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Ágrip 

Inngangur og markmið: Gáttatif er algengast viðvarandi hjartsláttartruflana 

en núverandi skilningur á flókinni meingerð sjúkdómsins er takmarkaður. Við 

upphaf þessarar vinnu höfðu víðtækar erfðamengisleitir sýnt fram á tengsl 

milli um 30 erfðabreytileika og gáttatifs. Flestir eru algengir og staðsettir utan 

útraða gena og tengjast því sjúkdómnum með óþekktum hætti. Nýlega var 

sýnt fram á að tveir sjaldgæfir erfðabreytileikar í útröðum vöðvaliðagenanna 

MYH6 og MYL4 auka áhættu á gáttatifi en slík tenging vöðvaliðunnar við 

hartsláttartruflanir þegar hjartavöðvakvilli var ekki til staðar var nýmæli. 

Tilgangur þessa doktorsverkefnis var að framkvæma víðtæka erfðamengisleit 

með það að markmiði að bera kennsl á áður óþekkt tengsl milli 

erfðabreytileika og gáttatifs. Jafnframt var markmiðið að öðlast innsýn í með 

hvaða hætti erfðabreytileikar hafa áhrif með því að kanna tengsl þeirra við 

aðra hjartasjúkdóma og hjartalínuritsbreytur. Í verkefninu skoðuðum við 

einnig áhrif MYH6 breytileikans á aðra hjartasjúkdóma og reyndist hann 

einnig auka líkur á meðfæddum ósæðarþrengslum. Þess vegna var einnig 

framkvæmd víðtæk erfðamengisleit á þeim meðfædda hjartagalla. 

Megintilgangur þess að finna áður óþekkt tengsl milli erfðabreytileika og 

áhættu á gáttatifi er að auka skilning á meingerð sjúkdómsins og stuðla með 

því að framförum í meðhöndlun hans. 

Aðferðir: Við framkvæmdum fjórar rannsóknir byggðar á víðtækri 

erfðamengisleit. Í öllum tilvikum byggðust erfðaupplýsingar Íslendinga á 

heilraðgreiningu 15.220 einstaklinga og örflögugreiningu 151.677 sem 

framkvæmdar voru hjá Íslenskri erfðagreiningu. Við könnuðum 

erfðabreytileika sem fundust og tengdust sjúkdómum nánar með því að meta 

áhrif þeirra á hjartalínuritsbreytur úr 289.297 hjartalínuritum frá 62.974 

einstaklingum sem ekki höfðu greinst með gáttatif eða fengið gangráð. Þrjár 

rannsóknanna fjölluðu fyrst og fremst um gáttatif og sú fjórða um meðfædd 

ósæðarþrengsli: i) Víðtæk erfðamengisleit meðal 13.471 tilfella gáttatifs og 

374.939 viðmiða frá Íslandi. Niðurstöðum var fylgt eftir í bandarískum 

gögnum. ii) Safnrannsókn víðtækra erfðamengisleita á gáttatifi meðal 29.502 

tilfella og 767.760 viðmiða frá Íslandi og Bretlandi (UK Biobank). Niðurstöðum 

var fylgt eftir í sýnum frá Noregi og Bandaríkjunum. Áhrif tiltekinnar 

stökkbreytingar á umritun var metin í 167 RNA sýnum úr hægri gátt. iii) 

Safnrannsókn víðtækra erfðamengisleita meðal >1.000.000 þátttakenda frá 
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sex rannsóknarverkefnum, þ.m.t. 60.620 tilfelli gáttatifs. iv) Víðtæk 

erfðamengisleit á meðfæddum ósæðarþrengslum meðal 120 tilfella og 

355.166 viðmiða frá Íslandi. Nákvæm svipgerðargreining bera tiltekins 

erfðabreytileika var framkvæmd.  

Niðurstöður: Við fundum áður óþekkt tengsl milli gáttatifs og 

erfðabreytileika í útröðum þriggja gena sem öll gegna hlutverki í viðhaldi 

eðlilegrar byggingar hjartans; PLEC, RPL3L og MYZAP. Greining RNA sýna 

úr hjarta leiddi í ljós að erfðabreytileiki í RPL3L olli því að ein útröð gensins 

var ekki umrituð. Stór safnrannsókn meðal rúmlega milljón þátttakenda leiddi 

í ljós áður óþekkt tengsl á milli 80 erfðabreytileika og gáttatifs og þau gen 

sem þóttu líklegust til að útskýra tengslin reyndust hafa áhrif á marga ferla, 

m.a. byggingu hjartans. Erfðabreytileikar sem auka líkur á gáttatifi höfðu 

fjölbreytt áhrif á hjartalínuritsbreytur. Víðtæk erfðamengisleit á meðfæddum 

ósæðarþrengslum fann einungis mislestursstökkbreytinguna p.Arg721Trp í 

MYH6 en hún ein útskýrir um 20% tilfella hjartagallans á Íslandi. Sami 

erfðabreytileiki hafði áður verið tengdur aukinni áhættu á sjúkum sínushnút 

og gáttatifi, auk þess að hafa hér víðtæk og sterk áhrif á hjartalínuritsbreytur.   

Ályktanir: Niðurstöðurnar benda til mikilvægis byggingareininga hjartans í 

meingerð gáttatifs og styðja kenningar um að hartavöðvakvilli í gáttum hafi 

þýðingu í þróun sjúkdómsins. Erfðabreytileikar sem auka líkur gáttatifs höfðu 

fjölbreytt áhrif á rafleiðni í hjartanu sem bendir til að þeir auki líkur á gáttatifi 

með ólíkum hætti. Kortlagning á tengslum þeirra við hjartalínuritsbreytur gæti 

gagnast við frekari rannsóknir á með hvaða hætti einstakir erfðabreytileikar 

tengjast gáttatifi. Fjölbreytt og víðtæk áhrif p.Arg721Trp í MYH6 á 

hjartasjúkdóma og starfsemi hjartans benda til að þessi breytileiki tengist 

gáttatifi ekki eingöngu gegnum sterk tengsl við sjúkan sínushnút. Tengsl 

meðfæddra ósæðarþrengsla við samdráttareiningu hjartans samræmast 

kenningum um að skert blóðflæði gegnum ósæðina á fósturstigi stuðli að 

myndun hjartagallans. Erfðabreytileikinn í MYH6 útskýrir stóran hluta tilfella 

meðfæddra ósæðarþrengsla á Íslandi og gæti sú vitneskja komið að notum í 

erfðaráðgjöf. Samanlagt veita niðurstöðurnar aukinn skilning á meingerð 

bæði gáttatifs og meðfæddra ósæðarþrengsla, en slík innsýn er nauðsynlegt 

skref í átt að bættum meðferðarúrræðum. 

 

Lykilorð:  

Gáttatif, meðfædd ósæðarþrengsl, víðtæk erfðamengisleit, 

hjartalínuritsbreytur, byggingareiningar hjartans.  
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Abstract 

Introduction and aims: Atrial fibrillation (AF) is the most common sustained 

cardiac arrhythmia and its complex pathophysiology is incompletely 

understood. At the time of beginning of this work, genome-wide association 

studies (GWAS) on AF had yielded about 30 associations, mostly with 

common variants in the non-coding genome that affect AF risk through 

unknown mechanisms. Recently, rare coding variants in the sarcomere 

genes MYH6 and MYL4 associated with increased risk of AF, representing a 

novel implication of the sarcomere in arrhythmogenesis in the absence of 

cardiomyopathy. The aim of this doctoral research was to perform GWASs on 

AF and search for novel associations. Furthermore, to gain insights into the 

mechanisms by which novel and published variants affect AF risk by 

assessing their effects on other cardiovascular diseases and on normal 

cardiac conduction, using electrocardiogram (ECG) measurements. Through 

association analysis we observed that one of the strongest AF variants, in 

MYH6, accounts for 20% of Icelandic cases of coarctation of the aorta (CoA), 

thus we decided to explore this variant and its effects on structural heart 

disease in detail resulting in a separate paper. The overall purpose of 

identifying novel associations of sequence variants with AF is to further the 

understanding of underlying pathogenesis and facilitate advances in 

treatment. 

Methods: We conducted four GWASs. In all cases, genotype information 

of Icelandic participants was based on whole-genome sequencing of 15,220 

and chip-typing of 151,677 individuals performed at deCODE genetics. We 

tested AF variants for association with measurements in 289,297 sinus 

rhythm ECGs from 62,974 individuals. Three GWASs on AF and one on CoA 

were performed: i) A GWAS among 13,471 AF cases and 374,939 controls 

from Iceland with additional follow up in samples from the US. ii) A meta-

analysis of GWAS on AF among 29,502 cases and 767,760 controls from 

Iceland and the UK Biobank with follow-up in samples from Norway and the 

US, focusing on low-frequency coding and splice variants. Analysis of 167 

RNA samples from the right atrium were used to assess the effects of a novel 

AF variant at the transcript level. iii) A multi-center meta-analysis of GWASs 

on AF including >1,000,000 participants from six contributing cohorts, 

including 60,620 AF cases. iv) A GWAS on CoA among 120 cases and 

355,166 controls in Iceland. Detailed phenotyping of carriers of a novel 

variant was performed.  
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Results: We identified novel AF associations with coding variants in three 

genes which have a role in maintaining cardiac structure; PLEC, RPL3L and 

MYZAP. Analysis of RNA samples from the right atrium revealed that a 

splice-donor variant in RPL3L results in exon skipping. Through a meta-

analysis involving >1,000,000 participants from six contributing cohorts, 80 

novel AF loci were identified. Pathway and functional enrichment analysis 

suggested variable mechanisms underlying the associations, including 

effects on structural remodeling. Assessing variants associations with ECG 

measurements showed diverse effects of AF variants on normal cardiac 

conduction. We found that one of the strongest AF variants, a missense 

variant, p.Arg721Trp, in the sarcomere gene MYH6 was found to explain 

approximately 20% of CoA cases in Iceland. This variant was previously 

reported to associate with sick sinus syndrome through GWAS and has 

strong effects on AF risk and ECG measurements in the current study.  

Conclusion: The results highlight the important role of myocardial 

structure in the pathogenesis of AF. Furthermore, they support speculations 

of a role for subclinical atrial cardiomyopathy in the development of 

arrhythmia. The diverse associations between AF variants and ECG 

measurements suggest fundamentally different categories of mechanisms 

contributing to the development of AF and might help inform on underlying 

biology of specific AF loci in future studies. We demonstrate a pleiotropic 

effect of p.Arg721Trp in MYH6 on cardiac function and disease. The variant 

explains a large proportion of CoA cases in Iceland which may be a relevant 

fact for genetic counseling. The association with MYH6, that encodes a part 

of the cardiac contractile unit, complies with the hemodynamic theory of CoA 

development. Combined the results increase understanding of the 

pathophysiology of both AF and CoA, thus providing knowledge that will 

hopefully translate into advances in treatment. 

 

Keywords:  

Atrial fibrillation, coarctation of the aorta, genome-wide association study, 

electrocardiogram measurements, cardiac structural remodeling. 
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1 Introduction 

 General introduction 1.1

The fundamental aim of human genetic research is to explore how variation 

in the genome contributes to human diversity, including risk of disease. The 

ultimate hope is that the resulting knowledge will facilitate discoveries of 

therapeutic targets and aid in personalizing diagnosis and treatment. 

Technological advances in the past few decades, including the advent of 

high-throughput genotyping and sequencing, has provided extensive 

information on human sequence diversity (Frazer et al., 2007). This has 

enormously widened the horizon of genetic studies both for rare mendelian 

like disease and common disorders with complex pattern of inheritance 

(Hindorff et al., 2009). A unique opportunity to conduct this manner of 

scientific research is provided by the deCODE genetics database which 

combines genotype information for a large proportion of Icelanders with well 

documented genealogy and high quality registration of phenotypic data 

(Gudbjartsson et al., 2015). Cardiovascular diseases (CVDs), the subject of 

this thesis, encompass a diverse group of disorders which are a leading 

cause of morbidity and mortality worldwide (Benjamin et al., 2019). Many 

CVDs have a large heritable component and some share genetic risk factors 

(Kathiresan & Srivastava, 2012), including the two CVDs that are the focus of 

this thesis, the common cardiac arrhythmia atrial fibrillation (AF) and the 

congenital heart defect (CHD) coarctation of the aorta (CoA).  

 Genetic research on human traits 1.2

1.2.1  Genetic variation 

Genetic variation is defined as difference in DNA sequences between 

individuals within a population. Its main sources are mutations and meiotic 

recombination (Strachan & Read, 2011). The variation ranges from single 

nucleotide polymorphisms (SNPs) to small insertions or deletions (INDELs) 

spanning two to hundreds of base pairs and finally structural variants (Iafrate 

et al., 2004; Strachan & Read, 2011). The structural variants involve larger 

insertions or deletions or chromosomal rearrangements and are often 

referred to as copy number variants (Freeman et al., 2006). The frequency of 

genetic variation and its effect on biological functions and human traits varies 

greatly, ranging from having no effects to being incompatible with life. 
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Variants located in the coding regions of the genome, i.e. exons of genes, 

affect protein function to a different degree. Exonic variants represent only 1-

2% of the variants found in the human genome (Auton et al., 2015; McCarthy 

et al., 2016). Some of them are synonymous, meaning they do not affect the 

amino acid sequence and have no effect on protein function. Other variants 

directly affect the protein product, including nonsense variants that introduce 

a premature stop codon resulting in either a truncated protein or absence of 

protein through the process of nonsense mediated decay and missense 

variants that result in the substitution of one amino acid for another (Strachan 

& Read, 2011). Variants that have severe effects on protein function and 

result in serious pathophysiology are usually subject to negative selection 

and are therefore rare (Reich & Lander, 2001).  

In general, interpreting the functional effects of sequence variants, 

including coding variants, can be challenging (Shameer et al., 2016). 

Algorithms predicting the effects of amino acid changes on protein function 

are commonly applied (Adzhubei et al., 2013; Sim et al., 2012). They are 

based on factors such as protein conservation and chemical difference 

between amino acids. Importantly, they involve predictions, not functional 

validation of the effects. Even more challenging is the annotation of the non-

coding genome, i.e. in introns or intergenic regions containing regulatory 

elements that can influence biological functions such as gene expression and 

transcript isoform repertoire (Cheung & Spielman, 2009; Pagani & Baralle, 

2004). These regulatory mechanisms are not well documented and often 

complex. For example, the same variant can have diverse effects on gene 

expression in different tissues and developmental stages. The interpretation 

of functional effects of non-coding sequence variants is therefore a major 

challenge (Ritchie et al., 2014). 

1.2.2  Linkage analysis and candidate gene methods 

Earliest studies on the genetics of human disease applied the approaches of 

linkage analysis and candidate gene studies. Linkage analysis is a statistical 

method based on the observation that variants that reside physically close on 

a chromosome remain linked during meiosis. Therefore, identifying variants 

that show correlated segregation (linkage) with a trait through families can 

identify the chromosomal locus harboring the disease gene (Altshuler et al., 

2008). Linkage analysis has thus proven a successful method to identify 

causative genes in mendelian disorders where highly penetrant variants 

segregate with disease status (Jimenez-Sanchez et al., 2001). However, the 

method has shown limited success when applied to common traits, most 
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notably because linkage studies lack power to identify common variants as 

they have low to moderate effects on disease risk (Risch & Merikangas, 

1996). Candidate gene studies are based on searching for risk variants 

through association analysis in specific biologically plausible genes (Tabor et 

al., 2002). The results of candidate gene studies on common traits often lack 

replication and the method has been criticized for being hypothesis-driven 

and therefore only able to identify a fraction of genetic risk factors 

(Hirschhorn & Daly, 2005; Tabor et al., 2002). 

1.2.3  Genome-wide association studies 

In the past decade genome-wide association studies (GWASs) have become 

the most applied approach in research on the genetics of common traits with 

complex pattern of inheritance. GWAS is an unbiased and comprehensive 

method that tests for association between sequence variants throughout the 

genome and a trait (Hirschhorn & Gajdos, 2011). In contrast to candidate 

gene studies, no assumptions are made beforehand on which genes or 

variants may affect the trait in question. The earliest GWASs tested common 

SNPs on SNP chip arrays and resulted in multiple discoveries of common 

variants with mild or moderate effect sizes affecting a wide range of traits. 

The discoveries of such variants have increased in number with increasing 

sample sizes of GWASs (Hindorff et al., 2009). In recent years, advances in 

genotyping techniques have made large-scale whole-genome sequencing 

possible, allowing nearly complete coverage of the sequence diversity of 

populations under study (Frazer et al., 2007). These advances have 

facilitated the transition to GWASs that include rare variants identified by 

whole-genome sequencing, including, in particular, coding variants 

(Gudbjartsson et al., 2015). 

Several additional concepts are important for the implementation of 

GWASs. First, when testing millions of variants for association with a trait, 

correction for multiple hypothesis testing is necessary. A widely used P value 

threshold of 5 × 10
-8

 is equivalent to a Bonferroni correction for one million 

independent tests considered (Auton et al., 2015). With extended coverage of 

sequence diversity and inclusion of rare sequence variants, the multiple-

testing burden increases. Therefore, Sveinbjornsson et al. have suggested a 

method using as weights the enrichment of sequence annotations among 

association signals when determining significance thresholds. For example, 

an intergenic variant is less likely to be causal than a missense variant and 

therefore its association requires a lower P value to be declared genome-

wide significant (Sveinbjornsson et al., 2016). 
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Another important term with regards to GWAS is linkage disequilibrium 

(LD). It refers to the non-random association of alleles at two (or more) loci 

after recombination in meiosis. Variants can therefore be inherited together in 

LD-blocks, also termed haplotypes (Wall & Pritchard, 2003). GWASs involve 

the application of statistical methods that use knowledge on LD between 

variants and the haplotype blocks in populations under study to predict or 

impute genotypes that are not directly assayed in a sample of individuals 

(Marchini et al., 2007). Thus, variants identified by whole-genome 

sequencing and not found on chip arrays can therefore be imputed (inferred) 

for individuals that have been genotyped on SNP chip array platforms. 

Performing GWASs in the Icelandic population has several advantages. 

For the past two decades a large part of the Icelandic nation has been 

genotyped at deCODE genetics, around 160,000 individuals. The extended 

sampling and the well documented genealogy of the Icelandic population has 

allowed for assigning genotypes to parent of origin by long-range phasing 

(Kong et al., 2008). This has increased imputation accuracy, allowing for 

accurate imputation of variants identified through whole-genome sequencing 

down to an allele frequency of 0.1% (Gudbjartsson et al., 2015). The well 

documented genealogy further allows the incorporation of close relatives of 

genotyped individuals into the analysis. Furthermore, the small size of the 

population can be an advantage for studying the effects of rare deleterious 

variants. Such variants can reach higher frequencies in small, more isolated, 

populations where a small number of ancestors account for a relatively large 

proportion of the population, termed the founder effect. Finally, a tradition for 

high quality registration of phenotypic data in Iceland is a crucial factor for 

identifying sequence variants associating with disease risk (Gudbjartsson et 

al., 2015). 

 Atrial fibrillation 1.3

1.3.1  Definition, presentation and complications 

AF is the most common sustained cardiac arrhythmia and a significant cause 

of morbidity and mortality (Benjamin et al., 1998; Go et al., 2001). It is 

characterized by an irregular and often rapid heartbeat caused by 

uncoordinated electrical activation of the atria, the upper chambers of the 

heart (Fuster et al., 2001). In contrast, normal cardiac conduction is 

characterized by regular initiation of electrical activation by the sinoatrial (SA) 

node, the hearts natural pacemaker, followed by synchronized atrial and 

subsequently ventricular activation (Wakili et al., 2011). Figure 1 shows the 
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difference between depolarization pathways in normal sinus rhythm (Figure 

1A) and AF (Figure 1B). The figure also shows how AF is reflected in the 

electrocardiogram (ECG), a recording of cardiac electrical activity over time 

and a diagnostic tool for AF and other arrhythmias. In AF the P waves, 

representing synchronized atrial depolarization, are replaced by an 

undulating baseline, reflecting the continuous, rapid and unsynchronized 

atrial activation. The resulting irregular ventricular activation is represented by 

irregularly occurring QRS complexes on the ECG (Figure 1) (Wakili et al., 

2011). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. (a) A schematic figure of major events in cardiac conduction in normal sinus 

rhythm and their reflection on an ECG recording. (b) A schematic figure of rapid and 
irregular atrial activation in AF and its reflection on the ECG. Reused from Wakili et 
al., 2011 with permission from the publisher and Copyright Clearance Center. 
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AF usually presents with symptoms that include palpitations, dyspnea, 

chest pain, fatigue and lightheadedness but can also be asymptomatic 

(Fuster et al., 2001). Furthermore, the altered hemodynamics and impaired 

cardiac mechanics can have serious consequences, most notably stroke and 

heart failure (Calenda et al., 2016; Stewart et al., 2002). The increased stroke 

risk in AF is likely the result of a combination of factors that contribute to a 

prothrombic state in this arrhythmia (Watson et al., 2009). One of the key 

factors is blood stagnation or stasis due to ineffective atrial contraction 

(Koizumi et al., 2015) but there is also evidence for the role of additional 

factors, including endocardial dysfunction (Cai et al., 2002), platelet activation 

(Akar et al., 2008) and possibly even inflammation and atrial fibrosis 

(Daccarett et al., 2011; Harada et al., 2015; Watson et al., 2009). AF causes 

heart failure through shorter diastolic filling time, loss of atrial contractile 

function and elevated filling pressures leading to diminished cardiac output. 

Tachycardia induced myocardial dysfunction, as a consequence of AF, can 

also contribute to heart failure development (Houmsse et al., 2011). 

1.3.2  Epidemiology, risk factors and classification 

Recent studies have estimated the lifetime risk for AF in individuals of 

European ancestry to be approximately 1 in 3 (Magnussen et al., 2017; Weng 

et al., 2018). AF is more common in men and age is the most powerful 

predictor of incident AF, the cumulative incidence increases markedly after 

50 in men and 60 in women (Magnussen et al., 2017). It has been proposed 

that more than half of the AF burden is attributed to modifiable risk factors, 

the strongest one being hypertension (Huxley et al., 2011). Other established 

risk factors include smoking (Zhu et al., 2016), heart failure (Maisel & 

Stevenson, 2003), obesity (Asad et al., 2018), diabetes (Aune et al., 2018), 

alcohol consumption (Larsson et al., 2014) and obstructive sleep apnea 

(Tung et al., 2017).  

In addition to causing substantial morbidity and impairment in quality of 

life (Thrall et al., 2006), AF is an independent predictor of mortality (Benjamin 

et al., 1998). Furthermore, it is a major source of health care costs (Stewart 

et al., 2004). It was estimated that AF affected at least 33 million people 

worldwide in the year 2010 (Chugh et al., 2014). This number is expected to 

increase substantially in coming decades due to population ageing, making 

AF a growing public health concern (Chugh et al., 2014; Miyasaka et al., 

2006). 
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1.3.3  Pathophysiology 

The molecular pathophysiology of AF is complex and not completely 

understood (Andrade et al., 2014; Wakili et al., 2011). As shown in Figure 1, 

normal cardiac conduction is characterized by regular electrical activation by 

the SA node and subsequently the electrical impulse travels uniformly 

through well defined conduction pathways in the heart. The electrical 

activation, or action potential, is created by a sequence of ion fluxes through 

specialized channels in the membrane (sarcolemma) of cardiomyocytes. In 

the healthy state, atrial cells have a negative intracellular membrane potential 

(resting potential) untill they are fired by the SA node pacemaking system 

and the membrane potential of the cell is depolarized to a positive value. This 

triggers calcium release from the sarcoplasmic reticulum which in turn 

triggers cardiac contraction. The cell is then repolarized to the resting 

potential before the next depolariziation wave reaches it. AF can be initiated 

and maintained by two fundamental mechanisms that interrupt this process, 

spontaneous ectopic firing of atrial cells and impulse reentry through atrial 

tissue. Ectopic firing occurs when cells outside the SA node are depolarized 

to threshold potential before a normal sinus beat reaches them. Impulse 

reentry refers to circular movement of the depolarizing wave, as opposed to 

normal unidirectional conduction. It can occur as one primary circuit (single-

circuit reentry) or in multiple locations in the heart simultaneously (multiple-

circuit reentry) (Iwasaki et al., 2011; Wakili et al., 2011).  

The factors thought to contribute to ectopic firing and reentry are 

summarized in Figure 2. For example, abnormal intracellular calcium 

handling can cause ectopic firing. Abnormal leak of calcium from the 

sarcoplasmic reticulum during repolarization, can be caused by calcium 

overload or defective calcium channels. It leads to excessive positive 

intracellular potential before the next normal conduction from the SA node 

reaches the cell. If the positive charge is large enough to reach the threshold 

for depolarization it causes ectopic atrial firing (Wakili et al., 2011). Ectopic 

firing often arises in the pulmonary veins (Haissaguerre et al., 1998). In many 

cases, atrial tissue with poorly developed cell to cell connections extends up 

to the pulmonary veins (Sánchez-Quintana et al., 2012).  

As shown in Figure 2, reentry is usually initiated by an ectopic beat and 

maintained in atrial tissue that has been subject to structural or electrical 

remodeling. Electrical remodeling refers to altered expression and/or function 

of cardiac ion channels (Nattel et al., 2008). The reentry circuit usually forms 

around unexcitable myocardial tissue, such as necrotic myocardium or a 
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scar. The reentry is sustained if components of the circuit have variable 

conduction velocity and/or refractoriness. Refractoriness refers to the period 

where a cardiomyocyte is inexcitable following electrical activation. As shown 

in Figure 2, structural remodeling can maintain reentry because it alters 

conduction velocities. Furthermore, ion channel dysfunction can affect the 

refractoriness, for example by shortening action potential duration which in 

turn shortens the refractory period (Wakili et al., 2011). 

Each of the contributing mechanisms summarized in Figure 2 have been 

implicated through associations of risk factors with AF. For example, heart 

failure is associated with structural and electrical remodeling (Maisel & 

Stevenson, 2003) as well as interrupting intracellular calcium handling (Yeh 

et al., 2008) and both hyperthyroidism and alcohol consumption affect 

autonomic neural control, thus possibly affecting AF risk by increasing 

automaticity (Chen et al., 2002; Mandyam et al., 2012). In most cases the 

development of AF involves a complex interaction between ectopic firing, 

reentry and factors promoting them. Furthermore, AF itself begets AF, as the 

mechanisms known to contribute to AF also occur as a result of AF-induced 

structural and electrical remodeling (Schotten et al., 2011). 
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Figure 2. A schematic figure of mechanisms contributing to the development of AF. 

APD: action potential duration; DAD: delayed afterdepolarization; EAD: early 
afterdepolarization, ERP: effective refractory period. Reused from Andrade et al., 
2014 with permission from the publisher and Copyright Clearance Center. 

1.3.4  Classification 

AF has traditionally been classified based on whether or not it occurs with 

identifiable etiology, such as hypertensive or valvular heart disease. In that 

respect, lone AF refers to AF occurring in the absence of risk factors in 

patients with an apparently structurally normal heart (Markides & Schilling, 

2003). However, there is inconsistency in the use of this term since it is 

dependent on changing knowledge on AF pathogenesis and the currently 

limited approach to evaluating cardiac structure (Wyse et al., 2014). A 

classification based on temporal pattern is also commonly applied. Thus, AF 

can be categorized as paroxysmal episodes that terminate spontaneously, 

persistent AF that requires intervention for termination and permanent if not 

successfully terminated or if lasting over one year, independent of attempted 

treatment (Fuster et al., 2001). It is believed that the natural history of AF 

often involves evolution from paroxysmal to persistent to permanent form in 

accordance with the “AF begets AF” theory (de Vos et al., 2010; Nattel, 2002). 
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1.3.5  Treatment 

The main goals of AF management are restoration of sinus rhythm, stroke 

prevention, ventricular rate control and relief of symptoms. An individualized 

approach should be undertaken, considering the onset and pattern of AF as 

well as the patient’s comorbidities and symptoms (January et al., 2019; 

Kirchhof et al., 2016). Rate and rhythm control are applied to maintain left 

ventricular function and improve AF associated symptoms (Kirchhof, 2017). 

Pharmacologic rate control, most commonly with beta-adrenergic or calcium 

channel blockers, is appropriate for most patients with permanent AF (Van 

Gelder et al., 2016). 

Rhythm control should be considered in most individuals presenting with 

AF and can also be appropriate for patients with a persistent arrhythmia 

whose symptoms remain despite rate control. The drugs used for rhythm 

control are most commonly beta-adrenergic blockers or class Ic/class III 

antiarrhythmic drugs. Their use is associated with considerable risk of 

adverse events, including ventricular arrhythmia (Piccini & Fauchier, 2016). 

Catheter ablation of pulmonary vein AF triggers has not been shown to 

reduce mortality but is frequently indicated for symptom reduction in patients 

with medically resistant AF, and to reduce the burden of the arrhythmia. It is a 

particularly effective procedure in younger patients (<65 years) with 

paroxysmal AF and no structural heart disease (Piccini & Fauchier, 2016; 

Walfridsson et al., 2015). Finally, options such as atrioventricular nodal (AVN) 

ablation and pacemaker implantation as well as surgical intervention may be 

considered for carefully selected patients with persistent symptoms (Kirchhof 

et al., 2016). 

Stroke prevention with oral anticoagulants remains a cornerstone of AF 

management (Freedman et al., 2016; Kirchhof et al., 2016). Warfarin has 

traditionally been the most commonly used oral anticoagulant but is now 

being increasingly replaced by non-vitamin K antagonists which do not 

require as frequent monitoring (Olesen et al., 2015). Not all individuals with 

AF carry the same risk of thromboembolism and specific criteria are used to 

determine who needs anticoagulation. The most commonly used risk score is 

the CHA2DS2-VASc-score that evaluates stroke risk based on age, 

comorbidities and previous history of stroke (Freedman et al., 2016). 

However, risk scores do not incorporate direct evaluation of the 

prothrombotic factors identified in AF. Many of these factors, including 

platelet and endothelial activation in the atria, are difficult to assess in routine 

clinical practice (Akar et al., 2008). Risk scores have a somewhat limited 

predictive ability and a more thorough clinical evaluation has been suggested 



Introduction  

11 

for an improved risk stratification (Goldberger et al., 2015; Graves et al., 

2018).  

In general, the main aspects of AF management have remained 

unchanged for decades and currently available treatment options have 

limited efficacy and substantial adverse effects (Dobrev & Nattel, 2010). In 

light of the inadequacies of currently available management and the growing 

global burden of AF, better knowledge on its complex pathophysiology is of 

critical importance. In recent years, exploring the genetics of AF has been 

increasingly applied for that purpose. 

 Genetics of AF 1.4

1.4.1 Evidence for a heritable component in AF 

Evidence of a genetic contribution to AF first emerged in the 1940s, when 

Wolff et.al. reported a family with an autosomal dominant form of AF (Wolf, 

1943). Since then, many epidemiological studies have revealed a heritable 

component in AF in the general population, whether the focus is on lone AF 

or not (Arnar et al., 2006; Ellinor et al., 2005; Fox et al., 2004; Lubitz et al., 

2010; Oyen et al., 2012; Yang et al., 2010). For example, an Icelandic study 

on over 5,000 AF cases and their relatives, showed that having a first-degree 

relative with AF conferred a 77% increased risk of developing the disease. 

This proportion decreased with increased genetic distance, being 5% among 

those with a fifth degree relative with AF (Arnar et al., 2006). The heritable 

component in AF is dependent on age, as younger age at onset in relatives 

confers higher risk of developing AF (Arnar et al., 2006; Fox et al., 2004; 

Lubitz et al., 2010). Furthermore, studies on Danish twins have identified both 

higher incidence of AF (Christophersen et al., 2009) and increased mortality 

(Christophersen et al., 2013) among individuals who had a co-twin with AF 

compared to twins without familial AF. 

1.4.2  Linkage analysis and candidate gene studies on AF 

The first studies on AF genetics focused on identifying genetic loci and 

sequence variants causing rare familial cases of AF, using linkage and 

candidate gene approaches. The linkage studies identified several AF loci 

(Brugada et al., 1997; Ellinor et al., 2003) and in 2003 the first gene, KCNQ1, 

was linked to AF (Chen et al., 2003). KCNQ1 encodes the delayed-rectifier 

cardiac potassium channel (IKs) and AF associated mutations in the gene 

are predicted to reduce action potential duration and effective refractory 

period in atrial myocytes (Chen et al., 2003; El Harchi et al., 2010). This 
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complies with the suggested pathophysiological model of reduced atrial 

refractory period serving as a substrate for reentrant arrhythmia (Figure 2). 

The implication of KCNQ1 mutations in familial AF motivated investigators to 

perform candidate gene studies, searching for causative variants in other 

genes encoding ion channels and gap junction proteins, identifying numerous 

mutations in number of genes. Subsequently candidate gene and linkage 

studies implicated non-ion channel genes in AF, including genes encoding 

signaling molecules, structural proteins and transcription factors (Bapat et al., 

2018; Christophersen & Ellinor, 2016; Darbar & Roden, 2013). 

The number of rare coding variants identified in candidate gene and 

linkage studies on AF has now reached a few hundreds. Most of these 

variants have not been replicated in other studies. If they truly cause AF they 

are therefore mostly unique to specific families and likely explain only a small 

proportion of AF cases (Christophersen & Ellinor, 2016; Tabor et al., 2002). 

Although the variants themselves have not been replicated, many of them are 

located in genes within AF GWAS loci. However, some of this overlap is 

explained by the fact that genes are frequently chosen for candidate gene 

studies based on implication in GWASs and many candidate gene studies 

explore large panels of genes with known cardiovascular functions (Macri et 

al., 2014; Savio-Galimberti et al., 2014). AF in the general population is now 

considered to be a highly heterogeneous disorder arising from a complex 

interaction of environmental and genetic factors and the genetic factors are 

believed to include the combined effects of numerous rare and common 

variants (Darbar & Roden, 2013). 

1.4.3  Genome-wide association studies on AF 

The view of AF as a complex polygenic disorder has arisen from the results 

of GWASs on AF conducted over the last decade. At the time of publication 

of the first study included in this thesis, these studies had reported 

approximately 30 loci associating with AF as a primary or secondary trait 

(Benjamin et al., 2009; Christophersen et al., 2017; den Hoed et al., 2013; 

Ellinor et al., 2012; Ellinor et al., 2010; Gudbjartsson et al., 2007; 

Gudbjartsson et al., 2009; Gudbjartsson et al., 2017; Holm et al., 2010; Holm 

et al., 2011; Low et al., 2017; Lubitz et al., 2014; Pfeufer et al., 2010; Sinner 

et al., 2014). Most of the previously identified loci are represented by 

common variants with mild or moderate effects on AF risk. Furthermore, most 

of them are in the non-coding genome, thus not directly affecting the protein 

coding sequence of a specific gene (Bapat et al., 2018). It can therefore be 

challenging to identify the biological effect of the associated variants and their 
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target genes, as applies to most common variants identified in GWASs. In 

some instances the underlying biology is completely unknown. However, for 

many of the loci possible candidate genes have been suggested, implicating 

biological pathways in AF development. In the first paper included in this 

thesis, all previously published associations from GWASs on AF are listed 

and looked up in the deCODE data. 

The first association, reported by deCODE genetics in the year 2007, was 

represented by common intergenic variants at chromosome 4q25 

(Gudbjartsson et al., 2007). Since then, this has consistently been the 

strongest AF associated locus in subsequent GWASs and widely replicated 

across ethnic groups (Christophersen et al., 2017; Delaney et al., 2012; Shi 

et al., 2009). The mechanism behind AF susceptibility at 4q25 is thought to 

be mediated by the closest gene, PITX2 or its cardiac isoform PITX2c. This 

gene is a plausible candidate based on its biological functions and reports of 

AF risk variants affecting its expression in model organism (Ye et al., 2016). 

Pitx2c is a homeobox transcription factor critical for early cardiac 

development. It has a role in controlling cardiac left-to-right asymmetry 

(Piedra et al., 1998) and inhibits inappropriate left sided pacemaker 

specification (Wang et al., 2010). Furthermore, Pitx2c is required for the 

formation of the pulmonary myocardium (Mommersteeg et al., 2007), which is 

notable for the fact that ectopic triggers for AF frequently originate in the 

pulmonary veins (Haissaguerre et al., 1998) and are the target of ablation 

therapy for AF (Walfridsson et al., 2015). In fact, another AF-implicated gene 

from GWAS, PRRX1, is also a homeobox transcription factor required for 

pulmonary vascular development (Ellinor et al., 2012; Ihida-Stansbury et al., 

2004). However, the mechanism by which non-coding variants at the PITX2- 

and PRRX1-loci affect AF risk has not been determined. Through its 

expressional regulation of, for example, ion transport and intercalated disc 

genes, PITX2 is involved in several cardiac mechanisms that might contribute 

to AF development (Tao et al., 2014). 

The importance of cardiac development in the pathogenesis of AF has 

been implicated by several additional associations with variants in or close to 

transcription factor genes, such as ZFHX3, SOX5, and TBX5 (Benjamin et 

al., 2009; Christophersen et al., 2017; Gudbjartsson et al., 2009). The ZFHX3 

gene is required for striated muscle and neural development (Berry et al., 

2001; Jung et al., 2005). Interestingly, ZFHX3 and PITX2 are connected, as 

ZFHX3 affects the expression of the POU1F1 gene which modulates 

transcriptional activity of PITX2 (Qi et al., 2008). Several of the reported AF 

loci are located in or close to genes encoding ion channel proteins. For 
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example, KCNN2 and KCNN3 encode the calcium-dependent potassium 

channels SK2 and SK3 respectively, which are known to form heteromeric 

channel complexes with each other (Tuteja et al., 2010). They are involved in 

the maintenance of atrial action potential (Li et al., 2009; Tuteja et al., 2010), 

the shortening of which promotes reentry, as has been previously discussed 

(Figure 2) (Wakili et al., 2011). Other ion channel genes implicated in AF 

through GWAS include HCN4, KCNJ5 and SCNA10 (Christophersen et al., 

2017). 

Some of the AF loci point to genes with a structural role in the heart. For 

example, CAV1 (Ellinor et al., 2012) encodes caveolin-1 which possibly 

prevents atrial fibrosis. Myozenin-1, encoded by MYOZ1 (Ellinor et al., 2012) 

is involved in stabilizing the sarcomere (Frey et al., 2008) and nesprin-2, 

encoded by SYNE2 (Ellinor et al., 2012), participates in anchoring the nuclear 

lamina to the peripheral cytoskeleton (Stewart-Hutchinson et al., 2008). All of 

the above examples are AF loci represented by non-coding variants and 

speculations are involved in the theories on underlying mechanisms. 

Furthermore, several reported AF associations from GWASs, such as the 

ones with intronic variants in C9orf3 and SH3PXD2A do not point to 

biological plausible candidate genes or mechanisms (Christophersen et al., 

2017). 

The large-scale whole-genome sequencing of the Icelandic population 

conducted at deCODE genetics, has facilitated recent discoveries of rare 

coding variants associating with risk of AF through GWASs. These variants 

are located in, and directly affect, the protein products of the sarcomere 

genes MYH6 (Holm et al., 2011) and MYL4 (Gudbjartsson et al., 2017). Their 

discoveries implicate a part of the cardiac contractile system in the 

development of arrhythmias in the absence of apparent cardiomyopathy, 

which is a novel concept. Furthermore, their discovery is in line with the 

notion that uncommon variants with large effect sizes might contribute to the 

heritability of complex traits such as AF (Manolio et al., 2009). 

1.4.4  Electrocardiogram measurements and the genetics of 
arrhythmia 

The ECG recording of cardiac electrical activity over time is widely used in 

clinical practice and is a key diagnostic tool for AF and other arrhythmias. It is 

extremely useful to evaluate the function of the conduction system as well as 

the health and structure of the myocardium (Kadish et al., 2001). ECG 

parameters represent events in the cardiac cycle and some of them have 

prognostic value for the development of arrhythmia and mortality, including 
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heart rate, the QRS complex, QT interval and PR interval (Cheng et al., 2009; 

Desai et al., 2006). The PR interval and P wave indices are of special interest 

with regards to AF. The PR interval reflects the time required for the electrical 

impulse to travel through the atria and the AVN to the ventricles (Saksena & 

Camm, 2012). Both its prolongation and shortening have been associated 

with increased risk of AF (Cheng et al., 2009; Nielsen et al., 2013). P wave 

duration, which quantifies the time of atrial depolarization, has also been 

shown to have a U-shaped relationship with incident AF (Nielsen et al., 

2015), as both its prolongation and shortening increase risk of AF. P wave 

indices are reflective of the conduction in the atria specifically, as they 

characterize atrial electrical activity during depolarization without assessing 

the delay through the AVN (Magnani et al., 2009). 

Due to their close association with arrhythmia development, ECG 

measurements have been used in genetic studies as an endophenotype for 

identification of sequence variants that affect both electrophysiological 

function and the risk of arrhythmia (den Hoed et al., 2013; Holm et al., 2010; 

Pfeufer et al., 2010). The term endophenotype, originates from the field of 

psychiatric genetics and refers to a quantitative biological trait that is closely 

related to a specific phenotype (Gottesman & Shields, 1967). The idea is that 

the endophenotype is measurable independent of disease status and reflects 

a more direct expression of genetic effects than the phenotype itself, thus 

improving effect sizes and facilitating the search for causal genes (Hall & 

Smoller, 2010).  

Indeed, the use of ECG measurements as an endophenotype for AF has 

proven valuable and has led to the discovery of variants that affect both 

cardiac ECG measurements and the risk of AF. Variants in or close to the 

genes TBX5, CAV1, SCN5A, SCN10A and SOX5 were first reported in 

GWAS on the PR interval and associated secondarily with AF (Holm et al., 

2010; Pfeufer et al., 2010). These loci have since been associated genome-

wide significantly with AF in other cohorts, validating them as true AF variants 

(Christophersen et al., 2017). Furthermore, variants in or near GJA1 and 

SLC35F1 were first identified as heart rate loci (den Hoed et al., 2013) and 

subsequently associated with AF through GWASs (Christophersen et al., 

2017). Variants near NKX2-5, have associated secondarily with AF in 

GWASs on both the PR interval (Pfeufer et al., 2010) and heart rate (den 

Hoed et al., 2013). Although some variants that affect ECG measurements 

also affect the risk of AF, there is inconsistency in the direction of their effects 

on ECG measurements and AF risk. The AF risk alleles can either prolong or 

shorten heart rate or PR interval, consistent with the reported bidirectional 
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association of the PR interval with AF risk (Cheng et al., 2009; Nielsen et al., 

2013). Furthermore, strong and widely replicated AF loci, such as the PITX2- 

and ZFHX3-loci, have not been reported in GWASs on ECG measurements. 

These differences between AF variants with regards to their ECG effects 

raise the question if there is a detectable pattern in how AF variants affect 

cardiac conduction in the absence of AF. Exploring ECG associations of all 

AF variants might therefore give insight into the mechanisms behind their 

increase in AF risk. 

 Coarctation of the Aorta 1.5

Following the publication of the association of a missense variant in MYH6 

with SSS and AF (Holm et al., 2011; Thorolfsdottir et al., 2017) we tested the 

association of the variant with congenital heart diseases, for which we had 

acquired information on. In that analysis a strong association with CoA was 

observed. To investigate this further a GWAS on CoA was performed and is 

part of this dissertation. Unlike AF, which is a cardiac arrhythmia primarily 

affecting the elderly, CoA is a congenital defect in cardiovascular structure. 

Genetic studies published hitherto have in fact suggested common elements 

in the pathogenesis of these two seemingly different diseases. 

1.5.1 Definition and pathogenesis of CoA 

CoA is a congenital heart defect characterized by a narrowing of the 

descending aorta and/or aortic arch (Allen et al., 2016). The most common 

form is a discrete stenosis located in the proximal descending aorta (aortic 

isthmus), the area where the ductus arteriosus (ligamentum arteriosum after 

regression) inserts (Figure 3). However, CoA may also involve long segment 

narrowing, hypoplasia of the transverse aortic arch, or stenosis of the 

abdominal aorta (Ho & Anderson, 1979). The stenosis in CoA is usually 

formed by a shelf of tissue extending from the postero lateral aortic wall 

towards the ductus arteriosus (Ho & Anderson, 1979; Russell et al., 1991). 
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Figure 3. Illustration of the most common form of CoA, a discrete narrowing of the 

aortic isthmus, the part of the aorta just distal to the origin of the left subclavian artery 
at the site of the ductus arteriosus/ligamentum arteriosum. Used with permission of 
Mayo Foundation for Medical Education and Research, all rights reserved. 

The pathogenesis of CoA is not well understood, but two main models 

have been proposed for its development. First, the haemodynamic theory 

suggests that the formation of coarctation is a product of decreased blood 

flow through the aortic isthmus during fetal development. This theory is 

supported by the common co-occurrence of CoA and congenital heart 

defects with decreased antegrade aortic flow in utero (Rudolph et al., 1972). 

Second, the Skodaic hypothesis, supported by histological studies (Ho & 

Anderson, 1979; Russell et al., 1991), proposes a central role of ectopic 

ductal tissue situated in the aortic wall that constricts the aortic lumen (Elseed 

et al., 1974). 

1.5.2  Epidemiology  

CoA is the most common congenital defect affecting the aorta, with an 

incidence of approximately 1 per 2,500-3,000 live births (Hoffman & Kaplan, 

2002; van der Linde et al., 2011) and is slightly more common in males than 

females (Engelfriet & Mulder, 2009). It is part of a mechanistically defined 

subgroup of congenital heart defects, the left-ventricular outflow tract 

obstruction (LVOTO) malformations. LVOTOs also include bicuspid aortic 

valve (BAV), congenital aortic stenosis, and hypoplastic left heart syndrome 

(HLHS) (Allen et al., 2016). CoA may occur in isolation or accompanied by 

other LVOTOs, most commonly BAV which exists in about 50% of CoA 
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cases. Furthermore, it can occur with additional cardiac defects such as 

ventricular septal defect (VSD), patent ductus arteriosus, transposition of the 

great arteries and atrioventricular canal defect (Anderson et al., 1983; 

Shinebourne et al., 1976; Teo et al., 2011). 

1.5.3  Presentation and treatment 

CoA can present at any age but the majority (about 60%) of patients present 

with critical CoA in the neonatal period when closing of the ductus arteriosus 

after birth causes sudden obstruction of blood flow to the distal aorta 

(Hoffman, 2018). This results in systemic congestion and often circulatory 

failure and shock (inadequate blood flow to the tissues). Without prompt 

medical resuscitation and surgical intervention, death may occur rapidly 

(Chang et al., 2008). The diagnosis of CoA in the neonate is challenging. 

