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Original scientific paper

The mesonic sector of the standard chiral bag model was enlarged to include the
vector and axial vector components. New model openly displays the current field
identities. It’s predictions are close to the older model. This seems to be the con-
sequence of the chiral invariance and of the PCAC and CVC constraints. Particle
masses, the axial-vector coupling constant, the proton magnetic moment and the
charge radius have been calculated.

1. Introduction

An approximate picture of QCD results, which is provided by the chiral bag
model (CM)1), can be enriched by introduction of the J = 1 excitations in the
mesonic phase2). Such an operation has been already carried out3) by using a hedge-
hog ansatz. In this paper the solutions will be obtained by methods developed for
the chiral bag model1) which neglects the non-linearities in the pion Lagrangian L3.
Such methods find the static pion “field” in terms of quark (anti-quark) operators
showing explicitly that one is dealing with the pionic phase of the quark “matter”.

The vector (axial-vector) static “fields” in this approach are obtained in quite
analogous form. Their operator character is due to quark (antiquark) operators.
One is again dealing with the vector (axial-vector) phase of the quark model. The
terminology such as: pions, vector mesons, etc. will be used as the short code for
various mesonic phases of our model. As one deals with a static model, our pions,
vector mesons etc. are static “fields” which create (or annihilate) quark (anti-quark)
pairs.
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The vectors (axial vectors) in the mesonic sector of the model lead to vector
(axial-vector) currents which have the current-field the current-field identity (CFI)
form4) outside bag. Inside bag, in the quark sector the currents are the usual
bilinear combinations of quark spinors5). With this particular form of the vector
meson dominance (VMD) one has in the same model combined physics of sixties
with physics of the eighties2). At the same time such formalism openly displays
underlaying quark structure of the fundamental theory i.e. of QCD.

Model is especially convenient for the calculation of weak processes where an
effective electroweak Hamiltonian expressed in terms of quark fields has to be com-
bined with QCD based strong renormalization.

Both the partial conservation of axial vector current (PCAC) and the conser-
vation of vector current (CVC) play an important role in the development of the
model. They appear as constraints which do fix the model parameters and select
the physically acceptable solutions. It turns out that leads to the virtual elimina-
tion of axial vector a1 phase through the PCAC imposed dynamical equality. It
is well known that such feature appears in analogous models2). a1 plays a minor
role in NN interaction where its contribution is almost completely masked by the
ρπ continuum. a1 is not a sharp resonance and its parameters are not uniquely
established6). The vector phase gives contributions which show some similarity
with the chiral-bag model results1).

Alternatively one can say that CM contains, hidden in its pion phase, appro-
priate vectorial properties.

The VCM contains just one parameter more than CM model. This is the vector
(axial vector) “field” coupling ĝ. Due to that and to the axial vector phase contri-
bution to the hadron masses (7.1) the VCM parameters R (7.11) and ω (7.2) differ
from the CM ones, as shown in Table 3. The theoretical results for the axial vector
coupling gA, for the proton magnetic moment µ and for the mean-square charge
radius 〈r2〉 depend on these parameters. As shown in Tables 4, 5 and 6, this leads
to model dependent predictions.

In both models, CM and VCM, the value of gA is wrong by about 50%. Morever
the theoretical values differ by only few percents from model to model. This is well
known result7), which has it’s counterpart in the skyrmion phenomenology where
gA comes out to low by almost factor 2. In the CM and VCM picture it probably
reflects inadequate description of the Goldstone boson character of pion.

In the description of electromagnetic form factors VCM, despite its open display
of VMD, does not offer any striking differences with CM. This is due to PCAC and
CVC constraints.

2. VCM Lagrangians

The usual CM Lagrangian density

LCM = iψ̄µγµ∂µψΘν −
1

2
ψ̄Uψδs+Lπ(1−Θν) = LψΘν +Lsδs+Lπ(1−Θν) (2.1)
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is enlarged by chiral invariant inclusion of vector (axial vector) meson fields outside
the bag. Inside the bag with radius R, which in (2.1) is symbolized by Θν = (R−r),
the form of LCM is unchanged. Same goes for the surface coupling term with
δs = δ(R− r). However outside of the bag the SU(2) valued chiral (pion) field:

U = exp(i~τ~π/fn) (2.2)

has covariant derivaties in the outside region:

Dµ U = ∂µU − igALµU + igUARµ . (2.3)

APP contains the outside mesonic phase analogous to the physical ρ(ρµ) and A
L(R)
µ

fields

ALµ =
ρµ +Aµ√

2
, ARµ =

ρµ −Aµ√
2

. (2.4)

That leads to

Lπ =
f2π
4

TrDµ U
+DµU . (2.5)

The full VCM Lagrangian density contains also terms corresponding to ρµ and Aµ

“fields”

LV =

[
−1

4
~ρµν · ~ρµν −

1

4
~Aµν · ~Aµν +

m2
0

2
(~ρµ · ~ρµ + ~Aµ · ~Aµ)

]
. (2.6)

Here

~ρµν = ∂µ~ρν − ∂ν~ρµ − g(~ρµ × ~ρν + ~Aµ × ~Aν) ,

~Aµν = ∂µ ~Aν − ∂ν ~Aµ − ĝ(~ρµ × ~Aν − ~ρν × ~Aµ) , (2.7)

ρµ = ~τ · ~ρµ/
√
2; Aµ = ~τ · ~Aµ/

√
2 .

