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The cluster cumulant formula of Kubo is derived by appealing only to elementary
properties of subsets and binomial coefficients. It is shown to be a binomial trans-
form of the grand potential. Extensivity is proven without introducing cumulants.
A combinatorial inversion is used to reformulate the expansion in the activity to
one in occupation probabilities, which explicitly control the convergence. The clas-
sical virial expansion is recovered to third order as an example.
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1. Introduction

The classical (Ursell–Yvon–Mayer) virial expansion is the traditional introduc-
tion to real-space particle correlations in basic statistical physics textbooks, both
old [1] and new [2]. By contrast, cumulant methods, of which the virial expansion
is a special case, are left to more specialized texts [3]. A possible disadvantage of
this approach is that physical issues are initially confused with purely formal ones,
stemming from the specific expression for the grand potential Ω = −kBT Ψ as a
logarithm of a sum

Ψ = ln
∑

N

eβµN trN exp(−βH). (1)

The most prominent formal problem is extensivity: it is important to demonstrate
that the “factorization property” of matrix elements leads to a Ψ proportional to
the number of single-particle states.

The formal and physical side of the problem were neatly separated by Kubo [4].
The present article is built around a very compact formal derivation of one of his
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sunko: new derivation of the cluster cumulant formula

main formulas, appealing only to elementary algebra. Its principal feature is that
the usual ordering, by which the cluster cumulant formula is a rearrangement of
the cumulant expansion, is reversed, and the cluster formula appears as the basic
one. At the level considered here, operative formulas can be developed without
invoking cumulants at all, physics being determined by the choice of expansion
parameter. Given the importance of cumulants in general, this is not necessarily
a pedagogical advantage. Nevertheless, it is hoped that the present work gives a
reasonable introduction to the issues involved in cumulant expansions, at a level
still attainable in a general (graduate) course of statistical physics. To this end,
the virial series is rederived as an example, not because this is the quickest way to
do it (it obviously is not), but in order to provide a list, in some logical order, of
the steps involved in reducing the fully general quantum formula to an operative
classical limit. Once such a framework is established, each of these steps can be
made the starting point of a more specialized development.

Being concerned with the interpretation, rather than the calculation, this arti-
cle cannot do justice to the numerous, sometimes very refined, applications of the
cumulant approach, in its broadest sense, which have developed over a period of
more than half a century. Outside the original context of a classical gas [5], per-
haps the most detailed work was done on spin models, under the heading of high-,
and low-temperature expansions [6]. Another long-standing field of applications are
polymers, including fundamental issues, such as the excluded-volume problem far
from the gelation point [7]. Strong electron correlations [8 – 11] have also been de-
scribed by cumulant expansions. The common denominator of all these applications
is the need to treat correlations in real space, when neither scaling nor periodicity
can be used to simplify the problem. An interesting variant of the cumulant method
is when a finite system is treated in some “inverse” space, which diagonalizes part
of the Hamiltonian; this is a classic microscopic approach in nuclear physics [12].

Concerning the presentation, I am aware that combinatorial manipulations are
not part of the usual education of a physicist. If the binomial transform were as
commonly known as the Fourier transform, the main result in the next section
would be a “one-liner”. I have tried to spell everything out, using familiar set-
theoretic notation. A word of advice to the diligent reader: follow the formulas on
a small example, with two, or at most three, single-particle states. If it suddenly
appears easy, that is because it is.

2. The Kubo formula for fermions

2.1. The activity expansion

The diagonal matrix element in N -particle space is denoted

Ui(N) ≡ 〈i1, . . . , iN | e−βH |i1, . . . , iN 〉 , (2)

where a set of occupied single-particle states (configuration) is denoted by i(N) ≡
{i1, . . . , iN}. It is assumed that the total number of single-particle states is L, and
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they comprise a set, to be denoted L. In this set-theoretic notation, the Massieu
potential (1) reads

Ψ = ln
∑

∅⊆i(N)⊆L(L)

eβµNUi(N). (3)

The sum is over all subsets of of the set L of single-particle states, which may of
course take at most L fermions. It will be assumed throughout that the vacuum
expectation U∅ = 1. All derivations in this article will refer to fermions. Only the
final expressions for bosons are given in the Appendix.

