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Abstract 

Physical and mental skills are intended to achieve success at acting purposefully. 

As capability at any skill increases, the need to adjust details of application to 

complexity of context and goals will increase as well.  It will become more and 

more important to prepare mentally for what I now term Creational Purposeful 

Integrated Capability at Skill (CPICS). This paper develops what I mean by 

CPICS.  Theory concerning Complex Dynamical Systems (CDS) such as the 

brain and other evidence points to the likelihood that the mental operations by 

which our brain produces any kind of skillful behavior cannot remain constant, 

but rather must develop through stages for skill to progress most profitably.   

Using early stages of math learning as an example, I propose that what can hold 

back some students at development of a skill is that even if presented with all the 

information need for progress, some students have not yet discovered how to 

make the most useful mental restructuring that is also needed. This paper 

proposes and discusses as an example details of what may be especially useful 

restructuring for early stages of math skill learning. This example is then taken as 

helping to identify the more general type of restructuring that is especially useful 

for addressing complexity of application that produces CPICS at every stage of 

skill improvement.   

 

1. The Role of Mental Restructuring in Skill Improvement 

 

The discussion that follows builds upon earlier work (Gardiner et al, 1996; 

Gardiner, 2000, 2003, 2008, 2019).  By skillful “engagement” (Gardiner, 2008) I 

refer to the specific brain actions that produce skillful physical behavior (such as 

at walking) or skillful mental behavior (such as at solving a math problem). 

William James pointed out more than a century ago (James, 1890, 1896) 

that to live in a complex world we must simplify our interactions with it. But, to 

paraphrase Einstein’s famous saying, we must think as simply as possible, but not 

more simply than possible.  

 

2. Insight from Bicycle Riding, Theory of Complex Dynamical Systems (CDS) 

and Related Evidence 
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Physical skills such as at learning to ride a bicycle illustrate what this paper now 

discusses in relation to academic learning as well. Once learners understand the 

bicycle and what they must accomplish, further progress must depend on their 

somehow developing better ways to use their brains to produce bike riding 

skillfully. Suggestions and help at training by parents, and training wheels can 

help, but ultimately qualitative improvement in engagement must take place out of 

direct control by the learners and outside of their conscious awareness. Capability 

at riding suddenly jumps from not possible to possible. Once possible the 

capability may continue to develop. But not until this first step.  

Development of academic skills such as at math, I now argue, also 

depends on improvement in brain engagement particular to that skill, though not 

as visibly initially. Bicycle riders cannot ride at all until they make the qualitative 

engagement change. The math learner who has not made such change at math 

thinking can still at first manage to some degree with less adequate engagement, 

but must work harder mentally to compensate and increasingly all but the 

strongest can be expected to fall behind. And as with bicycle riding, further 

engagement changes that further improve capability cannot take place until the 

first step has been made. 

Why must the brain apparently change its operations as it builds skill at 

bicycle riding, or more generally as I now argue?  Our brain’s enormous 

complexity appears to be at the heart of our most advanced capabilities 

(Chomsky, 1972), and its highly complex operations develop in time and in 

mental spaces created by the brain, and thus are dynamic. General properties of 

Complex Dynamical Systems (CDS) such as the brain have been under study 

since the middle of the 20th century.  Current work is exploring implications of 

this theory to Education (Koopmans, 2014; Koopmans & Stamovlasis, 2016). 

Here we now examine how this theory and related evidence can help us 

understand why all skill development, including academic skill development, is 

likely to involve changes in how the brain engages at a kind of skill:   

 

1) The portion of brain activity devoted to any kind of capability is likely to be 

isolated to a sufficient degree functionally so that special capability can develop.  

A complex system must often develop specialized functions (such as at bike 

riding or math) distinguished from the operations of the system as a whole, 

through use of subsystems (von Berthalanffy, 1969).  The subsystem for a 

particular skill can be expected to depend on activity not only in one but rather in 

many parts of the brain. The ways in which different subsystems pull together and 

manage strategically the resources for different kinds of skill cannot be entirely 

identical, for the operational goals the subsystems address are not identical, but as 

discussed in a companion paper and Gardiner (2019), subsystem operations can 
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become strategically similar in ways that can have important implications for skill 

development.   