Severe symptoms usually present a few days after birth and screening 

methods, including pulse oximetry and assessment of femoral pulses, have 

limited efficacy (Ward et al., 1990). About 30-50% of cases are therefore 

discharged undiagnosed from the hospital (Lannering et al., 2015; Liberman 

et al., 2014). Prenatal screening also has a low sensitivity for diagnosis due 

to the presence of the ductus arteriosus and limited blood flow across the 

aortic isthmus in utero (Lannering et al., 2015). Furthermore, identifying CoA 

as an underlying cause in the neonate with shock is challenging (Hoffman, 

2018).  

CoA can also present later in childhood or in adults when the stenosis is 

milder and collateral vessels have developed to supply blood flow to the 

descending aorta (Steffens et al., 1994; Strafford et al., 1982). Individuals 

with late presenting CoA invariably have upper body hypertension and 

differential blood pressure between upper and lower extremities, since lower 

body perfusion is achieved by hypertension in the upper aorta. Heart 

murmurs and absent femoral pulses are also common and some experience 

claudication (Strafford et al., 1982). These symptoms and signs can be subtle 

and are often first noticed as incidental findings on physical examination 

(Hoffman, 2018; Strafford et al., 1982). 

The treatment for CoA is correction by surgical repair or transcatheter 

techniques (Stout et al., 2019) and in the absence of concomitant cardiac 

defects, short- to medium-term prognosis is good (Hamdan et al., 2001; 

Kaushal et al., 2009; Wright et al., 2005). However, despite appropriate 

treatment, CoA is a lifelong condition involving considerable risk of long-term 

morbidity and mortality (Cohen et al., 1989; Presbitero et al., 1987). Even if 

no residual coarctation exists after surgical correction, patients often continue 
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to have systemic hypertension, which increases risk of heart failure, coronary 

artery disease and stroke (Morgan et al., 2013). Further increasing the risk of 

cerebrovascular events is the occurrence of cerebral aneurysms in 10% of 

CoA cases (Cohen et al., 1989; Presbitero et al., 1987; Singh et al., 2010). 

Furthermore, CoA is associated with aortic aneurysms that can occur years 

after surgical correction and can cause death because of dissection or 

aneurysmal rupture (Cohen et al., 1989; Heikkinen et al., 1991). The complex 

mechanisms underlying long-term complications in repaired CoA are not 

completely understood (Kenny et al., 2011; Singh et al., 2010).  

1.5.4 Genetics of CoA 

CoA is primarily a non-familial and sporadic disease. However, it can be a 

part of a recognized genetic syndrome, for example 45 X (Turner) (Ho et al., 

2004) and Kabuki syndrome (Digilio et al., 2017), although the mechanisms 

behind CoA development in these syndromes is not well understood. 

Furthermore, CoA has been shown to cosegregate in families with LVOTO 

malformations and as a group the LVOTO malformations are markedly 

heritable (0.71 - 0.90) (McBride et al., 2005). 

Several studies have reported mutations in families with LVOTO 

malformations and a few instances of sporadic CoA. The gene that has been 

most strongly implicated is NOTCH1 (Freylikhman et al., 2014; Kerstjens-

Frederikse et al., 2016; McBride et al., 2008), encoding a transmembrane 

receptor that regulates cell fate during development (Kopan, 2012). A 

candidate gene study focusing on CoA, with and without concomitant 

congenital heart defects, concluded that a missense variant in NOTCH1 “may 

represent a disease-susceptibility allele” for CoA (Freylikhman et al., 2014). 

Other genes, including MYH6 (Arrington et al., 2012; Tomita-Mitchell et al., 

2016), SMAD6 (Tan et al., 2012), NKX2-5 (McElhinney et al., 2003) and 

GATA5 (Bonachea et al., 2014), have been implicated through mutations 

found in one or few individuals with CoA. As mentioned previously here, 

variants in two of those genes, MYH6 and NKX2-5 have been associated 

with AF and specific ECG measurements through GWAS (den Hoed et al., 

2013; Holm et al., 2010; Holm et al., 2011; Pfeufer et al., 2010). With regards 

to CoA, the MYH6 mutations were found in two families, one with 

predisposition to atrial septal defect (ASD) (Arrington et al., 2012), and the 

other to HLHS (Tomita-Mitchell et al., 2016). Some individuals in these 

families presented with CoA. Many of the mutations implicated in CoA have 

been identified through a candidate gene approach and sometimes found in 

only one patient, including for example the missense mutation in NKX2-5 
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(McElhinney et al., 2003). Thus, not much is known about the genetics of 

sporadic CoA and GWAS has not been performed. 
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2 Aims 

The overall aim of this doctoral dissertation was to explore the genetics of 

cardiovascular diseases in order to further our understanding of their 

pathophysiology and facilitate improvements in treatment options. The focus 

of the work is on exploring the genetics of the cardiac arrhythmia AF. 

However, through studies on the genetics of AF we observed that one of the 

strongest AF variants accounts for 20% of Icelandic cases of the congenital 

heart defect CoA. Thus, we decided to explore this variant and its effects on 

structural heart disease in detail resulting in a separate paper (paper IV). 

Using deCODE genetics extensive genotype/phenotype database we 

searched for novel associations of sequence variants with AF and CoA and 

explored the biology behind both novel and previously reported variants 

effects on disease risk. This was done by assessing their effects on other 

cardiovascular diseases and traits representing cardiac function, namely 

ECG and echocardiogram measurements. The specific aims of each of the 

four published papers are listed below. 

 Paper I: A GWAS on AF and assessment of the effects 2.1
of sequence variants on ECG measurements 

The aim of this study was to conduct a GWAS on AF in Iceland and search 

for novel associations. Furthermore, to gain insights into the mechanisms by 

which novel and published sequence variants affect AF risk by assessing 

their effects on other cardiovascular diseases and on normal cardiac 

conduction, using ECG measurements. 

 Paper II: GWAS on AF with focus on rare and low 2.2
frequency coding and splice variants 

The aim was to conduct a GWAS on AF using data from Iceland and the UK 

biobank, with focus on rare and low frequency coding and splice variants. 

The mechanisms by which the variants affect cardiac function and disease 

were explored using deCODE genetics extensive phenotype database, 

including ECG and electrocardiogram measurements. Furthermore, cardiac 

samples obtained during cardiothoracic surgery were used to perform RNA 

sequencing and assessing the effects of novel AF variants on expression at 

the transcript level. 
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 Paper III: Meta-analysis of GWAS on AF 2.3

The aim was to perform a meta-analysis and substantially increase the 

number of variants associated with AF. Furthermore, the aim was to identify 

potential mechanisms by which novel variants affect AF risk. This was done 

by pathway and functional enrichment analysis and by assessing ECG 

associations, as was done in paper I and II. 

 Paper IV: A genome-wide association study of CoA 2.4

The aim of the study was to further explore the observed association of one 

of the strongest AF associated variants with CoA. To do this, we performed a 

GWAS on non-syndromic CoA. Furthermore we explored the effects of the 

variant on various CVDs, ECG traits and echocardiogram measurements in 

order to further our understanding of the overall effects of the variant on 

cardiac function and to increase understanding of the pathogenesis of CoA. 
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Genotyped AF cases Controls

N 13,471 374,939

% Male 58.6% 50.8%

Mean age at onset (SD) 72.1 (13.6) -

3 Materials and methods 

 Paper I 3.1

3.1.1 Ethical approval 

The study was approved by the Data Protection Authority and National 

Bioethics Committee in Iceland (no. VSNb2015030021/03.01 with 

amendments, VSNb2015030024/03.01 with amendments, 

VSNb2015010009/03.12 with amendments, VSNb2015030022/03.01 with 

amendments). All participating subjects who donated blood signed informed 

consent. Personal identities of the participants and biological samples were 

encrypted by a third party system approved and monitored by the Icelandic 

Data Protection Authority. The study complies with the declaration of 

Helsinki. 

3.1.2 The Icelandic AF study population 

The AF study population consisted of 13,471 individuals diagnosed with AF 

(International Classification of Diseases (ICD) 10 code I.48 and ICD 9 code 

427.3) at Landspitali University Hospital (LUH) in Reykjavik, the only tertiary 

referral center in Iceland, and at Akureyri Hospital, the second largest 

hospital in Iceland, from 1987 to 2015. Thereby, it may be assumed that the 

study includes the majority of people diagnosed with AF in Iceland at or 

before this period. Controls comprised 374,939 individuals recruited through 

different genetic research projects at deCODE genetics. All individuals 

diagnosed with AF were excluded from the control group. Basic 

characteristics of AF cases and controls are summarized in Table 1. 

 

Table 1. AF subject and control characteristics (paper I). 
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3.1.3  AF replication cohorts 

Novel AF variants were genotyped in two separate AF sample sets, from the 

Vanderbilt AF registry (764 cases and 762 controls) (Darbar et al., 2007) and 

from the Further Cardiovascular Outcomes Research with PCSK9 Inhibition 

in Subjects with Elevated Risk (FOURIER) trial (1,238 AF cases and 11,562 

controls) (Sabatine et al., 2016). 

The Vanderbilt AF registry is a clinical and genetic registry at the 

Vanderbilt University Medical Center in Nashville, Tennessee (Darbar et al., 

2007). At enrollment into the registry, patients complete a symptom 

questionnaire and a detailed medical and drug history is obtained. Patients 

with history of AF only associated with cardiac surgery were excluded from 

this study. Written informed consent was obtained from all patients under a 

protocol approved by the Vanderbilt University Institutional Review Board. 

The FOURIER trial is a randomized placebo-controlled, double-blind, 

parallel-group, multinational trial. It tests the hypothesis that adding the drug 

evolocumab to statin therapy will reduce the incidence of major adverse 

cardiovascular events in patients with clinically evident cardiovascular 

disease. The whole study group consisted of 27,564 patients recruited at 

1,242 cities in 49 countries from 2013 to 2015. Eligible patients were between 

40 and 85 years of age and had clinically evident atherosclerotic 

cardiovascular disease. Detailed phenotypic information was gathered on all 

FOURIER study participants, including AF disease status. The design of the 

trial has been described in detail elsewhere (Sabatine et al., 2016). A subset 

of over 12,000 participants of European descent from the FOURIER trial 

have been genotyped at deCODE by whole exome sequencing, chip-typing 

and imputation. After exclusion of all Icelandic participants the AF sample set 

from the FOURIER trial consisted of 1,238 cases and 11,562 controls, 

3.1.4  ECG data 

ECG data included all ECGs obtained and digitally stored at LUH in 

Reykjavik from 1998 to 2015. These were ECGs obtained from both 

inpatients and outpatients in all hospital departments, a total of 434,000 

ECGs from 88,217 individuals. Out of these, a total of 289,297 ECGs were 

sinus rhythm (heart rate 50-100 beats per minute) ECGs of 62,974 

individuals without the diagnosis of AF. The ECGs were digitally recorded 

with the Philips PageWriter Trim III, PageWriter 200, Philips Page Writer 50 

and Phillips Page Writer 70 cardiographs and stored in the Philips 

TraceMasterVue ECG Management System. Digitally measured ECG 
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waveforms and parameters were extracted from the database for analysis. 

The Philips PageWriter Trim III QT interval measurement algorithm has been 

previously described and shown to fulfill industrial ECG measurement 

accuracy standards (Zhou et al., 2009). The Philips PR interval and QRS 

complex measurements have been shown to fulfill industrial accuracy 

standards (Gregg et al., 2005). 

3.1.5  The deCODE genetics phenotype database 

After identifying novel associations with AF, we searched for secondary 

associations with relevant phenotypes in deCODE genetics phenotype 

database. This database contains extensive medical information on various 

diseases and other traits. A special focus was on reporting the associations 

of AF variants with the known AF related traits of pacemaker implantation, 

SSS, ischemic stroke and cardioembolic stroke. The pacemaker population 

sample set included 3,578 individuals who received a pacemaker 

implantation (NCSP surgical codes FPE and FPF) at LUH between 1997 and 

2015. The SSS sample set included 3,310 individuals who received the 

diagnosis of SSS (ICD 10 code I49.5, ICD 9 code 427.8) at LUH in Reykjavik 

between 1987 and 2015. Ischemic stroke cases were identified from a 

registry of individuals diagnosed with ischemic stroke or transient ischemic 

attack (TIA) at LUH during the years 1993 to 2014 (n = 5,626). The ischemic 

stroke or TIA diagnoses were based on standard WHO criteria and imaging 

evidence (either computed tomography or magnetic resonance imaging) and 

were clinically confirmed by neurologists. A total of 1,369 individuals with 

ischemic stroke were classified as having cardioembolic stroke based on a 

neurologist review of medical records and classification according to the Trial 

of Org 10172 in Acute Stroke Treatment (TOAST) (Adams et al., 1993). The 

controls used in the various case-control analyses of this study consisted of 

disease-free individuals from the Icelandic genealogical database at deCODE 

genetics. 

3.1.6  Generation of genotype data 

The DNA samples used in this study have been collected through various 

genetic studies at deCODE genetics since 1996. The GWAS performed in 

paper I was based on whole-genome sequence data from the whole blood of 

15,220 Icelanders. In addition, 151,677 Icelanders have been genotyped 

using Illumina SNP chips and genotype probabilities for untyped relatives 

calculated based on Icelandic genealogy. Sequencing was carried out using 

Illumina standard TruSeq methodology to a mean depth of 35 (SD 8). 
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Autosomal SNPs and INDEL’s were identified using the Genome Analysis 

Toolkit version 3.4.0 (McKenna et al., 2010). According to GATK best 

practices, variants that did not pass quality control were excluded from the 

analysis (Gudbjartsson et al., 2015). Information about haplotype sharing was 

used to improve variant genotyping. This was possible since all sequenced 

individuals had also been chip typed and long-range phased (Kong et al., 

2008). 

The imputation information (informativeness of genotype imputation) was 

calculated using the ratio of the variance of imputed expected allele counts 

and the variance of the actual allele counts:  

 

Var(E(θ|chip data))

Var(θ)
, 

where θ is the allele count. Here, Var(E(θ│chip data)) was estimated by 

the observed variance in the imputed expected counts and Var(θ) was 

estimated by p(1-p), where p is the allele frequency.  

Variants were annotated using Variant Effect Predictor (VEP) version 2.8 

(McLaren et al., 2010) and  Ensembl release 80 (Ruffier et al., 2017). A total 

of 32.5 million variants passed the quality threshold and were imputed into 

151,677 Icelanders who had been genotyped using Illumina chips. 

For genotyping of single variants in foreign AF sample sets, we used the 

Centaurus (Nanogen) or KASP platforms. For quality control, the genotypes 

of one of the variants, rs72700114 at LINC01142/METTL11B were confirmed 

by sanger sequencing in 245/764 cases and 233/762 controls in the 

Vanderbilt samples. 

3.1.7 Association analysis 

Logistic regression was used to test for association between 32.5 million 

variants and AF or secondary traits, treating disease status as the response 

and allele counts from direct genotyping or expected genotype counts from 

imputation as covariates. Gender, age and county were included as 

covariates. Calculations where made under additive and recessive genotype 

models. The additive model for the minor allele assumes that there is a 

uniform, linear increase in risk for each copy of the minor allele. In other 

words, if A is the major allele and a is the minor allele then the additive model 

assumes that if the risk for Aa genotype is k the risk for aa genotype is 2k. 
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The recessive model (for a) assumes that two copies of the a allele are 

required to alter risk. It therefore compares individuals with the aa genotype 

to everyone else (AA and Aa) (Lewis, 2002). 

To account for inflation in test statistics due to cryptic relatedness and 

stratification, the method of LD score regression was applied (Bulik-Sullivan 

et al., 2015). With a set of 1.1 million variants the χ2 statistics from the 

GWAS scan were regressed against LD score. The intercept was then used 

as a correction factor. The LD scores were downloaded from a LD score 

database (ftp://atguftp.mgh.harvard-

.edu/brendan/1k_eur_r2_hm3snps_se_weights.RDS; accessed 23.06.2015). 

The estimated correction factor for AF was 1.38 for the additive model. 

The threshold for genome-wide significance was corrected for multiple 

testing with a weighted Bonferroni adjustment. The method uses as weights 

the enrichment of variant classes with predicted functional impact among 

association signals (Sveinbjornsson et al., 2016). With 32,463,443 sequence 

variants being tested the weights given in Sveinbjornsson et al. were 

rescaled to control the family-wise error rate (FWER). The resulting 

significance thresholds were 2.6 × 10
-7

 for high-impact variants (N = 8,464), 

5.1 × 10
-8

 for moderate-impact variants (N = 149,983), 4.6 × 10
-9

 for low-

impact variants (N = 2,283,889), 2.3 × 10
-9

 for other variants in DNase I 

hypersensitivity sites (N = 3,913,058) and 7.9 × 10
-10

 for other variants (N = 

26,108,039). Conditional analysis of the region around the PLEC variant, 

p.Gly4098Ser, was performed by adding the p.Gly4098Ser as a covariate 

while testing every SNP in the region for association with AF. 

In paper I, two novel and 29 replicated AF variants were tested for 

association with 122 ECG measurements (Table 2) using linear regression. 

The ECG measurement was treated as the response and the genotype as 

the covariate. All measures except heart rate and QT corrected are 

presented for all 12 ECG leads. For this analysis, 289,297 sinus rhythm 

ECGs (heart rate 50-100 beats per minute) from 62,974 individuals where 

used. People who had been diagnosed with AF were excluded from this 

analysis in order to assess the effect of the AF variants on cardiac electrical 

function in the absence of AF. Individuals with pacemakers were also 

excluded. The analysis was also done using all ECGs irrespective of rhythm 

and history of AF, a total of 434,000 ECGs from 88,217 individuals. The ECG 

measurements were adjusted for sex, year of birth and age at measurement 

and were subsequently standardized to have a normal distribution. For 

individuals with multiple ECG measurements, the mean standardized value 



Rósa Björk Þórólfsdóttir  

28 

was used. It was assumed that the quantitative measurements follow a 

normal distribution and that their mean depends linearly on the expected 

allele at the variant and a variance-covariance matrix proportional to the 

kinship matrix (Benonisdottir et al., 2016). The Benjamini-Hochberg false 

discovery rate (FDR) procedure controlling the FDR at 0.05 at each marker 

was used to account for multiple testing, since 122 traits were tested. 

 

Table 2. List of ECG measures available for analysis of correlation with AF risk 

variants and sample sizes (rounded to hundred) in two groups (paper I). 

 

 Paper II 3.2

Paper II describes a meta-analysis of GWAS on AF in Iceland and the 

publicly available UK Biobank dataset, focusing on rare and low frequency 

coding and splice variants. The most significant variants were tested in 

samples from Norway and the US. 

3.2.1 Ethical approval 

The study was approved by the Data Protection Authority and National 

Bioethics Committee in Iceland (no. VSNb2015030021/03.01 with 

amendments, VSNb2015030024/03.01 with amendments, 

VSNb2015010009/03.12 with amendments, VSNb2015030022/03.01 with 

amendments). All participating subjects who donated blood signed informed 

consent. Personal identities of the participants and biological samples were 

encrypted by a third party system approved and monitored by the Icelandic 

Data Protection Authority. The study complies with the declaration of 

Helsinki. 

N: all ECGs 

included

N: sinus rhythm, excluding AF 

cases and individuals w pacemaker

Number of measurements 

in each category

Heart rate 88,200 63,000 1

P amplitude 88,100 62,900 12

P area 87,800 62,900 12

P duration 88,000 62,800 12

PR segment 88,200 62,900 12

PR interval 88,100 62,900 12

QRS duration 88,200 63,000 12

R amplitude 88,000 62,900 12

QT interval 88,200 63,000 1

T amplitude 88,100 62,900 12

T area 88,100 62,900 12

T duration 88,100 62,900 12
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3.2.2  Study populations 

For this study, the Icelandic AF sample had been expanded and consisted of 

14,710 Icelanders diagnosed with AF (ICD 10 code I.48 and ICD 9 code 

427.3) according to electronic medical records at LUH and Akureyri Hospital, 

between 1987 and 2017. Controls were 373,897 individuals without the 

diagnosis of AF. 

The UK Biobank project is a large prospective cohort study of ~500,000 

individuals from across the United Kingdom. Participants were aged 40-69 at 

recruitment and their extensive phenotypic and genotypic information has 

been collected (Sudlow et al., 2015). The AF population from the UK Biobank 

consisted of 14,792 cases and 393,863 controls. All were individuals of 

European ancestry that were recruited between 2006 and 2010 (Sudlow et 

al., 2015). AF was ascertained based on primary or secondary ICD 9 or ICD 

10 diagnoses codes from both inpatient and outpatient hospital episodes. 

Self-reported diagnoses were not included in the analysis. Further details on 

the recruitment and variables collected in the UK Biobank study can be found 

in previous publications (Elliott & Peakman, 2008; Sudlow et al., 2015). 

The Tromsø Study is a population-based prospective study in the 

municipality of Tromsø, Norway (Jacobsen et al., 2012). The study involves 

repeated health surveys and examinations including 40,000 individuals thus 

far. The population is being followed-up on an individual level with registration 

and validation of diseases and death. Discharge diagnosis lists of CVDs have 

been retrieved from the University Hospital of North Norway in Tromsø, and 

medical records of all individuals with a CVD discharge diagnosis have been 

reviewed. AF has been registered based on ICD 9 and ICD 10 codes since 

1986 as part of the ongoing CVD endpoint registration. People with 

postoperative AF only (<= 28 days after the procedure) were not included as 

cases. For the current project, one sex- and age matched control for each 

case of AF was drawn from the population based Tromsø 4 survey, resulting 

in 714 cases and 698 controls.  

The Nord-Trøndelag Health Study (HUNT) is a population-based health 

survey conducted in the county of Nord-Trøndelag, Norway. Individuals have 

been recruited at three different time points during approximately 20 years 

(HUNT1 [1984-1986], HUNT2 [1995-1997] and HUNT3 [2006-2008]]) 

(Krokstad et al., 2013). The entire adult population (≥ 20 years) was invited to 

participate at each time point. Taken together, the health studies included 

information from over 120,000 different individuals. For the current study AF 

was defined based on ICD 10 codes collected from local hospitals and 
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outpatient clinics between 1999 and 2016. Cases were 6,493 individuals with 

one or more ICD 9 or ICD 10 codes specific for AF ("I48" or "427.3") whereas 

controls comprised 63,142 individuals without a code specific for AF. 

Novel AF associations were also assessed in 764 AF cases and 762 

controls from the Vanderbilt Atrial Fibrillation Registry (Darbar et al., 2007) 

and 1,238 cases and 11,562 controls from the FOURIER trial (Sabatine et al., 

2016). These cohorts were also included in paper I and are described in 

detail in 3.1.3. 

3.2.3 Electrocardiogram data 

The ECG dataset was the same as described in paper I (see 3.1.4.). 

3.2.4  Secondary phenotypes 

As was done in paper I, novel AF variants in paper II were tested for 

association with other phenotypes in deCODE genetics extensive phenotype 

database (see 3.1.5 for details). Novel AF variants were also tested for 

association with SSS among 403 cases and 403,181 controls in the UK 

Biobank. 

3.2.5  Generation of genotype data 

The GWAS performed in paper II was based on the same numbers of whole-

genome sequenced and chip typed individuals as in paper II, (15,220 and 

151,677 respectively). The generation of genotype data in Iceland was as 

described in detail in 3.1.6. In the UK Biobank, genotyping was performed 

using a custom-made Affymetrix chip, UK BiLEVE Axiom (Wain et al., 2015), 

in the first 50,000 participants, and with Affymetrix UK Biobank Axiom array in 

the remaining participants (Welsh et al., 2017); 95% of the signals are on 

both chips. Imputation was performed by Wellcome Trust Centre for Human 

Genetics using a combination of 1000 Genomes phase 3 (Auton et al., 2015), 

UK10K (Walter et al., 2015) and Haplotype Reference Consortium (HRC) 

reference panels (McCarthy et al., 2016) for up to 92,693,895 SNPs (Bycroft 

et al., 2017). For genotyping of single variants in AF sample sets from the 

Vanderbilt registry, FOURIER trial, HUNT and the Tromsø study Centaurus 

(Nanogen) or KASP platforms were used. 

3.2.6  Statistical analysis 

A meta-analysis was performed on 14,710 AF cases and 373,897 controls 

from Iceland and 14,792 cases and 393,868 controls from the UK Biobank. 
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Logistic regression was used to test for association between SNPs and AF 

and other phenotypes in the Icelandic study, treating phenotype status as the 

response and allele count as a covariate. The allele counts were either from 

genotyping or integrated over possible genotype counts based on imputation. 

Other available individual characteristics that correlate with phenotype status 

were also included in the model as nuisance variables. In Iceland these 

covariates were: sex, county of birth, current age or age at death (first and 

second order terms included), blood sample availability for the individual and 

an indicator function for the overlap of the lifetime of the individual with the 

time span of phenotype collection. In the UK biobank study age and sex were 

included as covariates in the logistic regression model and 40 principal 

components were used to adjust for population stratification. A fixed-effects 

inverse variance method was used for the meta-analysis (Mantel & Haenszel, 

1959). The method was based on effect estimates and standard errors from 

the Icelandic and the UK Biobank study. Only sequence variants from 

the Haplotype Reference Consortium panel (McCarthy et al., 2016) were 

included in the meta analysis and variants from deCODE and the UK Biobank 

imputation were matched on position and alleles. Standard errors were 

calculated in the following way: 

For a P value smaller than 1 the standard error was calculated as: 

𝑃 = 2Φ(𝑧) = 2Φ (
𝛽

𝜎
). 

Solving for 𝜎 gives 

𝜎 =
𝛽

Φ−1 (
𝑃
2)

 

If 𝑃 = 1, then Φ−1 (
𝑃

2
) = 0 and the above method breaks down. In this 

case data from other markers was used to estimate the relationship between 

allele frequency (𝑓) and imputation information (𝐼) and 𝜎: 

 

𝑉𝑎𝑟(𝛽) = 𝜎2 ∝
1

𝑁
𝑓(1 − 𝑓) ∝

1

𝐼
𝑓(1 − 𝑓) 
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Sample size (𝑁) is proportional to imputation information (𝐼) if the analysis 

is always based on the same set of individuals. Therefore, if we fit the 

following linear model: 

 

log(𝜎2) = 𝛾1 + 𝛾𝐼log (𝐼) + 𝛾𝑓log (𝑓(1 − 𝑓)) 

for a subset of 100,000 markers spread over the genome with MAF 

ranging close to uniformly between 0.1% and 50% and info between 0.9 and 

1 and pick the subset of markers with 𝑃 < 0.9 then we can predict 𝜎 for a 

marker with 𝑃 close to 1.  

The threshold for genome-wide significance was corrected for multiple 

testing with a weighted Bonferroni adjustment as described in 3.1.7. 

Conditional analysis of the region around novel AF variants was performed in 

the Icelandic data by adding the top variant or variants as a covariate while 

testing every SNP in the region for association with AF. 

Novel AF variants were tested for association with 122 ECG 

measurements using linear regression, treating the ECG measurement as 

the response and the genotype as the covariate. This was also done in paper 

I and described in detail in 3.1.7. In this study (paper II), the ECG 

associations of the novel AF variants were plotted next to the associations of 

the 31 variants from paper I for comparison. 

3.2.7  RNA sequencing in cardiac samples 

Samples from cardiac right atrium of 167 Icelandic subjects were used for 

RNA sequencing. The mean age at biopsy was 68.8 years (SD 12.2) and the 

majority were male (140/167). The samples were obtained during 

cardiothoracic surgery at LUH. The RNA samples from cardiac atria were 

used to identify a novel isoform resulting from the splice-donor variant in 

RPL3L (c.1167+1G>A) and quantify expression at the transcript level. RNA 

sequencing libraries were inspected for sequencing and alignment integrity 

using parameters retrieved from RNA-SeQC (DeLuca et al., 2012), Picard 

CollectRnaSeqMetrics (http://broadinstitute.github.io/picard/) and FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects-/fastqc). Genotype 

concordance was determined by comparing imputed genotypes to those 

derived from RNA-seq. Genome alignments were found using STAR (Dobin 

et al., 2013) aligning to GRCh38 with ensemble v87 (Yates et al., 2016) gene 

annotations.  
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Alignments of RNA-seq reads of carriers of the variant contained several 

reads that spliced over exon 9 in transcript ENST00000268661 of RPL3L. 

Neither of the other two annotated transcripts of RPL3L (ENST00000565426 

and ENST00000566484 (Yates et al., 2016)) showed expression in any of 

the samples. To assess quantitatively the effect of the variant on the isoform 

usage we created the transcript sequence for the novel isoform, added it to 

the ensemble v87 transcriptome, and re-quantified all samples using kallisto 

(Bray et al., 2016) and the modified transcriptome. The expression of the 

annotated and novel transcript was corrected w.r.t. the size factor computed 

from the gene expression analysis. Finally, the proportion of novel isoform 

usage was computed by dividing the estimated expression of the novel 

isoform with the sum of the expression of both isoforms.  

Two samples out of 167 were from carriers of the splice-donor variant in 

RPL3L in question. Due to the small number of carriers, we opted for a 

conservative test for computing the significance of the observed event, that 

the carriers have a ratio of 50% vs near 0% for non-carriers. The test used 

was the two-sided Mann-Whitney U test, which only takes the relative ranks 

of the samples into account and not the underlying values. The P value 

computed was P = 0.0052, the lowest possible P value that can be obtained 

using this statistical test with n1 = 165 and n2 = 2.  

 Paper III 3.3

Paper III describes a multi-center meta-analysis of GWASs on AF in which 

the AF cohort from deCODE was combined with five other large sample sets. 

The number of participants was over one million, including 60,620 AF cases. 

3.3.1 Study cohorts 

The Icelandic AF population from deCODE genetics was described in 3.1.2. 

and consisted of 13,471 patients diagnosed with AF (ICD 10 code I.48 and 

ICD 9 code 427.3) at LUH and Akureyri Hospital from 1987 to 2015 and 

358,161 controls.  

A total of 6,493 AF cases and 63,142 AF-free controls came from the 

HUNT study, described in 3.2.2. A combination of hospital, outpatient, and 

emergency room discharge diagnoses (ICD 9 and ICD 10) was used to 

identify cases and controls.  

The Michigan Genomics Initiative (MGI) is a hospital-based cohort 

collected at Michigan Medicine, USA. AF cases were 1,226, defined as 

patients with ICD 9 code 427.31. Controls were individuals without AF, atrial 
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flutter, or related phenotypes (ICD-9 426-427.99). MGI was reviewed and 

approved by the Institutional Review Board of the University of Michigan 

Medical School. 

The DiscovEHR collaboration cohort is a hospital-based cohort including 

58,124 genotyped individuals of European ancestry from the ongoing 

MyCode Community Health Initiative of the Geisinger Health System, USA 

(Carey et al., 2016). AF cases were 6,679 individuals defined as DiscovEHR 

participants with at least one electronic health record problem list entry or at 

least two diagnosis code entries for two separate clinical encounters on 

separate calendar days for ICD 10 I.48. Corresponding controls were 41,803 

individuals with no electronic health record diagnosis code entries for ICD 10 

I.48. The Study was approved by the Geisinger Institutional Review Board.  

The UK Biobank cohort is described in 3.2.2 as is was also included in the 

meta-analysis in paper II (Sudlow et al., 2015). Cases of AF were selected 

using ICD 9 and ICD 10 codes for AF or atrial flutter (ICD 9 427.3 and ICD 10 

I48). Controls were participants without any ICD 9 or ICD 10 codes specific 

for AF, atrial flutter, other cardiac arrhythmias, or conduction disorders.  

A total of 17,931 AF cases and 115,142 controls were obtained from 

published AF association summary statistics from 31 cohorts in the AFGen 

Consortium (Christophersen et al., 2017). 

3.3.2  Genotyping array, imputation and association analysis 

Genotyping and association analysis in the deCODE data has been 

described here in detail in 3.1.6 and 3.1.7. Variants for the meta-analysis 

were selected based on matching with either the 1000 Genomes phase 3 

(Auton et al., 2015) or the Haplotype Reference Consortium reference panel 

(McCarthy et al., 2016) (based on allele, frequency and correlation matching). 

Genoyping in the other cohorts is described in detail in paper III (Nielsen et 

al., 2018b). 

3.3.3 Meta-analysis 

All markers that were available for analysis in the six contributing studies 

were included in the meta-analysis. For the DiscoverEHR that applied the 

BOLT-LMM mixed model, an approximation of the allelic log-odds ratio and 

corresponding variance from the linear model was optained as described 

previously (Cook et al., 2017). Subsequently, a meta-analysis was performed 

using the inverse variance method implemented in the software package 

METAL (http://genome.sph.umich.edu/wiki/METAL_Documentation) (Willer et 

http://genome.sph.umich.edu/wiki/METAL_Documentation
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al., 2010). When estimating the cross-cohort allele frequencies, only the 

studies sampling individuals independent of AF status were included (HUNT, 

deCODE, MGI, DiscoverEHR, UK Biobank). This was done to avoid sampling 

bias. Heterogeneity tests were performed as implemented in METAL (Willer 

et al., 2010).  

Independent loci were defined as genetic markers > 1Mb and > 0.25 cM 

apart in physical and genomic distance, respectively, with at least one 

genetic variant associated with AF. The genome-wide significance threshold 

was set at a P value < 5 x 10
-8

. The borders of loci were defined as the 

highest and lowest genomic positions within the locus reaching genome-wide 

significance plus an additional 1Mb on either side. The software PLINK1.9 

(https://www.cog-genomics.org/plink/1.9) was used to calculate LD r
2
 based 

on 5,000 unrelated individuals that were randomly sampled among the HUNT 

study participants. We also used the 1000 Genomes phase 3 European 

sample for LD estimation (Auton et al., 2015). 

To identify independent risk variants within the identified AF-associated 

loci, the COJO-GCTA software (http://cnsgenomics.com/software/gcta/) was 

used. It performed approximate, stepwise conditional analyses based on 

summary statistics from the meta-analyses and a LD-matrix obtained from 

5,000 unrelated individuals randomly sampled from the HUNT study (Yang et 

al., 2012). Only variants with MAF > 0.01 were included in the analyses and 

variants were only considered truly independent if they were not in LD (r
2
 < 

0.05) with the locus index variant and any of the other independent risk 

variants. 

3.3.4  Estimation of heritability 

The genome-wide heritability explained by all markers was estimated based 

on LD-score regression, GWAS summary statistics and European-ancestry 

LD information from the 1000 Genomes Project (Bulik-Sullivan et al., 2015). 

The heritability explained by AF-associated index variants and additional 

independent risk variants was calculated on the basis of odds ratios and risk 

allele frequencies as described previously (So et al., 2011).  

3.3.5  Pathway and functional enrichment analysis 

As explained in “Declaration of contribution”, the methods of this part of the 

work will be covered here briefly. For a more detailed description see paper 

III (Nielsen et al., 2018b). 

The software GREGOR (Genomic Regulatory Elements and Gwas 

https://www.cog-genomics.org/plink/1.9
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Overlap algorithm, http://csg.sph.umich.edu/GREGOR/) was used to test for 

enrichment of index variants with functional domains (Schmidt et al., 2015). 

This method tests if the AF-associated variants, or their LD proxies, overlap 

with experimentally annotated regulatory domains more often than expected 

by chance and in which tissues. The regulatory features included DNase I 

hypersensitive sites (DHS), histone methylation marks, transcription factor 

binding sites, and chromatin states in a variety of cell and tissue types 

available from Roadmap Epigenomics (Kundaje et al., 2015).  

The DEPICT tool (https://data.broadinstitute.org/mpg/depict/) was 

employed to identify the most likely causal gene at associated loci, 

reconstructed gene sets enriched for genes at AF loci and tissues and cell 

types in which genes at associated loci are preferentially expressed (Pers et 

al., 2015). To do this DEPICT employs gene expression data and predicted 

gene functions. The expression data is derived from a panel of 77,840 mRNA 

expression arrays (Fehrmann et al., 2015). Predicted gene functions are on 

the form of 14,461 gene sets which are defined based on molecular 

pathways derived from experimentally verified protein-protein interactions 

(Lage et al., 2007), genotype-phenotype relationships from the Mouse 

Genetics Initiative (Blake et al., 2014), Reactome pathways (Croft et al., 

2011), KEGG pathways (Kanehisa et al., 2012), and Gene Ontology (GO) 

terms (Ashburner et al., 2000). DEPICT reconstructs the gene sets so that 

each gene in the genome is functionally characterized by its membership 

probabilities across the 14,461 reconstituted gene sets. Finally, DEPICT 

relies on 37,427 human gene expression microarrays to identify tissues and 

cell types in which genes from associated loci are highly expressed (Pers et 

al., 2015). 

A systematic approach was applied to identify functional candidate genes 

possibly explaining the associations of the 111 AF loci. There were 3,048 

genes or transcripts for which the transcribed region overlapped at least one 

genome-wide significant variant in the 111 loci. Out of these, biological 

candidate genes were prioritized if they i) harbored a protein-altering index 

variant themselves or in high LD (r
2
 > 0.80); ii) had expression levels that 

were associated and colocalized with AF-associated variants (P value < 1.14 

x 10
-9

 in GTEx consortium data) ("Human genomics. The Genotype-Tissue 

Expression (GTEx) pilot analysis: multitissue gene regulation in humans," 

2015); iii) were highlighted by DEPICT (FDR < 0.05); or iv) were nearest to 

the index variant in a locus. 
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3.3.6  Testing AF variants for association with ECG 
measurements 

deCODE genetics provided ECG data to assess the effects of AF variants on 

cardiac conduction in the absence of AF. The dataset is described in 3.1.4. 

The 111 genome-wide significant AF index variants were tested for 

association with 123 ECG parameters using a linear mixed effects model 

implemented in the Bolt software package (Loh et al., 2015), treating the 

ECG measurement as the response and the genotype as the covariate. All 

measures except heart rate and QT interval were presented for all 12 ECG 

leads. For this analysis, we used 289,297 sinus rhythm ECGs (heart rate 50-

100 beats per minute) from 62,974 individuals who had not been diagnosed 

with AF nor had an implanted pacemaker according to our databases. 

Further details regarding the association analysis are described in 3.1.7. 

3.3.7  Genetic risk scores 

An inverse normal-transformed genetic risk score for AF was constructed for 

each study participant in the UK Biobank and in the HUNT study. This was 

done using summarized dosage-weighted risk estimates from all 142 

independent genome-wide statistically significant risk variants. For the UK 

Biobank risk score, risk estimates (beta coefficients) were obtained by meta-

analyzing the risk variants across all contributing studies excluding the UK 

Biobank. To explore the association between the genetic burden of AF and 

the age-of-onset of AF, which we assumed was independent of the case 

status used for obtaining the risk estimates, we obtained risk estimates from 

meta-analyses of the full sample size. 

3.3.8  Phenome-wide association analyses in the UK Biobank 

A previously published scheme was used to define disease-specific binary 

phenotypes by combining hospital ICD 9 codes into hierarchical PheCodes, 

each representing a particular disease group (Denny et al., 2013). ICD 10 

codes were mapped to PheCodes using a combination of available maps 

through the Unified Medical Language System 

(https://www.nlm.nih.gov/research/umls/), string matching, and manual 

review. UK Biobank study participants were labeled with a PheCode if they 

had one or more of the PheCode-specific ICD codes. Cases were all UK 

Biobank study participants with the PheCode of interest and controls were all 

UK Biobank study participants without the PheCode of interest or any related 

PheCodes. Gender checks were performed, so PheCodes specific for one 

gender could not mistakenly be assigned to the other gender. The 
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association between the optimized genetic risk score and each of the defined 

phenotypes where tested using a logistic regression adjusted for sex and 

birth year. 

 Paper IV 3.4

3.4.1 Ethical approval 

The study was approved by the National Bioethics Committee of Iceland and 

the Icelandic Data Protection Authority (VSNb2015030021/03.01 with 

amendments, VSNb2015030024/03.01 with amendments, 

VSNb2015010009/03.12 with amendments, VSNb2015030022/03.01 with 

amendments). Written informed consent was obtained from all study 

participants. The study complies with the declaration of Helsinki. 

3.4.2  The Icelandic CoA study sample 

The CoA sample set included individuals who received the discharge 

diagnosis of CoA at LUH, the only hospital in Iceland with specialized care for 

patients with congenital heart defects, between 1984 and 2016. The 

individuals diagnosed with CoA were identified either through diagnosis 

codes of CoA (ICD 9 code 747.1, ICD 10 code Q25.1) registered between 

1990 and 2016 or procedure codes of CoA (WHO codes 1-273, 5-369, 5-382 

and 5-387, NOMESCO codes FDJ 00, FDJ 10, FDJ 20, FDJ 30, FDJ 42 and 

FDJ 96) registered between 1984 and 2016. CoA was defined as a 

congenital narrowing of aorta, the diagnosis of which was confirmed by 

echocardiography and/or cardiac catheterization by a cardiologist. The 

diagnoses of CoA and other CHDs were confirmed and type of CoA 

established through review of electronic and paper medical records at LUH. 

Originally 146 Icelanders with CoA were identified, 11 of which were 

syndromic and excluded from the study. Of the remaining 135 individuals with 

CoA, genotypes were available for 120 individuals that were included in the 

analysis. The individuals that served as controls consisted of disease-free 

individuals randomly drawn from the Icelandic genealogical database and 

individuals from other genetic studies at deCODE.  

Based on severity and/or anatomy of the narrowing, individuals were 

classified into five different types of CoA: (1) Mild CoA was defined as 

untreated and hemodynamically insignificant CoA, (2) moderate CoA as 

treated, hemodynamically significant CoA and (3) critical CoA as severe 

narrowing presenting as either congestive heart failure or cardiogenic shock 

during the neonatal period, with or without concomitant large VSD. (4) 
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Complex CHD was defined as CoA occurring in conjunction with multiple 

CHDs Finally, (5) we included coarctation of the abdominal aorta and 

interruption of the aortic arch type A. The age at diagnosis and the presence 

of associated hypoplasia, CHDs, arrhythmias and other CVDs was also 

documented. The phenotypic information was used for phenotype-genotype 

correlation of the individuals with CoA.  

3.4.3  Secondary phenotypes in the deCODE genetics phenotype 
database 

A novel CoA variant was tested for association with secondary phenotypes in 

the deCODE genetics phenotype database, described in 3.1.5. The CHD 

sample sets included 715 individuals with VSD (ICD 10: Q21.0 or ICD 9: 

745.4), 657 individuals with ASD (ICD 10: Q21.1 or ICD 9: 745.5), 594 

individuals with patent ductus arteriosus (ICD 10: Q25.0 or ICD 9: 747.0) and 

208 individuals with description of bicuspid aortic valve according to 

cardiologist interpretation of echocardiograms from LUH between 1994 and 

2015. The coronary artery disease dataset (N = 37,782) has been described 

(Helgadottir et al., 2016). The aortic valve stenosis (N = 2,457), AF (N = 

13,471), heart failure (N = 10,480), high-degree atrioventricular block 

(N=1,303) and thoracic aortic aneurysm (N = 353) sample sets were based 

on discharge diagnoses from LUH from 1987 to 2015. The ischemic stroke (N 

= 8,948) and SSS (N = 3,310) sample sets have been described in detail 

elswere (Gretarsdottir et al., 2008; Holm et al., 2011). The hypertension 

sample set included 54,974 individuals who received the diagnosis of 

hypertension at LUH or the Primary Health Care Clinics of the Reykjavik 

area. Identification of patients with HCM has been described elswere 

(Adalsteinsdottir et al., 2014).  

Three phenotypes describing measurements from echocardiograms were 

used in the analysis, left atrial diameter (N = 19,380), aortic root diameter 

(19,506) and left ventricular end-diastolic diameter (N = 5,701). These 

measurements were obtained from a database of 53,122 echocardiograms 

from 27,460 individuals performed and documented by a cardiologist at LUH 

between 1994 and 2015. Measurements were adjusted for sex, year of birth 

and age at measurement and were subsequently standardized to have a 

normal distribution. Electrocardiogram (ECG) data was collected from LUH in 

Reykjavik and included all ECGs obtained and digitally stored from 1998 to 

2015, a total of 434,000 ECGs from up to 88,217 individuals, analysis was 

performed on 289,297 sinus rhtyhmi ECGs of 62,974 individuals without the 

diagnosis of AF, as explained in 3.1.4. 
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3.4.4  Generation of genotype data 

The GWAS on CoA performed in paper IV was based on the same numbers 

of whole-genome sequenced and chip typed individuals as in paper I and II, 

(15,220 and 151,677 respectively). Genotyping, variant calling and imputation 

was described in detail in 3.1.6. Of the individuals diagnosed with CoA, 39 

were chip typed and long-range phased and of the individuals that were 

controls 140,661 were chip typed and long-range phased. The remaining 

individuals (n = 81 CoA cases and n = 214,412 controls), were not chip typed 

themselves but were first or second degree relatives of the chip typed 

individuals and imputed using genealogical imputation as described in 

(Styrkarsdottir et al., 2013). 

3.4.5  Association analysis 

Association testing for case-control analysis was performed using logistic 

regression, adjusting for gender, age and county as is described in 3.1.7. The 

threshold for genome-wide significance was corrected for multiple testing with 

a weighted Bonferroni adjustment (Sveinbjornsson et al., 2016). Threshold 

for functional groups of variants are listed in 3.1.7. The estimated correction 

factor was 1.04 for the multiplicative model of the CoA association. 

3.4.6  Phenotypic differences between carriers and non-carriers 
of a variant associated with increased risk of CoA 

To analyze if carriers of p.Arg721Trp in MYH6 differed clinically from non-

carrier individuals with CoA, we evaluated the frequencies of various clinical 

characteristics in these two groups of individuals with CoA. Fisher’s exact test 

was used to test for significant difference in the mean frequency of the 

variants between non-carriers and carriers, and the odds ratio (OR) was 

calculated as (pa/(1-pa)) / (pc/(1-pc)), where pa and pc are the mean 

frequencies of the variants in non-carriers and carriers, respectively. 
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4 Results 

 A genome-wide association study on AF in Iceland 4.1
(paper I) 

Paper I reports the results of a GWAS testing 32.5 million sequence variants 

for association with AF in 13,471 Icelandic cases and 374,939 controls under 

the additive model. Genotype-information was based on whole-genome 

sequencing of 15,220 Icelanders with variants imputed into 151,677 chip 

typed and long-range phased individuals and their close relatives 

(Gudbjartsson et al., 2015). The study yielded ten genome-wide significant 

associations, two of which were novel, one with an intergenic variant at the 

genes METTL11B and LINC01142 and one with a missense variant in the 

gene PLEC (Figure 4, Table 3). 