The motivation for the next step is that one would like a sum outside the
logarithm, not inside it. So define an intermediate expression,

ΨM ≡
∑

j(M)⊆L

ln
∑

∅⊆i(N)⊆j(M)

eβµNUi(N). (4)

Here the sum inside is limited to some subset of L, with exactly M states, and the
sum outside is over all possible choices of such a subset. Notice that Ψ = ΨL, since
the sum outside the logarithm then reduces to a single term, j(L) = L.

Now introduce the pair of inverse relations

ΨM =

M∑

m=0

(
L − m

M − m

)
Ψ(m), (5)

Ψ(m) =
m∑

M=0

(−1)m−M

(
L − M

m − M

)
ΨM . (6)

If one of these is inserted into the other, the result is an identity, so they are valid
independently of what the ΨM may be. Taking Eq. (5) at M = L, one finds

Ψ =
∑

m≥1

Ψ(m), (7)

which is the Kubo cluster cumulant expansion, when Ψ(m) is given in terms of the
ΨM in Eq. (4). (Note that Ψ(0) = Ψ0 = lnU∅ = 0.)

To see the structure of Eq. (7), look at the first two terms, reverting to standard
notation for a moment

Ψ(1) =

L∑

i=1

ln
(
1 + eβµ 〈i| e−βH |i〉

)
, (8)

Ψ(2) =
∑

1≤i<j≤L

ln
(
1 + eβµ 〈i| e−βH |i〉 + eβµ 〈j| e−βH |j〉
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+e2βµ 〈i, j| e−βH |i, j〉
)
− (L − 1)

L∑

i=1

ln
(
1 + eβµ 〈i| e−βH |i〉

)

=
∑

1≤i<j≤L

[
ln

(
1 + eβµ 〈i| e−βH |i〉 + eβµ 〈j| e−βH |j〉

+e2βµ 〈i, j| e−βH |i, j〉
)
− ln

(
1 + eβµ 〈i| e−βH |i〉

)

− ln
(
1 + eβµ 〈j| e−βH |j〉

)]

=
∑

1≤i<j≤L

ln

(
1 + e2βµ 〈i, j| e−βH |i, j〉 −

〈
i|e−βH |i

〉
〈j| e−βH |j〉

(1 + eβµ 〈i| e−βH |i〉) (1 + eβµ 〈j| e−βH |j〉)

)
. (9)

This should be compared with Eq. 6.22 of Ref. [4]. The lowest power of the activity
appearing in Ψ(m) is eβµm, so I shall refer to this as the “activity expansion”. If the
basis |i〉 diagonalizes the Hamiltonian, Ψ(1) gives the exact solution of the trivial
problem, and the other Ψ(m) are zero.

Of the three forms in which Ψ(2) is given, the first is the defining form Eq. (6).
The second is Kubo’s original form, where all terms appear under a single sum.
The original form reads (Eq. 4.13 of Ref. [4])

Ψ(m) =
∑

i(m)⊆L

ψ[i(m)], (10)

where

ψ[i(m)] ≡
∑

∅⊆j(M)⊆i(m)

(−1)m−M ln




∑

∅⊆k(l)⊆j(M)

elβµUk(l)


 . (11)

Finally, the third is a compact form, where all logarithms have been collapsed to
a single one. The trouble with it, although it looks prettiest for small m, is a
large (hyperexponential) explosion with m in the number of terms in the fraction
multiplying eβµm, as the fraction arises from multiplication of the polynomials in
eβµ which appear under the logarithms in the original form.

It is easy to prove that the defining and original forms are equivalent. One starts
from Eq. (10) and simply interchanges the order of summation

Ψ(m) =
∑

i(m)⊆L

∑

∅⊆j(M)⊆i(m)

(−1)m−M ln[. . . j(M) . . .]