The VCM Lagrangian

LV CM = LψΘν + Lsδs + (1−Θν)[Lπ + LV ] (2.8)

is chiral gauge invariant only in its outside, 1−Θν sector. Alternatively one might
say that quark field ϕ inside the bag is not subject to the local gauge transformation.
In that respect one might say that chiral gauge invariance does not hold for the
complete LV CM even when there is no mass term (i.e. m0 = 0 in LV (2.6)).
With this term included one is using the massive Yang-Mils (MYM) scheme3) in
which gauge invariance is broken. However MYM scheme is related, through the
Stueckelberg transformations to the hidden local symmetry (HLS) scheme3). In
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general the meson Lagrangians are derivable by bosonization techniques from a
fermion theory2,3,8).

It should be mentioned that quark meson couplings are restricted to the pion-
quark coupling Ls (2.1). Vector “fields” are coupled to quarks indirectly, via their
coupling to “pions” in (2.5). In principle the interactions ψ̄ΓµψV L,Rµ at the bag
boundary can be constructed. However such surface coupling would require un-
usually dimensioned [(mass)−1] coupling constant. Furthermore they would lead to
great, practically unsurmountable, difficulties when imposing CVC constraint.

In order to find static solutions for “fields” appearing in LV CM (2.8) one has to
make certain approximations. The U matrix operator (2.2) has to be expanded in
leading orders off f−1

π keeping only first few terms. After some manipulations this
results in:

L = iΨ̄γµ∂
µΨΘν −

1

2
Ψ exp(i

~τ · ~π
fπ

γ5)Ψδs + (1− Θ̃ν)
[
− 1

4
~ρµν · ~ρµν −

1

4
~Aµν · ~Aµν

+
m2

0

2
(~ρµ · ~ρµ + ~Aµ · ~Aµ) + 1

2
∂µ~π∂

µ~π +
1

2
(ĝfπ)

2 ~Aµ · ~Aµ − fπgĝ( ~Aµ × ~ρµ)~π

−ĝfπ ~Aµ∂µ~π − g(∂µ~π × ~π)~ρµ
]
. (2.9)

The standard variation procedure leads that to the boundary conditions

iγµn
µΨ =

(
1 + i

~τ~π

fπ
γ5

)
Ψ ,

nµ∂
µ~π =

i

fπ
Ψ~Tγ5Ψ+ ĝfπn

µ ~Aµ , (2.10)

nµ ~Aνµ = 0 , nµ~ρνµ = 0.

Inside the bag the quark field is determined by

iγµ∂
µΨ = 0 . (2.11)

Outside the bag meson “fields” must satisfy following equations:

�~π = −fπgĝ ~Aµ × ~ρµ − 2g~ρµ × ∂µ~π ,

∂µ ~Aνµ − (m2
0 + (ĝfπ)

2 ~Aν)− g ~Aµ × ~ρνµ − ĝ~ρµ × ~Aνµ

−gĝfπ~π × ρν + ĝfπ∂ν~π = 0 , (2.12a)
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∂µ~ρνµ −m2
0~ρν − g~ρµ × ~ρνµ − ĝ ~Aµ × ~Aνµ + gĝfπ~π × ~Aν + g∂ν~π × ~π = 0 .

They are further simplified in order to find leading order results. One uses

(�+ µ2
π)~π = 0 ,

∂µ ~Aνµ + ĝfπ∂ν~π − (m2
0 + f2π ĝ

2) ~Aν = 0 , (2.12b)

∂µ~ρνµ −m2
0~ρν + g∂ν~π × ~π + fπgĝ~π × ~Aν = 0 .

Here vector fields have linearised forms

~ρµν → ∂µ~ρν − ∂ν~ρµ , ~Aµν → ∂µ ~Aν .− ∂ν ~Aµ (2.12c)

Additional conditions for PCAC7) and CVC will be discussed and defined below.
They will fix all undetermined constants which appear in general solutions of equa-
tions (1.12).

3. Currents and conservations

The “fields” in the Lagrangian (2.9) transform under chiral group as

δΨ = −iT iωiγ5Ψ ,

δ~π = ~ωfπ ,

δ~ρµ = ~ω × ~Aµ , (3.1)

δ ~Aµ = ~ω × ~ρµ +
1

ĝ
∂µ~ω ,

and

δΨ = iT iωiΨ ,

δ~π = −~ω × ~π ,

δ~ρµ = ~ω × ~ρµ +
1

g
∂µ~ω , (3.2)

δ ~Aµ = ~ω × ~Aµ ,
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respectively. The first set of infinitesimal transformations determines9) the axial
vector current

~JAµ = Ψγµγ5 ~TΨΘν +
m2

0

ĝ
~Aµ(1− Θ̃ν) , (3.3)

while the second set leads to the vector current

~JVµ = Ψγµ ~TΨΘν +
m2

0

g
~ρµ(1− Θ̃ν) . (3.4)

The divergence of the axial-vector current has a redundant surface term, shown
below in brackets

∂µ ~JAµ = (Ψ̄γµγ5 ~TΨ− m2
0

ĝ
~Aµ)n

µδs −
m2

0

m2
0 + f2π ĝ

2
fπµ

2
π~π(1− Θ̃ν) . (3.5)

The second term on r.h.s. of (3.5) has the form required by PCAC. It tells that
PCAC is a long-range effect represented by the pionic phase ~π, for r > R. The
unwanted term leads to an additional constraint

iΨ̄Tαγ5Ψ =
m2

0

ĝ
nµAαµ , (3.6)

which will actually help to determine the axial vector phase (or “field”) as shown
in the next section.

