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INTRODUCTION 

Since the advent of the electrocardiogram, usually abbreviated 

ECG, the extent of its use in the medical field has broadened through 

research to find extensive applications in the diagnosis of heart 

ailments. One such application of the electrocardiogram is the 

diagnosis of the heart's operating condition and classification of 

its condition into normal and possibly abnormal categories. 

A new approach to the use of the electrocardiogram to catego­

rize the condition of the heart is described in this thesis. The 

purpose of this thesis is to present the new method of screening 

electrocardiograms into normal versus possibly abnormal categories 

detecting at least fifty percent of the normal electrocardiograms as 

normal with a maximum number of abnormal electrocardiograms detected 

abnormal. The results of a feasibility study to determine the effec­

tiveness of the method are also discussed. 
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CHAPTER I 

THE ELECTROCARDIOGRAM 

Medical science is as old as civilization and each generation 

has added to the ever-increasing store of medical knowledge. New 

medicines for curing diseases and new, better methods of analyzing 

symptoms have been and continually will be proposed, studied and 

developed. One area of research is in the field of diagnosing 

heart malfunction by studying electrocardiograms. Time-varying elec­

trical activity takes place in the muscular tissue of the heart and 

this electrical activity can be detected as a time-varying voltage 

on the surface of the skin. This time-varying voltage is recorded 

as an electrocardiogram (ECG). 

The fact that there is electrical activity associated with 

heart beat has been known since 1856. In 1887, Augustus D. Waller 

demonstrated that differences of potential caused by electrical 

activity of the heart were measurable only if proper contact was 

made between electrometer leads and any two areas of the body which 

included the heart between them. The first usable clinical instru­

ment to observe the ECG was the string galvanometer type electro­

cardiograph developed by Willem Enthoven in 1903. 1 

The voltage difference due to the heart's electrical activ­

ity is monitored by placing electrodes at various points on the 



body. There are standard positions .chosen for placement of these 

electrodes in order to receive and analyze repeatable electrical 

activity and thereby compare normal standard electrocardiograms with 

the electrocardiogram of any heart and determine its condition. For 

one set of leads, the electrodes are placed on the right and left 

arms as well as on both legs. The electrode placed on the right 

leg is used only as a machine groupd to help eliminate alternating 

current. A particular lead is a specified arrangement of electrodes 

for monitoring the heart's electrical activity. The electrocardio­

grams obtained from the bipolar standard leads are measurements of 

the difference of potential caused by the heart's electrical activity 

between two different limb electrodes and are labeled by terminology 

such as Lead I or Lead II. Lead I measures the difference of poten­

tial detected between the electrode on the left arm and the electrode 

on the right arm. Lead II measures the difference of potential de­

tected between the electrode on the left leg and the electrode on the 

right arm. Lead III  measures the difference of potential detected 

between the electrode on the left leg and the electrode on the left 

arm. 2 

Bipolar chest ieads monitor the electrical activity of the heart 

by an electrode located on a spec�fic point on the chest, and by 

various limb electrodes. Lead CR measures the potential difference 



between the chest electrode and the left arm electrode. Lead CF 

measures the potential difference between the chest electrode and 

the left leg electrode. 2 

4 

Unipolar leads measure th� heart's electrical activity as a 

voltage at one particular spot on the body with reference to a non­

fluctuating point. Two electrodes are connected close to one another 

on the left arm, the right arm and-the left leg. One electrode from 

each limb is conn�cted in common to obtain the non-fluctuating 

reference point. The unipolar leads monitor the voltage between the 

second electrode on each limb and the common connection of the first 

electrode. on each limb. The unipolar leads monitor the right arm, 

VR; the left arm, VL; and the left leg, VF. 2 

Augmented unipolar limb leads use a combination of three elec­

trodes: one is connected to the left arm, AVC; the right arm, AVR; 

and the left leg, AVF. Unipolar chest leads, V
1, V

2, V
3, V4, v5 , 

and v6, are used to monitor the heart's electrical activity, each at 

a specific point on the chest. The electrical activity monitored is 

the difference of potential between an electrode on the chest and 

the common connection of the left arm, the right arm and the left 

leg. 2 

The Frank lead system measures the heart's electrical activity 

as a spacial vector. The heart's electrical activity can be pictured 
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as a vector rotating in three-dimensional space. The Frank lead 

system monitors the heart's electrical activity by electrodes placed 

at various points on the body as shown in Fig. 1. Electrodes A, C, 

E, I and Mare all located on �he same horizontal plane when the 

subject is standing upright. Electrodes A and I are placed in the 

left and right midauxiliary line, respectively. Electrodes E and M 

are applied at the midline anteriorly and posteriorly, respectively. 

Electrode C is applied at an angle of 45° from and in the same plane 

as the left midau.xiliary line. Electrode F is placed on the left leg, 

and electrode H is placed on the back of the neck. 3 

Three electrocardiograms represent the x, y and z components 

of the spacial vector in the Frank lead system. The x component of the 

spacial vector is obtained from the A, C and I electrodes. The y com­

ponent of the spacial vector is obtained from the M, F and H elec-

trodes. The z component of the spacial vector is obtained from the H, 

Mand F electrodes. The connection between the electrodes and the 

necessary corrections for the three ECG outputs Vx, Vy, and ·Vz to rep­

resent the spacial vector of the heart's electrical activity are 

obtained by the standardization factors obtained by the resistor net­

work shown in Fig. 2. 3 The Frank lead system is used to obtain the data 

used in this thesis. 
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Studies have shown that there is a correlation between ECG and 

the cardiac cycle. The correlation between the cardiac cycle and 

its corresponding portion of the electrocardiograph are shown in 

Fig. 3. 