=
∑

∅⊆j(M)⊆L

(−1)m−M ln[. . . j(M) . . .]
∑

j(M)⊆i(m)⊆L

1

=
∑

∅⊆j(M)⊆L

(−1)m−M ln[. . . j(M) . . .]

(
L − M

m − M

)
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=
∑

M≥0

(−1)m−M

(
L − M

m − M

)
ΨM ,

where, in the last step, all M -particle configurations have been grouped together.
From this point of view, the present article rests on the observation that the last
line above is formally invertible.

2.2. Extensivity

Extensivity itself cannot, of course, be proven without some reference to the
interactions involved. What will be proven here is more properly called size-
consistency: if the matrix element Ui(m) in a configuration i(m) can be expressed
as a product of lower matrix elements, then the contribution of that configuration
to the grand potential is zero.

We shall need an elementary property of sets. Namely, if a set i(m) is written
as the union of two non-overlapping, non-empty subsets, i(m) = i1(m1) ∪ i2(m2),
then all the subsets of i(m) may be obtained by writing down all subsets of i1(m1)
and i2(m2), and combining them in all possible ways. In particular, if there is a
sum over subsets of i(m), it can be written as two sums

∑

∅⊆j(n)⊆i(m)

[. . . j(n) . . .] =
∑

∅⊆j1(n1)⊆i1(m1)

∑

∅⊆j2(n2)⊆i2(m2)

[. . . j1(n1) ∪ j2(n2) . . .] . (12)

This will be referred to below as the “subset property”.

The proposition is as follows: let i(m) be the union of two non-overlapping,
non-empty subsets, i(m) = i1(m1) ∪ i2(m2). Let

Uk1(l1)∪k2(l2) = Uk1(l1)Uk2(l2) (13)

whenever k1(l1) ⊆ i1(m1) and k2(l2) ⊆ i2(m2). Then ψ[i(m)] = 0, where ψ[i(m)] is
the contribution of the set i(m) to Ψ(m) in Eq. (10).

For the proof, first observe that under these assumptions, the sum under the
logarithm in Eq. (11) factorizes,

∑

∅⊆k(l)⊆j(n)

Uk(l) =
∑

∅⊆k1(l1)⊆j1(n1)

Uk1(l1)

∑

∅⊆k2(l2)⊆j2(n2)

Uk2(l2). (14)

This is trivial: the sum is rewritten by the subset property, and the matrix element
factorizes by assumption. It follows that the logarithm of (14) is the sum of two
logarithms, one a function of j1(n1) alone, the other of j2(n2). The contribution of
the first logarithm to Eq. (11) reads

∑

∅⊆j(n)⊆i(m)

(−1)m−n ln [. . . j1(n1) . . .] (15)

=
∑

∅⊆j1(n1)⊆i1(m1)

(−1)m1−n1 ln [. . . j1(n1) . . .]
∑

∅⊆j2(n2)⊆i2(m2)

(−1)m2−n2 ,
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because the sum here can also be written by the subset property. Since the number
of subsets of i(m2) with fixed number n2 is given by a binomial coefficient,

∑

∅⊆j2(n2)⊆i2(m2)

(−1)m2−n2 =

m2∑

n2=0

(
m2

n2

)
(−1)m2−n2 = (1 − 1)m2 , (16)

this is zero for m2 ≥ 1; similarly the contribution of the second logarithm is zero
for m1 ≥ 1, so the proposition is proved.

3. The probability expansion

In this section, the combinatorial approach is pushed a step further, to rewrite
Kubo’s formula (7) in a particularly transparent way. (The derivations are written
somewhat more tersely than in the other sections.) Probabilities will replace the
activity as the expansion parameters, analogously to passing from activity to con-
centration in the classical case. It should be emphasized that this only affects the
form of ψ[i(m)] in Eq. (10), their value remaining the same, term for term, for all
i(m) with m ≥ 2. The simplest example of the transformation is in the two ways
one may write Ψ(1),

Ψ(1) =
∑

i

ln
(
1 + eβµUi

)
= −

∑

i

ln (1 − pi) , (17)

where the “occupation probability”

pi =
eβµUi

1 + eβµUi
(18)

would be just the Fermi function in the quantum non-interacting case.

