177.
The static susceptibility of the commensurate state uc is given by

αc =
1

a+ 3bu2c
=

1

Ω2c(0)
= − 1

2a
, (13)

where

Ω2c(k) = dk
4 + ck2 − 2a (14)
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is the dispersion for the corresponding unique collective mode that follows from
Eq. (4) after inserting u0(z) = uc. We see from Eqs. (12) and (13) that the static
susceptibility shows a standard type of divergence at the line of the second-order
transition from the disordered to the commensurate state, a = 0, c > 0. From
the other side, αc has a finite value at the stability edge (c < 0, λc = −18 ) for uc
in the regime of coexistence with the incommensurate state us. Thus, we propose
an asymmetric behaviour of the susceptibility as one passes through the hysteresis
range (in, e.g., temperature), bounded by the values λc and λs in the parameter λ.
Namely, as shown in Fig. 2, by cooling through the incommensurate state one ends
with the divergence of αi before passing into the commensurate state at λs, while
by heating through the commensurate state one passes into the incommensurate
state at λc with the jump in the susceptibility equal to [αc − αi]λ=λc .
Due to the existence of other metastable periodic solutions [4] in the above

coexistence range of the parameter λ, the temperature variation of the susceptibility
may be even more complicated than that schematically presented in Fig. 2. The
more detailed analysis [15] shows that, provided that for a given material and in
particular circumstances some of these states are stabilized, the static susceptibility
will diverge at both edges of their stability ranges, again, like in the case of the state
us, due to the vanishing of phase velocity for the corresponding Goldstone modes.
Since these stability ranges are rather narrow in comparison with λc − λs ≈ 1.71,
the stabilization of highly nonsinusoidal periodic states [4] would be manifested by
dramatic variation of susceptibility in relatively narrow temperature intervals.

4. Conclusion

In the above analysis it was clearly shown that the model (1), although formu-
lated in terms of a single and real order parameter, provides for the existence of the
acoustic Goldstone mode for the incommensurate ordering. For small wave numbers
(k� Q), this mode simply generates compressions and dilatations of the sinusoidal
modulation us(z), i.e., its physical content is same as that of standard phason mode
for incommensurate orderings in the I I class of IC systems. Amplitude fluctuations
of this modulation are generated through higher, massive modes from Fig. 1. Still,
the lowest among these massive modes have some peculiar properties. For one of
them, the gap tends to zero by approaching the transition from, e.g., the sinusoidal
state to the disordered state. However, this mode is not optically active. The whole
optical activity at this transition comes from the other massive mode in order, as
shown in Fig. 1.

In contrast to standard approaches [20], the dielectric functions of all
(meta)stable states are here strictly represented in terms of collective modes. We
are thus able to distinguish modes with finite contributions in the optical response
from those with no dipolar polarization. Note that the present analysis of dielectric
response is limited to systems with uniform commensurate orderings (those with
qc = 0). The extension to systems with dimerizations, as well as the equivalent
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treatment of collective modes and dielectric response of extended Landau models
for IC systems of class I [21], are under current investigation.

The above analysis shows that incommensurate states that follow already from
the simplest basic version of the model (1) for the IC systems of class I I, have the
same physical properties as those of class I, represented in terms of the complex
order parameter. This model is still insufficient for the explanation of rich phase
diagrams of some well-known representatives of class I I, like thiourea and BCCD.
In this respect the question which remains is, how to make an appropriate extension
without invoking an additional order parameter, in a way analogous to the recent
proposal for the class I [21], that would as well stabilize other commensurate states
with wave numbers close to qc = 0 or qc = π/a.
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AKUSTIČNA KOLEKTIVNA POBUD– ENJA I STATIČKI DIELEKTRIČNI
ODZIV U NESUMJERLJIVIM KRISTALIMA S REALNIM PARAMETROM

URED– ENJA

Polazeći od temeljnog Landauovog modela za nesumjerljive materijale I I klase,
izveli smo spektar kolektivnih grana za sva (meta)stabilna stanja iz odgovarajućeg
faznog dijagrama. Pokazali smo da sva nesumjerljiva stanja posjeduju Goldstonove
grane s akustičkim disperzijama. Reprezentaciju kolektivnih grana primijenili smo
takod–er u proračunu i raspravi statičkog dielektričnog odziva sustava sa sum-
jerljivim valnim brojem u središtu Brillouinove zone.
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