The normal heart beat begins with the stimulus which 
originates in the sine-auricular node or "pacemaker'.' 
(Fig. lb). This is the onset of the P wave and no car­
diac contraction has taken place. Venous blood flows 
into the right auricles through the open tricuspid 
valve and into the right ventricle. Arterial blood 
flows into the left auricle, through the open mitral 
valve," and into the left ventricle. The P-R interval 
is the segment of the electrocardiogram which begins 
with the P wave and extends to the beginning of the 
QRS complex. This period represents the time required 
for the stimulus, which originated in the pacemaker, 
to �pread to the intraventricular conduction system 
_(Fig. ld). The auricles have contracted, but the 
ventricles have not yet been stimulated. During the 
QRS complex the stimulus spreads through the auric­
uloventricular node, the bundles of His and its 
arqorizations (a treelike figure or arrangement), 
and the ventricular muscle is stimulated (Fig. le). 
Auricular contraction has now been completed and 
ventricular contraction begins. During the RS-T 
segment and the beginning of the T wave the stimu-
lus spreads throughout the ventricular musculature 
and the ventricles contract (Fig. lf). The tri-
cuspid and mitral valves become closed; the 
pulmonic and aortic valves are opened. The blood 
in the right and left ventricles is forced into the 
lungs and into the general circulation system. The 
end of the T wave represents the disappearance or 
recession of the stimulus--the beginning of the 
ventricular relaxation (Fig. lg). The pulmonic and 
aortic. valves close and prevent the return of blood. 
Venous blood again flows in from the periphery and 
oxygenated blood from the lungs. Thus, the normal 
heart cycle ·begins again. 4 

8 
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When an abnormal heart causes its electrical activity to deviate 

from the normal pattern, the portion of . the ECG which corresponds to 

the abnormal portion of the cardiac cycle differs from the normal ECG. 

The cause of the ECG deviation_may be determined by pattern recog­

nition of the ECG. To analyze many heart abnormalities, the cardi-

ologist must examine several electrocardiograms obtained from 

monitoring the electrical activity- of the heart at different 

locations on the patient's body. The Electrocardo Guide distrib­

· uted by Merck, Sharp and Dohme shows sixty-one deviations from the 

normal heart beat as a representative group of deviations that can 

be detected by a comparative study of electrocardiograms. 4 

Only those abnormalities of the heart which cause a variation 

in the heart's electrical activity can be detected by.the study of 

the patient's ECG. There are some abnormalities of the heart that 

do not cause abnormal heart electrical activity and therefore cannot 

be detected by ECG interpretation. An example of a heart abnormality 

which cannot be detected by the electrocardiogram is a heart murmur 

which is caused by a malformation of the heart and can only be de­

tected by listening to the heart. 1 This thesis is limited to the 

study of heart abnormalities detectable by electrocardiographic 

diagnosis. 



1 1  

The science of electrocardiographic diagnosis of heart abnor­

malities is a science of pattern recognition. Diagnosis is based on 

the electrocardiogram's deviation from a normal pattern. The problem 

of pattern recognition is adaptable to the digital computer, but the 

effective use of the computer for evaluation of the electrocardiogram 

is dependent on the proper programming of the computer to detect the 

variations in the ECG waveform whi�h are caused by heart abnormal-

ities. 

One purpose of this thesis is to propose a technique of screening 

normal electrocardiograms from possibly abnormal electrocardiograms. 

In the p�oposed technique, the ECG is changed from a time-varying 

plot to a statistical plot not involving time which is used for 

screening electrocardiograms into normal versus possibly abnormal 

heart categories. 

How an existing method of computer diagnosis of electrocardio-

grams may be modified by the proposed technique of ECG screening 

and how the method may be used by clinics and hospitals to aid in 

rapid ECG diagnosis is explained in Chapter I I. A brief review of 

probability theory and its application to the proposed ·method of ECG 

screening is covered in Chapter III. Chronological steps in the 

development of the proposed method of ECG screening are explained 

in Chapter IV. A brief review of the mechanization of the proposed 
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ECG screening method and the results and conclusions of this thesis 

are found in Chapter V. 



CHAPTER II 

APPLICATIONS OF THE PROPOSED ECG SCREENING METHOD 

The method of ECG screening proposed in this thesis would 

quickly screen electrocardiograms into two categories: normal ECG 

or possibly abnormal ECG. The device which would mechanize the 

proposed method of ECG screening could be used by hospitals and 

clinics to rapidly eliminate those electrocardiograms detected as 

normal from any further analysis. The electrocardiograms detected 

as possibly abnormal would then be analyzed by the cardiologist, 

the computer or any method previously used by the hospital or 

clinic. 

The actual hardware, which may be a small specialized digital 

computer, necessary for the mechanization of the proposed ECG 

screening method is not considered in this thesis which covers the 

13 

theory and feasibility of the proposed ECG screening method. A com­

puter simulation of the proposed method on an IBM 360/30 digital 

computer was used for the feasibility study. 

The computer is also successfully being used as a tool for more 

complex screening of electrocardiograms into a normal category or 

into a specific heart malfunction category. The device which would 

mechanize the proposed method of ECG screening could be used to 

modify existing methods of computer analysis of electrocardiograms, 

2 3 6 4 3 2 SOU!'r.i iiA�O'i'A STATE Ut-1Vt i
"'

'Y v=-· AABY 



as explained in the above paragraph and thereby decrease analysis 

time for complex computer diagnosis. 

A sfmplified block diagram of a method for computer analysis 

of electrocardiograms develope� from a collaborative study between 

International Business Machines, Inc. and Mount Sinai Hospital, 

14 

New York City, is shown in Fig. 4. A patient is connected to an 

ECG preamplifier by electrodes on his skin. At the body surface the 

detectable electrical activity of the heart is approximately one 

millivolt in magnitude. In order for the ECG signal to be used for 

diagnosis, it must be amplified to a convenient, usable level. The 

ECG prea�plifier provides the amplification and impedance matching 

necessary for the electrical activity of the heart to be further 

conditioned and recorded as a useful electrocardiogram. The output 

signal of the ECG amplifier combination is the input signal to any 

device needed for monitoring or further transmission of the ECG, 

such as a strip chart recording or a data link to remote recorders. 

Data for patient identification is appropriately coded and placed 

with the ECG data.5 

The ECG signal is recorded on an analog data recorde·r and is 

also used as input data for the computer. The analog data recorder 

records the ECG data to be used by the cardiologist for electro-

cardiographic diagnosis of heart abnormalities. The ECG signal can 
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be recorded on magnetic tape or it can be directly transmitted over 

an ordinary telephone to the computer for analysis, 

The original ECG datum received by the computer and auxiliary 

equipment is a continuous function of time. The digital computer 

cannot accept data in analog form because the computer can use only 

digital number codes as input. Therefore, the analog signal is fed 

through an analog-to-digital converter to put the data into a coded 

form usable by the computer. 

The analog-to-digital converter samples the signal at uniform, 

predetermined time intervals. The time at which the sample is 

taken is called the sample time. The value of the signal at the 

sample time is called the sample point. The intervals between sam­

ple times are called sample time intervals. The sample time interval 

is determined by the Nyquist Sampling Theorem which is explained in 

the Appendix. For the input waveform shown in Figure 5, the output 

of the analog-to-digital converter is represented by a series of dis­

crete numbers. Each digital number is the value of the signal at a 

specific time as shown in Fig. 6. 