 

2) A subsystem may itself involve further division into functionally interacting 

subsystems. Here we are especially interested in how a subsystem producing a 

kind of skillful behavior develops engagement capability for execution of skillful 

actions.  

 

3) It is likely that for skillful behavior to continue to improve, a subsystem 

producing any kind of skill must change its operations in stages. In living 

creatures (Maturana, 1970; Maturana & Varela, 1973) operations of brain and 

other systems must be sufficiently stable at any time for the creature to be able to 

live (see also Wiener, 1948).  On the other hand, the human brain continues to 

grow and develop its capacities significantly after birth.  The need to retain 

stability but also to improve operations over development supports the value of 

evidence for staging found in overall mental development (e.g. Piaget, 1985; 

Dawson and Fischer, 1994).  Watzlawick, Weakland and Fish (1974) have 

distinguished two ways for system performance to improve. By first order change 

they refer to improvements that take place without basic changes in system 

configuration. But greater improvement can require second order change, where a 

subsystem reconfigures itself in some way to achieve a new functional capability. 

Nicolis and Prigogine (1989) in fact propose that a measure of complexity of a 

system is its capacity to make reorganizing transformations. The importance of 

staged development in brain systems as a whole supports the likelihood of such 

staging also in subsystems devoted to kinds of skill.  Chase and Simon (1973) 

provide evidence of such subsystem changes as skill at chess develops.  

Developmental changes specific to a kind skill can explain movement of 

capability for a particular kind from more general features of capability 

(Ackerman, 2011, Ericsson, 2013; Ericsson et al, 2006).   

 

4) Jumps in Skillful Performance: Evidence that skillful performance can 

sometimes jump upwards as skill advances (Zeeman, 1976, Stamovlasis, 2016, 

Sideridis and Stamovlasis, 2016) implies that some change in functional operation 

has taken place.   

 

5) Integration within Subsystem Development: Systems and subsystems profit 

from integrated operation, as the actions of a thermostat meant to help control 

house temperature illustrates. The thermostat affects the house temperature most 

efficiently through connections that integrate thermostat actions with production 

of other actions by machines that cool or heat the house.  Integration of operation 
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with application within a brain subsystem producing skillful behavior can be 

expected to profit from such integration as well.  

 

6) Capacity for Bifurcation in System or Subsystem Development: As a complex 

system develops, it can reach positions where its further development can proceed 

in different ways.  “Bifurcation” refers to a position in development where two 

different paths for further development become possible (Nicolis & Prigogine, 

1989).    

 

3. Mental Strategy Addressing Complexity in Purposeful Application of Skillful 

Behavior  

 

I now wish to distinguish two general strategies our brain can use to engage 

purposefully skillfully in real time. We all know examples of these strategies.  As 

we will see, these strategies are typically integrated. But strategically they 

approach skill in different ways. 

 

1) Reproductive Execution of Skillful Action. Here an executed action is intended 

to reproduce as faithfully as possible action that has been developed previously, 

and has been found sufficiently useful that capability for its reproduction has been 

retained. Examples include the basic act of speaking the sound for the English 

language letter “b”, and the larger integration of this with other acts involved in 

speaking a word such as “bat” once this capability has been learned.    

 

2) Creational Development of Skillful Action. Here the executed action is not 

intended to be fully developed dynamically in real time until execution, execution 

then adjusting dynamically to specific combination of details of context and need 

which cannot be anticipated in advance. The actions of driving a car, for example, 

must be adjusted dynamically in real time as the driver moves down the road.  

In practice we typically integrate both types of strategy to produce skillful 

behavior, but in ways that can again differ strategically. Actors who memorize 

their lines in advance and then try to repeat them as faithfully as possible are 

using reproductive strategy overall  but will  still adjust the way they speak their  

lines with creational strategy depending on how action develops during a 

performance. In a conversation, on the other hand, what one says is usually not 

prepared in advance, but rather is developed overall with creational strategy 

adjusting to what has been said, and what is intended in response. But the acts by 

which words are spoken to an important extent have been prepared in advance as 

one learns to talk.  
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4. Developing the Concept of Creational Productive Integrated Capability at Skill 

(CPICS) 

 

The elements of CDS and other evidence just reviewed implies the likelihood that 

for any kind of skill to develop, the way the brain develops that kind of capability 

must go through stages of restructuring  appropriate to the goals of that skill.  This 

has implications for academic skill learning, as we will now examine using early 

stages of math learning as an example.  