Figure 4. Manhattan plot of the results of the first GWAS on AF (N = 13,471, paper I). 
The –log10(P value) is plotted against the position of each SNP on each chromosome. 
Genome-wide significant variants are annotated with the corresponding gene name. 
The strongest signal, close to PITX2, is cut at a level of P = 1 × 10

-20
. 
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4.1.1 Novel association of a coding variant in PLEC with AF 
(paper I) 

The PLEC association was driven by a low frequency (1.2%) missense 

variant, p.Gly4098Ser (NP_958782.1), that associated with AF with an odds 

ratio (OR) of 1.55 (P = 8.0 × 10
-10

, 95% CI 1.35 - 1.78, Table 3, Figure 5). 

The adjusted significance threshold for moderate impact variants was 5.1 × 

10
-8 

(Sveinbjornsson et al., 2016). P.Gly4098Ser was the only variant in the 

region reaching genome-wide significance (Figure 5) and conditional analysis 

did not reveal additional signals in the region. Furthermore, no other coding 

variant in PLEC associated independently with AF (Appendix 1).  

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Regional plot of the PLEC locus on chromosome 8q24 (paper I). The plot 
depicts association results (P values) with AF (N = 13,471). The y-axis shows the 
−log10 P values and x-axis the genomic position (hg38). The leading variant is labelled 

as a diamond and coloured purple. Other variants are coloured according to 
correlation (r

2
) with the leading marker. 

PLEC encodes plectin, a very large (>500 kDa) multidomain cytoskeletal 

linking protein that can bind to all types of intermediate filaments, actin 

filaments and microtubules (Castanon et al., 2013). Plectin has a role in 

maintaining tissue integrity in skin, striated muscle and the heart (Wiche, 

1998). It is expressed in many tissues, with equal expression in cardiac atria 

and ventricles ("Human genomics. The Genotype-Tissue Expression (GTEx) 



Rósa Björk Þórólfsdóttir  

44 

pilot analysis: multitissue gene regulation in humans," 2015).  

The p.Gly4098Ser missense variant (C>T position: 143,917,940) is 

located in exon 32/32 which encodes the C-terminal intermediate filament 

binding domain of plectin. The variant results in a glycine to serine 

substitution in the 5th and last type B plakin repeat motif (PRM) of the C-

terminal (figure 6). This motif is homologous to the B-type PRM from 

desmoplakin whose 3D crystal structure is avaliable (Choi et al., 2002). As 

shown in Figure 6, the glycine in desmoplakin homologous to Gly4098 in 

plectin is found on the protein surface. 

In general, the PLEC gene is tolerant to missense mutations (constrained 

metric z-score = -0.38 (Lek et al., 2016)), however the region in question is 

conserved and has low tolerance to mutations (GERP-score = 4.2 (ranges 

from -12.3 to 6.17, with 6.17 being the most conserved), subRVIS score < 

35th  percentile (Cooper et al., 2005; Gussow et al., 2016)). Furthermore, 

according to the PolyPhen-2 and SIFT predicting tools the amino acid 

substitution is potentially damaging for the protein structure and function 

(PolyPhen-2: 1 (range: 0 - 1, where 1 is most deleterious), SIFT: 0.02 (range: 

0 – 1, cutoff for deleterious classification <= 0.05) (Adzhubei et al., 2010; 

Kumar et al., 2009)). The closest functional domain to p.Gly4098Ser is a 

suggested interaction site with intermediate filaments beween the 5th and 6th 

PRMs (Castanon et al., 2013).  

Figure 6. A schematic domain structure of plectin. The C-terminal intermediate 

filament binding domain is comprised of six plakin repeat motifs (PRM), five of type B 
and one of type C (Castanon et al., 2013; Huber, 2003). P.Gly4098Ser is located in 
the 5th and last type B PRM. The 3D crystal structure of the homologous B-type PRM 
from desmoplakin is used here to show the variants location as a red dot on the 
protein surface (Choi et al., 2002).  
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Seventeen of the 151,677 genotyped study participants were homozygous 

for the p.Gly4098Ser variant in PLEC, consistent with what was expected 

under Hardy-Weinberg equilibrium (22 expected, P = 0.52). Their mean age 

was 46 (range 11 - 80 years).  None of the homozygotes had been 

diagnosed previously with AF according to available information but this did 

not deviate from the additive model (P = 0.093). It is possible that some of 

the homozygotes had undiagnosed AF or will develop AF later in life. 

P.Gly4098Ser did not associate with AF (P = 0.37) or ECG traits under the 

recessive model (lowest P value 0.0069 in T amplitude lead V3, beta = -

1.25). 

We looked up the p.Gly4098Ser variant in the Genome Aggregation 

Database (gnomAD), a large publicly available reference dataset of human 

genetic variation (Karczewski et al., 2019). The variant is exceedingly rare 

outside of Iceland and was found in only 13 of the 140,842 individuals in 

gnomAD (12 European, one South-Asian). The higher frequency of 

p.Gly4098Ser in Iceland is likely explained by the founder effect, the fact that 

a small number of ancestors accounts for a relatively large proportion of the 

population. Acknowledging the limited power to detect association, the 

variant was genotyped in two AF sample sets, from the Vanderbilt AF registry 

(764 cases and 762 controls) and the FOURIER trial (1,238 cases and 

11,562 controls). Three carriers of p.Gly4098Ser were identified and all had 

AF. 

To further explore the effects of p.Gly4098Ser, it was tested for 

association with all phenotypes in deCODE genetics extensive phenotype 

database. The most significant disease associations were with the AF related 

traits SSS (OR = 1.64, 95% CI = 1.31 - 2.05, P = 1.7 × 10
-5

), pacemaker 

implantation (OR = 1.54, 95% CI = 1.24 - 1.92, P = 9.5 × 10
-5

), ischemic 

stroke (OR = 1.22, 95% CI = 1.01 - 1.47, P = 0.035) and the ischemic stroke 

sub-phenotype cardioembolic stroke (OR = 1.53, 95% CI = 1.09 - 2.14, P = 

0.013) (Table 4). Table 4 shows the most significant secondary associations 

of p.Gly4098Ser and associations with relevant cardiovascular phenotypes 

and phenotypes described in plectinopathies, such as epidermolysis bullosa 

simplex (Winter & Wiche, 2013). The only other significant association among 

these (P < 0.05/16 = 0.003) was with decreased levels of creatine kinase 

(beta = -0.09, 95% CI = -0.14 - -0.04, P = 2.6 × 10
-4

). 
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Phenotype N
Effect (OR/betaa)  

(CIb)
P value

Sick sinus syndrome 3,310 1.64 (1.31-2.05) 1.7×10-5

Pacemaker implantation 3,578 1.54 (1.24-1.91) 9.5×10-5

Creatine kinase 71,277 -0.09 (-0.14- -0.04) 2.6×10-4

Cardioembolic stroke 1,369 1.53 (1.09-2.14) 0.013

Ischemic stroke 5,626 1.22 (1.01-1.47) 0.035

Coronary artery disease 37,782 1.10 (0.99-1.23) 0.087

Type II diabetes 11,448 0.86 (0.72-1.03) 0.10

Aortic valve stenosis 1,718 0.81 (0.55-1.19) 0.28

Hypertension 25,577 0.94 (0.83-1.06) 0.31

Dilated cardiomyopathy 424 1.38 (0.73-2.60) 0.32

Thyroid stimulating hormone 188,057 0.02 (-0.03-0.07) 0.40

Ventricular tachycardia 945 1.17 (0.75-1.83) 0.49

Congenital heart disease 1,804 0.86 (0.54-1.38) 0.53

Hypertrophic cardiomyopathy 372 1.14 (0.56-2.33) 0.72

Heart failure 15,237 1.03 (0.87-1.22) 0.73

Second and third degree atrio-

ventricular block
1,303 0.97 (0.67-1.40) 0.87

P values below 0.0031 (0.05/16) are in bold
a
Estimated odds ratio (OR) or effect in standard deviation; 

b
CI = 95% confidence interval

Table 4. Association of p.Gly4098Ser in PLEC with secondary phenotypes. 
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4.1.2  An intergenic variant between METTL11B and LINC01142 
increases risk of AF (paper I) 

In addition to the PLEC association, paper I reported a second novel AF 

association with an intergenic variant of 8.1% frequency, rs72700114 

(g.170224684G>C), located between the genes LINC01142 and METTL11B 

on chromosome 1q24. This variant associated with AF with OR = 1.22 (P = 

7.0 × 10
-12

, 95% CI 1.15 - 1.29) in Iceland (Table 3). The association 

replicated well in two replication sample sets from the Vanderbilt AF registry 

(764 cases and 762 controls) and the FOURIER trial (1,238 cases and 

11,562 controls). The direction of effect was consistent in all cohorts and the 

combined OR was 1.26 (95% CI 1.19 - 1.32) and P value 3.1 × 10
-18

 

(Appendix 2).  

Rs72700114 is located 400 kb away from a previously reported AF locus, 

represented by a common variant, rs651386 (frequency = 57.4%), close to 

PRRX1 (Figure 7) (Ellinor et al., 2012). According to conditional analysis, the 

two associations are independent (Appendix 3) and the two variants not 

strongly correlated (D' = 0.38, r
2
 = 0.009). This is not the first discovery of a 

secondary AF signal at this locus. A recent publication reported an 

association with rs72700118 (Christophersen et al., 2017) located 1 kb away 

from rs72700114, but not in LD with it (D' = 1, r
2
 = 0.014). None of the three 

variants (rs72700114, rs651386 and rs72700118) associated with the 

expression of nearby genes in deCODEs RNA samples from blood (2,528 

samples) or adipose tissue (686 samples). 
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Figure 7. Regional plot of the AF signal on chromosome 1q24, rs72700114 between 
METTL11B and LINC01142, and a previously reported signal 400 kb away, rs651386, 
close to PRRX1. The plot depicts association results (P values) with AF (N = 13,471). 
For each plot, the y-axis shows the −log10 P values and x-axis the genomic position 
(hg38). The leading variant (rs72700114) is labelled as diamond and coloured purple. 
Other variants are coloured according to correlation (r

2
) with rs72700114. 

To further explore the effects of rs72700114 at LINC01142/METTL11B, 

the variant was tested for association with all phenotypes in deCODE 

genetics phenotype database. After correcting for multiple testing considering 

relevant phenotypes (P < 0.05/16 = 0.003) the only significant secondary 

association was with risk of heart failure (OR = 1.10, 95% CI = 1.04 - 1.17, P 

= 0.0016) (Table 5). 
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Phenotype N
Effect (OR/beta

a
)  

(CI
b
)

P value

Heart failure 15,237 1.10 (1.04, 1.17) 0.0016

Creatine kinase 71,277 -0.03 (-0.05, -0.01) 0.0058

Pacemaker implantation 3,578 1.13 (1.03, 1.24) 0.0077

Cardioembolic stroke 1,369 1.18 (1.02, 1.36) 0.022

Sick sinus syndrome 3,310 1.08 (0.98, 1.19) 0.11

Aortic valve stenosis 1,718 1.12 (0.97, 1.29) 0.12

Second and third degree atrio-ventricular block 1,303 1.11 (0.96, 1.28) 0.16

Ischemic stroke 5,626 1.05 (0.98, 1.13) 0.18

Hypertension 25,577 1.03 (0.98, 1.09) 0.29

Coronary artery disease 37,782 1.02 (0.98, 1.06) 0.31

Dilated cardiomyopathy 424 1.13 (0.87, 1.47) 0.36

Thyroid stimulating hormone 188,057 -0.00 (-0.02, 0.01) 0.53

Ventricular tachycardia 945 1.04 (0.86, 1.26) 0.69

Type II diabetes 11,448 1.01 (0.96, 1.06) 0.70

Hypertrophic cardiomyopathy 372 0.97 (0.65, 1.44) 0.88

Congenital heart disease 1,804 1.01 (0.83, 1.23) 0.92

P values below 0.0031 (0.05/16) are in bold

a
Estimated odds ratio (OR) or effect in standard deviation; 

b
CI = 95% confidence interval

Table 5. Association of rs72700114 at LINC01142/METTL11B with secondary 

phenotypes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.3 Replication of previously reported AF signals (paper I) 

In addition to the two novel loci described in paper I (PLEC and 

LINC01142/METTL11B) eight previously reported loci reached genome-wide 

significance (Figure 4, Table 3,). One of those had associated with AF as a 

secondary trait before, a missense variant in MYH6 previously reported for 

association with SSS (Holm et al., 2011). It is now the second strongest AF 

signal in the Icelandic dataset. A total of 29 previously reported loci (at the 

time) were replicated either with genome-wide significance (Table 3) or 

nominal significance (Table 6). These had been associated with AF in GWAS 

either as a primary trait or secondary trait, following association with SSS, 

heart rate or PR interval. Two of the variants replicated here (rs12044963 at 

KCND3 and rs2047036 at SH3PXD2A) were reported in GWAS on AF 

among Japanese before and nominally associated with AF in Europeans 

(Low et al., 2017). Additional variants reported in Japanese cohorts were 

either not replicated (Table 6) or very rare/nonexistent in the Icelandic 

population (rs17059534 in HAND2, rs2540953 in SLC1A4–CEP68 and 

rs2296610 in NEBL; (Low et al., 2017)). In total four previously reported loci 

were tested and did not reach nominal significance in this study (Table 6).  



Rósa Björk Þórólfsdóttir  

50 

Reference  

SNP
a
 ID

Chr
b
/Pos

c
 (hg38) Closest genes

Risk allele/ 

other
RAF (%)

d Coding 

effect
OR

e
 (CI

f
) P value

rs3807989
g 7q31/116,546,187 CAV1 G/A 59.5 intronic 1.11 (1.07-1.14) 2.5×10

-9

rs10821415
g 9q22/94,951,177 C9orf3 A/C 38.5 intronic 1.10 (1.06-1.14) 3.8×10

-8

rs35176054
h 10q24/103,720,629 SH3PXD2A A/T 13.6 intronic 1.14 (1.08-1.19) 9.3×10

-8

rs72700118
h 1q24/170,225,682

METTL11B, 

LINC01142
A/C 13.6 intergenic 1.12 (1.07-1.17) 2,9×10

-6

rs10507248
i 12q24/114,359,288 TBX5 T/G 70.2 intronic 1.09 (1.05-1.13) 3.0×10

-6

rs7164883
g 15q24/73,359,833 HCN4 G/A 14.7 intronic 1.12 (1.07-1.17) 1.1×10

-6

rs7508
h 8p22/18,056,461 ASAH1 A/G 71.5 3´ UTR 1.09 (1.05-1.13) 1.2×10

-5

rs1152591
g 14q23/64,214,130 SYNE2 A/G 51.0 upstream 1.07 (1.04-1.11) 3.5×10

-5

rs13216675
i 6q22/122,131,183 GJA1 T/C 66.2 intergenic 1.08 (1.04-1.11) 3.5×10

-5

rs11047543
h 12p12/24,635,405 SOX5 G/A 86.7 intergenic 1.11 (1.05-1.16) 5.3×10

-5

rs2540949
h 2p14/65,057,097 CEP68 A/T 59.3 intronic 1.07 81.03-1.10) 1.5×10

-4

rs12044963
j 1p13/111,849,738 KCND3 T/G 9.4 intronic 1.11 (1.05-1.17) 2.1×10

-4

rs4642101
i 3p25/12,800,724 CAND2 G/T 65.8 intronic 1.07 (1.03-1.10) 3.1×10

-4

rs6800541
h 3p22/38,733,341 SCN10A T/C 63.6 intronic 1.06 (1.03-1.10) 4.3×10

-4

rs3771537
h 2p13/69,811,660 ANXA4 A/C 53.1 intronic 1.06 (1.03-1.10) 4.6×10

-4

rs75190942
h 11q24/128,894,676 KCNJ5 A/C 10.6 down-stream 1.09 (1.03-1.15) 0.0016

rs337711
h 5q22/114,412,874 KCNN2 T/C 34.1 intronic 1.05 (1.01-1.08) 0.0071

rs2047036
j 10q24/103,717,405 SH3PXD2A C/T 40.1 intronic 1.04 (1.01-1.08) 0.012

rs2288327
h 2q31/178,546,938 TTN G/A 14.0 intronic 1.06 (1.01-1.11) 0.017

rs2967791
h 5q31/137,677,417 KLHL3 T/C 56.7 intronic 1.04 (1.00-1.07) 0.025

rs7698692
j 4q34/173,682,953 HAND2 G/A 2.1 intergenic 1.10 (0.99-1.23) 0.089

rs17461925
j 1q32/203,057,463 PPFIA4 A/G 66.2 intronic 1.01 (0.97-1.04) 0.69

rs6490029
i 12q24/111,260,653 CUX2 A/G 29.8 intronic 1.00  (0.98-1.02) 1.00

rs6882776
k 5q35/173,237,160 NKX2-5 G/A 71.8 upstream 1.09 (1.05-1.13) 8.1×10

-6

rs11708996
l 3p22/38,592,432 SCN5A G/C 88.2 intronic 1.04 (0.99-1.09) 0.14

a
SNP: single nucleotid polymorphism;

b
Chr: chromosome;

c
Pos = position,

d
RAF= risk allele frequency;

e
OR = odds ratio;

f
CI = 95%

confidence interval. References:
g
(Ellinor et al., 2012),

h
(Christophersen et al., 2017),

i
(Sinner et al., 2014),

j
(Low et al., 2017),

k
(den Hoed et

al., 2013), 
l
(Pfeufer et al., 2010)

Significant P  values (<0.05) are in bold

Variants reported to associate genome-wide significantly with AF

Variants reported to associate with AF as a secondary trait, following association with heart rate and/or PR interval

Table 6. Replication of loci previously reported to associate with AF at the time of 

publication of paper I, Oct 24th 2017 (N = 13,471).  
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 A meta-analysis of GWASs on AF in Iceland and the UK 4.2
Biobank focusing on low frequency coding and splice 
variants (paper II) 

The second paper reports a meta-analysis of 14,710 cases and 373,897 

controls from Iceland and 14,792 cases and 393,863 controls from the UK 

Biobank, with follow-up in samples from Norway and the US. This study 

focused on low frequency coding and splice variants. Three novel 

associations of coding variants were discovered, two in the gene RPL3L and 

one in MYZAP (Table 7).  
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4.2.1 A missense variant in MYZAP increases risk of AF (paper 
II) 

One of the three novel associations reported in paper II was with a missense 

variant, p.Gln254Pro, in the MYZAP gene on chromosome 15 (allele 

frequency 1.08% in Iceland, 0.36% in the UK). In the meta-analysis of 

Icelandic and UK Biobank data the association was suggestive (OR = 1.36, 

95% CI = 1.21 - 1.52, P = 7.8 × 10
-8

, Table 7), as it did not reach the applied 

threshold for genome-wide significance for moderate impact variants (P < 5.1 

× 10
-8

). To further assess the association, the variant was tested in four 

additional sample sets of 9,204 cases and 76,161 controls combined, from 

the Nord-Trøndelag Health Study (HUNT), the FOURIER trial, the Vanderbilt 

Atrial Fibrillation Registry, and the Tromsø Study. Joint analysis of all 

datasets yielded a genome-wide significant association of p.Gln254Pro with 

AF (OR = 1.38, 95% CI = 1.25 - 1.53, P = 3.3 × 10
-10

) (Table 7). No other 

coding variant in MYZAP associated independently with AF in a conditional 

analysis conducted with the Icelandic data (Appendix 4).  

MYZAP encodes myozap, myocardial zonula adherens protein, primarily 

expressed in the heart in man and its homolog in the mouse has been 

localized to the intercalated discs (Seeger et al., 2010). The p.Gln254Pro 

variant is located close to the myozap protein region involved in both actin 

colocalization and activation of serum response factor (SRF)-dependent 

transcription (amino acids 91-250) (Seeger et al., 2010). The variant was 

looked up in the PROVEAN web server, a tool for prediction of the functional 

effect of amino acid substitutions, based on comparisons with related 

homologous sequences (Choi & Chan, 2015). According to PROVEAN, 

Gln254 is a conserved amino acid and the variant is predicted to be 

deleterious (Table 8). 
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MYZAP  p.Gln254Pro 

missense

RPL3L p.Ala75Val 

missense

Number of clusters 30 30

PROVEAN score -4.037 -3.492

Predicted effect Deleterious Deleterious 

PROVEAN score in RPL3 - -3.504

Default cutoff for Deleterious classification = -2.5.

Specificity = sensitivity = 80%.

Number of supporting 

sequences used
166 470

Table 8. Prediction scores for the functional effect of amino acid substitutions and 
indels from PROVEAN (Choi & Chan, 2015) for missense variants in MYZAP and 
RPL3L associating with risk of AF (paper II).  

 

 

 

 

 

 

 

To further explore the effects of the novel AF variant in MYZAP it was 

tested for association with other phenotypes in deCODE´s 

genotype/phenotype database under the additive model (Table 9). The most 

significant of these was with the related atrial arrhythmia SSS (OR = 1.51, 

95% CI = 1.20 - 1.89, P = 3.5 × 10
-4

). The associations with SSS and 

pacemaker implantation were the only ones passing Bonferroni correction 

accounting for multiple testing of 15 relevant phenotypes (P < 0.0033 = 

0.05/15). In a combined SSS sample set from Iceland (N = 3,568, controls = 

346,025) and the UK Biobank (N = 403, controls = 403,181), p.Gln254Pro 

associated with SSS with an OR of 1.65 (95% CI = 1.33 - 2.05) and P = 5.0 × 

10
-6

 (Appendix 5). Since mutations in intercalated disc genes, albeit not 

MYZAP, have been associated with cardiomyopathies in man (Moncayo-

Arlandi & Brugada, 2017) the link between the MYZAP variant and 

cardiomyopathies was specifically assessed in the deCODE dataset, but 

none passed Bonferroni correction (Table 9). 
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Phenotype N
Effect (OR/beta

a
)  

(CI
b
)

P  value

Sick sinus syndrome 3,568 1.51 (1.20-1.89) 0.00035

Pacemaker implantation 3,578 1.41 (1.12-1.77) 0.0031

Cardioembolic stroke 1,369 1.30 (0.89-1.89) 0.17

Ischemic stroke 5,626 1.09 (0.89-1.34) 0.41

Coronary artery disease 37,782 1.17 (1.04-1.32) 0.0096

Type II diabetes 11,448 0.97 (0.82-1.15) 0.73

Aortic valve stenosis 2,457 1.00 (0.45-2.17) 0.98

Hypertension 54,974 1.00 (0.45-2.17) 0.98

Dilated cardiomyopathy 424 1.28 (0.64-2.58) 0.49

Thyroid stimulating hormone 188,175 -0.01 (-0.04-0.02) 0.45

Ventricular tachycardia 945 1.06 (0.66-1.70) 0.81

Congenital heart disease 2,097 0.88 (0.58-1.32) 0.54

Hypertrophic cardiomyopathy 372 1.28 (0.62-2.62) 0.50

Heart failure 15,237 1.05 (0.91-1.21) 0.49

Second and third degree atrio-

ventricular block
1,303 1.26 (0.86-1.85) 0.24

P values below 0.0033 (0.05/15) are in bold

a
Estimated odds ratio (OR) or effect in standard deviation; 

b
CI = 95% confidence interval

Table 9. Association of p.Gln254Pro in MYZAP with secondary phenotypes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.2  Two coding variants in RPL3L increase risk of AF (paper II) 

The other two novel associations reported in paper II were with coding 

variants in the gene RPL3L. Joint analysis of all datasets yielded genome-

wide significant associations with AF of the missense variant p.Ala75Val (OR 

= 1.20, 95% CI = 1.14 - 1.25, P = 1.7 × 10
-14

) and the splice donor variant 

c.1167+1G>A (OR = 1.50, 95% CI = 1.32 - 1.70, P = 5.0 × 10
-10

) (Table 7). 

The two RPL3L variants are not correlated (D' = 1, r
2 

= 0.00024), and when 

conditioned on each other in the Icelandic dataset, both associations with AF 

remained (Appendix 6). All 15 low frequency coding variants found in RPL3L 

in the deCODE data were then tested for association with AF after 

conditioning on the two novel genome-wide significant variants, p.Ala75Val 

and c.1167+1G>A (Appendix 7). One variant associated with AF with a P 

value below the Bonferroni-corrected significance threshold of 0.0033 

(0.05/15), but the association was not genome-wide significant in the meta-

analysis. The RPL3L gene encodes a ribosomal protein (ribosomal protein 

like 3L) that is primarily expressed in skeletal muscle and the heart unlike 

most ribosomal proteins, that are ubiquitously expressed (Van Raay et al., 
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Phenotype N
Effect (OR/beta

a
)  

(CI
b
)

P  value

Sick sinus syndrome 3,568 1.02 (0.85-1.22) 0.83

Pacemaker implantation 3,578 1.03 (0.90-1.17) 0.66

Cardioembolic stroke 1,369 1.22 (0.99-1.50) 0.059

Ischemic stroke 5,626 1.03 (0.92-1.15) 0.60

Coronary artery disease 37,782 1.01 (0.96-1.06) 0.71

Type II diabetes 11,448 1.00 (0.90-1.11) 0.94

Aortic valve stenosis 2,457 0.93 (0.77-1.12) 0.45

Hypertension 54,974 0.96 (0.90-1.02) 0.22

Dilated cardiomyopathy 424 0.81 (0.53-1.25) 0.34

Thyroid stimulating hormone 188,175 0.00 (-0.01-0.02) 0.80

Ventricular tachycardia 945 0.84 (0.64-1.10) 0.21

Congenital heart disease 2,097 1.23 (0.98-1.54) 0.071

Hypertrophic cardiomyopathy 372 0.61 (0.35-1.05) 0.074

Heart failure 15,237 1.05 (0.96-1.14) 0.26

Second and third degree atrio-

ventricular block
1,303 0.92 (0.72-1.17) 0.50

P value threshold = 0.0033 (0.05/15)

a
Estimated odds ratio (OR) or effect in standard deviation; 

b
CI = 95% confidence interval

1996).  

The RPL3L variants did not associate with other phenotypes related to AF 

(Tables 10 and 11) Furthermore, when combining the SSS sample sets from 

Iceland (N = 3,568, controls = 346,025) and the UK Biobank (N = 403, 

controls = 403,181) neither of the two RPL3L variants associated with SSS 

(Appendix 5). Since mutations in ribosomal genes are commonly associated 

with bone marrow failure (Raiser et al., 2014), the relationship between the 

RPL3L variants and blood cells was specially queried but no associations 

observed. 

 

Table 10. Association of p.Ala75Val in RPL3L with secondary phenotypes. 
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Phenotype N
Effect (OR/beta

a
)  

(CI
b
)

P  value

Sick sinus syndrome 3,568 0.97 (0.71-1.33) 0.85

Pacemaker implantation 3,578 1.31 (0.97-1.77) 0.078

Cardioembolic stroke 1,369 1.46 (0.94-2.27) 0.093

Ischemic stroke 5,626 1.30 (1.02-1.66) 0.036

Coronary artery disease 37,782 1.00 (0.85-1.17) 0.97

Type II diabetes 11,448 1.01 (0.83-1.23) 0.92

Aortic valve stenosis 2,457 1.28 (0.88-1.87) 0.20

Hypertension 54,974 1.07 (0.93-1.23) 0.33

Dilated cardiomyopathy 424 1.05 (0.41-2.72) 0.92

Thyroid stimulating hormone 188,175 0.00 (-0.03-0.03) 0.95

Ventricular tachycardia 945 0.67 (0.33-1.36) 0.27

Congenital heart disease 2,097 0.94 (0.57-1.56) 0.81

Hypertrophic cardiomyopathy 372 1.00 (0.21-4.77) 1.00

Heart failure 15,237 1.26 (1.06-1.50) 0.0096

Second and third degree atrio-

ventricular block
1,303 1.42 (0.88-2.29) 0.15

P value threshold = 0.0033 (0.05/15)

a
Estimated odds ratio (OR) or effect in standard deviation; 

b
CI = 95% confidence interval

Table 11. Association of c.1167+1G>A in RPL3L with secondary phenotypes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prediction scores for consequences of the p.Ala75Val amino acid 

substitution are conflicting. The variant is predicted to be deleterious for 

protein function by PROVEAN (PROVEAN prediction score = -3.492, Table 

8) (Choi & Chan, 2015)), but not by CADD score (CADD score = 26, range 1 

- 99, 99 being most deleterious) (Kircher et al., 2014). Ala75 is highly 

conserved over a range of species, in both RPL3L and its homologous 

protein, RPL3 (GERP conservation score = 5.28, range: -12.3 - 6.17, with 

6.17 being the most conserved) (Cooper et al., 2005).  

The c.1167+1G>A variant in RPL3L is located in a splice donor site by the 

9th and second to last exon of RPL3L. To assess the variants effects on 

transcription, RNA samples from cardiac atria of 167 Icelanders were used. 

Two of the 167 individuals were heterozygous carriers of the variant and their 

RPL3L transcripts were compared to those of non-carriers. Quantification of 

the transcripts showed that non-carriers only produced the primary RPL3L 

isoform, but both carriers also produced an alternative isoform that skips 

exon 9 (P = 0.0052, Figure 8, panel a). It was also evident that carriers 

expressed the two isoforms in approximately equal abundance. Exon 9 is the 

second to last exon in RPL3L and is 120 base pairs long and therefore its 

deletion is in-frame (Figure 8, panel b). 
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Figure 8. The effects of c.1167+1G>A in RPL3L on transcription in cardiac atria. 

Panel a shows quantification of two forms of RPL3L transcripts; the primary isoform, 
ENST00000268661, and a novel isoform with skipping of exon 9 resulting from 
c.1167+1G>A. It also shows the proportion of novel isoform among all transcripts. A 
total of 167 samples, all from the right atrium, were included in the analysis, two of 
which came from carriers of c.1167+1G>A. The figure demonstrates that only the two 
carriers have the novel isoform with skipping of exon 9. Their exon skipping proportion 
is approximately 0.5 while it is zero in non-carriers. Panel b is a schematic illustration 
of the splicing of RPL3L among carriers and noncarriers of c.1167+G>A. The variant 
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is in a splice donor site by the second last exon and results in exon skipping. The 
skipped exon is 120 base pairs and therefore its deletion is in-frame. 

 Associations of novel and reported AF variants with 4.3
ECG measurements (papers I and II). 

In papers I and II the novel and reported AF variants were tested for 

association with ECG traits that reflect electrophysiologic function of the heart 

(Figure 9). A total of 289,297 sinus rhythm ECGs from 62,974 individuals 

without the diagnosis of AF were included in the analysis. All variants were 

tested for association with 122 ECG variables, some of them correlated 

(Table 2).  

The novel AF variants reported in papers I and II have diverse effects on 

cardiac electrical function in sinus rhythm. The p.Gly4098Ser variant in PLEC 

associates with many ECG measures, independent of AF diagnoses (Figure 

9). The variant affects most components of the cardiac cycle, including the P 

wave amplitude and area. It also prolongs the PR segment, representing 

AVN conduction, and lowers the R wave amplitude. The coding variant in 

MYH6, another structural gene, has a similar general effect on cardiac 

conduction, albeit a relatively stronger effect on the atria and AVN than the 

ventricles. The RPL3L missense variant p.Ala75Val also affects ECG 

measures in the absence of AF (Figure 9). It associates with measures of 

atrial conduction, both P wave amplitude and area, and with shorter QRS 

duration. Neither of the other variants in RPL3L and MYZAP associate with 

ECG traits in sinus rhythm. When testing for association with ECG traits 

using all ECGs irrespective of rhythm and history of AF, both p.Gly4098Ser in 

PLEC and p.Ala75Val in RPL3L associate more significantly with ECG 

measurements and p.Gln254Pro in MYZAP associates with various P wave 

indices, R amplitude and T wave indices (Appendix 8). The novel intergenic 

AF variant at LINC01142/METTL11B did not associate with ECG 

measurements, with or without AF cases in the analysis (Figure 9, Appendix 

8). 
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Figure 9. Heatmap showing the effects of AF variants on ECG traits in sinus rhythm 

ECGs, excluding AF cases (papers I and II). ECG measurements were available for 
62,974 individuals without AF. Each column shows the estimated effect of the risk 
allele of an AF variant on various ECG traits. The effect of each variant, annotated 
with the corresponding gene name, is scaled with the log10-AF odds ratio. Red color 
represents a positive effect on the ECG variable and blue color a negative effect. The 
effect is shown only for significant associations after adjusting for multiple testing with 
a false discovery rate procedure for each variant. Non-significant associations are 
white in the heatmap. 

In general, AF variants have highly diverse effects on ECG traits in 

individuals unaffected by AF, ranging from none to extensive and varying in 

direction. For example, the PR interval is an established predictor of AF 

development (Cheng et al., 2009) and it was either prolonged, shortened or 

not affected by AF risk alleles. Similarly, there is no clear relationship 
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between magnitudes of variants effects on conduction and their effects on 

AF. For example, the variants in NKX2-5 and SCN10A had extensive and 

strong ECG effects but small AF effects compared to the strongest common 

AF variant in PITX2. The PITX2 variant in turn had relatively weak effects on 

cardiac conduction in the absence of AF and it only affected indices of atrial 

and AVN conduction with no observable effect on ventricular conduction. 

Finally, many variants including the AF variants with moderate effects in the 

potassium channel gene KCNN3 and the transcription factor gene ZFHX3 

had no association with ECG measurements in the absence of AF. 

 Effects of novel and reported AF variants on pacemaker 4.4
implantation, SSS and stroke risk (papers I and II) 

To gain insight into the causal relationship between AF and related traits, AF 

variants were tested for association with SSS, pacemaker implantation, 

ischemic stroke, and cardioembolic stroke. The AF risk of each variant was 

then plotted against the effect on the risk of the AF related trait (Figure 10).  

This was done in paper I, before the discovery of coding variants in RPL3L 

and MYZAP associating with AF. They have, however, been added here for 

completion. The coding AF variant in MYH6 that was originally discovered 

through its association to high risk of SSS (Holm et al., 2011) stood out with 

substantially greater risk of SSS and pacemaker implantation than predicted 

from its effect on AF risk. For all other variants, their effects on the AF related 

traits were consistent with being proportional to their effects on AF. 
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Figure 10. AF effects of AF associated variants plotted against the effect on (a) 

pacemaker implantation (N = 3,578), (b) sick sinus syndrome (N = 3,310), (c) 
ischemic stroke (N = 5,626) and (d) cardioembolic stroke (N = 1,369) respectively. A 
logarithmic scale is used for the axis. OR = odds ratio. 

 Meta-analysis of GWAS on AF including over one 4.5
million participants (paper III) 

4.5.1  Genome-wide significant associations 

A total of 111 loci were identified (P < 5 × 10
−8

) in the meta-analysis of 

GWAS on AF testing 34,740,186 variants for association with AF among 

60,620 AF cases and 970,216 controls (Figure 11, Appendix 9). Participants 

came from six contributing studies, including 13,471 cases and 358,161 

controls from Iceland (see methods). Out of the 111 identified loci 80 were 

novel. A stepwise conditional analysis revealed additional 31 variants that 



Results  

63 

reached genome-wide significance and were not correlated (r
2
 < 0.01) with 

any of the 111 index variants (Appendix 10), adding up to 142 independent 

AF variants. The 142 variants explained 4.6% of the variation in AF. 

Furthermore, the total genome-wide genetic variation captured in the study 

explained 11.2% (s.e.m. 1.4%) of the variation in AF (h
2
SNPheritability).  

 

Figure 11. Manhattan plot of results of a meta-analysis of GWASs on AF among 

60,620 AF cases and 970,216 controls (Paper III). Known loci are orange and novel 
red. A total of 34,740,186 genetic variants (each represented by a dot) were tested. 
The –log10(P value) is plotted against the position of each SNP on each chromosome. 
The black horizontal dotted line represents a Bonferroni-corrected threshold of 
statistical significance corresponding to 1,000,000 independent tests (P < 5 × 10

−8
). 

4.5.2  External validity of the results 

A total of 35 variants had been reported in GWAS on AF at the time the study 

was published (Benjamin et al., 2009; Christophersen et al., 2017; Ellinor et 

al., 2012; Ellinor et al., 2010; Gudbjartsson et al., 2009; Gudbjartsson et al., 

2017; Low et al., 2017; Lubitz et al., 2014; Nielsen et al., 2018a; Sinner et al., 

2014; Thorolfsdottir et al., 2017; Thorolfsdottir et al., 2018; Tsai et al., 2016). 

Of these, 31 reached genome-wide significance in the meta-analysis after 

excluding the AFGen Consortium, which had published a majority of the 

reported variants. The other four variants were either discovered in East 



Rósa Björk Þórólfsdóttir  

64 

Asian populations (KCNIP1, NEBL, CUX2) (Low et al., 2017; Tsai et al., 

2016) or not included in the meta-analysis (PLEC) (Thorolfsdottir et al., 

2017). The external validity of the results was further supported by 

heterogeneity analysis. Only two of the 111 variants showed significant 

heterogeneity of effect size across the six studies when correcting for multiple 

testing (P < 0.05/111 = 4.5 × 10
−4

). Both of them were index variants at 

established AF loci reported in multiple studies, close to PRRX1 and PITX2 

(Appendix 9).  

4.5.3  Understanding the biology of the 111 AF loci 

Most of the identified AF variants were in the non-coding genome. The only 

two coding variants among the 111 index variants were the p.Gln254Pro in 

MYZAP and p.Ala75Val in RPL3L, both of which were reported in paper II. 

Therefore, number of approaches were applied to understand the biology 

behind the effects of AF risk variants, including exploring their associations 

with ECG measurements. 

The results of pathway and functional enrichment analysis used to explore 

the 142 AF variants (111 index variants and 31 variants identified through 

conditional analysis) are described in detail in paper III but will be covered 

here in brief, as explained in “Declaration of contribution”. These analyses 

included testing for enrichment of the AF-variants with regulatory elements 

using the software GREGOR (Schmidt et al., 2015), revealing enrichment in 

regulatory features in adult and fetal heart. Furthermore, significant 

enrichment of genes at AF associated loci was assessed in gene sets 

identified by the DEPICT tool (Pers et al., 2015). The identified gene sets 

pointed to biological processes related to structural remodeling of the 

myocardium, cardiac morphology and development (Figure 12).  

A systematic approach was applied to identify functional candidate genes 

possibly underlying the AF associations (Methods). This resulted in the 

prioritization of 151 candidate genes, including at least 18 genes likely to be 

involved in cardiac and skeletal muscle function and integrity (AKAP6, CFL2, 

MYH6, MYH7, MYO18B, MYO1C, MYOCD, MYOT, MYOZ1, MYPN, PKP2, 

RBM20, SGCA, SSPN, SYNPO2L, TTN, TTN-AS, WIPF1), at least 13 genes 

likely to be involved in mediation of developmental events (ARNT2, EPHA3, 

FGF5, GATA4, GTF2I, HAND2, LRRC10, NAV2, NKX2-5, PITX2, SLIT3, 

SOX15, TBX5) along with genes likely to be involved in intracellular calcium 

handling in the heart (CALU, CAMK2D, CASQ2, PLN), angiogenesis 

(TNFSF12, TNFSF12-TNFSF13), hormone signaling (CGA, ESR2, IGF1R, 

NR3C1, THRB), and function of cardiac ion channels (HCN4, KCND3, 
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KCNH2, KCNJ5, KCNN2, KCNN3, SCN10A, SCN5A, SLC9B1) (Appendix 9, 

column 10).  

 

 

Figure 12. Tissues, reconstituted gene sets, and regulatory elements implicated in AF 

(paper III). (a) Based on expression patterns across 37,427 human mRNA 
microarrays, DEPICT predicted genes within AF associated loci to be highly 
expressed across various cardiac tissues. Tissues are grouped by type and 
significance. Red columns represent statistically significant tissues following 
Bonferroni correction (P < 0.05/209 = 0.0002). (b) Gene sets that are enriched for 
genes at AF loci according to DEPICT (P < 1 × 10

−6
). A total of 826 gene sets were 

identified in the analysis (FDR < 0.05) but only the most significantly enriched are 
shown here. Each node, colored according to the  P value for enrichment, represents 

a gene set annotated by biological function. The gray connecting lines represent 
pairwise overlap of genes within the gene sets. (c) Heatmap indicating the overlap 
between AF associated risk variants and regulatory elements across 127 Roadmap 
Epigenomics tissues (each represented by a row) using GREGOR. Black indicates no 
data. PSC, pluripotent stem cell; ESC, embryonic stem cell. 

In order to assess the effects of the 111 AF index variants on cardiac 

conduction in the absence of AF, they were tested for association with 123 

ECG parameters from sinus rhythm ECGs of 62,974 Icelanders, after 
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exclusion of AF cases (Figure 13). Consistent with the results of the ECG 

analysis in paper I and II, the AF variants had diverse effects on ECG 

measurements ranging from none to extensive and varying in directions.  

Sixty variants were associated with at least one ECG parameter after 

controlling for an FDR of 0.05 at the variant level. Out of the sixty, 39 were 

novel AF variants, including many with substantial ECG effects, such as the 

variants near NACA, THRB, CAMK2D and CDKN1A.  

Although there is inconsistency in directions of effects of the AF risk 

variants on ECG measurements, there are a few detectable clusters of 

variants with similar pattern of effects. For example, a group of them have 

mainly lowering effects on amplitudes in both the atria (P amplitude) and 

ventricles (R amplitude) and shorten the duration of ventricular conduction 

(QRS duration). The most likely causative genes (prioritized candidate 

genes) linked with the variants in this group have various functions. However, 

two of them are intronic to genes encoding hormone receptors, THRB 

encoding the thyroid hormone receptor beta and IGF1R encoding insulin like 

growth factor 1 receptor. Both hormones have extensive effects on cardiac 

physiology (Ren et al., 1999; Sakurai et al., 1990). Another example of a 

cluster are variants on the far right of Figure 13 which shorten conduction 

reflected by shorter PR segment, PR interval and/or QRS duration. They 

have variable effects on amplitudes, although mostly decreasing them. 

  



Results  

67 

 

Figure 13. Heatmap showing the effects of AF variants on ECG traits in sinus rhythm 

ECGs, excluding AF cases (paper III). ECG measurements were available for 62,974 
Icelandic individuals without diagnosis of AF. Each column shows the estimated effect 
of the AF risk allele on various ECG traits. The effect of each variant, annotated with 
the corresponding gene name, is scaled with the log10-AF odds ratio. Novel variants 
are marked with an asterisk. Red represents a positive effect of the AF risk allele on 
the ECG variable, and blue represents negative effect. The effect is shown only for 
significant associations after adjusting for multiple testing with a false discovery rate 
procedure for each variant. Non-significant associations are white. Sixty of 111 
variants with at least one association are shown. P values and effect estimates were 
obtained using BOLT-LMM. For readability, selected highly correlated lead-specific 
time duration ECG variables (P interval, r2 > 0.51; PR segment, r2 > 0.46; QRS 
duration, r2 > 0.47; and T duration, r2 > 0.16) have been omitted from the plot. PRint =  

PR interval; PRseg = PR segment; QRSdur = QRS interval duration; Pamp = P wave 
amplitude; Parea = P wave area; Pdur = P wave duration; Ramp = R wave amplitude; 
Tamp = T wave amplitude.  
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4.5.4  Testing AF genetic risk score for association with 
secondary phenotypes and age of onset of AF 

A genetic risk score for AF was constructed and tested for association with 

1,494 International Classification of Diseases (ICD) code-defined disease 

groups in UK Biobank participants (Sudlow et al., 2015) (Figure 14). The 

genetic score was based on the 111 locus index variants and the 31 

additional risk variants identified by stepwise conditional analyses (n = 142 

variants). The variants were weighted by effect estimates obtained from all 

cohorts except the UK Biobank. The strongest association with phenotypes in 

the UK Biobank database was with AF (P = 2 × 10
-92

). Other associations 

passing Bonferroni correction (P < 0.05/1,494 = 3.3 × 10
−5

) were mainly with 

cardiovascular conditions, including heart valve disorders, heart failure, 

ischemic heart disease, stroke and palpitations. None of the associations 

remained when participants diagnosed with any type of cardiac arrhythmia (n 

= 24,681) were excluded from the analyses to avoid assessment bias (Figure 

14). Another genetic risk score was generated using the same 142 markers 

but accounting for weights from all contributing studies. The score was tested 

for association with AF age of onset in the HUNT study, revealing that 

younger AF age of onset was associated with a higher genetic burden of AF.  

Figure 14. Association between AF genetic risk score (n = 142 variants) and 1,494 

ICD-based traits among UK Biobank participants. Association tests were performed 
using a logistic regression adjusted for sex and birth year. The horizontal dotted red 
line represents a P value threshold of significance based on Bonferroni correction (P < 

0.05/1,494 = 3.3 × 10
–5

). Some labels have been omitted on the left plot.  
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 A GWAS on coarctation of the aorta (paper IV) 4.6

4.6.1 A rare missense variant in MYH6 associates with risk of 
CoA 

One novel genome-wide significant association, on chromosome 14q11, was 

identified in a GWAS testing 32.5 million sequence variants for association 

with CoA among 120 cases with non-syndromic CoA and 355,116 controls 

(Figure 15). The association was driven by a rare (0.34%) missense variant, 

p.Arg721Trp (c.2161C>T), in the gene MYH6, a previously reported 

arrhythmia variant. Originally, it was associated with a high risk of SSS in a 

study from deCODE genetics (Holm et al., 2011) and subsequently it 

associated genome-wide significantly with AF, as reported in paper I in this 

thesis (Thorolfsdottir et al., 2017). In the present study, the variant associated 

with CoA with an OR of 44.2 (95% CI = 20.5 – 95.5) and P = 5.0 × 10
-22 

(Figure 16). Genome-wide significance threshold for missense variants was 

set at 6.5 × 10
-8

 (Sveinbjornsson et al., 2016). It was not possible to 

discriminate between dominant and multiplicative models of inheritance, 

since none of the genotyped individuals (N = 151,677) were homozygous for 

the variant, consistent with what was expected under Hardy-Weinberg 

equilibrium (1.8 homozygotes expected). MYH6 encodes the alpha-myosin 

heavy chain subunit (αMHC), a main component of the sarcomere, the basic 

contractile unit of cardiac muscle (Fuster et al., 2017; Sweeney & Houdusse, 

2010).  

 

Figure 15. Manhattan plot of a GWAS on CoA in Iceland among 120 cases and 

355,116 controls (paper IV). The P values (-log10) for variants association with CoA 
are plotted against their respective positions on each chromosome. 
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Figure 16. Region plot for the association of variants on chromosome 14q11 with 

CoA. A 1 Mb region on chromosome 14 is shown. The strongest association is with 
the missense variant p.Arg721Trp in MYH6 located at position 23,396,970 on 
chromosome 14 (chr14:23396970, hg38). The nine other variants shown are weakly 
correlated with p.Arg721Trp, r

2
 between 0.6 - 0.4 (green) and 0.4 - 0.2 (light blue). 