The waveform can be reconstructed from the digital data as 

shown in Fig. 7. In this case, a first order reconstruction tech-

nique has been used because the reconstructed waveform assumes the 
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Figure 5. Input Waveform 
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value of the last sample point over the entire sample interval. The 

resulting waveform is not a continuous function of time. 

Considerable computer time can be saved if all the sample 

points are not used by_ the computer. Analog data editing is a re-

dundancy removal process. The redundancy removal technique applied 

in the IBM - Mount Sinai Hospital method uses a sample point only 

when there is a significant chang� in its slope and magnitude. The 

time relationship between sample points is preserved. There is a 

voltage variation of a small magnitude due to noise on the ECG wave­

form. The RMS noise voltage on,the ECG data used in this thesis was 

0. 15 millivolts. The criterion used for determining when a sample 

point is taken are the slope of the ECG waveform and the magnitude 

of change in the voltage of the ECG waveform needed to preserve the 

waveform necessary for proper computer analysis and to eliminate the 

voltage variations due to noise. Thus, the analog data editing re­

duces the number of data points used by the computer and also auto­

matically eliminates part of the voltage variation due to_ no.ise on 

the ECG waveform. The output of the analog data editing process is 

a plot of sample points used versus time with straight line segments 

joining adjacenternple points. 5 

The output signal of the analog data editing process is used 

as the input signal to the computer. The computer is programmed 
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for a sequence of operations on the digitized and edited ECG signal. 

The computer first locates the beginning of the QRS complex by de­

tecting s1ope differences, then the computer analyzes the ECG data 

by a sequence of tests. The specific sequence used is determined 

at different points by the results of each previous test. The com­

puter tests of the ECG use the slope, height and duration of the 

segments and combinations of segments of the electrocardiogram for 

analysis. The output of the computer is the results of the analyzed 

ECG, such as diagnosis and measurement data. 6 

The proposed device would quickly screen the electrocardiograms 

into normal or possibly abnormal categories. The proposed screening 

device could modify an existing method of computer analysis of electro-

cardiograms· by screening normal electrocardiograms as·normal, then 

extensively testing only those electrocardiograms detected by the 

proposed ECG screening device as possibly abnormal, as shown in Fig. 

8. All electrocardiograms would then be indicated as normal or 

diagnosed as a specific heart abnormality, as in the previous system. 
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CHAPTER III 

THE STATISTICAL PLOT OF THE ELECTROCARDIOGRAM 

The ECG screening method proposed in this thesis uses a sta­

tistical plot of the ECG signal as data for classification of 

21 

normal versus possibly abnormal heart conditions. Since the wave-

form used in the proposed method o� ECG screening is a statistical 

plot, a brief review of some probability theory is necessary before 

the method of converting the continuous time varying ECG signal into 

a time-invariant statistical plot can be explained. 

The probability of a specific event or outcome occurring is 

defined as the ratio of the number of possible ways of obtaining 

the specific outcome to the total number of possible outcomes. For 

example, the probability of rolling a six on an unbiased die is one­

sixth because there is one way to get a six and a total of six 

possible outcomes. The total of all possible outcomes is called 

the sample space. The sample space for one die would include· the 

possible outcomes of 1, 2, 3, 4, 5, and 6. The sample space can be 

more than one dimension as in the case of two dice. One dimensional 

sample space is adequate for understanding the probability theory 

used in the proposed ECG screening method. Let U represent the 

total number of possible outcomes in the sample space and R rep­

resent the number of ways the specific outcome can occur. The 

probability of the specific outcome xi occurring is 
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R/U (1) 

and clearly 

(2) 

since R can never be greater than U. 

If the outcome of two specific events cannot happen simul­

taneously in a given trial, the events are called mutually ex­

clusive. Consider the roll of a die. Let event A be defined as an 

outcome of a 2, 3, or 4; event B be defined as an outcome of a 4, 5, 

or 6; and event C be defined as an outcome of a 1. Events A and B 

are not mutually exclusive because the outcomes of events A and B 

can happen simultaneously when the die is a four. Events A and c· 

are mutually exclusive because there is no specific outcome of the 

die which satisfies both events A and C. Similarly, events B and 

C are mutually exclusive because there is no specific outcome of 

the die which satisfies both events B and C. 

If all specific events, xi, contain the entire sample space 

and are mutually exclusive, then the sum of the probabilities. of 

each specific outcome in the sample space equals one. For example, 

consider the outcome of a toss of a coin. All of the specific 

events, head and _tail, contain the entire sample space, head or 
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tail, and are mutually exclusive. The probability of a head is 1/2 

and the probability of a tail is 1/2. 

P (Head) = 1/2 . (3) 

P (Tail) = 1/2 (4) 

The total of all P (x1) is one 

P (Head) + P (Tail) = 1 (5) 

The probability distribution function, Fx (a), is defined as 

the probability of x being less than or equal to some variable 

Fx (a) = P (x < a) (6) 

In Fig. _ 9 all events x are mutually exclusive. The probability of 

each specific event x is 

p(l) = 1/2 (7) 

P (2) = 1/4 (8) 

P (3) = 1/8 (9) 

P (4) = 1/8 Clo) 



-

1 

1/2 

1/4 

1/8 
0 

1 

7/8 

- 3/4 
cs 

1/2 

0 

0 

1 2 3 4 5 6 
X 

Figure 9. Probability Function 

1 2 3 4 5 6 

Figure 10. Probability Distribution Function 

24 



25 

The probability distribution function Fx (a )  is shown in Fig. 10. 

By the definition Fx ( a ) is clearly 

;01<1 

Fx ( 01) = P (l) = 1/2 ;1S01<2 

Fx(OI) = P(l) + P(2) = 3/4 ;2S01<3 

Fx(OI) = P(l) + P(2) + P(3) = 7/8 ;3S01<4 

Fx(OI) = P(l) + P(2) + P(3) + P(4) = 1 ;01 s:!:4 

The proba.bility that x lies in a small interval (b, b +�) is 

P (b:Sx<b + �) = Fx (b + �) - Fx (b) 

If FxC a) is differentiable at °' = b and � is made small_, then 

lim _.:..:;x ______ _ [
F ( b + � ) - F X ( b )

� :::: 
dF X ( b ) 

I 
�---+ o � cta a= b 

and 

;Ll>O 

(ll) 

(12) 

(13) 

04) 

(15) 

06) 

0 7) 

08) 

(19) 



If F
x

(o) is everywhere differentiable and I is defined as a small 

interval, on a where I includes N fl; then 

P (x in I)= lim 
fl- 0 

= 

I 

(20) 

(21) 

where F' (a) denotes the derivative of Fx ( a), and P(x in I) means 

the probability that x lies in the region I. 