The conservation of the vector current

∂µ ~JVµ =

[
Ψ̄γµ ~TΨn

µ − m2
0

g
~ρµn

µ

]
δs +

m2
0

g
∂µ~ρµ(1− Θ̃ν) (3.7)

produces two constraints for the vector phase:

Ψ̄γµ ~TΨn
µ|r=R =

m2
0

g
nµ~ρµ|r=R (3.8)

and

∂µ~ρµ = 0, r > R . (3.9)

As shown in Section 5 these conditions lead to the unique determination of the
vector phase. However it should be mentioned that (3.7), and thus (3.8) and (3.9),
can be implemented only for the average value

〈H|∂µJVµ |H〉 = 0 . (3.10)

Here |H〉 symbolizes some hadron state, as for example (see (6.7) below) proton
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state |p〉. Both forms (3.3) and (3.4) are the ones to be expected by CFI or VMD
hypotheses4). It is natural that VMD holds outside the bag radius R, as this is the
region in which, in our model, the mesonic phase represents an approximation to
the full QCD dynamics. However, it will turn out that PCAC and CVC bring VCM
results close to the old CM ones.

4. Quark and mesonic phases

The coupled equations (2.10)-(2.12) can be approximatively resolved by succes-
sive steps which are analogous to the procedure1,5) which was used in CM. Thus
the quark field Ψ and the pion “field” (or better pionic condensate) are found first.
Their analytical forms are very similar to the CM ones.

For the quark field one uses

Ψf =
N√
4π

∑

m

{[
ǫ+F (pr)

ǫ−i~σ~r0G(pr)

]
χmbmf +

[
ǫ−G(pr)~σ~r0
ǫ+iF (pr)

]
χmd

+
mf

}
. (4.1a)

Here f = u, d denotes quark flavours, b annihilates particles and d+ creates an-
tiparticles. Inside the bag (r < R) functions F and G are spherical Bessel functions

F = j0 , G = j1 . (4.1b)

The pionic phase is determined by

~πα = k0(µπr)χ
+
mχ

−

m(dmf1b
−

mf2
+ b+mf1d

+
mf2

)D0

+k1(µπr)χ
+
m~σ~r0χ

−

mb
+
mf1

(b−mf2 + dmf1d
+
mf2

)D1 ,

D0 =
NÑm2

A

4πfπm2
0

exp(µπR)R
2

1 + µπR

[
ǫ̃+ǫ+j̃0(ω)j0(ω) + ǫ̃−ǫ−j̃1(ω)j1(ω)

]
, (4.2)

D1 =
NÑm2

A

8πfπm2
0

exp(µπR)µ
2
πR

3

1 + µπR+ 1
2µ

2
πR

2

[
ǫ̃+ǫ− ̃0(ω)j1(ω) + ǫ̃−ǫ+ ̃1(ω)j0(ω)

]
.

The functions k0 and k1 are described in Appendix. The quantities p and ǫ±, which
appear in both (4.1) and (4.2), are defined by

ǫ± = 1 , p =
ω

R
. (4.3)

When one calculates some transitions (as for example K → 2π decays) the
quarks which form mesonic phase belong either to the initial or to the final bag.
The quantities with the wiggle: ǫ̃, j̃0, j̃1, etc. refer to the final bag. The expression
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(4.2) satisfies the boundary condition (2.10b), including the identity (Aµ = ∂µπ),
explained below.

The boundary condition (2.10a) determines the frequency ω (4.3). Its approxi-
mate form is

−Ff (R) +Gf (R)AH/f = 0 ,

Gf (R) =
Ff (R)

ω +mfR

[
1−

√
ω2 − (mR)2

tg
√
ω2 − (mfR)2

]
,

AH/f = 1 +
1

n
ρH/f , (4.4a)

ρ =
ω0

48πf2MR
2

1

ω0 − 1

1 + µR

1 + µR+ 1
2µ

2R2
Σ̃H/f ,

Σ̃ =
∑

ij

〈H|~σi~σj~τi~τj |H〉 .

In the expression (4.4) n is the number of valence quarks which determine the

hadron state |H〉. Some useful values of the matrix element Σ̃ are displayed in
Table 1.

TABLE 1.

H N ∆ ρ ω π

Σ̃ 57 33 16 24 16

Matrix elements Σ̃.

The substitution of (4.1 b) into (4.4) gives the transcendental equation for ω

tg
√
ω2 − (mfR)2 =

√
ω2 − (mfR)2

1 + (ω +mfR)/A
, (4.4b)

The bag radius R is selected together with other model parameters by a variona-
tional procedure described in Sect. 7 below.

The factors D0 and D1 which appear in (4.2) are obtained by combining the
boundary conditions (2.10b) and (3.6). In the static limit this leads to

d

dr
πα =

m2
0 + f2π ĝ

2

m2
0

1

fπ
Ψ̄Tαγ5Ψ . (4.5)

The right hand side of (4.5) is evaluated by using the quark field (4.1), thus deter-
mining D0 and D1.
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5. Axial-vector mesonic phase

The mesonic phase of VCM is determined by the coupled equations (2.12b) and
by the boundary conditions (2.10). Outside of the bag the axial vector “field” in
particular has to satisfy the equation

∂µAaνµ + ĝfπ∂νπ
a − (m2

0 + f2π ĝ
2)Aaν = 0 . (5.1)

By taking the derivative of (4.1) (and ignoring the step function at the boundary)
one obtains

∂µAaµ =
ĝfπ

m2
0 + f2π ĝ

2
µ2
ππ

a , (5.2)

which agrees with (3.5) and (3.6). In the static case this goes into

(∇2 −m2
A)
~Aa − ĝfπ

(
1− µπ2

m2
A

)
~∇πa = 0 , (5.3)

m2
A = m2

0 + ĝ2f2π .