 

5. Math Learning Difficulty 

 

Current well researched, and carefully designed curriculum in mathematics has 

been in place for almost a decade in many states including Rhode Island and 

California. Yet in most recent published data, as Rhode Island standardized math 

testing begins in 3rd grade, less than half of the students (44.2%) met grade level 

expectations, and this percentage was still lower in students from economically 

challenged families. These percentages went steadily downward reaching 14.6% 

overall in 8th grade. California was only a bit better. 49% overall met expectations 

at end of grade 3, and percentages again dropped steadily downward in higher 

grades. These numbers could then show that many students are simply not able to 

learn mathematics at the level now expected of them. This would be very 

unfortunate, for math skills are very important today.  But evidence we now 

review and its implications suggests that some and perhaps even many students 

may be held back for other reasons we will now discuss.  

 

6. Development of Skill at Arithmetic 

 
6.1 Learning how to use math 

 

Students at math often show their greatest difficulty not at learning the operations 

of mathematics but rather at learning how to use them productively beyond the 

specific illustrations covered in class.   

Several years ago I had the opportunity to work with a small group of 

teenagers learning math. When I asked them to solve an algebra word problem 

similar to what had been covered in class all of them succeeded. I then asked 

“Who can tell me a problem that can be solved by addition?” All but a few could 

answer this. I repeated the question concerning subtraction. Now only about half 

could answer it. When I got to multiplication and division only one boy in the 

class even tried to answer. He did so correctly. 

Math teaching has often focused on how to do operations of math. 

Increasingly calculators and computers can do such operations for us. But to use 
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such operations more adequately, one must be able to go beyond the specific 

details of applications covered in class.    

The problem of application I am addressing here can be illustrated by 

demands of medicine. Medical students spend many years learning fundamental 

skills and then seeing examples of how these skills can be applied to specific 

cases. Nevertheless, once they begin to practice medicine they will face the fact 

that each patient will be unique in his or her complex combination of specific 

challenges.  The skilled doctor must build ability to marshal skills flexibly to 

address the varieties of challenge the patients present.   

 
6.2 Learning how to apply integer addition and subtraction productively 

 

Part of learning skill at math concerns how to perform its calculations mentally, or 

on paper, or these days, with a calculator or computer.  These procedures can be 

explained, practiced and memorized, and as a student advances, such information 

can also be found in books, or, these days, online. But knowing how to do 

mathematical operations does not guarantee that users also understands 

adequately how to apply them productively, beyond the specific applications 

covered in training they can remember and adapt.     

Let us now consider some examples of how a teacher may develop 

learning by beginning math students at how to apply the arithmetic operations of 

addition and subtraction productively to applications involving Integers.   

We will see that there can be significant differences in how the student is 

taught to engage with these skills, and that this can significantly affect how 

broadly a learner can come to apply such skill productively when tested, or more 

generally.   

 

1) Learning to apply addition and subtraction facts. We begin with an approach 

that in total is no longer specified in many current math standards, nor in prior 

standards from which it was developed.  But since factual learning as illustrated 

here is still widely used within teaching as a whole, and is considered especially 

important  by many parents and others in the population, it may also still have 

some role as some teachers train early stages of math. Let us look briefly at how it 

can be applied at beginning stages of arithmetic.  

In this approach students learn perhaps through memorizing tables or 

simple arithmetic equations factual information about what addition and 

subtraction operations accomplish. Thus it is a fact to remember that adding 1 to 1 

gives 2 and that subtracting two from 5 gives 3.      

To then apply such facts to a problem during a test or for other goals, 

students must carry out a sequence of mental actions. These include deciding if 

any of the facts learned so far can be applied usefully, retrieving the needed fact 
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or facts from memory, considering and then developing mental actions that apply 

it to the problem, and  finally developing  further mental actions to translate the 

remembered result from the factual information to answer the problem.   