The probability density function of x, Px, is defined as 

dFx ( ex) 
dcx 

therefore 

P (x in I) I Px < O< )d O< 
I 

since Fx ( o) is monotonic increasing and also, 

from Eq. 23 it is evident that 

and 

Px ( ex ) � O ; a 11 · a 

7 

(22) 

(23) 

(24) 

(25) 

(26) 

26 
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The method of obtaining the desired probability density function 

for the proposed ECG screening technique is explained in the following 

paragraphs. The ECG data is fed through an analog-to-digital con­

verter, the operation of which .is explained in Chapter II. The out­

put of the analog-to-digital converter is a series of _digitally coded 

numbers. Each coded number represents the digital value of the ECG 

signal at each specific sample time. 

The range of the magnitude of the digitally coded ECG data is 

divided into a convenient number of equally spaced intervals. The 

range of an interval is the range of data between two consecutive 

levels. The range of the first interval would be the range of data 

greater than or equal to the most negative digitally coded data point 

but less than and not including the first level value: The range 

of the second interval would be the range of data greater than or 

equal to the first level number but less than and not including the 

second level number. The range of each consecutive interval would 

be determined in the same manner until the entire range of. the ex-

pected ECG data has been accounted for as shown in Fig. 11. One hun­

dred one levels were used to obtain the experimental results of this 

thesis. 

The proposed screening method begins by feeding a given length 

of continuous ECG data through the analog-to-digital converter. Each 
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resulting data point falls in one interval range. The number of 

data pojnts which fall in each range is tallied along with the total 

number of data points for the entire length of ECG data. ·The ECG 

data for each statistical plot used in this study is·twenty-four 

seconds in length. 

The probability of a data point falling in a certain interval 

range is the time-invariant statistical feature used for the classi­

fication of normal versus possibly abnormal heart condition. The 

probability density function is a plot of the ratio of the number 

of data points which fall into each level range to the total number 

of data points versus the corresponding level number as shown in 

Fig. 12. The method used to calculate the probability density func­

tion of Fig. 12 is shown in Table 1. 

The problem of determining a technique for separation of the 

ECG statistical plot into normal versus abnormal categories is a 

problem of trainable pattern-classification. Trainable pattern­

classification uses data rather than mathematics to develop the 

pattern classifier. The steps in the development of the data­

classifying technique proposed in this thesis will be explained in 

Chapter IV. 



Number of Data Fraction of 
Level No. Points in Level Data Points in 

1 0 0.00 

.. 

2 5 0.25 

3 10 0.50 

4 5 0.25 

5 0 0.00 

6 0 o.oo 

7 0 0.00 
--

Total 20 1.00 

Table 1. The Method of Calculating the Probability 
Density Function 

30 
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CHAPTER IV 

THE DEVEWPMENT OF THE PROPOSED METHOD FOR ECG SCREENING 

The pattern classifying technique used to categorize the time­

invariant statistical plot of the ·electrocardiographic waveform into 

normal versus possibly abnormal categories can be chosen from an 

infinite number of classifiers. A pattern classifier is a device 

that sorts patterns into categories. A block diagram of the pattern 

classifier is shown in Fig. 13. The probability density function 

described in Chapter III is the input to the pattern classifier. 

There is little theory to aid in selecting the type of measurement 

31 

or input to the pattern classifier so the selection of such a measure­

ment rests solely on the designer's ideas� A number of ideas for 

measurement-selection-techniques that were tried for classifying the 

ECG statistical plot into normal versus possibly abnormal ECG are 

discussed in this chapter. 

Once a measurement-selection-technique has been proposed, the 

optimum decision level for the technique can be found by a learning 

process. The measurement-selection-technique is applied to a finite 

set of data for which actual diagnosis is known. The finite set of 

data with a known diagnosis is called the training ·set. The -optl
°
mum 

decision level can be found by repeatedly testing the training set of 

data at different levels and picking that level where the resulting 

categ_or iza tion has the maximum correct results. 8 
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A preliminary ·evaluation of the measurement-selection-technique 

can be made by checking the effectiveness of the classification of 

the training set of data. The technique is evaluated by testing a 

set of data which has not been used in the learning machine process. 

If the results of the test are satisfactory, the method may be con­

sidered as a possible method of ECG screening, but only after success­

ful tests with large amounts of data have been made and evaluated 

can it be considered as a satisfactory method. 

The probability of the data point falling in an interval less 

than or equal to some level is obtained by integrating the probability 

density function and is called the probability distribution function . 

Typical examples of the Frank lead, x axis, y axis and z axis ECG 

probability distribution function curves are shown in Fig. 14, Fig. 

15 and Fig. 16, respectively. The advantage of the probability dis­

tribution function of the time-invariant statistical plot is that 

each plot would have the same general shape regardless of the number 

of intervals used to obtain the plot. If fewer intervals are· used, 

more of the total data points would fall in each level. The proba­

bility distribution, or the probability of a data point falling in an 

interval less than or equal to some level would have approximately the 

same shaped curve if the level axis is the same length. 
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The area under the probability distribution function curve was 

chosen as the mechanism for the first pattern classifying method 

used to determine normal versus possibly abnormal ECG. No corre­

lation was found between the �reas under the probability distribu­

tion curves and the classification of normal versus possibly abnormal 

ECG when the learning machine technique was applied. 

The next mechanism for ECG categorization chosen was the area 

under the probability distribution curve from zero to the point at 

which the probability distribution function equals . 5  plus the area 

between the probability distribution curve and a straight line curve 

of unit magnitude and zero slope, as shown in Fig. 17. The useful 

information from the ECG probability distribution function curve 

was considered to be contained in the shape of the curve not in the 

position of the curve along the level axis. The position of the ECG 

prob�bility distribution function curve on the level axis is propor­

tionate to the D . C. voltage of the monitored ECG. The subject's 

heart condition has nothing to do with the D. C. level of the - monitored 

ECG. No correlation was found between the areas described above and 

the categorization of the ECG into normal versus possibly abnormal 

categories. 

The measurement-selection-techniques using the probability dis-

tribution function were tried without success so the possibility of 
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a technique using the probability of an ECG data point falling into 

a specific interval or the probability density function was tried. 