Pion “field” which contains two quark (antiquark) operators appears as the inho-
mogeneous term (5.3). A general solution of that equation is

~Aa = ~AaH + ~AaP . (5.4)

Here the vector refers to the spatial spin J = 1 properties, while the index a
corresponds to the SU(2) isospin group. The solution of the homogeneous equation
(5.1) has a general form

~AaH(~x) = âaT 0
01k1(mAr) + baT ν01σ

+
ν k0(mAr) + ĉaT ν12σ

+
ν k2(mAr) . (5.5)

The spherical tensors TMJλ and the functions kλ are defined in Appendix. The coef-
ficients âa, ba and ĉa must contain quark (antiquark) operators in order to satisfy
the equation (5.3) and the boundary conditions (2.10) and (3.6).

A particular solution of the inhomogeneous equation (5.3) is

~AaP = ĝfπ

(
1− µ2

π

m2
A

) ∫

r>R

d3x′G(~x, ~x′)~∇~x′πa(~x (5.6)

The explicit form of the Green’s function G(~x, ~x′) is given in Appendix while the
pionic phase πa is determined by (4.2).

The axial-vector field (5.4) has to satisfy the conditions (2.10b, c), (3.5) and
(3.6). The PCAC constrained, which is obtained as a combination of conditions

FIZIKA B 2 (1993) 1, 49–71 57



horvat et al.: vectormesonic phase . . .

(3.5) and (3.6) puts a stringent condition on either ~AH or ~AP “fields”. For a static
axial-vector phase one must have

~∇~x′
~Aa(~x) = −ĝfπ

µ2
π

m2
A

πa(~x) . (5.7)

After some calculation one finds

~∇~x
~AaH(~x) = âamAY

0
0 k0(mAr) +

mA√
2π
k1(mAr)

[
ĉa − b̂√

2

]
~σ~r0 ,

~∇~x
~AaH(~x) = −ĝfπ

µ2
π

m2
A

πa(~x)

+gfπMAµπR
2d0k0(mAr)χ

+
mχm̃Âmm̃

[
i0(mAR)k1(µπR)

+
µπ
mA

i1(mAR)k0(µπR)
]

(5.8a)

+ĝfπmAmπr
2k1(mAr)χ

+
m~σ~r0χm̃B̂

a
mm̃

d1
3

[
i1(mAR)(k0(µπR) + 2k2(µπR)

+
µπ
mA

k1(µπR)(i0(mAR) + 2i2(mAR))
]
.

Introducing this into the relation (5.7) and using the results (4.2) one finds

âa√
4π

= −ĝfπµπR2D0Âmm̃χ
+
mχm̃

[
i0(mAR)k1(µπR) +

µπ
mA

i1(mAR)k0(µπR)
]
,

ĉa − b̂a√
2
= −

√
2πĝfπµπR

2χ+
m :: χm̃B̂mm̃

d1
3

[
i1(mAR)(k0(µπR) (5.8b)

+2k2(µπR)) +
µπ
ma

k1(µπR)(i0(mAR) + 2i2(mAR))
]
.

Here

Âamm̃ = dmf1bm̃f2 + b+mdm̃f2 , B̂mm̃ = bmf
+
1 bm̃f2 + dmf1d

+
m̃f2

. (5.8c)

Instead of working with quantities â, b̂ and ĉ it is simpler to use

âa√
4π

=
â√
4π
Âmm̃χ

+
mχ

+
mĉ

a − b̂a√
2
=

(
ca − ba√

2

)
χ+
m :: χm̃B̂

a
mm̃ . (5.8d)
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By invoking the condition (2.6) one can find the equality

NN

4π

(
ǫ̃+ǫ−j̃0(ω)j1(ω) + ǫ̃−ǫ+j̃1(ω)j0(ω))

ĝ

m2
0

= ĝfπ

(
1− µ2

π

m2
A

)
mAmπ

[
i0(mAR)I0(R)

D1

3
+

2

3
i2i2(mAr)I2(R)d1

]
(5.9)

+
b√
4π
k0(mAR)− ck2(mAR)

2√
8π

.

Here

I0(R) =

∞∫

R

dr r2k0(mAr)k0(µπR) =
exp(−(mA + µπ)R)

mAµπ(mA + µπ)
,

I1(R) =

∞∫

R

dr r2k1(mAr)k1(µπR)
exp(−(mA + µπ)R)

m2
Aµ

2
πR

+
exp(−(mA + µπ)R)

mAµπ(mA + µπ)
,

(5.10)

I2(R) =

∞∫

R

dr r2k2(mAr)k2(µπR) .

Thus all coefficients a, b and c are completely determined by various boundary
conditions.

By using (5.4) together with (5.5), (5.6), (5.9) and (5.10) one obtains the equal-
ity

m2
0

ĝ
Aµ = fπ∂µπ̃ . (5.11)

This is an operator equality, which is valid for any r < R. It simplifies the calcula-
tion of hadron internal energies (i.e. of hadron masses). The boundary conditions
(2.10b) and (3.6) are then trivially compatible. They had obviously compelled the
axial vector and pion mesonic phase to satisfy the relation (5.11).

6. Vector mesonic phase

The equation (2.12a) for the vector mesonic phase is considerably simplified by
the identity (5.11). Its new form contains only one inhomogeneous term, i.e.