Such multistep process can be time consuming, and thus compromise test 

performance for some students, and will be most straightforward only when facts 

as presented and learned match the application well enough.  If students who have 

been taught that 1 plus 1 gives 2 are told Mr. Jones has one cow and adds one 

more, most children taught this way can say that he now has two.  But if the 

question is formulated slightly differently. e.g. “Mr. Jones has one cow and wants 

to have two. How many further cows must he buy? “, some children can have 

difficulty realizing that the same fact  can be used to answer that question, unless 

this has been discussed and demonstrated in class, or the subtraction fact that 2 

minus 1 gives 1 has also been learned  and its use with such a problem also has 

been demonstrated and understood.    

This training does not promote change in how a student thinks 

qualitatively about math.  Learning how to store facts and rules and application 

examples and then recall this information when needed basically involves 

extending reproductive strategy every student has had to begin to develop as they 

learn to talk before schooling even starts. Students who have become good at 

remembering facts and rules and are strong at more general creational 

engagement at reasoning can be expected to do the best at applying this kind of 

training. It is not surprising that some students struggle with this burden, and 

become increasingly frustrated by mathematics.   Working at math can indeed 

involve reasoning, and thus can help at the training of reasoning capability more 

generally.  But reasoning at math also profits when a student develops 

engagement specific to math as we will discuss. 

 

2) Learning to use a calculator or computer to perform operations of addition 

and subtraction: Today some teachers may increasingly develop a variant of 

training 1 that involves showing students how to perform addition and then 

subtraction operations on a hand held calculator or computer, then explaining to 

the students how to connect what is calculated to solving a problem.  Thus 

application by students is no longer limited by factual information they can recall 

and they can to some extent learn rules about operations by discovery rather than 

memorization.   

As with training 1 this training can also still remain heavily reproductive 

in strategy: remembering specific operations and examples of how to apply them.   

But a student who does not understand addition and subtraction adequately 

conceptually may still have trouble knowing how to connect a given application 

to a calculation they can perform. “I have 26 tables but need 50 for the dinner 

next week. How many more must I rent?” is easy to solve only of you realize that 
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50 – 26 will give you the answer. And there can be many more complicated 

questions than this.  Most students can still relatively easily learn to reproduce 

application acts the teacher or other students demonstrate, but some can still have 

difficulty going beyond this.  

 

3) Building development of operational and conceptual understanding of 

“Number of”. Today’s curriculum at math usually begins before facts discussed 

in training 1 or calculator or computer use of training 2 are considered.  Extending 

emphasis in many earlier curricula, it starts by Kindergarten if possible, to 

develop “number sense”, i.e. an understanding what a number can mean.   

As proposed by Gelman & Gallistel (1978), development of number sense 

typically starts with the children learning to say number names and then write 

number symbols in count order, and then using such counting to count numbers of 

objects of a given kind in a set of objects.    Each number word or symbol is 

paired with a specific object during the counting, and the final number reached is 

spoken of as indicating an amount of objects that have been counted.  

But there is evidence reviewed by Susan Carey (2009) that developing the 

mathematical meaning of a word such as “four” or its symbol 4 or still more 

“eleven” or 11 will require children to change ways of thinking about words or 

symbols they have already developed through talking. This involves qualitative 

change in engagement such as we have been anticipating. And as will now be 

discussed, some children may have difficulty in making what is the substantial 

transition from verbal to mathematical thinking.    

According to Carey, our use of mathematics in relation to amount builds 

upon two conceptual abilities which we have at birth. One core ability allows us 

to compare or detect change in amount. This core capability shows an evolved 

interest in use of quantification, but according to Carey must be developed further 

if precise quantification is needed.  The quantification precision of integers is 

instead built, Carey argues, on a different core capability, initial capability for 

distinguishing between small numbers of objects (up to about 4) held 

simultaneously in short term memory. That is, children can realize immediately, 

without counting, if there are 1, 2, 3, or 4 objects to which they attend. According 

to Carey, the vocal or symbol writing acts of counting then begin to take on 

mathematical meaning when used to distinguish these small changes in quantity 

that children already understand. Once this initial relationship between counting 

and quantity is developed it must then be extended to give a precise amount 

meaning to any number that can be reached by verbal counting.  Then 

conceptually there is no limit to the number of objects for which count has this 

quantitative meaning.   