The over-all probability density function curves for the x axis, 

y axis, and z axis of normal a�d abnormal electrocardiograms in the 

training set of data, is shown in Fig. 18, Fig. 19, and Fig. 20, 

respectively. This measurement-selection-technique used the dis­

tance , in number of levels, between the first point on the proba­

bility density function curve greater than zero to the last point 

on the curve greater than zero. The learning machine technique was 

applied to find the optimum decision level of the measurement­

selection-technique. The results of the preliminary evaluation of 

the measurement-selection-technique were 64. 6 percent of the abnormal 

electrocardiograms detected abnormal and forty-eight percent of the 

normal electrocardiograms detected normal out of a test sample of 

forty-three electrocardiograms. An actual error occurs when an ab­

normal ECG is categorized as normal. Therefore, the error for the 

test sample of forty-three electrocardiograms was 14. 3 percent. 

The method described above used only the portion of the proba­

bility density function curve which was near zero. The above tech­

nique, expanded to use the whole curve with weighting functions as 

described below, is the proposed method of ECG screening. What the 

proposed method of ECG screening is and the preliminary evaluation of 

the method are discussed in the remainder of Chapter IV. 
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The pattern classifier measurement functions Hx for the x axis 

ECG , By for the y axis ECG, and Hz for the z axis ECG are found by 

_the following equation: 

{27) 

where a1 is a weighting factor and hi is a measurable parameter on 

the probability density function curve of the ECG. 

The nine measurable parameters on the probability density func-

tion curve of the ECG signal are defined as follows: h1 is the 

horizontal distance from the first point on the probability density 

function curve greater than zero through the last point on the curve 

greater than zero ; h2 is the horizontal distance from the first point 

on the probability density function curve greater than 0 . 012750 

through the last point on the curve greater than 0. 0 12750 ; and simi-

larly, the critical numbers for the remaining measurable parameters 

are 0. 024250 for h3 ; 0. 038 750 for h4 ; 0. 055500 for h5 ; 0 . 075375 for 

h6 ; 0. 099750 for h7 ; 0. 130750 for h8 and 0. 174750 for h9 . 

The specific values of the probability density function curve 

chosen to determine the measurable parameters hi for the pattern 

classifier measurement functions are logarithmically spaced from one-

fourth to zero but not including the value of one-fourth as shown in 
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Fig. 21. The measurable parameters hi are chosen in the above manner 

because the information received near the skirts of the probability 

density function is considered to be the most useful. 

The weighting factors, ai., as used in the Eq. 27 to evaluate 

the pattern classifier measurement function H, are calculated by 

using the average of the normal hi's and the abnormal hi's of the 

training set of ECG data. The averages of the normal hi's and the 

abnormal hi's seem to approach a value shown by Tables 2 and 3. The 

average hi's of the normal electrocardiograms for a specific number 

of electrocardiograms is shown in Table 2. The average hi's of the 

abnormal electrocardiograms are shown in Table 3. Biological data 

fluctuates from subject to subject because of the many uncontrolled 

variables present. The results of Tables 2 and 3 show that the 

averages of the hi's from normal electrocardiograms and the averages 

of the hi's from abnormal electrocardiograms may approach a limit as 

more data is used, but extensive data averaging must be done in order 

to establish this limit accurately. 

The training set of data included forty-two ECG probability den-

sity functions ; ai was calculated using the total training set of data 

and the following formula :  

(average of abnormal h; ) - (average of normal h;) 
average of normal hi 

( 2 8 ) 
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Number 
Avera1?:e h1 

10 18. 667 

13 18. 000 

17 17. 294 

25 16. 800 

10 22 . 111 

13 19. 462 

17 18. 1 18 

25 15. 920 

10 17. 333 

13 16. 462 

17 16. ll8 

25 15. 880 

h2 h3 h4 h5 he h7 

X Axis 

8. 000 7. 111 6. 111 5. 333 4. 667 4. 444 

7. 308 6. 615 5. 538 4. 769 4. 308 4. 000 

6. 529 5. 941 5. 000 4. 353 3. 941 3. 647 

5. 880 5. 080 4. 320 3.720 3. 320 - 3. 040 

y Axis 

13. 000 12. 667 12 . 111 12. 000 9. 667 2. 889 

11. 615 11. 077 10. 615 10. 231 7. 923 2. 923 

10. 471 9. 824 9. 353 8. 824 6. 941 2. 824 

9. 000 8. 440 7. 880 7. 120 5. 520 2. 640 

z Axis 

8. 000 7. 222 6. 444 5. 333 4. 889 3. 556 

7. 923 7. 308 6. 615 5. 692 5. 231 4. 231 

7. 765 7. ll8 6. 353 5. 588 5. 118 4. 118 

7. 680 6. 920 6. 200 5. 480 4. 840 3. 800 

Table 2. The Average h1 for Normal Electrocardiograms 

h8 

2. 333 

2. 385 

2. 235 

2. 040 

2. 111 

2. 077 

1. 882 

1. 920 

2. 889 

3. 000 

3. 000 

2. 440 

h9 

1. 333 

1. 615 

1. 588 

1. 600 

0. 889 

0. 923 

0. 941 

1. 080 

0. 889 

0. 615 

0. 529 

0. 720 

� � 



Number 
Average h1 

10 20. 100 

14 19. 615 

18 19. 889 

10 33. 300 

14 29. 615 

18 23 . 722 

10 22 . 500 

14 20. 000 

18 18. 444 

X Axis 

h2 h3 h4 h5 h5 h7 

7. 300 6 . 400 5 . 300 4 . 800 4. 400 2 . 700 

6. 846 6 . 154 5 . 154 4 . 692 4 . 231 2 . 692 

7. 111 6 . 111 5. 333 4 . 778 4. 222 3 . 000 

y Axis 

23 . 700 22 . 600 17. 600 9. 700 2 . 400 2 . 000 

20. 538 19 .462 15 . 462 8 . 538 2. 385 1 . 923 

15. 889 14. 944 11. 944 6 . 889 2 , 444 2. 111 

z Axis 

11. 200 10. 200 5 . 100 4 . 300 2. 800 2 . 200 

9 . 923 8 . 846 4 . 769 4. 154 3. 000 2 . 308 

9 . 056 8. 222 5. 111 4. 500 3 . 611 2 . 833 

Table 3. The Average h1 for Abnormal Electrocardiograms 

hg 

1 . 900 

1 . 923 

2 . 000 

1 . 600 

1 . 538 

1 . 667 

2 . 000 

2 . 154 

2. 333 

h9 

1 . 000 

1 . 000 

0 . 833 

0 . 700 

0 . 846 

0 . 833 

.' 