∆~ρi −m2
0~ρi + g

m2
0

mA
∂i~π × ~π = 0 . (6.1)
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Here the constraint (3.9) has been already included. Furthermore the constraint
(3.8) in combination with (2.10a) leads to

~π × i

fπ
Ψ̄~Tγ5Ψ− m2

o

g
ηµ~ρµ = 0|r = R . (6.2a)

The solution of the homogeneous part of equation (6.1) has the general form

~ρH,c(x) = −ǫcab
[
IabT 0

01k1(m1r) + Jab
[
jTµ+ν21 k1(m1r) + kTµ+ν23 k3(m0r)

]]
. (6.3)

Here the tensors TMJA are defined in Appendix while Iab and Jab symbolise the
required spin and isospin contents. The constraint (3.9) leads to

~∇~ρH,c(~x) = − 1√
π
ǫcabIabm0k0(m0r)

−m0ǫ
cabJabk2(m0r)Y

µ+ν
1 (Ω)

[
−
√

2

5
j +

√
3

5
k

]
. (6.4)

A particular solution of the full inhomogeneous equation is

~∇~xρ
P,c(~x = −gǫcab m

2
o

m2
A

∫
d3y~∇~xG(~x, ~y)π

a(~y) . (6.5)

Here

G(~x, ~x′) = G0(~x, ~x
′) + γG1(~x, ~x

′) , (6.6a)

with

G0(~x, ~x
′) = m

∑

lm

Y ml (Ω)Y ml
∗(Ω′)il(mr<)kl(mr>) ,

G1(~x, ~x
′) = m

∑

lm

Y ml (Ω)Y ml
∗(Ω′)γlil(mr<)kl(mr>) ,

~∇~xG0(~x, ~x
′) = −~∇~x′G0(~x, ~x

′) , (6.6b)

~∇~xG1(~x, ~x
′) = ~∇~x′G1(~x, ~x

′) .

The CVC constraint will be implemented as an expectation value between pro-
ton (neutron) states

〈p|∇~ρ(~x)|p〉 = 0 . (6.7)
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In the approximation used in this paper the nucleon states contain valence
quarks only. This means that in the pionic phases πa, which appear in (6.5), one
has to keep only quark operators, i. e.

π = D1k1(µπr)(~σ~r0)
~τ

2
× operators . (6.8)

By using Gauss’ integral theorem one obtains after some integration

~∇~x~ρP,c(~x) = −gǫcabm
2
0

m2
0

R2m0D
2
1

τa

2

τ b

2
k1(µπR)µπ

d

dx
k1(x)x=µπR

4

π
(σmu

+)(σnu
+)
∑

lm

Y ml
∗(Ω)

[
il(m0R)−γkl(m0R)

]
kl(m0R)

∫
dΩ′Y ml (Ω′)Y ml u(Ω′)Y νl (Ω

′).

(6.9)

Additional relations determining constants appearing in (6.3), (6.5) and (6.6)
follow from the relation (6.2). One finds:

m0

g
~r0~ρ

a
r=R = ǫabc

m2
0

m2
A

D2
1

τ b

2

τ c

2
µπ

[1
3
(σmu

+)(σmu)

−
[
m2

0k1(m0R)R
2k1(µπR)

d

dx
k1(x)x=µπR(i0(m0R)− γk0(m0R)))

+
m2

0

3
(i1(m0R) + γk1(m0R))

∞∫

R

dr2rak1(m0r
′)k1(µπ(r

′)
[
k0(µπr

′) + 2k2(µπr
′)
]]

+m2
0Y

µ+ν
2 (Ω)

√
8π

15
〈1µ1ν|2µ+ ν〉σ+

µ σ
+
ν

[
R2

(√
2

5
jk1(m0R)

−
√

3

5
kk3(m0R)

)
k1(µπR)

d

dx
k1(x)x=µπR +m0(i1(m1R)

+γk1(m0R))

∞∫

R

dr′ r′2k1(m0r
′)k1(µπr

′)(k0(µπr
′) + k2(µπr

′))

+m0(i3(m0R) + γk3(m0R))

∞∫

R

dr′ r′2k3(m0r
′)k2(µπr

′)
]
. (6.10a)
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and [
~π × i

jπ
Ψ̄γ5 ~TΨ

]l
=

[
~π × m2

0

m2
A

nν∂µ~π

]l

=
m2

0

m2
A

ǫabcD2
1k1(µπR)µπ

d

dx
k1(x)x=µpiR

(τ b)

2

(τ c)

2
(6.10b)

[
(σ+
µ )(σν)

3
+ (σ+

µ )(σ
+
ν )

√
8π

15
〈1µ1ν|2µ+ ν〉Y µ+ν2

]
.

In order to have both (6.2) and (6.7) satisfied, where (6.2) is interpreted as:

〈p|
(
π × i

fπ
Ψ̄~Tγ5Ψ− m2

0

g
ηµ~ρµ

) ∣∣∣
r=R

|p〉 = 0 , (6.2b)

one has to fulfill the following conditions:

Iab = −
√
4π

m2
0

m2
A

gR2D2
1

τa

2

τ b

2
k1(µπR)µπ

d

dx
k1(x)x=µpiR

(σ4
µ)(σµ

3

[
i0(m0R)− γk0(m0R)

]
,

Jab = −gR2 m
2
0

m2
A

D2
1

τa

2

τ b

2
k1(µπR)µπ

d

dx
k1(x)x=µpiR

√
6π

15

〈1µ1ν|2µ+ ν〉(σ+
µ )(σ

+
ν )
[
i2(m0R)− γk2(m0R)

]
,

−
√

2

5
j +

√
3

5
k = 1 ,

k1(µπR)
d

dx
k1(x)x=µpiR = m2

0ki(m0R)R
2k1(µπR)

d

dx
k1(x)

[
i0(m0R)

−γk0(m0R)
]
+
m2

0

3

[
i1(m0R) + γk1(m0R)

]
∞∫

R

dr′ r′2k1(m0r
′)k1(µπr

′)