3.1. The general transformation

Here a whole class of ways to expand Ψ will be shown to be equal to the activity
expansion (7), term for term. In other words, they are merely different ways to
rearrange the contributions under the logarithms in Eq. (11). A special choice then
gives the expansion in the probabilities (18), alluded to above.

Take an arbitrary set of L variables εi, i = 1, . . . , L. Define the quantities W by
the pair of inverse relations

Ui(m) = e
−β

∑
i∈i(m)

εi
∑

∅⊆j(n)⊆i(m)

Wj(n), (19)

Wj(n) =
∑

∅⊆i(m)⊆j(n)

(−1)m−ne
+β

∑
i∈i(m)

εi
Ui(m). (20)
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One could just write xi instead of e−βεi , but the notation is meant to be suggestive.
The grand partition function may now be written

∑

∅⊆i(N)⊆L(L)

eβµNUi(N) =
L∏

i=1

(
1 + eβ(µ−εi)

) ∑

∅⊆j(n)⊆L(L)

fj1 . . . fjn
Wj(n). (21)

Here the fi’s are just the Fermi functions corresponding to the εi. Obviously, they
are the new variables of the partition function, replacing the activity. Now define,
by analogy with Eq. (4),

Ψ̃M ≡
∑

i(M)⊆L

ln
∑

∅⊆j(n)⊆i(M)

fj1 . . . fjn
Wj(n), (22)

and the main statement of this section is as follows

Ψ̃(m) = Ψ(m), m ≥ 2, (23)

where Ψ̃(m) is the binomial transform (6) of Ψ̃M . In other words, the activity
expansion is unaffected by the transformation, except in the first term; it is easy
to show that ∑

i

ln
(
1 + eβ(µ−εi)

)
+ Ψ̃(1) = Ψ(1), (24)

with the εi’s cancelling exactly. Of course, since the partition function (left-hand
side of Eq. (21)) does not depend on them, they all must cancel in the end; but the
statement here is that they do so term by term in the expansion, when m ≥ 2.

To prove this, express W in Ψ̃M back in terms of the U ’s,

∑

∅⊆j(n)⊆i(M)

fj1 . . . fjn
Wj(n) =

∏

i∈i(M)

(
1 + eβ(µ−εi)

)−1 ∑

∅⊆k(N)⊆i(M)

eβµNUk(N). (25)

Now observe that the sum is the same one as appears in the definition (4) of ΨM ,

by which Ψ(m) is defined. The difference Ψ(m)− Ψ̃(m) is thus due to the product
in front, and reads explicitly, by Eq. (6),

∑

M

(−1)m−M

(
L − M

m − M

) ∑

i(M)⊆L

∑

i∈i(M)

ln
(
1 + eβ(µ−εi)

)
, (26)

which is, in fact, zero for m ≥ 2. Namely, in the sum over configurations (subsets

of L), each given single-particle state will appear
(

L−1
M−1

)
times, so upon exchanging

the last two sums, one gets

L∑

i=1

ln
(
1 + eβ(µ−εi)

) ∑

M

(−1)m−M

(
L − M

m − M

)(
L − 1

M − 1

)
, (27)
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and after rearranging the binomial coefficients, the last sum is equal to

(
L − 1

m − 1

)∑

M

(−1)m−M

(
m − 1

M − 1

)
∼ (1 − 1)m−1, (28)

so the statement is proven.