1 . 000 

1 . 154 

1 . 056 

� 
w 
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for i = 1, 2, . . .  , 8, 9. This technique of evaluating ai weights the 

data with a greater spread in the average hi for normal and abnormal 

electrocardiograms, more than data which does not have as great a 

spread. 

The data used to calculate the weighting functions ai for the 

x, y and z axis pattern classifier measurement functions are shown 

in Tables 4 ,  5 and 6 ,  respectively. The midpoint between the average 

H's calculated for the normal electrocardiograms and the abnormal 

electrocardiograms of the training set of data were the initial 

decision levels of Hx, Hy and Hz used for the categorization of the 

ECG statistical plot into normal versus abnormal categories. The 

calculations of Hx, Hy and Hz from the normal electrocardiograms and 

abnormal electrocardiograms are shown in Tables 7 ,  8 and 9 ,  re-

spectively. 

The initial decision levels of the H's are calculated below, 

using the values obtained from Tables 7, 8 and 9 :  

(7. 253 + 9. 426 ) /2 8 . 340 (29 ) 

or the x axis ECG was considered normal if 

(30 ) 

and 

(20. 929 + 39. 052 ) /2 = 29. 99 (3 1) 



h .  ' s  Norm 
1 

h1 ' s  Abn . ECG ECG (h. ' s  
1 

Abn. ECG Ave. )-
Average Average ·- (hi ' s  Norm. ECG Ave. ) 

1 1 9. 8 89 1 6. 800 3. 089 

2 7. 111  5 . 8 80 1 . 231 

3 6. 111  5. 080 1. 031 

4 5 . 111  4. 320 0. 791 

5 4. 778 3. 720 1 . 0 5 8  

6 4. 222 3. 320 0. 902 

7 3. 000 3. 040 -0. 040 

8 2. 000 2. 040 -0. 040 

9 0. 833 1. 600 -0. 767 

Table 4. The Calculation of ai for the x Axis· 

4 5  

ai 

0. 1 84 

0. 209 

0. 203 

0. 1 83 

0. 284 

0 . 272 

-0 . 013  

-0 . 020 

-0 . 4 79 



hi' s Norm 
h1's Abn. ECG ECG (h . 's Abn. ECG Ave. )-

Average Average (h1's Norm. ECG Ave. ) ·-

1 23. 722 15 . 920 7. 802 

2 15 . 8 89 9 . 000 6 . 8 89 

3 14. 944 8 . 440 6. 504 

4 11. 944 7. 8 80 4 . 064 

5 6. 889  7. 120 -0. 231 

6 2. 444 5 . 5 20 -3. 0 76 

7 2. 111 2. 640 -0. 5 29 

8 1. 667 1. 920 -0. 253 

9 0. 833 1. 080 -0. 247 

Table 5. The Calculation of ai for the Y Axis 
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ai 

0. 490 

0. 765 

0 . 771 

0. 5 16 

-0. 032 

-0. 5 5 7  

-0. 200 

-0. 131 

-0. 229 



1 

2 

3 

4 

5 

6 

7 

8 

9 

bi's Norm 
hi ' s Abn. ECG ECG (h. 's Abn . ECG Ave. )-

Average Average (- bi's Norm. ECG Ave. ) 

1 8. 444 1 5 . 8 80 2. 564 

9. 056  7. 680 1 . 376 

8. 222 6. 920 1. 302 

5. 111  6. 200 -1. 089 

4. 500 5 . 480 -0. 980 

3. 611  4. 840 -1. 229 

2. 833 3. 800 -0. 967 

2. 333 2. 440 -0. 107 

1 . 056  0. 720 0 . 336 

Table 6. The Calculation of ai for the z Axis 

ai 

0. 1 61 

0 . 1 79 

0. 1 8 8  

-0. 1 76 

-0. 1 79 

-0 . 254 

-0. 254 

-0. 044 

0. 467 

4 7  



Normal Normal 
a1 h .  aihi 

·-

1 0. 184  16. 800 3. 091 

2 0. 209 5. 8 80 1. 229 

3 0 . 203 5. 080 1. 031 

4 0. 1 83 4. 320 0. 790 

5 0 . 284 3. 720 1 . 0 56 

6 0. 272 3. 320 0. 903 

7 -0. 013 3. 040 -0. 040 

8 -0. 020 2. 040 -0. 041 

9 -0. 479 1. 600 -0. 766 

Hy -- -- 7. 253 

Table 7. The Calculation of H for the x Axis 
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Abn. Abn . 
hi a1h1 

19. 899 3. 660 

7. 1 1 1  1 . 486 

6. 1 1 1  1 . 240 

5 . 1 1 1  0 . 935 

4. 778 1 . 357  

4. 222 1 . 148 

3. 000 0. 039 

2. 000 -0. 040 

0 . 833 -0. 399 

-- 9 . 426 



[, 

[, 

Normal Normal 
ai ai aihi 

1 0. 490 15. 920 7. 800 

2 0. 765 9. 000 6. 885 

3 0. 7 71 8. 440 -6. 507 

4 0. 5 16 7. 880 4. 066 

5 -0. 032 7. 120 -0. 228 

6 -0. 557 5. 520 -3. 075 

7 -0. 200 2. 640 -0. 528 

8 -0. 131 1. 920 -0. 251 

9 -0. 229 1. 080 -0. 247 

Hy -- -- 20.929 

Table 8. The Calculation of H for the y  Axis 
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Abn. Abn. 
hi a1h1 

23. 722 1 1. 624 

15. 889 12. 155 

14. 944 11. 522 

11. 944 6. 163 

6. 889 -0. 220 

2. 444 -1. 361 

2. 111 -0. 422 

1. 667 -0. 218 

0. 833 -0. 191 

-- 39. 052 



1 

2 

3 

4 

5 

6 

7 

8 

9 

Hz 

Normal Normal Abn. 
ai ai aihi 

0. 161 15. 880 2. 557 

0. 179 7. 680 1. 375 

0. 188 6. 920 ·· 1. 301 

-0. 176 6. 200 -1. 091 

-0. 179 5. 480 -0. 981 

-0. 254 4. 840 -1. 229 

-0. 254 3. 800 -0. 965 

-0. 044 2. 440 -0. 107 

0. 467 0. 720 +0. 336 

---- 1. 196 

Table 9. The Calculation of H for the z Axis 

hi 

18. 444 

9. 056 

8. 222 

5. 111 

4. 500 

3. 611 

2. 833 

2. 333 

1. 056 

--

50 

Abn . 
aihi 

2. 97 

1. 621 

1. 546 

-0. 900 

-0. 806 

-0. 9 17 

-0. 720 

-0. 103 

+0. 493 

3. 184 
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or the y axis ECG was considered normal if 