[
k0(µπr

′) + 2k2(µπr
′)
]
,

k1(µπR)
d

dx
k1(x)x=µπR = −R2m2

0

[
2

5
jk1(m0R)−

√
3

5
kk3(m0R)

]
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k1(µπR)
d

dx
k1(x)x=µπR −m0

[
i1(m0R) + γk(m0R)

]

∞∫

R

dr′ r′2k1(m0r
′)k1(µπr

′)
[
k0(µπr

′) + 2k2(µπr
′)
]

−m0

[
i1(m0r

′) + γk3(m0r
′)
]

∞∫

R

dr′ r′2k3(m0r
′)k1(µπr

′)k2(µπr
′) . (6.11)

They determine Iab, Jab, j, k and γ so that the vector mesonic phase

~ρ = ~ρHC + ~ρPC , (6.12)

is completely specified. It is important to note that operator ~ρ which describes vec-
tor mesonic phase contains quark creation operators. That means that the current-
current term,

〈H ′|~ρ a · ~ρ b|H〉

which would appear in the calculation of the nonleptonic decays5), in the valence
quark approximation vanishes.

7. Hadron masses and model parameters

A mass of a baryon (hadron) in VCM consists of the same contributions as in
the CM model5). It is given by

M(R) = EV + EQ + E0 + EM =
4π

3
BR2 +

N0

R
(a0 + b0 lnR)

+
8ac
3R

a000.175−
Z0

R
+

ω2
0Σ̃

192πf2π(ω0 − 1)

m2
A

m2
0

(7.1)

[
1 + µπR(

1 + µπR+ µ2
πR

2/2
)
R3

+
µ2
π ĝf

2
π

2m2
0

1 + µπR/2

R
(
1 + µπR+ µ2

πR
2/2
)2

]
.

Here, EV is the bag volume term, EQ is the quark phase energy, EC corresponds
to the effective colour gluon exchange, E0 is the zero-point energy and EM is the
energy of the mesonic phase. All such terms are well known1,5). Only the EQ and
EM require some additional comments. The value of ω (4.3), which follows from
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the boundary condition (4.4), and which is a function of the bag radius R, can be
fitted by the logarithmic expression:

ω(R) = a0 + b0 lnR . (7.2)

The mesonic phase energy EM contains the well known expression for the pionic
phase energy

Eπ = Êπ
1 + µπR

R3
(
1 + µπR+ µ2

πR
2/2
) Êπ =

ω2
0

192fπ(ω0 − 1)2
Σ̄ . (7.3)

Here it is assumed that in the leading approximation of Eπ depends on the MIT-
bag value ω0 = 2.0428. The same assumption was used to calculate the contribution
EV comming from the axial-vector mesonic phase.

The vector mesonic phase does not contribute, as the expression for EM has to
be understood as an average value

EM → 〈B|EM |B〉 . (7.4)

The terms comming from vector phase contain (6.10) eight quark operators, so
that they do not contribute to (7.1) in the valence quark approximation used for
hadron states.

By taking into account (5.11), the expression for EV can be simplified and
explicitly evaluated. This result, together with (7.4), leads to the term EM in (7.1).

The factor a00 in (7.1) depends on the hadron state. Some useful values are
shown in Table 2.

TABLE 2.

H N ∆ ρ ω π

a00 -3 3 2 2 -6

Parameter which specifies the gluon contribution to mass.

The hadron masses are fitted taking into account that the equilibrium of the
system containing bag is obtained, i.e.:

∂M

∂R

∣∣∣∣
R=R0

= 0 . (7.5)

In Table 3 four possible fits (Fit. 1-4) are listed, and compared with the CM
model results and with experimental hadron masses. The mN and m∆ are more or
less imputs. The ρ-meson mass can serve as a test of the fitting accuracy. In that
case the largest discrepancy is 7.4%. Unfortunately one also obtains (mω/mρ)th < 1
while the experimental results indicate > 1. Needles to say, as in all models with
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bag and valence quarks, pion mass is much too large, as such models do not properly
represent the Goldstone boson character of the pion.

First column (Chir) gives one possible CM fit. The found VCM fits are in
columns 2-5 (Fit. 1-4). The last column lists hadron masses in GeV, while radii Rα
are in GeV−1.

In the following the model parameters from Table 3 will be used to make predic-
tions for static and semi-static quantities such as the axial vector coupling constant
gA, the charge radius 〈r〉 and the proton magnetic moment µp.

TABLE 3.

Chir Fit. 1 Fit. 2 Fit. 3 Fit. 4 Exptl.

B
1

4 0.125 0.199 0.14 0.139 0.14

Z0 0.495 0.585 1.15 1.04 1.3

ac 0.4 0.767 0.495 0.48 0.505

ĝ 4.23 2.9 2 4

mN 0.938 0.938 0.938 0.938 0.938 0.938

m∆ 1.232 1.230 1.230 1.222 1.232

mρ 0.819 0.827 0.802 0.770

mω 0.809 0.813 0.797 0.783

RN 5.79 5.730 5.210 5.193 5.293

R∆ 6.776 5.326 5.336 5.369

Rρ 4.844 4.874 4.854

Rω 4.771 4.778 4.813

Hadron masses and fitting parameters.