The p.Arg721Trp variant is located in exon 18/39 in MYH6 and leads to an 

arginine to tryptophan substitution at the 721st amino acid (out of 1939). This 

part of the gene encodes the converter domain of αMHC, a small domain 

which is crucial for conveying a conformational change from the active site to 

the lever arm upon adenosine triphosphate (ATP) hydrolysis. The variant is 

predicted to alter protein function by SIFT = 0 (range 0 – 1, cutoff for 

deleterious classification <= 0.05) (Sim et al., 2012) and PolyPhen-2 = 0.90 

(range 0 – 1, where 1 is most deleterious) (Adzhubei et al., 2013), probably 

by altering the folding of the converter domain (Figures 17 and 18). Both 

SIFT and PolyPhen-2 prediction methods are based on sequence 

homology/conservation. The SIFT algorhithm also considers the physical 

properties of amino acids (Sim et al., 2012) while PolyPhen takes into 

account annotations of functional domains and, where available, 3D 

structures (Adzhubei et al., 2013). 
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Figure 17. Transcript and protein structures of MYH6. Bottom panel shows transcript 

structure with base-pairs positions at the bottom and exon numbering at the top. 
Colored bars of full height depict coding exons and those with half-height depict 5’ 
and 3’ UTR’s exons. Top panel shows domain composition of the protein with amino-
acid positions at the bottom and domain descriptions at the top. Grey thin lines 
connect the panels according to exon boundaries. The position of c.2161C>T in exon 
18 is highlighted by a red line in the transcript and p.Arg721Trp by a red dot in the 
protein. The figure is adapted from the supplementary material of Holm et al., 2011, 
with written permission from authors. 

 

 

 

 

 

 

 

 

 

Figure 18. A 3D structural model of chicken smooth muscle myosin that is 

homologous to alpha-myosin heavy chain. Myosin heavy chain is shown in gold and 
the essential light chain shown in cyan, the active site magnesium is shown as a 
magenta sphere. Arginine 721 that is mutated to a tryptophan is displayed as a pink 
stick model.  The converter domain is shown in orange. This figure was prepared in 
pymol (L DeLano, 2002) and is based on PDB ID 1BR1.   

4.6.2  Penetrance and clinical presentation of p.Arg721Trp 

Among the 151,677 chip typed Icelanders, 987 were carriers of p.Arg721Trp 

in MYH6. The variant appears to be absent or very rare outside of Iceland. It 

was not found in the Exome Variant Server, containing data from 6503 

individuals [Exome Variant Server, NHLBI Exome Sequencing Project (ESP), 

Arg721 
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Seattle, WA, USA] (http://evs.gs.washington.edu/EVS/) (August 2016) and 

only one copy was found in gnomAD, holding data from 126,216 exome 

sequences and 15,136 WGS unrelated individuals (Karczewski et al., 2019). 

The higher allele frequency observed in Iceland (0.34%) is likely explained by 

the founder effect. A total of eight of the 987 Icelandic carriers (one per 123) 

were diagnosed with CoA, reflecting a low penetrance. In line with the low 

penetrance, carriers of the variant with CoA did not cluster in families. 

However, while the penetrance for CoA was low, the variant explained a 

substantial fraction of CoA cases in Iceland, since 20% of the 39 chip typed 

individuals with CoA carried p.Arg721Trp. 

Through detailed review of medical records, phenotypic characteristics of 

CoA cases were evaluated and carriers of p.Arg721Trp compared with non-

carriers (Tables 12 and 13). In total, about half of the individuals with CoA 

were diagnosed during the first month of life and three quarters during the 

first year. As expected (Engelfriet & Mulder, 2009), CoA was more common 

in males than in females (1.6:1). About 74% of individuals with CoA had 

concomitant CHDs, most commonly bicuspid aortic valve and VSD. 

Consistent with previous reports (Teo et al., 2011), the aortic valve was 

bicuspid in approximately half of individuals with CoA (Table 12). Comparison 

of carriers (n = 24) and non-carriers with CoA (n = 96) revealed that carriers 

were nominally more likely to present with mild rather than more critical and 

complex forms of CoA (OR = 4.2 and P = 0.023) (Table 13). Furthermore, 

carriers were more likely to be diagnosed with CoA as adolescents compared 

to non-carriers. However, only three cases in total where diagnosed as 

adolescents and no significant difference was observed in other age groups. 

  



Results  

73 

Phenotype N
a

Frequency
b
 (%)

Gender

   Male 75 62.5

   Female 45 37.5

Age at diagnosis
c

   Neonate 56 46.7

   Infant 29 24.2

   Child 17 14.2

   Adolescent 3 2.5

   Adult 15 12.5

CoA type
d

   Mild 13 10.8

   Moderate 45 37.5

   Critical +/- ventricular septal defect 41 34.2

   Complex congenital heart defect 17 14.2

   Interrupted aortic arch type A 2 1.7

   Abdominal CoA 2 1.7

Hypoplasia

    Aortic arch 73 60.8

    Ascending aorta 3 2.5

    Left ventricle 3 2.5

Associated congenital heart defects

   Yes 89 74.2

      Bicuspid aortic valve 57 47.5

      Ventricular septal defect 38 31.7

      Valvar aortic stenosis 11 9.2

      Subvalvar aortic stenosis 10 8.3

      Atrial septal defect 10 8.3

      Mitral valve defect 10 8.3

      Transposition of the great arteries 8 6.7

      Tricuspid valve defect 4 3.3

      Pulmonary stenosis 3 2.5

      Atrioventricular septal defect 1 0.8

      Single ventricle 1 0.8

   No 31 25.8

a
The number of total CoA cases with the particular phenotype. 

b
The frequency of the particular 

phenotype among CoA cases. 
c
Neonate, birth to 27 days of age; Infant, 28 days to 12 months of age; 

Child, 13 months to 11 years of age; Adolescent, 12 to 18 years of age; Adult, over 18 years of age. 
d
Based on severity and/or anatomy of the narrowing we classified the CoA cases into five different 

types (Methods).

Table 12. Clinical characteristics of the CoA sample set (paper IV). 
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N carriers

(frequency %)
b

Gender

Male 75 14 (58.3) 61 (63.5) 0.8 0.64

Female 45 10 (41.7) 35 (36.5) 1.2 0.64

Age at diagnosis
e

       Neonate 56 10 (41.7) 46 (47.9) 0.8 0.65

       Infant 29 5 (20.8) 24 (25.0) 0.8 0.79

       Child 17 4 (16.7) 13 (13.5) 1.3 0.75

       Adolescent 3 3 (12.5) 0 (<4.1) Inf 0.0072

       Adult 15 2 (8.3) 13 (13.5) 0.6 0.73

CoA type
f

Mild 13 6 (25.0) 7  (7.3) 4.2 0.023

Moderate 45 9 (37.5) 36 (37.5) 1.0 1.00

Critical +/- ventricular septal defect 41 5 (20.8) 36 (37.5) 0.4  0.15

Complex congenital heart defect 17 3 (12.5) 14 (14.6) 0.8 1.00

Interrupted aortic arch 2 1 (4.2) 1 (1.0) 4.1 0.36

Abdominal CoA 2 0 2 (2.1) 0.0 1.00

Hypoplasia

Aortic arch or isthmus 73 18 (75.0) 55 (57.3) 2.2 0.16

Ascending aorta 3 1 (4.2) 2 (20.8) 2.0 0.49

Left ventricle 3 1 (4.2) 2(20.8) 2.0 0.49

Associated CHD
g

Yes 89 15 (62.5) 74(77.1) 0.5 0.20

   Bicuspid aortic valve 57 12 (50.0) 45 (47.0) 1.1 0.82

   Ventricular septal defect 38 7 (29.2) 31 (32.3) 0.9 1.00

   Valvar aortic stenosis 11 2 (18.2) 9 (9.4) 0.9 1.00

   Subvalvar aortic stenosis 10 2 (8.3) 8 (8.3) 1.0 1.00

   Atrial septal defect 10 2 (8.3) 8 (8.3) 1.0 1.00

   Mitral valve defect 10 3 (12.5) 7 (7.3) 1.8 0.41

   Transposition of the great arteries 8 0 8 (8.3) 0.0 0.36

   Tricuspid valve defect 4 2 (8.3) 2 (2.1) 4.2 0.18

   Pulmonary stenosis 3 0 3 (3.1) 0.0 1.00

   Atrioventricular septal defect 1 0 1 (1.0) 0.0 1.00

   Single ventricle 1 0 1 (1.0) 0.0 1.00

No 31 9 (29.0) 22 (22.9) 2.0 0.20

MYH6  associated disease

Atrial fibrillation 6 0 6 (6.2) 0.0 0.60

Cardiomyopathy 3 1 (4.2) 2 (2.1) 2.0 0.49

Sick sinus syndrome 2 1 (4.2) 1 (1.0) 4.1 0.36

Phenotype N
a

N non-carriers 

(frequency %)
b OR

c
P value

d

a
The number of total CoA cases with the particular phenotype. 

b
The frequency of the particular phenotype among carriers 

(N = 24) and non-carriers (N = 96) of p.Arg721Trp. 
c
OR = odds ratio. 

d
Fisher’s exact test was used to evaluate the 

significance of the frequency difference between carriers and non-carriers of p.Arg721Trp. 
e
Neonate, birth to 27 days of 

age; Infant, 28 days to 12 months of age; Child, 13 months to 11 years of age; Adolescent, 12 to 18 years of age; Adult, 

over 18 years of age. 
f
Based on severity and/or anatomy of the narrowing we classified the CoA cases into five different 

types (Methods). 
g
CHD = Congenital heart defect.

Table 13. Phenotypic differences between carriers and non-carriers of the MYH6 

p.Arg721Trp variant among CoA cases. 
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4.6.3 Association of p.Arg721Trp in MYH6 with other 
cardiovascular diseases 

As reported in paper I, the p.Arg721Trp variant in MYH6 that increases risk of 

CoA also increases risk of arrhythmia and has extensive and strong effects 

on cardiac conduction in sinus rhythm (chapter 4.3, Figure 9). To further 

explore the effects of the variant, we tested it for association with additional 

cardiac phenotypes available in the deCODE phenotype database. These 

included other congenital heart diseases, common heart diseases, and 

several echocardiogram variables (Table 14); significance threshold was set 

at P < 0.003 (0.05/17 individual phenotypes tested). The previously reported 

associations with SSS and AF (Holm et al., 2011; Thorolfsdottir et al., 2017) 

became stronger with increased sample size (Table 14). However, a 

previously reported suggestive association with thoracic aortic aneurysm 

(Holm et al., 2011) was not detected. The p.Arg721Trp variant did associate 

with increased risk of several congenital heart diseases: bicuspid aortic valve, 

VSD, ASD, and patent ductus arteriosus (Table 14). As expected, the 

strongest association was with bicuspid aortic valve (OR = 10.5 and P = 7.3 × 

10
-8

). In addition, the variant associated with late onset aortic valve stenosis. 

To assess if p.Arg721Trp associated with congenital heart defects in the 

absence of diagnosed CoA, the associations were tested again after 

removing individuals with CoA from the analysis. Although the effect of 

p.Arg721Trp was consistently weaker, the associations remained. The 

existence of undiagnosed CoA in these individuals cannot be excluded. The 

variant also associated with heart failure and ischemic stroke and with left 

atrial diameter but not with other variables derived from the 

echocardiographic data such as aortic root diameter or left ventricular end 

diastolic diameter (Table 14). The p.Arg721Trp variant did not associate with 

hypertension or coronary artery disease. 
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OR/effect 

(CI)
a

Congenital heart defects

Coarctation of the aorta 120 355,116 44.2 (20.5 - 95.5) 5.0 x 10
-22

Bicuspid aortic valve 208 293,346 10.5 (2.6 - 38.0) 7.3 x 10
-8

Bicuspid aortic valve 

without CoA
178 293,293 6.0 (2.0 – 17.7) 0.0012

Ventricular septal defect 715 357,641 4.4 (1.9 - 10.0) 3.7 x 10
-4

Ventricular septal defect 

without CoA
688 357,511 3.2 (1.2 – 8.5) 0.016

Patent ductus arteriosus 594 357,762 4.9 (2.1 - 11.6) 2.3 x 10
-4

Patent ductus arteriosus 

without CoA
576 357,563 4.1 (1.6 – 10.3) 0.0029

Atrial septal defect 657 353,096 3.3 (1.5 - 7.1) 0.0026

Atrial septal defect without 

CoA
650 352,947 3.2 (1.5– 6.9) 0.0036

Cardiac conditions

Sick sinus syndrome 3,310 346,082 8.7 (6.8 - 11.2) 6.2 x 10
-64

Atrial fibrillation 13,471 374,939 2.4 (1.9 - 3.0) 1.1 x 10
-14

Aortic valve stenosis 2,457 349,342 2.7 (1.8 - 4.0) 1.8 x 10
-6

Heart failure 10,48 353,508 1.8 (1.4 - 2.3) 2.3 x 10
-6

Ischemic stroke 8,948 369,624 1.5 (1.1-2.0) 0.0029

High degree 

atrioventricular block
1,303 361,919 2.1 (1.2 - 3.5) 0.0092

Coronary artery disease 37,782 318,845 1.2 (1.0 -1.5) 0.056

Hypertrophic 

cardiomyopathy
163 239,293 0.0 (0.0 - 4.5) 0.15

Thoracic aortic aneurysm 353 302,458 1.8 (0.6-5.3) 0.31

Hypertension 54,974 324,803 1.1 (0.9 - 1.3) 0.44

Echocardiogram

Left atrial diameter 19,380 0.3 (0.1 – 0.5) 2.6 x 10
-4

Aortic root diameter 19,506 -0.1 (-0.2 - 0.1) 0.41

LVEDD
b 5,701 0.0   (-0.3 - 0.3)  0.93

a
Estimated odds ratio (OR) or the effect in standard deviation and the 95% confidence interval

(CI) for the association with p.Arg721Trp. 
b
Left ventricular end-diastolic diameter.

N affected N controls P value

Table 14. Association of p.Arg721Trp in MYH6 with congenital heart defects and 

various cardiac phenotypes.  
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5 Discussion 

The aim of the genetic studies described in this thesis was to further the 

understanding of the pathophysiology of AF and CoA. Three GWASs on AF 

were performed resulting in a substantial increase in the number of sequence 

variants associated with AF. This included novel associations with coding 

variants in three genes, PLEC, RPL3L and MYZAP, that all have a role in 

maintaining cardiac structure. In an attempt to gain insights into the biology 

underlying novel and reported AF variants their association with a variety of  

ECG measurements were explored. The analysis revealed that effects of AF 

variants on cardiac conduction indices vary substantially, suggesting diverse 

mechanisms behind their effects on AF risk. 

Through a large meta-analysis involving over 1,000,000 participants in 

total from six contributing cohorts, 80 novel AF loci were identified. Most of 

the loci were represented by common non-coding variants. Therefore, 

pathway and functional enrichment analysis was undertaken to identify 

causative genes and pathways. This analysis further highlighted the 

importance of structural integrity of the heart in the development of 

arrhythmias as well as pathways involving fetal cardiac development, 

transcription factors, ion channels and calcium signaling. 

The thesis also describes a GWAS on the congenital heart defect CoA. 

The study revealed that one of the strongest AF variants, a missense variant 

in the sarcomere gene MYH6, explains approximately 20% of CoA cases in 

Iceland. The MYH6 variant was first discovered through its strong association 

with SSS and is in fact the only variant that has been associated with SSS 

risk through GWAS (Holm et al., 2011). It also increases risk of additional 

CVDs, including cardiac septal defects and aortic stenosis. Furthermore, in 

paper I we showed that it has extensive and strong effects on various ECG 

measurements in the absence of AF. Combined, these results reveal a 

pleiotropic effect of the MYH6 missense variant on cardiac function and 

disease, both in the fetal and adult heart.  



Rósa Björk Þórólfsdóttir  

78 

 Novel AF associations with coding variants in structural 5.1
genes 

5.1.1 PLEC 

The first of three GWASs on AF described in this thesis led to the discovery 

of a low frequency missense variant, p.Gly4098Ser in PLEC, increasing risk 

of AF. The PLEC gene encodes plectin, a large (>500 kDa) and versatile 

cytoskeletal linking protein which is widely distributed throughout the 

cytoskeleton (Wiche, 1998). Plectin directly binds to subcomponents of all 

major cytoskeletal filament networks; intermediate filaments, actin-based 

microfilaments and microtubules (Castanon et al., 2013; Eger et al., 1997; 

Wiche, 1998). It also anchors intermediate filaments to various cellular 

components, including focal adhesions, Z-disks, costameres, intercalated 

discs as well as the mitochondrial, nuclear and subplasma membrane 

skeleton (Castanon et al., 2013; Seifert et al., 1992; Wiche et al., 1983). 

Plectin is therefore assumed to play an important role for the many functions 

of the cytoskeleton, which include maintaining structural integrity of cells and 

tissues and controlling dynamic processes such as cell division, adhesion 

and intracellular trafficking (Wiche, 1998). 

The importance of plectin in maintaining structural integrity has been 

shown through knockout studies in mice and the identification of rare human 

disease resulting from truncating mutations in PLEC (Winter & Wiche, 2013). 

Plectin is widely expressed in human tissue ("Human genomics. The 

Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene 

regulation in humans," 2015) but evidence suggests that it has a specifically 

important role in skin, muscle and heart. Studies of plectin (−/−) mice 

revealed severe skin blistering and disrupted cytoarchitecture in skeletal 

muscle and heart, including disintegration of intercalated discs and 

sarcomere disarrangement (Andra et al., 1997). Furthermore, homozygous 

protein truncating mutations in PLEC in humans are known to cause a 

syndrome of skin fragility, called epidermolysis bullosa simplex (EBS). EBS is 

commonly accompanied by muscular dystrophy (EBS-MD) (Banwell et al., 

1999; Pulkkinen et al., 1996), myasthenic syndrome (EBS-MDMyS) (Banwell 

et al., 1999; Selcen et al., 2011), limb-girdle muscular dystrophy type 2Q 

(LGMD2Q) (Gundesli et al., 2010) or pyloric atresia (EBS-PA) (Nakamura et 

al., 2005). Mutations in PLEC also cause EBS-Ogna, an autosomal dominant 

disease without muscular dystrophy (Koss-Harnes et al., 2002). 

Cardiomyopathy and arrhythmias have been described in several patients 

with EBS due to PLEC truncating mutations (Bolling et al., 2010; Celik et al., 
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2005; Schroder et al., 2002; Villa et al., 2015). An EBS-like skin phenotype 

was not observed from reviewing deCODEs data on homozygous carriers of 

p.Gly4098Ser, possibly reflecting the fact that the variant is not protein 

truncating. In light of the cardiac phenotypes observed in plectin deficient 

mice and sometimes as a part of EBS in men, it is possible that 

p.Gly4098Ser in PLEC increases risk of AF by affecting the role of the protein 

in maintaining structural integrity of the heart.  

The p.Gly4098Ser  variant is predicted to be damaging and is located in a 

conserved region of the gene. It results in a glycine to serine substitution on 

the protein surface, close to a suggested interaction site for intermediate 

filaments (Nikolic et al., 1996). The substitution of a hydrophobic glycine by a 

polar serine might affect plectins interaction with other molecules. 

Furthermore, glycine is unique among amino acids for its conformational 

flexibility, attributed to its side chain of a single hydrogen atom. Its 

substitution by serine, a more rigid amino acid, could therefore possibly affect 

the protein structure and interrupt the nearby intermediate filament binding 

site, either by directly disrupting its structure or hindering access to it. 

In the present study, p.Gly4098Ser did not associate with overt 

cardiomyopathy but association with subclinical or mild ventricular 

cardiomyopathy cannot be excluded. It is possible that p.Gly4098Ser causes 

subclinical or even overt atrial myopathy since this phenotype is not routinely 

assessed or diagnosed. Indeed, analysis of ECG measurements showed that 

the variant results in a widespread effect on cardiac electrical function in both 

atria and ventricles in the absence of AF. Furthermore, the association with 

lower creatine kinase levels and lower R amplitude may reflect less skeletal 

and cardiac muscle mass of carriers. 

5.1.2  MYZAP 

In the second paper described in this thesis, a missense variant in MYZAP 

was associated with increased risk of AF. The MYZAP gene encodes 

myocardial zonula adherens protein (myozap). It is primarily expressed in the 

heart in man and has been located to intercalated discs and sarcomeric Z-

discs in the mouse. In fact, the MYZAP gene was recently discovered by 

Seeger et al. through a search for new components of the intercalated discs 

(Seeger et al., 2010), highly specialized cell-cell contact structures that are 

unique to the heart. Their role is to provide mechanical and electrical 

connection between contracting cardiomyocytes, enabling the heart to 

contract as a functional syncytium (Noorman et al., 2009). The location of 

myozap at intercalated discs implies an important role in cardiac electrical 
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and mechanical integrity. The fact that myozap colocalizes with actin at 

intercalated discs and the sarcomeric Z-discs suggests that myozap plays a 

role in transmission of contractile forces, maintaining mechanical integrity and 

possibly the versatile role of actin signaling (Seeger et al., 2010).  

Furthermore, in vitro functional experiments have revealed that myozap takes 

part in cardiac signaling transduction, as it promotes SRF-signaling to the 

nucleus in a Rho-dependent fashion (Seeger et al., 2010). This signaling 

pathway has been implicated in induction of cardiac remodeling and 

cardiomyopathy (Miano, 2010; Zhang et al., 2001). 

Intercalated discs are composed of three functional and structural 

subunits; desmosomes and fascia adherens, both contributing to mechanical 

coupling, and gap junctions that provide electrical coupling by allowing free 

movement of ions between adjacent cardiomyocytes (Forbes & Sperelakis, 

1985). Given the importance of intercalated discs for the function and 

mechanical integrity of the heart, it is not surprising that mutations in 

intercalated disc genes are known to cause cardiomyopathy. In particular, 

these mutations have been associated with arrhythmogenic right ventricular 

cardiomyopathy (ACM), which involves considerable risk of AF and 

ventricular arrhythmias and is a leading cause of sudden cardiac death 

among young people (Rampazzo et al., 2014). The majority of the mutations 

causing ACM are in genes that encode components of desmosomes, most 

commonly in PKP2, DSP, DSG2 and DSC2 (Noorman et al., 2009). Changes 

in the function of desmosomal proteins have been shown to interrupt the 

expression and distribution of gap junctions (Noorman et al., 2009). This 

interplay between mechanical and electrical coupling at the intercalated discs 

might at least partly explain the intriguing fact that in ACM arrhythmias and 

conduction abnormalities are frequently encountered before the appearance 

of structural defects (Moncayo-Arlandi & Brugada, 2017). 

The MYZAP gene itself has not been associated with cardiomyopathy in 

man. However, animal studies have pointed to its importance for cardiac 

structure since both knockdown of the myozap ortholog in zebrafish and 

cardiac overexpression and knockdown of myozap in the mouse resulted in 

cardiomyopathy (Frank et al., 2014; Rangrez et al., 2016; Seeger et al., 

2010). Furthermore, myozap
-/-

 mice are born with morphologically normal 

hearts but show a maladaptive response to pressure overload leading to 

cardiac remodeling, cardiomyopathy and premature death (Rangrez et al., 

2016), suggesting an important role of myozap in cardiac stress-signaling. 
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The desmosomes and fascia adherens functional units of intercalated 

discs have been shown to overlap at a mixed-type junctional structure termed 

the area composita (Borrmann et al., 2006). The myozap protein binds to and 

colocalizes with components of the area composita (Seeger et al., 2010), 

which is attached to both the actin cytoskeleton and the intermediate filament 

network of cardiomyoctes (Goossens et al., 2007). The p.Gln254Pro 

missense variant associating with AF is predicted to have deleterious effects 

on protein function (Choi & Chan, 2015). It is located next to  the myozap 

protein region involved in both actin colocalization and activation of serum 

response factor-dependent transcription (amino acids 91-250). It could 

therefore potentially affect either one or both protein functions (Seeger et al., 

2010). The induction of a conformationally constrained amino acid, like 

proline, can lead to perturbation in local folding hence possibly interrupting 

function of adjacent domains. In the current study, p.Gln254Pro did not 

associate with cardiomyopathies, ventricular arrhythmias or sudden cardiac 

death in the deCODE data. However, it is possible that the variant only 

affects the atria or that a ventricular effect does exist but was not identified 

because of lack of power. 

The novel association of a coding variant in MYZAP strongly implicates 

intercalated discs in AF pathology, emphasizing what has previously been 

suggested by associations with non-coding variants. For example, through 

GWASs several AF variants have been identified close to or intronic to genes 

encoding components of the intercalated discs, including GJA1 

(Christophersen et al., 2017), GJA5 (Nielsen et al., 2018b; Roselli et al., 

2018) and PKP2 (Nielsen et al., 2018b; Roselli et al., 2018). Furthermore, the 

strongest AF association from GWASs is with a variant close to PITX2, a 

gene that has been shown to directly regulate expression of intercalated disc 

genes (Tao et al., 2014). 

5.1.3  RPL3L 

In paper II two coding variants in RPL3L were also associated with increased 

risk of AF through a GWAS in Iceland and the UK biobank. RPL3L encodes 

the ribosomal protein RPL3L (ribosomal protein like 3L) (Van Raay et al., 

1996). The association is particularly interesting since RPL3L is primarily 

expressed in skeletal muscle and heart unlike most ribosomal proteins that 

are ubiquitously expressed (Van Raay et al., 1996). The ribosome is a 

complex structure composed of four different ribosomal RNAs and ~80 

ribosomal proteins, which main function is to translate messenger RNA into 

protein (McCann & Baserga, 2013). Historically, the ribosome has been 
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considered to function in a housekeeping capacity, performing its function 

without regulatory activity. Recently, this view has been challenged by 

studies revealing that ribosome activity may be regulated in a cell-specific 

manner, for example through changes in the protein composition of the 

ribosome by paralog substitution (Sauert et al., 2015; Xue & Barna, 2012). An 

example of this is when RPL3L is expressed in striated muscle, replacing its 

ubiquitously expressed homolog, RPL3 (Chaillou et al., 2013). 

The expression of RPL3L has been shown to alter ribosome function and 

it has been postulated that it acts as a negative regulator of muscle growth. 

Evidence from in vitro experiments suggest that hypertrophic stimulus down-

regulates RPL3L expression (Chaillou et al., 2013) and when induced, 

RPL3L expression impairs myotube growth (Chaillou et al., 2016). The two 

RPL3L variants associated with AF in the current study, might therefore 

increase risk of AF by affecting cardiac structure. The RPL3L splice-donor 

variant, c.1167+1G>A, causes skipping of a whole exon, as was 

demonstrated by RNA sequencing on cardiac samples in the current study. 

The skipped exon is the ninth and the second to the last exon of RPL3L. It 

encodes amino acid residues 350 to 389 which are 75% identical to the 

corresponding RPL3 residues. In yeast it has been shown that the amino 

acids corresponding to residues 382-389 in human RPL3L form a part of the 

contact site of the ribosomes with the signal recognition particle that targets 

ribosomes to the endoplasmic reticulum membrane (Ben-Shem et al., 2011). 

Based on functional similarities between RPL3 and RPL3L it is therefore 

possible that c.1167+1G>A disrupts engagement of RPL3L containing 

ribosomes with the endoplasmic reticulum and thus reducing ribosomal 

function.  

The RPL3L missense variant associating with AF is p.Ala75Val, and 

Ala75 is highly conserved in both RPL3L and RPL3 over a range of species. 

Prediction scores for consequences of the amino acid substitution are 

conflicting. It is likely benign according to CADD score (Kircher et al., 2014) 

but is predicted to be deleterious by PROVEAN (Choi & Chan, 2015). The 

two amino acids, alanine and valine have similar properties, both are 

hydrophobic and non-charged. However, it is possible that the additional 

methyl group in valine has unstabilazing effects on protein structure. The 

chemical properties of amino acid residues are taken into account by the 

PROVEAN algorithm but conservation is the most important factor (Choi & 

Chan, 2015). The 3D structure of RPL3L is not known and no functional 

domains have been described, which further complicates the prediction. 
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Functional experiments would be necessary to determine the exact effects of 

the variant on protein function. 

Both RPL3L variants increase the risk of AF suggesting they affect the 

function of RPL3L in the same direction. Based on the suggested effect of the 

splice-donor variant, this effect is more likely to be loss of, rather than gain of 

function. Supporting this are the results of a newly published meta-analysis of 

GWASs on AF by Roselli et al. (Roselli et al., 2018). One of the AF 

associated variants in the meta-analysis is a synonymous (not modifying 

amino acid sequence) variant in RPS2 located over 9 kb away from RPL3L. 

Using the GTEx database Roselli et al. observed a significant eQTL at this 

locus, as the risk allele for AF associated with decreased expression of 

RPL3L in the heart. Furthermore, transcriptome analysis revealed association 

of decreased predicted RPL3L expression in right atrial appendage with 

increased risk of AF (Roselli et al., 2018). The study by Roselli et al. therefore 

strengthens the establishment of RPL3L as an AF risk gene. It also confirms 

the speculated directionality of the association, i.e. reduced function and 

increased AF risk, as suggested by our results. 

This is the first time that a ribosomal protein is linked with risk of AF. Only 

a few rare inherited diseases have been specifically linked to mutations in 

genes encoding ribosomal proteins, including Diamond–Blackfan anemia and 

Shwachman–Diamond syndrome. Both syndromes are characterized by a 

distinct set of clinical features, including developmental abnormalities and 

bone marrow failure (Raiser et al., 2014). The fact that a ribosomal protein 

specifically expressed in skeletal muscle and the heart affects risk of AF is in 

line with the novel concept of ribosome specialization in muscle and 

underscores the importance of this specialization for normal function of the 

heart. Furthermore, RPL3Ls role in regulation of muscle growth links it to the 

discovery of the missense variants in PLEC and MYZAP increasing AF risk, 

since both associations implicate cardiac structure in arrhythmogenesis. 

5.1.4  Insights into pathogenesis of AF gained from coding 
variants 

Altogether, paper I and II of this doctoral thesis report novel AF associations 

with coding variants in three genes, PLEC, RPL3L and MYZAP. Intriguingly, 

all three genes encode proteins that contribute to cardiac structure. None of 

the variants associated significantly with clinically overt cardiomyopathy, thus 

the associations likely represent clinical electrophysiological consequences of 

an otherwise subclinical mechanical dysfunction. Prior to the current studies, 

two coding variants had been implicated in AF through GWASs, both also in 
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structural genes. First, a rare missense variant in MYH6 strongly associated 

with risk of SSS, and secondarily with AF (Holm et al., 2011). In the current 

study (paper I) this variant associated genome-wide significantly with AF. 

Second, a frameshift variant in MYL4 causes fully penetrant, early onset AF 

in the homozygous state (Gudbjartsson et al., 2017). Both MYH6 and MYL4 

encode parts of myosin, a major component of the sarcomere, the building 

block of the cardiac contractile system (Fuster et al., 2017). Both genes are 

primarily expressed in the atria of the adult heart and in neither case was 

there evidence of clinically overt cardiomyopathy preceding arrhythmia 

among carriers (Gudbjartsson et al., 2017; Holm et al., 2011). The 

discoveries of MYH6 and MYL4 represented the first implications of cardiac 

structural or contractile units as primary players in arrhythmogenesis. The 

importance of cardiac structure and mechanics in maintaining normal 

electrical conduction has now been further emphasized by the current 

discoveries of coding variants in PLEC, RPL3L and MYZAP increasing risk of 

AF. 

Most other variants identified in GWASs on AF hitherto are represented 

by non-coding variants affecting the risk of AF through unknown mechanisms 

and unknown genes (Bapat et al., 2018). This also applies to most other 

common traits that have been the subjects of GWASs, including 

cardiovascular diseases such as hypertension (Hoffmann et al., 2017), 

coronary artery disease (van der Harst & Verweij, 2018) and type 2 diabetes 

(Xue et al., 2018). However, it has been increasingly recognized that 

uncommon variants with substantial effects can contribute to the genetic 

architecture of complex traits. In recent years, rare or low frequency coding 

variants have been associated with many common diseases and traits, 

including for example type 2 diabetes (Steinthorsdottir et al., 2014), 

osteoarthritis (Styrkarsdottir et al., 2018) and height (Marouli et al., 2017). 

Individually, these uncommon coding variants may not explain a large 

proportion of disease risk at a population level but they nevertheless provide 

important biological insight into disease mechanisms.  

Detecting rare sequence variants and testing them for association with 

disease has been made possible by large scale whole-genome sequencing 

projects, such as the one conducted by deCODE genetics (Gudbjartsson et 

al., 2015). Furthermore, the extended sampling of the Icelandic population 

allows long-range phasing and identification of the long haplotypes needed to 

impute rare sequence variants (Kong et al., 2008). Some of these variants, 

including, as an example, the missense variant in PLEC, have reached 
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higher frequencies due to the small size of the Icelandic population and the 

founder effect (Gudbjartsson et al., 2015). 

The suitability of the genotype data at deCODE genetics for detecting rare 

variants and the biological insights gained from these associations was the 

incentive for focusing on rare and low frequency coding variants in paper II of 

this thesis. In contrast to previously reported non-coding AF variants, the 

coding variants associating with AF risk in the current studies directly 

implicate causal genes in AF pathology, as they affect their protein products. 

In addition to the common structural role of all three genes, further biological 

insight is provided by inquiring the likely effects of each variant on protein 

function. For example, p.Gly4098Ser is located close to the binding site of 

plectin with intermediate filament, possibly interrupting this function and the 

splice-donor variant in RPL3L causes exon skipping, making it likely to result 

in loss of, rather than gain of, protein function. Both examples are 

speculative, but might guide future functional studies on the respective 

proteins. 

 Effects of AF variants on risk of SSS, pacemaker and 5.2
stroke 

In paper I the AF risk of AF variants was plotted against their effects on SSS, 

pacemaker implantation, ischemic stroke and cardioembolic stroke and in this 

dissertation the novel variants from paper II were added for completion. The 

analysis was done with the aim of investigating the causal relationship 

between AF and these AF related phenotypes. It is a form of mendelian 

randomization, a method where sequence variants are used as proxies to 

investigate the causative effects of a risk factor, in this case AF, on an 

outcome (Smith & Ebrahim, 2003). Since the assignment of genetic 

predisposition is random, the method is less susceptible to confounding or 

reverse causation that may limit interpretations of observational studies 

(Lawlor et al., 2008; Smith & Ebrahim, 2003). 

Stroke is a well known consequence of AF (Stewart et al., 2002; Wolf et 

al., 1991). The thrombogenic state in AF results from several 

pathophysiological mechanisms and the currently applied risk scores have 

limited efficacy in predicting stroke risk (Goldberger et al., 2015; Graves et 

al., 2018). It has been hypothesized that a genotype-based risk stratification 

for atrial thrombus formation might in the future become a useful tool, as was 

suggested by the high stroke risk of homozygotes of the AF associated 

variant in MYL4 despite a low CHA2DS2-VASc score (Gudbjartsson et al., 
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2017). Our assessment of the effects of AF associated variants on stroke risk 

revealed that the AF variants generally affect stroke risk in proportion to their 

AF risk. None of the variants stood out with a stronger effect on stroke risk 

than expected by the AF risk. These results indicate that the different 

mechanisms behind development of AF mediated by each of the loci do not 

affect the AF associated stroke risk. Based on this assessing the cumulative 

genetic risk for AF could aid in predicting stroke risk. A recent study revealed 

that a polygenic risk score for AF explained ∼20% of the heritable component 

of cardioembolic stroke risk (Pulit et al., 2018). Further studies are warranted 

to determine whether genetic risk can serve as an additional biomarker for 

stroke risk stratification in patients with AF. 

The causal relationship between AF and SSS is more complicated and 

not completely understood (Chang et al., 2013; Kezerashvili et al., 2008; 

Sanders et al., 2004). SSS, a common indication for pacemaker implantation, 

frequently coexists with AF (Ferrer, 1968; Kezerashvili et al., 2008). The two 

arrhythmias share risk factors and somewhat controversial evidence 

suggests that they can predispose to each other. AF leading to SSS is 

supported by studies revealing that pacing induced AF impairs SA node 

function in dogs (Elvan et al., 1996) and in human subjects AF causes 

regional substrate changes around the SA node, thereby impairing its 

function (Chang et al., 2013). The genetic evidence presented here supports 

the theory that AF can promote SSS. The AF variants likely affect AF risk 

through diverse mechanisms, as evident by their variable effects on normal 

cardiac conduction. Still, our results show that most of them affect SSS risk in 

proportion to their AF risk. This suggest that AF might be the main contributor 

to the increased SSS risk associated with these variants, rather than each of 

the variant acting through pathways that independently lead to AF or SSS. 

One variant presents an exception to the trend of SSS effects being 

proportional to AF effects, the p.Arg721Trp missense variant in MYH6 which 

was originally discovered through its strong association with SSS (Holm et 

al., 2011). The unusually high risk of SSS mediated by this variant might 

suggest that it acts through a single pathway that is common to the 

pathogenesis of AF and SSS or that it acts through more than one pathway 

affecting the two arrhythmias separately. It is even possible that the MYH6 

variant causes AF secondary to SSS, as it has a much stronger effect on risk 

of SSS than AF. This would support the notion that SSS can cause AF, which 

has been suggested by studies reporting diffuse atrial remodeling and 

increased right atrial refractoriness in patients with SSS (Luck & Engel, 1979; 

Sanders et al., 2004). In paper IV, p.Arg721Trp in MYH6 was associated with 
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increased risk of CoA and therefore its effects on cardiac disease and 

function will be further discussed in chapter 5.5. 

  Meta-analysis substantially increasing the number of 5.3
AF variants 

The large GWAS meta-analysis reported in paper III resulted in a substantial 

increase in the number of AF variants, identifying 80 novel AF loci. Only two 

of the 111 index variants are coding variants, the p.Gln254Pro in MYZAP and 

p.Ala75Val in RPL3L, both of which were reported in paper II. The other loci 

were represented by variants in the non-coding genome, although some had 

a coding variant in high LD. As most of the 111 loci affect AF risk through 

unknown genes and mechanisms, a variety of approaches were undertaken 

to further understand their biology. In contrast to the interpretation of 

associations with coding variants acting through a known gene the 

approaches applied here analyze the loci as a group, making use of their 

large number to identify common features that point to potentially important 

pathways and mechanisms in the development of AF. 

5.3.1  Insights into pathogenesis of AF gained from analyzing all 
established AF variants 

Interestingly, a recurring theme in the analysis of all genome-wide significant 

AF variants in the meta-analysis was maintenance of cardiac structural 

integrity, reinforcing the findings of papers I and II. Furthermore, the analysis 

revealed that AF risk variants likely act in both the adult and fetal heart. For 

example, the DEPICT gene-sets enriched by genes at AF loci pointed to 

biological processes related to cardiac morphology and development as well 

as with structural remodeling of the myocardium. Furthermore, the most 

common mutual function of the 151 prioritized candidate genes was 

involvement in cardiac and skeletal muscle function and integrity (at least 18 

genes). Some of these genes have been strongly implicated in 

cardiomyopathy, including MYH7 (Maron & Maron, 2013), RBM20 (Brauch et 

al., 2009), TTN (Herman et al., 2012) and PKP2 (Gerull et al., 2004). The 

second most common function of the candidate genes was likely involvement 

in mediation of developmental events (at least 13 genes). Notably, at least 

one of these genes, NKX2-5 which encodes a homeobox-containing 

transcription factor (Lints et al., 1993), has an important role in cardiac 

structure. Variants in NKX2-5 are known to cause a diverse cardiac 

phenotype, including CHDs, arrhythmias (Benson et al., 1999) and adult-

onset cardiomyopathy (Costa et al., 2013; Sveinbjornsson et al., 2018; Yuan 
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et al., 2015). In general, the results of the meta-analysis reported in paper III 

are consistent with the knowledge gained from associations of coding 

variants in structural genes associated with AF, and further emphasizes the 

likely importance of cardiac mechanics in the development of AF. 

Several additional pathways are highlighted in the analysis of AF loci, 

underscoring the complexity of AF pathogenesis. These included function of 

cardiac ion channels, involvement in intracellular calcium handling in the 

heart, angiogenesis and hormone signaling. The complexity of AF 

development and diversity of the biology of AF variants was further implied by 

the diverse effects of the 111 index variants on ECG measurements, as was 

the case in the ECG analysis in paper I and II and will be discussed in 

chapter 5.4. After acceptance of paper III, another large meta-analysis, by 

Roselli et.al. was published (Roselli et al., 2018), identifying 97 AF loci, a 

majority of which overlapped with the 111 loci from the current meta-analysis. 

In line with the results of this meta-analysis (paper III), functional enrichment 

and pathway analysis performed in the Roselli study also implicated genes 

enriched within cardiac developmental, electrophysiological, contractile and 

structural pathways (Roselli et al., 2018). 

5.3.2  Heritability of AF 

The h
2
SNP heritability calculated in this meta-analysis was 11.2%. In other 

words, 11.2% of variation in AF is explained by all the additive genome-wide 

genetic variation captured in this study (Yang et al., 2017). A similar 

proportion, 11.4%, was recently reported in a study of a subset (152,736 

subjects) of the UK Biobank dataset by Ge et al (Ge et al., 2017). However, a 

study by Weng and colleagues on a different subset of the UK Biobank 

population (120,286 subjects) reported a much higher h
2
SNP heritability of 

22% (Weng et al., 2017). As a possible explanation for this discrepancy the 

authors mention that they had a broader definition of AF compared to the 

study by Ge et al. In fact, it is likely that all three studies present an 

underestimation of AF heritability for reasons such as incomplete phenotypic 

definitions and the fact that they only report the additive heritability (Visscher 

et al., 2008). Furthermore, the two studies performed in the UK Biobank only 

include markers with MAF>1%, missing the potentially high effects of rare 

variants (Ge et al., 2017; Weng et al., 2017). With regards to the relatively 

low heritability estimation in our study, it might at least partly be explained by 

the argument that heritability estimates from GWAS meta-analysis could be 

attenuated due to heterogeneous genetic effects across populations (de 

Vlaming et al., 2017). 
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Nevertheless, these proportions (11-22%) likely represent lower bound 

estimates of AF SNP heritability and provide insight into the contribution of 

genetic variability to AF risk. Notably, the genome-wide significant variants 

identified in paper III explained only 4.6% of AF variance, compared to 11.2% 

explained by the total genome-wide genetic variation. This is consistent with 

Weng et.al. reporting that only a third of AF h
2
SNP heritability was explained 

by established AF loci, putative cardiac arrhythmia, and cardiomyopathy 

gene regions (Weng et al., 2017). This suggests that a substantial proportion 

of AF risk is driven by variation in regions that have not yet been established 

as AF loci in GWASs. 

5.3.3  Effects of AF genetic risk score on other phenotypes and 
age at onset of AF 

Finally, a genetic risk score was constructed based on the 111 index and 31 

additional risk variants identified through conditional analysis. This risk score 

associated with AF risk in the UK Biobank, and with several mainly 

cardiovascular conditions, including heart failure, ischemic heart disease and 

stroke. However, the associations did not remain when removing all 

participants diagnosed with an arrhythmia leading to the conclusion that the 

AF genetic risk score is specific for AF and that additional associations are 

possibly consequences of AF, including for example heart failure and stroke. 

Of note is the fact that the SSS sample size in the UK biobank is small (<700) 

compared to the Icelandic sample size used for assessment of secondary 

associations in paper I and II (>3,500). The lack of association of the AF 

genetic risk score with SSS in the UK biobank does therefore not constitute a 

discrepancy with the association of AF variants with increased SSS risk 

previously discussed in this thesis. Finally, a higher genetic burden of AF was 

associated with younger age at onset of AF, supporting epidemiological 

studies reporting the association of increased AF risk with lower age at onset 

of AF in close relatives (Lubitz et al., 2010; Oyen et al., 2012). 

 Effects of AF variants on normal cardiac conduction 5.4

Exploring the effects of all AF variants on ECG measurements, an 

endophenotype for AF, was undertaken in papers I, II and III with the aim to 

further understanding of their physiological effects in the absence of AF, as 

AF cases were excluded from the analysis and only sinus rhythm ECGs were 

used. The analysis revealed that their effects on cardiac electrical function 

are diverse. They range from none to extensive and vary in direction. This 

suggests that AF variants affect AF risk through very diverse mechanisms, 
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some of them acting in the heart before AF and some not. Furthermore, there 

was no obvious relationship between the effect on conduction and the AF 

effect size, highlighting the complex relationship between normal cardiac 

electrophysiology and arrhythmia development. 

The ECG analysis informed on mechanisms underlying associations of 

both coding and non-coding AF variants, for example through comparison of 

individual variants. The novel coding variants in PLEC, RPL3L and MYZAP, 

diversely affect ECG measurements. Both p.Gly4098Ser in PLEC and 

p.Ala75Val in RPL3L significantly affect measures of both atrial and 

ventricular conduction. Furthermore, both the previously reported missense 

variant in MYH6 (Holm et al., 2011) and p.Gly4098Ser in PLEC have 

extensive effects on cardiac conduction and interestingly, the type of ECG 

effects reflect their pattern of expression. In the adult heart the expression of 

αMHC, the product of MYH6, is restricted to the atria, while plectin is equally 

expressed in atria and ventricles (Franco et al., 1998; "Human genomics. The 

Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene 

regulation in humans," 2015). Consistent with this, the MYH6 variant has a 

comparatively stronger effect on the atria and the AVN than the ventricles. 

Neither the splice-donor variant in RPL3L nor the missense variant in MYZAP 

associated significantly with measurements from sinus rhythm ECGs. 

However, when testing for association with ECG traits using all ECGs 

irrespective of rhythm and history of AF, an effect was detected for the 

MYZAP variant. This could be a direct consequence of AF occurring when 

ECG recordings are conducted or possibly these are effects on conduction in 

sinus rhythm that are detected because of increased sample size.  

Several of the AF variants had only mild or no association with ECG traits 

in this dataset, whether AF cases were included in the analysis or not. 

Among them is the novel non-coding variant at LINC01142/METTL11B and 

the reported variant located 1 kb away. It is unclear by which mechanism and 

through which gene these variants affect the risk of AF. However, it is 

informative that unlike the two LINC01142/METTL11B variants, the common 

variant at the close by PRRX1 locus (400 kb away) significantly affects 

cardiac conduction in sinus rhythm. This might suggest that the two 

LINC01142/METTL11B variants act through a common pathway different 

from the one of the PRRX1 locus. 