Ry < 29 . 99 (32) 

and 

(1 . 196 + 3 . 184)/2 = . 2. 190 (33) 

or the z axis ECG was considered normal if 

Hz < 2  . 190 (34) 

The initial test of the proposed pattern classifier indicated · 

the ECG as abnormal if at least two out of three of the H , H or H 
I --x Y '  z 

decisions were classified as abnormal, and normal if one or none of the 

three decisions were classified as abnormal. A summary of the results 

is as follows: twenty-two normal electrocardiograms detected normal ; 

three normal electrocardiograms detected abnormal; five abnormal elec-

trocardiograms detected abnormal; and thirteen abnormal electrocardio-

grams detected normal. The percentage of abnormal electrocardiograms 

detected as normal was thirty-six percent which is obviously un-

acceptable. 

Levels for the H parameter decisions were not changed for the 

second test of the proposed pattern classification technique . The ECG 

being .tested was considered abnormal if any of the three H parameters 

were classified as abnormal. A summary of the results is as follows : 
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fourteen normal electrocardiograms detected normal ; eleven normal 

electrocardiograms detected abnormal ; fifteen abnormal electrocardio-

grams detected as abnormal ; and three abnormal electrocardiograms 

detected normal. If the abnormal electrocardiograms detected as nor-

mal were considered to be the only errors subject to the requirement 

that at least fifty percent of the normal were screened normal, there 

was a seven percent error. 

The third criterion tested detected the electrocardiogram as 

abnormal if Hx indicated the electrocardiogram as abnormal or if both 

By and Hz indicated the ECG as abnormal. The classification levels 

for the H parameters were changed to the following: 

the x axis ECG was considered normal if 

_ Hx< 8 . 100 ; ( 35 )  

the y axis ECG was considered normal if 

Ry< 18. 300 ; ( 3 6) 

the z axis ECG was considered normal if 

( 3 7 )  

The summary of the results is as follows: twenty-five normal elec-

t detected normal ·, five normal electrocardiograms rocardiograms 
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detected abnormal; eighteen abnormal electrocardiograms detected ab­

normal ; and three abnormal electrocardiograms detected normal. The 

percent of normal electrocardiograms detected normal improved from 

fifty-six percent to seventy-two percent, although the percentage of 

error due to classifying abnormal electrocardiograms as normal re-

mained at seven percent. 

The final criterion detected the electrocardiogram being tested 

as abnormal if Hx indicated the electrocardiogram as abnormal or if 

both Hy and Hz indicated the electrocardiogram as abnormal. The 

decision levels for the H parameters were changed to the following : 

the x axis ECG was considered normal if 

Ifx< 7. 000 ; (38) 

the y axis ECG was considered normal if 

Hy < 16. 000 ; (39 ) 

the z axis ECG was considered normal if 

Hz < 2. 000. (40) 

The summary of the results is as follows: fifteen normal electrocar-

diograms detected normal; ten normal electrocardiograms detected ab­

normal; seventeen abnormal electrocardiograms detected abnormal ; one 
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abnormal electrocardiogram detected normal. The percentage of normal 

electrocardiograms detected normal dropped from seventy-two percent 

to sixty percent, but the percentage of error which occurs when an 

abnormal electrocardiogram was ·detected as normal decreased from 

seven percent to 2. 3 percent . 

The preliminary evaluation of the proposed method of ECG screen­

ing described above showed a detection of over fifty percent of the 

normal electrocardiograms as normal with a minimum of abnormal elec-

trocardiograms _ detected as normal. 

The results of the proposed method of ECG screening tested on 

some new data which was not in the training set of data is covered 

in Chapter V. A block diagram of a possible method of mechanizing· 

the proposed method of ECG screening is also explained in Chapter 

V .  



CHAPTER V 

RESULTS AND CONCLUSIONS 
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The purpose of the proposed ECG screening method is to detect 

over fifty percent of normal electrocardiograms as normal and to 

detect a maximum percentage of abnormal electrocardiograms as ab­

normal . The ECG is obtained by the Frank lead system as explained 

in Chapter I. The Frank lead system includes an x axis, y axis 

and z axis signal, each of which is an input to the system, as shown 

in Fig. 22 . 

The subject's ECG is amplified to a usable level by the ECG 

preamplifier and amplifier . The analog ECG voltage signal is then 

converted to a series of digital numbers. The analog to digital con­

verter samples analog data at two hundred fifty samples per second . 

The total number of points that fall in each interval of the digi­

talized ECG data is tallied and stored in the corresponding i�ter­

val location, Li for i = 1 , 2, 3, . . . ,99, 100 and 101 . The total number 

of data points per ECG sample is tallied and represented by the 

symbol T. The probability density function which _ is the probability 

of a datum point falling in a specific interval is computed after the 

complete ECG sample has been digitalized and tal lied in the appro­

priated level and the total number of data points has been ta l l ied .  

The probabil ity density function va l ue for a specific l evel i has 
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TOTAL NO . OF  DATA 
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• Figure 22 . The- Conversion of the ECG Signal to the H Function 



the corresponding probability density function symbol Pi • The 

probability density function is then a time-invariant statistical 

5 7  

plot of the probability of an ECG data point falling in a specific 

interval versus the corresponding interval between two levels. How 

to obtain the ECG probability density function is explained in greater 

detail in Chapter III .  

The measurable parameter hi of the probability density function 

curve is the horizontal distance between the first point on the 

probability density function curve greater than a specified value to 

and including the last point on the curve greater than the same value. 

The criterion for measurement of each hi is a predetermined level 

value on the probability density function curve as explained in Chap-

ter IV. 

F.ach hi has a corresponding predetermined weighting . function a1 . 