8. The axial vector coupling constant

The constant gA is defined by the matrix element of the axial vector current ~JAµ
(3.3) between nucleon states

gA = lim
~R→0

∫
d3r ei

~k~r〈p| ~JA+(r)|n〉 . (8.1)

One obtains:

gA =
5

9

j20(ω) + j21(ω)

j20(ω) + j21(ω)− 2j0(ω)j1(ω)/ω
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+
5

9

j0(ω)j1(ω) + j1(ω)j0(ω)

j20(ω) + j21(ω)− 2j0(ω)j1(ω)/ω

1 + µπR/2

2
(
1 + µπR+ µ2

πR
2/2
)2 . (8.2)

This is identical in the form with CM value, what is not surprising. It is due
to the identity (5.11). However the expressions for M(R) in VCM differ from CM
ones so that one obtains different sets of parameters, as shown in Table 3.

The theoretical values of gA are listed in Table 4. They are always about 50%
larger than the experimental value gA = 1.25 ± 0.001. Comparison with the first
column in Table 4 shows that VCM model does no better than the old CM model.

TABLE 4.

Chir. Fit. 1 Fit. 2 Fit. 3 Fit. 4

R 5.645 5.730 5.210 5.193 5.293

ω 1.4483 1.4633 1.3638 1.3602 1.3810

gA 1.8628 1.8563 1.8950 1.8963 1.8890

Coupling constant gA for various model parameters.

9. The proton magnetic moment

Here the definition

µ = 〈p|
∫

d3r
1

2
~r × ( ~Jν(I=0) + ( ~Jν(I=1)|p〉 (9.1)

gives in VCM a different theoretical expression than in CM one. In VCM one has
for the isoscalar the same expression as in CM, i.e.

~J V (I=0) =
1

2
ψ̄~αψ . (9.2)

However the isovector current is in VCM given by (3.4), while in CM one has

~J
V (I=1)
CM = ψ̄γµT

iψΘν + ǫijkπj∇̄µπ
k(1−Θ) . (9.3)

With (3.4) and (9.2) one obtains

µp(V CM) = µp(Q) + µp(M) ,

µp(Q) =
2

3

R

ω4

1

j20(ω) + j21(ω)− 2j0(ω)j1(ω)/ω
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[
3ω

4
− 3

4
sin(ω) cos(ω)− ω

2
sin2(ω)

]
. (9.4)

µp(M) = 2mp〈p|(−)

∫
d3x~r ×m2

0

∫
d3xG(~x, ~x′)~π(~x)× ~∇~x′~π(~x)

m0

m2
A

|p〉 .

In CM with (9.2) and (9.3) one finds

µ(CM) = µp(Q) + µCMp (M) ,

µCMp (M) = µp(Q) =
2R

3ω4

1

j20(ω) + j21(ω)− 2j0(ω)j1(ω)/ω

[
3ω

4
− 3

4
sin(ω) cos(ω)− ω

2
sin2(ω)

]
(9.5)

+
R

12π

(
µπ
fπ

)2
1 + 0.5µπR[

1 + µπR+ (µ2
πR

2/2
]2

11

3

1

µ2
πR

2

j0(ω)j1(ω)

[j20(ω) + j21(ω)− 2j0(ω)j1(ω)/ω]
2 .

Both expressions (9.4) and 9.5) are explicit functions of ω and R. They can be
compared by performing calculations for some arbitrary parameters. One finds, for
example:

R = 5.7295 GeV−1, ω = 1.4633, µ(V CM) = 3.03, µ(CM) = 3.11 . (9.6)

Obviously both expressions lead to very similar numerical results, the difference
being less than 3%.

However fitting parameters, which include R and determine ω, are model de-
pendent. Thus using values displayed in Table 5 one obtains a spectrum of µ values.
Some of them are quite close to the experimental value µp = 2.792).

TABLE 5.

Chir. Fit. 1 Fit. 2 Fit. 3 Fit. 4

R 5.645 5.730 5.210 5.193 5.293

ω 1.4483 1.4633 1.3638 1.3602 1.3810

µp 3.1058 3.1131 2.8168 2.7430 2.8297

Proton magnetic moment µp.
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10. The proton charge radius

The charge density ρ = JV0 which appears in the formula

〈r2〉 =
∫

d3r r2ρ(r) (10.1)

contains only the quark phase contribution. The vector mesonic phase contribution
to (3.4) has only spatial components (6.3) and (6.5). Thus, as was the case with
gA, CM and VCM lead to the same expression

〈r2〉 = R2
0

2ω5

1

j20(ω) + j21(ω)− 2j0(ω)j1(ω)/ω
[
2ω3

3
+ ω + ω cos(ω)− sin(2ω)

]
. (10.2)

According to that expression the theoretical proton charge radius depends on
R and ω which depend (See Table 3) on the model and on the particular fitting
parameters. The corresponding numerical results are sumarized in Table 6.

TABLE 6.

Chir. Fit. 1 Fit. 2 Fit. 3 Fit. 4

0.839 0.851 0.777 0.774 0.778

2.5% 1.1% 9.7% 10% 8.4%

Proton charge radius 〈r2〉 in fm.

The last row gives deviations from the experimental value 〈r2〉exp = 0.86± 0.01
fm. It is encouraging that the deviations from the experimental findings are never
larger than 10%.

11. Overview

Enlargement of CM which is described here does not lead to any surprises.
However this should be qualified by the reminder that VCM has been treated only
approximately. A highly nonlinear system of equations has been linearized and
solved sequentially. Furthermore one should not forget that all unknown functions
are operators. They are approximately described by the simplest quark configura-
tions, which would appear if those general operators are expanded in pieces con-
taining large and large numbers of quark and gluon operators. This is a standard
perturbation calculation in the Heisenberg picture10).

The inclusion of vector and axial vector phases did not cure the major ill of CM.
The axial vector coupling constant gA remains also much too large in VCM. One
ventures to guess that might be connected with approximate linearization of the
theory, by which the chiral invariance is severely broken, even for massless VCM.
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Space in VCM, and CM as well, is devided in two pieces: inside bag and outside.
As vector (axial-vector) fields do not penetrate inside of the bag, there is no gauge
invariance8) for r > R.