3.2. The probability expansion

By choosing

e−βǫi = 〈i| e−βH |i〉 = Ui, (29)

one finds fi = pi (Eq. (18)), and Wi = 0. This is the useful case, so let us denote
the W ’s for this special choice by the letter S, for “subtracted”,

Si(m) =
∑

∅⊆j(n)⊆i(m)

(−1)n−mŨj(n), (30)

where

Ũj(n) =
Uj(n)

Uj1 · · ·Ujn

, Ũ∅ = 1. (31)

In terms of these, the ψ[i(m)] in Eq. (11) read, for m ≥ 2,

ψ[i(m)] =
∑

∅⊆j(n)⊆i(m)

(−1)m−n ln




∑

∅⊆k(l)⊆j(n)

pk1
. . . pkl

Sk(l)


 , (32)

noting that S∅ = 1. This is the “probability expansion”. For example,

Sij =
Uij

UiUj
− 1, Ψ(2) =

∑

1≤i<j≤L

ln(1 + pipjSij), (33)

and even Ψ(3) is short, in the compact form

Ψ(3) =
∑

1≤i<j<k≤L

ln

[
1 + pipjpk (34)

×
Sijk − piSijSik − pjSijSjk − pkSikSjk − pipjpkSijSikSjk

(1 + pipjSij)(1 + pipkSik)(1 + pjpkSjk)

]
.

These are higher-order corrections to the non-interacting (“undergraduate”) for-
mula (17). It is obvious how the probabilities control the convergence.
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It should be noted that the “compact” form has not become really compact, but
rather that the hyperexponential explosion takes off a little later (because Si = 0,
so the polynomials being multiplied are shorter). For instance, the numerator in
the compact form of Ψ(4) has 15 629 terms in the activity expansion, and “only”
505 terms in the probability expansion, still far less practical than the 15 distinct
terms, 65 additions and 16 logarithms in the original form.

4. Example

In this section, the classical virial expansion will be obtained term by term,
from the formulas developed so far. While such a derivation is nothing new in
itself, the purpose is to comment on it from the present “combinatorial” point of
view, and give a familiar interpretation of the subtracted matrix elements, formally
introduced in the previous section.

4.1. The classical limit

Begin with a Hamiltonian of the form H = K +V , where K is the usual kinetic
energy, and V a sum of two-body interactions depending on mutual distance. The
first choice to be made in the formal expansion is, which basis to use for the single-
particle states. If the momentum basis, which diagonalizes K, is used as a starting
point, the term Ψ(1) will be the exact solution of the non-interacting problem, valid
down to zero temperature, and the corrections will correspond to an expansion in
quasiparticle occupation probabilities, after a canonical transformation to particles
and holes. (If this transformation is not made, the occupation probabilities of levels
below the Fermi energy tend to unity, leading to convergence problems.) Such an
example, inspired by nuclear physics [12], is beyond the scope of the present work.

If, on the other hand, the position basis is chosen, one is led straight to the Mayer
expansion. This is particularly easy to see on a lattice. The one-particle matrix
element is then just the normalized one-particle partition function, independently
of the position,

Ui =
〈
ri

∣∣∣e−β(K+V )
∣∣∣ ri

〉
=

1

L

∑

k

exp [−βε(k)] =
Z1

L
, (35)

where L is now the number of lattice sites, and ε(k) is the non-interacting dispersion
derived from K. (In the limit of vanishing activity, Ψ(1) = L ln(1 + eβµZ1/L) →
eβµZ1, which is the classical non-interacting result.) The occupation probabilities
(18) are then also independent of position, and to the first order in the activity,
they become equal to the (dimensionless) fugacity,

p =
eβµZ1/L

1 + eβµZ1/L
→ eβµ Z1

L
→ eβµ

(
a

λT

)3

, (36)
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where the second limit is of high temperature, with a the lattice constant and λT

the thermal wavelength.