The fact that the LINC01142/METTL11B variants do not associate with 

ECG measurements does not repudiate or contradict their AF association. In 

fact, 51 variants showed no association with ECG measurements in the 
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meta-analysis reported in paper III, including several established AF variants 

such as the intronic variant in ZFHX3. This locus has been widely replicated 

across ethnic groups (Gudbjartsson et al., 2009; Li et al., 2011; Roselli et al., 

2018) and the variant associates genome-wide significantly with AF in the 

current studies (papers I and III). Possibly, these variants have subtle effects 

on normal cardiac conduction but we lack power to detect them or they affect 

other traits than those represented here. Furthermore, they might increase 

risk of AF through mechanisms that do not affect cardiac conduction in sinus 

rhythm. 

In some cases, the ECG associations can serve as an indirect replication 

of AF risk variants identified through GWASs. For example, the PLEC variant 

is almost exclusive to Iceland and only three carriers were identified in the 

replication sample. However, the strong and extensive effects on cardiac 

conduction, even in the absence of AF, support the association. Furthermore, 

the extent and direction of ECG effects might help inform on underlying 

biology of specific AF loci in future studies. 

  A missense variant in MYH6 increasing risk of 5.5
arrhythmia and coarctation of the aorta 

The fourth and last paper of this dissertation reports a GWAS on CoA, 

identifying association with the p.Arg721Trp missense variant in MYH6. This 

is one of the strongest AF variants in paper I and it was initially discovered 

through its strong association with SSS (Holm et al., 2011). The allele 

frequency of p.Arg721Trp in Iceland is 0.34%, probably explained by the 

founder effect. In more outbred populations the variant is extremely rare or 

non-existent. The variant accounts for approximately 20% of CoA cases in 

Iceland and is the first variant associating with non-syndromic CoA on the 

population level. Our results, and previous publications (Holm et al., 2011), 

reveal a pleiotropic effect of the variant on cardiac function and disease. In 

addition to genome-wide significant effects on risk of SSS, AF and CoA it is 

also associated with additional CHDs, adult onset aortic valve stenosis, heart 

failure and stroke. Furthermore, our results revealed extensive effects of 

p.Arg721Trp on cardiac conduction and an association with increased left 

atrial diameter from echocardiogram measurements. The pleiotropic effect of 

p.Arg721Trp is in line with implication of other variants in MYH6 in familial 

cases of cardiomyopathies (Carniel et al., 2005; Niimura et al., 2002) and 

cardiac septal defects (Ching et al., 2005; Posch et al., 2011). Furthermore, 

common variants in MYH6 have been associated with heart rate and PR 

interval though GWASs (den Hoed et al., 2013; Eijgelsheim et al., 2010; 
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Holm et al., 2011). 

Myosin is a major component of the sarcomere, the building block of the 

cardiac contractile system. It is an ATPase cellular motor protein consisting of 

two heavy chain subunits and two pairs of light chain subunits. MYH6 

encodes the alpha-myosin heavy chain (αMHC) subunit of myosin. The 

homologous beta-myosin heavy chain (βMHC) is encoded by MYH7. Both 

αMHC and βMHC are expressed throughout the heart during embryonic 

development. After birth, βMHC which is a relatively slow ATPase, continues 

to be expressed throughout the heart. However, the expression of αMHC, a 

fast ATPase, becomes restricted to the atria in the adult heart (Franco et al., 

1998), but the expression pattern of these two genes continues to be 

dynamic. In heart failure, αMHC expression is downregulated while βMHC is 

upregulated resulting in diminished cardiac performance and worse outcome 

(Hang et al., 2010; Herron & McDonald, 2002; Krenz & Robbins, 2004). 

Expression of αMHC has not been detected in the aorta ("Human genomics. 

The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene 

regulation in humans," 2015). 

It is possible that p.Arg721Trp increases risk of CoA by reducing blood 

flow through the fetal aorta because of diminished contraction of the 

developing heart. It would thus comply with the hemodynamic theory of CoA 

pathogenesis which proposes that cardiac lesions resulting in decreased left 

ventricular outflow promote development of CoA by reducing blood flow 

through the fetal aorta (Rudolph et al., 1972). This theory of mechanism is 

supported by the fact that αMHC is expressed in both atria and ventricles 

during cardiac development, but has not been detected in the aorta where 

the coarctation occurs. It is further supported by our ECG analysis revealing 

extensive effects of the variant on cardiac electrical function, including in the 

ventricles. Finally, p.Arg721Trp has been overexpressed in neonatal rat 

ventricular cardiomyocytes, which resulted in impaired sarcomere structures 

(Ishikawa et al., 2015), further supporting that it may impair contraction and 

outflow from the developing ventricles. 

The associations of coding variants in MYH6 with SSS, heart rate and PR 

interval in GWASs represented a novel implication of the sarcomere in 

cardiac conduction and arrhythmogenesis in the absence of apparent 

cardiomyopathy. The exact role of αMHC in conduction is not known. One 

suggested mechanism is that p.Arg721Trp, and other MYH6 variants 

affecting heart rate, modulate the expression of proteins with specific roles in 

conduction (Ishikawa et al., 2015). In fact, evidence has shown that a highly 
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conserved microRNA, miR-208a, encoded by intron 27 of MYH6 is required 

for expression of cardiac transcription factors and the gap junction protein 

connexin 40 (Callis et al., 2009). Connexin 40 is encoded by GJA5, which is 

specifically expressed in the atria (Chaldoupi et al., 2009; "Human genomics. 

The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene 

regulation in humans," 2015) and is one of the prioritized candidate genes 

identified in the AF GWAS in paper III. 

As discussed previously, the role of cardiac structure in arrhythmogenesis 

has been further established in GWASs on AF in this dissertation and other 

publications, but the p.Arg721Trp in MYH6  stands out from other AF variants 

for its strong association with SSS. This has led to speculations that 

p.Arg721Trp preferentially impairs the pacemaker function of the SA node or 

the propagation of impulse from the node. To our knowledge, no direct link 

has been made between MYH6 and SA node function specifically. Whether 

or not such mechanisms contribute to the high risk of SSS in carriers of 

p.Arg721Trp, it would not explain the pleiotropic effects of the variant on 

cardiac function, especially its extensive effects on ECG measurements in 

atria and ventricles in the absence of arrhythmia and the association with 

CHDs. To continue the discussion in chapter 5.2 on the AF effects of 

p.Arg721Trp, these pleiotropic effects therefore suggest that the effect of 

p.Arg721Trp on AF risk is likely not mediated by interruption of pacemaker 

function and SSS only. 

  The important role of cardiac structure in the 5.6
development of arrhythmias 

As discussed previously, a recurrent theme in the results of the three GWASs 

on AF conducted in this thesis is emphasis on the importance of myocardial 

structural changes in arrhythmogenesis. This assumption is drawn from 

associations with coding variants in genes with a structural role, PLEC, 

MYZAP and RPL3L, as well as interpretation of over one hundred 

associations with mostly common non-coding variants from the meta-

analysis. Our results add to the insights gained from implication of coding 

variants in the sarcomere genes MYH6 and MYL4 in SSS and AF 

(Gudbjartsson et al., 2017; Holm et al., 2011). Furthermore, the importance of 

cardiac structure has recently been supported by other GWASs also 

implicating genes and pathways involving cardiac mechanics in the 

pathogenesis of AF (Christophersen et al., 2017; Roselli et al., 2018). It is 

important to note that the numerous AF loci identified through GWASs 

hitherto point to a very complex pathophysiology and involvement of diverse 
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pathways. However, the strong and relatively novel implication of cardiac 

structural remodeling in the development of AF warrants further 

consideration. 

Cardiac remodeling is defined as a process resulting in myocardial cellular 

and interstitial changes including myocyte hypertrophy, necrosis (Tan et al., 

1991), apoptosis (Olivetti et al., 1997) and fibrosis (Anderson et al., 1979; 

Cohn et al., 2000). The main consequence of these molecular changes is 

cardiac dysfunction (Azevedo et al., 2016). Cardiac remodeling can result 

from extrinsic or intrinsic stress such as increased hemodynamic load and 

neurohormonal activation (Bisping et al., 2014; Kehat & Molkentin, 2010). 

Several diseases or conditions have been shown to trigger cardiac 

remodeling, including hypertension, inflammation, fibrosis and cardiac 

ischemia (Burchfield et al., 2013; Pfeffer & Braunwald, 1990). On a molecular 

level, many signal-tansduction pathways have been implicated in cardiac 

hypertrophy, including for example the Rho-dependent SRF signaling 

pathway that can be activated by myozap overexpression, as previously 

discussed. Historically, cardiac remodeling has been considered a beneficial 

adaptive process but is now also viewed as potentially pathological, as it has 

been associated with activation of maladaptive pathways that eventually lead 

to cardiomyopathy (Frey & Olson, 2003; Selvetella et al., 2004). 

The epidemiological evidence for the role of cardiac structural remodeling 

in the pathogenesis of AF and other arrhythmias has in fact existed for many 

years since conditions known to induce hypertrophy are established risk 

factors for AF, including hypertension, ischemia and heart failure (Huxley et 

al., 2011). On a molecular level, the effects of structural remodeling on the 

pathogenesis of AF are likely mediated through promoting both rapid ectopic 

activity and reentry, the two main drivers of AF development and 

sustainability. The effect of cardiac remodeling on reentry is considered more 

important. A combination of atrial dilation and fibrosis creates conduction 

disparity, imposes barriers and slows conduction favoring the initiation and 

maintenance of multiple irregular reentry circuits that sustain AF. Ectopic 

firing is usually required as a trigger for the reentry and evidence suggests 

that structural remodeling can at least indirectly induce ectopic firing through 

causing increased atrial expression of ion channel subunits promoting ectopic 

beats (Nattel et al., 2008). Through the years, the literature has focused 

mainly on ventricular cardiomyopathies, which have been well classified 

(Elliott et al., 2014) and their consequences extensively studied in human 

subjects and experimental models (Cook et al., 2017). For example, AF is the 

most frequent arrhythmia in hypertrophic cardiomyopathy thought to result 
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from general myocardial fibrosis and increased left atrial pressure caused by 

elevated left ventricular pressure and mitral valve insufficiency (Patten et al., 

2018). 

In recent years atrial cardiomyopathy has been defined as a clinical entity 

and its role in the development of AF increasingly recognized (Goette et al., 

2016; Goldberger et al., 2015; Hammwohner et al., 2019). An atrial 

cardiomyopathy is defined as “any complex of structural, architectural, 

contractile or electrophysiological changes affecting the atria with the 

potential to produce clinically-relevant manifestations” (Goette et al., 2016). 

Factors such as hypertension, diabetes, heart failure and aging are known 

contributors to atrial cardiomyopathy. The pathological alterations vary 

greatly between individuals and the condition is not routinely assessed or 

diagnosed. The associations of variants in structural genes with AF risk have 

underlined the importance of atrial myopathy in AF development, especially 

coding variants in the atria specific myosin genes MYH6 and MYL4. In our 

study we did not detect associations of AF risk variants in PLEC, RPL3L and 

MYZAP with clinically overt cardiomyopathy, but a frequently difficult to 

diagnose and likely subclinical atrial cardiomyopathy might be an underlying 

mechanism. 

In addition to serving as a substrate for the development of AF (Boldt et 

al., 2004; Chimenti et al., 2010; Marrouche et al., 2014; Nattel & Harada, 

2014), atrial myopathy has further implication for the diagnosis and 

management of the disease. Evidence suggests that assessing the degree of 

atrial fibrosis in patients with AF may provide a metric of disease severity and 

possibly predict response to therapy, specifically ablation (Oakes et al., 

2009). In addition, fibrotic atrial cardiomyopathy has been independently 

associated with prior history of stroke in AF patients (Daccarett et al., 2011). 

Furthermore, adding the assessment of left atrial fibrosis by delayed-

enhanced magnetic resonance imaging has been shown to increase the 

predictive performance of the conventional scores for assessing stroke risk in 

AF (Daccarett et al., 2011). Based on the temporal dissociation between 

timing of AF and occurrence of stroke it has even been suggested that 

prothrombotic atrial tissue might be an important cause of thrombus 

formation in patients with AF, independent of the atrial rhythm (Calenda et al., 

2016). Despite these indications, a direct causal link between atrial fibrosis 

and stroke risk in AF has not been clearly established. However, the 

accumulating evidence strongly suggest that assessment of atrial fibrosis 

may guide in management decisions, but further research on its applicability 

in clinical practice is warranted. 
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  Clinical implications of the results 5.7

A deeper understanding of the pathophysiology of AF is a critical prerequisite 

to developing new and more effective treatment options for this common 

arrhythmia. Advances in this area are urgently required as currently available 

treatment options have limited efficacy and may carry risk of serious adverse 

effects. Emphasis on the importance of impaired cardiac structure in AF 

pathogenesis composes a stark contrast to the previous view of AF as mainly 

an ion channel disorder, a theory initially supported by the earliest candidate 

gene studies on rare familial AF. The new perspective provided by our 

studies should lead to new ideas in exploring pathways involved in structural 

remodeling in AF as potential therapeutic targets. It is possible that future 

studies on the novel AF loci identified here might lead to identification of 

specific novel drug targets for AF treatment. The results also highlight the 

importance of maintaining normal cardiac structure for the prevention of AF, 

for example by treating hypertension and other conditions contributing to 

cardiac remodeling. 

The numerous AF variants that have now been discovered in GWASs 

could be a valuable tool for risk stratification and personalization of diagnosis 

and treatment. Polygenic risk scores could be applied to identify individuals 

with high risk of developing AF and its complications, including stroke, thus 

encouraging a more individualized management approach. Likewise, genetic 

risk scores have been proposed as an addition to conventional risk prediction 

in coronary artery disease (Inouye et al., 2018). Future studies might identify 

treatment options that are particularly effective for carriers of specific AF 

variants, thus personalizing choice of treatment based on genotype. 

The discovery of a coding variant in the cardiac myosin gene MYH6 

explaining 20% of CoA cases in Iceland has several practical implications. 

The association provides increased understanding of pathogenesis which 

might guide future studies on CoA and its complications and contribute to 

advances in treatment. Furthermore, the discovery might have direct 

meaning for genetic counselling for Icelandic individuals with CoA and their 

families. Although the penetrance for CoA is low (1/123) the variant explains 

a large proportion of CoA cases in Iceland. Our analysis revealed that, 

compared to non-carriers with CoA, carriers of the variant are more likely to 

present with mild rather than more critical forms of CoA. The symptoms of 

mild CoA are subtle and delayed diagnosis is common (Strafford et al., 

1982). Identifying carriers among CoA cases and searching for the variant 
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among their close relatives might therefore promote early diagnosis and 

treatment of CoA among them.  

  Limitations and strengths 5.8

There are several limitations to the studies. For example, the p.Gly4098Ser 

variant in PLEC (paper I) is very rare outside of Iceland and we are therefore 

not able to replicate the AF association for this variant. The same applies to 

the associations of p.Arg721Trp in MYH6 with various CVDs (papers I and 

IV). However, both genes were already strongly implicated in cardiac 

diseases, PLEC in cardiomyopathy in patients with EBS (Bolling et al., 2010; 

Celik et al., 2005; Schroder et al., 2002; Villa et al., 2015) and MYH6 in for 

example cardiac septal defects (Ching et al., 2005; Posch et al., 2011) and 

familial cardiomyopathy (Carniel et al., 2005; Niimura et al., 2002). 

Furthermore, we show that both variants have extensive effects on cardiac 

conduction in the absence of arrhythmia and other variants in MYH6 have 

also been associated with ECG measurements outside of Iceland (den Hoed 

et al., 2013; Eijgelsheim et al., 2010). Another limitation is the small size of 

the CoA sample set. A larger set might have facilitated detection of more 

variants associating with risk of CoA. It would also have allowed a better 

estimate of the fraction of CoA cases explained by the variant, as well as 

improved OR estimates for comparison between carriers and non-carriers of 

p.Arg721Trp with CoA. Performing a large meta-analysis of AF combining six 

cohorts (paper III) has the advantages of increased power to detect 

associations but a limitation is that the heterogeneous effects across studies 

can attenuate the predictive power of polygenic scores and heritability 

estimates (de Vlaming et al., 2017), as previously discussed. 

The main strength of the study relates to the extensive dataset that has 

been collected at deCODE genetics during the past 20 years, including 

genotype data for a large proportion of the Icelandic nation. Several 

characteristics of the Icelandic population, such as the well documented 

genealogy and the founder effect are advantageous for genetic studies, in 

particular for discoveries of rare variant associations. Furthermore, the large 

Icelandic AF cohort likely includes the majority of people diagnosed with AF 

in Iceland during the period under study. Despite the small CoA sample size, 

the study also likely includes the majority of Icelandic cases, since this is a 

rare condition and only one hospital delivers specialized care for patients with 

CHDs. Furthermore, a major strength of the study is the ability to combine 

variable phenotypic data, such as disease diagnoses according to ICD codes 
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and ECG measurements reflecting cardiac conduction, to obtain a broad 

picture of the effects of sequence variants on cardiac function and disease. 
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6 Conclusions 

Through genome-wide association studies we have identified novel AF 

associations with coding variants in three genes which all have a role in 

maintaining cardiac structure, PLEC, MYZAP and RPL3L. This further 

establishes the notion of a role for cardiac mechanics, and possibly atrial 

myopathy in the development of atrial arrhythmia, as implied by the 

previously published associations of coding variants in MYH6 and MYL4 with 

AF. We also report the results of a large meta-analysis of AF GWASs 

including over one million participants. Pathway and functional enrichment 

analysis performed on the AF associated loci further highlighted the 

importance of cardiac structural remodeling in the development of AF. This 

new understanding of AF pathogenesis supports a shift in focus towards 

pathways involved in cardiac mechanics for identifying novel treatment 

options in AF. It also supports the notion that evaluating myocardial, and 

specifically, atrial structure may be of value in routine clinical practice. In 

accordance with our initial aims we have provided increased understanding 

of AF pathogenesis, a crucial step towards improving the currently limited 

treatment options available for this common disease that poses a growing 

public health concern. 

In addition to highlighting the role of myocardial structure, several 

pathways were implicated through analysis of AF associations, including 

cardiac development and calcium handling. This underscores the complexity 

of AF pathogenesis. Furthermore, the substantial increase in AF variants 

might translate into clinical relevance by improving calculations of genetic risk 

scores for AF. These may be utilized to predict risk of AF and its 

complications, for example stroke, a serious complication of AF that is difficult 

to predict with currently available methods.  

Our analysis of ECG effects of all published and novel AF variants further 

emphasizes the complexity of AF genetics. The results suggest diverse 

mechanisms underlying the AF risk of these variants, reflected by their 

effects on normal cardiac conduction ranging from none to extensive. These 

diverse mechanisms also support the notion that personalized treatment 

based on genotype could become a future option in AF. In that regard, ECG 

effects of AF variants might help identify underlying biology of specific AF loci 

in future studies. 
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One of the strongest association with AF in our dataset is with 

p.Arg721Trp in the cardiac myosin gene MYH6, previously reported in SSS. 

A suggestive association of this variant with CoA led us to explore the variant 

further and perform a GWAS on CoA, revealing that the variant explains 20% 

of CoA cases in Iceland and is more likely to result in mild, rather than critical 

CoA. The pleiotropic effect of p.Arg721Trp on cardiac function and disease 

suggests that the variant affects risk of AF independently, not only as a result 

of SSS. The association with CoA increases understanding on its 

pathogenesis as it complies with the hemodynamic theory of CoA 

development. Since this missense variant in MYH6 explains a large 

proportion of CoA cases in Iceland, the association might have relevance for 

genetic counseling for individuals with CoA and their families. 

 Future perspectives 6.1

Future research is expected and has the potential to increase understanding 

on the genetic architecture of AF, as evident by the small proportion of overall 

heritability explained by the variants identified here. Further advances could 

be facilitated by a combination of factors, including increasing sample sizes 

by continuing collaboration of study groups and more detailed phenotyping of 

participants. In addition, improved quality of genotype data by continuing 

efforts in large scale whole-genome sequencing and the application of long-

read technologies will also promote progress (van Dijk et al., 2018). This is 

also the case in CoA, as our GWAS was the first to be performed. Studies in 

other populations might also identify rare deleterious variants explaining large 

proportion of CoA or other CHDs. Further research on the clinical utility of 

genetic risk scores for predicting risk of AF and its complications is 

warranted. Furthermore, the strong implication of myocardial structure in AF 

pathogenesis encourages research on methods to evaluate myocardial 

structure in AF patients and the clinical utility of such evaluation. Finally, the 

findings presented here can be used as a foundation for functional studies 

directed at further elucidating mechanisms underlying AF and CoA. The 

studies performed here have increased understanding of the pathogenesis of 

both AF and CoA and will hopefully provide a step towards improvements in 

the evaluation and treatment of both diseases. 
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ABSTRACT

BACKGROUND Genome-wide association studies (GWAS) have yielded variants at >30 loci that associate with

atrial fibrillation (AF), including rare coding mutations in the sarcomere genes MYH6 and MYL4.

OBJECTIVES The aim of this study was to search for novel AF associations and in doing so gain insights into the

mechanisms whereby variants affect AF risk, using electrocardiogram (ECG) measurements.

METHODS The authors performed a GWAS of 14,255 AF cases and 374,939 controls, using whole-genome sequence

data from the Icelandic population, and tested novel signals in 2,002 non-Icelandic cases and 12,324 controls. They then

tested the AF variants for effect on cardiac electrical function by using measurements in 289,297 ECGs from 62,974

individuals.

RESULTS The authors discovered 2 novel AF variants, the intergenic variant rs72700114, between the genes LINC01142

and METTL11B (risk allele frequency ¼ 8.1%; odds ratio [OR]: 1.26; p ¼ 3.1 � 10�18), and the missense variant

p.Gly4098Ser in PLEC (frequency ¼ 1.2%; OR: 1.55; p ¼ 8.0 � 10�10), encoding plectin, a cytoskeletal cross-linking

protein that contributes to integrity of cardiac tissue. The authors also confirmed 29 reported variants. p.Gly4098Ser in

PLEC significantly affects various ECG measurements in the absence of AF. Other AF variants have diverse effects on

the conduction system, ranging from none to extensive.

CONCLUSIONS The discovery of a missense variant in PLEC affecting AF combined with recent discoveries of variants

in the sarcomere genes MYH6 and MYL4 points to an important role of myocardial structure in the pathogenesis of

the disease. The diverse associations between AF variants and ECG measurements suggest fundamentally

different categories of mechanisms contributing to the development of AF. (J Am Coll Cardiol 2017;70:2157–68)
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A trial fibrillation (AF) is the most com-
mon sustained cardiac arrhythmia in
humans and a significant cause of

morbidity and mortality (1–3). More than
30 rare sequence variants with large effects
have been identified in familial AF, including
coding variants in ion channels, signaling
molecules, structural proteins, and transcrip-
tion factors (4). These mutations explain only
a small proportion of AF cases but can pro-
vide important insights into the mechanisms
of AF. For example, mutations in the potas-

sium channel gene KCNQ1, the first gene linked to
familial AF, are thought to cause AF by reducing the
atrial action potential duration and the effective
refractory period (5). Over the last decade, genome-
wide association studies (GWAS) have yielded vari-
ants at >30 loci that associate with nonfamilial AF
as a primary or secondary trait, with the most notable
association being at PITX2, a transcription factor gene
that affects cardiac development (6). However, most
of the AF variants discovered through GWAS are in
noncoding regions, and the mechanisms by which
they affect AF remains to be elucidated (6–19).
Recently, GWAS in Iceland based on whole-genome
sequencing have associated coding variants in the
sarcomere genes MYH6 and MYL4 with AF (13,14).

The use of electrocardiogram (ECG) measurements
as intermediate traits of arrhythmia has proven
valuable and has led to the discovery of variants that
affect both the cardiac electrical function and the
risk of arrhythmia, including variants that associate
with both the PR interval and risk of AF (15–17).
Assessing the effects of both coding and noncoding
AF variants on detailed ECG traits could give valuable
information about their modes of action and the
pathophysiology of AF.

Here we describe a GWAS of AF in 14,255 Icelandic
cases and 374,939 controls based on whole-genome
sequencing and testing of the AF variants for
association with closely related phenotypes including
sick sinus syndrome (SSS) and ischemic stroke.
We then tested the resulting AF variants and those
previously described for associations with ECG traits.

METHODS

Detailed methods are available in the Online
Appendix. The study was approved by the Icelandic
Data Protection Authority and the National Bioethics
Committee of Iceland. The study complies with tenets
of the Declaration of Helsinki.

STUDY POPULATIONS. The Icelandic AF population
consisted of all patients with the diagnosis of AF (In-
ternational Classification of Diseases-10 [ICD-10] code
I.48 and ICD-9 code 427.3) at Landspitali, the National
University Hospital, in Reykjavik and Akureyri Hospi-
tal (the 2 largest hospitals in Iceland) from 1987 to 2015.
All AF cases (N ¼ 14,255) were included. Controls
consisted of 374,939 Icelanders recruited through
different genetic research projects at deCODE genetics
(Reykjavik, Iceland). Individuals in the AF cohort were
excluded from the control group (see Online Table 1 for
subject and control characteristics). We followed up
the novel AF variants in AF sample sets from the
FOURIER (Further Cardiovascular Outcomes Research
with PCSK9 Inhibition in Subjects with Elevated Risk)
trial (20) (1,238 cases and 11,562 controls) and the
Vanderbilt AF Registry (764 cases and 762 controls)
(Online Methods). The deCODE genetics phenotype
database contains extensive medical information on
various diseases and traits. This includes sample sets
from a pacemaker population (n ¼ 3,578), SSS subjects
(n ¼ 3,310), ischemic stroke subjects (n ¼ 5,626), and
cardioembolic stroke subjects (n ¼ 1,369). The controls
used in the various case control analyses of this study
consisted of individuals randomly drawn from the
Icelandic genealogical database and individuals from
other genetic studies at deCODE genetics.

ELECTROCARDIOGRAM DATA. ECG data were
collected from Landspitali, the National University
Hospital, in Reykjavik and included all ECGs obtained
and digitally stored from 1998 to 2015, a total of
434,000 ECGs from 88,217 individuals. These were
ECGs obtained from all hospital departments from
both in- and outpatients. For the main analysis,
sinus rhythm (heart rate 50 to 100 beats/min) ECGs
from individuals without the diagnosis of AF were
used. This was done to assess the effect of the AF var-
iants on ECGmeasurements (e.g., P-wave morphology,
PR intervals, and so forth) and thus cardiac electrical
function in the absence of AF. Individuals with pace-
makers also were excluded. This resulted in 289,297
sinus rhythm ECGs from 62,974 individuals. The anal-
ysis was also done using all ECGs regardless of rhythm
and history of AF (Online Appendix).

GENERATION OF GENOTYPE DATA. This study was
based on whole-genome sequence data from 15,220
Icelanders participating in various disease projects at
deCODE genetics. The sequencing was done using
standard TruSeq methodology (Illumina, San Diego,
California) to a mean depth of 35 � 8 x, as previously
described (21). Genotypes of the 32.5 million sequence
variants identified through sequencing (single
nucleotide polymorphisms [SNPs] and indels) were
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then imputed into 151,677 Icelanders chip typed
using SNP chips (Illumina) and their close relatives
(familial imputation). Imputation refers to the
statistical inference of unobserved genotypes using
known haplotypes in the population (see Online
Methods for further details).

STATISTICAL ANALYSIS. Logistic regression was
used to test for association between SNPs and AF and
other traits, treating disease status as the response and
allele counts from direct genotyping or expected ge-
notype counts from imputation as covariates.
To account for inflation in test statistics due to cryptic
relatedness and stratification, we applied the method
of linkage disequilibrium (LD) score regression (22).
The estimated correction factor for AF based on LD
score regression was 1.38 for the additive model.
The threshold for genome-wide significance was cor-
rected for multiple testing with a weighted Bonferroni
adjustment, using as weights the enrichment of variant
classes with predicted functional impact among asso-
ciation signals (see Online Methods for significance
thresholds for specific groups of variants) (23). We
tested 31 AF variants for association with 122 ECG
measurements (Online Table 2), using linear regres-
sion, treating the ECG measurement as the response
and the genotype as the covariate. The ECG measure-
ments were adjusted for sex, year of birth, and age at
measurement and were subsequently standardized to
have a normal distribution. For individuals with mul-
tiple ECGmeasurements, the mean standardized value
was used. The Benjamini-Hochberg false discovery rate
procedure controlling the false discovery rate at 0.05 at
each marker was used to account for multiple testing.

RESULTS

We tested w32.5 million sequence variants for
association with AF in 14,255 Icelandic cases and
374,939 controls. Variants were identified by whole-
genome sequencing of 15,220 Icelanders and
imputed into 151,677 long-range phased individuals
and their relatives (21). We found 2 novel AF associ-
ations, an intergenic variant at the genes METTL11B
and LINC01142, and a missense variant in the gene
PLEC. We also replicated 29 loci previously associated
with AF in GWAS, either as a primary or secondary
trait, following association with SSS, heart rate, or
PR interval (Tables 1 and 2, Online Figure 1). Variants
at 10 loci reached genome-wide significance (Table 1).
One of those had only been previously associated
with AF as a secondary trait, a missense variant in
MYH6 reported in SSS (13) (see Online Figure 2 for
loci plots). Two of the previously reported variants
(rs12044963 at KCND3 and rs2047036 at SH3PXD2A)
were previously reported in Japanese subjects and
nominally associated with AF in Europeans (19). Here
we replicated the previously reported variants and
provide further evidence that these are true AF vari-
ants. Additional variants reported in Japanese sub-
jects were either not replicated (Table 2) or are very
rare or nonexistent in the Icelandic population
(Online Table 3).

A MISSENSE VARIANT IN PLEC INCREASES RISK OF AF.

The novel AF association with PLEC on chromosome 8
is driven by a low-frequency missense variant
p.Gly4098Ser (NP_958782.1; frequency ¼ 1.2%) that
associates with AF with an odds ratio (OR) of 1.55

TABLE 1 Variants Associating Genome-Wide Significantly With AF (N ¼ 13,471)

Reference SNP ID Chr
Pos

(hg38)
Closest
Gene(s)

Risk Allele/
Other RAF, %

Coding
Effect OR (95% CI) p Value

p Value
Threshold

Reported
SNP ID (Ref. #)

r2 With
Reported SNP

Novel signals

rs72700114 1q24 170,224,684 METTL11B,
LINC01142

C/G 8.1 Intergenic 1.22 (1.15–1.29) 7.0 � 10�12 2.3 � 10�9 NA NA

rs373243633 8q24 143,917,940 PLEC T/C 1.2 Missense 1.55 (1.35–1.78) 8.0 � 10�10 5.1 � 10�8 NA NA

Variants reported to associate with AF

rs6843082 4q25 110,796,911 PITX2 G/A 20.1 Intergenic 1.43 (1.38–1.49) 1.6 � 10�73 2.3 � 10�9 rs6843082 (10) 1.00

rs387906656* 14q11 23,396,970 MYH6 A/G 0.3 Missense 2.43 (1.94–3.04) 1.1 � 10�14 5.1 � 10�8 rs387906656 (13) 1.00

rs34245846 1q21 154,858,667 KCNN3 G/A 32.7 Intronic 1.15 (1.11–1.19) 1.2 � 10�14 7.9 � 10�10 rs13376333 (10) 0.52

rs2359171 16q22 73,019,123 ZFHX3 A/T 18.8 Intronic 1.17 (1.13–1.22) 1.5 � 10�14 2.3 � 10�9 rs2106261 (8) 1.00

rs148321568 10q22 73,668,538 SYNPO2L,
MYOZ1

A/T 85.2 Intergenic 1.19 (1.14–1.25) 3.7 � 10�13 7.9 � 10�10 rs10824026 (9) 0.95

rs11598047 10q24 103,582,915 NEURL1 G/A 17.9 Intronic 1.15 (1.10–1.19) 1.5 � 10�10 2.3 � 10�9 rs12415501 (11) 0.91

rs651386 1q24 170,622,169 PRRX1 A/T 57.4 Intergenic 1.11 (1.08–1.15) 1.9 � 10�10 7.9 � 10�10 rs3903239 (9) 0.61

rs1572226 6q22 118,313,916 SLC35F1, PLN C/G 42.4 Intronic 1.11 (1.08–1.15) 3.1 � 10�10 2.3 � 10�9 rs4946333 (18) 0.56

*Locus previously associating with AF but not genome-wide significantly.

AF ¼ atrial fibrillation; Chr ¼ chromosome; CI ¼ confidence interval; OR ¼ odds ratio; NA ¼ not applicable; Pos ¼ position; RAF ¼ risk allele frequency; SNP ¼ single nucleotid polymorphism.
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(95% confidence interval [CI]: 1.35 to 1.78; p ¼ 8.0 �
10�10); (Figure 1A). It is the only variant in the region
reaching genome-wide significance. Conditional
analysis did not reveal additional signals in the region,
and no other coding variant in PLEC associates inde-
pendently with AF (Online Table 4). PLEC encodes
plectin, a very large (>500 kDa) multidomain cyto-
skeletal linking protein with a role in maintaining tis-
sue integrity in skin, striated muscle, and heart (24). It
is expressed in many tissues, including the heart, with
equal expression in atria and ventricles (25).

p.Gly4098Ser is a missense variant (C/T at posi-
tion 143,917,940) in exon 32/32 of PLEC and is
potentially damaging (Polymorphism Phenotyping v2
[PolyPhen-2]: 1; Sorting Intolerant From Tolerant
[SIFT]: 0.02) (26,27). Generally, the PLEC gene is
tolerant to missense mutations (constrained metric
z-score: �0.38 [28]). However the region in question
is conserved and has low tolerance to mutations
according to Genomic Evolutionary Rate Profiling
(GERP) score (4.2 [29]) and sub-region Residual Vari-
ation Intolerance Score (subRVIS) (<35th percentile

[30]). Exon 32 encodes the C-terminal intermediate
filament binding domain of plectin, and the variant
results in a glycine to serine substitution on the sur-
face, close to a suggested interaction site for inter-
mediate filaments (Online Figure 3) (31).

The carrier frequency of p.Gly4098Ser among
genotyped individuals was 3.08% (269 of 8,740 sub-
jects) in cases and 2.09% (2,752 of 131,941 subjects) in
controls. Seventeen of the 151,677 genotyped study
participants (currently at a mean 46 years of age
[range: 11 to 80 years]) were homozygous for
p.Gly4098Ser. No homozygote had been diagnosed
with AF according to our records. P.Gly4098Ser did
not associate with AF (p ¼ 0.37) or ECG traits (lowest p
value ¼ 0.0069 in T amplitude lead V3; beta ¼ �1.25)
under a recessive mode of inheritance. The fact that
none of the 17 homozygotes had been diagnosed with
AF was unexpected but does not constitute a signifi-
cant deviation from the additive model (p ¼ 0.093).
Furthermore, it is possible that some of them have AF
that has not been diagnosed or who may develop AF
later in life.

TABLE 2 Replication of Loci Previously Reported to Associate With AF (N ¼ 13,471)

Ref SNP (ID) (Ref. #) Chr Pos (hg38) Closest Gene(s)
Risk Allele/

Other RAF, % Coding Effect OR (95% CI) p Value*

Variants reported to associate genome-wide significantly with AF

rs3807989 (9) 7q31 116,546,187 CAV1 G/A 59.5 Intronic 1.11 (1.07–1.14) 2.5 3 10-9

rs10821415 (9) 9q22 94,951,177 C9orf3 A/C 38.5 Intronic 1.10 (1.06–1.14) 3.8 3 10-8

rs35176054 (18) 10q24 103,720,629 SH3PXD2A A/T 13.6 Intronic 1.14 (1.08–1.19) 9.3 3 10-8

rs72700118 (18) 1q24 170,225,682 METTL11B, LINC01142 A/C 13.4 Intergenic 1.12 (1.07–1.17) 2,9 3 10-6

rs10507248 (11) 12q24 114,359,288 TBX5 T/G 70.2 Intronic 1.09 (1.05–1.13) 3.0 3 10-6

rs7164883 (9) 15q24 73,359,833 HCN4 G/A 14.7 Intronic 1.12 (1.07–1.17) 1.1 3 10-6

rs7508 (18) 8p22 18,056,461 ASAH1 A/G 71.5 30 UTR 1.09 (1.05–1.13) 1.2 3 10-5

rs1152591 (9) 14q23 64,214,130 SYNE2 A/G 51.0 Upstream 1.07 (1.04–1.11) 3.5 3 10-5

rs13216675 (11) 6q22 122,131,183 GJA1 T/C 66.2 Intergenic 1.08 (1.04–1.11) 3.5 3 10-5

rs11047543 (18) 12p12 24,635,405 SOX5 G/A 86.7 Intergenic 1.11 (1.05–1.16) 5.3 3 10-5

rs2540949 (18) 2p14 65,057,097 CEP68 A/T 59.3 Intronic 1.07 (1.03–1.10) 1.5 3 10-4

rs12044963 (19) 1p13 111,849,738 KCND3 T/G 9.4 Intronic 1.11 (1.05–1.17) 2.1 3 10-4

rs4642101 (11) 3p25 12,800,724 CAND2 G/T 65.8 Intronic 1.07 (1.03–1.10) 3.1 3 10-4

rs6800541 (18) 3p22 38,733,341 SCN10A T/C 63.6 Intronic 1.06 (1.03–1.10) 4.3 3 10-4

rs3771537 (18) 2p13 69,811,660 ANXA4 A/C 53.1 Intronic 1.06 (1.03–1.10) 4.6 3 10-4

rs75190942 (18) 11q24 128,894,676 KCNJ5 A/C 10.6 Downstream 1.09 (1.03–1.15) 0.0016

rs337711 (18) 5q22 114,412,874 KCNN2 T/C 34.1 Intronic 1.05 (1.01–1.08) 0.0071

rs2047036 (19) 10q24 103,717,405 SH3PXD2A C/T 40.1 Intronic 1.04 (1.01–1.08) 0.012

rs2288327 (18) 2q31 178,546,938 TTN G/A 14.0 Intronic 1.06 (1.01–1.11) 0.017

rs2967791 (18) 5q31 137,677,417 KLHL3 T/C 56.7 Intronic 1.04 (1.00–1.07) 0.025

rs7698692 (19) 4q34 173,682,953 HAND2 G/A 2.1 Intergenic 1.10 (0.99–1.23) 0.089

rs17461925 (19) 1q32 203,057,463 PPFIA4 A/G 66.2 Intronic 1.01 (0.97–1.04) 0.69

rs6490029 (11) 12q24 111,260,653 CUX2 A/G 29.8 Intronic 1.00 (0.98–1.02) 1.00

Variants reported to associate with AF as a secondary trait, following association with heart rate and/or PR interval

rs6882776 (15) 5q35 173,237,160 NKX2-5 G/A 71.8 Upstream 1.09 (1.05–1.13) 8.1 3 10-6

rs11708996 (16) 3p22 38,592,432 SCN5A G/C 88.2 Intronic 1.04 (0.99–1.09) 0.14

*Significant p values (<0.05) are in bold.

Abbreviations as in Table 1.
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FIGURE 1 Regional Plots of Novel AF Loci
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The p.Gly4098Ser mutation is exceedingly rare
outside Iceland. The variant was only found in 13 of
the 140,842 individuals in the Genome Aggregation
Database (12 Europeans, 1 South Asian) (28). The
Icelandic population is a founder population, in that a
small number of ancestors accounts for a relatively
large proportion of the population. Hence, variants
that are very rare in more outbred populations, like
p.Gly4098Ser, may be more common in Iceland.
Acknowledging the limited power to detect associa-
tions, we genotyped the variant in 2 AF sample sets,
from the Vanderbilt AF registry (764 cases and 762
controls) and the FOURIER trial (1,238 cases and
11,562 controls). We found 3 carriers, and all had AF.

The second new AF variant, rs72700114 on chro-
mosome 1q24 (risk allele frequency ¼ 8.1%), is located
between the genes LINC01142 and METTL11B and is
associated with AF with an OR of 1.22 (p ¼ 7.0 � 10�12;
95% CI: 1.15 to 1.29) in the Icelandic GWAS. The as-
sociation replicated well in the non-Icelandic AF
sample sets and the combined OR was 1.26 (95% CI:
1.19 to 1.32; p value of 3.1 � 10�18) (Online Table 5).
Variant rs72700114 is located 400 kb from a previ-
ously reported AF locus, represented by rs651386,
close to PRRX1 (Figure 1B) (9). The 2 variants are not
strongly correlated (D0 ¼ 0.38; r2 ¼ 0.009), and when
conditioned on each other, they both associate with
AF (Online Table 6). In fact, rs72700114 is the second
variant to be associated with AF secondarily with this
locus. The recently reported variant rs72700118 (18) is
located only 1 kb away from rs72700114, but the 2
variants are not in LD (D0 ¼ 1; r2 ¼ 0.014). None of the
3 variants associates with the expression of nearby
genes in our samples from blood (2,528 samples) or
adipose tissue (686 samples).

ASSOCIATION OF AF VARIANTS WITH ECG

MEASUREMENTS IN THE ABSENCE OF AF. We tested
the 2 novel and 29 previously reported AF variants for
association with ECG traits that reflect electrophysi-
ological functions of the heart in sinus rhythm
(Figure 2, Online Table 7, Online Figure 4). A total of
289,297 sinus rhythm ECGs from 62,974 individuals
without the diagnosis of AF were included in the
analysis. We tested all variants for association with
122 ECG variables, some of them correlated (Online
Table 2). Independent of AF diagnoses, the novel
p.Gly4098Ser variant in PLEC associates with many
ECG measurements. The variant affects P-wave
amplitude and area, prolongs the PR segment repre-
senting atrioventricular node (AVN) conduction, and
lowers the R wave amplitude. The coding AF variant
in MYH6, another structural gene, also associated
with SSS and a 6-fold risk of pacemaker placement,

has a similar general effect on the cardiac electrical
function, albeit a relatively stronger effect on the
atria and AVN than on the ventricles.

Generally, the effects of the AF variants on ECG
measurements range from none to extensive and vary
in direction. For example, AF risk alleles can prolong,
shorten, or have no detectable effect on the PR in-
terval, an established predictor of AF development
(32). Similarly, there is no clear relationship between
the AF effect size and the effect on conduction. For
example, the variant in SCN10A has extensive and
strong ECG effects but small AF effect compared to
the strongest common AF variant in PITX2. Further-
more, the AF variant with moderate effect in the
potassium channel gene KCNN3 has no association
with ECG measurements in the absence of AF. The
same applies to several other variants, for example,
the novel intergenic AF variants at LINC01142
/METTL11B.

TESTING FOR ASSOCIATION WITH SECONDARY

PHENOTYPES. To further explore the p.Gly4098Ser
PLEC variant, we tested it for association with all
phenotypes in deCODE genetics phenotype/genotype
database. Apart from AF, the most significant disease
associations were with AF-related traits, SSS (OR:
1.64; 95% CI: 1.31 to 2.05; p ¼ 1.7 � 10�5), pacemaker
implantation (OR: 1.54; 95% CI: 1.24 to 1.92; p ¼ 9.5 �
10�5), ischemic stroke (IS) (OR: 1.22; 95% CI: 1.01 to
1.47; p ¼ 0.035) and the IS subphenotype car-
dioembolic stroke (OR: 1.53; 95% CI: 1.09 to 2.14;
p ¼ 0.013) (Online Table 8). Sinus node dysfunction is
a common indication for pacemaker implantation and
is frequently associated with AF through a complex
causal relationship (33), and stroke is a well-known
consequence of AF (3). To compare all AF variants,
we tested them for associations with these AF-related
traits, SSS, pacemaker implantation, IS, and car-
dioembolic stroke and then plotted the AF risk of each
variant relative to the effect on the risk of the AF-
related trait (Figure 3). The coding AF variant in
MYH6 that was originally discovered through its as-
sociation to high risk of SSS (13) stood out with sub-
stantially greater risk of SSS and pacemaker
implantation than predicted from its effect on AF risk.
For all other variants, their effects on the AF-related
traits were consistent with being proportional to
their effects on AF.

Mutations in PLEC have been linked to phenotypes
involving skin, muscle, and heart. The association
of p.Gly4098Ser in PLEC, with available relevant
phenotypes including risk factors of AF and some
traits described in plectinopathies, are listed in
Online Table 8. The only other significant association
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FIGURE 2 Heatmap Shows the Effects of AF Variants on ECG Traits in Sinus Rhythm ECGs, Excluding AF Cases
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(p < 0.05/16 ¼ 0.003) among these was with lower
levels of creatine kinase (beta ¼ �0.09; p ¼ 2.58 �
10�4). Traits described in plectinopathies were not
observed from a review of available data for the 17
homozygous carriers of p.Gly4098Ser. Apart from
associating with AF and AF-related traits, the
other novel AF variant at LINC01142/METTL11B was
associated with risk of heart failure (OR: 1.10; 95% CI:
1.04 to 1.17; p ¼ 0.0016) (Online Table 9).

DISCUSSION

We performed a large association study based on
whole-genome sequencing and identified 2 novel AF
variants, a common intergenic variant on chromo-
some 1q24 and a low-frequency missense variant in
the gene PLEC (Central Illustration). The PLEC variant
is associated with a 55% increased risk of AF and a
64% increased risk of SSS. It is the third coding

FIGURE 3 AF Effects of AF-Associated Variants on Risk of Pacemaker, SSS, and Stroke
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variant found to cause atrial fibrillation in a GWAS
and, like the other 2 variants, is in a myocardial
structure gene (13,14). This finding underscores the
importance of the structural properties of the atria in
the pathogenesis of AF.

We also replicated 29 previously reported AF
variants and show that in general the variants affect
SSS and IS in proportion to their AF effect. On the

other hand, the AF variants have highly diverse
effects on ECG traits in unaffected individuals,
ranging from none or mild to extensive, demon-
strating that sequence variants can affect the risk of
arrhythmia without substantial disruption of normal
cardiac electrical function.

There are several possible mechanisms by which a
missense variant in the intermediate filament binding

CENTRAL ILLUSTRATION GWAS of AF and Insight Into Mechanisms by Which Variants Affect Risk for AF

Thorolfsdottir, R.B. et al. J Am Coll Cardiol. 2017;70(17):2157–68.