To understand mathematic meaning of number name or symbol in this 

way represents a significant change from how children have learned to treat words 
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or symbols mentally as the have learned to talk. Nouns classify and refer to and 

identify objects, verbs classify activities, but the amount meaning of a number 

word or symbol now takes on mathematical meaning according to position in a 

count sequence representation (Gardiner, 2008b).  There is nothing in verbal 

thinking that refers to position in a representation of stored information in this 

way. 

This transformation to a new way of understanding the mathematical 

meaning of a number word or symbol is the first transformation that separates 

skill learning at mathematics from verbal skill learning children have begun to 

develop earlier.    

The transition we are discussing (Gardiner, 2008b) does not imply that the 

entire count sequence itself becomes somehow stored in the brain.  More likely, 

engagement operations in the brain will  begin to refer implicitly in some way to 

sequential properties of the count representation, such as that movement along it 

proceeds in steps,  and that the sequence of positions in the sequence is ordered 

from lower to higher, and thus has a specific type of ordered succession.  

Math curriculum already involves many counting related number sense 

building activities. These can be expected to become increasingly difficult to 

perform without the mental transition just discussed.  But as we will now see, it is 

still possible for some children to go quite far at performing counting related 

operations intended to develop initial number sense without making the necessary 

mental transition, especially if they are particularly adept at thinking verbally.  

For example, they may try to think of a number word “three” in a way that 

already works for verbal language.  Perhaps “three” is a temporary name as when 

children play Jack and Jill and one says “I’ll be Jack, you be Jill”. The symbol “3” 

could then also refer to a temporary name.  Thinking this way, the child can then 

still answer “how many did you count to?” by giving the temporary name or 

related symbol when the count ended. Thinking in this way could in fact help 

some children to understand why the name or symbol given to a specific object 

changes when the count proceeds in a different order. Why not? Names are only 

temporary.  

Many number sense questions can then be answered by applying audible 

counting or   even without counting out loud once one has learned to say them 

internally without speaking. As number sense questions become more 

challenging, ironically, those who are more advanced verbally (and this is more 

likely to be girls than boys) may well be the ones that meet this challenge most 

effectively, and may as a result find it hardest to move to a new way of thinking 

that is no longer verbal.   

How might a teacher help students to make this first transition? One, I 

suggest, is from the beginning to tell the students that they must learn to think 

differently about numbers than about words, and that she or he will be trying to 
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help the students learn how to do so. Carey’s review already implies that 

development of number sense should most effectively begin with intensive work 

with small numbers of objects where amount can be most easily understood. It 

seems likely that many teachers may already be doing these things. Another 

strategy less likely to be in use to try, I propose, could be to immediately begin to 

explain by using language that specifies exactly what type of amount information 

is held by the count sequence at this stage of mathematical development.  If one 

uses “number of” rather than “number” as much as possible, this can encourage 

some children to move away from thinking of numbers more abstractly, which 

may confuse some, or as temporary names, and instead towards conceptualization 

that emphasizes that the sequential count representation at this stage carries 

information concerning “number of” and that the information concerning 

“number of” is associated with position in the “number of” count sequence.  

To speak of “number of” can also usefully emphasize purposeful meaning 

of number reached by counting. Piaget (1985) argued that ability to understand 

abstractions developed at a later stage of brain development. Children, like all of 

us and still more so, seem especially eager to learn how to do things that they 

believe will have productive value to them.  Once children build connection to 

“number of” in their brain they can say “I want two of those” or “You have four 

toy soldiers. Can I hold one of them?” Most children can be expected to value 

such practical purposeful capability.  

I want to emphasize that through development of engagement that is 

organized around a number-of counting sequence, operations giving meaning to a 

number (here integer) and its purposeful application become integrated in a way 

that facilitates its purposeful creational use.  Saying to a friend “You asked for all 

eight of those. I can lend you six “would be very difficult and for some even 

impossible without such new mental representation.   