The classical limit for Ψ(2) is taken in the usual two steps: first, the commutator
[K,V ] is neglected, being at least of the order of h̄, so that disentanglement is trivial:

e−β(K+V ) → e−βKe−βV , (37)

after which the two-particle matrix element reads

Uij =
〈
ri, rj

∣∣e−βKe−βV
∣∣ ri, rj

〉

=
1

L2
e−βvij


Z2

1 −




∑

k

cos [k · (ri − rj)] exp [−βε(k)]




2

 . (38)

Here vij = V (|ri − rj |), and the interference term from |〈ri, rj |ki,kj〉|
2

is shown
explicitly. In physical units k = p/h̄, so one observes in the second step that as
h̄ → 0, it gets “washed out” by the sum, giving

Ψ(2) =
∑

1≤i<j≤L

ln
[
1 + p2

(
e−βvij − 1

)]
, (39)

where p is the position-independent occupation probability (36), multiplying
Mayer’s expansion parameter, gij = e−βvij − 1. In other words, the subtracted
matrix elements Sij in the probability expansion become equal to Mayer’s param-
eter: Sij → gij in the classical limit.

This is as far as one can go without invoking the probability expansion (32)
explicitly, since only Ψ(2) is easy to rewrite in probabilities “by hand”. It is not
difficult to show that, when h̄ → 0 and all interference terms are neglected, the
normalized matrix elements (31) in the position basis take the familiar form

Ũj(n) = exp


−β

∑

1≤k<l≤n

vjkjl


 =

∏

1≤k<l≤n

(1 + gjkjl
), (40)

where the sum (product) is over all pairs of indices in j(n) = {j1, . . . , jn}. It
follows that Ψ is a function of gij alone, as is well known. The S’s vanish with the

interaction, as they should, because all the Ũ ’s in Eq. (40) are then equal to unity,
so they cancel in the definition (30).

This is a good place to pause, and put the result (40) in a physical perspective.
One could have worried: the same one-particle terms (29) appear in the denomina-
tor of the normalized matrix elements (31) as in the numerator of the probabilities
(18). Might they not cancel, leaving the probabilities in expressions like (35) only
formally, but not really, in control of the convergence? Not so: equation (40)
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shows that one should rather expect one-particle (“kinetic”) terms to cancel be-

tween the numerator and denominator of Ũ itself, this cancellation being complete
in the classical limit. This is just the statement, that in the classical limit one
can integrate out momenta from the partition function exactly. Quantum effects
are manifested as incomplete cancellation: interactions do affect the momentum

distribution. However, to believe that a Ũ would not tend to a limit when a one-
particle matrix element in the denominator became small, is to believe that the
many-body state in the numerator has an “infinite stopping power” for that par-
ticle, if it can avoid making the numerator small as well, despite containing that
same single-particle state of high momentum. Such drastic effects of the interaction
on the momentum distribution are not unimaginable. In fact, one of the persis-
tent worries in high-temperature superconductivity is that they could preclude any
“semiclassical” description of the conducting electrons [13]. Nevertheless, it may be
(vaguely) concluded, that only “exotic” collective states would spoil the numerical

convergence of Kubo’s expansion for the grand potential, as long as the occupation
probabilities (18) are reasonably small.

4.2. The virial series

Going back from probability to fugacity,

p =
f

1 + f
, (41)

and expanding to second order in f , in the classical limit one obtains

Ψ(1) + Ψ(2) = Lf +


−

L

2
+

∑

1≤i<j≤L

gij


 f2 + O(f3), (42)

and since it is consistent to write gii = −1, the term multiplying f2 may be written
as the unrestricted double sum

1

2

L∑

i=1

L∑

j=1

gij →
L

2

∑

∆

g(∆) ≡ LB1, (43)

where it has been used that gij ≡ g(|ri − rj |) depends only on the differences,
and the arrow means the large-volume limit. It is obvious that B1 is just the usual
“second virial coefficient”, except that it is dimensionless; this can be repaired by
transferring the factor a3 from the fugacity (36), and putting La3 = V .