This study used whole-genome sequence data to conduct a GWAS of AF (N ¼ 13,471 sequences). We identified 2 novel AF variants and replicated 29 previously

reported. Our discovery of a missense variant in PLEC, together with our previous findings of rare coding AF variants in 2 myosin genes, MYH6 and MYL4, underscores

the role of structural components of the myocardium in the pathogenesis of AF. Furthermore, the study demonstrates the fact that some AF variants have no effect on

normal cardiac electrophysiological function, whereas others do. This suggests fundamentally different mechanisms in the development of AF. AF ¼ atrial fibrillation;

ECG ¼ electrocardiogram; GWAS ¼ genome-wide association study.
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site of plectin may have structural effects on the heart
and cause electrophysiological abnormalities. Studies
of plectin�/� mice revealed disintegration of interca-
lated discs and sarcomere disarrangement, thought to
result from lack of plectin in Z-line and intercalated
disc structures, to which it connects through inter-
mediate filaments (31,34). Furthermore, the role of
plectin in maintaining the integrity of the heart has
been demonstrated by observations of cardiac
involvement among individuals with homozygous or
compound heterozygous PLEC mutations (35–39).
Homozygous protein-truncating mutations in PLEC
are known to cause a syndrome of skin fragility, epi-
dermolysis bullosa simplex (EBS), commonly accom-
panied by muscular dystrophy (EBS-MD) (40,41),
myasthenic syndrome (EBS-MDMyS) (42,43), limb-
girdle muscular dystrophy type 2Q (LGMD2Q) (44),
or pyloric atresia (EBS-PA) (45). Mutations in PLEC
also cause EBS-Ogna, an autosomal dominant
disease without muscular dystrophy (46). Cardiomy-
opathy and arrhythmias have been described in
5 patients with EBS due to PLEC mutations (35–39).
An EBS phenotype was not observed in our data for
homozygous carriers of p.Gly4098Ser, possibly
reflecting the fact that the mutation is not protein-
truncating.

p.Gly4098Ser in PLEC does not associate with
cardiomyopathy in our data, nevertheless association
with subclinical or mild cardiomyopathy cannot be
excluded. Also, we cannot exclude the possibility that
p.Gly4098Ser could cause subclinical or even overt
atrial myopathy as this phenotype is not routinely
assessed or diagnosed. Indeed, the mutation results
in a widespread effect on cardiac electrical function in
both atria and ventricles. Furthermore, the associa-
tion with lower R amplitude and lower creatine
kinase levels may reflect less skeletal and cardiac
muscle mass of carriers.

Both the previously discovered AF genes, MYH6
(13) and MYL4 (14), encode parts of myosin, a major
component of the sarcomere, the building block
of the muscle contractile system (47). Discovery of
their association with AF turned the attention to
primary atrial cardiomyopathy as an important cause
of this arrhythmia and other clinically significant
electrophysiological abnormalities. The discovery of a
missense variant in PLEC causing AF in the absence
of clinical heart failure further supports the theory
of clinical electrophysiological consequences of
otherwise subclinical mechanical dysfunction. These
findings parallel the increasing recognition of atrial
cardiomyopathy as a salient entity (48) and an
increased awareness of the role of atrial remodeling,
defined as any change in atrial structure in the

pathogenesis of AF (49). This is exemplified by MYL4,
where individuals homozygous for a rare frameshift
deletion develop AF as early as adolescence (14).

The association between AF variants and ECG traits
varies substantially. The 2 coding variants, both in
myocardial structural genes, PLEC and MYH6, have
extensive effects on cardiac electrical function,
but the MYH6 variant has a comparatively stronger
effect on the atria and AVN than on the ventricles.
This is consistent with expression patterns of plectin
and aMHC, the protein product of MYH6. aMHC
expression is restricted to atrial tissue after birth,
whereas plectin is equally expressed in atria and
ventricles (25,50).

Of the 31 variants we assessed, 29 are in noncoding
regions. For most, the genes and molecular mecha-
nisms linking these noncoding variants to risk of AF
have not been established. However, many of them
are located in or close to genes with a known role in
cardiovascular function or development, giving rise
to theories on how they affect AF risk. For example,
the intronic variant in SCN10A, encoding the alpha
subunit of a voltage-gated sodium channel, is likely
to act through a neighboring sodium channel gene,
SCN5A. It is in LD with a common variant within
SCN10A proven to affect expression of SCN5A, which
is expressed in the adult human heart at 1,000-fold
levels higher than its neighboring SCN10A (51).
This variant widely affects cardiac electrical function.
The similarly widespread effect on conduction by the
variants in the 2 myocardial structural genes PLEC
and MYH6 strongly suggests an important role of
cardiac mechanics in maintaining normal electrical
conduction. Extensive effect on electrical function is
also seen for variants in or close to the developmental
genes NKX2-5 and TBX5.

The strongest common AF variant is close to PITX2
that has a role in cardiac development, and its
dysfunction has been linked to atrial structural
remodeling (52). Here, the variant only affects indices
of atrial and AVN conduction with no observable
effect on ventricular conduction. This is consistent
with the fact that PITX2 expression in the ventricles is
downregulated during embryogenesis, whereas atrial
expression remains high (53), and that atrial but
not ventricular chamber-specific deletion of PITX2
in mice results in atrial electric and structural
remodeling linked to arrhythmogenesis (52).

Several AF variants have only mild or no effects on
electrocardiogram traits, and there is no clear link
between AF effect size and the effect on conduction,
highlighting the complex relationship between
normal cardiac electrophysiology and arrhythmia
development. Clearly, variants can affect the risk of
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arrhythmia without substantial disruption of the
normal cardiac electrical function. For example,
the novel intergenic variant close to LINC01142 and
METTL11B does not have an observable effect on
conduction. It is unclear by which mechanism this
locus affects the risk of AF; there are no obvious
candidate genes in the region, and the associated
SNPs do not associate with expression of either of the
2 flanking genes in our expression dataset or in that of
the Genotype-Tissue Expression project (25).

STUDY LIMITATIONS. The p.Gly4098Ser mutation in
PLEC is very rare in non-Icelanders and thus we have
not been able to demonstrate an AF association for
this mutation in populations outside of Iceland.
However, this fact does not prevent the generaliz-
ability of the discovery to a broader population for
several reasons. The PLEC gene is already strongly
implicated in cardiac function and is the third gene
encoding a cardiac structural protein to be linked
with AF risk in a genome-wide study (13,14).
Furthermore, the mutation associates genome-wide
significantly with several ECG variables in the
absence of AF, confirming its effects on cardiac con-
duction. Last, despite this particular variant being
largely specific to the Icelandic population, other
variants in the PLEC gene might be found to affect AF
in other populations as was the case for MYL4 (54).

CONCLUSIONS

We describe the discovery of the third rare or low-
frequency coding variant conferring risk of AF in a
GWAS. Of interest, all 3 variants were found in genes
that affect myocardial structure. This underscores the
role of structural components of the myocardium in
the pathogenesis of AF and supports the notion that
otherwise subclinical mechanical dysfunction may
have clinical electrophysiological consequences.

Coding variants in the structural genes PLEC and
MYH6 associate with AF, and both widely affect ECG
measurements in the absence of AF. Other GWAS AF
variants that we assess are in noncoding regions, and
the mechanism by which they affect AF risk is largely
unknown. Here we demonstrate a marked diversity in
their effects on normal cardiac electrical function
and, in some cases, a lack of such an effect, under-
scoring the extreme complexities in the pathogenesis
of this common arrhythmia.
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ARTICLE

Coding variants in RPL3L and MYZAP increase risk
of atrial fibrillation
Rosa B. Thorolfsdottir et al.#

Most sequence variants identified hitherto in genome-wide association studies (GWAS) of

atrial fibrillation are common, non-coding variants associated with risk through unknown

mechanisms. We performed a meta-analysis of GWAS of atrial fibrillation among 29,502

cases and 767,760 controls from Iceland and the UK Biobank with follow-up in samples from

Norway and the US, focusing on low-frequency coding and splice variants aiming to identify

causal genes. We observe associations with one missense (OR= 1.20) and one splice-donor

variant (OR= 1.50) in RPL3L, the first ribosomal gene implicated in atrial fibrillation to our

knowledge. Analysis of 167 RNA samples from the right atrium reveals that the splice-donor

variant in RPL3L results in exon skipping. We also observe an association with a missense

variant in MYZAP (OR= 1.38), encoding a component of the intercalated discs of cardio-

myocytes. Both discoveries emphasize the close relationship between the mechanical and

electrical function of the heart.
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Atrial fibrillation is the most common arrhythmia of clin-
ical significance with an estimated number of 33.5 million
individuals diagnosed with atrial fibrillation globally in

the year 20101. It is associated with increased mortality and
morbidity, particularly stroke and heart failure, and is responsible
for substantial health care costs1. Atrial fibrillation is a complex
disease that is characterized by both mechanical and electrical
abnormalities of the atria that may be detected prior to diagnosis
of the arrhythmia itself. The role of atrial myopathy and fibrosis
in the development of atrial fibrillation is increasingly recognized
and it has been postulated that these processes may contribute to
cardioembolic stroke in the absence of arrhythmia2. Thus, iden-
tification of the early stages of atrial myopathy may allow for
therapy to prevent progression to atrial remodeling, atrial fibril-
lation, and stroke3.

Genome-wide association studies (GWAS), assessing primarily
common sequence variants, have yielded over 30 genetic loci that
associate with atrial fibrillation4. Most of the associated variants
are non-coding and the causative genes remain unknown but the
closest genes reveal a polygenic process, implicating transcription
factors, cardiac ion channels, myocardial, and cytoskeletal pro-
teins in the pathogenesis of atrial fibrillation. In the pre-GWAS
era, linkage mapping and candidate gene sequencing linked a
number of rare sequence variants to atrial fibrillation, mostly in
single cases or familial atrial fibrillation, including variants in
cardiac ion channel genes4. These variants explain a small pro-
portion of atrial fibrillation cases, and for many, the genetic
evidence is not robust.

In the past few years, through GWAS based on whole-genome
sequencing, we have identified three low-frequency coding var-
iants that associate with atrial fibrillation5–8. All three variants are
in structural genes, the myosin sarcomere genes MYH65 and
MYL46,7 and the cytoskeletal gene PLEC8. These findings support
the notion of an important relationship between myocardial
mechanical integrity and the development of arrhythmias.

Here, we continue our search for variants associated with atrial
fibrillation to shed further light on the pathophysiology of this
common arrhythmia. We performed an atrial fibrillation GWAS
using data from Iceland and the UK Biobank, focusing on rare
and low-frequency coding and splice variants, with follow-up of
the most significant variants in samples from Norway and the US.

Results
Associations with coding variants in RPL3L and MYZAP. We
performed a meta-analysis on atrial fibrillation including 14,710
cases and 373,897 controls from Iceland and 14,792 cases and
393,863 controls from the UK Biobank9, focusing on variants
annotated as having moderate or high impact on protein function
(including moderate: missense, in-frame indel, splice-region, and
high impact: splice-acceptor, splice-donor, frameshift, stop-
gained, and stop lost variants)10. To account for the expected
impact, we applied the significance thresholds of P < 5.1 × 10−8

for moderate and P < 2.6 × 10−7 for high-impact variants11.
We found two novel genome-wide significant atrial fibrillation

associations in the gene RPL3L on chromosome 16, with the
missense variant p.Ala75Val (allele frequency 3.65% in Iceland, OR:
1.19, P= 3.4 × 10−12) and the splice-donor variant c.1167+1G>A
(allele frequency 0.61% in Iceland, OR: 1.52, P= 8.2 × 10−10). The
two RPL3L variants are not correlated (D’= 1, r2= 0.00024), and
when conditioned on each other, both associations with atrial
fibrillation remained (Supplementary Table 1). To assess the
relationship between RPL3L and atrial fibrillation further, we tested
all 15 low-frequency coding variants in the gene for association with
atrial fibrillation after conditioning on p.Ala75Val and c.1167
+1G>A (significance threshold= 0.05/15= 0.0033, Supplementary

Table 2). One variant associated with atrial fibrillation with a P-
value below this threshold but the association was not genome-wide
significant in the meta-analysis. The RPL3L gene encodes a
ribosomal protein (ribosomal protein like 3L) that is primarily
expressed in skeletal muscle and heart unlike most ribosomal
proteins, that are ubiquitously expressed12.

We also observed a suggestive association with the missense
variant p.Gln254Pro in the gene MYZAP on chromosome 15
(allele frequency 1.08% in Iceland, OR: 1.36, P= 7.8 × 10−8)
(Table 1). No other coding variant in MYZAP associates
independently with atrial fibrillation (Supplementary Table 3).
MYZAP encodes myozap, myocardial zonula adherens protein,
primarily expressed in the heart in man and its homolog in the
mouse has been localized to the intercalated discs13.

To further assess these associations, we tested the three
sequence variants in four additional sample sets of 9204 cases and
76,161 controls combined, from the Nord-Trøndelag Health
Study (HUNT), the Further Cardiovascular Outcomes Research
with PCSK9 Inhibition in Subjects with Elevated Risk (FOURIER)
trial, the Vanderbilt atrial fibrillation Registry, and the Tromsø
Study. Joint analysis of all data sets yielded genome-wide
significant association with atrial fibrillation of all three variants,
RPL3L Ala75Val (OR: 1.20, P= 1.7 × 10−14), RPL3L
c.1167+1G>A (OR: 1.50, P= 5.0 × 10−10), and MYZAP p.
Gln254Pro (OR: 1.38, P= 3.3 × 10−10) (Table 1).

Three other moderate or high-impact coding variants in the
genes MYH6, PLEC, and MYL4 (recessive model), previously
reported by us, were genome-wide significantly associated with
atrial fibrillation in this data set5–8.

The p.Ala75Val in RPL3L associates with electrocardiogram
measures. We have previously demonstrated that the effects of
reported atrial fibrillation variants on ECG traits measured in
sinus rhythm range from none to extensive and there is no clear
relationship between effects on atrial fibrillation and effects on
ECG measures8. For example, a sequence variant associated with
atrial fibrillation in the sodium channel gene SCN10A has
extensive and strong effects on ECG measures but a relatively
small atrial fibrillation effect compared to the most significant
common atrial fibrillation variant near PITX2 that has minimal
effect on ECG measurements (Fig. 1). Figure 1 shows the effects
of the RPL3L and MYZAP variants on ECG traits compared to
the effects of 31 published atrial fibrillation variants. For the
analysis we used 289,297 sinus rhythm ECGs from 62,974 indi-
viduals not diagnosed with atrial fibrillation and tested all var-
iants for association with 122 ECG variables, some of which are
correlated (Supplementary Table 4 and Supplementary Data 1).
We used the Benjamini–Hochberg false discovery rate (FDR)
procedure controlling the FDR at 0.05 at each marker to account
for multiple testing. The RPL3L missense variant p.Ala75Val
associates with measures of atrial conduction during sinus
rhythm, both P wave amplitude and area, and with QRS duration.
Neither of the other variants in RPL3L and MYZAP associated
with ECG traits in sinus rhythm. When testing for association
with ECG traits using all ECGs irrespective of rhythm and history
of atrial fibrillation, p.Ala75Val in RPL3L associates more sig-
nificantly with ECG measurements and p.Gln254Pro in MYZAP
associates with various P wave indices, R amplitude, and T wave
indices (Supplementary Fig. 1).

The p.Gln254Pro in MYZAP associates with sick sinus syn-
drome. Variants that associate with risk of atrial fibrillation also
tend to associate with the related atrial arrhythmia sick sinus
syndrome (SSS) and commonly with effects that are proportional
to the atrial fibrillation effects8. One notable exception is the
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missense mutation in MYH6 that we originally discovered
through its association with high risk of SSS and confers a sub-
stantially greater risk of SSS than predicted from its effect on
atrial fibrillation risk5. We tested the three new atrial fibrillation
variants in 3568 SSS cases and 346,025 controls from Iceland
and 403 cases and 403,181 controls from the UK Biobank9. In the
joint analysis, p.Gln254Pro in MYZAP associates with SSS
(OR: 1.65, 95% CI: 1.33–2.05, P= 5.0 × 10−6) (Supplementary
Table 5).

To gain a better understanding of the new atrial fibrillation
variants, we tested them for association with other phenotypes in
deCODE´s genotype/phenotype database under both additive and
recessive models but found no other associations passing
Bonferroni correction. Association results for available relevant
phenotypes including risk factors of atrial fibrillation are listed in
Supplementary Tables 6 and 7. Since mutations in ribosomal
genes are commonly associated with bone marrow failure, we
specifically queried the relationship between the RPL3L variants
and blood cells and found no associations. Similarly, since
mutations in intercalated disc genes, albeit not MYZAP, have
been associated with cardiomyopathies in man14 we assessed the
link between the MYZAP variant and cardiomyopathies in our
database, but found none.

The splice-donor variant in RPL3L causes exon skipping. We
obtained RNA samples from cardiac atria of 167 Icelanders and
used them to assess the effect of the splice-donor variant c.1167
+1G>A in RPL3L. Two of the 167 individuals carry this variant.
Non-carriers only produce the primary RPL3L isoform, but both
carriers also produce an alternative isoform that skips exon 9 (P
= 0.0052, Fig. 2a). We also found that carriers express the two
isoforms in approximately equal abundance. Exon 9 is the second
to last exon in RPL3L and is 120 base pairs long, and therefore its
deletion is in-frame (Fig. 2b).

Discussion
By performing a meta-analysis of atrial fibrillation using samples
from deCODE and the UK biobank, focusing on rare and low-
frequency coding and splice variants, with follow up in four
sample sets from Norway and the US, we discovered three new
atrial fibrillation variants in two genes, two in the ribosomal gene
RPL3L and one in MYZAP that encodes a component of the
cardiac intercalated discs. Risk of atrial fibrillation has not been
associated with a ribosomal gene before.

The eukaryotic ribosome, composed of four different ribosomal
RNAs and ~80 ribosomal proteins, is a complex cellular machine
that translates messenger RNA into protein15. Only a few rare
inherited diseases have been specifically linked to mutations in
genes encoding ribosomal proteins. They include
Diamond–Blackfan anemia and Shwachman–Diamond syn-
drome that are characterized by a distinct set of clinical features,
including bone marrow failure and/or developmental abnormal-
ities16. The ribosome has generally been considered to function in
a housekeeping capacity but recent studies have revealed that
ribosome activity may be regulated in a cell-specific manner, for
example through changes in the protein composition of the
ribosome17,18. One example is the RPL3L with expression
restricted to skeletal muscle and the heart12. Ribosomes con-
taining RPL3L instead of its ubiquitously expressed homolog,
RPL3, have altered translational activity and it has been postu-
lated that RPL3L may be a negative regulator of muscle growth19.

The RPL3L missense variant associating with atrial fibrillation
is p.Ala75Val, and Ala75 is highly conserved in both RPL3L and
RPL3 over a range of species (PROVEAN impact prediction
scores <−2.520) (Supplementary Table 8). Sequencing of RNAT
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samples from cardiac atria including from carriers of the splice-
donor variant, c.1167+1G>A, demonstrated that the variant leads
to skipping of RPL3L exon 9, the second to the last exon that
encodes amino acid residues 350 to 389. These residues are 75%
identical to the corresponding RPL3 residues. In yeast it has been
shown that amino acids 373–380 in RPL3, corresponding to
amino acids 382–389 in human RPL3L, form a part of the contact
site of the ribosomes with the signal recognition particle that
targets ribosomes to the endoplasmic reticulum membrane21.
Based on functional similarities between RPL3 and RPL3L it is
therefore possible that c.1167+1G>A disrupts engagement of

RPL3L containing ribosomes with the endoplasmic reticulum and
thus reducing ribosomal function. Since both RPL3L variants
increase the risk of atrial fibrillation it could be predicted, based
on the suggested effect of the splice-donor variant, that the var-
iants are loss of, rather than gain of, function. The association of
atrial fibrillation with a gene expressed in the atria that is involved
with regulation of muscle growth is in line with the increasingly
recognized tight link between mechanical myocardial integrity
and the electrical function of the heart.

The MYZAP gene was recently discovered by Seeger et al. in an
effort to find new components of the intercalated discs13, a highly
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Fig. 1 Heatmap showing the effects of atrial fibrillation variants on ECG traits in sinus rhythm ECGs, excluding atrial fibrillation cases. See Thorolfsdottir
et al8. ECG measurements were available for 62,974 individuals without atrial fibrillation. Each column shows the estimated effect of the risk allele of an
atrial fibrillation variant on various ECG traits. The effect of each variant, annotated with the corresponding gene name, is scaled with the log10-atrial
fibrillation odds ratio. Red color represents a positive effect on the ECG variable and blue color a negative effect. The effect is shown only for significant
associations after adjusting for multiple testing with a false discovery rate procedure for each variant. Non-significant associations are white in the heatmap
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specialized cell–cell contact structure that enables mechanical, elec-
trical and chemical communication between cardiomyocytes. Human
Myozap mRNA is primarily expressed in the heart and in the mouse
the protein was predominantly found at intercalated discs and sar-
comeric Z-discs13. In vitro functional studies revealed a role in car-
diac signal transduction as Myozap promotes serum response factor
signaling to the nucleus13. A knockdown of the Myozap ortholog in
zebrafish and cardiac overexpression of Myozap in the mouse both
resulted in cardiomyopathy13,22, suggesting an important role of the
protein in maintaining cardiac integrity and function.

According to PROVEAN20, Gln254 is conserved and the var-
iant is predicted to be deleterious (Supplementary Table 8). The
variant is located at the edge of the Myozap protein region
associated with both activation of serum response factor-
dependent transcription and actin colocalization (amino acids
91–250), and could therefore potentially affect either one or both
of these protein functions13. An introduction of proline, a con-
formationally constrained amino acid, can lead to perturbations
in local folding and therefore might interrupt the function of
adjacent domains.
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Mutations in intercalated disc genes cause cardiomyopathies,
in particular arrhythmogenic right ventricular cardiomyopathy,
characterized by a notable risk of both atrial fibrillation and
ventricular arrhythmias, and one of the leading causes of sudden
cardiac death in young people and athletes23. Interestingly, con-
duction abnormalities and arrhythmias in arrhythmogenic right
ventricular cardiomyopathy are commonly encountered before
the appearance of structural defects14. Atrial fibrillation variants
have also been identified in and close to genes encoding com-
ponents of intercalated discs4, and the atrial fibrillation-associated
gene PITX2 has been shown to directly regulate intercalated disc
genes24. P.Gln254Pro does not associate with cardiomyopathies,
ventricular arrhythmias, or sudden cardiac death in our data,
suggesting that it only affects the atria but we may lack power to
identify a ventricular effect.

Like p.Gln254Pro in MYZAP, the three low-frequency mis-
sense and frameshift variants we have previously reported to
increase the risk of atrial fibrillation, in MYH6, MYL4, and PLEC,
also increase the risk of SSS8. Like MYZAP, all three genes encode
structural components of the cardiomyocyte. In particular, PLEC
encodes a multidomain cytoskeletal linking protein which, among
other functions, connects with elements of the intercalated disc
and has a role in maintaining its integrity25,26.

In summary, we report the association of three low-frequency
coding variants in RPL3L and MYZAP with increased risk of
atrial fibrillation. Using RNA samples from cardiac tissue we
show that a splice-donor variant in RPL3L causes exon skipping.
These results add to previous discoveries of three low-frequency
coding variants in structural genes associating with atrial fibril-
lation and highlight the intricate connection between myocardial
structure and arrhythmogenesis. The association of a missense
variant in MYZAP with atrial fibrillation and SSS emphasizes the
role of the intercalated discs in maintaining normal cardiac
rhythm. The fact that a coding variant in a ribosomal protein
specifically expressed in skeletal muscle and the heart increases
risk of atrial fibrillation is in line with the novel concept of
ribosome specialization in muscle and underscores the impor-
tance of this specialization for normal function of the heart.
GWAS have linked a number of common variants with risk of
atrial fibrillation but emerging discoveries of low-frequency
coding variants associating with atrial fibrillation continue to
shed new light on the pathogenesis of the disease.

Methods
The study complies with the Declaration of Helsinki.

Icelandic atrial fibrillation study population. The Icelandic atrial fibrillation
sample consisted of 15,552 Icelanders diagnosed with atrial fibrillation (Interna-
tional Classification of Diseases (ICD) 10 code I.48 and ICD 9 code 427.3)
according to electronic medical records at Landspitali, The National University
Hospital, in Reykjavik, Iceland, and Akureyri Hospital, the two largest hospitals in
Iceland, between 1987 and 2017. In total, 14,710 out of the 15,552 cases had
genotypes and were included in the analysis. Controls were 373,897 Icelanders
recruited through different genetic research projects at deCODE genetics. All
participating subjects who donated blood signed informed consent. Personal
identities of the participants and biological samples were encrypted by a third party
system. The study was approved by the Icelandic Data Protection Authority and
the National Bioethics Committee of Iceland (no. VSNb2015030021).

UK Biobank atrial fibrillation study population. The UK Biobank project is a
large prospective cohort study of ~500,000 individuals from across UK, aged
between 40 and 69 at recruitment. The study has collected extensive phenotypic
and genotypic information on its participants, including ICD coded diagnoses from
inpatient and out-patient hospital episodes9. The atrial fibrillation population from
UK Biobank consisted of 14,792 cases and 393,863 controls, all individuals of
European ancestry recruited between 2006 and 20109. Atrial fibrillation was
ascertained based on ICD diagnoses. These are primary or secondary ICD-9 or
ICD-10 diagnoses codes a participant has had recorded across all their episodes in
hospital. Self-reported diagnoses were excluded from our analysis. Further details

on the recruitment and variables collected in the UK Biobank study can be found
in previous publications9,27.

The Vanderbilt Atrial Fibrillation Registry. We genotyped novel atrial fibrillation
variants in an atrial fibrillation sample set (759 cases and 759 controls) from the
Vanderbilt Atrial Fibrillation Registry, a clinical and genetic registry at the Van-
derbilt University Medical Center in Nashville, Tennessee. At enrollment into the
registry, a detailed medical and drug history was obtained from all patients and
patients were also asked to complete a symptom questionnaire. Patients with
history of atrial fibrillation only associated with cardiac surgery were excluded from
this study. Written informed consent was obtained from all patients under a
protocol approved by the Vanderbilt University Institutional Review Board.

FOURIER replication cohort. We also followed-up novel atrial fibrillation variants
in an atrial fibrillation sample set originating from the Further Cardiovascular
Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk
(FOURIER) trial (1238 atrial fibrillation cases and 11,562 controls). FOURIER is a
randomized placebo-controlled, double-blind, parallel-group, multinational trial
testing the hypothesis that adding the drug evolocumab to statin therapy will
reduce the incidence of major adverse cardiovascular events in patients with
clinically evident cardiovascular disease (CVD). The whole study group consisted
of 27,564 patients recruited at 1242 cities in 49 countries from 2013 to 2015.
Eligible patients were between 40 and 85 years of age and had clinically evident
atherosclerotic CVD. The design of the trial has been described in detail else-
where28,29. A subset of over 12,000 participants of European descent from the
FOURIER trial have been genotyped by us by whole-exome sequencing, chip-
typing, and imputation. Detailed phenotypic information was gathered on all
FOURIER study participants, including atrial fibrillation disease status. The Fourier
atrial fibrillation sample set consists of 1238 cases and 11,562 controls of European
descent, excluding all Icelandic participants.

Norwegian atrial fibrillation study population from the Tromsø Study. The
Tromsø Study is a population-based prospective study with repeated health surveys
in the municipality of Tromsø, Norway30. So far, more than 40,000 individuals
have been examined.The population is being followed-up on an individual level
with registration and validation of diseases and death and an endpoint registry has
been established for CVD. Discharge diagnosis lists of CVD have been retrieved
from the University Hospital of North Norway in Tromsø, and medical records for
all individuals with a CV discharge diagnosis (including visits to out-patient clinics,
out of hospital journals, autopsy records, and death certificates) have been
reviewed. Atrial fibrillation has been registered based on ICD-9 and ICD-10 codes
since 1986 as part of the ongoing CV endpoint registration in the Tromsø Study.
People with postoperative atrial fibrillation only (≤28 days after the procedure) are
registered, but are not included as cases. For the current project, one sex-matched
and age-matched control for each case of atrial fibrillation from was drawn from
the population-based Tromsø 4 survey. Participants in the Tromsø Study gave
informed, written consent. The study was approved by the Regional Committee for
Medical Research Ethics. The atrial fibrillation sample set consists of 714 cases and
698 controls.

The Nord-Trøndelag Health Study. The Nord-Trøndelag Health Study (HUNT)
is a population-based health survey conducted in the county of Nord-Trøndelag,
Norway. Individuals were included at three different time points during ~20 years
(HUNT1 (1984–1986), HUNT2 (1995–1997), and HUNT3 (2006–2008))31. At
each time point, the entire adult population (≥20 years) was invited to participate
by completing questionnaires, attending clinical examinations, and interviews.
Participation rates have generally been high: 89.4% (n= 77,212), 69.5% (n=
65,237), and 54.1% (n= 50,807) in HUNT1, HUNT2, and HUNT3, respectively31.
Taken together, the health studies included information from over 120,000 dif-
ferent individuals from Nord-Trøndelag. Biological samples including DNA have
been collected for ~70,000 participants. Atrial fibrillation was defined based on
ICD-10 codes collected from local hospitals and out-patient clinics between 1999
and 2016. Cases (6493) were defined as individual with one or more ICD-9 or ICD-
10 codes specific for atrial fibrillation (“I48” or “427.3”) whereas controls (63,142)
were all individuals without a code specific for atrial fibrillation.

Secondary phenotypes. Novel atrial fibrillation variants were tested for associa-
tion with other phenotypes in the deCODE genetics phenotype database which
contains extensive medical information on various diseases and other traits. The
pacemaker population sample set includes 3578 individuals who received a pace-
maker implantation (NCSP surgical codes FPE and FPF) at LUH between 1997 and
2015. The SSS sample set includes 3578 individuals who received the diagnosis of
SSS (ICD-10 code I49.5, ICD 9 code 427.8) at LUH in Reykjavik between 1987 and
2015. Ischemic stroke cases were identified from a registry of individuals diagnosed
with ischemic stroke or transient ischemic attack (TIA) at LUH during the years
1993 to 2014 (n= 5626). The ischemic stroke or TIA diagnoses were based on
standard WHO criteria and imaging evidence (either CT or MRI), and were
clinically confirmed by neurologists. A total of 1369 individuals with ischemic
stroke were classified as having cardioembolic stroke based on a neurologist review
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of medical records and classification according to the Trial of Org 10172 in Acute
Stroke Treatment (TOAST)32. The controls used in the various case–control
analyses of this study consisted of disease-free controls randomly drawn from the
Icelandic genealogical database and individuals from other genetic studies at
deCODE. We also assessed the association of novel atrial fibrillation variants with
SSS among 403 cases and 403,181 controls in the UK Biobank.

Electrocardiogram data. Electrocardiograms (ECGs) obtained in Landspitali, The
National University Hospital, the largest and only tertiary care hospital in Iceland,
have been digitally stored since 1998. We have analysed 434,000 ECGs from 88,217
individuals obtained between 1998 and 2015. To assess the effect of atrial fibril-
lation variants on ECG traits, and thus cardiac electrical function, in the absence of
atrial fibrillation, we excluded ECGs from individuals with atrial fibrillation and
pacemakers and used 289,297 sinus rhythm (heart rate 50–100 beats per min)
ECGs of 62,974 individuals for the primary analysis. The ECGs were digitally
recorded with the Philips PageWriter Trim III, PageWriter 200, Philips Page
Writer 50, and Phillips Page Writer 70 cardiographs and stored in the Philips
TraceMasterVue ECG Management System. These were ECGs obtained in all
hospital departments, from both in patients and outpatients. Digitally measured
ECG waveforms and parameters were extracted from the database for analysis. The
Philips PageWriter Trim III QT interval measurement algorithm has been pre-
viously described and shown to fulfill industrial ECG measurement accuracy
standards33. The Philips PR interval and QRS complex measurements have been
shown to fulfill industrial accuracy standards34.

Whole-genome sequencing, variant calling, and imputation in Iceland. In
Iceland, the study is based on whole-genome sequence data from the whole blood
of 15,220 Icelanders participating in various disease projects at deCODE genetics.
In addition, 151,677 Icelanders have been genotyped using Illumina SNP chips and
genotype probabilities for untyped relatives has been calculated based on Icelandic
genealogy. The sequencing was done using Illumina standard TruSeq methodology
to a mean depth of 35 (SD 8). Autosomal SNPs and INDEL’s were identified using
the Genome Analysis Toolkit version 3.4.035. Variants that did not pass quality
control were excluded from the analysis according to GATK best practices7.
Information about haplotype sharing was used to improve variant genotyping,
taking advantage of the fact that all sequenced individuals had also been chip-typed
and long-range phased36.

The informativeness of genotype imputation (imputation information) was
estimated by the ratio of the variance of imputed expected allele counts and the
variance of the actual allele counts:

VarðEðθjchip dataÞÞ
VarðθÞ

where θ is the allele count. Here, Var(E(θ/chip data)) is estimated by the observed
variance in the imputed expected counts and Var(θ) was estimated by p(1− p),
where p is the allele frequency.

Variants were annotated using Ensembl release 80 and Variant Effect Predictor
(VEP) version 2.810. A total of 32.5 million variants passed the quality threshold
and were imputed into 151,677 Icelanders who had been genotyped using Illumina
chips.

To account for inflation in test statistics due to cryptic relatedness and
stratification, we applied the method of LD score regression37. With a set of 1.1M
variants we regressed the χ2 statistics from our GWAS scan against LD score and
used the intercept as a correction factor. The LD scores were downloaded from a
LD score database (ftp://atguftp.mgh.harvard.edu/brendan/
1k_eur_r2_hm3snps_se_weights.RDS; accessed 23.06.2015). The estimated
correction factor for atrial fibrillation based on LD score regression was 1.39 for the
additive model in the Icelandic sample and 1.04 in UK Biobank.

Genotyping in the UK biobank data. In the UK Biobank, genotyping was per-
formed using a custom-made Affymetrix chip, UK BiLEVE Axiom38, in the first
50,000 participants, and with Affymetrix UK Biobank Axiom array in the
remaining participants39; 95% of the signals are on both chips. Imputation was
performed by Wellcome Trust Centre for Human Genetics using a combination of
1000Genomes phase 340, UK10K41, and Haplotype Reference Consortium (HRC)
reference panels42, for up to 92,693,895 SNPs43.

Single-variant genotyping. For genotyping of single variants in atrial fibrillation
sample sets from the Vanderbilt registry, FOURIER trial, and Norway, we used the
Centaurus (Nanogen) or KASP platforms.

Statistical analysis. We performed a meta-analysis on 14,710 atrial fibrillation
cases and 373,897 controls from Iceland and 14,792 atrial fibrillation cases and
393,868 controls from the UK Biobank. We used logistic regression to test for
association between SNPs and atrial fibrillation and other phenotypes in the Ice-
landic study, treating phenotype status as the response and allele count as a cov-
ariate. We used allele counts from genotyping or integrated over possible genotype
counts based on imputation. Other available individual characteristics that

correlate with phenotype status were also included in the model as nuisance
variables. In Iceland these covariates were: sex, county of birth, current age, or age
at death (first and second order terms included), blood sample availability for the
individual and an indicator function for the overlap of the lifetime of the individual
with the time span of phenotype collection. In the UK biobank study 40 principal
components were used to adjust for population stratification and age and sex were
included as covariates in the logistic regression model. Only white British indivi-
duals were included in the study. For the meta-analysis we used a fixed-effects
inverse variance method44 based on effect estimates and standard errors from the
Icelandic and the UK Biobank study. Only sequence variants from the Haplotype
Reference Consortium panel (HRC)42 were included in the meta-analysis and
variants from deCODE and the UK Biobank imputation were matched on position
and alleles. Standard errors were calculated in the following way:

For a P-value smaller than 1 we calculate the standard error as follows:

P ¼ 2Φ zð Þ ¼ 2Φ
β

σ

� �
:

Solving for σ gives

σ ¼ β

Φ�1 P
2

� �

If P= 1, then Φ�1 P
2

� � ¼ 0 and the above method breaks down. In this case we use
data from other markers to estimate the relationship between allele frequency (f)
and imputation information (I) and σ as follows:

Var βð Þ ¼ σ2 / 1
N
f ð1� f Þ / 1

I
f ð1� f Þ

Sample size (N) is proportional to imputation information (I) if we are always
basing the analysis on the same set of individuals. Therefore, if we fit the following
linear model:

log σ2
� � ¼ γ1 þ γI logðIÞ þ γf logðf 1� fð ÞÞ

for a subset of 100,000 markers spread over the genome with MAF ranging close to
uniformly between 0.1 and 50% and info between 0.9 and 1 and pick the subset of
markers with P < 0.9 then we can predict σ for a marker with P close to 1.

We corrected the threshold for genome-wide significance for multiple testing
with a weighted Bonferroni adjustment using as weights the enrichment of variant
classes with predicted functional impact among association signals estimated from
the Icelandic data11.

With 32,463,443 sequence variants in the Icelandic data the weights given in
Sveinbjornsson et. al. were rescaled to control the family-wise error rate. This
yielded significance thresholds of 2.6 × 10−7 for high-impact variants (N= 8464)
and 5.1 × 10−8 for moderate-impact variants (N= 149,983).

Conditional analysis of the region around novel atrial fibrillation variants, was
performed by adding the top variant or variants as a covariate while testing every
SNP in the region for association with atrial fibrillation in the Icelandic data.

We tested atrial fibrillation variants for association with 122 ECG
measurements using linear regression, treating the ECG measurement as the
response and the genotype as the covariate. Following the procedures described in
Thorolfsdottir et al.8, ECG measurements were adjusted for sex, year of birth, and
age at measurement and were subsequently standardized to have a normal
distribution. For individuals with multiple ECG measurements, the mean
standardized value was used. We assume that the quantitative measurements follow
a normal distribution with a mean that depends linearly on the expected allele at
the variant and a variance-covariance matrix proportional to the kinship matrix45.
The Benjamini–Hochberg FDR procedure controlling the FDR at 0.05 at each
marker was used to account for multiple testing.

Expression analysis in cardiac tissue. RNA sequencing was performed on
samples from cardiac right atrium of 167 Icelanders (see Supplementary Table 9,
for subject characteristics). The samples were obtained during cardiothoracic
surgery at Landspitali, The National University Hospital, in Reykjavik, Iceland. In
the case of the splice-donor variant in RPL3L (c.1167+1G>A), the RNA samples
from cardiac atria were used to identify a novel isoform and quantify expression at
the transcript level. RNA sequencing libraries were inspected for sequencing and
alignment integrity using parameters retrieved from RNA-SeQC46, Picard Col-
lectRnaSeqMetrics (http://broadinstitute.github.io/picard/), and FastQC (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc). Genotype concordance was
determined by comparing imputed genotypes to those derived from RNA-seq.
Genome alignments were found using STAR47 aligning to GRCh38 with ensemble
v8748 gene annotations. Alignments of RNA-seq reads of carriers of the variant
contained several reads that spliced over exon 9 in transcript ENST00000268661 of
RPL3L. Neither of the two other transcripts of RPL3L showed any expression in all
samples (See Supplementary Fig. 2). To assess quantitatively the effect of the
variant on the isoform usage we created the transcript sequence for the novel
isoform, added it to the ensemble v87 transcriptome, and re-quantified all samples
using kallisto49 and the modified transcriptome. The expression of the annotated
and novel transcript was corrected w.r.t. the size factor computed from the gene
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expression analysis. Finally the proportion of novel isoform usage was computed by
dividing the estimated expression of the novel isoform with the sum of the
expression of both isoforms. Due to the small number of carriers, two samples out
of 167, we opted for a conservative test for computing the significance of the
observed event, that the carriers have a ratio of 50% vs near 0% for non-carriers.
The test used was the two-sided Mann–Whitney U test, which only takes the
relative ranks of the samples into account and not the underlying values. The P-
value computed was P= 0.0052, the lowest possible P-value that can be obtained
using this statistical test with n1= 165 and n2= 2.

Data availability. The Icelandic population WGS data has been deposited at the
European Variant Archive under accession code PRJEB8636. The authors declare
that the data supporting the findings of this study are available within the article, its
Supplementary Data files and upon request.
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To identify genetic variation underlying atrial fibrillation, the 
most common cardiac arrhythmia, we performed a genome-
wide association study of >​1,000,000 people, including 
60,620 atrial fibrillation cases and 970,216 controls. We 
identified 142 independent risk variants at 111 loci and pri-
oritized 151 functional candidate genes likely to be involved 
in atrial fibrillation. Many of the identified risk variants fall 
near genes where more deleterious mutations have been 
reported to cause serious heart defects in humans (GATA4, 
MYH6, NKX2-5, PITX2, TBX5)1, or near genes important for 
striated muscle function and integrity (for example, CFL2, 
MYH7, PKP2, RBM20, SGCG, SSPN). Pathway and functional 
enrichment analyses also suggested that many of the putative 
atrial fibrillation genes act via cardiac structural remodeling, 
potentially in the form of an ‘atrial cardiomyopathy’2, either 
during fetal heart development or as a response to stress in 
the adult heart.

We tested association between 34,740,186 genetic variants 
(minor allele frequency (MAF) >​2.5 ×​ 10−5) and atrial fibrillation, 

comparing a total of 60,620 cases and 970,216 controls of European 
ancestry from six contributing studies (The Nord-Trøndelag Health 
Study (HUNT), deCODE, the Michigan Genomics Initiative 
(MGI), DiscovEHR, UK Biobank, and the AFGen Consortium) 
(Supplementary Table 1). We identified 111 genomic regions with at 
least 1 genetic variant associated with atrial fibrillation (P <​ 5 ×​ 10−8). 
Of these, 80 loci have not previously been reported (Fig. 1, 
Supplementary Fig. 1, and Supplementary Tables 2 and 3). Based on 
approximate stepwise conditional analyses3, we identified 31 addi-
tional genetic risk variants that demonstrated genome-wide statisti-
cally significant association with atrial fibrillation (Supplementary 
Table 4) that were nearby but independent of the 111 index vari-
ants (linkage disequilibrium (LD) r2 <​0.10). We applied the widely 
used genome-wide association study (GWAS) P value significance 
threshold of P <​ 5 ×​ 10−8. Had we applied a more stringent threshold 
of P <​ 5 ×​ 10−9 (ref. 4), we would identify 94 loci, 63 of which have 
not been previously reported (Supplementary Table 2). We found 
that the total genome-wide genetic variation captured in this study 
explained 11.2% (s.e.m. 1.4%) of the variation in atrial fibrillation 
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(h2
SNP heritability). This is consistent with a recent report of 11.4%5. 

When combining the 111 locus index variants and the 31 additional 
genetic risk variants, we found that they explained 4.6% of the varia-
tion in atrial fibrillation.

Of the 35 loci previously reported for atrial fibrillation 
(Supplementary Table 3), we identified genome-wide significant 
association (P <​ 5 ×​ 10−8) at 31 (89%) after excluding results from 
the previously published AFGen Consortium (Supplementary 
Table 5)6. The four loci not captured comprised three loci discov-
ered in East Asian populations (KCNIP1, NEBL, CUX2) and one 
missense variant (PLEC) for which we did not have data7. To fur-
ther test the validity of our findings, we performed a heterogeneity 
test for the 111 index variants across the 6 contributing studies. 
Of the 111 index variants, only 2 index variants demonstrated evi-
dence for heterogeneity of effect size across the 6 contributing stud-
ies when correcting for multiple testing (P <​ 0.05/111 =​ 4.5 ×​ 10−4) 
(Supplementary Table 2). Both of these index variants repre-
sent loci that have previously been established as associated with 
atrial fibrillation across multiple studies (near PRRX1, PITX2) 
(Supplementary Table 3). These findings demonstrate a high exter-
nal validity of our results.

To understand the biology underlying the 111 atrial fibrillation-
associated loci, we employed a number of approaches, includ-
ing ‘Data-driven Expression Prioritized Integration for Complex 
Traits’ (DEPICT)8 to identify cell types and tissues in which atrial 
fibrillation genes are likely to be expressed. Based on 37,427 
human microarray expression samples from 209 different tissues 
and cell types, we observed a statistically significant enrichment 
for atrial (P =​ 2.4 ×​ 10−5), atrial appendage (P =​ 2.8 ×​ 10−5), heart 
(P =​ 5.2 ×​ 10−5), and ventricular tissues (P =​ 1.1 ×​ 10−4) (Fig. 2a and 
Supplementary Table 6). We further applied DEPICT to detect gene 
sets that were enriched for genes at atrial fibrillation-associated loci. 
Of the 14,461 gene sets we tested, 889 were enriched (false discov-
ery rate (FDR) <​ 0.05; Fig. 2b and Supplementary Table 7). The 
highlighted gene sets point to biological processes related to car-
diac development and morphology along with structural remodel-
ing of the myocardium. These findings are consistent with recent 
reports that have linked atrial fibrillation with rare coding variants 

in the sarcomere genes MYH6 and MYL4 and in the multidomain 
cytoskeletal linking protein PLEC, along with more common cod-
ing variants in TTN, essential for the passive elasticity of heart and 
skeletal muscle7,9–11.

Although we could identify protein-altering variants at 21 loci, 
comprising either the index variant (n =​ 2 loci) or a variant in high 
LD (r2) with the index variant (n =​ 19 loci; Supplementary Table 8), 
we noted that most associated risk variants are in the non-coding 
genome. To assess the potential function of associated non-coding 
variants, we tested for enrichment of atrial fibrillation-associated 
variants with a variety of regulatory features, including DNase I 
hypersensitive sites, histone methylation marks, transcription factor 
binding sites, and chromatin states in a variety of cell and tissue types 
available from Roadmap Epigenomics12 using ‘Genomic Regulatory 
Elements and Gwas Overlap algoRithm’ (GREGOR)13. This method 
tests whether the number of atrial fibrillation-associated index vari-
ants, or their LD proxies, overlap with the corresponding regulatory 
feature more often than expected when compared to control sets. 
Of 785 combinations of regulatory features and tissues examined 
(Supplementary Table 9), we found that atrial fibrillation-associ-
ated variants were most strongly associated with features in adult 
and fetal heart: active enhancers as indicated by H3K27ac in right 
atrium (P =​ 2 ×​ 10−33; 2.9 ×​ enrichment); H3K27ac in left ventricle 
(P =​ 3 ×​ 10−33; 2.6 ×​ enrichment); and in fetal heart tissue we found 
strong enrichment with H3K4me1 (P =​ 9 ×​ 10−27; 2.0 ×​ enrich-
ment) and open chromatin as measured by DNase hypersensitivity 
(P =​ 2 ×​ 10−26; 2.1 ×​ enrichment) (Fig. 2c, Supplementary Fig. 2 and 
Supplementary Table 9). This suggests that some atrial fibrillation 
loci are important in transcriptional regulation in the adult heart, in 
development of the fetal heart, or both.

To further enhance the biological understanding of the atrial 
fibrillation-associated loci, we identified candidate functional 
genes. There were 3,048 genes or transcripts for which the tran-
scribed region overlapped (see Online Methods) at least 1 vari-
ant in the 111 loci. We prioritized biological candidate genes that: 
(1) harbored a protein-altering index variant itself or in high LD  
(r2 >​0.80; Supplementary Table 8); (2) had expression levels that 
were associated and colocalized with atrial fibrillation-associated 
variants (P <​ 1.14 ×​ 10−9 in Genotype-Tissue Expression (GTEx) 
consortium data)14; (3) were highlighted by DEPICT (FDR <​0.05; 
Supplementary Table 10); or (4) were nearest to the index variant 
in a locus. Using these criteria, we prioritized 151 candidate genes 
(Supplementary Tables 2 and 11).