 

4) Clarifying connection of arithmetic and subtraction to representation of 

“Change in Number of”: Once -the purposeful meaning of an integer as 

representing “number of” is connected mentally to position in the number-of 

sequence, this foundation now prepares for another transition that can add 

operations of addition and subtraction as involving changes in position on this 

ordered number-of sequence and interpreting these operations as involving 

“change in number of ”, perhaps represented in another sequence.  

Addition then will involve movement up, and subtraction down the 

number-of sequence. A farmer starting with three pigs and then buys three more, 

moves “number of” from three up to six. When he sells two, this moves “number 

of “down to 4. Thus the farmer ends with four pigs after these transactions.  

Students who have built use of this representation can understand the 

productive value of these operations immediately. And they can use the 
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operations purposefully in ways they invent.  “I have only three marbles.  I need 

two more so that I will have five like Betsey”.  

Note the precision of meaning concerning integer arithmetic a child has 

reached. The information and rules a child must learn by training 1 discussed 

above are captured implicitly, and the purposeful value of integer operations of 

addition and subtraction needed in trainings 1 and 2 are captured as well.   

Note also that again the mathematical operations and their purposeful 

application are integrated.  

Note finally that through connection to counting sequence, “number of” 

and “change in number of” are now also connected to the important properties of 

the representation of the count sequence, including order, here from smaller to 

larger.    

Children who have not made the mental transition discussed in training 3 

may still be able to proceed to some extent by thinking of the addition and 

subtraction operations factually as in training 1 or through using calculators or 

computers, as in training 2. But the difficulties already discussed with these 

training are likely to persist until they make transitions such as just discussed  

 

5) Transition:  These steps of transition from verbal to mathematical thinking just 

discussed would exhibit the type of modifications in engagement discussed earlier 

as likely when a highly complex dynamical system such as the brain develops its 

capacity for a specific kind of skill, such as at mathematics.  The first step 

(training 3) involves a qualitative change in engagement that in essence begins to 

develop a subsystem devoted to mathematical thinking and its productive 

application.  The next step would then add productive capability involving integer 

addition and subtraction. These developmental stages could be expected to 

support jumps in math performance compared to attempts without the qualitative 

improvements in engagement.  At each of stage engagement operations and 

capacity for application would become integrated.  And to the extent that the 

qualitative changes in engagement increasingly separate developmental path at 

math by those who make the transitions from those who do not they would 

involve something like bifurcations in developmental path. But modelling 

concerning such bifurcations, as Nicolis and Prigogine ( 1989) emphasize, must 

be developed very cautiously. Though models of low dimensional systems can 

and are being used to illustrate and study opportunity for bifurcation in systems 

with relatively low level of complexity, attempts to extrapolate what these 

examples show to highly complex systems such as the brain must be developed 

and tested with great care. It seems likely that bifurcation-like changes in the 

human brain in particular in its complexity will involve much more complex 

dynamics of development in its bifurcations than exhibited by simpler systems.    
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6.3 Training further transformation developing purposeful conceptualization and 

application of integer multiplication and division 

 

As was the case with addition and subtraction, multiplication and division 

operations can be taught as involving factual information: 3X 3 = 9, 9/3 = 3.  

Memorizing multiplication and Division tables was once a typical (and for some 

unpleasant) step once addition and subtraction had been covered, and indeed 

memorizing such tables and calculation operations that extent their value can 

remain useful,  though today calculators and computers can in many cases  relieve 

the necessity of carrying out these operations in this way. But as with addition and 

subtraction using these operations productively may well depend on the degree to 

which brain operations are developed to lock in their conceptual meaning and 

value productively. As discussed earlier, most of the teen students I questioned a 

few years ago could not illustrate the purposeful value of either multiplication or 

division.   