The third-order result is recovered along the same lines. All that remains of
Ψ(3) (35) to third order in the fugacity is f3

∑
Sijk, where, in the classical limit

(inserting Eq. (40) into Eq. (30)),

Sijk = gijgikgjk + gijgik + gijgjk + gikgjk, (44)

FIZIKA A 14 (2005) 2, 119–134 129



sunko: new derivation of the cluster cumulant formula

from which it is clear that the subtracted matrix elements Si(n) are the generating

functions of labelled graphs with n vertices. Adding the terms in f3 from Ψ(1) and
Ψ(2), one gets 

L

3
− 2

∑

i<j

gij +
∑

i<j<k

Sijk


 f3. (45)

To pass from restricted to unrestricted summation, use

3!
∑

i<j<k

=
∑

i /=j /=k

=
∑

i,j,k

−
∑

i,j=k

−
∑

i=k,j

−
∑

i=j,k

+2
∑

i=j=k

, (46)

which may be derived by inverting successive expressions of the type
∑

i,j

=
∑

i /=j

+
∑

i=j

. (47)

Inserting Eqs. (44) and (46) into Eq. (45), it becomes

1

6

∑

i,j,k

Sijkf3, (48)

so that, just as in second order, all that the lower terms in Eq. (45) do is to remove
restrictions on the sum in the highest one. In the large-volume limit, the first term
in Eq. (44) gives

1

6

∑

i,j,k

gijgikgjk →
L

6

∑

∆1,∆2

g(∆1)g(∆2)g(|∆1 − ∆2|) ≡ LB2, (49)

and the remaining three give a total contribution

1

2

∑

i,j,k

gijgik →
L

2

∑

∆1

∑

∆2

g(∆1)g(∆2) = 2LB2
1 , (50)

because the g’s depend only on the differences, so one finds, finally,

Ψ = Lf + LB1f
2 + L(2B2

1 + B2)f
3 + O(f4), (51)

which is the virial series to third order, in one notation [2].

The statement that the interacting problem is “reduced to quadrature” in the
classical limit is interpreted here, that the coefficient of fn in Ψ becomes an unre-

stricted sum, namely

1

n!

∑

i1,...,in

{coefficient of fn in ψ[i(n)]} . (52)

From this point of view, in the classical limit there appears a “conspiracy of terms”
which removes quantum restrictions from the sums in Kubo’s formula.
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5. Discussion

This article gives a combinatorial interpretation of Kubo’s cluster cumulant ex-
pansion, as a binomial transform of the grand potential. It primarily explores the
pedagogical implications of having such a brief, but formal, derivation. The idea is
to develop a self-contained, general point of departure to treat problems which re-
quire a formulation in real space, assuming only undergraduate prior knowledge. In
particular, it is found there is no need to introduce cumulants explicitly at this level,
in order to produce operative size-consistent expressions. This was demonstrated
in detail for the classical limit.

In this approach, the distinction is kept between rearranging the series for Ψ,
which (effectively) resums different infinite classes of terms, and generating the
terms themselves, which requires the evaluation of matrix elements. It becomes clear
in principle, how different choices of expansion parameter (probability, fugacity,
coupling constant, . . . ) necessarily yield different rules for which terms appear, and
how either quantum entanglement, or topological restrictions from the Hamiltonian,
both of which change the form of (40), can spoil the “conspiracy” by which the
classical expressions simplify.

The basic operational problem in quantum mechanics is to replace sums by
integrals, or, in more sophisticated language, to pass from functions defined on sets
(of quantum states) to functions of real numbers (parameters of the Hamiltonian).
This is trivial with unrestricted sums, which is the combinatorial content of the
simplification in the classical limit. The converse is formally the most difficult
problem of strong correlations: when dynamical effects restrict a (multiple) sum to
an “arbitrary” subset of discrete states, i.e. such that no ordering can be defined on
it, there is no controlled way to express the sum as an integral in the large- volume
limit. Otherwise, the standard way to obtain integrals is to introduce ordering by
the time variable, leading to Dyson diagrams, or along the fermion line, leading
to Feynman diagrams. The relationship between the cluster cumulant expansion
and the diagrammatic approach has been discussed by Dunn [14], for the case of
a particular self-energy. He showed that cutting the expansion off at m-th order
amounted to calculating all diagrams with at most m-fold momentum integrals
exactly, and all others approximately (the logarithms in Ψ(m) necessarily generate
diagrams to infinite order).