To identify tissues in which the 151 prioritized candidate genes 
showed enhanced expression, we used ‘Tissue Specific Expression 
Analysis’ (TSEA)15 and found enrichment in heart (P =​ 1 ×​ 10−16), 
blood vessel (9 ×​ 10–13) muscle tissues (P =​ 7 ×​ 10−11). To assess the 
empirical significance of these results, we performed 1,000 permu-
tations of the same number of genes selected: (1) randomly from 
the genome, and (2) subsets of the 3,048 genes within the 111 atrial 
fibrillation loci. We determined that the observed TSEA P val-
ues were substantially more significant than expected by chance  
(Fig. 3). The finding of increased expression of these genes in heart 
support that the genes we prioritized are strong candidates for being 
involved in atrial fibrillation.

Interestingly, we identified as functional candidates at least 18 
genes likely to be involved in cardiac and skeletal muscle function 
and integrity (AKAP6, CFL2, MYH6, MYH7, MYO18B, MYO1C, 
MYOCD, MYOT, MYOZ1, MYPN, PKP2, RBM20, SGCA, SSPN, 
SYNPO2L, TTN, TTN-AS, WIPF1); these included SGCG, which 
has been associated with muscular dystrophy16, RBM20, which has 
been associated with dilated cardiomyopathy17, and PKP2, which 
has been associated with arrhythmogenic right ventricular cardio-
myopathy18. We identified at least 13 genes likely to be involved 
in mediation of developmental events (ARNT2, EPHA3, FGF5, 
GATA4, GTF2I, HAND2, LRRC10, NAV2, NKX2-5, PITX2, SLIT3, 
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SOX15, TBX5) along with genes likely to be involved in intracellu-
lar calcium handling in the heart (CALU, CAMK2D, CASQ2, PLN), 
angiogenesis (TNFSF12, TNFSF12-TNFSF13), hormone signal-
ing (CGA, ESR2, IGF1R, NR3C1, THRB), and function of cardiac 
ion channels (HCN4, KCND3, KCNH2, KCNJ5, KCNN2, KCNN3, 
SCN10A, SCN5A, SLC9B1).

We tested the 111 atrial fibrillation index variants for asso-
ciation with 123 electrocardiogram (ECG) parameters in 62,974 
Icelanders in sinus rhythm, after exclusion of atrial fibrillation cases 
(Supplementary Fig. 3 and Supplementary Table 12). Sixty variants 
were associated with at least 1 ECG parameter when we controlled 
for an FDR of 0.05 at the variant level, 39 of which were novel atrial 
fibrillation variants, including many with substantial ECG effects, 
such as the variants near NACA, THRB, CAMK2D, NKX2-5, and 
CDKN1A. Many of the associated ECG parameters, including heart 
rate, P-wave duration, PR interval, and heart rate-corrected QT 
interval, are well-established intermediate phenotypes for atrial 

fibrillation19–22. Accordingly, several of the highlighted associations 
can be seen as indirect replications of the atrial fibrillation risk vari-
ants identified through GWASs. The results also indicate that many 
of the 111 atrial fibrillation risk variants act in the heart before atrial 
fibrillation. The type and direction of the ECG parameter associa-
tions might help inform the biology underlying the specific loci.

For the locus around index variant rs422068 on chromosome 
14, our approach prioritized MYH6 and MYH7 as the most likely 
functional genes (Supplementary Table 2). A rare missense muta-
tion in MYH6 has in prior GWASs been associated with sick sinus 
syndrome23, atrial fibrillation7, and coarctation of the aorta24, and 
several protein-altering variants in MYH7 have been linked to 
hypertrophic cardiomyopathy25. MYH6 and MYH7 encode the 
molecular motors of cardiac muscle that transduce chemical energy 
from ATP hydrolysis into mechanical energy of each heartbeat. 
MYH6 encodes α​-myosin heavy chain (α​-MyHC), which is the 
faster molecular motor of the thick filaments of the contractile 
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apparatus in healthy adult atrial muscle26. On the other hand, MYH7 
encodes β​-MyHC, a slower molecular motor27, which is expressed 
only in the atria during cardiac development and not in the nor-
mal adult atria. It has been established that MYH6 and MYH7 are 
regulated in an inverse manner in the ventricles of the heart, and 
in heart failure and other cardiac disorders in humans, β​-MyHC is 
upregulated, whereas α​-MyHC is downregulated, resulting in dimi-
nution of cardiac performance28. Importantly, recent experiments 
have demonstrated that MYH7 expression is elevated in atrial myo-
cytes of patients with chronic atrial fibrillation as well as in an ovine 
model of chronic atrial fibrillation29.

To explore potential mechanisms of MYH6 and MYH7 in atrial 
fibrillation, we developed an ischemic heart failure model for atrial 
fibrillation in rabbits. Ischemia was produced by chronic ligation 
of the left circumflex artery during thoracotomy with subsequent 
development of ischemic heart failure (>​4 weeks postoperatively), 
profound left atrial dilation, and development of long-lasting atrial 
fibrillation following burst pacing (Fig. 4 and Supplementary Fig. 4).  
We found that MYH7 expression was only detectable in the heart 
failure remodeled left atrium (Fig. 4 and Supplementary Fig. 5). The 
control left atrium did not express detectable levels of MYH7 and 
exclusively expressed MYH6. More importantly, in the dilated left 
atrium, MYH7 expression was heterogeneously distributed (Fig. 4 
and Supplementary Fig. 6), which thus resulted in contractile and 
metabolic heterogeneity, both of which are probably arrhythmo-
genic. Although the association between the rs422068 locus and 
atrial fibrillation could potentially be mediated through structural 
heart defects such as coarctation of the aorta or hypertrophic car-
diomyopathy via genetic variation not captured in this study, it is 
likely that the heterogeneously distributed switch from the adult 
to the fetal isoform of myosin heavy chain that we observed in the 
dilated left atrium may predispose rabbit (and possibly human) 
hearts to developing long-lasting atrial fibrillation.

Next, we investigated whether any of the 151 biological candidate 
genes that we identified could potentially represent a novel drug 
target for already developed drugs or drugs undergoing develop-
ment by querying the Drug Gene Interaction Database30. We found 
1 or more potential drug or substance interactions for 32 of the 151 
prioritized genes, totaling 475 drugs. Of these, 78 drugs targeting  

14 genes are already known to be able to control or trigger atrial 
fibrillation or other cardiac arrhythmias (Supplementary Table 13). 
In addition to a number of drugs that could potentially impact atrial 
fibrillation via an effect on cardiac ion channels (for example, rot-
tlerin, bepridil), including drugs already used for treating various 
neuropsychiatric disorders (for example, fosphenytoin, flunarizine), 
we also identified a number of anti-inflammatory drugs, including 
several glucocorticoids, and a cardiac-specific myosin activator 
(omecamtiv mecarbil), which is currently being tested for treat-
ment of heart failure31. Whether the highlighted drugs can be used 
to treat or prevent atrial fibrillation requires further evaluation, but 
the findings can be used as a foundation for directing future func-
tional experiments and clinical trials.

We constructed a polygenic risk score based on the 111 locus 
index variants and the 31 additional risk variants, identified 
through stepwise conditional analyses, weighted by effect esti-
mates obtained from meta-analyses excluding the UK Biobank 
(Supplementary Table 14). We found that the risk score predicted 
prevalent atrial fibrillation in the UK Biobank with an unadjusted 
area under the receiver operator curve of 65%. We then used the 
polygenic risk score to test for association with 1,494 International 
Classification of Diseases (ICD) code-defined disease groups 
in UK Biobank participants of white British ancestry32. In addi-
tion to a strong association with atrial fibrillation (P =​ 2 ×​ 10−920), 
we found association to additional mainly cardiovascular condi-
tions (P <​ 0.05/1,494 =​ 3.3 ×​ 10−5), including palpitations, heart 
valve disorders, heart failure, ischemic heart disease, and stroke 
(Supplementary Table 15 and Supplementary Fig. 7). However, 
when participants diagnosed with any type of cardiac arrhythmia 
(n =​ 24,681) were excluded from the analyses to avoid assessment 
bias (termed an exclusion phenome-wide association study)33, the 
atrial fibrillation risk score was no longer associated with any ICD 
disease group (all P >​ 3.3 ×​ 10−5). This suggests that the atrial fibril-
lation polygenic risk score is specific for atrial fibrillation and that 
the additional associations identified were mediated through atrial 
fibrillation, either as a result of a more thorough clinical examina-
tion (for example, heart valve disorders) or because atrial fibrillation 
is an intermediate step towards the disease (for example, stroke).

To examine the genetic impact on age of onset of atrial fibrilla-
tion, we generated a polygenic risk score (n =​ 142 markers) in which 
weights were based on information from all contributing studies 
(Supplementary Table 14) and tested for association with atrial fibril-
lation age of onset in the HUNT Study. In agreement with our previ-
ous report11, we found that younger atrial fibrillation age of onset 
was associated with a higher genetic burden of atrial fibrillation 
(Supplementary Fig. 8). This finding supports previous epidemio-
logical studies indicating that the risk of atrial fibrillation increases 
with decreasing atrial fibrillation age of onset in close relatives34,35.

After acceptance of this manuscript, a GWAS of AF in 65,446 cases 
identifying 97 loci was published online36. We meta-analyzed the index 
variants from this report with samples from HUNT, deCODE, MGI, 
and DiscovEHR, comprising the largest possible independent dataset 
(up to 93,315 cases), and identified 24 genome-wide significant loci 
that are independent of the 111 we report here (Supplementary Table 
16). We suggest that combining the initial 111 locus index variants, 
the 31 additional risk identified through approximate stepwise condi-
tional analyses, and the 24 new locus index variants (n =​ 166 variants) 
would comprise the current optimal variant list for a polygenic risk 
score for atrial fibrillation (Supplementary Table 16).

In summary, we substantially increased the number of genome-
wide significant risk variants for atrial fibrillation through a large 
GWAS meta-analysis. We highlighted genes important for function 
of cardiac ion channels and calcium signaling, along with cardiac 
transcription factors, which in turn could also affect the electrical  
properties of the myocardium37,38, and in addition prioritized 
multiple atrial fibrillation functional candidate genes likely to be 
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involved in structural integrity and function of heart and skeletal 
muscle. We performed pathway and functional enrichment analyses 
that highlighted fetal heart tissue and pathways related to cardiac 
development as important for developing atrial fibrillation. This 
might reflect that atrial fibrillation risk variants are acting in the 
developing heart or that the variants are important for reactivating 
fetal genes or pathways as a response to stress in the adult heart. 
We demonstrated an example of the latter; experiments in rabbits 
with heart failure and left atrial dilation identified a heterogeneous 
distributed molecular switch from the adult to the fetal isoform of 
myosin heavy chain, which resulted in contractile and functional 
heterogeneity that may predispose to initiation and maintenance 
of atrial fibrillation. These findings need confirmation but provide 
a foundation for directing future functional experiments to better 
understand the biology underlying atrial fibrillation.

URLs. GotCloud, https://genome.sph.umich.edu/wiki/GotCloud; 
Michigan Imputation Server, https://imputationserver.sph.umich.
edu/index.html; METAL, http://genome.sph.umich.edu/wiki/
METAL_Documentation; PLINK1.9, https://www.cog-genom-
ics.org/plink/1.9; DEPICT, https://data.broadinstitute.org/mpg/
depict/; COJO-GCTA software, http://cnsgenomics.com/software/
gcta/; Roadmap Epigenomics project, http://www.roadmapepig-
enomics.org/; GTEx database, http://gtexportal.org; GREGOR, 
http://csg.sph.umich.edu/GREGOR/; Unified Medical Language 
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Methods
Discovery cohorts. Additional details on selected cohorts are provided in the 
Supplementary Note.

HUNT. The Nord-Trøndelag Health Study (HUNT) is a population-based health 
survey conducted in the county of Nord-Trøndelag, Norway, since 198439. We 
used a combination of hospital, out-patient, and emergency room discharge 
diagnoses (ICD-9 and ICD-10) to identify 6,493 atrial fibrillation cases and 63,142 
atrial fibrillation-free controls with genotype data. Participation in the HUNT 
Study is based on informed consent, and the study has been approved by the Data 
Inspectorate and the Regional Ethics Committee for Medical Research in Norway.

deCODE. The Icelandic atrial fibrillation population consisted of all patients 
diagnosed with atrial fibrillation (ICD-10 code I48 and ICD-9 code 427.3) at 
Landspitali, The National University Hospital, in Reykjavik, and Akureyri Hospital 
(the two largest hospitals in Iceland) from 1987 to 2015. All atrial fibrillation 
cases, a total of 13,471, were included. Controls were 358,161 Icelanders recruited 
through different genetic research projects at deCODE genetics, excluding those 
in the atrial fibrillation cohort. The study was approved by the Icelandic Data 
Protection Authority and the National Bioethics Committee of Iceland (no. 
VSNb2015030021).

MGI. MGI is a hospital-based cohort collected at Michigan Medicine, USA. Atrial 
fibrillation cases (n =​ 1,226) were defined as patients with ICD-9 billing code 
427.31, and controls were individuals without atrial fibrillation, atrial flutter, or 
related phenotypes (ICD-9 426-427.99). MGI was reviewed and approved by the 
Institutional Review Board of the University of Michigan Medical School.

DiscovEHR. The DiscovEHR collaboration cohort is a hospital-based cohort 
including 58,124 genotyped individuals of European ancestry from the ongoing 
MyCode Community Health Initiative of the Geisinger Health System, USA40. 
Atrial fibrillation cases (n =​ 6,679) were defined as DiscovEHR participants with at 
least one electronic health record problem list entry or at least two diagnosis code 
entries for two separate clinical encounters on separate calendar days for ICD-10 
I48: atrial fibrillation and flutter. Corresponding controls (n =​ 41,803) were defined 
as individuals with no electronic health record diagnosis code entries (problem 
list or encounter codes) for ICD-10 I48. The Study was approved by the Geisinger 
Institutional Review Board.

UK Biobank. The UK Biobank is a population-based cohort collected from 
multiple sites across the United Kingdom32. Cases of atrial fibrillation were selected 
using ICD-9 and ICD-10 codes for atrial fibrillation or atrial flutter (ICD-9 
427.3 and ICD-10 I48). Controls were participants without any ICD-9 or ICD-10 
codes specific for atrial fibrillation, atrial flutter, other cardiac arrhythmias, or 
conduction disorders.

AFGen Consortium. Published atrial fibrillation association summary statistics 
from 31 cohorts representing 17,931 atrial fibrillation cases and 115,142 controls 
were obtained from the authors6.

Genotyping array, imputation, and association analysis. HUNT. Genotyping was 
performed at the Norwegian University of Science and Technology (NTNU) using 
the Illumina HumanCore Exome v1.0 and v1.1. Quality control was performed 
at the marker and sample level. A total of 2,201 individuals were whole-genome 
sequenced at low pass and genotype calls were generated using GotCloud pipeline 
(see URLs). Variants from the HUNT low-pass genomes were imputed into The 
Haplotype Reference Consortium (HRC) samples and vice versa to generate a 
single imputation reference panel of ~34,000 individuals including 2,201 HUNT 
study-specific samples. Imputation was performed using Minimac3, and variants 
with imputation r2 >​0.3 were taken forward. We performed testing for association 
with atrial fibrillation using a generalized mixed model, including covariates 
birth year, sex, genotype batch, and principal components 1–4 as implemented in 
SAIGE41.

deCODE. The study is based on whole-genome sequence data from 15,220 
Icelanders participating in various disease projects at deCODE genetics. The 
sequencing was done using Illumina standard TruSeq methodology to a mean 
depth of 35×​ (s.d. 8)9. Autosomal SNPs and indels were identified using the 
Genome Analysis Toolkit version 3.4.042. Variants that did not pass quality control 
were excluded from the analysis according to Genome Analysis Toolkit best 
practices. Variants identified through sequencing (SNPs and indels) were then 
imputed into 151,677 Icelanders genotyped using Illumina SNP chips and their 
close relatives (familial imputation)43. Variants for the meta-analysis were selected 
based on matching with either the 1000 Genomes Project reference panel (Phase 
3) or the Haplotype Consortium reference panel44 (based on allele, frequency, and 
correlation matching). Logistic regression was used to test for association between 
SNPs and atrial fibrillation, treating disease status as the response and allele counts 
from direct genotyping or expected genotype counts from imputation as covariates. 
Other available individual characteristics that correlate with phenotype status 

were also included in the model as nuisance variables. These characteristics were: 
sex, county of birth, current age or age at death (first- and second-order terms 
included), blood sample availability for the individual, and an indicator function 
for the overlap of the lifetime of the individual with the time span of phenotype 
collection. To account for inflation in test statistics due to cryptic relatedness 
and stratification, we applied the method of LD score regression45. The estimated 
correction factor for atrial fibrillation based on LD score regression was 1.38 for 
the additive model.

MGI. Genotyping was performed at the University of Michigan using the 
Illumina Human Core Exome v1.0 and v1.1. Quality control was performed at the 
marker and sample level. Imputation of variants from the HRC reference panel 
was performed using the Michigan Imputation Server (see URLs), and variants 
with imputation r2 >​0.3 were included. Association with atrial fibrillation was 
determined using the Firth bias-corrected logistic likelihood ratio test46 with 
adjustment for age, sex, and principal components 1–4.

DiscovEHR. Aliquots of DNA were sent to Illumina for genotyping on the 
Human OmniExpress Exome Beadchip. All individuals of European ancestry, 
as determined using principal component analysis, were imputed to the HRC 
reference panel using the Michigan Imputation Server. Markers with imputation 
r2 >​0.3 and MAF >​0.001 were carried forward for analysis. BOLT-LMM47 was 
used to analyze BGEN dosage files, and variants were tested for association with 
atrial fibrillation under an additive genetic model, adjusting for sex, age, age2, and 
the first four principal components of ancestry; additionally, a genetic relatedness 
matrix (calculated using variants with MAF >​0.001, per-genotype missing data 
rate <​1%, and Hardy–Weinberg equilibrium P <​ 10−15) was included as a random-
effects variable in the model.

UK Biobank. Details on quality control, genotyping, and imputation can be found 
elsewhere48. In brief, study participants were genotyped using two very similar 
genotyping arrays (Applied Biosystems UK BiLEVE Axiom Array and UK BioBank 
Axiom Array) designed specifically for the UK Biobank. Phasing and imputation 
were done by the UK Biobank analysis team based on the HRC reference panel 
and the UK10K haplotype resource48. We restricted our analyses to HRC-imputed 
markers only as there have been reports of incorrect estimates for non-HRC 
markers in the first 500,000 people-release from UK Biobank. We performed 
testing for association with atrial fibrillation in people of white British ancestry 
using a generalized mixed model including covariates birth year, sex, genotype 
batch, and principal components 1–4 as implemented in SAIGE41.

Meta-analysis. We included all markers that were available for analyses in any 
of the six contributing studies. For the DiscovEHR that applied the BOLT-LMM 
mixed model, we obtained an approximation of the allelic log-odds ratio and 
corresponding variance from the linear model as described previously49. Following 
this, we performed meta-analyses using the inverse variance method implemented 
in the software package METAL (see URLs)50. When estimating the cross-cohort 
allele frequencies, we only included participating studies where individuals 
were sampled independent of atrial fibrillation status (HUNT, deCODE, MGI, 
DiscovEHR, UK Biobank). This was done to avoid sampling bias. Heterogeneity 
tests were performed as implemented in METAL50.

Definition of independent loci. Independent loci were defined as genetic markers 
>​1 Mb and >​0.25 cM apart in physical and genomic distance, respectively, with 
at least one genetic variant associated with atrial fibrillation at a genome-wide 
significance threshold of P <​ 5 ×​ 10−8. Loci borders were defined as the highest and 
lowest genomic positions within the locus reaching genome-wide significance plus 
an additional 1 Mb on either side.

LD estimation. We used 5,000 unrelated individuals that were randomly sampled 
among the HUNT Study participants for calculating LD r2 by using the software 
PLINK1.9 (see URLs). We additionally used the 1000 Genomes Project phase 3 
European (EUR) sample for LD estimation.

Approximate, stepwise conditional analyses. To identify independent risk 
variants within the identified atrial fibrillation-associated loci, we used the COJO-
GCTA software (see URLs) to perform approximate, stepwise conditional analyses 
based on summary statistics from the meta-analyses and an LD matrix obtained 
from 5,000 unrelated individuals randomly sampled from the HUNT Study3. Only 
variants with MAF >​0.01 were included in the analyses and variants were only 
considered truly independent if they were not in LD (r2 <​0.10) with the locus index 
variant and any of the other independent risk variants.

Estimation of heritability. The genome-wide heritability explained by all 
markers was estimated based on GWAS summary statistics, LD-score regression, 
and European-ancestry LD information from the 1000 Genomes Project45. The 
heritability explained by atrial fibrillation-associated index variants and additional 
independent risk variants was calculated on the basis of odds ratios and risk allele 
frequencies as described previously51.
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Identifying candidate functional genes, gene sets, and tissues using DEPICT. 
We employed DEPICT (see URLs) to identify: (1) the most likely causal gene at 
associated loci, (2) reconstituted gene sets enriched for atrial fibrillation loci, and 
(3) tissues and cell types in which genes at associated loci that are preferentially 
expressed8. DEPICT uses gene expression data derived from a panel of 77,840 
messenger RNA expression arrays52 together with 14,461 existing gene sets defined 
based on molecular pathways derived from experimentally verified protein–
protein interactions53, genotype–phenotype relationships from the Mouse Genetics 
Initiative54, Reactome pathways55, KEGG pathways56, and gene ontology terms57. 
Based on similarities across the microarray expression data, DEPICT reconstitutes 
the 14,461 existing gene sets by assigning each gene in the genome a likelihood 
of membership in each gene set. Using these precomputed gene sets and a set of 
trait-associated loci, DEPICT quantifies whether any of the 14,461 reconstituted 
gene sets are significantly enriched for genes in the associated loci and prioritizes 
genes that share predicted functions with genes from the other associated loci 
more often than expected by chance. Additionally, DEPICT uses a set of 37,427 
human mRNA microarrays to identify tissues and cell types in which genes from 
associated loci are highly expressed (all genes residing within an LD of r2 >​0.5 from 
index variant).

We ran DEPICT using all atrial fibrillation-associated index variants and 
all variants identified through stepwise conditional analyses, regardless of LD 
structure. For the gene sets significantly enriched for atrial fibrillation-associated 
loci (P <​ 1 ×​ 10−6, FDR <​0.05), we computed a weighted pairwise similarity based 
on the number of overlapping genes for genes with a Z score <​4.75 (corresponding 
to P <​ 1 ×​ 10−6) for being part of the gene set. For gene sets with no genes with a Z 
score <​4.75, we included the three most significant genes as suggested previously58.

Identification of regulatory elements using GREGOR. We tested for enrichment 
of index variants with functional domains using the software GREGOR (see 
URLs)13. This method tests for an increase in the number of atrial fibrillation-
associated index variants, or their LD proxies, overlapping with the regulatory 
feature more often than expected by chance by comparing to permuted control sets 
where the variants are matched for frequency, number of LD proxies, and distance 
to the nearest gene. We use a saddle-point approximation to estimate the P value 
by comparing to the distribution of permuted statistics13. We ran GREGOR using 
all atrial fibrillation-associated index variants and all variants identified through 
stepwise conditional analyses, regardless of LD structure, and narrow peak BED-
files from the Roadmap Epigenomics project (see URLs)12.

Identification of expression quantitative trait loci (eQTLs) using GTEx data. 
We performed eQTL look-up using the GTEx database (see URLs)14 version 6p, 
which holds cis-eQTL expression data of up to 190,000,000 single nucleotide 
variants across 44 tissues, by searching for all atrial fibrillation-associated 
loci index variants, all independent risk variants identified from the stepwise 
conditional analyses, and any variants in strong LD (r2 >​0.80) with these variants 
using an eQTL significance threshold of P <​ 1.14 ×​ 10−9 (5 ×​ 10−8/44 tissues). For 
all statistically significant genes, we queried all markers in the GTEx database that 
affected the expression of the affected genes and tested whether the eQTL markers 
colocalized with the GWAS signal as described previously59.

Ischemic heart failure model of atrial fibrillation susceptibility. Ischemic heart 
failure was modeled using a previously described rabbit model of left circumflex 
artery ligation60. In this model, the left atrium progressively dilates following the 
ischemic insult as heart failure develops. Figure 4a shows images of Langendorff 
perfused hearts of control (sham operated) and heart failure animals highlighting 
the overt dilation of the left atrium in heart failure. With equivalent left atrial 
pressure, atrial fibrillation was induced in each condition with high frequency 
burst pacing as shown in the ECG traces and as described previously61. Protein 
expression analysis was performed using western blot. Use of animals was reviewed 
and approved by the Care and Use Committee of the University of Michigan. All 
pre-, intra-, and postoperative surgical procedures were developed in collaboration 
with veterinarians on staff in the Unit for Laboratory Animal Medicine of the 
University of Michigan.

Tissue-specific expression analysis (TSEA). The TSEA analyses were performed 
using the R software pSI package (see URLs)15. For the calculations, predefined pSI 
values provided by the pSI package creators were used. To get null distributions 
for the P values for the prioritized genes, we performed two sets of permutations: 
randomly selected from the entire human genome and randomly selected from the 
associated loci (also matching the number of genes picked in each of the loci), as 
done previously62. In both scenarios, 1,000 permutations were performed.

ECG-wide association analyses. ECG data were collected from Landspitali 
University Hospital in Reykjavik and included all ECGs obtained and digitally 
stored from 1998 to 2015, including a total of 434,000 ECGs from 88,217 
individuals. A total of 289,297 ECGs of 62,974 individuals were sinus rhythm 
(heart rate 50–100 beats per minute) ECGs of individuals without the diagnosis of 
atrial fibrillation. The ECGs were digitally recorded with the Philips PageWriter 
Trim III, PageWriter 200, Philips Page Writer 50, and Phillips Page Writer 70 

cardiographs and stored in the Philips TraceMasterVue ECG Management System. 
These were ECGs obtained in all hospital departments, from both inpatients and 
outpatients. Digitally measured ECG waveforms and parameters were extracted 
from the database for analysis. The Philips PageWriter Trim III QT interval 
measurement algorithm has been previously described and shown to fulfill 
industrial ECG measurement accuracy standards63. The Philips PR  
interval and QRS complex measurements have been shown to fulfill industrial 
accuracy standards64.

We tested the 111 genome-wide significant atrial fibrillation index variants 
for association with 123 ECG parameters using a linear mixed effects model 
implemented in the Bolt software package47, treating the ECG measurement as 
the response and the genotype as the covariate. All measures except heart rate 
and QT interval are presented for all 12 ECG leads. For this analysis, we used 
289,297 sinus rhythm ECGs (heart rate 50–100 beats per minute) from 62,974 
individuals who have not been diagnosed with atrial fibrillation according to our 
databases. This was done to assess the effect of the atrial fibrillation variants on 
ECG measures and cardiac electrical function in the absence of atrial fibrillation. 
Individuals with pacemakers were also excluded. The ECG measurements were 
adjusted for sex, year of birth, and age at measurement and were subsequently 
quantile standardized to have a normal distribution. For individuals with multiple 
ECG measurements, the mean standardized value was used. We assume that the 
quantitative measurements follow a normal distribution with a mean that depends 
linearly on the expected allele at the variant and a variance–covariance matrix 
proportional to the kinship matrix65. Since 123 traits were tested, the Benjamini–
Hochberg FDR procedure controlling the FDR at 0.05 at each marker was used to 
account for multiple testing.

Polygenic risk scores. For each study participant in the UK Biobank and in the 
HUNT Study, we constructed an inverse normal-transformed polygenic risk 
score for atrial fibrillation using summarized dosage-weighted risk estimates 
from the list of 142 independent risk variants. For the UK Biobank risk score, 
risk estimates (beta coefficients) were obtained by meta-analyzing the risk 
variants across all contributing studies excluding the UK Biobank. To explore the 
association between the genetic burden of atrial fibrillation and the age of onset 
of atrial fibrillation, which we assumed was independent of the case status used 
for obtaining the risk estimates, we obtained risk estimates from meta-analyses of 
the full sample size.

Phenome-wide association analyses in the UK Biobank. We used a previously 
published scheme to define disease-specific binary phenotypes by combining 
hospital ICD-9 codes into hierarchical PheCodes, each representing a particular 
disease group66. ICD-10 codes were mapped to PheCodes using a combination of 
available maps through the Unified Medical Language System (see URLs), string 
matching, and manual review. UK Biobank study participants were labeled with 
a PheCode if they had one or more of the PheCode-specific ICD codes. Cases 
were all UK Biobank study participants with the PheCode of interest and controls 
were all UK Biobank study participants without the PheCode of interest or any 
related PheCodes. Sex checks were performed, so PheCodes specific for one sex 
could not mistakenly be assigned to the other sex. The associations between the 
polygenic risk score and each of the defined phenotypes were tested using a logistic 
regression adjusted for sex and birth year.

Reporting summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability. The meta-analysis summary association statistics that support 
the findings of this study are available for download at http://csg.sph.umich.edu/
willer/public/afib2018.
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A rare missense mutation in MYH6 associates

with non-syndromic coarctation of the aorta

Thorsteinn Bjornsson1†, Rosa B. Thorolfsdottir1†, Gardar Sveinbjornsson1,

Patrick Sulem1, Gudmundur L. Norddahl1, Anna Helgadottir1,

Solveig Gretarsdottir1, Audur Magnusdottir1, Ragnar Danielsen2,

Emil L. Sigurdsson3,4, Berglind Adalsteinsdottir5,6, Sverrir I. Gunnarsson7,

Ingileif Jonsdottir1,6,8, David O. Arnar1,2,6, Hrodmar Helgason9,

Tomas Gudbjartsson6,10, Daniel F. Gudbjartsson1,11, Unnur Thorsteinsdottir1,6,

Hilma Holm1*, and Kari Stefansson1,6*

1deCODE genetics/Amgen, Inc., Sturlugata 8, 101 Reykjavik, Iceland; 2Department of Medicine, Landspitali—The National University Hospital of Iceland, Hringbraut, 101
Reykjavik, Iceland; 3Department of Family Medicine, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland; 4Department of Development, Primary Health Care of the
Capital Area, Alfabakki 16, 109 Reykjavik, Iceland; 5Department of Cardiology, Haukeland University Hospital, Jonas Lies vei 83, 5021 Bergen, Norway; 6Faculty of Medicine,
University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland; 7Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, 600 Highland Ave,
Madison, WI 53792, USA; 8Department of Immunology, Landspitali—The National University Hospital of Iceland, Hringbraut, 101 Reykjavik, Iceland; 9Children’s Hospital,
Landspitali—The National University Hospital of Iceland, Hringbraut, 101 Reykjavik, Iceland; 10Department of Cardiothoracic Surgery, Landspitali—The National University
Hospital of Iceland, Hringbraut, 101 Reykjavik, Iceland; and 11School of Engineering and Natural Sciences, University of Iceland, Hjardarhagi 4, 107 Reykjavik, Iceland

Received 3 November 2017; revised 5 January 2018; editorial decision 28 February 2018; accepted 2 March 2018

Aims Coarctation of the aorta (CoA) accounts for 4–8% of congenital heart defects (CHDs) and confers substantial
morbidity despite treatment. It is increasingly recognized as a highly heritable condition. The aim of the study was
to search for sequence variants that affect the risk of CoA.

...................................................................................................................................................................................................
Methods
and results

We performed a genome-wide association study of CoA among Icelanders (120 cases and 355 166 controls) based
on imputed variants identified through whole-genome sequencing. We found association with a rare (fre-
quency = 0.34%) missense mutation p.Arg721Trp in MYH6 (odds ratio = 44.2, P = 5.0� 10-22), encoding the alpha-
heavy chain subunit of cardiac myosin, an essential sarcomere protein. Approximately 20% of individuals with CoA
in Iceland carry this mutation. We show that p.Arg721Trp also associates with other CHDs, in particular bicuspid
aortic valve. We have previously reported broad effects of p.Arg721Trp on cardiac electrical function and strong
association with sick sinus syndrome and atrial fibrillation.

...................................................................................................................................................................................................
Conclusion Through a population approach, we found that a rare missense mutation p.Arg721Trp in the sarcomere gene

MYH6 has a strong effect on the risk of CoA and explains a substantial fraction of the Icelanders with CoA. This is
the first mutation associated with non-familial or sporadic form of CoA at a population level. The p.Arg721Trp in
MYH6 causes a cardiac syndrome with highly variable expressivity and emphasizes the importance of sarcomere in-
tegrity for cardiac development and function.
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Introduction

Coarctation of the aorta (CoA) is the most common birth defect of
the aorta with an incidence of about one per 2500 live births.1 It is
defined by local narrowing of the proximal descending aorta and/or
aortic arch, accompanied by bicuspid aortic valve (BAV) in more than
50% of cases and generally presenting as either neonatal heart failure
or hypertension later in life.2 Surgical or interventional treatment
considerably improves outcome but risk of premature cardiovascular
morbidity and mortality remains despite appropriate therapy.3

Coarctation of the aorta is primarily a non-familial or sporadic dis-
ease.4 However, it has been shown to cosegregate in families with
left-ventricular outflow tract obstruction (LVOTO) malformations, a
mechanistically defined subgroup of congenital heart defects (CHDs)
including CoA, BAV, congenital aortic stenosis, and hypoplastic left
heart syndrome (HLHS).5 As a group, the LVOTO malformations
are markedly heritable (0.71–0.90) and have a high relative risk for
first-degree relatives (36.9).6 In addition, around 15% of individuals
with CoA occur as part of a recognized genetic syndrome (e.g. 45, X,
or Turner).7

Not much is known about genetic causes of non-syndromic CoA.
Several studies have found mutations in families with LVOTO malfor-
mations and a few instances of sporadic CoA, both with and without
concomitant CHDs. The most strongly implicated gene is NOTCH1,8–10

encoding a transmembrane receptor that regulates cell fate during de-
velopment. Mutations in other genes, including MYH611,12 SMAD6,13

NKX2-5,14 and GATA5,15 have been found in one or few individuals with
CoA. The MYH6 mutations were found in two families, one with predis-
position to atrial septal defect (ASD)11 and the other to HLHS.12 Some
individuals in these families presented with CoA. In addition, knockout
in mice of several genes found within copy number variants in individ-
uals with CoA, including MCTP2,16 MATR3,17 and FOXC1,18 have re-
sulted in CoA-like phenotypes.

Methods

GWAS study design
Study samples

The CoA sample set included 120 Icelanders who received the discharge
diagnosis of CoA at Landspitali, The National University Hospital (LUH)
in Reykjavik, the only tertiary referral centre in Iceland, between 1984
and 2016. The individuals were diagnosed with CoA between the years
1950 and 2016, with most individuals (75%) diagnosed after 1990. The in-
dividuals diagnosed with CoA were identified either through diagnostic
codes of CoA (ICD-9 code 747.1, ICD-10 code Q25.1) registered be-
tween 1990 and 2016 or procedure codes of CoA (WHO codes 1-273,
5-369, 5-382, and 5-387, NOMESCO codes FDJ 00, FDJ 10, FDJ 20, FDJ
30, FDJ 42, and FDJ 96) registered between 1984 and 2016. The diag-
noses of CoA were confirmed and detailed phenotypic characteristics
(Supplementary material online, Table S1) established through review of
electronic and paper medical records at LUH. Coarctation of the aorta
was defined as a non-syndromic congenital narrowing of the aorta, the
diagnosis of which was confirmed by a cardiologist with echocardiog-
raphy and/or cardiac catheterization. The individuals used as controls in
the CoA GWAS analyses consisted of disease-free individuals randomly
drawn from the Icelandic genealogical database and individuals from
other genetic studies at deCODE.

In addition to CoA, we included in the study the following samples
from the deCODE phenotype database: BAV, ASD, ventricular septal de-
fect (VSD), patent ductus arteriosus (PDA), late onset aortic valve sten-
osis (AVS), sick sinus syndrome (SSS), atrial fibrillation (AF), heart failure
(HF), ischaemic stroke (IS), hypertension (HTN), coronary artery disease
(CAD), left atrial diameter (LAD), aortic root diameter (ARD), left ven-
tricular end-diastolic diameter (LVEDD), electrocardiogram (ECG) data,
thoracic aortic aneurysm, high-degree atrioventricular block, and hyper-
trophic cardiomyopathy (Supplementary material online, Supplementary
methods).

All DNA samples used in the study are part of deCODE’s biobank es-
tablished in 1996 and built up since then through various genetic studies
at deCODE.

The study was approved by the Icelandic Data Protection Authority
and the National Bioethics Committee of Iceland. Study approval
numbers were VSN-15-053, VSN-15-016, VSN-15-056, VSN-15-058,
VSN-15-114, VSN-15-057, and 10-009-S1. Written informed consent
was obtained from all study participants. The study complies with the
declaration of Helsinki.

Genotyping, whole-genome sequencing, and imputation

For chip genotyping, 151 677 samples were typed with the Illumina
HumanHap300, HumanCNV370, HumanHap610, HumanHap1M,
HumanHap660, Omni-1, Omni 2.5, or Omni Express bead chips at
deCODE. Long range phasing of all chip-genotyped individuals was per-
formed with methods previously described19,20 (Supplementary material
online, Supplementary methods).

The whole genomes of 15 220 Icelanders were sequenced using
Illumina technology to a median depth of 35X (Supplementary material
online, Supplementary methods). The sequence variants identified in the
15 220 sequenced Icelanders were then imputed into 151 677 Icelanders
who had been genotyped with various Illumina single nucleotide poly-
morphism chips and their genotypes phased using long-range phasing.19,20

The imputation of the sequence variants, identified thorough whole-
genome sequencing (WGS), into the chip typed long-range phased indi-
viduals was performed with the same model as used by IMPUTE.21 The
utilization of long-range phased haplotypes enables accurate imputation
of variants with frequency down to approximately 0.02% in this data set.
Using genealogic information on Icelanders from The Book of
Icelanders,22 the sequence variants were imputed into first and second-
degree relatives of chip genotyped individuals (genealogical imputation),23

to further increase the sample size for association analysis and to increase
the power to detect associations. We identified 32.5 million high quality
sequence variants (all with imputation information >0.8 that mapped to
build hg38) that were tested for association with CoA under the multi-
plicative model.

Association analysis

In the association analysis were 120 individuals diagnosed with CoA and
355 116 individuals as controls, all with imputed genotypes. The sequence
variants imputed were identified through WGS of 15 220 Icelanders
(n = 33 individuals with CoA and n = 15 187 individuals as controls). Of
the individuals diagnosed with CoA, 39 were chip typed and long-range
phased and of the individuals who were controls 140 661 were chip
typed and long-range phased. These were imputed with the same model
as used by IMPUTE. The remaining individuals (n = 81 CoA cases and
n = 214 412 controls), were not chip typed themselves but were first or
second degree relatives of the chip typed individuals and imputed using
genealogical imputation as described in Ref.23

To account for inflation in test statistics due to cryptic relatedness and
stratification, we applied the method of linkage disequilibrium score

2 T. Bjornsson et al.
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.
regression24 (Supplementary material online, Supplementary methods).
The estimated correction factor was 1.04 for the multiplicative model of
the CoA association. To correct for multiple testing we used the
weighted Holm–Bonferroni method25 to allocate family wise error rate
of 0.05 equally between four annotation-based classes of sequence vari-
ants (Supplementary material online, Supplementary methods). When
testing the association of p.Arg721Trp with several other cardiac pheno-
types, the individuals that served as controls consisted of disease-free in-
dividuals randomly drawn from the Icelandic genealogical database and
individuals from other genetic studies at deCODE.

Phenotypic differences between carriers and

non-carriers of p.Arg721Trp
To analyse if CoA carriers of the p.Arg721Trp mutation differed clinically
from non-carrier individuals with CoA, we evaluated the frequencies of
various clinical characteristics in these two groups with CoA (see
Supplementary material online, Table S2). Fisher’s exact test was used to
test for significant difference in the mean frequency of the variants be-
tween non-carriers and carriers, and the odds ratio (OR) was calculated
as [pa/(1-pa)]/[pc/(1-pc)], where pa and pc are the mean frequencies of
the variants in non-carriers and carriers, respectively.

Results

A rare missense mutation in MYH6
associates with coarctation of the aorta
To search for sequence variants that associate with non-syndromic
CoA, we performed a GWAS including 120 Icelanders with CoA and
355 116 Icelanders who served as population controls. We observed
a genome-wide significant association with CoA at chromosome
14q11 (Figure 1), explained by a rare (allele frequency = 0.34%) mis-
sense mutation p.Arg721Trp (c.2161C>T) in MYH6, encoding the
alpha myosin heavy chain subunit (aMHC) in cardiac muscle. Alpha
myosin heavy chain subunit is a main component of the sarcomere,
the basic contractile unit of cardiac muscle.26 P.Arg721Trp associates
with CoA with an OR of 44.2 (95% confidence interval 20.5–95.5)

and P = 5.01� 10-22 (genome-wide significance threshold for mis-
sense variants was set at 6.5� 10-8, see Methods)27 (Figure 2,
Table 1). None of the genotyped individuals (N = 151 677) were
homozygous for the mutation, consistent with its low frequency (1.8
homozygotes expected under Hardy–Weinberg equilibrium). Since
we observed no homozygotes, we could not discriminate between
the dominant and the multiplicative modes of inheritance.

The p.Arg721Trp mutation is located in exon 18 (out of 39 exons)
of MYH6 and leads to an arginine to tryptophan alteration at amino
acid 721 (full-length protein 1939 amino acid) (see Supplementary
material online, Figure S1). It is located in the converter domain of
aMHC (see Supplementary material online, Figure S1 and S2), a small
domain crucial in conveying a conformational change from the active
site to the lever arm upon adenosine triphosphate (ATP) hydroly-
sis.28 It is considered likely that the mutation alters protein function
(SIFT = 0, PolyPhen = 0.99, MutationTaster = 0.93), probably by alter-
ing the folding of the converter domain.

There were 987 carriers of p.Arg721Trp among the 151 677 chip-
typed Icelanders and eight of those (one per 123 carriers) were diag-
nosed with CoA. In line with low penetrance of the mutation for
CoA, p.Arg721Trp carriers diagnosed with CoA did not cluster in
families. However, 20% of the 39 chip-typed individuals with CoA
carried p.Arg721Trp. Thus, while the penetrance of the mutation for
CoA is low, it accounts for a large proportion of individuals with
CoA in the Icelandic population.

The p.Arg721Trp mutation is not present in the Exome Variant
Server, containing sequence data from 6503 individuals [Exome
Variant Server, NHLBI Exome Sequencing Project (ESP), Seattle,
WA, USA] (http://evs.gs.washington.edu/EVS/) (August 2016) and
one copy was found in The Genome Aggregation Database
(gnomAD), holding data from 126 216 exome sequences and 15 136
WGS unrelated individuals.29 The p.Arg721Trp mutation thus ap-
pears to be absent from or present at a very low frequency in other
populations.

We show the phenotypic characteristics of individuals with CoA in
Supplementary material online, Table S1. About half were diagnosed

Figure 1 Manhattan plot of coarctation of the aorta genome-wide association study in Iceland. The P values (-log10) are plotted against their
respective positions on each chromosome.
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.during the first month of life and three quarters during the first year
of life. As expected,3 CoA was more common in males than in fe-
males (1.6:1). About three quarters of individuals with CoA had other
CHDs, most commonly BAV and VSD. Similar to other studies,30 the
aortic valve was bicuspid in about half of those with CoA.

To determine whether there are phenotypic differences between
carriers (n = 24) and non-carriers (n = 96) of the p.Arg721Trp muta-
tion within the CoA sample set, we evaluated the frequencies of vari-
ous clinical characteristics in the two groups (see Supplementary
material online, Table S2). Carriers were nominally more likely to
present with mild rather than more critical and complex forms of
CoA (OR = 4.2 and P = 0.023). We observed no other differences.

Association of p.Arg721Trp in MYH6 with
other cardiac diseases
We have previously demonstrated that p.Arg721Trp associates
strongly with SSS and AF, atrial arrhythmias that are common in the
elderly and frequently coexist.31 With larger sample sizes, these asso-
ciations have become stronger; however, previously reported associ-
ation with thoracic aortic aneurysm is no longer significant (Table 1).
In the context of assessing effects of AF risk variants on cardiac con-
duction, we have also recently shown that p.Arg721Trp associates
with many ECG measures corresponding to a widespread effect on
electrical function of the heart32 (see Supplementary material online,
Figure S3).

To further explore the effect of the p.Arg721Trp MYH6 mutation,
we tested it for association with additional cardiac phenotypes,
including other CHDs, common heart diseases, and several echocar-
diogram variables (Table 1, Supplementary material online, Table S3
and Figure S3; significance threshold set at P < 0.003 (0.05/17 individ-
ual phenotypes tested). The p.Arg721Trp mutation associates with
increased risk of several CHDs: BAV, VSD, ASD, and PDA (Table 1).
As expected, the strongest association was with BAV (OR = 10.5 and
P = 7.3� 10-8). In addition, the mutation associates with late onset
AVS. To assess if p.Arg721Trp associates with CHDs in the absence
of diagnosed CoA, we re-tested for association after removing indi-
viduals with CoA from the analysis. Although the effect of
p.Arg721Trp is consistently weaker, the associations remain (see
Supplementary material online, Table S3). We cannot exclude the
existence of undiagnosed CoA in these individuals. The mutation also
associates with HF and IS and with LAD but not with other variables
derived from the echocardiographic data such as ARD or LVEDD
(Table 1). The p.Arg721Trp mutation did not associate with
HTN or CAD.