As already has been discussed PCAC and CVC condition force VCM results
close to the old CM ones. Thus the explicitly apparent VMD for the region r > R
has mostly a formal character. This is explicitly, within the approximations used
demonstrated for the axial-vector “field” (5.11). That phase can be replaced by the
derivative of the meson phase thus making the theoretical expressions for gA equal
in both CM and VCM. As discussed above, this does not lead to equal numerical
results. The theoretical expressions for hadron masses are not equal and this leads
to unequal model parameters (i.e.: ω, R. etc.) values.

VCM can produce the predictions of µp and of 〈r2〉 which are within 10% of
experimental values. Seemingly this is somewhat better than CM, but objectively
speaking, no model version has a clear cut advantage. In VCM it seems impossible
to reproduce both quantities equally well. Almost perfect theoretical prediction of
µp leads to not so good 〈r2〉 and vice versa. This is always achieved with various
VCM parameter sets which all do predict hadron masses with about the same
accuracy.

One might say that VMD, formally expressed in formulae (3.3) and (3.4), is
openly displayed in VCM and “hidden” in CM. Statement holds for linearised
theories, solved in the leading order in the perturbation calculation. In that ap-
proximation both CM and VCM lead to almost equal prediction for static (masses,
gA) and semistatic (µp, 〈r2〉) quantities. All this makes sense in the context of the
model structure in which vector “fields” are not directly coupled to quarks. They
are driven by vector-“meson” interaction terms. One can hope that detailed and
explicit calculation which is presented here sheds some light on the inner workings
of others, similarly constructed, models2.3).

Appendix

In the evaluation of mesonic phase one has used spherical Bessel functions

jn(x) =

√
π

2x
Jn+1/2(x) ,

nn(x) = (−1)n+1

√
π

2x
Jn−1/2(x) , (A1)

h1n(x) = jn(x) + inn(x) ,

h2n(x) = jn(x)− inn(x) ,

and modified Bessel functions

in(x) = i−njn(ix), kn(x) = −inh1n(ix) . (A2)

The vector fields were expressed through irreducible tensors

TMLλ =
∑

µ

〈1− µ λ M + µ|LM〉YM+µ
λ ~eµ1 (A3)
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Here ~eµ1 is a spherical component of a unit vector.

Some useful relations for tensors (A3) are11):

~∇k1(mr)TMLλ = −
√

λ+ 1

2λ+ 3
δL,λ+1Y

M
λ+1kλ+1(mr)

+

√
λ

2λ− 1
δL,λ−1Y

M
λ−1mkλ−1(mr)

= −
[√

λ+ 1

2λ+ 1
δL− 1, λ−

√
L

2L+ 1
δλ, L− 1

]
mYML kL(mr) , (A4)

and
T 0
01 = − ~r0√

4π
,

∑

ν

T ν12σ
+
ν =

~σ√
4π

, (A5)

∑

ν

T ν12σ
+
ν = − 3√

8π

[
~r0(~r0~σ)−

~σ

3

]
.

A general form of a Green function is

G(~x, ~x′) = m
∑

lm

Y ml (Θ,Φ)Y ml
8(Θ′,Φ′)

[
il(mr<) + γ1k1(mr<)

]
kl(mr>) . (A6)

Here m, which multiplies the r.h.s., is the “mass” of a vector “field”. Actually
m−1 is a characteristic range for a given vector (axial-vector) phase.

References

1) A. W. Thomas: Adv. Nucl. Phys. 13, p. 1; J. W. Negele, E. Vogt (eds.) New York:
Plenum Press 1984; R. L. Jaffe: Lecture at the 1979 Summer School “Ettore Majorana”,
Vol. 17, ed. A. Zichichi, New York: Plenum Press 1982; F. Myhrer, G. E. Brown, Z.
Xu, Nucl. Phys. A 362 (1981) 317; G. E. Brown, M. Rho, Phys. Lett. 82B (1979)
177; G. E. Brown, M. Rho, V. Vento, Phys. Lett. 84B (1979) 383; M. V. Barnhill,
W. K. Cheng, A. Halprin, Phys. Rev. D20 (1979) 727; M. V. Barnhill, A. Halprin,
Phys. Rev. D21 (1980) 1916; V. Vento et al., Nucl. Phys. A 345 (1980) 413; K. Saito,
Progr. Theor. Phys. 71 (1984) 775; F. Myhrer, G. E. Brown, Z. Xu, Nucl. Phys. A
362 (1981) 317; I. Hulthage, F. Myhrer, Z. Xu, Nucl. Phys. A 364 (1981) 322; H.
Hogaasen, F. Myhrer, Z. Phys. C – Particles and Fields 21 (1983) 73;

2) G. E. Brown, Nucl. Phys. A446 (1985) 3c; G. E. Brown, M. Rho and W. Weise, Nucl.
Phys. A454 (1986) 669; G. E. Brown, S. Klimt, M. Rho and W. Weise, Z. Phys. A331
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Mezonski sektor u standardnom kiralnom vrećastom modelu je povećan uključivanjem
vektorskih i aksialno-vektorskih komponenata. Novi model otvoreno pokazuje polje-
struje identiteta. Njegova pretkazivanja su bliža starijem modelu. To je, čini
se, posljedica kiralne nepromjenljivosti te PCAC i CVC uvjeta. Proračunati su:
čestične mase, aksialnovektorska vezna konstanta, protonski magnetski moment i
nabojni polumjer.
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