On the other hand, rewriting Kubo’s formula as a probability expansion, equa-
tion (32), shows that convergence can be expected even when one does not have
the complete solution of the problem. All that is required is that the probabilities
in the chosen basis are bounded away from unity (and zero). The prototype for this
is precisely the real-space basis, because position states are never stationary, due
to the uncertainty principle.

Two other properties of the cluster expansion are readily obtained. First, it
was stressed by Kubo [4] that all described operations remain exactly correct even
if the “matrix elements” are not c-numbers, and the exponential functions are
replaced by various rules. This follows directly from the fact that the binomial
inversion is a formal identity. For example, when the probability expansion can be
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written in Fock-space operators, the Pauli principle is exactly preserved, even if
one stops at the first order [9, 10]. Second, if matrix elements are used, the Pauli
principle cannot be satisfied for the whole assembly of particles, as soon as the
expansion is cut off. Its form then indicates that antisymmetrization is taken into
account by an “inclusion-exclusion” procedure; for instance, the same two-particle
terms, involving Sij , appear with opposite sign in Ψ(2) and Ψ(3) (Eq. (35)). So the
cluster cumulant series is expected to alternate, whenever many-body correlations
are important. This can be striking in practice [15].

To conclude, the second and fourth sections of this article give a compact and
hopefully useful introduction to an established general treatment of correlations
in real space. In the third section, it is shown that the parameters controlling
convergence can be interpreted as probabilities, and their associated subtracted
matrix elements appear as the basic building blocks of more elaborate calculations.
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Appendix

The probability expansion (32) is formally the same for fermions and bosons,
only the definitions of the various quantities change. For bosons, the occupation
probabilities are

pi =

∞∑

k=1

ekβµ
〈
ik

∣∣ e−βH
∣∣ik

〉

∞∑

k=0

ekβµ
〈
ik

∣∣ e−βH
∣∣ik

〉
, (53)

where ik means, i-th state, occupied by k bosons. In the non-interacting case,
this reduces to the familiar eβ(µ−εi), justifying the use of the term “occupation
probability”.

The normalized matrix elements (31) become, for bosons,

Ũj(n) =

∞∑

k1,...,kn=1

e(k1+...+kn)βµ
〈
jk1
1 . . . jkn

n

∣∣∣ e−βH
∣∣∣jk1

1 . . . jkn
n

〉

(
∞∑

k1=1

ek1βµ
〈
jk1
1

∣∣∣ e−βH
∣∣∣jk1

1

〉)
· · ·

(
∞∑

kn=1

eknβµ
〈
jkn
n

∣∣ e−βH
∣∣jkn

n

〉
) . (54)

132 FIZIKA A 14 (2005) 2, 119–134



sunko: new derivation of the cluster cumulant formula

To the lowest order in the activity, these expressions are of course equal to the
fermion ones, which accounts for the classical limit. Note, finally, that the denom-

inator of Ũj(n) contains the “occupation numbers”

ni =
∞∑

k=1

ekβµ
〈
ik

∣∣ e−βH
∣∣ik

〉
, (55)

in terms of which pi = ni/(ni + 1), as with non-interacting bosons.
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NOVI IZVOD RAZVOJA U GROZDOVE KUMULANATA

Kubov razvoj u kumulantne grozdove se izvede pozivanjem samo na elementarna
svojstva skupova i binomnih koeficijenata. Pokaže se da je on upravo binomni
transformat velekanonskog potencijala. Ekstenzivnost se dokaže bez pozivanja na
kumulante. Razvoj po aktivnosti se preuredi kombinatoričkom inverzijom u razvoj
po vjerojatnostima zaposjednuća, koje izravno upravljaju konvergencijom. Klasični
virijalni razvoj se izvede do trećeg reda kao primjer.
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