Discussion

Through GWAS based on variants identified through WGS, we
found a rare missense variant in the sarcomere gene MYH6 that has a
strong effect on the risk of CoA in the Icelandic population and ex-
plains a substantial fraction of CoA in Icelanders. The same mutation

Figure 2 Region plot for the association of variants on 14q11 with coarctation of the aorta. Shown is a 1 Mb region on chromosome 14. The stron-
gest association is with the missense variant p.Arg721Trp in MYH6 located at position 23 396 970 on chromosome 14 (chr14: 23 396 970). The nine
other variants shown are weakly correlated with p.Arg721Trp, r2 between 0.6–0.4 (green) and 0.4–0.2 (light blue).
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..also associates with other CHDs, in particular BAV. It has a wide-
spread effect on cardiac electrical function and associates strongly
with atrial arrhythmias, both SSS and AF. This is the first mutation
shown to associate with non-familial or sporadic form of CoA at a
population level. The p.Arg721Trp mutation appears to be absent
from other populations or if present, at a very low frequency. The
Icelandic population is a founder population in that a small number of
ancestors account for a relatively large proportion of genetic diver-
sity in the current population. Hence, sequence variants that are very
rare in more outbred populations, like p.Arg721Trp, may thus be
more frequent in Icelanders.33

Myosin is a major component of the sarcomere, the building block
of the contractile system of cardiac muscle. Myosin is an ATPase cel-
lular motor protein composed of two heavy chains and two pairs of
light chains. The two heavy chains are aMHC and beta myosin heavy
chain (bMHC) encoded by MYH6 and MYH7, respectively. Both
aMHC and bMHC are expressed throughout the heart during em-
bryonic cardiogenesis and bMHC continues to do so in the adult
heart whereas aMHC expression becomes restricted to the
atrium.34 Expression of MYH6 has not been detected in the aorta.35

The pathogenesis of CoA is not well understood. One of the main
models of CoA pathogenesis, the haemodynamic theory,2,36 main-
tains that cardiac lesions resulting in decreased left ventricular out-
flow promote development of CoA by reducing blood flow through
the Foetal aorta. The p.Arg721Trp mutation could predispose to
CoA by reducing blood flow through the Foetal aorta because of di-
minished contraction of the developing heart. This hypothesis is

supported by overexpression studies in rat cardiomyocytes showing
that the p.Arg721Trp mutation impairs sarcomeric structure37 and
by our ECG data demonstrating widespread effect of p.Arg721Trp
on cardiac electrical function, including in the ventricles. Our hypoth-
esis is compatible with the fact that MYH6 is expressed in the ven-
tricles during the development of the heart but not in the aorta.

Very rare mutations in MYH6, other than p.Arg721Trp, have been
linked to various CHDs,11,12,38 particularly familial ASD39,40 and both
dilated and hypertrophic cardiomyopathy.41 In all instances, these
mutations have been restricted to a few sporadic cases or too few
families. In two of these families, one with predisposition to ASD11

and the other to HLHS,12 some of the affected family members had
other cardiac defects, including CoA. p.Arg721Trp in MYH6 differs
from these rare familial mutations in that it associates with CoA at
the population level and explains about 20% of individuals with CoA
in Iceland.

The main limitation of the study is the small size of the CoA sample
set. A larger set might have facilitated detection of more variants
associating with CoA with weaker effects than observed for
p.Arg721Trp, and allowed a better estimate of the effect (OR), pene-
trance and the fraction of CoA cases explained by the mutation.

Conclusion

In conclusion, our findings give insights into the pathophysiology of
CoA, supporting the haemodynamic theory of the pathogenesis.

....................................................................................................................................................................................................................

Table 1 Association of p.Arg721Trp with congenital heart defects and various cardiac phenotypes

Naff Ncontr OR/effect (95% CI)a P-value

Congenital heart defects

Coarctation of the aorta 120 355 116 44.2 (20.5 to 95.5) 5.0� 10-22

Bicuspid aortic valve 208 293 346 10.5 (2.6 to 38.0) 7.3� 10-8

Ventricular septal defect 715 357 641 4.4 (1.9 to 10.0) 3.7� 10-4

Patent ductus arteriosus 594 357 762 4.9 (2.1 to 11.6) 2.3� 10-4

Atrial septal defect 657 353 096 3.3 (1.5 to 7.1) 0.0026

Cardiac conditions

Sick sinus syndrome 3310 346 082 8.7 (6.8 to 11.2) 6.2� 10-64

Atrial fibrillation 13 471 374 939 2.4 (1.9 to 3.0) 1.1� 10-14

Aortic valve stenosis 2457 349 342 2.7 (1.8 to 4.0) 1.8� 10-6

Heart failure 10 480 353 508 1.8 (1.4 to 2.3) 2.3� 10-6

Ischaemic stroke 8948 369 624 1.5 (1.1 to 2.0) 0.0029

High degree atrioventricular block 1303 361 919 2.1 (1.2 to 3.5) 0.0092

Coronary artery disease 37 782 318 845 1.2 (1.0 to 1.5) 0.056

Hypertrophic cardiomyopathy 163 239 293 0.0 (0.0 to 4.5) 0.15

Thoracic aortic aneurysm 353 302 458 1.8 (0.6 to 5.3) 0.31

Hypertension 54 974 324 803 1.1 (0.9 to 1.3) 0.44

Echocardiogram

Left atrial diameter 19 380 0.3 (0.1 to 0.5) 2.6� 10-4

Aortic root diameter 19 506 -0.1 (-0.2 to 0.1) 0.41

LVEDDb 5701 0.0 (-0.3 to 0.3) 0.93

Shown are the number of affected individuals and control individuals used in the association analysis for each of the traits.
aEstimated odds ratio (OR) or the effect in standard deviation and the 95% confidence interval (CI) for the association with p.Arg721Trp.
bLeft ventricular end-diastolic diameter.
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.
Moreover, the pleiotropic effect of p.Arg721Trp in MYH6 suggests it
causes a cardiac syndrome with highly variable expressivity that is dif-
ficult to understand clinically without sequence information.
Furthermore, these data emphasize the importance of sarcomere in-
tegrity for cardiac development and function.

Supplementary material

Supplementary material is available at European Heart Journal online.
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Berger F, Hetzer R, Bouvagnet P, Özcelik C. Cardiac alpha-myosin (MYH6) is the
predominant sarcomeric disease gene for familial atrial septal defects. PLoS One
2011;6:e28872.

41. Carniel E, Taylor MR, Sinagra G, Di Lenarda A, Ku L, Fain PR, Boucek MM,
Cavanaugh J, Miocic S, Slavov D, Graw SL, Feiger J, Zhu XZ, Dao D, Ferguson
DA, Bristow MR, Mestroni L. Alpha-myosin heavy chain: a sarcomeric gene asso-
ciated with dilated and hypertrophic phenotypes of cardiomyopathy. Circulation
2005;112:54–59.

Sarcomere gene mutation and coarctation of the aorta 7

Downloaded from https://academic.oup.com/eurheartj/advance-article-abstract/doi/10.1093/eurheartj/ehy142/4953519
by Decode Genetics ltd user
on 03 April 2018





193 

R
s
 n

a
m

e
P

o
s
it

io
n

 (
h

g
3
8
)

A
m

a
j/

 

A
m

in
a

M
A

F
b

 

(%
)

C
o

d
in

g
 

c
h

a
n

g
e

C
o

d
in

g
 

e
ff

e
c
t

In
fo

O
R

c
P

 
O

R
c
 

a
d

ju
s
te

d

P
 

a
d

ju
s
te

d
C

o
v
a
ri

a
te

rs
3
7
3
2
4
3
6
3
3

c
h
r8

:1
4
3
9
1
7
9
4
0

C
/T

1
.2

p
.G

ly
4
0
9
8
S

e
r

m
is

s
e
n
s
e

0
.9

9
1
.5

5
7
.8

×
1
0

-1
0

1
.0

0
1

p
.G

ly
4
0
9
8
S

e
r

rs
1
1
1
3
6
3
3
6

c
h
r8

:1
4
3
9
3
3
0
1
9

G
/A

3
7
.6

p
.A

la
5
3
1
V

a
l

m
is

s
e
n
s
e

1
.0

0
0
.9

5
0
.0

0
2
5

0
.9

6
0
.0

2
8

p
.G

ly
4
0
9
8
S

e
r

rs
7
7
3
0
3
9
7
4

c
h
r8

:1
4
3
9
1
9
8
9
6

G
/A

0
.6

p
.A

rg
3
3
3
6
C

y
s

m
is

s
e
n
s
e

0
.9

9
1
.3

8
0
.0

0
2
7

1
.3

8
0
.0

0
3
5

p
.G

ly
4
0
9
8
S

e
r

rs
2
0
0
2
0
6
1
0
5

c
h
r8

:1
4
3
9
1
7
6
3
1

C
/T

0
.0

2
p
.G

lu
4
0
9
1
L
y
s

m
is

s
e
n
s
e

0
.9

9
3
.3

9
0
.0

1
3

3
.7

1
0
.0

0
8
7

p
.G

ly
4
0
9
8
S

e
r

rs
2
0
1
0
5
1
1
0
9

c
h
r8

:1
4
3
9
1
7
6
3
4

C
/T

0
.2

p
.V

a
l4

0
9
0
M

e
t

m
is

s
e
n
s
e

0
.9

9
1
.4

8
0
.0

1
4

1
.5

0
0
.0

1
2

p
.G

ly
4
0
9
8
S

e
r

rs
7
7
4
2
7
0
6
3
1

c
h
r8

:1
4
3
9
2
4
5
9
8

C
/G

0
.2

p
.G

lu
1
8
0
4
A

s
p

m
is

s
e
n
s
e

0
.9

9
0
.5

1
0
.0

1
4

0
.4

7
0
.0

0
7
2

p
.G

ly
4
0
9
8
S

e
r

rs
2
0
0
2
7
2
8
0
4

c
h
r8

:1
4
3
9
2
3
1
4
7

T
/C

0
.1

p
.A

s
n
2
2
8
8
S

e
r

m
is

s
e
n
s
e

0
.9

9
1
.7

1
0
.0

1
5

1
.7

9
0
.0

0
9
9

p
.G

ly
4
0
9
8
S

e
r

rs
2
0
1
4
3
0
1
8
0

c
h
r8

:1
4
3
9
2
5
3
3
1

C
/T

0
.1

p
.A

rg
1
5
6
0
G

ln
m

is
s
e
n
s
e

0
.9

9
0
.5

0
0
.0

1
5

0
.5

0
0
.0

1
9

p
.G

ly
4
0
9
8
S

e
r

rs
3
5
2
6
1
8
6
3

c
h
r8

:1
4
3
9
1
9
7
6
3

C
/G

1
.9

p
.G

ly
3
3
8
0
A

la
m

is
s
e
n
s
e

1
.0

0
1
.1

6
0
.0

1
6

1
.1

8
0
.0

0
6
8

p
.G

ly
4
0
9
8
S

e
r

rs
6
5
5
8
4
0
7

c
h
r8

:1
4
3
9
2
1
3
2
6

C
/T

3
9
.8

p
.A

rg
2
8
5
9
H

is
m

is
s
e
n
s
e

1
.0

0
0
.9

6
0
.0

1
7

0
.9

7
0
.1

2
p
.G

ly
4
0
9
8
S

e
r

rs
7
0
0
2
0
0
2

c
h
r8

:1
4
3
9
2
3
7
5
9

G
/A

3
9
.8

p
.A

la
2
0
8
4
V

a
l

m
is

s
e
n
s
e

1
.0

0
0
.9

6
0
.0

1
8

0
.9

7
0
.1

2
p
.G

ly
4
0
9
8
S

e
r

rs
1
1
1
3
6
3
3
3

c
h
r8

:1
4
3
9
2
7
3
4
1

T
/C

3
9
.8

c
.3

8
3
8
-6

A
>

G
s
p
lic

e
 

re
g

io
n

1
.0

0
0
.9

6
0
.0

1
8

0
.9

7
0
.1

2
p
.G

ly
4
0
9
8
S

e
r

rs
7
0
0
2
1
5
2

c
h
r8

:1
4
3
9
2
5
8
8
8

T
/C

3
9
.8

c
.4

1
2
6
-4

A
>

G
s
p
lic

e
 

re
g

io
n

1
.0

0
0
.9

6
0
.0

1
8

0
.9

7
0
.1

2
p
.G

ly
4
0
9
8
S

e
r

rs
1
1
1
3
6
3
3
4

c
h
r8

:1
4
3
9
2
7
4
2
0

C
/T

3
9
.8

p
.A

rg
1
2
7
6
G

ln
m

is
s
e
n
s
e

1
.0

0
0
.9

6
0
.0

1
8

0
.9

7
0
.1

2
p
.G

ly
4
0
9
8
S

e
r

rs
5
8
3
0
8
2
0
9

c
h
r8

:1
4
3
9
2
1
0
0
1

G
/C

0
.8

p
.A

s
p
2
9
6
7
G

lu
m

is
s
e
n
s
e

1
.0

0
1
.2

3
0
.0

2
4

1
.2

3
0
.0

2
8

p
.G

ly
4
0
9
8
S

e
r

rs
7
6
8
1
1
3
0
5
9

c
h
r8

:1
4
3
9
2
0
7
4
2

C
/T

0
.1

p
.A

la
3
0
5
4
T

h
r

m
is

s
e
n
s
e

0
.9

8
1
.6

9
0
.0

2
4

1
.6

8
0
.0

3
1

p
.G

ly
4
0
9
8
S

e
r

rs
2
8
5
2
6
6
5
7

c
h
r8

:1
4
3
9
2
1
8
0
9

C
/T

0
.8

p
.A

rg
2
6
9
8
G

ln
m

is
s
e
n
s
e

1
.0

0
1
.2

2
0
.0

2
7

1
.2

2
0
.0

3
0

p
.G

ly
4
0
9
8
S

e
r

rs
7
8
3
3
9
2
4

c
h
r8

:1
4
3
9
2
1
8
6
1

A
/G

4
0
.6

p
.S

e
r2

6
8
1
P

ro
m

is
s
e
n
s
e

1
.0

0
0
.9

7
0
.0

4
9

0
.9

8
0
.2

4
p
.G

ly
4
0
9
8
S

e
r

rs
5
5
8
9
5
6
6
8

c
h
r8

:1
4
3
9
2
6
8
6
3

T
/C

4
0
.6

p
.H

is
1
3
4
9
A

rg
m

is
s
e
n
s
e

1
.0

0
0
.9

7
0
.0

4
9

0
.9

8
0
.2

4
p
.G

ly
4
0
9
8
S

e
r

rs
7
6
3
4
3
6
3
5
4

c
h
r8

:1
4
3
9
1
9
2
3
2

C
/T

0
.1

p
.C

y
s
3
5
5
7
T

y
r

m
is

s
e
n
s
e

0
.9

9
1
.5

7
0
.0

6
6

1
.6

6
0
.0

4
4

p
.G

ly
4
0
9
8
S

e
r

a
A

m
a
j/
A

m
in

 =
 m

a
jo

r 
a
ll
e
le

/m
in

o
r 

a
ll
e
le

; 
b
M

A
F

 =
 m

in
o
r 

a
ll
e
le

 f
re

q
u

e
n

c
y
; 

c
O

R
 =

 o
d

d
s
 r

a
ti
o

Appendix 1 

Top 20 associations of coding variants in PLEC with 
AF and results of conditional analysis (paper I) 
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N cases N controls OR
a
 (CI

b
) P value

13,471 374,939 1.22 (1.15-1.29) 7.0×10
-12

N cases N controls OR
a
 (CI

b
) P value

1,238 11,562 1.30 (1.13-1.49) 1.9×10
-4

N cases N controls OR
a
 (CI

b
) P value

764 762 1.99 (1.55-2.55) 6.5×10
-8

N cases N controls OR
a
 (CI

b
) P value

15,473 387,263 1.26 (1.19-1.32) 3.1×10
-18

Significant heterogeneity was observed between the non-Icelandic and 

Icelandic samples (P  = 7.8×10
-4

). The heterogeneity is driven by the high 

OR observed in the Vanderbilt sample set.
a
OR = odds ratio; 

b
CI = 95% confidence interval

Vanderbilt AF registry

Combined results

Icelandic GWAS

FOURIER samples

Appendix 2 

Association of rs72700114 at LINC01142/METTL11B 
with AF in Iceland and follow up sample sets (paper I) 
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RS name Position (hg38)
Risk allele/ 

other
RAF (%)

a
OR

b P
OR   

adjusted
P adjusted Covariate

rs72700114Chr1:170224684 C/G 8.1 1.22 7.04x10
-12 1.22 4.27 x 10

-11 Chr1: 170622169

rs651386 Chr1: 170622169 A/T 57.4 1.11 1.94×10
-10 1.10 6.05 x 10

-08 Chr1:170224684
a
RAF = risk allele frequency; 

b
OR = odds ratio

Appendix 3 

Results of conditional analysis between rs72700114 at 
METTL11B/LINC01142 and a previously reported signal 
400 kb away, rs651386, close to PRRX1 in the Icelandic 

GWAS on AF (paper I) 
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Rs name Position (hg38)
Amaj/ 

Amin
a

MAF
b   

(%)

Coding 

change

Coding 

effect
Info OR

c P 
OR

c 

adjusted

P 

adjusted
Covariate

rs147301839 chr15:57632516 A/C 1.08 p.Gln254Pro Missense 1.00 1.38 9.03×10
-6 1.00 1.00 p.Gln254Pro

rs117361082 chr15:57637771 A/G 1.38 p.Glu337Gly Missense 1.00 1.31 4.17×10
-5 1.06 0.69 p.Gln254Pro

rs147173331 chr15:57618043 T/C 0.54 p.Leu58Pro Missense 1.00 1.15 0.19 1.17 0.15 p.Gln254Pro

rs146453491 chr15:57633609 G/T 0.002 c.805-4G>T
Splice  

region
0.96 6.67 0.25 7.4 0.24 p.Gln254Pro

rs142253131 chr15:57604284 C/A 0.14 p.Leu31Ile Missense 0.99 0.80 0.31 0.81 0.36 p.Gln254Pro

rs138712430 chr15:57618135 G/A 0.08 p.Val89Met Missense 0.98 0.83 0.56 0.82 0.53 p.Gln254Pro

rs140229874 chr15:57637729 A/G 0.2 p.His323Arg Missense 0.99 0.97 0.87 0.97 0.87 p.Gln254Pro
a
Amaj/Amin = major allele/minor allele; 

b
MAF = minor allele frequency; 

c
OR = odds ratio

Appendix 4 

Associations of low frequency (<5%) imputed moderate 
and high impact variants in MYZAP with AF in Iceland 
(N = 14,710) and results of conditional analysis with 

p.Gln254Pro as covariate (paper II) 
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Number of 

cases/controls
OR

a
 (CI

b
) P value OR

a
 (CI

b
) P value OR

a
 (CI

b
) P value

Iceland 3,568/346,025 1.51 (1.21-1.90) 3.5×10
-4 1.01 (0.88-1.17) 0.83 0.97 (0.69- 1.37) 0.85

UK 403/403,181 3.80 (1.89-7.62) 1.8×10
-4 0.91 (0.62-1.34) 0.62 2.45 (0.93-6.48) 0.070

Combined 3,971/749,206 1.65 (1.33-2.05) 5.0×10
-6 1.00 (0.88-1.14) 0.97 1.07 (0.78-1.48) 0.67

MYZAP  p.Gln254Pro RPL3L  p.Ala75Val RPL3L  c.1167+1G>A

a
OR = odds ratio; 

b
CI = 95% confidence interval

Appendix 5 

Association of three novel AF variants (paper II) with 
SSS in Iceland and the UK Biobank 
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Variant tested
Variant 

conditioned on

OR
a 

adjusted

P 

adjusted

c.1167+1G>A p.Ala75Val 1.40 7.1x10
-4

p.Ala75Val c.1167+AG>A 1.20 1.6x10
-5

a
OR = odds ratio

Appendix 6 

Conditional analysis of two RPL3L variants on each 
other with regards to AF association in Iceland (paper 

II) 
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Rs name Position (hg38)
Amaj/ 

Amina

MAFb   

(%)

Coding 

change

Coding 

effect
Info ORc P 

ORc 

adjusted

P 

adjusted
Covariate

rs140185678 chr16:1953015 G/A 3.6 p.Ala75Val missense 0.99 1.18 6.4×10-5 1.00 1.00
p.Ala75Val, 

c.1167+1G>A

rs140192228 chr16:1945498 C/T 0.6 c.1167+1G>A Splice 0.99 1.37 8.7×10-4 1.00 1.00
p.Ala75Val, 

c.1167+1G>A

rs146294352 chr16:1954118 C/T 0.8 p.Gly12Arg missense 0.99 1.29 0.0029 1.32 0.0018
p.Ala75Val, 

c.1167+1G>A

rs113956264 chr16:1947003 C/T 4.4 p.Val262Met missense 0.99 1.06 0.16 1.06 0.12
p.Ala75Val, 

c.1167+1G>A

rs147948209 chr16:1945869 G/C 1.1 p.Ala338Gly missense 0.98 0.90 0.20 0.92 0.30
p.Ala75Val, 

c.1167+1G>A

rs147972626 chr16:1947063 G/A 0.7 p.Arg242Trp missense 0.99 1.13 0.20 1.16 0.13
p.Ala75Val, 

c.1167+1G>A

rs146749305 chr16:1954028 G/A 0.004 p.His42Tyr missense 0.99 0.02 0.22 0.02 0.23
p.Ala75Val, 

c.1167+1G>A

rs75401081 chr16:1947205 C/T 0.002 p.Arg226Gln missense 0.95 0.02 0.36 0.02 0.37
p.Ala75Val, 

c.1167+1G>A

rs140116056 chr16:1945588 C/T 0.4 p.Val360Met missense 0.99 0.91 0.42 0.90 0.41
p.Ala75Val, 

c.1167+1G>A

rs141796888 chr16:1947283 C/T 1.1 p.Arg200Gln missense 0.98 1.05 0.52 1.08 0.35
p.Ala75Val, 

c.1167+1G>A

rs79075024 chr16:1947384 C/G 1.8 c.502-4G>C splice region0.99 1.03 0.59 1.06 0.36
p.Ala75Val, 

c.1167+1G>A

rs201602086 chr16:1952995 G/C 0.002 p.Pro82Ala missense 1.00 0.02 0.61 0.018 0.62
p.Ala75Val, 

c.1167+1G>A

rs201864074 chr16:1954141 C/T 0.001 p.Arg4Gln missense 0.96 1.97 0.63 2.35 0.56
p.Ala75Val, 

c.1167+1G>A

rs34265469 chr16:1946704 G/A 0.03 p.Pro291Leu missense 0.99 0.84 0.73 0.81 0.68
p.Ala75Val, 

c.1167+1G>A

rs118144581 chr16:1952959 C/T 0.02 p.Ala94Thr missense 0.97 0.88 0.79 0.92 0.86
p.Ala75Val, 

c.1167+1G>A
a
Amaj/Amin = major allele/minor allele; 

b
MAF = minor allele frequency; 

c
OR = odds ratio

Appendix 7 

Associations of low frequency (<5%) imputed moderate 
and high impact variants in RPL3L with AF in Iceland 
(N = 14,710) and results of conditional analysis with 
p.Ala75Val and c.1167+1G>A as covariates (paper II) 
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Appendix 8 

Heatmap showing the effects of AF variants on ECG 
traits of all ECGs (434,000 ECGs from 88,217 

individuals), not excluding AF cases (papers I and II) 
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Rs name Position (hg19)
Risk/ref

a  

allele

RAF
b  

(%)
OR (CI)

c P value P  het
d Novelty Annotation Prioritized genes

rs284277 chr1:10790797 C/A 38.3 1.04 (1.03-1.06) 1.2×10
-9 0.73 novel intronic/CASZ1 CASZ1

rs7529220 chr1:22282619 C/T 84.7 1.06 (1.04-1.08) 2.0×10
-10 0.52 novel intergenic/. HSPG2

rs2885697 chr1:41544279 G/T 35.2 1.04 (1.03-1.06) 2.9×10
-10 0.91 novel intronic/SCMH1 SCMH1

rs11590635 chr1:49309764 A/G 2.4 1.16 (1.10-1.21) 4.1×10
-9 0.040 novel intronic/AGBL4 AGBL4

rs146518726 chr1:51535039 A/G 3.3 1.17 (1.13-1.22) 8.3×10
-15 0.095 known intergenic/. MIR6500

rs1545300 chr1:112464004 C/T 69.1 1.06 (1.04-1.07) 1.5×10
-14 0.17 known intronic/KCND3 KCND3

rs4073778 chr1:116297758 A/C 56.4 1.05 (1.04-1.06) 5.0×10
-13 0.021 novel intronic/CASQ2 CASQ2

rs79187193 chr1:147255831 G/A 94.3 1.12 (1.09-1.16) 3.2×10
-14 0.94 novel intergenic/. GJA5

rs11264280 chr1:154862952 T/C 33.3 1.14 (1.13-1.16) 3.1×10
-79 0.21 known intergenic/. KCNN3

rs72700114 chr1:170193825 C/G 7.6 1.22 (1.19-1.26) 3.3×10
-54

7.38×10
-5 known intergenic/. LINC01142

rs10753933 chr1:203026214 T/G 4.8 1.06 (1.05-1.08) 9.8×10
-20 0.16 known intronic/PPFIA4 PPFIA4

rs4951258 chr1:205691316 A/G 41.6 1.04 (1.02-1.05) 2.1×10
-8 0.65 novel intronic/NUCKS1 NUCKS1,SLC41A1

rs7578393 chr2:26165528 T/C 79.6 1.06 (1.05-1.08) 2.4×10
-12 0.73 novel intronic/KIF3C KIF3C

rs11125871 chr2:61470126 C/T 60.5 1.04 (1.03-1.05) 6.4×10
-9 0.62 novel intronic/USP34 USP34

rs2540949 chr2:65284231 A/T 61.5 1.07 (1.05-1.08) 3.0×10
-22 0.23 known intronic/CEP68 CEP68

rs6747542 chr2:70106832 T/C 53.6 1.06 (1.04-1.07) 1.1×10
-16 0.042 known downstream/GMCL1 GMCL1,ANXA4

rs72926475 chr2:86594487 G/A 87.7 1.07 (1.05-1.09) 2.4×10
-11

5.93×10
-4 novel intergenic/. REEP1

rs28387148 chr2:127433465 T/C 10.5 1.08 (1.05-1.10) 6.3×10
-11 0.23 novel intronic/GYPC GYPC

rs67969609 chr2:145760353 G/C 7.1 1.07 (1.05-1.10) 1.7×10
-8 0.22 novel

ncRNA_intronic/ 

TEX41
TEX41

rs56181519 chr2:175555714 C/T 73.2 1.07 (1.05-1.08) 6.5×10
-18 0.65 novel intergenic/. WIPF1

rs2288327 chr2:179411665 G/A 15.6 1.10 (1.08-1.12) 7.3×10
-25 0.025 known intronic/TTN TTN,MIR548N,FKBP7,TTN-AS1

rs3820888 chr2:201180023 C/T 39.2 1.07 (1.06-1.09) 5.8×10
-24 0.27 novel intronic/SPATS2L SPATS2L

rs35544454 chr2:213266003 A/T 80.8 1.06 (1.04-1.08) 1.1×10
-11 0.21 novel intronic/ERBB4 ERBB4

rs7650482 chr3:12841804 G/A 64.0 1.07 (1.06-1.09) 1.8×10
-24 0.33 known intronic/CAND2 CAND2

rs73041705 chr3:24463235 T/C 70.2 1.05 (1.03-1.06) 1.5×10
-9 0.16 novel intronic/THRB THRB

rs6790396 chr3:38771925 G/C 59.6 1.06 (1.05-1.08) 2.4×10
-20 0.93 known intronic/SCN10A SCN10A,SCN5A

rs34080181 chr3:66454191 G/A 62.1 1.05 (1.03-1.06) 1.3×10
-10 0.47 novel intronic/LRIG1 LRIG1,SLC25A26

rs17005647 chr3:69406181 T/C 36.4 1.04 (1.03-1.06) 2.7×10
-09 0.31 novel intronic/FRMD4B FRMD4B

rs6771054 chr3:89489529 T/C 59.6 1.05 (1.03-1.06) 2.4×10
-11

8.19×10
-4 novel intronic/EPHA3 EPHA3

rs10804493 chr3:111554426 A/G 65.1 1.06 (1.04-1.07) 1.6×10
-15 0.36 novel intronic/PHLDB2 PHLDB2,PLCXD2

rs1278493 chr3:135814009 G/A 43.6 1.04 (1.03-1.05) 8.8×10
-9 0.58 novel intronic/PPP2R3A PPP2R3A

rs7612445 chr3:179172979 T/G 18.8 1.05 (1.03-1.07) 4.8×10
-9 0.70 novel upstream/GNB4 GNB4

rs60902112 chr3:194800853 T/C 22.6 1.05 (1.03-1.06) 1.7×10
-8 0.70 novel intronic/XXYLT1 XXYLT1

rs1458038 chr4:81164723 T/C 30.9 1.04 (1.03-1.06) 1.7×10
-9 0.82 novel intergenic/. FGF5

rs10006327 chr4:103890980 C/T 49.0 1.04 (1.02-1.05) 4.4×10
-8 0.80 novel intronic/SLC9B1 SLC9B1

rs67249485 chr4:111699685 T/A 19.9 1.44 (1.42-1.46) 7.3×10
-443

8.24×10
-10 known intergenic/. PITX2

rs6829664 chr4:114448656 G/A 26.2 1.06 (1.04-1.07) 1.9×10
-13 0.15 novel intronic/CAMK2D CAMK2D

rs10213171 chr4:148937537 G/C 6.1 1.10 (1.07-1.12) 1.3×10
-11 0.51 novel intronic/ARHGAP10 ARHGAP10

rs12648245 chr4:174641184 T/C 92.4 1.10 (1.07-1.12) 3.5×10
-13 0.61 known intergenic/. HAND2,HAND2-AS1

rs6596717 chr5:106427609 C/A 39.5 1.04 (1.03-1.06) 3.0×10
-9 0.63 novel intergenic/. LOC102467213

rs337705 chr5:113737062 G/T 37.5 1.06 (1.04-1.07) 1.6×10
-16 0.84 known intronic/KCNN2 KCNN2

rs2012809 chr5:128190363 G/A 79.0 1.06 (1.04-1.08) 4.9×10
-10 0.45 novel intergenic/. SLC27A6

rs2040862 chr5:137419989 T/C 17.8 1.11 (1.10-1.13) 1.1×10
-35 0.12 known intronic/WNT8A WNT8A,NPY6R,MYOT,FAM13B

rs6580277 chr5:142818123 G/A 23.7 1.07 (1.05-1.09) 1.6×10
-17 0.33 novel upstream/NR3C1 NR3C1

rs12188351 chr5:168386089 A/G 5.6 1.09 (1.06-1.12) 2.5×10
-9 0.83 novel intronic/SLIT3 SLIT3

rs6891790 chr5:172670745 G/T 71.7 1.08 (1.06-1.09) 4.5×10
-22 0.11 novel intergenic/. NKX2-5

rs73366713 chr6:16415751 G/A 86.0 1.11 (1.09-1.13) 1.5×10
-25 0.21 novel intronic/ATXN1 ATXN1

rs34969716 chr6:18210109 A/G 30.5 1.07 (1.06-1.09) 1.6×10
-19 0.18 novel intronic/KDM1B KDM1B,DEK

rs3176326 chr6:36647289 G/A 80.2 1.06 (1.05-1.08) 1.4×10
-13 0.40 novel intronic/CDKN1A CDKN1A,PANDAR, PI16

rs2031522 chr6:87821501 A/G 62.4 1.04 (1.03-1.06) 1.5×10
-10 0.91 novel intergenic/. CGA

rs3951016 chr6:118559658 A/T 45.9 1.07 (1.05-1.08) 2.1×10
-22 0.21 known intronic/SLC35F1 SLC35F1,PLN

rs13195459 chr6:122403559 G/A 63.8 1.06 (1.05-1.08) 4.2×10
-19 0.063 known intergenic/. HSF2

rs117984853 chr6:149399100 T/G 10.1 1.13 (1.10-1.16) 1.3×10
-24 0.22 novel downstream/UST UST

rs55734480 chr7:14372009 A/G 24.9 1.06 (1.04-1.07) 2.2×10
-12 0.11 novel intronic/DGKB DGKB

Continued on the next page

a
ref allele = reference allele, 

b
RAF= Risk allele frequency; 

c
OR (CI) = Odds ratio (95 % confidence interval); 

d
P het =  P heterogeneity

Appendix 9 

Identified known (n = 31) and novel (n = 80) AF risk loci 
in a GWAS meta-analysis of 60,620 AF cases and 

970,216 controls (paper III) 
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Rs name Position (hg19)
Risk/ref

a  

allele

RAF
b  

(%)
OR (CI)

c P value P  het
d Novelty Annotation Prioritized genes

rs6462079 chr7:28415827 A/G 72.1 1.05 (1.03-1.06) 8.8×10
-10 0.34 novel intronic/CREB5 CREB5

rs35005436 chr7:74134911 C/T 15.5 1.06 (1.04-1.08) 3.3×10
-10 0.93 novel intronic/GTF2I

GTF2I,LOC101926943,GTF2IR

D2

rs56201652 chr7:92278116 G/A 73.3 1.05 (1.04-1.07) 1.7×10
-12 0.21 novel intronic/CDK6 CDK6

rs11773845 chr7:116191301 A/C 58.6 1.11 (1.10-1.13) 2.4×10
-55 0.064 known intronic/CAV1 CAV1,CAV2

rs55985730 chr7:128417044 G/T 6.0 1.09 (1.06-1.12) 5.2×10
-9 0.95 novel upstream/OPN1SW OPN1SW,CALU

rs7789146 chr7:150661409 G/A 82.1 1.06 (1.04-1.08) 2.1×10
-11 0.84 novel intronic/KCNH2 KCNH2

rs35620480 chr8:11499908 C/A 15.7 1.06 (1.04-1.07) 5.2×10
-9 0.41 novel intergenic/. GATA4

rs7508 chr8:17913970 A/G 71.1 1.07 (1.06-1.09) 1.7×10
-21 0.39 known UTR3/ASAH1 ASAH1

rs7834729 chr8:21821778 G/T 88.5 1.07 (1.05-1.09) 3.6×10
-10 0.24 novel intronic/XPO7 XPO7

rs62521286 chr8:124551975 G/A 6.6 1.13 (1.10-1.16) 4.5×10
-19 0.58 novel intronic/FBXO32 FBXO32

rs6994744 chr8:141740868 C/A 49.5 1.04 (1.03-1.05) 1.1×10
-9 0.19 novel intronic/PTK2 PTK2

rs10821415 chr9:97713459 A/C 41.3 1.09 (1.07-1.10) 2.9×10
-34 0.26 known intronic/C9orf3 C9orf3

rs2274115 chr9:139094773 G/A 70.0 1.05 (1.03-1.07) 1.7×10
-10 0.76 novel intronic/LHX3 LHX3

rs12245149 chr10:65321147 C/A 52.6 1.05 (1.03-1.06) 1.7×10
-12 0.35 novel intronic/REEP3 REEP3,NRBF2

rs7096385 chr10:69664881 T/C 9.2 1.07 (1.05-1.10) 4.9×10
-08 0.24 novel intronic/SIRT1 SIRT1,MYPN

rs60212594 chr10:75414344 G/C 85.6 1.12 (1.10-1.15) 9.2×10
-35 0.14 known intronic/SYNPO2L

SYNPO2L,NUDT13, 

MYOZ1,AGAP5

rs10458660 chr10:77936576 G/A 17.3 1.06 (1.04-1.07) 6.8×10
-10 0.57 novel intronic/C10orf11 C10orf11

rs11598047 chr10:105342672 G/A 16.2 1.17 (1.15-1.19) 9.0×10
-66 0.18 known intronic/NEURL1 NEURL1

rs10749053 chr10:112576695 T/C 15.8 1.06 (1.04-1.08) 1.0×10
-8 0.98 novel intronic/RBM20 RBM20

rs10741807 chr11:20011445 T/C 24.5 1.08 (1.06-1.09) 1.6×10
-20 0.60 novel intronic/NAV2 NAV2

rs4935786 chr11:121661507 T/A 26.7 1.05 (1.03-1.06) 4.9×10
-9 0.25 novel intergenic/. SORL1

rs76097649 chr11:128764570 A/G 9.3 1.12 (1.10-1.15) 1.3×10
-20 0.042 known intronic/KCNJ5 KCNJ5

rs4963776 chr12:24779491 G/T 81.8 1.10 (1.08-1.11) 1.8×10
-25 0.20 known intergenic/. LINC00477

rs17380837 chr12:26345526 C/T 69.3 1.05 (1.04-1.07) 4.8×10
-12 0.17 novel upstream/SSPN SSPN

rs12809354 chr12:32978437 C/T 14.4 1.07 (1.05-1.09) 2.9×10
-14 0.0063 novel intronic/PKP2 PKP2

rs2860482 chr12:57105938 A/C 27.4 1.06 (1.04-1.07) 1.2×10
-12 0.70 novel downstream/NACA NACA

rs71454237 chr12:70013415 G/A 79.1 1.06 (1.05-1.08) 1.8×10
-13 0.97 novel intergenic/. LRRC10

rs12426679 chr12:76237987 C/T 47.2 1.04 (1.03-1.05) 4.9×10
-9 0.025 novel intergenic/. PHLDA1

rs883079 chr12:114793240 T/C 70.7 1.10 (1.09-1.12) 2.8×10
-40 0.049 known UTR3/TBX5 TBX5

rs10773657 chr12:123327900 C/A 13.8 1.06 (1.04-1.08) 2.5×10
-8 0.36 novel intronic/HIP1R HIP1R

rs6560886 chr12:133150210 C/T 78.8 1.05 (1.03-1.07) 1.5×10
-8 0.59 novel intronic/FBRSL1 FBRSL1

rs9506925 chr13:23368943 T/C 26.7 1.05 (1.03-1.06) 2.7×10
-9 0.34 novel intergenic/. LINC00540, LINC00621,SGCG

rs35569628 chr13:113872712 T/C 77.7 1.05 (1.03-1.06) 1.4×10
-8 0.027 novel intronic/CUL4A CUL4A

rs422068 chr14:23864804 C/T 34.9 1.04 (1.03-1.06) 3.9×10
-10 0.0018 known intronic/MYH6 MYH6,MYH7

rs11156751 chr14:32990437 C/T 28.5 1.07 (1.06-1.09) 6.9×10
-21 0.37 novel intronic/AKAP6 AKAP6

rs73241997 chr14:35173775 T/C 14.2 1.08 (1.06-1.10) 2.9×10
-15 0.45 novel intergenic/. CFL2

rs2738413 chr14:64679960 A/G 49.5 1.08 (1.07-1.10) 2.5×10
-31 0.32 known intronic/SYNE2

SYNE2,MIR548AZ, 

ESR2,MTHFD1

rs74884082 chr14:73249419 C/T 75.0 1.05 (1.03-1.07) 3.5×10
-10 0.28 novel intronic/DPF3 DPF3

rs10873298 chr14:77426525 C/T 36.6 1.04 (1.03-1.06) 7.1×10
-9 0.080 novel intergenic/. IRF2BPL

rs147301839 chr15:57924714 C/A 0.7 1.39 (1.26-1.55) 1.9×10-
10 0.85 known

nonsynonymous/ 

GCOM1
GCOM1/MYZAP

rs7170477 chr15:64103777 A/G 30.4 1.04 (1.03-1.05) 5.0×10
-8 0.47 novel intronic/HERC1 HERC1

rs74022964 chr15:73677264 T/C 15.7 1.12 (1.10-1.14) 3.5×10
-36 0.38 known intergenic/. HCN4

rs12908004 chr15:80676925 G/A 16.4 1.08 (1.06-1.10) 4.1×10
-16 0.08 novel intergenic/. ARNT2

rs4965430 chr15:99268850 C/G 38.6 1.05 (1.03-1.06) 1.3×10
-10 0.25 novel intronic/IGF1R IGF1R

rs140185678 chr16:2003016 A/G 3.5 1.18 (1.13-1.23) 2.4×10
-14 0.21 known

nonsynonymous/ 

RPL3L
RPL3L

rs2359171 chr16:73053022 A/T 17.6 1.19 (1.17-1.21) 4.7×10
-91

8.58×10
-4 known intronic/ZFHX3 ZFHX3

rs7225165 chr17:1309850 G/A 88.7 1.07 (1.04-1.09) 3.2×10
-9 0.75 novel intergenic/. YWHAE,CRK, MYO1C

rs9899183 chr17:7452977 T/C 71.4 1.05 (1.03-1.06) 2.02×10
-9 0.49 novel intronic/TNFSF12

TNFSF12,TNFSF12TNFSF13, 

SOX15,FXR2

rs72811294 chr17:12618680 G/C 88.7 1.07 (1.05-1.10) 9.7×10
-12 0.17 novel intronic/MYOCD MYOCD

rs11658278 chr17:38031164 T/C 47.9 1.05 (1.03-1.06) 3.5×10
-11 0.81 novel intronic/ZPBP2 ZPBP2,GSDMB, ORMDL3

rs1563304 chr17:44874453 T/C 17.8 1.07 (1.05-1.09) 2.6×10
-12 0.43 known intronic/WNT3 WNT3

rs12604076 chr17:76773638 T/C 47.8 1.04 (1.02-1.05) 3.6×10
-8 0.57 novel intronic/CYTH1 CYTH1,USP36

rs9953366 chr18:46474192 C/T 66.3 1.05 (1.04-1.07) 1.8×10
-11 0.87 novel intronic/SMAD7 SMAD7

rs8088085 chr18:48708548 A/C 53.5 1.04 (1.02-1.05) 4.8×10
-8 0.56 novel intronic/MEX3C MEX3C

rs2834618 chr21:36119111 T/G 89.4 1.10 (1.08-1.12) 3.4×10
-17 0.20 novel

ncRNA_intronic/ 

LINC01426
LINC01426

rs464901 chr22:18597502 T/C 66.5 1.05 (1.04-1.07) 1.5×10
-12 0.08 novel intronic/TUBA8 TUBA8

rs133902 chr22:26164079 T/C 42.7 1.04 (1.03-1.06) 9.1×10
-10 0.68 novel intronic/MYO18B MYO18B

a
ref allele = reference allele, 

b
RAF= Risk allele frequency; 

c
OR (CI) = Odds ratio (95 % confidence interval); 

d
P het =  P heterogeneity

Appendix 9 - continued 
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Rs name Position (hg19)
Risk/ref

a 

allele

RAF
b 

(%)
OR (CI)

c P value Novelty Annotation
Prioritized 

genes

rs10465885 chr1:147232740 C/T 47.2 1.04 (1.03-1.06) 1.4×10
-10 novel intergenic/. GJA5

rs6689306 chr1:154395946 A/G 41.3 1.06 (1.05-1.08) 1.2×10
-18 known intergenic/. KCNN3

rs4999127 chr1:154714006 A/G 83.9 1.10 (1.08-1.12) 1.8×10
-23 known intergenic/. KCNN3

rs577676 chr1:170587340 C/T 56.2 1.07 (1.05-1.08) 2.4×10
-20 known intergenic/. LINC01142

rs7374540 chr3:38634142 A/C 60.7 1.05 (1.03-1.06) 7.4×10
-12 known intronic/SCN10A

SCN10A, 

SCN5A

rs7373065 chr3:38710315 T/C 4.9 1.23 (1.17-1.29) 2.7×10
-16 known intronic/SCN10A

SCN10A, 

SCN5A

rs244017 chr4:111255917 T/G 77.6 1.06 (1.04-1.08) 7.7×10
-11 known intergenic/. PITX2

rs61501369 chr4:111524629 T/C 23.4 1.10 (1.09-1.12) 1.0×10
-28 known intergenic/. PITX2

rs6850025 chr4:111596360 A/G 4.9 1.12 (1.08-1.16) 9.5×10
-11 known intergenic/. PITX2

rs79399769 chr4:111925656 C/T 96.9 1.24 (1.18-1.30) 2.0×10
-18 known intergenic/. PITX2

rs1532170 chr4:112165212 G/A 45.1 1.07 (1.05-1.08) 8.0×10
-18 known intergenic/. PITX2

rs138311480 chr4:112454295 C/T 97.8 1.18 (1.12-1.25) 3.0×10
-9 known intergenic/. PITX2

rs114904067 chr4:112604821 G/A 97.2 1.13 (1.09-1.18) 8.6×10
-9 known intergenic/. PITX2

rs7687819 chr4:113329345 A/G 77.1 1.05 (1.03-1.06) 8.7×10
-9 known intergenic/. PITX2

rs10520260 chr4:174447349 A/G 67.9 1.05 (1.03-1.06) 5.9×10
-10 known intergenic/.

HAND2,  

HAND2-AS1

rs28439930 chr5:173393111 G/C 51.7 1.05 (1.03-1.06) 1.9×10
-11 novel intergenic/. NKX2-5

rs9401451 chr6:122099152 G/A 90.0 1.08 (1.05-1.10) 3.4×10
-11 known intergenic/. HSF2

rs4871397 chr8:124635197 G/C 8.9 1.09 (1.06-1.12) 1.3×10
-9 novel intronic/FBXO32 FBXO32

rs55693294 chr10:105277474T/C 6.1 1.09 (1.06-1.12) 4.2×10
-9 known intronic/NEURL1 NEURL1

rs2291437 chr12:24715048 G/T 10.5 1.09 (1.07-1.12) 2.0×10
-17 known intergenic/. LINC00477

rs11614818 chr12:56055815 C/T 36.3 1.04 (1.03-1.05) 1.9×10
-8 novel

downstream/ 

NACA
NACA

rs775498 chr12:70071513 G/A 28.0 1.04 (1.03-1.06) 9.4×10
-9 novel intergenic/. LRRC10

rs1957021 chr14:32924505 C/T 22.2 1.06 (1.05-1.08) 4.8×10
-15 novel intronic/AKAP6 AKAP6

rs2759301 chr15:80994288 A/G 45.4 1.04 (1.03-1.05) 9.2×10
-9 novel intergenic/. ARNT2

rs118159104 chr16:1676804 G/T 1.4 1.20 (1.13-1.28) 1.6×10
-8 known

nonsynonymous/

RPL3L
RPL3L

rs77316573 chr16:2265271 T/C 19.9 1.05 (1.03-1.07) 2.4×10
-8 known

nonsynonymous/

RPL3L
RPL3L

rs876727 chr16:73067761 T/G 79.1 1.05 (1.03-1.07) 6.8×10
-9 known intronic/ZFHX3 ZFHX3

rs9963878 chr18:48679522 C/T 8.5 1.07 (1.04-1.09) 2.5×10
-8 novel intronic/MEX3C MEX3C

rs72700118
d chr1:170194823 A/C 12.7 1.14 (1.12-1.16) 2.0×10

-36 known intergenic/. LINC01142

rs3853445
d chr4:111761487 T/C 73.4 1.16 (1.13-1.18) 3.7×10

-52 known intergenic/. PITX2

rs35176054
d chr10:105480387A/T 13.0 1.15 (1.12-1.17) 8.2×10

-41 known intronic/NEURL1 NEURL1

d
Independent of locus lead variant but not from previously reported lead variants

a
ref allele = reference allele, 

b
RAF= Risk allele frequency; 

c
OR (CI) = Odds ratio (95 % confidence interval)

Appendix 10 

Additional, independent AF risk variants (n = 31) 
identified through approximate, stepwise conditional 

analyses (paper III) 
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