Integer Multiplication and Division can be built from addition and 

subtraction in several ways. One is to think of these operations as special kinds of 

applications of addition and subtraction. Multiplication then involves applications 

where a specified number of equal sized additions are performed, and division a 

specified number of equal sized subtractions. Whether or not students have 

already built mental representation relating “change in number of” to operations 

of addition and subtraction, they can learn to apply memorized information from 

tables in ways taught in class. And students who have been addressing addition 

and subtraction in some other way that does not involve the transformations we 

have been discussing can also try to think of multiplication and division through 

addition and subtraction as well, though what hampered them earlier is likely to 

intensify as they try to add these new concepts.  

But all students thinking of multiplication and division only in this way 

can be expected to have difficulty fully understanding the profitable value of these 

operations conceptually.  For at heart multiplication and addition are importantly 

different conceptually, and the same is true for division and subtraction.   

Current Common Core curriculum in math addresses this directly and 

usefully, presenting multiplication as involving wholes built from equal sized 

parts, and division as involving wholes that can be broken into equal sized parts.   

Thus, importantly, I suggest, from a slightly different perspective, 

conceptualization of Multiplication involves repetition, a concept that all children 

can understand.  In building wholes from equal sized components or groups, the 

size of a component is what is repeated.  But integer multiplication as it is applied 

does not relate as directly to thinking concerning parts and wholes as do changes 

in “number of” achieved by repeated equally sized increases. Thus integer 

multiplication can be thought of as involving engagement achieving change of 
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position on the “number of” sequence through repeated movements of equal size 

rather than by through a series of specific movements each specified by addition. 

What is now captured conceptually is application involving repetition that a user 

can immediately understand productively, as in “If I earn $1 every time I mow the 

lawn, I’ll have $20 after I mow it twenty times”.  This operational treatment of 

multiplication then readily makes it apparent that only certain integers in the 

number-of sequence can be reached by integer multiplication.  

Integer Division as implemented on the  ”number of” sequence,  would 

then involve attempt to divide the sequence from 1 to a chosen integer into equal 

sized groups of integers, i.e. to find a way to reach a given total integer by 

repetitions of equal size moving along the number-of-sequence.  This would again 

capture purposeful application as in “I have eight cups of juice. I can give all eight 

of you one cup each or if only four want juice, two cups each”.  And once the 

limitations of integer multiplication are captured conceptually, the corresponding 

limitations of integer division would be captured as well. “Sorry, I have nine cups 

of juice, and so I can’t give all four of you the same amount unless you each only 

get one cup”.  

By adding these operations of multiplication and division to those of 

addition and subtraction on the “number of “sequence, conceptualization of 

operations combining all these operations can be readily developed. And, still 

more importantly, as the limitations of integer multiplication and division become 

more apparent, the importance of a further transition to the richer representation 

of the “number line” (Case, 1985, 1992) and then the need for rational numbers to 

fill in the gaps becomes apparent. And the student is prepared to extend what has 

been developed concerning use of repetition in multiplication and division to 

higher dimensional representation of concern to geometry, to development of uses 

of fractions, rational numbers, and decimals, and then to algebra. 

Building further operations of multiplication and division onto the 

representation which after training 4 supported purposeful engagement involving 

addition and subtraction is again, as discussed previously, a transition, a further 

step to new ways of thinking mathematically in a stage by stage process that as 

discussed earlier develops operations in a subsystem devoted to building 

mathematical skill.   

The stages discussed here address only a portion of the mathematical skill 

a child must develop in Elementary schooling, but illustrates and models 

developments that at every stage integrates mathematical operations with 

creational capacity for application.  
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7. Creational Integrated Capability at Skill (CPICS) 

 

Each of the transformations discussed above achieve something similar in support 

of each stage of mathematical skill development that is examined. They provide 

in stages qualitative further development of brain activity that produces skill 

(“engagement”, Gardiner, 2008)) in a way that provides for creational application. 

I refer to what is created at every stage of skill development as Creational 

Purposeful Integrated Capability at Skill (CPICS).  

As discussed in the first part of this paper, it appears likely that in a highly 

complex system such as the human brain, qualitative changes in the engagement 

producing skillful behavior of any kind will be needed for skill to develop to its 

greatest potential. The specific changes modelled here may not take place as 

modelled. But for reasons discussed above, and now further here I think it likely 

that brain engagement changes that develop what I term CPICS are necessary for 

skill to reach its highest potential. The specific illustrative modelling is consistent 

with available evidence, and receives further support to be discussed in a 

companion paper and previously (Gardiner, 2000, 2008, 2019).  