The weighting functions are different for each different level in 

each ECG axis. The actual values for the weighting functions and 

their derivation are explained in Chapter IV. The decision function 

for each axis H is a number equal to the sum of the products aihi ' ' 

f · 1 2 3 8 d 9 The ECG from the axis being tested is or 1 = , , , . . .  , , an . 

considered normal if the H is less than a predetermined value or ab-

normal if the H is greater than or equal to the same predetermined 

value. 
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The heart' s  electrocardiogram is considered possibly abnormal 

if the· x axis ECG waveform is detected as abnormal or if the y and z 

axis ECG waveforms are detected abnormal. If the heart's electro­

cardiogram is not considered as possibly abnormal, it is considered 

normal. The concept of normal versus possibly abnormal ECG is deter­

mined by the decision function H as shown in Fig. 23. 

The actual numerical values of the H ' s used as the decision 

levels are 7. 000 for ffx ,  16. 000 for Hy, and 2. 000 for Hz. The pro­

posed method of ECG screening using these values of the H's was 

applied to a set of data and the results are as follows : twenty­

four of the twenty-nine abnormal electrocardiograms were detected 

abnormal , five of the ten normal electrocardiograms were detected · 

normal. An error is considered to occur when an abnormal ECG is de-

tected normal. Thus, there was a 12. 8 percent error in the test of 

the above data. 

Since the skirts of the probability density function curve are 

considered to contain most of the information necessary for proper 

categorization of the ECG into normal versus possibly abnormal cate­

gories , a modification to the above method was devised. This modifi­

cation was to set the first negative - and all following values of a1 

for i increasing in value to zero. The weighting factors ai for the 

decision function H as descr ibed by Eq. 27 are found by Eq. 28. 
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ECG DETECTED 
AS NORMAL 

ECG DETECTED 
AS POSSIBLE 

ABNORMAL 

AND GATE · � 

OR GATE 

� 

Figure 23. The Screening of the ECG into Normal versus Possibly 
Abnormal Categories by Using the H Functions 
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The training set of data was applied to the proposed method of 

ECG screening with the above modification for the ai ' s. The optimum 

decision levels for the H's were obtained by the learning process 

described in Chapter IV. The ·actual numerical values chosen for the 

H's are 8. 000 for Hx, 13. 000 for Hy, and 6. 000 for Hz. The prelim­

inary results, using the training set of data, of the modified pro­

posed method of ECG screening are sixty-four percent of the normal 

electrocardiograms detected normal with an error of 5. 6 percent whe�e 

an error is defined as an abnormal electrocardiogram detected normal. 

The modified proposed method of ECG screening was applied to a 

new set of data not included in the training set of data with the 

following results: twenty-five of the twenty-nine abnormal electro­

cardiograms were detected abnormal and four of the ten normal elec­

trocardiograms were detected normal. Thus, there was a 10. 25 percent 

error in the test of the above data. 

The test results of the proposed method of ECG screening do 

show a correlation between the ECG probability density function curve 

and the classification of the ECG into normal versus possibly abnormal 

categories. The learning process requires large amounts of data to 

properly set the values of the mechanization, but only limited amounts 

of data were available for the study. Therefore, the learning set of 



data was adequate only for a study of the feasibility of the pro­

posed method of ECG screening . 

The computer method of ECG screening and diagnosis presently 

being used is successful, but a complex program must be used to 

detect specific heart abnormalities, the cost of which is not low 

enough to be within the budgets of most hospitals . The proposed 

6 1  

method of ECG screening , which would categorize the electrocardiogram 

into normal or possibly abnormal categories, sacrifices the ability 

to detect specific heart abnormalities for simplicity and the prob­

ability of low cost of mechanization . A cardiologist's analysis would 

then be required for the final diagnosis of specific abnormalities. 

The proposed method of ECG screening warrants further study and 

refinement to acquire more accurate weighting factors, ai, and to 

find better decision levels for the H ' s. If the proposed method of 

ECG screening could be refined to a clinically acceptable method, its 

mechanization could be well within the budget limitations of most 

hospitals . The proposed method could be programmed for a small 

computer, or it could be mechanized with hardware . Tests of the 

proposed method of ECG screening show possibilities for its future 

in the science of detecting heart abnormalities by el ectrocardiograms . 
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APPEND IX 

NYQU I ST SAMPLI NG THEOREM 

When sampling an analog signal, what sampling rate is neces-

sary to insure that the samples contain all the information of  the 

original signal? This question is answered by the Nyquist Sampling 

Theorem which states: 

If the Fourier transform X (f )  (and therefore the power 
spectrum ) of a time function x (t )  is identically zero at 
all frequencies higher than Wcps , then x (t )  is uniquely 
determined by specifying its ordinates at a series of 
points spaced 1/2 W seconds apart , the series extending 
throughout the time domain. 9 

The series representation of a function that is a uniformly con-

vergent trigonometric series is a Fourier Series representable in 

the form : 

f (x )  

or 

f (x )  

where 

an = 

bn = 

+(X) 
a

0
/2 + 2 ancos (nx ) + bnsin (nx ) 

+ex> 

n=-ex> 

I 

i: 
TT r -TT 

n=l 

f (x ) cos (nx ) dx ( n  = 0 , 1 , 2 , . . .  ) ,  

f ( x ) s in ( nx ) d x ( n - l , 2 , . . . ) 

(A-1) 

(A-2) 

(A-3) 

(A-4) 



and 

C = 
n 2 TT 

f (x) e-inx dx (n o ,  1, 2 ,  . . .  ) (A-5) 

or in other words the function can be represented as a series of · 
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sine waves or cosine waves of various amplitudes depending upon the 

magnitudes of an, 

According to the Sampling Theorem, the function must be sampled 

at a rate which is twice the highest frequency of its Fourier Series 

representation in order for all the information to be contained in 

the sample. If n of the Fourier Series approaches infinity, the sam-

pling rate would approach infinity, or the sampled waveform would be 

· continuous. 

In the practical application of the Sampling Theorem, the sam­

pling rate is chosen to be more than twice the highest significant 

frequency of the function's frequency spectrum . Usually, the ampli­

tudes of the higher frequency components greatly decrease as 

frequencies increase. Therefore, the function is considered band 

limited and the higher frequencies are eliminated by some preqeter-

mined criterion. A common criterion used is the approximation of 

the function by a sufficient number of terms so that the rneart squared 

error is equal to or less than some specified value. The mean squared 

error is 



2 

E 
n 

(A-6) 

The interval O to T is one period and en is def.ined by Eq. A-5. 

N is the number of terms included in the summation of c times n 

the conjugate of cn. 11 The sampling rate is usually chosen to be 

greater than twice the highest sig�ificant frequency in order to 
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insure adequate information for reconstruction of the waveform from 

the sample values. 
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