As noted earlier, learning to ride a bicycle illustrates what I mean by 

CPICS.  Other examples can include talking, understanding speech, making sense 

of the world visually, walking, driving a car, indeed much of the essential skill we 

have digested sufficiently that we find ourselves performing it without knowing 

how we are able to do so, or even how we become able to do so.  To a greater 

extent than any other creature, our human skills develop enormously after we are 

born (Campbell, 1982).  What I term CPICS capability builds skill in a way that 

allows us to adapt it especially profitably to the great complexity of the niche in 

which we live.  It is hard to imagine how we could talk, or do any of the other 

things for which CPICS capability seems essential if we prepared to execute such 

skill in a less adaptable way. We are so used to our many CPICS capabilities we 

do achieve that we can easily take them for granted, just something our 

remarkable brains are able to do.  But I propose in many areas of skill, especially 

at academic skills that are learned during schooling, CPIS capability is not yet as 

broadly achieved as may become possible as its basis and means for training it 

become better understood.  

Though the CPICS integration provides what feels like essentially 

continuous real time creational adjustment and development of skillful action 

during bicycle riding or walking, skillful mental performance even during CPICS 

engagement is likely to be developed in more episodic stages. For example, as 

addition and subtraction problems come to involve two or more digit integers, or 

with much of multiplication and division, pencil and paper or electronic 

calculation will still be needed. What CPICS provides is mental framework that 
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integrates creational application with management of what is needed 

operationally.   

An essential feature of CPICS capability is its integration of 

conceptualization with capacity for application. How we think consciously or 

understand concerning our capability at a skill is a complicated matter that 

Carey’s (2009) evidence and discussion implies is deeply related to how we 

organize our mental operations concerning that skill.  Thus the ability to say 

whether one number of objects is greater than another, and if so by how much, or 

to even understand the intended meaning of such a question depends on being 

able to refer to some mental organizational structure such as the number-of 

sequence to answer the question.  

I do not propose that developmental staging such as discussed here is the 

only way that a brain can build skill at math, or at other skills. But the staging 

developing CPICS capability at every stage appears to have very useful 

properties, and this may explain why many capabilities all of us already achieve 

and honor appear to develop in this way.  

The stages of improvement can be thought of as each likely to involve 

what may be called bifurcation, in the sense that capability at skill and its further 

development is likely to evolve differently and more satisfactorily in those who 

have made the transition compared to those who have not. As noted previously, 

Nicolis and Prigogine (1989) warn that the uses of such terminology does not 

imply that the bifurcations of interest here in the highly complex brain can be 

modelled or even understood in the same way as those that are being studied in 

lower dimensional less complex systems. I hope that the examples of modelling 

presented here, in related research (Gardiner, 2000, 2008, 2019) and in a 

forthcoming paper can assist in clarifying such changes in brain operations.    

 

8. Conclusion 

 

Attention to the issues discussed should be added to the intense current work 

seeking to further improve Education at this time when it is so critical to the 

future of every child.   For reasons that are not yet well understood, it seems likely 

that some children have more difficulty than others in making the mental 

transitions during schooling discussed here. As illustrated, details of classroom 

training may help to overcome this. I have proposed as examples possibilities this 

framework suggests that can continue to be investigated.  A companion paper to 

follow will continue to examine implications, and will also review evidence of 

striking gains in math capability, especially in weak or at risk students, that 

interaction with CPICS gains at musical skill as modelled here can help to explain 

(see also Gardiner, 2019 for a related discussion). These further data also clarify 

the nature of brain development that CPICS framework addresses.  
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Education is not only about providing information but also, as discussed 

here, very possibly about promoting brain changes that foster the development of 

capabilities of all kinds,  in ways that  maximize their productive use.  The data to 

be reviewed in the companion paper show evidence that as we improve our 

understanding of how to promote these changes this can help some and perhaps 

even many children to advance in their academic skill development more 

successfully than is presently the case.    
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